SEMI-STABLE REDUCTION OF FOLIATIONS

MICHAEL MCQUILLAN

The content is the minimal model theorem for foliations by curves. It continues the roll out of the various ingredients in the
Green-Griffiths conjecture for algebraic surfaces, [McQ]. The result is, however, presented as a self contained theorem in complex
algebraic geometry without foliation dynamics, and independent of its motivation. Working famaliarity with algebraic champs

(the mis-translation stack will be eschewed) is essential. Indices of notation and definitions are provided.
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INTRODUCTION

In a historical quirk, cf. [Kol96, Intro.], the study of the canonical bundle of
higher dimensional varieties initiated by [Mor82], and, as such, often called Mori
theory, has long ceased the original focus on rational curves in favour of a co-
homological approach which would be better described as Kawamata theory. It is,
therefore, not without irony that the study of rational curves on varieties foliated by
curves is, arguably, Mori theory as Mori intended and leads to a complete minimal
model programme.

Everything takes place in characteristic zero, so, say a projective variety X /C,
and a foliation by curves, F, is just a (usually saturated) rank 1 sub-sheaf of the
tangent sheaf, (I.19). Locally where both X and F are smooth this corresponds,
by the classical Frobenius theorem, to a smooth fibration in the analytic topology.
We therefore adopt the notation (and it’s only notation) X — [X/F] for foliations
in order to reflect better the underlying geometry/real definition of a quotient of X
by the holonomy groupoid, cf. Fact/Definition II.a.1 & Fact/Definition II.a.3. Irre-
spectively, there is, under mild hypothesis, e.g. X smooth, a well defined bundle,
K 7, of forms along the leaves, and corresponding notions, Definition L.b.1, of foli-
ated Gorenstein, resp. Q Gorenstein singularities. Similarly, there are, functorially
with respect to the ideas, notions of foliated terminal, log-terminal, canonical and
log-canonical singularities, Definition 1.b.3. Unlike their classical counterparts,
however, these definitions always admit a simple description in terms of local alge-
bra. For example, terminal (Gorenstein) is equivalent, Revision 1.b.13, to smooth
along the foliation, or, equivalently given everywhere locally by a non-vanishing
vector field, d, while a Gorenstein log-canonical singularity is a point, p, where
although 9 vanishes, the implied linearisation

_m(p) m(p)
“m2(p)  m2(p)

0.1

is non-nilpotent, Revision L.b.5.

Already this local global translation is highly indicative of why Mori theory of
foliations by curves is that much more tractable than that of varieties. Neverthe-
less, there is no free lunch, i.e. it transpires that from ambient dimension 3 on
that there are foliations by curves which never have log-canonical singularities on
any smooth bi-rational model of the ambient space. The phenomenon is quite gen-
eral, [MP13, §.IILiii], and, in se, straightforward enough, i.e. there are certain
finite group actions on vector fields whose fixed points cannot be separated from
the singularities while preserving smoothness of the ambient space. In practice,
however, it means that if one wants a model of a foliation X — [X/F] with (foli-
ated) log-canonical singularities, and X smooth, then one is obliged to pass from
the category of varieties to the 2-category of Deligne-Mumford champs. In this
context, the main theorem of [MP13] is the existence of log-canonical resolutions
in ambient dimension 3, and, the reader should be aware that for the moment the
existence of log-canonical resolutions in higher dimension is open.

Irrespectively, we are obviously obliged to take as our starting point smooth fo-
liated champ X — [X/F] with log-canonical singularities- from the existence of
the Gorenstein covering champ, Fact/Definition 1.b.7 & [BM97]: if there is a model
with log-canonical singularities then there is one in which the ambient champ is
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smooth. This begins, however, to show signs of a rather pleasing loop since the nat-
ural context of the classification, [McQO8], of foliated algebraic surfaces is exactly
foliated smooth bi-dimensional champs, while the universal algebraic foliation in
(hyperbolic) curves Mg 1 — M is again, naturally, a smooth Deligne-Mumford
champ.

To say that this begs the question of whether the minimal model programme
for foliations by curves could be run wholly inside the 2-category in which the
ambient champ is smooth may, to experts in the Mori theory of varieties, seem
rather absurd. It transpires, however, to be the case in a way highly reminiscent of
the structure of Mg 1 — M. The precise theorem is,

Theorem. (I1V.e.6, IV.e.7, IV.e.8) Let X — [X/F] be a foliated champ which
enjoys the following further properties

smooth; projective moduli; log canonical, resp.canonical, foliation

0.2)

singularities

then there is a sequence of contractions and flips
X =X Xy e Xn = Xin

(0.3) l — l —_—s ____al

[X/F] = [Xo/Fo] [X1/F1] [Xn/Fn] = [Xmin/ Fmin]
such that each X; — [X;/F;] enjoys all the (respective) properties (0.2), and
exactly one of the following occurs

(a) Kr,_ ., is nef.

(b) Xmin — [Xmin/ Fmin] is a Mori fibre space, i.e. the locus of a single ex-
tremal ray is all of Xin, and the foliation is a bundle of foliated varieties where
the universal cover of a fibre is the radial (supposed saturated in dimension 1) fo-
liation on a weighted projective champ, Definition 1.d.2, whose dimension is 1 iff
the foliation singularities are canonical.

Here a radial foliation is just the champ/weighted projective space variant of
a pencil of lines through a point of projective space, and in a further irony, the
harder part of the theorem is (b) in which the use of the word flip is slightly loose
since it may, when the singularities are canonical, involve “very exceptional flips”,
Fact/Definition [V.e.5, i.e. alittle invariant blowing up in the final stage, to preserve
projectivity. The content of the theorem, however, should be clear: i.e. either we
get a minimal model, or a bundle of Fano objects, and the Fano objects are partic-
ularly simple, in fact, to all intents and purposes, rational curves if the singularities
are canonical.

This said, let us give a brief breakdown both of the paper and the proof.

I. The first chapter is preliminary in nature. It contains: generalities, l.a, on
Deligne-Mumford champs; a revision of foliation singularities, I.b; the theory of
weighted projective champs, I.c, and their radial foliations, I.d; a non-embedded
variant of completion, I.e; and some remarks on the analytic topology, 1.f. Tech-
nically, it’s worth flagging the last 2 sections since the fact that many things fail
to be an embedding for (separated) champs which are trivially so in the world of
varieties, e.g. graphs of maps, is an issue, albeit sometimes it’s true for trivial rea-
sons, i.e. that the étale topology is non-classical, but in the analytic topology one
can still embed.

3


http://www.mat.uniroma2.it/~mcquilla/files/canmod.pdf

II. The second chapter is the critical one. It first proves the cone theorem,
Fact 11.d.1, in maximal generality. This was already done in [BM16] for foliated
Gorenstein varieties, and its extension to foliated Gorenstein champ, Il.a-11.d, may,
largely, be considered technical in nature. In any case, it reveals, that the Kr-
negative extremal rays are invariant parabolic (i.e. dominated by a rational curve)
champs, £, not factoring through the singular locus. Their particularly simple in-
tersection with the singular locus, which occurs at a unique point p : pt — L,
of the foliation is described in Il.e, their normal bundle (should they have only
nodes) by ILf, and their formal neighbourhoods (again for singularities no worse
than nodes) in II.g. The key point here, Proposition/Summary II.g.3, is not only
that the normal bundle determines the formal neighbourhood, but that everything is
determined by the linearisation, (0.1), at the singularity p whose eigenvalues are,
up to scaling, the slopes of the Harder-Narismhan filtration of the normal bundle.
The section concludes with an examination of the functoriality of the relationship
between between (0.1) and the Harder-Narismhan filtration, IL.h, i.e. the said scal-
ing is ambiguous in a non-trivial way up to %1, and this has a global manifestation;
along with the necessary preliminaries, I1.i, for studying extremal rays with cusps.

III. The third chapter globalises the infinitesimal information of the second to
describe the sub-champs swept out by extremal rays beginning with the general
discussion III.a which leads to a definition in the specific, Fact IIl.a.4, of extremal
champs. As such IIL.b-1II.d is devoted to describing their structure, which, as one
might imagine from item (b) of the main Theorem is, Large Fact I11.d.7, basically
that of a bundle of radially projective champs. The base of this bundle is essentially
a smooth component of the singular locus, but the aforesaid issue of &1 in the
scaling of (0.1) means that even when it has sense for it to be a bundle in the
Zariski topology, it may not be.

I'V. Finally we construct contractions and flips, or, better, flaps, since everything
is just a question of blowing up and down. Indeed, as one might imagine, contrac-
tions, IV.a-IV.b, are easy. A critical fact, however, emerges, Proposition/Summary
IV.a.4, that although a contraction renders the ambient champ less space like, i.e.
can increase the local monodromy, it renders the foliation completely smooth about
the contracted locus. As such, when one brings the full weight of the infinitesimal
knowledge of §.1I to bear in order to describe the formal neighbourhoods of ex-
tremal champ in a similar manner, I'V.c, to that of a single ray in order to flip, IV.d,
by the simple expedient of weighted blowing up and down, one concludes that flip-
ping must terminate because it destroys a component of the singular locus at each
stage. This leaves only loose ends, I'V.e, to tie up related to scaling by £1 of (0.1),
all of which can only occur when the generic leaf of the foliation is dominated by a
rational curve. Consequently we conclude the demonstration of the main Theorem
in IV.e, and provide a log-variant in IV.f.

I am indebted to Bogomolov for pointing out that the language of algebraic
champs was the correct setting for the main theorem; to Brunella for explaining to
me the role of holonomy; to McKernan for furnishing an example that the issue
of (0.1) with integer eigenvalues being only well defined up tp 1 is genuine;
to Marie Claude for the figures; and Cécile for the original typesetting, with any
subsequent flaws being the result of my own clumsy modification.



I. PRELIMINARIES
L.a. Normal-folds. A normal-fold is a particularly simple kind of champ,to wit:

La.1. Definition. A normal fold is a not necessarily tame (although this will always
be our context) excellent normal separated Noetherian Deligne-Mumford champ
every generic point of which is scheme like.

A particularly important class of examples is given by

L.a.2. Fact/Definition. ([Vis89, 2.8]) Following standard usage a smooth (over an
implicit base S) normal-fold will be referred to as an orbifold. In particular: a
(separated) algebraic space, X, of finite type over a field k has strict (or even non-
strict if the action is tame) quotient singularities iff there is an almost étale map,
uw X — X, from a smooth (over k) orbifold. In this case X is the moduli,
[KM97, 1.3], of X, and conversely X is unique up to equivalence. As such X will
be referred to as the Vistoli covering champ of X .

The following is a tiny variation on [Vis89, 2.8]’s treatment of the Vistoli cov-
ering champ

La.3. Lemma. Let u : X — X be the moduli of a normal-fold, with U — X an
étale atlas then

(I.1) R := ( normalisation of U X x U) =U
defines a groupoid and X is equivalent to the classifier [U/R].

Proof. UxxU = U is agroupoid, so its normalisation is too. Now, let V' <— X" be
the everywhere scheme like embedded dense Zariski open guaranteed by Definition
La.l,and U’ := U xx V,then V is embedded in X, so U’ xy U’ is a Zariski dense
open of R. It is, however, also a Zariski dense open of Ry := U xx U, and we
have a fibre square

UXXU<—R1

12) | |

A
Xxy X <X x
where by hypothesis the lower horizontal is finite. Consequently Ry — R is a
finite bi-rational map of excellent normal schemes so they’re equal. U

Irrespective of normality we have the further simplification

l.a4. Lemma. Let u : X — X be the moduli of a separated excellent Deligne-
Mumford champ, X’ < X the (open, possibly empty) locus where u is an iso-
morphism, and f : ) — X a map such that f~1(X’) meets every generic point

then f lifts to a composition }) — X X it Lifes everywhere locally, i.e. for
every étale neighbourhood U — X of the image f(y) of a geometric point y there
is an étale neighbourhood V), of y and a lifting Vy, — U of f.

Proof. Necessity is obvious. By [KM97, 1.3] and [Vis89, 2.8], there is, indepen-

dently of any normal-fold hypothesis, an étale atlas U = [, Uy of X and finite

groups G acting on Uy such that V := ][, Vi := Uy/Gq is an étale atlas of X
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with [Uy/Gy] = X xx V. Now for anything with a well defined map to X denote
with a’ the fibre over X', so, we have open embeddings

(1.3) VsV, Vo= Vo:=Yxx Va
Consequently, by hypothesis, and refining U, if necessary, there is an étale atlas
Yoy — Vo and maps fy : Yo — Uy such that

Yo — U,

(L4) l l

Vo —— Va

commutes. In particular, the G, torsor Yy Xy, U, is trivial, and we consider

yXo
YO :]_[YO[XGQ —_— Ua
0. fa(y)

(IS) left verticallin (1.4)

y
which leads (it’s here, cf. Remark I.a.5, we use generically scheme like) to a com-
mutative square

, horizontal

0 mwas

(16) via verticallin (1.5) l

X — X
As such, if we form the groupoids R := U xxy U = U,and Y1 := Yo xy Yo = Y
then (1.6) ensures that ) — X’ < X is equivalent to the composition of functors

1.7) Y/ > R =U'xx U < R

while by hypothesis Y| is dense in Y1 and X is separated, so the simple of expedient
of taking the closure in (I1.7) defines a functor Y1 — R. U

This is sufficiently close to optimal as to merit

L.a.5. Remark. One cannot replace X’ by a Zariski open sub-champ X’ < X in
Lemma I.a.4. Indeed take X to be the weighted projective champ P(n, n), Defi-
nition Lc.1, n > 1. It’s moduli is P, so the fibre, X/, over a standard A! is an
embedded Zariski open. Moreover it’s isomorphic to A! x B, , so in particular
admits a section, and we could try to take ) = P!. The gerbe P(n,n) — P!
is, however, non-trivial so the map ) — X’ cannot be extended to ) — X
even though it is locally trivial, whence a fortiori without local obstruction. The
problem is that if one replaces the moduli X, resp. X', by X, resp. X”, in (1.6)
then the diagram needn’t 2-commute in a slightly unusual way. Specifically, it’s
2-commutative on geometric points, p say, by way of a natural transformation 7,
between either possible composition, which, in the specific example, if say Uy, Uso
are points in the standard affines around O and infinity, is

1, if p € Uy,
(1.8) np = p—1/n ‘
p_1 —— p if p e Ux\O,
6



where the latter arrow is to be understood in the presentation (I.32). Plainly,
however, p — 7, isn’t even continuous for p in Ux\0, and (1.6) fails to be 2-
commutative.

This can often be combined with

I.a.6. Fact. Let X be a (connected) normal (or slightly more general uni-branch)
excellent Deligne-Mumford champ then there is a unique normal-fold X (slightly
more generally uni-branch-fold with the obvious definition of that notion) such that
X — XY is alocally constant gerbe under some finite group Bg.

Proof. Since X is excellent and uni-branch one can insist, [EGA-IV, 7.6.3], that
the atlas U = |, Uy encountered at the beginning of the proof of Lemma I.a.4
consists solely of irreducible (affine) schemes Uy,. Now for G4 of op. cit. define
G, as the kernel of the representation G, — Aut(U) with G/ the image, then
since X is uni-branch [ [, Uy x G, is a normal (groupoid sense [KM97, 7.1]) U-
group scheme of the stabiliser, so for R := U xy U == U, there is, op. cit. 7.4, a
well defined quotient R — R” where the latter is locally of the form [Uy/GJ]. As
such define X to be [U/R"], and observe that all the G/, are isomorphic. O

Finally another important application of normality. Specifically let U be the
spectrum of a Noetherian local ring, A, with closed point x, and j : U' — U a
Zariski open whose complement is defined by a regular sequence of length at least
2. As such, for n € N the Kummer sequence,

(19) 0 — fn = G — Gm — 0,

applied to U and U’ combine to afford a short exact sequence
(L.10) 0 — HY\(U, un) = BY U, ) — Pic(U")[n] — 0
In particular therefore, if A is strictly Henselian and n=! € A,
1L.11) HY (U, 1) = Pic(U")[n]

Now in the particular case that 4 is normal excellent we can take U’ to be the
regular locus, and identify (primitive) generators of the right hand side of (I.11)
with Q-Cartier divisors, L, on U of index n = n(x), i.e. a Weil divisor, L, on U
such that n L, but no smaller multiple, mL, 1 < m < n, is a line bundle, while the
elements of order n on the left are just u,-torsors V' — U’ of order exactly n, and
we assert

I.a.7. Fact/Definition. For a Q-Cartier divisor, L, of index n on a normal strictly
Henselian U over which # is invertible, the associated index I-cover, V — U, is
the integral closure of U in the corresponding ji,-torsor V' — U’. By construction
L | V is the trivial bundle, and, in a sense, universally so, i.e. if W — U is any
finite map from a normal scheme W every component of which is dominant such
that L | W is trivial then it factors uniquely as W — V — U. In particular
if A — U is the strict Henselisation of some (scheme) point ¥ of U of index
m|n then the normalisation, N, of V' xy A is the trivial M%—torsor over the index
1-cover, M, of A.

Proof. It remains to address the universal property, wherein, without loss of gener-

ality W is connected. As such all of U, V', W are the spectra of normal Henselian

local rings, so they are all domains, while the function field of V' over that of U is
7
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Galois by construction, so the factorisation is unique if it exists. Now let W’ be the
fibre over U’ then by (I.11) the pup,-torsor W’ x g V’ has a section, which gives the
factorisation W/ — V' — U’, and since everything is S, the simple expedient of
taking global functions on these opens gives W — V — U. Applying this to the
in particular: there is a map from N to M, while V' xgs A is a Zariski dense open
of the former which is the trivial JL 1 torsor over the fibre of U’ in the latter. (]

In the category of spaces it’s rare that index 1-covers can be glued whereas:

L.a.8. Fact. Let L be a Q-Cartier divisor on an excellent normal Deligne-Mumford
champ X then there is a finite map, f : J — X, from a normal Deligne-Mumford
champ such that f*L is Cartier enjoying the following universal property: if
g : Z — X is a finite map from a normal champ every component of which is
dominant and such that g* L is Cartier, then there is a 2-commutative factorisation

Y
PN
g
(L12) z - X

such that for any other factorisation, £:g = fhthereisaunique 0 : h = h for
which (g«0)& = £.

Proof. For every closed point x of X let n(x) be the index of L at x, and Uy — X
a sufficiently small étale neighbourhood such that the index 1-cover V, — Uy
of Fact/Definition I.a.7 is well defined, with UJQ, V)é as per op. cit.. Now, for
U = [], Ux, we can without loss of generality suppose that X’ is the classifying
champ of the étale groupoid R := U xx U = U, and that U’ := [, U], is the
locus where U is regular. As such, the restriction, R6 = U’ is a dense Zariski
open of Rg equivalent to the restrictions R = V' := [[ V], where R" — Ry, is
both étale and finite, and we define R = V to be the integral closure of R¢ in R’.
Consequently from the commutative diagram of fibre squares

Ry «<— R «— R

(1.13) l l l

UxU «—— U xU «—— V' xV'
and V x V — U x U finite, R = V defines a groupoid which by the in particular
in Fact/Definition I.a.7 has étale source and sink.
Now let g : Z — X be given, then, up to equivalence, we can identify this with
a functor of groupoids, g : W1 — Rg, where W1 = W xz W == W for some étale
cover W — Z finer than the pre-image of U. By Fact/Definition L.a.7, W — U
factors (uniquely) through V' affording a (unique) map,

(1.14) hi: W71 — Roxyxug VxV

and R is the normalisation of the latter, while every local ring of Wj is finite over

U x U so this actually factors as a functor (because everything is unique) / :

Wi — R. As such we get a unique strictly commutative factorisation g = hf

given W — U. This supposes, however, that all of X', ), Z were the classifying

champ of the said groupoids, whereas they may be no better than equivalent to

such, and whence the uniqueness statement (1.12). O
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In the same vein one has

L.a.9. Fact/Definition. Let D < X be an effective Cartier divisor on a normal
champ X'. As such for a sufficiently fine atlas U — X we may identify X" with the
classifier of a groupoid (s, ¢) : Rg =% U and suppose that D|y is defined by z = 0
where s*z = gt*z for some co-cycle g : Ry — G,. Now for n € N invertible in
every local ring of X" define a groupoid with objects

(1.15) normalisation of (T" = z) «— U x Al.

and arrows the normalisation, R’, of the base change groupoid Ry = V, i.e. the
fibre

Ry —— VxV

(L16) | |

SXt
Ry —— UxU
so that R" =% V is a groupoid because Ry, = V is, and everything is normal.
Equally R’ admits the explicit description:

(1.17) normalisation of (7]" = s*z, Ty =1*z) <> Rg X A2,

which is the same thing as taking normalised nth roots of s*z and the (invert-
ible) transition function g. By hypothesis, however, n is everywhere invertible, so
R’ = V has étale source and sink, and we define X'1/" = [V/R'] — X to be the
(extraction of a) nth root of D. Observe, moreover, that a section of s : R — V
is a choice of nth root of g, so from the Céch boundary in (1.9), the class of the
fibration D’ = D xx X’ — D in B, s is exactly

(L18) c1(D) € H*(D. jin)

Lb. Foliation singularities. This section is largely a summary, for the conve-
nience of the reader of the relevant parts of [MP13]. The one exception to this
rule is the concluding digression from Definition I.b.12 to Construction I.b.15, on
how to avoid the study of boundaries altogether. Our interest is exclusively in foli-
ations by curves, i.e. if X is a Deligne-Mumford champ of finite type over a field

k (so Q}Y Ik is well defined) a torsion free quotient

(1.19) Q= 0—0

which is locally free of rank 1 at every generic point. Arguably this is not the right
definition in positive or mixed characteristic since in such situations (I.19) is not
likely to be locally integrable in any meaningful sense. Fortunately we never have
to worry about this, so we proceed directly from (I.19) to

Lb.1. Definition. If X is normal and the double dual QVV is a bundle, resp. a Q-
Cartier divisor, then we say that the foliation, F, is Gorenstein, resp. (Q-Gorenstein,
or possibly foliated Gorenstein, resp. foliated Q-Gorenstein, if there is any danger
(which there won’t be) of confusion. In either case, and indeed even if X were
only normal, we write K r instead of QY for the canonical divisor, so that in the
Gorenstein case there is an ideal /z supported in the co-dimension 2 (schematic)
singular locus of the foliation Z such that

(1.20) Q=K]:~IZL>QVV=K]:
9



As such, even in the analytic topology, the classifying champ, [X/F] may have
no sense, albeit analytically (and with probability zero in any algebraic topology)
[Y\Z /F] has sense. Nevertheless to better convey the idea we write

1.21) X — [X/F]

as a short hand for (I.19), and Q}v /F for the kernel in op. cit..
Unfortunately it’s not technically correct to view a quasi-projective variety as a
proper champ with infinite monodromy on the boundary, so we make

L.b.2. Remark. All of this is equally valid for champs with boundary, i.e. a couple
(X,D), for D — X a reduced Weil divisor. Usually there’ll be some further
regularity, e.g. X and D smooth over k, but all that’s a priori required is that we
can give a sense to the sheaf Q}Y(log D), so, X normal is sufficient. In any case, it
therefore follows that the canonical bundle of the foliation F may have competing
definitions according as to whether a boundary is involved, K, or not, K;Olog.
These are related by,

1.22) Kr=K¥%+ > e(D)D;
i

where D; are the irreducible components of D, and for W a Weil divisor

0 if W is F (in the sense of Definition I.b.1) invariant,

a23) M= 1 otherwise.

Similarly there may also be competing definitions of invariant according as to
whether this is understood for a saturated sub-sheaf of Ty or 7x(—log D) so that
should there be any risk of confusion the former, equiavelently, Definition I.b.1
will, following [MP13, 1.i.2], be refered to as strictly invariant. Regardless, almost
always our boundary will be empty, but when it isn’t: Kr will, as suggested by
(1.22), be reserved for the canonical with log-poles since this is more natural and
the resulting formulae are cleaner.

A case in point is the following cut and paste of [MP13, L.ii.1]

I.b.3. Definition. Let (U, D, F) be an irreducible local germ of a Q-Gorenstein
foliated logarithmic geometrically normal k-variety, i.e. the germ about the generic
point of a sub-variety ¥ of a geometrically normal variety such that the log canon-
ical bundle K r is a Q-divisor, then for v a divisorial valuation of k(U) centred on
Y the log discrepancy, ar(v) is defined as follows:

By hypothesis there is a normal modification 7 : U — U of finite type, together
with a divisor £ on U such that ﬁﬁ’ g 18 the valuation ring of v. In particular,

bearing in mind (I.22), there is an induced foliation F with log canonical bundle
K 7, i.e. whose dual is saturated in Tp;(—log E). Thus there is a unique rational
number a #(v) such that

(1.24) Kz =n*Kr +ar(v)E
10



and for € as in (1.23) we say that the local germ (U, D, F) is,
(1) Terminal if ar(v) > €(v).
(2) Canonical if ar(v) > €(v).

(1.25) (3) Log-Terminal if ax(v) > 0.

(4) Log-canonical if a r(v) > 0.

Where the slightly unsettling shift of the definitions by €(v) occurs as a result
of the convention adopted in Remark [.b.2 together with their correct functorial
interpretation.

In contrast to this functorial framework, there is a “competing” local notion of
what ought to be a good class of foliation singularities, viz:

I.b.4. Set Up. Let 0 be a singular derivation of a local ring, &, with residue field
k. Thus, by definition, if m is the maximal ideal of &, d : & — m and
- m m
(1.26) 0:— = — x> 9(x)
m m
is k-linear by Leibniz’s rule.
The relation between the linearisation (1.26) and (I1.25) is as good as possible

L.b.5. Revision. [MP13, L.ii.3]. A Gorenstein foliation over the complex numbers
is log-canonical iff every point is either smooth, or, its linearisation, (1.26), is non-
nilpotent.

Better still, one can always reduce to the Gorenstein case thanks to the specifics
of one dimensional leaves, i.e.

L.b.6. Revision. Let (V, D, F) — (U, D, F) be the index 1-cover of the germ in
Definition I.b.3 associated to the log-canonical bundle K r in the sense of Fact/Def-
inition I.a.7, or, more generally an almost étale map, then for any (n) in (1.25),
1<n<4, (UD,F)is (n)iff (V,D,F) is.

Proof. The easy ones are n = 4, [MP13, L.ii.5], and the if direction for 1 <n < 3,
[MP13, I11.1.5], which also covers the subtler converse. U

Manifestly, therefore,

Lb.7. Fact/Definition. Let X\D — [X\D/F] be a Q-foliated Gorenstein loga-
rithmic champs, then the index 1-cover, 7 : X — X, defined by the log-canonical
divisor Kz, Fact 1.a.8, will be referred to as the Gorenstein covering champ. The
map 7 is étale in co-dimension 2; there is an identity Kz = 7*Kx of log-
canonical divisors; X\D — [X\D/F] is Gorenstein; and the cover enjoys (1),
1 <n <4,of (125)iff X\D — [X\D/F] does.

As such, we work almost exclusively with Gorenstein foliations. Similarly the
already small difference between log-canonical and canonical becomes close to
irrelevant for minimal model theory, i.e.

1.b.8. Definition. Let (U, D, F) be a germ of a normal foliated Gorenstein log-
variety about a point p such that a generator (in the sense of Definition I.b.1) van-
ishes along a sub-variety Y then a singularity is called radial iff after completion
in the maximal ideal we can find a generator of the foliation of the form,

r

1.27) E)znl)cli—i—...—i—nrxri + 6
dx1 ax

11



where x; = 0 defining Y are linearly independent modulo m%] o Ni € N, and
8 € Der(K, Iy) for some quasi-coefficient field K. In particular for U smooth: D
is strictly invariant, Remark L.b.2, iff codim(Y) = r > 2.

By way of clarification let us make

1.b.9. Remark. This isn’t quite a cut and paste from [MP13], since op. cit. II1.i.2 in-
sists that ¥ of Definition 1.b.8 has co-dimension at least 2, which, although entirely
a question of convention, isn’t right for doing minimal model theory. In particular,
therefore, when Y has co-dimension 1, e.g. Revision 1.b.10.(c), D =Y.

Irrespectively, the above definition of a radial singularity shouldn’t be confused
with the closely related notion of a radial foliation encountered in Definition 1.d.2,
and in any case the important point is,

I.b.10. Revision. [MP13,IIL.i.3]. For (U, D, F) a germ of a normal foliated Goren-
stein variety over a field k of characteristic 0 the following are equivalent,
(a) The singularity is radial.
(b) The singularity is log-canonical but not canonical.
(c) Y is the centre of a divisorial valuation of k(U) of (log)-discrepancy zero
and exceptional divisor, cf. Remark 1.b.9, not strictly invariant.

It thus follows that the passage from log-canonical to canonical is exactly

Lb.11. Revision. [MP13, IIL.ii.2]. If X\D — [X\D/F] is a foliated smooth
champ over a field of characteristic zero which has log-canonical but not canonical
singularities then every component of sing(F) where this occurs is smooth, and
there is a smoothed weighted blow up, [MP13, Liv.3], in each of which such that
the induced log-foliation on the resulting bi-rational modification X — X has
everywhere log-canonical logarithmic foliation singularities, which amounts to the
rather strong: at every point of the exceptional divisor, £, the induced foliation is
smooth and every where transverse to £.

Such attention to the details of the logarithmic case notwithstanding our ultimate
intention is to work almost exclusively with an empty boundary. In order to do this
we introduce

1.b.12. Definition. A foliated space with orbifold boundary is a triple (U, A, F),
where U — [U/F] is a foliation in the sense of Definition I.b.1 and A, is a formal
linear combination Zi a; A\; of effective Weil divisors, where a; = 1 — ni_1 for
some positive integers n; < oo; and we say (slightly contrary to standard usage)
that (U, A, F) is Q-Gorenstein if U — [U/F] is and each A; is Q-Cartier. More-
over if D is the Weil divisor ) ; A;, then the discrepancy, a]A_-(v), of (U,A,F)
along a divisorial valuation v is defined to be

(1.28) apv) i=ar @) = Y e(Ami(l —a;)

1

where ar(v) are the logarithmic discrepancies, (1.24), of the foliated log-variety
(U, D, F); € is as (1.23); and m; are the multiplicities of the A; along the ex-
ceptional divisor E encountered in Definition 1.b.3. As such, we then say that
(U, A, F) satisfies the corresponding properties (1.25) if the respective inequali-
ties hold for a%(v) rather than oz (v).

The introduction of such orbifold boundaries is very much temporary since
12



I.b.13. Revision. [MP13, IILi.1]. Let (U, D, F) be a foliated germ of a smooth
log-variety supported at Z then the following are equivalent,

(1) (U, D, F) is terminal.

(2) (U, D, F) is log-terminal.

(3) D is strictly (i.e. in the sense of Definition I.b.1) invariant and F is smooth
transverse to the generic point of Z.

which in turn affords

I.b.14. Corollary. Let (U, A, F) be a germ of a log-canonical foliation singularity
with F-Gorenstein and non-empty orbifold boundary every component, A;, of
which is Cartier, then in fact it’s canonical, and exactly one of the following holds

(1) Not only (U, F) but also (U, A, F) is terminal while the non-invariant part
of A has multiplicity 1 and is everywhere transverse to F.

(2) (U, F), but not (U, A, F), is terminal, the weight of every non-invariant
component of A (of which there are at most 2) is 1/2, and the non-invariant part of
D is defined by a single equation f of multiplicity 2 such that for a local generator,
0, of the foliation 0%( f) is a unit.

(3) As peritem (2) except that f has multiplicity 1 and enjoys a simple tangency
with F, i.e. 9%( f) is again a unit.

Proof. From (1.24) and (1.28), the singularity (U, F) without boundary is log-
terminal, while it is Gorenstein by hypothesis. Thus by Revision 1.b.13 it is de-
fined by a no-where vanishing vector field d, and, [MP13, IIL.i.1], every valuation,
v, centred on the singularity has €(v) = 0. In particular, therefore, (U, A, F) is
always canonical, and it’s terminal iff it’s log-terminal.

Now, supposing, without loss of generality, that no component, A;, is invariant
consider the effect of blowing up in the maximal ideal of the germ. The discrep-
ancy of (U, F) is 1, so the only way for the multiplicity of D to be more than
1 is if it’s 2 and all the weights a; = 1/2. In this latter case the initial modi-
fication of (U, A, F) is, therefore, crepant, so the proper transform must itself be
log-canonical, and whence the proper transform of D must only cut the exceptional
divisor in smooth points of the induced foliation, i.e. 3*( f) is a unit for f of mul-
tiplicity 2 defining D. To see that such a singularity is indeed canonical observe
(proof of [MP13, III.i.1]) that in the local ring, R, of a divisorial valuation v, we
can write

(1.29) d=a""9, f=n"f,0n)=0,v(r)=1mneN
for 9 a derivation of R. As such,
(1.30) ) =0=vd*f) = (n—2m) +v@*(f)) >n—2m

which is exactly the canonical condition.

Alternatively, therefore, the multiplicity of D is exactly 1, and if it’s not ev-
erywhere transverse to the induced foliation then the proper transform of D must
cut the exceptional divisor in the singular locus of the transformed foliation, and a
blow up in this (singular) locus affords a valuation of negative discrepancy unless
the weight is 1/2. As such, we’re in case (1) of Corollary I.b.14 or most of case
(3), i.e. it remains to prove that the tangency is simple. Observe, however, that
D cuts the exceptional divisor in a smooth invariant sub-space, and blowing up
in this not only yields a second exceptional divisor along which the discrepancy

13



is zero, but separates the proper transform of D from the proper transform of the
initial exceptional divisor. Consequently, if the tangency weren’t simple, the dou-
bly transformed D would contain an invariant subspace of the induced foliation in
the second exceptional divisor, and a blow up in this would afford a valuation of
negative discrepancy. Conversely a simple tangency with weight 1/2 is canonical
for the same reason as (I1.29)-(1.30), while an everywhere transverse divisor of any
weight is log-terminal because the "weight 1 case", i.e. r = 1 in (1.27) is, Revision
L.b.10, log-canonical. U

This can be applied to reduce to an empty boundary in the obvious way, to wit:

L.b.15. Construction. Suppose (U, A, F) is a Q-Gorenstein log-canonical foliated
germ with orbifold boundary, with no boundary component invariant. Then com-
posing the index 1-covers associated to F and the boundary components A;, we
find a foliated germ with orbifold boundary (U’, A’, F’) satisfying the hypothesis
of Corollary I.b.14 such that U’ — U is almost étale. By op. cit. and [MP13,
IILi.1], the proof of [MP13, I11.i.5] goes through verbatim, and the obvious variant
of Revision 1.b.6 holds, i.e. for any (n) in (1.25), 1 <n <4, (U, A, F)is (n) iff
(U', A, F') is. Ignoring, for the sake of argument, the cases (2) and (3) of Corol-
lary 1.b.14, the latter boundary is, in the presence of log-canonical singularities
an everywhere transverse Cartier divisor of multiplicity 1 together with a weight
1 —n~1. Assuchif f = 0is alocal equation for A’ then we could extract a nth
root & : V' — U’ to obtain a Gorenstein foliation V' — [V/ F ] such that,

(L31) Kz =n*(Kr+A)

and again the obvious variant of Revision 1.b.6 holds- for any () in (1.25), 1 <n <
4, (V, F) is (n) iff (U’, A’, F') is- for exactly the same reason as above. Plainly
all such local constructions will glue as champs by much the same argument as
Fact/Definition 1.b.7, so all this is just the obvious fact that minimal model theory
for foliations with orbifold boundary can be deduced from the minimal model the-
ory of champs without boundary. The slightly subtler point, however, is that if one
were to begin with a foliated champ X\D — [X\D/F] with (integral) bound-
ary, then extracting a n(> 2)th root, X n . xof D yields a foliation X n
[x1/7 ) F1/7] which has log-canonical singularities iff X\D — [X\D/F] does,
so that not only the minimal model theory for foliations with orbifold boundary,
but also with integral boundary, §.IV.f, can be deduced from the champs theorem
without boundary.

L.c. Weighted projective champs. All of this section works in arbitrary gener-
ality, so over a base, say Spec(k), where k is a ring, with the object of interest
being

I.c.1. Definition. Fora = (aqy,...,a,) € Z';ng,n > 0,let Ay 1= AZH\O then by
the weighted projective champ Py (ao, . . ., ay), or just Px(a), is to be understood
the classifying champ [Ag /G,y ] of the action,
R :=Gpp x A = Ag :

1.32) A
(X0, ... Xn) < AX(x0,....Xxp) = x* 1= (A%xq, ..., A% xy)

Just like any quotient space under a group there is a tautological torsor, i.e.
A x Gy, with Gy, action

(1.33) Gm X (Ag X Gm) 1 A x (x x 2) > x* x (A2)
14



which one extends to a line bundle in the usual way, to wit:

L.c.2. Fact/Definition. Choose an embedding G,, — G, : z +— Z, then by
the tautological line bundle, &'(1), on Py (a) is to be understood the line bundle
Gq x Ag with Gy, action given by (I.33) and by multiplication on the first fac-
tor via our aforesaid choice of embedding. In particular, therefore, we’ve defined
V(0(1)) |a,- EGA notation- whence as an equivariant &4, -module (1) has
generator 7' where

(1.34) Th = 2717

so that the bundle wy, /x of volume forms on Ay descends to the bundle @ :=
O(—ag—...—ay) onPr(a).

Unsurprisingly Serre’s explicit calculation generalises to:

I.c.3. Fact. The bundle &'(1) freely generates the Picard group of P (a); there are,
for p > 0, canonical (dual) isomorphisms of free k-modules

HO(Pk(Q)a ﬁ(p)) = Sp = ]_[k . xé’oao . ..er:nan
1.35) dxg---dx —
Hn(Pk@),w(—P)) = S;, = l_lk Nt AL Xy podo .xn_Pnan
XO .o xn
where the sum, resp. product, is taken over intergers such that ppag+-- -+ ppan =
p, and any other co-homology of any other line bundle in any other degree van-
ishes.

Proof. The Picard group of Ay is trivial, so a line bundle on Py (a) is the same
thing as a map ¢ : Ry — G, from the groupoid (1.32) satisfying the co-cycle
condition ¢(gf) = ¢(g)p(f). There are, however, no (algebraic) maps from Ay
to Gy, so all such co-cycles are integer multiples of the tautological one. As to the
second part: if & : Ay — Px(a) is the projection then for any sheaf F on A the
Leray spectral sequence reads

(1.36) H! (Pi(a), R' me F) = H' T (A, F)

Now the co-homology of the right hand side of (1.36) is known, i.e. there are
canonical dual, [SGA-II, Exposé IV.5.5], isomorphisms

(137) H(Ak. Oa) = [ [Sp. H'(Ak.0a0) =[5,
p p
while on the left hand side there are canonical isomorphisms
(138) 704, = || 0@, mosge = [[o@
qEZ q€Z

and all higher direct images in (1.36) vanish, whence (I1.35) by identifying the
weight of the action of G, in the equivariant isomorphism between (I1.37) and
(1.38) afforded by (1.36). U

In addition the bundle w is the bundle of volume forms on IP; (a) when this has
sense, i.e.

I.c.4. Claim. The moduli of any P (a) is projective, in fact better there is a finite
flat map

(1.39) Pp — Pi(a) : [x0.....Xn] = [x5°, ..., x2"]
15
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and P (a) is Deligne-Mumford iff all the a; are invertible in k. In addition the
coordinate functions, 0; = %, afford a G, equivariant isomorphism

~

(1.40) LI; O(ai) P Ta,/k

o+-+0,

leading to the Euler sequence of G,-modules on Ay, equivalently bundles on
Pr(a)
a;x;0;

(1.41) 0— Tg,, — 0 —— ]_[ O(ai) = 7" Tpy (@) /k — O

1

whenever [Py (a) is Deligne-Mumford, so in particular
(L42) A"Qp, (@) k — ©

Proof. The functor Axx; > A xxi“" of the corresponding groupoids in (1.32) yields
(1.39), while the stabiliser of the point with all but the i th coordinate 0 is jt4; so the
Deligne-Mumford criteria is plainly necessary, and, similarly it is sufficient since
slicing (I.32) along x; = 1 covers [Py (a) by affines with 4, -action. The rest just
amounts to A acting on d; by A 7%, O

The triviality of (I1.39) notwithstanding we have

Lc.5. Corollary. If k is simply connected, then every Py (a) is simply connected,
i.e. irrespectively of any Deligne-Mumford criteria, there are no non-trivial I'-
torsors over Px (@) for every finite group I'.

Proof. By hypothesis P} is simply connected, so it’s sufficient by (I.39) to prove
vanishing of a suitable Céch group, i.e. that the groupoid

(1.43) R:=P! xp (@ P} = P}

doesn’t admit any non-trivial functors to I"'. The space R may, by (1.32), be ex-
pressed as the classifier of the G, action (x;, y;) — (Ax;, Ay;) on the product of
affine curves

(144) Xt =yt C Ay

complemented in 0 x 0. Now the curves in (1.44) are geometrically connected, so
their product is connected. It’s also l.c.i. of dimension at least 2, so it’s homotopy
depth is at least 2, whence the complement in O of the product is connected, and
we’re done a fortiori- the fact that projections in (1.44) are the source and sink in
(I.43) isn’t even needed. O

Of which we will require the following variant

L.c.6. Corollary. If k is simply connected, and 7 : P — P (a) is a fibration in lo-
cally constant gerbes Bg for some finite group G such that P is simply connected,

then G is a cyclic group of order a (invertible in k) and P = Py (aa) in such a
way that 7 is just A — A% in Definition Lc.1.

Proof. The right way to prove this is the long exact sequence of homotopy groups
of a fibration, which may be done wholly algebraically [McQ15, IIl.g]. However,
for convenience here is an ad hoc argument.
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From Corollary I.c.5, P (a) is simply connected, so by [Gir71, IV.3.4] the lo-
cally constant gerbes up to isomorphism in Bg’s over P; (@) are canonically iso-
morphic to
(1.45) H? (Pt (a), Z)
where Z is the centre of G. In particular if P — P’ is P modulo the centre, cf.

Fact La.6, then P’ — Px(a) x Bg/z, which isn’t simply connected. As such,
without loss of generality G = Z is abelian, and the Leray spectral for & affords
an isomorphism

(1.46) EY' = End(Z) dTN.g H2(Py(a), Z) = E3°
2

If, however, p is the characteristic of k£ then from inductive application of the
Artin-Schrier sequence

(1.47) 0—->Fp—>Gg—>Gs—0

the latter group in (I1.46) is the prime to p part of Z, so our initial G is cyclic of
some order a prime to p. We have however a fibration,

(1.48) Pi(aa) — Pr(a)

in B;,,’s by the simple expedient of sending A to A in Definition I.c.1, which is
the generator of (1.45). U

Another very important fact which generalises is

I.c.7. Fact. Let n = 1 and E a vector bundle on P, (a) then there are unique
integers b; such that (non-canonically)

(1.49) ES]Jow)

J

Proof. We’ve done the rank 1 case in Fact I.c.3, and we go by induction on the
rank, 7 > 1. The push-forward of E to the moduli of P (@) is coherent, so there
are plenty of meromorphic sections. As such, choose one of maximal degree to get
a short exact sequence of bundles

(1.50) 0—0(b,)—E—E" -0

Now by the induction hypothesis and Fact I.c.3 this is split unless there is some
bj > by, j <r,such that

(L51) HO(Py (@), O(bj — br —ag —a1)) # 0

Consequently if we twist (1.50) by &(—b,—ag) then the kernel has no co-homology
by Fact I.c.3, while the co-kernel has a direct summand &'(b; — b, — ag) which
has a non-trivial section given by tensoring anything in (I.51) with X f ', and we
contradict the maximality of b,.. (]

We’ve passed over the unicity since

I.c.8. Remark. The uniqueness of the integers b; in (I1.49) is just an easy version
of the uniqueness of the Harder-Narismhan filtration which, for ; a complete
repetition free list of the b; ordered by 1 < B2 < --- < By, takes the form

E=E°>E'= [] 0bj)>--DE"'= ][] 0ObB)DE"=0

b;>p1 b;>Bm—1
17
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I.d. Radial foliations. In this section we work over C, and, unfortunately we’ll
need

I.d.1. Notation. The vector a € Z’;ng will be written (at least for this section) as
the n-tuple of positive integers (ag,adas,...,aan), n > 1, where ay,...,a, are
relatively prime, and @ € N.

The lack of symmetry in the notation is in the nature of

1.d.2. Definition. The radial foliation, R, on Pc(a) is equivalently

(a) The foliation defined by the Oth coordinate &'(ag) — Tpe(q) in the Euler se-

quence (1.41).

(b) The foliation defined by the (rational) projection Pc(a) --» Pc(aay, ..., aay).
In the particular case that # = 1 there is a certain ambiguity in the definition

according as to whether one saturates the map in (a) at the centre of the projection

in (b), albeit, fortunately this tends to be clear according to context.

The following bunch of properties will aid in radial foliation recognition:

1.d.3. Facts. Given a radial foliation Pc(a) — [Pc(a)/R],
(a) It’s canonical bundle, K% (understood logarithmically if n = 1) is &'(ayg).
(b) On the étale neighbourhood of the (unique) singular point given by x¢ = 1,
x; = 0,i > 1in (I.32), R is generated by the vector field a; x; % + -~-anxn%
(¢) The ith coordinate axis in (b) is a smooth embedded R-invariant Pc(ag, aa;)
with K degree —1/aa;, while the degree of the generic invariant champ is —1/a.
(d) The smoothed weighted blow up, [MP13, Liv.3], P — Pc(a) in the sin-

gularity with weights aq, ..., a, resolves the rational map of Dgﬁnition 1.d.2.(b).
Indeed, cf. Revision Lb.11, the induced foliation P — [P/R] is a bundle of
Pc(ao,a)’s over a Pe(aay, ..., aay), and Kj5(+&) = Kg for £ the exceptional
divisor.

Proof. Of these only (d) merits comment. Specifically smoothed weighted blow
ups in [MP13, L.iv.3] are understood to have weights without a common divisor, so
in the first place by the formulae of [MP13, pg. 89] and Lemma l.a.4, we have a
resolution

Po —> Pclay,...,an)
[0
(152) nOlweighted blow up with weights a;

Pc(ag,aay, ..., aay)
in which the exceptional divisor &g is isomorphic to B Hag X Pc(ay,...,ay), and
the various bundles are related by
(1.53) P Obc(ay...an) (1) = 75 0(a) — Eo
All of which becomes much cleaner if, the common divisor not withstanding, one

permits the weights aay, . ..,aa,. This is equivalent to taking an ath root of &y, so
we get a diagram in which the square (whose horizontals are rightmost) is fibred

.....

weighted blow up extract ath root
Pc(ag,aay, ..., aay) <— Po
with weights aa; of &

(1.54) ”l lpo

non-trivial gerbe
Pc(aay,...,aay) —— Pclay,...,an)
of order a




by (1.53), i.e. the gerbe of the bottom horizontal is the class of (1) in

(L.55) H2(Pc(ay, . ...an), a)-

In particular, therefore, if £ is the new exceptional divisor then (I.53) becomes
1.56) P*ﬁﬂ"c(aal,...,aan)(l) = ”*ﬁ(l) - &

while the fibres of p are identically those of pg. The latter, however, are simply
connected since pg has a section, so, [BNO6, 1.1], a local calculation of their non-
scheme like points implies that they’re all Pc(ag, a)’s. O

By way of disambiguation let us present the next proposition in the form

1.d.4. Fact/Definition. Every deformation of a radial foliation is locally trivial, i.e.

if for a (geometrically) pointed scheme pt >, S we have a map X — [X/F] — S
(equivalently of foliations indexed by the points of S) for which the special fibre
Xs — [Xs/F;] is a radial foliation, then there is an étale neighbourhood U — S
such that

X xg U = Xy x U

(157) l l

[X x5 U/F] — [Xs/Fx U
commutes, with the horizontal arrows isomorphisms.

Proof. By [Art69] it will suffice to replace S, resp. X, by its completion in s, resp.
the fibre, and to prove (1.57) in the formal category- so, keeping the same notation,
U= S. Consequently, if m is the ideal of s and S, = Spec(Os/m™), it will even
suffice to prove (1.57) with U = §,,, where, by way of notation, X, := X xg Sj.
Proceeding by induction on n > 1, the case n = 1 is given, while [SGA-I, Exposé
II1.5] applies as written to show that the obstruction to extending an isomorphism
from A}, to Ay x S;, to the n + 1th thickening lies in

(158) H' (Xo. T, ® m" /m" 1)

By the Euler sequence, (I.41), and Serre’s explicit calculation, (I.c.3), this is zero.

As such, we can certainly find an isomorphism f : X}, = Xo x Sy, but it may not
be foliated, i.e. the composition

(I.59) f*QX()XSn_H/]: - SZXn-{—l - Kr® ﬁXn—i—l

may be non-trivial. We have, however, a foliated isomorphism at the nth level, and
X is S so (1.59) is, equivalently, a non-trivial map

(L.60) Tr |xg— O(ao) = Tay)F
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where the normal sheaf to the radial foliation is by (I.41) described by the commu-
tative diagram with exact rows and columns

0 0

~ ~

ﬁ _ ﬁ

~ w

Prel) 0 —— O(ag) —— ]_[j Oaa;) ——> ]_[j>0 Oaaj) —— 0
0 —— O(ag) — Tx, — Txy 7 —> 0
0 0

Twisting by &' (—ag) an arrow (1.60) is, therefore, a quotient of the space of global
sections in the middle of the rightmost column of (I.61), i.e. the C-vector space of
vector fields with, in the notation of (1.32), basis

i i ; 0

1.62) xgxi'ceexi - Fe agip +aay +---aan =aj—ag j >0,ix >0
Xj

On the other hand- [SGA-I, Exposé II1.5] again- the possibilities for changing the

isomorphism f are a principal homogeneous space under

(1.63) H®(Xo, Ty ® m” /m" 1)
whose effect on (1.60) is given by the Lie bracket
1.64) Txy, — Hom(Tx, Txy 7) - D = [, D]

which at the level of global sections has, by explicit calculation, image exactly
(1.62), so a suitable twist of f under (I.63) is a foliated isomorphism. O

We will equally need a slight generalisation, to wit:

1.d.5. Remark. The same statement is equally true under the hypothesis that the
universal cover of X is a radial foliation. Indeed for 1 a finite group, all modules
in which the cardinality of 7 is invertible are acyclic, and we’re in characteristic
zero, so the obstruction (I.58) still vanishes and (1.64) is still surjective on global
sections.

L.e. Net completion. The entire contents of this section should be standard, but
it’s not in the EGA’s, so we give the details. We begin with the easiest case, viz:
a local embedding f : ¥ — X of (not necessarily separated) schemes. Thus
by definition, [EGA-I, 4.2.1 & 4.5.1], for every y € Y there are (Zariski) open
neighbourhoods ¥ D U > y,resp. X 2 V > f(y), such that

(1.65) f:U—=V
is a closed embedding. In particular, therefore, we have a short exact sequence
(1.66) 0>7— floxy - Oy -0

of sheaves, for some ideal 7, and we observe
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Le.1. Fact/Definition. For every n € Zxo, define O'¢, := f ~1¢x /I, then the
ringed space Yy := (Y, Oy, ) is a scheme.

Proof. The question is local on Y, so, modulo notation we can, (I.65), suppose
f 1Y — X is aclosed embedding of affines. In particular, therefore, it’s defined
by a quasi-coherent sheaf of ideals 7. As such O, is the sheaf (on Y) associated
to the pre-sheaf,

(L.67) U~ h_n)1 rwv,ox)/ TV, J)"

vny=U
This is, however, already not only a sheaf, but the structure sheaf, Ox /7", of the
nth thickening of Y in X, so Y}, is a scheme. (]

For the avoidance of possibly competing definitions when (without relevance to
our current considerations) things fail to be Noetherian or excellent or whatever let
us make

I.e.2. Fact/Definition. A morphism f : ) — X of Deligne-Mumford champs is
net if it is étale locally a closed embedding, i.e. for every geometric point y of ¥
there are étale neighbourhoods U — Y of y,resp. V — X of x = f(y), together
with a closed embedding U < V such that

U—V

(L68) | |

S

Yy — X
commutes. Consequently if everything is Noetherian, then f is net iff the strict
Henselisation ﬁ;{’,’ y is a quotient of ﬁ/hy’ . in every point, cf. [SGA-I, Exposé 1,3.7].

Now suppose f : Y — X is a net map of algebraic spaces. Replacing X by
a suitable (embedded) Zariski open, we may by 1.68 find étale covers U — 7,
resp. V — X, affording (a not necessarily fibred) square of the form (1.68) in
which U — V is a closed embedding. As such Ry := V xy V = V, resp.
R := U x U = U are (not necessarily closed unless Y, resp. X is separated)
embedded in V' x V, resp. U x U so that the induced functor Ry — R is a not
necessarily closed embedding, and we make

Le.3. Fact/Definition. For every n € N, R, — R, resp. U, — V is the nth
thickening of Ry — R, resp. U < V, in the sense of Fact/Definition L.e.1.
In particular R, = U, is an étale equivalence relation, and we define the nth
thickening, Y, of Y along f to be the quotient U, /R,. Consequently if ¥ is a
scheme, then Y, is too.

Proof. Consider the diagram

Ry —— Ry — R

(1.69) sl l ls

U — U — V
where the rightmost square is fibred. Thus all the verticals are étale, the rightmost
horizontals are closed embeddings, while the composition of the top row is an
embedding, so Rp < R is an open embedding, and whence the source and sink
of R, = U, are étale. Finally for any scheme T, the sets R(T) = V(T') form an
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equivalence relation, and we can identify the T -points of R, with those of R such
that the nth power of the ideal of the fibre over Ry is 0, which since everything is
étale implies that R, (T) = U, (T) is an equivalence relation. O

This brings us to a net map, f : Y — X, of champs, then proceeding exactly
as above, (U — X, V — Y étale covers etc.) we find that f is equivalent to a

F . . .
functor Ry — R between groupoids, which as a map is itself net, and whence

L.e.4. Fact/Definition. The nth thickening of ), along f is the classifying champ
[Un/Ry] of the étale groupoid R, = U, where R, is the nth thickening of Ry
along the functor F', so, inter alia there is a natural extension f, : V, — X of f.

Proof. The fact that R, = U, is an étale groupoid is mutatis mutandis the proof
of Fact/Definition l.e.3, and the description of the T'-points therein also suffices
to conclude that f, exists. Finally, refining the covers U, V as necessary, the
definition of ), is, up to equivalence, independent of the given presentation. [

It therefore only remains to make

I.e.5. Fact/Definition. The completion, ), along a net map f : ¥ — X of
schemes is the direct limit, h_II)ln Y,, in the category of formal schemes of the nth

thickenings f, : Y, — X of Fact/Definition I.e.3. Similarly the completion, Y,
along anet map f : ) — X of champ is the classifier of the étale groupoid which
is the completion, R = I, along the net functor F : Ry — R of Fact/Definition
I.e.4. Consequently, by construction, f factors as

(1.70) vy Lo
where the former map is an embedding, and the latter is net.

Lf. Trivial remarks on the analytic topology. As we’ve observed in the proof of
Lemma [.a.4 every separated Deligne-Mumford champ is étale locally the classi-
fier, [U/G], of a (not necessarily faithful) finite group action G x U = U. An
étale neighbourhood is, however, rarely embedded, so this isn’t quite as convenient
as the corresponding analytic statement, i.e.

Lf.1. Fact. If X' /C is a separated Deligne-Mumford champ of finite type, then for
every geometric point, x, there is an étale neighbourhood x € A — X in the
analytic topology together with a finite group action G, x A = A of the stabiliser
such that [A /Gy] < X is an open embedding.

Proof. From the algebraic statement: the coarse moduli U/Gy is an étale neigh-
bourhood of the moduli 1 : X — X such that we have a fibre square
X «—— [U/G,4]

1.71) “i l

X(— U/Gx

There is however an open embedding A’ < U/G, whose composition with the
lower horizontal in (I.71) is an embedding, so =1 (A’) is embedded in both X’ and
[U/Gy], while it’s pre-image, A, in U is both embedded and G equivariant. [

We will only ever have to consider smooth champs in the analytic topology, but
as it happens, everything works in maximal generality. We require:
2



L.f.2. Lemma. If X is a reduced complex space then the sheaf, R x, of real analytic
functions on X is coherent (as a module over itself).

Proof. The discussion is local, so we can suppose that X is a closed analytic subset
of U C C" with finitely many irreducible components X1, ---, X,. Each X; has
a conjugate X; and by [Nar66, V, Prop. 8] for any x € X; the complexification
of X; at x in the real manifold R” x R(1)" is X; x X;. Consequently, op. cit. V,
Prop. 1, U; X; x X; contains the complexification of X at any x € X; and each
X; is everywhere locally Zariski dense in X; x X;, so X is everywhere locally
Zariski dense in U; X; x X; . Consequently by op. cit., U; X; X X; is everywhere
the complexification of X, so by op. cit. V, Prop. 5, Rx is coherent. O

This combines with Malgrange’s preparation theorem to afford:

L.f.3. Fact/Definition. If C, is the sheaf of continuous functions on a topological
space, and X/C is a reduced complex space then, functorially in X, there is a
well defined subsheaf, Ax < Cyx of smooth functions. In the particular case that
u: X — X is the moduli of a separated Deligne-Mumford champ,

(1.72) mxAx € Ax € uxCx =Cyx

Proof. First pass to the real analytic functions Ry, and for a local embedding
i : X — M in a smooth about x € X, with ideal /x in R s we have by Lemma
L.£.2 and [Mal02, VI.3.10] an exact sequence

(L.73) 0« Rx Qryy Am < Apm < Ay Qr,yy Ix < 0

wherein Ay ®%,, Ix is equally the ideal of smooth functions, .47, vanishing on
X. In particular, therefore, we have an embedding

(1.74) AM = Ry ®r,, Au — Cx

Now observe (by way of the obvious diagram chase implied by (1.73)) that if M has
the embedding dimension of X at x then for any other smooth embedding X «— N
at x, there is a unique isomorphism which fills the right hand side of

Ry —— Ag
(175) ”
Rx —— ./4])‘(4

in such a way that the diagram commutes. As such X — Ay is a well defined,
and functorial, while (I.72) is immediate from Fact I.f.1 and (1.74). O

In order to apply this we need another

[.f4. Lemma. Let u : X — X be the moduli of a Deligne-Mumford champ and
[lyca Wa — X an open cover (in the classical sense) then up to passing to a
locally finite refinement there are functions

(1.76) Pa € T'(X, pxAx) with support in W, such that Z P =1
o

In particular for M any sheaf of A y-modules,

(L77) HY(X, M) =0, VYgq>0
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Proof. Refining as necessary we can suppose that without loss of generality we
have covers [ [,c 4 Uas [[yeq Vo With Uy C Vy; Voo C Wy and each of Uy, Vg,
Wy satisfies Fact Lf.1, i.e. there are étale covers | [, 4 Uy, — X, etc.; finite group
actions G4 = U, etc.; G, equivariant inclusions U/, C V, etc.; and compatible
identifications of Uy with U/ Gq etc.. As such if f, : W, — [0, 1] is a smooth
(in the sense of Fact/Definition I.f.3) function which is identically 1 on U, resp.
identically 0 off V, then its trace, gq, is a global section of j1«.Ax supported in Wy,
which is identically 1 on Uy, resp. identically O off V,, and

ga(x)
(1.78) po(X) =
> p&p(x)
does the job. Consequently any sheaf of p«.4x modules is flasque, while 4 is
acyclic on Q-vector spaces, and whence (1.77). U

We come therefore to the point of the discussion, by way of

Lf.5. Fact. If Y — X is an embedding of smooth complex Deligne-Mumford
champ with ) proper, then there are a family of open embeddings ) — U; — X

. i r . L .
with N;U4; = Y and each ) N Uy MR Y a deformation retract with i;r; homotopic
to the identity.

Proof. The expedient of taking the trace under G, in Fact I.f.1 affords locally
equivariant metrics which by (1.76) can be patched to a smooth metric, w, on X.
As such at every geometric point x there is a G equivariant neighbourhood V, <
Ty x of 0 such that the exponential afforded by w yields an embedding

1.79) exp: [Vx/Gx] > X
On the other hand by (I.77) the exact sequence
(1.80) 0—>Ty—>Tx —> Nyx —>0

has a smooth splitting, n : Ny, x — Tx so exp(n) restricted to appropriate neigh-
bourhoods of the zero section in Ny, gives what we want. (]

This is, of course, just the usual proof of the corresponding fact for smooth
manifolds so it’s worth making

L.£.6. Remark. Slightly, but not much, more subtly if X is Kihler then so is X.
Finally we require a baby GAGA,

Lf.7. Fact. Let X'/C be a normal complex analytic champ, i.e. the classifier of
an étale groupoid R =2 U in the analytic topology, whose moduli i : X — X
is a finite map to an algebraic space with algebraic ramification in co-dimension 1
then X’ is an algebraic Deligne-Mumford champ. Similarly, if Jj — U; is a smooth
champ finite over the neighbourhoods of Fact I.f.5, then there is an algebraic champ
Y’ — Y such that (in the notation of op. cit.) )} is equivalent to r;* ).

Proof. Without loss of generality X is connected, so exactly as in Fact I.a.6, there

is a map X — X0 expressing X as a locally constant gerbe in Br’s for some

finite group I' wherein the stabiliser of the generic point of X is trivial, and by

[Art66, 5.1] X is algebraic. As to X — X0, we must first consider the link in the

sense of Giraud, [Gir71, IV.1.1.7.3], i.e. the representation of 71 (X?) in the outer

automorphisms of I", but these are the same in the algebraic and analytic categories,
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so the next port of call is the obstruction to the existence of a champ with a given
link. This is, [Gir71, VI.2.3], a class in H3(X?, Z), where Z is the centre of
the link, i.e. the locally constant sheaf in the centre of I'" with induced 7 (X°)
action. By [SGA-IV, Exposé XVI.4.1], étale and analytic cohomology coincide,
while the obstruction vanishes analytically, so there is at least one algebraic champ,
X' — X° which is a locally constant gerbe in Br’s for the same link. Equally A”
is an analytic champ, so, in either case the equivalence class of all possible champs
with this link is, [Gir71, IV.3.4], the orbit of X’ under H*(X°, Z), and whence
X — X0 is algebraic by another application of [SGA-IV, Exposé XV1.4.1]. The
second part about the U;’s proceeds mutatis mutandis given Fact L.f.5. U

II. Kr NEGATIVE CURVES

IL.a. Foliations as groupoids. As we’ve already remarked prior to Definition I.b.1
the point of view of a foliation as an integrable quotient of the cotangent sheaf is
misleading. Rather a foliation should be considered as an infinitesimal equivalence
relation outside of its singularities, and the equivalence of this definition to that
involving linear 15 order data as a non-trivial theorem (not withstanding the trivi-
ality of the proof) specific to characteristic zero. In any case we work over C, and
begin by reviewing the aforesaid equivalence; whence let U be a complex affine
scheme, and F a smooth foliation on U. Notice that U may be singular, or even
non-reduced, so F smooth means that (I.19) is everywhere a locally free rank 1
quotient, or, equivalently, in the notation of op. cit. for some (and indeed any)
embedding of U in a smooth variety M the composition,

(IL.1) Tr=Hom(Q,0y) > Tu — Ty ® Oy

is, since Q is supposed torsion free, an injection of bundles, which, by hypothesis
(immediately post (I.19)) is the case at every generic point. Now observe,

IL.a.1. Fact/Definition. Lat U/C be a foliated affine scheme such that Tx in (II.1)
is a line bundle, but not that the composition therein is an injection of bundles, i.e.,
if U were normal, and F saturated, a Gorenstein foliation by curves, with 2>
the Oy sub-algebra of Ziff;;°° generated by T'x then for d a local generator the
dual of the co-product,

(IL.2) D7° — D7 Qay, @;“’.—H > _®— n e Zso
H—]—n

respectively, the product,

(IL3) D7° ¢, D72 — 970 @3 — 8 i, jelsg

define a sheaf of adic algebras, 0% =l<i£1 I om(@]?”, Oy ), whence a relatively
smooth formal scheme, "

(I1.4) p:%:=5pt0; - U

respectively, an infinitesimal groupoid structure,

(IL.5) (p1,p2) :§=2U
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factoring through the infinitesimal equivalence relation (all points are equivalent)
defined by Grothendieck’s jets, i.e.

(p1.p2) Bv =Spt 2 = U, P =lim 7

(11.6) n
DP1Xp2 D1Xp2

% mU UxU
As such (II.5) defines an infinitesimal equivalence relation around x € U iff §
embeds via p; X p, in Py, which in turn is iff (II.1) is an embedding, i.e. F is
smooth at x.

Proof. The infinitesimal version of the relation all points are equivalent, i.e.
(IL.7) (p1,p2):UxU=3U

is the completion of the same in the diagonal, A — U x U, to wit, in the notation
of [EGA-IV][16.3.1], the formal specturm of the /a-adic algebra in the first line
in (IL.6). In particular, therefore, the co-product of differential operators is just the
dual of the product in &7°. Furthermore, Py of (11.6) satisfies the axioms for a
relation in the category of formal schemes, and, op. cit. 16.8.9.1, the product of
differential operators is dual to the pull-back along composition of arrows,

(1L.8) 2y - ,@(‘}op; Roy, pr 2y

wherein, as indicated, one should be carefull about the bi-module structure on
P Specifically (since working with sheaf valued operators slightly obscures
op. cit. §16.7-8) given differential operators A, B, we have a map,

A-B . . .
,@gop; oy, pr Py — Oy :j @k A(jB(k)); fA-B(j ®k) =
A-B(pi fji ®k). A-B(jp; f ®k) = A-B(j ® pi fk). f € 0.

and the operator composition, A B, is the composite of (I1.9) with (IL.8). In any
case, dualising just puts everything back the way it was modulo the fact that things
aren’t reflexive at singularities. More precisely, by (11.2),

(IL.9)

X gn 9"
IL10) G5 = OplVN, V@ =1 pif = £ p3(N) = Y %
n=01 ’

so not only is (I.4) formally smooth (even if U were nowhere reduced) the graded
algebra in the adic filtration afforded by its trace is canonically SymKr. On the
other hand the graded algebra of the /a-adic structure on the jet groupoid is a
quotient,

(IL11) SymQu — grZg°
so § embeds in Py iff K is a quotient of Q7. U

Rather more picturesquely, what we have done at the smooth points is to add an
infitesimal germ of the leaf in the p3 T direction for each point in the diagonal,
which we have completed as a groupoid at the singularities. However as noted at
the end of Fact/Definition Il.a.1, cf. Further Claim II.c.2, this is never a relation at
the singular points, so the image of the smooth groupoid (IL.5) in the jet groupoid,
(I1.6), always degenerates at such, to wit:
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FIGURE 1. Relation afforded by a groupoid with an essential singularity.

In any case the infinitesimal nature of Fact/Definition II.a.1 renders its extension
to a Deligne-Mumford champ, X, automatic since by definition this is equivalent
to a groupoid with étale source and sink so there are well defined sheaves of nilpo-
tent &y -algebras, e@gf) of n-jets, and of course idem, modulo replacing nilpotent
by topologically so, for the inverse limit &3°. Equally the formation of the for-
mal spectrum is a local construction, while both the projectors and the diagonal
embedding patch, i.e. the étale local nature of (I1.6) affords,

II.a.2. Definition. The jet groupoid of a Deligne-Mumford champ X’ is the formal
champ,

(I1.12) Prx =Spt XL = X
with (formally representable) source map pi, sink p,, and identity the diagonal.

We have, however, already met a better description of this in Fact/Definition
Le.4 to wit,

II.a.3. Fact/Definition. For every n € Zxo,

(IL.13) Spec(2W) = X

is the nth thickening, in the sense of Fact/Definition l.e.4, of X’ along the diagonal
A X — X x X, so the jet groupoid of Definition II.a.2 along with the projections
P1, P2 is the net completion of X along the diagonal. Consequently (I1.12) is a
honest groupoid, i.e. the source pj, sink p,, identity, inverse and composition are
representable maps identically satisfying the axioms of a groupoid, and not just up
to equivalence. In particular the composition is strictly associative. Similarly if
X — [X/F]is afoliation in curves given by a line bundle 7'r,

(I1.14) Tr — Tx
then (I1.2)-(I1.5) are valid as stated, so there is an infinitesimal groupoid
(I.15) (p1,p2) :§= X

where, again source, sink, identity, inverse and composition are representable maps
satisfying the groupoid axioms identically. In particular the identity/diagonal, A :
X — T is a section of either projection and, there is an isomorphism,

(IL.16) Najz — Oa(Tr)
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Proof. Let (s,t) : R = U be a presentation of X then the sheaf of algebras ,@(n),

n € Zx, defined, immediately priori to Definition IL.a.2, by étale local patching

may be identified with the sheaf of functions on the classifier of the groupoid,
Spec(l*)

Spec(2) e Spec(2)
pec(s*

(IL.17) l l

t
<«

U «— R
)
and in the limit » — oo we can replace Spec in (I.17) by Spf to obtain a pre-
sentation in formal schemes of (II.12). At the same time, by Fact/Definition L.e.4,
a presentation of the nth thickening of X along its diagonal, is given by the nth
thickening of the diagonal in,

R —— RXR
A

(IL18) Slt sxsltxt

U—"5 UxU
so that such a tickening is exactly (I.17). As to the groupoid axioms, the com-
position of the diagonal in the top row of (II.18) with either projection is, rather
than just equivalent to, the identity functor, so, a fortiori, the diagonal affords the
identity after net completion. Similarly the transposition,

(IL.19) T:RxR—>RxR:(f1. /) (f2. 1)
respects the nth thickening and satisfies 72 = id, while the composition given by,

(I1.20) (R X R)p, Xp, (RX R) > (R x R) : (f1, f2) X (81.82) > (/1. 82)
respects net completion and is strcitly associative. Similarly the bundle 77 of

(II.14) generates sheaves of modules,

—00 _ 13 —(n) : = (n) _ - r—00
Dr —h_;)n@]_- —>h7n>1@zﬁ‘x = 9iffy”", whose duals,

O5 = lim 65, = Hom(77", 0x),  § = Spt(Ty)

n

(IL.21)

are sheaves of nilpotent & y-algebras, supported on the diagonal, with limit an
adic algebra with trace X. In particular, (IL.16) is immediate from (II.21), while
the fact that we have a groupoid in representable maps satisfying the groupoid
axioms identically is just the independence of p; from the choice of d in (IL.10).
Alternatively, if the foliation is smooth at every generic point then the identity,
inverse, and composition satisfy the groupoid axioms identically because the jet
groupoid does. (]

Notice in particular that the diagonal is actually embedded in the jet groupoid,
so its worth making,

Il.a.4. Remark. At a geometric diagonal point x X x in X x X, its automorphism

group is simply Aut(x) x Aut(x). Inside this group we have a copy of Aut(x)

sitting diagonally. Now any attempt to define diagonal type subgroups of automor-

phisms for off diagonal points, and whence define an actual étale “neighbourhood”
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in which X embeds in some sort of diagonal way, is doomed to failure. At the
infinitesimal level this can be, and is, achieved by net completion in the diagonal,
or equivalently the étale local description of Definition Il.a.2.

IL.b. Chow’s Lemma. We’ll confine ourselves to that which is strictly necessary
for applications. Our interest centres on smooth formal champs § whose trace C is
a smooth proper champ of dimension 1 over C. From our utilitarian point of view
we’ll confine ourselves to the case where dim § = 2. Irrespectively there is a well
defined normal bundle N¢,z, and we make,

ILb.1. Definition. § is a concave formal neighbourhood of C if deg(N¢/z) > 0.
Unsurprisingly the classical Chow lemma continues to hold, i.e.

IL.b.2. Lemma. (Chow, Grauert et al.) Let L be a line bundle on § then there is a
quadratic polynomial Py, depending on L, such that for all n € N,

(I1.22) hO(F, L®") < Pr(n).
Proof. Let §,, be the m*-thickening of C then we have an exact sequence,

(I1.23) 0 — Sym™Ng)z — Oy, — O3, — 0.

On the other hand if h%(C, L" ® Sym™ N, cv/g) # 0, then,

(I1.24) m deg(N¢/z) < ndege(L).
Consequently for any n € N,
(I1.25) H°(05,,,, ® L") — H°(05, ® L")
is injective, provided m > M :=n degc(L)deg(NC/g)_1 and
0 Rny _ 1: 0 Rn
H (g’L )_I(EIH (gm,L )1 S07

m

(11.26) M
hO@F, LB < ) 1%(C, L" ® Ngj&).
k=0

Equally, by [BNO6, 1.1] there is a map, p : C — C from an honest curve, while for
any bundle E, h°(C, E) < h°(C, p*E), so we conclude by Riemann-Roch. O

II.c. Bend & Break. We are now in a position to extend the results of [BM16], so
to this end let ¥ — [X'/F] be a foliated Gorenstein normal champ with projective
moduli space 7 : X — X, and H an ample bundle on the latter. As ever the basic
object of study is K negative curves on X, i.e., profiting once more from [BNO6,
1.1], maps f : C — X from a smooth curve such that Kr. , C < 0. Consequently
if we consider the infinitesimal groupoid of (II.15) as fibred over & via p := py,
then base changing along f affords,

S Sc CxXx
DXp2
(I1.27) P?Pll ll’
f
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Furthermore, the identity map of the groupoid gives a section s of p of the left,
thus a fortiori of the right, vertical arrow in (IL.27), so, by I.16, §¢ is a concave
neighbourhood of s(C) in the sense of Definition I.b.1, and we assert,

IL.c.1. Claim. The Zariski closure of the image of §¢ in C x X is irreducible of
dimension at most 2, and exactly 2 if f does not factor through the singular locus
Z = sing(F).

Proof. Let Y be the Zariski closure, which is irreducible since §¢ is. Moreover X
is projective by hypothesis, thus C x X admits an ample line bundle L and,

(I1.28) HO(Y.L) —» H%Fc. L)

is injective by the definition of Y, so the Chow lemma, Lemma II.b.2 does the first
part. As to the second, by hypothesis there is an étale neighbourhood U — X of
the generic point of f(C) on which the foliation is smooth. As such, by (I1.6) et
seq., we have an embedding,

(I1.29) sv 252 uxu

thus for B = f_l(U) — C, we have an embedding of §p := F¢ Xc B in the
étale neighbourhood Y xcxx (B x U) of Y so the dimension of the latter is at
least two. O

Now let )y := Y xx X then, bearing in mind that C is smooth, we additionally
assert,

II.c.2. Further Claim. Let ¢9 : $¢ — Mo be the natural map afforded by the
definition of fibre products, and s : C — F¢ the trace then around ¢os(C), the
singularities of )y can be resolved (by a possibly zero length) chain,

(I1.30) Vo« Yy < o,

of blow ups in closed points of ¢¢s(C), and proper transforms thereof. Moreover,
if Y := ), is the shortest such resolution, then for all 0 <i < n, there are liftings

¢i :Fc — Vi, and ¢ 1= ¢, is étale.

Proof. If the claim is true locally then it’s true since a postiori the singularities of Y
around ¢os(C) and its proper transforms are isolated so (I1.30) is just the minimal
resolution obtained by blowing up in the same, while any ¢; agrees with ¢9 on a
dense set, so it lifts globally iff it lifts locally. As such we can replace X by an
étale neighbourhood U — X of the image of a closed point ¢ of B, for some étale
B — C, § by a formal scheme, F, with trace B, and identify )’ with a closed
subvariety V < B x U. Now, let d be a local generator of the Gorenstein foliation
F on U, and 95 its pull back to B x U via the 2nd projection, then, (IL.10), V is d,
invariant, which in turn lifts to F', and either implied foliation is just the projection
to B. Consequently, from,

0 Qp QF s —— Krlsg —— 0
(IL31) H T¢3 H
0 Qp Qv lgos(B) — K7 lpos(B)

wherever d, is non-singular, the bottom arrow in (I.31) is surjective, so ) is
smooth and ¢y is étale. Equally if it is singular around a maximal ideal m of Oy,
30



then, by definition, m is 0> invariant, and whence ¢, Lt is too. However, 95 is ev-
eryhwere non-singular on F, so the latter ideal is the pull-back along F' — B of an
ideal on B. In particular, therefore, it is Cartier and ¢¢ lifts to a map ¢; to the blow
up of V in any singular point of d, contained in the image of s(B). Now, plainly,
none of the above changes if we replace ¢g by ¢, so it suffices to observe, [BM97,
1.3.3] that, after a finite sequence of such blow ups, 9, is everywhere non-singular
around the proper transform of ¢gs(B). U

As such, on replacing Yo by V = Yy, and ¢¢ by ¢ = ¢, of our Further Claim
II.c.2, we arrive to,

II.c.3. Final Claim. For J)/C viewed asa C-champvia) - Y - Cx X — C
there is an étale C-map ¢ : §¢ — V. In particular, therefore, if for ease of notation
we confuse s and ¢s,

(a) Y is smooth in a neighbourhood of s(C).

(®) Ky;c.,C = Kr., C.

(c) The 2nd projection yields a map of foliated champs (}/C) — (X — [X/F)).

Proof. We’ve done everything in (Il.c.2) except possibly (b) which is (IL.16). [

Before proceeding to produce rational curves in Fact II.c.5 from our Final Claim
IL.c.3 it is opportune to make,

Il.c.4. Remark. The resolution procedure in Further Claim Il.c.2 is really a reso-
lution procedure for the foliation pJF in a neighbourhood of the diagonal A —
X x X. As with all resolution procedures, it’s more demanding to achieve it with
smooth centres, but the key point here is to make p5F smooth around the proper
transform of the diagonal, and this can be achieved with a single blow up in the
diagonal of the singularities. Specifically, the question is local, so, say, U — M
an embedding of an affine scheme into a smooth, with coordinates xy,...,x, on
M restricting to functions on U, then since F |y is Gorenstein, we may, on shrink-
ing U as necessary, suppose that the foliation is defined by a vector field d on U,
which we write using the summation convention as,

0
(I1.32) 0=a; —
3)6,'
As such the ideal Iz of the singular locus Z is (a;). Now introduce x;, y; as
coordinates on U x U via the first, respectively second, projection, and put z; =
X; — i, then in z;, x; coordinates,
ad

*
= —Drdi 5 -
0Z;

11.33 50 = pya; —
( ) P2 Poai 3v:

Now the diagonal embedding of Z has ideal (pja;,zi) so on the proper trans-

form A of A not only can we locate each point in some pja; # 0 patch for an
appropriate 7, but even,

134) ()= h Ly (i pie)
pyai piai Pra;

so p5d is everywhere smooth around A.

In any case, the following, together with our Final Claim II.c.3, affords invariant
rational curves through a generic point of the image of C.
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IL.c.5. Fact. Suppose in addition to items (a) & (b) of Final Claim Il.c.3 a family
p Y — C of uni-dimensional champ with a section s satisfies Ky/c., C < 0
then there is a finite extension C(C) — K such that Vg is dominated by IP’}(.

Proof. We may, without loss of generality, suppose that )/, and indeed any base
change thereof, is normal. In particular, therefore, Fact 1.a.6, there is a fibration
Y — Y° expressing the former as a locally constant gerbe over a normal-fold,
so that by [BN06, 1.1] we may further suppose that JJ = )°. As such if the
generic fibre of p is not dominated by a rational curve then, op. cit., there is a finite
extension C(C) — K such that J)x ¢ K is an orbifold of the form [S g / G] for some
non-rational K-curve S and finite group G acting generically freely. Denoting by
Y the moduli of ), and identifying K with the function field of a smooth curve B,
we can suppose that Sk is the generic fibre over B of the integral closure S of Y
in the function field of Sg. The normalisation S of the fibre ) xy S is, therefore,
a gerbe over S with generic fibre Sg. Consequently, by purity, g : S§ — Y is
ramified only in components of fibres of }V — C. In addition ¢ is étale locally
Galois since S — Y is and ) — C is smooth in a neighbourhood of the section
s(C), so by [SGA-I, Exp. XIII, Cor. 5.3], g is étale locally around s(C) the
extraction of roots of fibres. As such, by the simple expedient of taking C(C) — K
sufficiently large, we can suppose- around s(C) and it’s pre-image- that g is scheme
like and S is smooth. Better still since ¢ is only ramified in fibres,

(I1.35) KS/B = q*Ky/C, and thus, KS/B 5 B <0,

for any lifting § of s. Consequently, we may from from either [BM16] or the
classical theorem of Arakelov, [Szp81], conclude to the absurdity that the generic
fibre of S — B is a rational curve. (]

The fibres of p in Fact Il.c.5 may not themselves be rational curves, and it is
convenient to give them a name, to wit

II.c.6. Fact/Definition. A smooth connected 1-dimensional Deligne-Mumford ch-
amp, L, over a field k is said to be parabolic if its geometric fibre is dominated by
a rational curve. Rather conveniently this occurs, [BNO06, 1.1], iff the topological
Euler-characteristic, y(L£), is strictly positive.

From which we can proceed to our conclusion

II.c.7. Proposition. Let X — [X'/F] be a foliated normal gerbe over a projective
variety X, which is foliated Gorenstein along some K r negative curve Cp C X
around the generic point of which F is a non-singular foliation of X, then for a
generic ¢ € Cy there is an invariant parabolic champ, g. : £, — X such that for
M any nef. R-divisor on X, and || the moduli,

M., C
(IL1.36) M., L] <2 K- C
Proof. We apply the Final Claim Il.c.3 with C a curve mapping to the normalisa-
tion of the gerbe over Cy in X'. By Fact Il.c.5 the generic fibre of J) — C is an
invariant parabolic champ, so it only remains to produce the degree bound. To this
end identify the image of the section s with a curve C such that C?> = —Kr - C
in the normal surface which is the moduli. Whence if L is a generic fibre of the
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same, M is notationally confused with the restriction of the given nef. R-divisor,
and x € R then by the Hodge index theorem,

(IL.37) 2x - (L-M)C? < (L+xM)>C? <{C - (L +xM)}?
so taking x = (M - C)~! we conclude. O

The same proof works, under the weaker hypothesis that only a neighbourhood
of Cp in the moduli is projective. More interestingly, the presence of even the most
mild non-scheme like structure on X can necessitate the precision of Proposition
II.c.7 that the existence of a parabolic invariant champ £ > c¢ is only guaranteed
for generic c. Indeed:

IL.c.8. Remark. Take a section C with positive square of a Hizerbruch surface P —
C. In the fibre through some ¢ € C, choose some set Q of points off C, and for
q € Q letng € N5q be given. Choose a germ of a smooth curve, y transverse
to the fibre P, at g. Blowing up in g, we get the proper transform y; of y, we
then blow up in the point where this crosses the exceptional divisor, and repeat this
process ng4 times before blowing down the first 7, — 1 curves. The resulting surface
S then has isolated cyclic quotient singularities with monodromy Z/n, at each g
in the proper transform of P, which itself meets at each ¢ a rational curve in the
fibre, but the said proper transform is the only component of the fibre meeting the
section. Passing to the Vistoli covering champ, we see the necessitate for taking
¢ € C generic in Proposition Il.c.7, since the gerbe over the proper transform fails
to be parabolic as soon as, Zq(l —1/ng) > 2.

II.d. The Cone of Curves. We may now apply the basic estimate of Proposition
II.c.7 to the cone of curves of a foliated Gorenstein normal champ X — [X'/F]
over C. Indeed, more precisely, we have,

I.d.1. Fact. Let ¥ — [X'/F] be a foliated Gorenstein normal champ with log-
canonical singularities in dimension 1 and projective moduli, then there are count-
ably many JF-invariant parabolic, champ £;, with, 0 < —K . £; < 2 such that,

(11.38) NE (X)r = NE (X)g,20 + Y Ry L;

i
where NE (X) g >0 is the sub-cone of the closed cone of curves on which Kz is
non-negative. Better still the R4 £; are locally discrete, and if R C NE (X)g is
an extremal ray in the half space NE . <¢ then it is of the form Ry £;.

This is a wholly formal consequence, as per [Kol96, II1.1.2], of the following
variant of Proposition Il.c.7.

I1.d.2. Variant. Let X — [X'/F] be as above, and Cy C X a Kr-negative curve
in the moduli, then for generic ¢ € Cy there is a F-invariant parabolic champ
Le > f(e)in X with 0 < —Kr - L, < 2 such that for all nef. R-divisors M on X,
and || the moduli,

M.C
(IL.39) M.|Le| <2 (M.Co)
—Kr. Cy
The variant requires a couple of facts of independent interest to wit
I1.d.3. Fact. If Z is the singular locus of a foliated Gorenstein-champ X — [X'/ F]

with log-canonical singularities in dimension 1, then &'z (K r) is semi-ample.
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Proof. Consider the linearisation map, i.e. the composition of,
d
(11.40) D:Iz/T% — Qx ®py Oz — Kr ®1z/13

By the Leibniz rule, this map is &z linear, and since the singularities are log-
canonical in dimension 1, for z € Z outside a finite set, some symmetric function
of D defines a section over Z, non-vanishing at z, of some power K;_?”, [MP13,
L.ii.4], and we conclude by the Zariski-Fujita theorem. (]

I1.d.4. Fact/Definition. Let X — [X/F] be a foliated Gorenstein champ; f :
L — X the normalisation of an invariant uni-dimensional champ not factoring
through the singular locus Z; x(£) its topological Euler-characteristic; and sz ( f')
the Segre class of f along Z, i.e. the multiplicity (counted with stabilisers) of the
pre-image f !z of the ideal of singularities, then

Kr-f L=—x(L£)—Rams +sz(f)

(IL41) >0+ Y. |Aute ()T

lef~1(2)
Proof. The image of f *Qk in Qé is always Qz(—Ram £), while in the particular,
(1.20), it’s also f*Kz.f~'1z, which proves the 1st line in (IL41). To get the

second, observe that in characteristic 0 f can only ramify where it meets Z, while

if f: A — U isalocal branch of f meeting a singularity in f(0), and

(I1.42) b=a - i a,
0x1 Xy

is a local generator of F with x; coordinates on a smooth embedding of U then the

local contribution to —Ram ¢ + sz ( f) is

—minford(¥; (1)} + minford(f* @)}, f 1= xi(0)
=1 + (minford(f* (@)} — minford(f*(x)}) = 1

whence the 2nd line on correcting for the order of the stabiliser. (]

(I1.43)

At which point we can return to

proof of Variant 11.d.2. By Fact 11.d.3 we need only prove the variant under the
additional condition present in Proposition Il.c.7 that the foliated champ is non-
singular over a generic point of Cy. As such re-taking the notation of the proof of
op. cit., we have a bi-dimensional champ p : Y — C whose fibres map invariantly
by g to X, which is the normalisation of its image. The said image, A, say, admits a
possibly non-saturated, injection 7x — 7T4. Every component of the singular locus
is invariant by every vector field, so by [BM97], normalisation (in characteristic 0)
can be realised in co-dimension 1 by a sequence of blow ups in F-invariant centres.
Thus g*7T# maps to Ty/c in co-dimension 1, whence, everywhere since )/, and
therefore 7y, ¢, is S_2. Consequently for generic ¢ € C,

(11.44) —Kr-g C < 73)/@ -C

while by the adjunction formula of Fact/Definition I1.d.4, and smoothness of ) in
co-dimension 2, we have,

(I1.45) Tyjc Ve =—x(e) =2

so, indeed —K r -g. C < 2 for generic ¢ as required. U
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In particular, under the hypothesis of log-canonical singularities in dimension
1, Kr-negative curves are never contained in the singular locus of the foliation,
and we proceed to examine the possibilities for Kr negative invariant parabolic
champs outside the same. Whence let f : £L — X be the normalisation of such,
which we express as a locally constant gerbe, 7 : £L — Lg, over a champ without
generic stabiliser, then by (I1.41),

Kr., L 1
S G Er T @ Y -
0 agnf-1z) 1

where in the sum, d; is the order of the local monodromy, and {f means integer
valued cardinality of a set. As such,

(IL46) 0

I1.d.5. Fact/Definition. For a Gorenstein foliation X — [X/F] in the presence
of log-canonical singularities in dimension 1, an irreducible K r-negative invariant
champ (or just an irreducible K r-negative invariant champ whose generic point
meets the smooth locus of the foliation if there are no hypothesis on the singular-
ities of X — [X/F]) has a normalisation, f : £L — X', with £ parabolic, and
furthermore:

(a) The pre-image under f of the singular locus Z is supported in at most 1
point.

(b) If this pre-image is # @, then Lo has at most one non-scheme like point
outside it.

(¢c) If there is no such singular point X — [X/F] is generically a fibration in
parabolic champs.

Proof. Ttems (a) and (b) are clear from (I1.46) which leaves (c). In this case f is
an embedding whose normal bundle is flat via the representation afforded by the
linear holonomy, while 71 (£) is finite, so, for f - L — X the composition with the
universal cover, the deformations of f are (locally) a smooth space of dimension
dim(X) — 1, and every deformation of f is invariant. O

IL.e. Singular structure of K r-negative curves. Throughout this section f :
L — X is a map from a smooth invariant K r-negative curve with the further spec-
ifications of Fact/Definition II.d.5. In particular f is an embedding everywhere
except possibly at a point p € f~1(Z). At p, however not only may the mon-
odromy exceed that of the generic point of £, but f may fail to be an embedding
because it has a cusp and/or because the image is not uni-branched. Nevertheless
there is a certain limit to the complication, whose description is the goal of this
section, i.e.

IL.e.1. Fact/Definition. Let everything be as in Fact/Definition II.d.5 albeit we in-
sist that X — [X'/F] has log-canonical singularities, and suppose moreover that
f~Y(Z) # @ with p : pt — L the resulting geometric point, then the étale local
contribution, (I1.43), to —Ram s +sz( f) at p is exactly 1. As such by (IL.41) and
(I1.46)

L.47) Kr.L=-1/d

where d is the maximum value of a stabiliser of £ outside p, which is either at-
tained at a unique point or is the same everywhere in the complement of p, and we
refer to such curves as —% F curves.
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We proceed by a series of lemmas beginning with

IL.e.2. Claim. The foliation F, by way of restriction over the generic point, affords
a singular derivation of L.

Proof. We re-take the notation of (I1.42)-(I1.43) in the proof of Fact/Definition
I1.d.4. It therefore follows exactly as in the proof of Variant II.d.2 that d defines a
derivation of &z, and it remains to prove that it’s actually singular at p. To see this
observe that if b : X — X were the blow up in p then the induced foliation (under-
stood without saturation if the singularities are not canonical, i.e. locally defined
by b*d) cannot (by the Frobenius theorem) be smooth where the proper transform
of f crosses the exceptional divisor. On the other hand, a sequence of blow ups in
singular points resolves any singularity of any branch of f', so for b : X — X now
a chain of such, we can suppose that the proper transform f : £ — X is an em-
bedding crossing the exceptional divisor in a singular point, f(p), of the regular
derivation 5*9, i.e. d affords a singular derivation of 'a. O

Applying Claim Il.e.2, we can, in the said notation, write the restriction to £ of
a generator étale locally as

ad
(11.48) d = yr+1u(y)$, u(y) € Ox. r € L.

and the content of Fact/Definition Il.e.1 is that r = 0. All of which is a useful, if
non-essential, point of reference in establishing our next

I.e.3. Claim. Understanding X — [X’/F] in the log-sense of Remark 1.b.2 if
necessary, cf. Revision I.b.10, without loss of generality X in Fact/Definition Il.e.1,
is a smooth champ.

Proof. By [BM97] there is a F-equivariant resolution of singularities
(I1.49) h: X > X

So that understanding X - [AN’ / .7:'] in the log-sense if necessary the canonical
bundle is unchanged. As such if b is an isomorphism at the generic point of f,
there is a unique lifting f L > X satisfying the hypothesis of Fact/Definition
II.e.1, and there is nothing to do. It may, however, happen that b is a modification
around the image of f. Nevertheless every component of the fibre over the said
image is invariant, amongst which we choose one over the generic point of f and
normalise it to get a not necessarily fibred square

2€<—y
F

(I1.50) bl lB

f

X «— L
wherein any vector field along F on the bottom left hand corner lifts naturally
everywhere else. In particular, therefore, there is a possibly very far (even logarith-
mically) from saturated (cf. Claim Il.e.2) bundle of derivations

(IL51) F*b*Tr — Ty
whose singular locus is contained in B~1(p), so that the restriction
(I1.52) F*b*TF |sing(F*b*Tr)
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is trivial. On the other hand b, and whence B, is relatively projective, so ) has
projective moduli and since (I1.52) provides an appropriate variant of Fact I1.d.3
we may, since it makes no other use of saturation, apply Fact I1.d.1 to conclude
that there are F*b* Kr = B* f* K r-negative invariant curves

(11.53) FiL>Y> X

lifting f. Of course, plausibly, L — L is ramified over p, but this would only
cause a non-zero value of r in (I1.48) to go up. (]

Now, as we’ve said, and item (a) of Fact/Definition II.d.5 notwithstanding, the
image of f in X’ can even fail to be uni-branch. However

II.e.4. Claim. Hypothesis as in Claim II.e.3, then without loss of generality f is
an embedding.

Proof. In an easier variant of the proof of Claim IL.e.3: given f : £ — X with X
smooth, we can find a composition, b : X — X, of blow ups in singular points of
the foliation such that the unique lifting f : £ — X is an embedding. U

At which juncture we have a well defined normal bundle N,y and a specialised
foliation to the same. Indeed somewhat more generally

IL.e.5. Fact/Definition. Let f : ) — X be net, Fact/Definition I.e.2 albeit that
much more, Fact/Definition L.e.5, is true, descent yields a well defined normal
cone Cy,x. Specifically if V' — X is étale, then there is a sufficiently small étale
neighbourhood U of any geometric point of ) xx V such that U < V, and the
pull-back to U of the associated cone is,

o0 n

- A%
(IL.54) Spec S := (P R
n=0 UV

In particular if the image of f is invariant, then the foliation leaves [y, invari-
ant, so a local generator d of Tr passes to a graded derivation of S by way of
applying it to any lifting of an element in the n*"-graded piece, and then reducing
modulo / ('}J{,I This process may not immediately lead to a foliation, but only a
pre-foliation, i.e. the specialisation may not be saturated. Nevertheless, for ease of
notation, cf. Claim Il.e.3, we continue to ignore such a distinction, which, in any
case, we’ll clear up in Claim II.f.1. Irrespectively, if ) is a smooth invariant curve
not factoring through the singular locus, Z, for y a coordinate along U around
a point of f~!(Z), and x; normal coordinates the specialisation of 9 takes, by
(I1.48), the form,

(ILSS) 9y~ b(y) =y T 'u(y)dy . xi > aij(y) x; = dx; both mod Iy,
where the summation convention is employed, so, equivalently the specialisation
may be viewed as a connection on Ny, y with singularities.

Via Claim Il.e.3 and Claim Il.e.4 this may be applied to the case in point, i.e.

Il.e.6. Fact. Let XY — [X/F] be a foliated smooth champ, and f : L — X
an invariant net map from a (smooth) parabolic champ not factoring through the
singularities such that Kz -y £ < 0 then either r = 0 or the linearisation, (1.26), d
of a generator at the singular point is nilpotent.
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Proof. Without loss of generality, £ is simply connected so £ = P(d, e) for
some d, e € N, [BNO6, 1.1]. We thus have an explicit description of L, to wit:

t—>t—¢

Gm T) U S A S [AY gl — £
(IL56) P

U —— Al [AYp]— L

Furthermore, by Fact/Definition I1.d.5, we may suppose that the pre-image of the
singular locus is a point p which we identify with O (the origin in U) while oo
will denote the origin in U’. Consequently by Fact I.c.7 there is a longitudinal
coordinate y, resp. 7, and normal coordinates x;, resp. & in neighbourhoods of 0,
resp. oo such that

(IL57) Brn=17¢ oy =14 p*& =1"%a
where the integers a; are afforded by the Harder-Narismhan filtration

(IL58) Nejao = | [ Octa)

S0, the basis x;, resp & may even be supposed ie, resp (44 invariant, i.e.
(I1.59) (e, xi) > e xi, (8, &) > 8 YE, €€ e, S € g

Irrespectively, Tr = Or(e —dr), where by hypothesis e > dr, and we normalise
generators around 0 and oo according to

(IL60) do(y) = dy"™, dso(n) = —e

so that for a specialised foliation described, cf. (II.55), by matrices A4, resp. B,
over U, resp. U’,

1L.61) A@?) — 1T = DB(t~¢)D~!

re—dr
where A, resp. D, is the diagonal matrix with entries a;, resp t%. Consequently
if we order the a; to be decreasing in i, then every i < jth entry of DBD ™! on
the right of (IL.61) is a polynomial in !, so from e > dr, A(t?) is an upper
semi-triangular matrix with diagonal a;t?", and whence the said linearisation is
nilpotent if r > 0. U

By Revision I.b.5 this completes the proof of Fact/Definition Il.e.1, and merits,

Il.e.7. Remark. The difficulty in Fact/Definition Il.e.1 comes from the fact that if
X were the completion in the singularity p,

(I1.62) HO(%, TF)

may not contain a generator, d. Indeed supposing f an embedding (just to fix ideas
since it’s of no importance) so that the monodromy, G, at p acts on the coordinate
y of (IL.48) by a character, y, then

(IL63) °=0=y0) =1 0€G
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On the other hand from the adjunction formula of Fact/Definition II.d.4, in the
notation of (I11.46)

K]:-,C _ r _ 1
(L:Lo)  ord(y) dy

(1I.64)

which from (I1.63) is non-negative as soon as r > 0. There is, however, not only no
way to guarantee that (I[.62) contains a generator, but this may well be impossible
on every birational model with log-canonical singularities since this is the root
cause, [MP13, IIl.iii.3.bis], of why log-canonical resolutions need not exist in the
category of varieties.

ILf. Linear Holonomy of, at worst, nodal —%IF Curves. Throughout X —
[X/F] is a (saturated) foliation of a smooth complex Deligne-Mumford champ;
f:L—> Xisa —% F curve, with f net, and £ smooth. As such we have the
specialised foliation of Fact/Definition II.e.5 to the normal bundle, N, x, and,

ILf.1. Claim. The specialised foliation is in fact saturated.

Proof. Suppose L is simply connected (which one can always reduce to by [SGA-I,
Exposé 1, 8.3], or [McQI15, IV.a.2] in a slightly more appropriate generality, and
Fact/Definition 1.e.5) then by the definition of a —% F curve we have r = 0 in
(II.61), while lack of saturation is equivalent to the matrix A of op. cit. being
divisible by ¢ which can only happen if the matrix A therein is 0, i.e. the normal
bundle is trivial. Thus, exactly as in the proof of Fact/Definition II.d.5, f moves
in a covering family, f;, of disjoint invariant parabolic champ each of which must
meet sing(F) for numerical reasons-i.e. Kr-y L = Kr-y, £, (IL41), and generic
fz a generic embedding- so the singular locus of F must be a divisor. U

Thus we can cease to worry about whether the foliation is a saturated or not, and

IL.£.2. Set Up. We further suppose that £ is simply connected, i.e. it is the weighted
projective champ P!(d, e) of Definition Lc.1.

In particular therefore we can describe the total space, N := N x — L, of the
normal bundle as the classifying champ [E /G,] of the action

(L65)  (yo,y1) X (x1,-+,x%n) X A > (A0, A1) X (A% xi), A € G
on E := (A?\0) x A"), where as in Fact Il.e.6 the weights
(I1.66) ap zaz---=ap

are those of the Harder-Narismhan filtration of Fact I.c.7 of the normal bundle.
Consequently if 7 : E — N is the projection then the tangent space to the normal
bundle is described by an Euler sequence of G,,-equivariant, cf. Fact/Definition
I.c.2, bundles

(IL67) 0> 622 T = 0(d) 1 6(e) I; 6(a;) — n*Ty — 0

where p is the radial, cf. Definition 1.d.2, vector field

0 i) i) J
(I1.68) p:=dyo— +teyi— +arxi— + -+ anxn—
dyo 0y1 0x1 0xp
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Now by Fact/Definition Il.e.1 the canonical bundle of the specialised foliation is
O'(—e), while for any G,,-equivariant coherent sheaf £ we have, in the notation of
Definition I.c.1, a Hoschild-Serre spectral sequence

(IL.69) H? (Bg,,, H (4, £)) = HPYI(P'(d, e), €)
and whence by Fact I.c.3
(IL.70) H!(Bg,,. n*Kr) =0

Combining this with (I[.67) implies that the specialised foliation on the normal
bundle is defined by a vector field d on the total space E such that

I1.71) =179, L1eGy

At the same time, by construction, (II.55), there are functions Fj, A;; in (C[Az]
such that
(I1.72) E)—Fi-l—Fi—i-A~)c~i 1<i,j<n

. ~ %0 Yoy PN ==
where as per op. cit. we employ the summation convention. As such from (I1.66),
(IL.71), and our normalisation, (II.56), that the singularity is at (0, 1),

(I1.73) Fy=0, F; € C*, Ajj, is a; —aj — e weighted homogeneous.

In particular therefore, by (I1.66), A;; is an upper semi-triangular matrix with 0
diagonal. We can, however, do better, to wit:

IL.£.3. Fact. For a possibly different splitting of the Harder-Narismhan filtration,
Remark I.c.8, of N,y and after a trivial renormalisation by a constant

0
(I1.74) 0=—e—
dy1
Proof. Consistent with the notation of (I1.66) the Harder-Narismhan filtration may
be written as

(IL75) [0]=NoG Nt GN2 G- G N = Ny

where the normal bundle of N; in N;4+ restricted to the zero section is a trivial
bundle twisted by some &, («;) for o; a complete repetition free list of the a;’s;
thus strictly decreasing as one proceeds up the chain. By (I1.73) this is equally a
filtration by F-invariant sub-bundles, so, understanding the induced foliation on a
sub-bundle logarithmically, Remark 1.b.2, if necessary (i.e. if a; = 0) we prove
(I1.74) by induction on the length of the chain (IL.75). The case k = 1 is immediate
by (I1.73), so by induction the matrix A;; is an idempotent of the form

0 A4
o o

Plainly, we aim for (IL.73) via a change of coordinates of the form

(11.76) ] A € Homg,, (N /Ne—1, Ng—1)(—e)

arn  [fese] = [0 T)[Fe<a] B e Home,, (Ve/Ne-r. Ne-)

xdi =a O 1 Xai =0

so that what we have to solve (in matrices of function in C[A?]) is:

(I1.78) e— = A,
ay1

while respecting the G, -equivariance of (I1.76)-(I11.77), which, (I1.73), is clear. [
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To re-interpret this in terms of the standard affine patches U, U’ of (I11.56)-(11.57)
one simply splits (I1.67) along the inclusion of the respective (quasi) transversals
yp=1,forp=~0orl,i.e.

IL.f.4. Summary. Suppose the (embedded) —% IF curve has at worst nodes, equiv-
alently that its normalisation is net over X', and that the universal cover, £, of the
same is a P1(d, e), then £ — X is net with a well defined normal bundle N, /X
such that after pulling back to the universal cover of Set Up IL.f.2 we have in the
étale description, (I1.56)-(11.57), of the normal bundle

(1) On U = Al an étale neighbourhood of the singularity a p, invariant

generator of the specialised foliation, and { € u.-action given by,

0 0
(11.79) d=dy— + aixi—, y—>% xi+¢%x;, a; €N
dy ax;

(2) On U’ = Ala complementary neighbourhood of the singularity, a basis
&; of functions invariant by the specialised foliation, on which ¢ € g acts

via & > {E;.
(3) A patching % 8*§; = o*x; in the notation of (I1.56), and whence, an
isomorphism
(11.80) Nejx — [ Octan)

1

In particular the canonical or Harder-Narismhan filtration of Ny, (IL.75), is a
filtration by F-invariant sub-bundles whose slopes and rank may be read directly
from the generator (I1.79) at the singularity.

II.g. Formal Holonomy. We wish to extend the previous discussion of linear ho-
lonomy of smooth —5 F champs to the rather more delicate case of formal holo-
nomy. Plainly when the curve, £, is smooth and simply connected, the calculations
are easier, and we denote by X — [X/F] a foliated smooth formal champ whose
trace L is a —% IF champs isomorphic to P!(d, e). In practice X will, by [SGA-I,
Exposé I, 8.3] or [McQ15, IV.a.2], be the universal cover of the net completion of
Fact/Definition I.e.5 of a smooth foliated algebraic champ X — [X'/F] along the
net map afforded by the normalisation of an at worst nodal —% F curve. For the
moment, however, this is logically irrelevant. Supposing no risk of confusion with
the notation of (I1.54)-(I1.55), we replace U’ by V in (I1.56), and take {{ — X, resp.
¥ — X, to be formal étale neighbourhoods in the analytic topology with trace the
Al’s U, resp. V of (I1.56). In particular, therefore, $I, resp. 20, has a e, resp. /g,
action and there are open analytic embeddings [Ll/ .| <— X, resp. [U/uq] — X,
extending [U/ue] — L, resp. [V/ugq] — L. Whence U is simply connected,
and, in the analytic topology, there is a certain strengthening of Summary IL.f.4,
viz: the foliation may be supposed trivial over *U, i.e. we have analytic coordinate
functions &;, n normal and parallel to our A! respectively such that in 0 the folia-
tion is just the formal fibration &} x --- x &, : U — A", where the latter space is
a n-polydisc completed in the origin. The algebra C [[£1, ..., &,]] comes equipped
with a 4 action- the formal holonomy representation- which, modulo the square
of the maximal ideal, is nothing other than that of the linear holonomy, (I1.59). The
said algebra is, however, an inverse limit of finite dimensional vector spaces over
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a field in which d is invertible, so the action may be written & — ¢~ % §; without
prejudice to items (1)-(3) of Summary I1.f.4.

Now, we can choose d on il to be u, invariant, and, inductively we further
suppose: for m € N given, and a possibly different p.-invariant generator, d, on
$ that there is a coordinate function y restricting to that of item (1) of Summary
IL.f.4 such that,

(L81) 3y = dy(ZF), (& y) = 4y (TP, (£.0) = 8 € Der(Oy), £ € e

The space 44, unlike its trace U, has non-trivial units, so, a priori this isn’t equiva-
lent to the weaker

(11.82) 3y = duy(T}), (¢ y) = %y (TF), (§,0) = 0 € Der(0y), ¢ € pe

for u invertible modulo IZ’. Nevertheless, we’re in characteristic zero, so, in fact
II.g.1. Claim. The conditions (II.81) and (II.82) are equivalent.
Proof. Supposing (I1.82), we have

(I1.83) Ay)—duy = f. y* -ty =g fgel(UIP
from which the invariance of d affords,
(11.84) detyt —u) = ¢4 f — 5+ 0(g) —dubg e T(U. TP

and we conclude that u® —u € Hl(ue,IZ‘). Since everything is tame, however,
such a co-homology group vanishes, so we can find a p.-invariant unit v equal to
u modulo 77, and replacing d by v~ 19 we deduce (11.81) from (11.83). O

Denoting by X,;;, Uy, Vi, etc. the reduction of whatever modulo IZ", observe
that by item (3) of Summary II.f.4 for y as in (I1.81) there is a function ¢y on
Umn xx Vin such that yt, d is congruent to 1 modulo nilpotents. Now, we’re in
characteristic 0, so, from the power series of the logarithm, y7, 4 has a dth root.
Thus
(IL.85) At € T(Up xx Vin) 2 ¥ o, xzv, = 19,
and we further assert,

II.g.2. Claim. Suppose that (II.81) holds, then for a possibly different ©, linear
basis &; of the algebra C[[£1, ..., &,]] compatible with any previous choice of the
same modulo IZ’/ for m’ < m, then:

(1) There are coordinates x; normal to £ on U such that in Z, /Z?'H,

(I1.86) 0(x;) = a;jxi xi+—>C%x;, (€pe,a; €N, 1<i<n
(2) The x; glue to the & via a*x; = t% B*&; as global sections of the O,
module
(11.87) Ze /TP (ai)

where O%,, (1) is the bundle with transition function ¢ on Uy, Xx V.

Proof. We proceed inductively on m, the case m = 1 being Summary IL.f.4, so, by
the first item of the induction hypothesis for m — 1, m > 2, we can find coordinate
functions x; normal to £ whose reduction modulo I% are a basis of the normal
bundle over U such that,
(I1.88) d(xi) —aixi = aig () x? € T (Unm, I} /TP,
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where x” is the monomial x{ r. .x,’,'”, j1++-++ jn = m, the summation conven-
tion is employed, and a; s () is an entire function. Similarly by the second part of
the inductive hypothesis:

(I1.89) 198 — Xi [Upxxc V= big () X7 € T(Up xx¢ Vi, T8 /T2HY)

with the same conventions, but where, now, b; s (¢) are only holomorphic for ¢ €
Gy. Combining (I1.88) & (I1.89), we obtain,

(I11.90) t[?i] + bij(ay —a;) = —aij(td) € 0g,,
where ay =) ji a;, and no summation is implied. Again we can integrate this,

1

by way of
d
(IL91) 77 (@ =) gy = —a;y (t9) 1974t

A priori, however, the b;j are holomorphic for ¢ € G, so the b;; are, in fact,
meromorphic, and no a;y t47~% ~1 has a residue, whence:

Aig
taJ—ai

(11.92) biy = hiy(t%) +
where h;y is entire, and A; 7 is a constant. In particular,

(I1.93) %= xi + hig(t9)x7 satisfies 3(%;) = a; % (mod IZ"H)
and defines n normal coordinate functions on 4, such that,

(11.94) % =t%E, where, & =& — ;g€

The far left hand side of (I1.93) is entire in ¢, so §,~ is still a pg-linear basis of
I /IZJrl |v,, (compatible with our previous choices), anday = a;(d)if A;; #0
by the coincidence of the formal holonomy with the linear holonomy (I1.59). It
therefore only remains to guarantee the . linearity, (I1.59). To this end, supposing
the change of basis in (I1.93) & (I1.94) already made so as to momentarily drop the
“from the notation, we have for { € u, a generator:

(I1.95) x; = %% = g1y (y)x? € T (U, TP/ T2FY)

Applying the invariance of d in (IL.81), the right hand side of (I1.95) must belong
to the eigenspace of a; for d viewed as a C-linear map. As such,

(IL96) g = ) gimy"
nd+aj=a;
and we can suppose x; has been rendered pi.-linear by a coordinate change,
(I1.97) Xi = xj + Z f,-Jny"xJ
nd-+aj=a;
which yields new functions over oo,
(IL98) =05 =&+ Y. funt’
nd+aj=a;

and since J now has cardinality > 2, this is also a i linear coordinate change. [J
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Let us now observe how to boot strap in the presence of Claim II.g.2, by find-
ing some y satisfying (I1.81) modulo IZ”H, m > 1. Over U we have, in the
notation/spirit of the proof of Claim II.g.2,

(11.99) dy =dy +cy xJ(IZ’H), 0x; = a; x; + Cix xK(IZ“Lz)

where the summation convention is back in force, with respect to multi-indices J
and K of degrees m, m + 1 respectively, all the cx’s are regular functions of y, and
by tameness of the monodromy (¢, y) > ¢4y, ¢ € i, in all of &y. We know that
the holonomy of the system (I1.99) is a quotient of 4, so, we again take ¢ as in
(I1.85), and at a presumably negligible risk of notational confusion let,

(11.100) E = t7% x; + big (t) x¥ (mod 77 12)

be a basis of invariant functions on an analytic étale neighbourhood of G,, with
summation over the multi-index K of degree m + 1 being implied. Combining
these, yields for any 7,

) d
i tOKT4TY L (19K by

dt
(I1.101) % ¢y ar—d+1) 5K — xei for some J,
o otherwise

By Claim T1.f.1, we known there is some i with a; # 0, while b; g must be holo-
morphic in G, so

(I1.102) ifay = d then c;(0) =0,

since in such an eventuality the exponent of the leftmost term, ay — 1, is non-
negative. Similarly, if much more straightforwardly, the p, invariance of d, and
our insistence that y + ¢ dy implies,

(I1.103) ¢5 =1 ey by =3 biji, for. J = (.o jn)

1

with b; as per item (1) of Claim II.g.2, and whence,
(I1.104) if ¢7(0) # 0,then by = d(e).

On the other hand consider the obstruction to finding a coordinate y over U re-
stricting to the same on £ such that,

(IL105) 37 =d(1+M)F @Y, A=A;x" €I, LjeOync.

If we look for such a 7 in the form, y + A y x/, with A s constants, then we require
to solve,

(I1.106) (aj—d)ANj—drjy =—cy

for all J. Howeverif ay # d,then Ay = —cy(0)(ay —d)™!, and A; whatever,
will do, while if a; = d, then by (I1.102) we cantake Ay = 0,and Ay = ¢y y~ L.
Whether trivially in the latter case, or by (I1.103)-(I1.104) in the former case, )7§ =
¢4 (ZF*1), so we obtain (I1.82), and whence (I1.81) by Claim ILg.1.

As per Claim I1.g.2, the coordinate y also restricts to the previous choice mod-
ulo 77", so we obtain in the limit an extension of the canonical/Harder-Narismhan

filtration to the whole neighbourhood, i.e.
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II.g.3. Proposition/Summary. Let X — [X/F] be a foliated smooth formal champ
whose trace is a smooth simply connected —% F curve, £ — P! (d,e), then,

(1) There is a bundle O (1) lifting &, (1) and a smooth formal invariant divisor
D, with Ox(D) = Ox(d) transverse to £ which restricts to the unique point z of

L N sing (F).
(2) There is a filtration of formal invariant sub-champs,
(I1.107) £=%o;%1;--~;%k=%

such thatif ¢y > --- > oy are the distinct eigenvalues of d considered linearised in
End (N;/x®C(z)), and normalised via item (1) of Summary ILf.4 withny, ..., ng
the dimensions of the corresponding eigenspaces then X; is defined by F-invariant
global sections y; of Ox(a;), j > i, and n ;j-sections for each j. In particular,

(I1.108) Nejx, — | [ Ocle)™s
J=i

(3) All of this is encoded in a particular p, linear coordinate system, y, x;, y +—>
¢4y, x; > L% x; of an étale neighbourhood 4{ — X with trace A! containing the
singular point over which we have a p, invariant generator,

ad ad

dy 0x;
where the summation convention is in force, so that the «;, are a complete repeti-
tion free list of the a;.

ILh. Jordan Decomposition. We briefly interrupt our discussion of K r-negative
invariant champs to recall some salient facts on Jordan decomposition which will
be relevant both to our study of cusps, and the local uniqueness of the Harder-
Narismhan filtration. The situation is entirely local and, initially, scheme-like, i.e.
O is the ring of formal power series C[[x1,..., x5]], m its maximal ideal, and
d a C-derivation of ¢ with a singularity at the origin. Recall that since & is an
inverse limit of finite dimensional vector spaces d admits a Jordan decomposition,
i.e. d = dg + dn, where the semi-simple part dg acts as a semi-simple matrix on
each /m", n € N, dy is nilpotent, and of course [ds, dny] = 0. In particular if
0s = A; x; aix,-’ summation convention, then a conventional choice of basis for the
nilpotent fields commuting with dy is,

n
ILh.1. Revision. (cf. [Mar81]) Notations as above thendy =Y Y _ aQiinxi%
i=10; '
ag, € C, where for A = (A1,..., Ay) the inner prodict A - Q; = 0 and either,
i) Qi =(q1,.--.qn).qj €NU {0}, x9Qi = xi“ oo xInor
(i) Qi =(q1,---,qn) @i = —1,q; eNU{0}, j #i,x% =xT' .. x".

Now the Jordan decomposition of a vector field is certainly unique, and whence
the property of semi-simplicity of a vector field is wholly unambiguous. For a
foliation however the situation is rather more delicate since there is a question of
rescaling by units. Whence suppose our field d is semi-simple, and consider a field
d = ud, where u = 1(m) to avoid stupidity. Furthermore let’s say, without loss of

generality, that d = dg = A; Xx; % then we assert,
13
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IL.Lh.2. Claim. Notations as above, there is a change of coordinates of the form,
& = u;i xi, u; = 1(m), and & = 0(m) with de = 0 such that the Jordan decompo-
sition of 9 is,

= d d
II.110 d=2A; & — A& —
( ) lél a§i+8 z%‘z a%_i

ie. d may not be semi-simple, but the extent to which it is not is very particular.

Proof. Consider the following inductive proposition for k € N:

there are coordinates x;r = u;r Xi, Ujr = 1(m), J = U Ok, O = Aj Xik %,
U = 1(m) such that u,:l = 1 + & + O, where &g, 0 are defined by way of the
Jordan decomposition of m as Ker 8z @ Im x, and §; € m¥.

The case k = 1 is simply our given data. Otherwise consider trying to improve the
situation by putting, X;jx4+1 = Vik Xik, Vix = 1(m) to be chosen. If such a change
were to actually render 9 semi-simple then we would have to solve,

1

(IL111) 3 log vix z)”<ﬁ_l) = A ek + k)

which may not be possible if A; # 0, and ¢, # 0. However we can solve
3k log vig = Ai 8k, so, in particular, v;; = 1(m¥), while in the new coordinates,

~ 1+ 6 0
IL.112 0= ——""—A; X; —_—
( ) 1+ e, + 61 i Aik+1 axik—i—l
which is indeed what we’re looking for, since putting uz 41 = (1 4 ;) uy then,
o0
(11.113) wer =1+ +8)  =1+e+ ) (1) e 8
n=1

k+1

so that §g 41 € m*™". Certainly therefore the §; — 0, but the proof also shows that

for each i the infinite product, [ | v;x converges to some u;, so putting & = u; x;

k
we’re certainly done on observing that de = 0 obliges,
(IL.114) A€ 9 A€ 9 0
. i & —.,¢er& —|=0.
T og o og

O

The consequence of the fact that not only can Jordan decomposition of a rescal-
ing of semi-simple only fail in a very controlled way, but also that Jordan decom-
positions of rescalings are related in such a straight forward way suggests that we
introduce,

ILh.3. Definition. On a formal disc A”, i.e. Spf(CJ[[r1,--- . ,]]), a foliation (A",
F), with a not necessarily isolated singularity at the origin is said to be semi-
simple, if Tr = 0,0 for some semi-simple vector field 9.

As an important example/application consider the situation of blowing up in
the origin, i.e. p : (X, F) — (A”, F) is the said modification with induced
foliation and X is the completion in the exceptional divisor of the blow up of
Spec €. Denoting by, d = ds + dx a Jordan decomposition of any generator 7
we have,

46



ILh.4. Fact. Suppose ds # 0 and (X, F) is not everywhere smooth (which in any
case could only happen if in suitable coordinates 0 = Xx; aixi) then the following
are equivalent,

(1) (A”, F) is semi-simple.

(2) (X, F) is semi-simple at all of its singular points.

(3) (X, F) is semi-simple at one of its singular points, and (A”, F) is semi-

simple modulo m?.
(4) (X, F) is semi-simple at one of its singular points.

Before proceeding, we will require a lemma, to wit:

ILh.5. Lemma. Notations as above, then at every point of its singular locus, p* 9y
is nilpotent.

Proof. Without loss of generality we can suppose the projective coordinates of
some singular point, p, in the exceptional divisor to be [1,0,...,0]. Thus if dy =
aijXx; aix,-’ summation convention in force, then a;1(0) = 0 for every i > 2. This
is equivalent, however, to the column vector defined by p being an eigenvector,
so a11(0) = 0 too. Now, observe that a square matrix, [c;;];,j>1 with a zero first
column is nilpotent iff the matrix [c;;];, j>2 is nilpotent, while the linearisation of
p*dy in p is,
ail (0) 0 e 0

daz;
9% ©) .
(I1.115) )

dan; O) ..o

8x1
which has a zero first row, so it’s also nilpotent. (]

proof of Fact IL.h.4. Since (X, F) is not everywhere smooth the induced foliation
is given everywhere by p* d (cf. Revision 1.b.10) so trivially (1) implies everything
else, while both (2) & (3) trivially imply (4). Consider therefore (4) = (1). As in
the above proof of Lemma ILh.5, a singular point of the singular locus of p*d is
an eigenvector of its linearisation, whence an eigenvector of the linearisations of
p*ds & p*dy , and thus a singularity of both p*ds & p*dy. We know, however,
that every singularity of the former is semi-simple, so by Lemma ILh.5, p*0 =
p*ds + p*dn remains a Jordan decomposition at every point of the singular locus
of F. By hypothesis, at such a point p, there is some semi-simple generator 3, so
an application of Claim IL.h.2 yields ¢ € o x,p such that p* d(¢) = 0, and,

(I1.116) ept s =p*on.

As such, if, x; is an eigenvector of dg, with eigenvalue A1 # 0, then for f =
oy (x1), e = p*(f/A1x1), while:

(IL.117) 0= x19(f/x1) =8f—xil-(k1 x1+ f)

so x1 | f, and ¢ is actually a function on A", from which we conclude. O

A further question which we may reasonably address here is the uniqueness, or
lack thereof, of the Jordan decomposition. Even without rescaling the particular
choice of coordinates in which we may write a semi-simple field as A; x; d/0x;
may be catastrophically non-unique. Plainly the worst possible case is when all the
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A; are rational, or equivalently up to a harmless rescaling integers. Even this is of
course not unique but it’s not too bad since of course any rational point in some
PN (Q) is up to multiplication by 41 uniquely represented by a tuple of relatively
prime integers, consequently let’s establish some notation,

ILh.6. Notation. Let d be a semi-simple derivation of & with integer eigenvalues

ai,...,ar, =by,..., =bs, aij, bj € Zso, s zeroes, r > 1, although possibly
t = 0, i.e. no negatives, and (ay,..., dr, b1,..., by) = 1, then we will suppose
these ordered by decreasing size, i.e.

(I1.118) ar>ar>--->a,>0>-b; >---> —by

and by a1,..., o, k <r, B1,..., B;, I <t acomplete repetition free list of the

same, so that,
ay=oy >0y >--->0a >0

I1.119
( ) O>—,31>~--—,32>~-->—ﬂ1=—b1.

Now for a given choice of basis of a semi-simple derivation d with the said
eigenvalues i.e. a particular way of writing it as a; y; 3iy_ —bjxj %, with say zx
i J
the null vectors, we can introduce,

ILh.7. Definition. The Harder-Narismhan pair of (A”, F) with respect to the data
(9, yi, x;) is the invariant formal sub-schemes, X=0, X <o whose ideals are gener-
ated by the non-positive, respectively non-negative, eigenvectors of d. If instead we
take strictly negative, respectively strictly positive, eigenvectors then the resulting
subschemes, X >0, X <0, will be called the non-strict Harder-Narismhan pair.

Manifestly, apart from abbreviating Harder-Narismhan to H-N, what’s important
is that the H-N pairs are well defined up to %1, i.e.

IL.h.8. Fact. Fix a choice of semi-simple d with integer eigenvalues normalised as
per Notation IL.h.6, then the following are equivalent,
(1) {X=0, X<o}, respectively {)220, )250}, is the H-N, resp. non-strict H-N,
pair with respect to d in the basis {x;, y;}.
(2) {X=0, X<o}, resp. {X>0, X<o}, is the H-N, resp. non-strict H-N, pair
with respect to d in any semi-simple basis.
(3) {X>0, X<o0}, resp. {X>0, X<o}, is the H-N, resp. non-strict H-N, pair
of any semi-simple d = ud in any semi-simple basis for the same, where
u = 1(m).
Proof. (3) = (2) = (1) are all trivial, so consider (1) = (3). By Claim IL.h.2, we
know that we can find units u;, v; = 1(m) such thatif n; = u; y;, §; = v; x;
then 0 = a; n; 3i7]i —bjé&; %. As such {)?>0, )?<0}, resp. {)?20, )?fo}, is the
H-N, resp. strict, pair of 9 in the basis {&. nj}. Now suppose d = aj fi aif —
bjgj % in some other basis f;, g;. At the mod m? level this is just a question of
the uniqueness of diagonalisation/the commutator of a diagonal matrix, so without

loss of generality let’s say f; = &, and g; = nj(m?). On the other hand, for
higher order terms, consider the Taylor expansion,

(IL.120) fi=&+ Y ikt 0¥k,
4 I+ H#HK>2
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where, as ever, £/ etc. is the monomial é{l .. &etc.,and &y, ..., & are the null
vectors. Now 0 f; = a; f; so,

11.121) CiykL #0=> o ju— Y bpkp =a;.

a b
Consequently if f; ¢ (£1,...,&), then we have a manifest absurdity, and so con-
clude by symmetry. O

The dependence on +1 is, however, unavoidable. Indeed let, A” — [A” / F] be
a singular foliation invariant by a finite group G, or, equivalently for d a generator,

(I1.122) 3 =0do ! =u(0)d, u:G— o3,

where u is a group co-cycle, so, better, by the acylicity of Bg on torsion free
abelian groups, a character y on replacing d by vd for a suitable unit. At which
point, however, if 3 = dg +d is a Jordan decomposition of 9, then 3° = 9% + 9%
is a Jordan decomposition of 39, so by unicity of the same,

(I1.123) 0% = x(0)ds, and, 0%, = x(0)dn

As such, if in addition A" [A” /F] is semi-simple, then, by Claim IL.h.2, d and
ds generate the same foliation, so,

ILh.9. Fact. If A” — [A”/]:] is a germ of a singular semi-simple foliation invari-
ant by a finite group G, then there is a character y : G — Q(1)/Z(1) of G and
a semi-simple generator d of the foliation such that, 9° = y(0)d, forall o € G.
In particular, if the eigenvalues of a linearisation in m/m? are in P*"~1(Q) then y
takes values in {£1}, and,

(a) If y is trivial, all of )?>0, )?<0, )220’ )?50 are G invariant, and there is a
H-N pair, respectively non-strict H-N pair, of embedded F-invariant formal sub-
champs, {[X~0/G]., [X<0/G]1}, respectively {[X=0/G]. [X<o/Gl}. in [A"/G].

(b) Otherwise, in the notation of Notation IL.h.6, a; = b;, r = t, etc., and
[Xso/Ker «], respectively (X >0/Kery], is isomorphic to [X <o/Ker +], respectively
[XSO/KerX], but is only net in [)2>0 U )2<0/G], respectively [)220 U )ESO/G],
which in turn are embedded in [A”/G], being defined by the G-invariant ideal
(xi yi. 2k), respectively (x; yi).

Proof. If x is an eigenvector of d with eigenvalue A, then for any o € G, x¢ is an
eigenvector of d with eigenvalue A x(c)~!, so when the eigenvalues are rational, y
must take values in rational roots of unity. U

Consequently, even in a purely scheme like situation, we have two canonical
pairs rather than two pairs of canonical sub-schemes, and we make:

ILh.10. Remark/Definition. Let A” — [A" /F] be a germ of a singular semi-
simple foliation such that the eigenvalues of a linearisation in m/m? are in P*~1(Q)
then there are two canonical pairs of invariant formal subschemes, the H-N pair,
{)2 -0, X <0}, and the non-strict H-N pair {)2 >0, X <o}, where the former intersect
in the origin, the latter in the whole singular locus. If no-confusion is likely, the
suffices may be dropped.

In the particular case of Proposition/Summary II.g.3, the trace of the formal
neighbourhood X affords a distinguished eigenvector, so the character appearing
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in Fact IL.h.9 around the singularity, p, is trivial. As such, by op. cit., the H-
N pair, respectively non-strict H-N pair, extends from a formal neighbourhood of
p to a pair of embedded invariant formal sub-champs {X-¢, X<¢}, respectively,
{X>0, X<o} of X. An important further task will be to extend this to cusps.

ILi. Cusps. We consider the consequences of the previous discussion for cuspidal
—5 F curves, f : L — X, where, as ever, X — [X/F] is a foliated smooth
champ. In the first instance the discussion is purely local, so, say, f : Al > X,
the map between completions in the singularity 0 € f~1(Z), for Z = sing(F).
By, for example [BM97], the cusp may, cf. Claim Il.e.4, be resolved by the étale
local operation of blowing up in the sequence of closed points,

(I1.124) X=Xy —> ..o X >X=4X

of which the firstis z := f(0), and subsequently where the proper transform of f
meets the exceptional divisor until such time that f becomes an embedding, f say,
meeting the proper transform in Z. Necessarily each blow up in (I.124) isin a pomt
where the foliation is singular, so K z < K| 3, and f can only fail to be a — L

curve if F is smooth everywhere around f Now although such an occurrence
is highly simplifying, e.g. F is algebraic in conics by item (c) of Fact/Definition
I1.d.5; the foliation has a first integral in a (finite) étale neighbourhood of L etc.;
it’s preferable to avoid a separation of cases by viewing such a final situation as
a —% F curve for Kz + E, equivalently working logarithmically, in the sense of
Remark 1.b.2, around the final exceptional divisor, E, in (I.124). In this way, item
(3) of Proposition/Summary II.g.3 and Fact II.h.4 are always valid, from which:

ILi.1. Lemma. Let f : L — X bea —é F curve meeting the singular locus in z,
then around z the foliation is semi-simple.

Consequently, let’s say, d = A;Xx; aa a semi-simple generator of the foliation
in the complete local ring Oy ., with f t — x;j(t) = tYu;(t) an expression
for the cusp in terms of some local parameter ¢, with v; € Z-o, and u; units
whenever f*x; is not identically zero. As such, for any pair of indices 7, j for
which f*(x;x ) is not identically zero,

Xi(t) _ %, (1)

I1.125
( ) Aixi Ajxj

Whence, if we re-label the coordinate system as y; for those non-zero on the curve,
x; for those identically zero, and y1(t) = ¢"!, then:

(I1.126) y,_(t) = & + holomorphic = Aivi

Vi At

s0, y; (t) = n;t¥, for some constant 7;, thus, without loss of generality n; = 1 and
Ai = vj. Proceeding thus, there may be some mild redundancy. Indeed, the cusp
has an embedding dimension k, and re-labelling so that v1 is minimal, then if vy |v;
one can replace any x; by something in the same eigenspace (of d qua operator on

©) which vanishes identically, viz: y; — yfi/ Y1 and in general, one can achieve,
(I1.127) V] <V <0 <V, Withvjpg € Zso vy + -+ + Z>o ;i .

foreach 1 < i < k, so we get exactly k y;’s, the v; have gcd 1 since f is bi-
rational, and every other coordinate is a x; vanishing identically.
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Now, by hypothesis the local monodromy group, G, preserves the foliation on
the formal completion, X, of X at the singular point. Appealing to (II.123), we
may suppose that it acts on the above d by a character y, and we denote by H
the stabiliser of the image C of (the irreducible branch) f : L — X obtained by
completing the local ring of £ at p. Consequently there is a factorisation,

(IL.128) fL/H S [c/H S 1%)6

and since everything is convergent in the étale topology, this can be glued to a
global factorisation,

(I1.129) s, x

where the first map is the normalisation of C, ¢ is net, and C is uni-branch. As
such, outwith the unique singular point p, v is an isomorphism, and ¢ a closed
embedding. Equally, the wholly general Fact/Definition I.e.5 applies, so there is a
formal champ X with trace C such that X — X onto the completion of X in the
image of f is étale representable, and,

I1i.2. Fact. Let f : L — C — X — X be the above factorisation of the normal-
isation, f : L — X of a —1/d IF cusp, with v; as (IL.127), and y;, x;, as above,
suitable formal coordinates (on X ) about the singular point, then there are a; € Z
such that the foliation is generated by,

I1.130 0=4d 9 9

(IL. ) = vlyla_yi—i_aJXJE
Proof. If there is a divisorial valuation of negative discrepancy passing through the
closed singular point, then the proposition follows from Revision 1.b.10, (I1.127),
and the fact that the v; have g.c.d. 1, so we may suppose that the singularity is
canonical rather than just log-canonical.

Now we require a certain re-appraisal of (I1.125)-(I.127) in the presence of the
action of H in (I1.128). To this end let / be the ideal of the image, C, of the cusp
in the completion X in the singular point p whose maximal ideal we denote by m,
then we have a H -equivariant exact sequence

(IL.131) 0—>1/INm* > Qs ®C(p) > Qc ®C(p) >0

which is equally equivariant under a semi-simple generator d of the foliation. In
particular, therefore, the induced endomorphism

(11.132) 0:Qc ®C(p) — Qc ®C(p)

may be supposed to have eigenvalues the (distinct) v; of (I1.127) with multiplicity
(both geometric and algebraic) equal to 1. As such, although H acts on 9 a priori by
a character, (I1.123), such an action must, cf. Fact IL.h.9, be trivial. Consequently
the C-linear decomposition of m into eigenspaces of d is also H -equivariant. On
the other hand all exact sequences of C[H ]-modules are split exact, so from

0— (IM) Nm?)/(IA) NmE) —> IA)/(IA) Nwk) > (I(X) Nm?) — 0,

k > 2, etc. for any eigenvalue A of d, we can write the H -action as blocks of
C-linear actions

(I1.133) H>o0: Xi ) Aij (o)xj’)“ yi = xi(0)yi
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for a coordinates system {x; ;, y;} in which x; € I(4), the y;’s afford eigenvec-
tors of (I1.132) with eigenvalues v;, and the y; are characters. In particular there is
a filtration which is both H and F equivariant

(I1.134) F? = (1_[ yf’ Hx;”f : Z(bivi) + ch,/l > p)
i oA i JaA

of the complete local ring. Plainly, however, the filtration (II1.134) is actually the
completion of a bi-equivariant filtration of the Henselian local ring of X (in fact
even that of X, albeit here, (II.128), the invariance under the possibly larger lo-
cal monodromy may fail) so it affords, [MP13, Liv.3], a smoothed F-invariant
weighted blow up

(IL.135) p:X—> X%

which is an isomorphism off p. In particular, therefore, the unique lift f L X
of f of (II.129) is a —% F curve with smoothly embedded image, and Proposi-
tion/Summary I1.g.3 holds. By direct calculation, (I.137), cf. [MP13, pg. 180],
however, the eigenvalues (in an étale patch) of d and p*d along the proper trans-
forms of the x; ;s differ by 1, so (I1.130) follows from (I1.109) applied to p*9. O

Of course, we also proved that not just the linear holonomy, but actually all of
the holonomy is cyclic of order dividing d, so although Fact II.i.2 is sufficient for
applications, we can actually do better thanks to,

I1.i.3. Fact. Let X — [X/F] be a foliated smooth formal champ whose trace has an
étale neighbourhood the invariant affine cusp, C, i.e. image of t — (¢V1,..., %),
for v; as per (I.127), t € A!, with the origin the unique point where C meets the
foliation singularities, then the formal holonomy is cyclic of order at most d iff
we can find formal holomorphic functions, y1,..., Yk, X1,..., X¢, restricting to
a coordinate system on an analytic neighbourhood in X of the singular point with
the y;’s embedding coordinates respecting (I1.127), x; vanishing on the cusp and
a generator d for the foliation all of which are holomorphic on an étale neighbour-
hood (in the analytic topology) of X with trace C such that for some a; € Z,

0 d
(I1.136) 0 =dv; yia_yi+“f xigj
holds on an any analytic étale neighbourhood of the singularity where the y;, x;
form a system of coordinates.

Proof. The if direction is trivial, and for smooth curves this is the conclusion of
Proposition/Summary I1.g.3, or, more accurately a slight re-phrasing thereof. In
any case, the affine cusp has no (holomorphic) Picard group, so a global holomor-
phic generator, 9, of the foliation on X exists, and we proceed to combine Proposi-
tion/Summary II.g.3 with Fact I1.i.2 to achieve the said form. In particular, by the
latter, and Claim ILh.2, there are coordinates y;, x; and an invariant function ¢, all
in the completion in the singularity, 0, which render d:= (1 + £)~19 in the given
form. A local coordinate system for the weighted blow up (I1.135) is given by:

(I1.137) =31 i =3iv x; =350
in which y; = 1, i > 1 where our cusp crosses the exceptional divisor, p, say, so
the v1th roots of unity act without fixed points in a neighbourhood of p, and y,

Zi == y; — 1, X furnish coordinates in which p*é is semi-simple at p.
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Now we appeal to the conclusion of Proposition/Summary II.g.3, to find a pos-
sibly different generator, D = vp*a for v a (holomorphic) unit on an étale neigh-
bourhood of X with trace the resolution C of C, such that,

ad d
(II.138) D=dng—+(a; —d)é; —

along with some other coordinate ¢;, such that, n, {;, §; agree with yq, Z;, X,
modulo m(p)?, but the former are defined on all of X. Both coordinate systems
are semi-simple, so Claim ILh.2 applies to yield units u, u;, i > 1, w; in the
completion at p such that 7 = uy, Ei = u;Zj, gj = w;X, are a semi-simple
coordinate system for D in the complete local ring at p. Effecting an appropriate
linear change, this latter coordinate system is related to that in the 7, {;, §; by,

(IL.139) i=n+Y. Y. csmiE

m=2 [I|+|J|=m

and similarly, employing the notation of (I1.88) et seq., for the 2 i, and the é j. Both
the left and right hand sides in (II.139) have the same eigenvalue, viz: d, so for all
I, J we must have,

(11.140) dncyy(n) 4 (ag —d|Jery(n) =0

and aj takes only finitely many values for |/| + |J| bounded. Consequently, for
every m such that, |I|+]|J| = m, cyj is a polynomial in 7, from which 7 converges
not just in the completion at p, but in the full étale neighbourhood with trace C.
Arguing similarly for the E,-, § j’s, and &, we may, without loss of generality,
suppose, 1 = 1, §; = Ei, & = §j, and that ¢ is defined in a neighbourhood with
trace C. Thus we may suppose that ¢ = 0, and whence
Du; Dw;

(IL141) Du =d(1 —v), =0, = (aj —d)(1—v)
u Uj w;

where, without loss of generality, all of u, u;, w; are congruent to 1 modulo Ié.
Thus, for example, we can write,

(I1.142) u=exp(d. > up(melel)

m>2|I|+|J|=m

so if v7y(n) are the coefficients of a similar Taylor expansion for v(1 + ¢), then
from (I1.141)-(I1.142),

(I1.143) dnuy;(n) +ayury(n) = —dory(n)

where the right hand side is holomorphic in 7, while, a priori, the left hand side is
formal, whence, a postiori, holomorphic. Consequently u is well defined on our
étale neighbourhood with trace C , so, idem for y1, and by an identical argument,
all of the Z;, x; are equally so defined on the said neighbourhood. The relation
of these to the original coordinates y;, x; defined on completing X in the singular
point is given by (I1.137), so, not just the normalising factor (1 + &), but also the
Yi, Xj, are defined on an étale neighbourhood of X with trace C. By construction,
however, y;, x; are already a formal coordinate system at the singularity, so they
are in fact coordinates on at worst an analytic neighbourhood of the same, while
on any such (II.136) holds by construction. U

The role of the analytic topology in Fact I1.i.3 and its proof merits a clarifying,
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ILi.4. Remark. Profiting from the Euclidean algorithm to solve c; vy +---+cr v =
1, for some integers c;, one would might like to make a more strict analogue of
Proposition/Summary 1I.g.3. Indeed in the above notation, ¢ = yfl y,ik is a
meromorphic function on the affine cusp which, close to the singularity, restricts to
a coordinate function on the normalisation, and one might hope to form an explicit
patch with an étale affine neighbourhood of the non-scheme like point at infinity
according to the relation ¢¢ = s~4, for s a coordinate on the A! 5 oo, cf. (I1.56)
& (I1.137). In principle, however, ¢ so constructed has an essential singularity at
infinity. Plainly the problem is the intervention of v in (II.141), which unlike the
smooth case cannot be avoid. Specifically, as in the smooth case, for ¢ the unique
(up to scaling by a constant) coordinate on the normalisation of the affine cusp, one
would like to normalise, cf. (IL.60), a generator o of the foliation restricted to the
cusp according to

(I1.144) At) =1

so that a postiori ¢ = ¢ and everything is meromorphic over co. It can, however,
happen under the hypothesis of Fact I1.i.3 that (II.144) doesn’t admit a solution. If
one follows the proof of Fact I1.i.3 and takes d to be holomorphic then this is equiv-
alent to asking that the unit v which appears restricts to a unit defined on the affine
cusp rather than just its normalisation. Similarly, if one works algebraically this is
equivalent to K r restricting to an algebraically (rather than just holomorphically)
trivial bundle on the affine cusp. Consequently a counter example where (11.144)
cannot be solved is

3 3
(11.145) d=2x+y)— +30 +xH—, y*=x>C A%
0x dy

Since for ¢t = /x, (t) = t(1 + t), and Tr defined by gluing this to the unique
(up to scaling by a constant) nowhere vanishing field, doo, on V S Als o along
the open set V\{—1, oo} by way of
_(+1)
ot

defines a bundle whose restriction to the affine cusp is algebraically non-trivial. As
such:

(I1.146) d

doo

ILi.5. Warning. Formal neighbourhoods of cusps, even though the problem is
wholly at the level of the bundle of derivations defined by restricting the foliation
to the reduced cuspidal curve, do not admit a description comparable to Proposi-
tion/Summary I1.g.3. Ultimately, therefore, our treatment of cusps, §1ll.c, requires
global hypothesis, Claim IIl.c.1, rather than the local hypothesis of Fact IL.i.3

On the bright side, however:

I1.1.6. Remark. We’ve complemented Proposition/Summary I1.g.3 in the course of
the proof even in the smooth case, since, in principle, even if a generator d on
the étale neighbourhood U of item (3) of Proposition/Summary II.g.3 were semi-
simple at the singular point, there might have been an obstruction to expressing o
in terms of semi-simple coordinates on an analytic neighbourhood of 0 € U, as
found in op. cit., due to a possible re-scaling by a unit implicit in (I1.105). We see,
however, from the proof of Fact I1.i.3, that there is no such obstruction.
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III. EXTREMAL SUBVARIETIES

Ill.a. Generalities. Throughout this chapter X — [X/F], unless specified other-
wise, will be a foliated non-singular champ, with log-canonical foliation singular-
ities. We switch our attention from K r negative curves, to K r negative extremal
rays R. The moduli X is of course supposed projective so if Hg is a nef. Cartier
divisor supporting the ray, i.e. Hg.« = 0, and « in the closed cone of curves iff
o« € R, then for sufficiently large m € N, Agr := m Hgr — Kr is ample. In any
case following Kollar, Mori, et al., cf. [Kol96] III.1, we introduce our main object
of study, by way of,

IIl.a.1. Definition. The locus of R, Loc (R) is the set of closed points x € X(C)
such that there is a curve x € C C X with [C] € R C NS;(X).

Observe that a priori Loc (R) is not a subvariety of X. Indeed for m € N, we
can filter Loc (R) by sub-schemes Loc,, (R) on demanding that x € Loc,, (R) if
we can take the curve C of the definition to have Agr. C < m. That Locy, (R) is
a sub-scheme is immediate from the existence of the Hilbert scheme. To remedy
this let us introduce,

III.a.2. Definition. A R-pre-extremal subvariety is an irreducible subvariety ¥ C
Loc (R) maximal amongst the set of irreducible varieties contained in the locus.

Trivially, the dimension in chains of proper inclusions of irreducible varieties
must increase so R-pre-extremal subvarieties exist; any x € Loc (R) is contained
in one; and Loc (R) is the a priori countable union of all of them. Now if ¥ is R-
pre-extremal, and y € Y then there is a C), with [C,] C R containing y. However
applying Variant 11.d.2, we know, for y generic, there is an invariant parabolic
champ f) : £, — X through y with moduli L such that,

Hg.Cy 0

—Kr.Cy
So in fact L, € R, and Ag. L, < 2. Additionally Ly cannot be contained in
sing (F) since it has K r-negative degree, so we can make a F-invariant subvariety
W by adding to generic points of ¥ an appropriate L,,. On the other hand Y is by
hypothesis R-pre-extremal, so W = Y, i.e. Y is F invariant, with the induced
foliated variety ¥ — [Y/JF] being a pencil of rational curves of Ar degree at
most 2. Hilbert schemes, however, exist, and being invariant is a closed condition
so in fact there are at most finitely many R-pre-extremal subvarieties for a given
R. Better still the Hilbert scheme yields for any R-pre-extremal subvariety Y a flat
family, L — T, for some irreducible sub-scheme T of the Hilbert scheme such that
the projection of L to X factors as a generically finite map over Y. An awkward
case occurs when X is itself a R-pre-extremal subvariety, i.e. X — [X/F]is a
pencil in parabolic champs. As a result we introduce,

(1IL.1) Hg. Ly <2

I1I.a.3. Definition/More Terminology. A R-extremal subvariety Y is a subvariety
of a R-pre-extremal subvariety Y’ which is maximal amongst the subvarieties of
Y’ which are covered by invariant curves passing through at least one point of the
image in X of the singular locus of X — [X/F].

Soindeed unless X — [X'/F] is a pencil in parabolic champs then extremal and
pre-extremal coincide, while in the awkward case an extremal variety will be spec-
ified by taking the invariant curves passing through an appropriate component of
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the singular locus. Now pulling everything back by the moduli map, 7 : X — X,
define a R-extremal champ as the fibre over an extremal sub-variety, idem whether
for pre-extremal or the locus, denoted Loc (R), and observe,

II.a.4. Fact. The locus Loc (R) of an extremal ray, is a finite union of R-pre-
extremal champs. Denote by Loc’ (R) the subchamp which is the union of R-
extremal champs, then any ) C Loc’ (R) making up this union is covered by
—1/d F curves, where d may vary from curve to curve. There is however a family
L — T of champs, possibly non-flat at the non-scheme like points, such that,
(L —>T)— (Y — [Y/F)] is a generically finite map of foliated champs.

In a similar, albeit more refined, vein we will also employ:

IIl.a.5. Fact. Suppose & is a smooth separated champ (over a field for ease of
exposition) and f : ¥ — X a map from a proper algebraic space then there is
a separated (Deligne-Mumford) champ 7 and a deformation F : ¥ x 7T — X
of f suchthatif G : ¥ x M — X is any deformation of f parametrised by an
algebraic space M, then there isamap g : M — 7T and a natural transformation
y : G = F(idy x g) such thatif » : M — T is any other map for which there
is a natural transformation 6 : G = F(idy x h) then there is a unique natural
transformation « : g = h for which 8 = Fy(idxa)y. In addition the dimension of
7T at the point afforded by the trivial deformation and the above universal property
is at least,

(I1.2) hO(f* Ty) —h'(f* Tw)

Proof. The existence of T is a special (if key) case of the main theorem of [Ols06].
As such the dimension computation is infinitesimal and wholly space like in nature,
cf. Definition Il.a.2, i.e. deformations of the trace of the formal space

(II1.3) P := Spf(f*Px)
so we can replace X in II1.2 by *J3 and appeal to [Kol96, 1.2.16]- we only need the
case Y projective. U

II.b. Finding Weighted Projective Spaces. As ever let X — [X'/F] be a foli-
ated smooth champ with log canonical foliation singularities, albeit with projective
moduli, and f : £ — X the normalisation of a —% IF curve with at worst nodes,
and, in the notation of Proposition/Summary II.g.3, eigenvalues a; > a; > --- >
ay of a generator 9, in the normal directions, at the unique point p where f meets
the singular locus. If @; < 0, then we simply have nothing to say for the moment.
Otherwise, consider the net completion, ¢ : X — X, of Fact/Definition Le.5 of
X along the composite of f* with the the universal cover, g : L — L. By Propo-
sition/Summary II.g.3, cf. Remark/Definition I1.h.10, there is a unique invariant
closed formal sub-champ, X~ ¢ <> X such that,

(ITL.4) Ngjeo = || 0z
a; >0

By the Chow lemma, Lemma II.b.2, there is an irreducible sub-variety X-¢o of
the moduli X of & of the same dimension as X- o obtained by taking the Zariski
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closure of the image of this in X. We therefore have maps,

X>0 — X>o

(IIL5) l l

X — X

so the leftmost vertical factors through the gerbe Xsg (= X xx X>0 — X>o,
and even through the normalisation, 2\?>0 — X~ o, since X~¢ is smooth. The said
vertical arrow is, however, net so X~ o — /1~’>0 is étale. Indeed the assertion is local,
and everything is excellent, so it suffices to work with the corresponding complete
local rings in geometric points, but then X~ ¢ can be identified with an irreducible
component of A%, from which it’s isomorphic to its image in the normalisation,
and we assert:

IILb.1. Claim. There is a smoothed weighted, [MP13, Liv.3], blow up 8 : X —
X~¢ supported in the point p such that the induced (after saturation) foliation
Xp — [Xp/Fp] is smooth and everywhere transverse to the exceptional divisor.

Proof. Since p is isolated and, as above, X~ ¢ and X~ ¢ have isomorphic complete
local rings it will suffice to prove that there is a smoothed weighted blow up of
the complete local ring, 0, of X0 completed in p which is independent of any
automorphism, g, of % preserving the foliation.

Now by Proposition/Summary I1.g.3.(3) there are coordinates yg, y1,:-* , yr in
O'’; positive integers a; > 0,0 < i < r; and a generator d of the foliation such that
d d
(I11.6) d=apyo— + aij yi—
dyo dyi

wherein y; = 0,7 > 0define £, so that fori > 0, a; are as in (IIL.4), while a9 = d
in the notation of (I1.109). As such if o is an automorphism of & preserving the
foliation, then there is a unit u#, such that

(I11.7) 3% =000 = uyd

and y7 is an eigenvector of the linearisation of d with eigenvalue uy(0)"la;, for
all0 <i <r,souy(0) = 1. Consequently, by Claim II.h.2 and a; > 0, 9% is not
only semi-simple but
ad ad

(IIIS) 8 = aOTIO— + al- nl- -

ano an;
for a coordinate system of the form n; = u; y;, u; aunit, 0 <i < r. If, therefore,
we define a filtration of & by the ideals

(ITL.9) Ly = (yg' -~y laoto + - + arty > n)

then this is independent of the choice of y; in (II.6) since a basis of the eigenvec-
tors of d with eigenvalue a¢; are monomials y(t)0 .. 'yﬁr with agto +---+a,ty = a;,
and it is independent whether of o, resp. the choice of d, by (IIL.8), resp. mutatis
mutandis. The filtration, (II1.9), defines a weighted blow up exactly as in (II1.18)
with smoothing as per (I11.19). U

Now let us apply this to a qualitative description of X, i.e.
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III.b.2. Corollary. If £ corresponds to an extremal ray R in Néron-Severi, with
supporting function Hg, and ample bundle Ag = mHg — K7, then for all x €
X0, there is a —1/d(x) F- so, a fortiori from Fact/Definition II.d.5-an invariant
parabolic champ £, > x in X which, in addition, meets the singular locus in the
same singular point p as £; and every invariant curve is not only of this form, but
is parallel to R in Néron-Severi. In particular the singular locus of the induced
foliation in X~ ¢ is the isolated point p.

Proof. The in particular follows from the antecedents. Otherwise, without loss of
generality, we can replace X by X-; form the weighted blow up § : X — X=o
of Claim IIL.b.1; lift f to f : L — Xy, fora possibly different but still parabolic
L by item (b) of Fact/Definition II.d.5, and argue as in item (c) of op. cit. to find a
deformation M/ T, T proper, of f composed with the universal cover of L which
covers Xb, so0, equivalently the push-forward of which covers X=o.

If, however, Y a; C; is some effective invariant 1-cycle numerically equivalent
to a rational multiple of m«[L£] then every C; generates R, so the gerbe C; over
any such C; is a Kr negative invariant curve. Consequently, we require, in the
first instance, to show that every K r negative invariant curve, with f : C — X
it’s normalisation, is a —1/d IF curve for some d, so, equivalently, avoiding the
possibilities,

(@) f(C) C sing(F) N X~¢ C sing(F), which is impossible by the definition of
log canonical singularities as encountered in the proof of Variant I1.d.2.

(b) f(C) N sing(F) = @. Should this occur then f is an embedding, and for
C — C the universal cover, another application of item (c) of Fact/Definition I1.d.5
affords a finite étale neighbourhood V — V of the completion in C with trace C,
such that the induced foliation in V is a smooth fibration. From which, the generic
invariant curve misses p, which is absurd.

Now, a fortiori, the singularities of the induced foliation in X~ are contained
in sing(F) N Xsg, and by construction this has at least the isolated point p. The
leaves of F in X afford, however, a family of connected curves C — T in
X over an irreducible base 7', the gerbes over each component of each fibre of
which have been seen to be —1/d F curve for some d. As such, suppose there is
another singular point g, then there is a —1/d [ curve through it, and this must be
the gerbe over some component C; of some fibre C;. By definition, however, a
—1/d F curve cannot meet sing(J) in any other point, while meeting p is a closed
condition, so there is a different curve C; in the fibre C; through p. The fibre is,
however, connected, so there must be a third curve Cy meeting the singular locus
twice, which is nonsense. O

From which we deduce a series of corollaries,

III.b.3. Corollary. The champ X-o, but, cf. the pre-amble to §lIl.e, maybe not
X~0, 1S smooth.

Proof. The singular locus, B, of A% is invariant by every vector field, so, a for-
tiori by F, while every leaf meets p, so 5 must meet it, yet, by construction the
complete local rings at p of A% and X ¢ coincide, while the latter is smooth. [

IIL.b.4. Corollary. The moduli Y~ of any representable éta~le cover V-~o — )€>0
has exactly one point over p, so, in particular if C — A&%¢ is any embedded
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—1/d F curve, then the natural map, 71(C) — m1(X>0), be it of analytic or alge-
braic fundamental groups, is surjective.

Proof. Any étale cover V-o — 2€>0 still has étale neighbourhoods around a cover
of £ satisfying Proposition/Summary II.g.3 with X~ instead of X in op. cit. As
such the proof of Corollary II1.b.2 certainly applies to deduce that )¢, or, more
correctly Y- has foliation singularities supported in an isolated point whenever
Y- is algebraic. It applies, however, even if Y- were a priori analytic since
the deformations of smooth parabolic invariant champs in the weighted blow up
guaranteed by Claim IIL.b.1 are certainly open, but theyre also closed by the simple
expedient of taking the limit algebraically and lifting to the universal cover. As to
the in particular, otherwise, C x oo Y- is disconnected, and C — /'?>0 is supposed
an embedding, so there would be at least two singular points in Vg. U

IIL.b.5. Corollary. For each eigendirection % of the linearisation of a foliation

generator in End (N, [y ® C(p)) there is an at worst nodal —1 /d; F invariant

champ f; : £L — X through p with a branch parallel to % and a rational multiple
of R in Néron-Severi.

Proof. There is a formal invariant curve in the said direction in the formal étale
neighbourhood X, but every leaf is a —1/d I curve for some d, and all branches
of the embedded image are isomorphic. U

Additionally points in P*(Q), 7 € N, are, up to 1, uniquely represented by
t + 1 tuples of integers with gcd = 1, so if we change to a more homogeneous
notation, viz:

I1.b.6. New Notation. Linearise a local generator d of Tr in the completion of
Ox,p of Ox,pin my(p) by way of, 0 = a1 yi ayil + -+ ary, % —b; x; aix,»’
a; E~N, bi e NU{0}, (a1,..., ar, b1,..., by) = 1, with x; = 0 local equations
for X~ ¢, the summation convention in the obvious way, and ¢ the codimension of
X~o¢. As such in the above situation of Corollary IIL.b.5, a; | d;.

By Corollary IIL.b.4 we can (since otherwise Corollary I.c.5 will do) conclude
that Ao has finite analytic, and whence finite algebraic, fundamental group on
establishing,

II1.b.7. Claim. Let C — P! be a gerbe with at most 2 points whose monodromy
exceeds that of the generic point, and which has a unique singular point, p, every
branch of which is smooth, then the topological fundamental group 71 (C) is finite.

Proof. The local model, C, of C is b-smooth branches through p on which a finite
group, G, acts transitively on the branches branches while fixing p. In particular,
the monodromy of the generic point is isomorphic to the stabiliser of any point
other than p, which, in turn, is a proper sub-group of G since its image in the
permutation representation on branches fixes at least one such. Consequently, p
is a point of C with non-generic monodromy, and we denote by ¢ the other such,
should it exist, or some point distinct from p otherwise. In either case, let U > p
be the complement of g in P!,

Now, observe, that if £ — C is the normalisation, and B < C a branch whose
stabiliser in the permutation representation is H, then [B/H] is a local model for
L, and Ly := L Xp1 U has fundamental group H, and universal cover isomorphic
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to U, with H acting linearly. In particular, if we identify a branch with a disc, A,
in U, embed C in V where the latter is b copies of U through the point p, and for
good measure observe that all of this is necessarily compatible with a linearisation
of G in appropriate coordinates, we find a commutative diagram of fibre squares
with vertical embeddings,

C — [C/G] —> A

(I11.10) l l l

V —> Cxp U ——> U

The upper left horizontal arrow is, however, the universal cover, and all the verticals
are homotopy equivalences since the rightmost is, so the lower left is a universal
covering. As in (IL.56), the mapping U — Ly may not extend over g as a map
from P! to £, but this holds over some cyclic Galois cover U — U ramified
exactly in p which respects the commutativity of,

U —— P!

(IIL.11) l l

U—— C
Better still, taking b copies V of U, the resulting composition V — C xp1 U with
the lower left map in (II1.10), now admits an extension, V — C, over b copies of
P! meeting in a single point since the upper horizontal in (II.11) is an embedding.
By construction, V — C is open in the origin, and everywhere else it’s flat, so it’s
open everywhere. As such if M — L is any (not necessarily finite) representable
connected étale covering with group T, then M x, V 5 ¥V x T, and the image of
any V x y — M,y € I is open and closed, so it’s all of M. O

Now let Y — X-¢ be the finite universal cover assured by Corollary I11.b.4 and
Claim III.b.7, then we further assert,

[IL.b.8. Claim. Pic()) — Z.

Proof. By construction w : ) — Y is a gerbe over a projective variety, and
the proof of [DI87] that the Hodge-De Rham spectral sequence degenerates at
E is valid mutatis mutandis since it only requires local smoothness and the co-
homological criteria for ampleness both of which hold on Y. As such, since ) is
simply connected and 7 is acyclic,

(I11.12) H' (Y, 0y) = H\(Y, 7. 0y) = H'(Y, Oy) = 0
Now quite generally we have that Pic ()))g = Pic (Y )g, and by (II.12), these

are equally their respective Néron-Severi groups with Q-coefficients. The Néron-
Severi group, NS1(Y)q, of Y is, however, known, e.g. [Kol96] 11.4.21, to be of

rank 1, so: Pic ()q = Q, which is equally the image of the Picard group under
(c1)g in H2(), Q(1)) as deduced from the exponential sequence,
(II1.13) H! (Y. 0y) = H\(Y, 6y) — Pic() = H> (V. Z(1))

while the remaining possibility of torsion is excluded by ) simply connected, and
the exact sequence,
H'(V, Q(1)/Z(1) - B>V, Z(1)) - H*(Y,Q(1)) O
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We will need some auxiliary constructions, so, initially, )0 ie. YV modulo its
generic stabiliser as defined in Fact L.a.6, and their common moduli, Y. At the
singular point p identified with the origin as found in the New Notation II1.b.6,
we have, therefore, its stabiliser G in ), of which the stabiliser G® in ) is a
quotient acting faithfully on the local ring. Furthermore in a minor variant of the
New Notation II1.b.6 we have, étale locally at p, a foliation generator d with co-
prime positive integer eigenvalues a; which is invariant by the action G. Under this
action, however, eigenvectors must go to eigenvectors, so the linear representation,
p of G, which is equally its local action, splits as a direct sum of py’s, where o € A
is a complete repetition free list of the a;’s, and py permutes the eigenvectors of o
with eigenvalue «. In particular, therefore, following the New Notation II1.b.6, the
action of G commutes with the action of G, defined by,

(I11.14) AX (V1. ye) >yt = A9y Ay,

while the leaves may be identified with the images of,

(11I1.15) Qe 1t (c1t%, ..., crt?), where, c € A"\0

with two such functions ¢, ¢ defining the same leaf in Y iff,

(I11.16) ¢ =(p(g)e), ge€G, AeCn

with G, action as per (III.14), which, as we’ve said, commutes with G, so if H is
the image of the representation

(IL.17) G — Aut(P(ai,...,ar))

in automorphisms of the moduli of the weighted projective champ P(ay, ..., a,),
then the leaf space is P(ay,...,ar)/H.
Similarly, if we consider the weighted blow up,

ML18) Y':=Proj(| [1) > V% Ln=(O1...yF aiti +...artr = n)
n

then the moduli, E, of the exceptional divisor is equally the said leaf space, so
we have a map Y! — E. In addition Y'! has only quotient singularities, so we
can form the smoothed weighted blow up V? — Yl [MP13, Liv.3], or if one
prefers not to cross reference, replace J)! by what is locally its Vistoli covering
champ of Fact/Definition I.a.2. In particular ))? is smooth, with smooth connected
exceptional divisor £2. Certainly the moduli of £2 is E, but it’s usually false that
Y2 maps to £2 because the latter is highly non-scheme like. Indeed since p|go is
faithful, the stabiliser of a generic point is the kernel, K of G® — H, which by
(II1.16) and (III.14) is isomorphic under the restriction of p to some finite group of
roots of unity f14, acting according to (II1.14), albeit for A € ji4,. Alternatively: in
the stabiliser of every geometric point of £2, K may be identified with the normal
sub-group of pseudo-reflections in £2, and killing such reflections affords a map
RS 5), where 57 is smooth, still a gerbe over the moduli of 1 and )? — 5)
is the extraction of an agth root of a smooth divisor & —> [P(ay,...,ar)/H]-

this latter notation being absolutely unambiguous since H acts on P(aq,...,a;)
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because of the commutativity of G with (I11.14). Consequently we have a diagram,
ey

(II1.19) Weighted blowup l laoth root

Vistoli covering

V2 =46

0 not defined at p ~ o~ o~
Vosp «—— V,&€—[P(ai,....ar)/H))
ifag > 1.
where, to be precise, the final arrow is an isomorphism off £ and is defined over p
iff ag = 1. This final pair is the good one for extending the map ) 1 5 E, to wit:

IIL.b.9. Claim. The map Y! — E to the moduli lifts to a map 7 : 5) - & , and
better still, not only is this the quotient ) — [/ F] but there is an a € N such that
this expresses that foliation as a fibration in IP(1, a)’s in the étale site of £, while
the identity,

(111.20) Krlyo = Kpo + 2 = Kz + E|yo

with implied pull-backs those in (III.19) not only gives sense to K on Y, butisa
well defined tautological bundle, i.e. of degree 1/a on geometric fibres.

Proof. We will give a proof in the analytic topology, since by [Gir71, IV.3.4] and
[SGA-IV, XVIL4.1], cf. [McQ15, IV.a.3], it is equivalent, and trying to avoid this
just leads to repeating variations on the steps in op. cit.

The smoothed weighted blow up operation- left vertical followed by top hori-
zontal in (II1.19)- smooth the foliation, and dropping to Y it remains smooth since
€ is everywhere transverse. Now let ¢ be a geometric point of &, with Sq its sta-
biliser in 5), then we can find a polydisc A" centred on ¢ with coordinates y;,
y1 = 0 an equation for £, 0= % generating the foliation, and S, acting linearly
via,

(IM1.21) yi X0 x(©)y1, yixor0;(0)y;

From which, we can naturally identify 6 : S; — GL(r — 1, C) with the full (not
just linear) holonomy of the piece- [A /S,]- of the leaf £, > g through ¢ in Y, and
0 is faithful because there are no pseudo-reflections in E.

The foliation is smooth with proper leaves, so their universal cover is constant,
and since the leaves are —% F-curves in )° without generic monodromy, and the
generic point of £ has no-monodromy, this is P(1,a) for some a € N, and the
monodromy representation extends to,

(111.22) Sqg = m1([A/Sq]) = m1(Ly) — GL(r — 1)

so the first arrow in (II1.22) is an injection. By either the long exact sequence of
a fibration or, more algebraically [McQ15, IIl.c.3], w1 (L) is an extension of the
fundamental group of the orbifold over which it is a locally constant gerbe by a
quotient of the generic monodromy by a central element, so S, is also surjective
by item (b) of Fact/Definition II.d.5. As such, the holonomy covering of Ly is its
universal covering, so that for S, acting diagonally, we have an embedding,

(I11.23) [P(1,a) x AT71/S,] — Y
for some possibly smaller transversal polydisc, and the natural projection,
(I11.24) [P(1,a) x AT71/S,] — [A™7V)S,] — &
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is the unique analytic continuation of our initial projection [A"/S;] — . This
latter exists everywhere in a neighbourhood of &- in fact everywhere in a formal
neighbourhood would be enough which follows from the normal form of the New
Notation II1.b.6- so the projections (I11.24) glue by Lemma [.a.4 to a projection on
all of . Finally (II1.20) is an easy local calculation at the singularity. (]

The fibration in Claim III.b.9 has connected and simply connected fibres, so,
(IIL.25) (V) = m1(€) = mi([Plar, ..., ar)/H])

and by Corollary L.c.5, a weighted projective space is simply connected, so this
latter group is A, which in turn affords a connected H -covering of 37\5' since this
is embedded as a representable Zariski open of Y. Further the diagram (II1.19)
can be formed locally with )° either [A”/G?], or [A” /K], yielding a pair of dia-
grams with the obvious commutativity between them. Consequently the above H -
covering of WE implied by (I11.25) glues to the H -covering [AT /K] — [AT/GY],
while ) is simply connected, so we must have H = 1, and we further assert,

I11.b.10. Claim. The foliation Y° — [V°/F] is isomorphic to the radial foliation,
R, on the weighted projective champ P(ag, aay, ..., aay). In particular, since J°
is generically scheme like, a, and ag are relatively prime.

Proof. The start of the Leray spectral sequence applied to the fibration 7z of Claim
II1.b.9 yields an exact sequence,

0.1

- * - - d
(II1.26) 0 — HY(E,Gm) = Pic(Y) — HOE, R'xGp) —> ...

and by (II1.20) this latter group is generated by the image of K, so dg 1= 0, and
for a as per Claim II1.b.9 we can write,

(I11.27) O5(&) = TE ® Og(—m)

for some m € N, with the latter bundle the tautological bundle of Fact/Definition
I.c.2 on our weighted projective space. Forming, the exact sequence,

(IH.28) 0— ﬁj(aTF - 5) — ﬁ’j(aT]:) — ﬁg -0
and pushing forward by 7, affords,
(I11.29) 0 — Ogz(m) > n4O5(aTr) > O - 0

which by Fact I.c.3 is a split rank 2 vector bundle, V', with the splitting even being
canonical if a > 1. Indeed, we already know by Claim IIL.b.9 that if there were
extra monodromy at oo then it forms a smooth divisor on Y admitting a group of
reflections of order a, so, equivalently if we killed these pseudo reflections, then all
of the above is equally valid for some yg, Va, etc., and Y — ), is an extraction
of an ath root of a section, co, of the P! bundle, P(V) = V.

Now, by (II1.25) et. seq. G° = K, and the important thing to observe is that
because of the commutativity of the action of G® with the G,,-action (II1.14), the
locally constant gerbe £2 — & of (IIL.19) in Bg’s is in fact trivial, so ap|lm by
(I.18). If, however, ag and a were to have a non-trivial gcd, @ > 1, then the
leafwise universal cover,

(I11.30) lP’(a—O, a—l) — P(ag.a)
(07 o
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of the fibres of J? — Eis globally well defined, i.e. by (II1.29): raising to the
power a on the Gy, torsor Oz(%;) and extending over 0 and oo. The resulting
covering 2 — Y2 is étale representable, and locally about the singularity, patches
to the (g covering [A”/pao] — [A”/ta,), and whence the absurdity that ) isn’t
simply connected. }

Having thus established the in particular, everything else follows quickly. The
fact that ag and a are relatively prime imply that in an embedded neighbourhood
(formal will do) of the singularity p, Y — [)Y/F] is isomorphic to the radial
foliation, R, of Definition 1.d.2, on the said weighted projective champ, P. All of
the above, and specifically (II1.19), apply, cf. Facts 1.d.3, if our starting points is
P — [P/R]. The fact that we have an isomorphism at p, and the same monodromy
at infinity, obliges us to have the same P(1, @) bundle, so y > [5) / f] and P —
[P/R)] are isomorphic in a way compatible with the initial isomorphism at p, and
whence, item (d) of Facts 1.d.3, Y° — [V°/F] is isomorphic to P — [P/R]. O

Our initial ) is simply connected, and a locally constant gerbe over J°, so
by Corollary I.c.6, it is again a weighted projective champ, and only the notation
changes, to wit:

IL.b.11. Fact. The foliation ) — [)/F] is isomorphic to the radial foliation on
the weighted projective space P(ag,aay,...,aa,), where ag is the order of the
stabiliser of the singularity p, and the generic leaf is a —%—curve. In particular the
generic stabiliser is cyclic of order the gcd of ag and a.

III.c. Ignoring Cusps. So far we haven’t discussed what may happen if our ex-
tremal ray R is represented by an invariant champ f : £ — X which has a cusp
at the unique singular point z where f meets sing (F). This is, however, easily
reduced to the previous case by way of

II.c.1. Claim. Let z be a geometric point of the singular locus of a foliated smooth
champ, X — [X/F], with log-canonical foliation singularities, and projective
moduli, then if there is a K r-negative extremal ray, R, represented by a —1/d F
curve through z there exists a —1/d’ IF curve through z with at worst nodes.

Proof. Let 1 : X — X be the blow up in z then the exceptional divisor, & is
invariant and 7* K = is again the foliated canonical bundle unless perhaps all the
eigenvalues in the New Notation II1.b.6, are equal, but then there are no —1/d F
cusps through z by Fact I1.i.2, and we’re done. As such, by the cone theorem,
Fact 11.d.1, there is a —1/d’ F curve whose class, R, in NE{(X) is extremal and
7*R > R. Consequently, without loss of generality, we may suppose that there is
a—1/d T curve f : L — X which has a cusp at z, and whose class, resp. that of
its proper transform f~ , is extremal in NE; (X), resp. NE (X). The local structure
of a branch of a cusp is described by (I1.127) and Fact I1.i.2, and, in the notation of
op. cit. f meets the exceptional divisor with a (local) multiplicity v in any scheme
like chart. Now consider, 7’ : X/ — X where X’ is the extraction of a vyth root of
&, then the induced map f’ : £ — X’ has at worst nodes. On the other hand £ is
invariant so the canonical class is the same and f” is still extremal, and, somewhat
superfluously, the singularities X’ — [X’/F’] are still log-canonical since £ is
smooth. In any case, at the point z’ where f’ crosses the exceptional divisor we
can apply Corollary II1.b.5 to find —1/d; F curves with smooth branches parallel
to every axis afforded by the embedding dimensions of the original cusp, any of
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which represent the extremal ray. In particular if one takes the —1/d’F curve in
an eigendirection normal to the exceptional divisor in the local coordinates at z’
implied by those of Fact I1.i.2 at z, then the projection of this curve to X has at
worse nodes. (]

III.d. Structure of Extremal Champs. We begin with exactly the same prelimi-
naries as §.IILb prior to (II1.4) except that in the notation of op. cit. our interest is
the unique formal champ X5 ¢ < X with normal bundle

(I1.31) Nzxo = LI €z
a;>0

Now X — X is net so the tangent space to the deformation space (wherein we insist
that the deformation meets sing(F)) whether of f~ ‘L = Xor any composition
with P! — £ is the tangent space to the deformation space whether of £ < X>o0,
or such a composition. The latter are however un-obstructed, (II1.2), so by way
of X0 — X — X the former are too. Consequently there is a Zariski closed
sub-variety, X>o, of the moduli- the variety swept out by the deformations of f or
compositions thereof with P! — L- of the same dimension as X >0 and containing
its image. Exactly as in (III.5) we therfore get maps

X>o0 X0 Xsog —— X>o

(11L.32) l l

X — X

wherein the square is fibred, 2\?20 — X% is normalisation, and the top leftmost
arrow is an étale cover over its image. As ever we normalise a local generator d of
the foliation in the complete local ring ﬁAx, p, for p = f~1(sing F), according to
the New Notation III.b.6 with d; = a1d, d € N albeit with the further refinement,

I1I.d.1. New Notation. Linearise a local generator d of 7~ in the completion o X,p
of Ox,p inmy(p) by way of, d = ay y1 % +---4ay yy %—bi Xj 3ixi’~ai eN,
b e N, (ar,...,ar, b1,..., b) = 1, with x; = 0 local equations for x>, and
Z1,...,Zs the additional (formally invariant) functions which cut out X ¢, (IIL.5),
so that ¢ is now the codimension of A, and s 4 ¢ the co-dimension of A .

Now let us suppose that the —1/d F curve f : L — X affording (IIL.31) is an
extremal ray, R, then we have constructed an integral invariant sub-champ X of
X through every point of which there is a —1 /e IF champ, for varying e, parallel to
R in Néron-Severi, and we assert

III.d.2. Claim. Let Z be the intersection of X>¢ with the singular locus of F, then
Z is smooth and connected.

Proof. Firstly, suppose Z is a disjoint union of components Z1, Z, then we may
consider the sub-champs Y, V> whose moduli is covered by K r-negative extremal
1-dimensional champs parallel to R through Z; and 2, respectively. Consequently
if y € Y1 N )s, it is a singular point of some extremal 1-dimensional invariants
champs L1, L7, so in Z; N Z5 by Fact/Definition 11.d.5.(a), which is nonsense,
and Z is connected. Better still at the singularity, p, of the initial curve f, we
know from Fact I1.i.2, that Z is irreducible and smooth of dim = s, so there is
some irreducible component Z of sing(F) of dimension s contained wholly in
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Z. However V¢ € Z, there is a —1/e({) IF champ L; > { contained in X9, so
sing(F) is smooth at { by another application of Fact I1.i.2. Consequently {
dimg¢ sing(F) is not just upper semi-continuous but continuous, i.e. the constant
s in the New Notation IIl.d.1, and since Z is connected: Zp = Z is smooth
irreducible of dimension s. U

Now consider the ideal /z of Z in &, then the composition

(1I1.33) IZ7QX—>K]:.IZ.

affords an &'z-linear map

(IIL.34) 1z/13 - 1z/12® KF

of which the trace gives a global section of &'z(K r). Plausibly this is zero, but by
Fact I1.i.2 it may, on normalising in the direction of some smooth branch guaran-
teed by Claim IIl.c.1 and (IIL.31), be identified locally with a Q-valued function,
so, by Claim II1.d.2, it’s non-zero iff the trace of a generator normalised according
to the New Notation III.d.1 is non-zero at some p € Z. Similarly the 2nd symmet-
ric function is a global section of &'z(2K ) which may locally be identified with
a Q-valued function, whose expression in the notation of op. cit. is

(I11.35) %(Zai —ij)z—é(Za%Zb?)
i J i J

so if the trace doesn’t define a nowhere vanishing section of &z(Kr) there is at
worst an étale double cover Z7~ — Z such that K F | z+- istrivial. As aresult the
eigenvalues of D z are well defined constant functions up to a choice of generator of
Oz(Kr) when this is possible, and otherwise they’re well defined on Z+~. Thus
if necessary we choose a lifting p™* of the singularity p of the curve of (II1.31)
to the double cover, and subsequently choose our local generator in such a way to
have compatibility with our formal linearisation at p (identified locally with p™ if
necessary), i.e. the eigenvalues of D z are everywhere ay, ..., ar, —b1, ..., —by,
with a;, b; € N, and ged(ay,..., ar, b1, ..., b)) = 1. In any case, for every
¢ € Z, there is a well defined pair of eigenspaces, {7 (¢), T—(¢)} of Tx®C({), and
every K r-negative 1-dimensional invariant champ has tangent space at { contained
in precisely one of these. To fully profit from this we will have to extend from the
normal bundle to a formal neighbourhood of Z, which probably shows that being
lazy about convergence wasn’t perhaps an optimal use of time. The discussion is
local over affine neighbourhoods U covering Z over which the normal bundle and
K r trivialise, and which we consider centred on a point ¢ of Z. To momentarily
simplify the notations let A; denote the necessarily non-zero eigenvalues of the
normal bundle, and consider the following inductive proposition,

11.d.3. Claim. Let &y be the completion of Oy in my({), then for k € N, we have
coordinates x; normal to Z (evidently giving a basis for N %’ /x) and a generator 0

of F over U such that,
(1) Ix; = A; x; (modlé)
(2) There is a semi-simple generator 3 of Tr® ﬁAUgg of the form A; §&; a%_, for

Ei S ﬁAU’g and Ei = Xj (modlé).
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Proof. The case k = 2 trivially follows from the previous discussion, so consider
going from k to k 4 1, which evidently we wish to be compatible with restriction so

that things converge. In any case, in terms of our usual notations about monomials

and summation conventions we have, mod I é“,

(II1.36)  dx; = A; x; +ainJ, ajj €0y, & = x; —i—binJ, biy GﬁAU’g.

Furthermore, d = uo, u € ﬁAU,g, and, u = 1 + ujg xK, Uig € ﬁA’U’;, with
#J =k, # K =k — 1, so if we put these equations together then we obtain,
(Ai =Ap) big —uwig i if xKx; = x7,

I11.37 —
( ) 4 Ai —Ay) big otherwise

without any summations. The latter is rather good since if A; # Ay := jp, A, we
conclude that the b;; are algebraic, so replacing, without loss of generality. x;, by,

(I11.38) xivxi+ Y bigx’

Aj #)»J
xl-fx-]

then in fact we conclude that ;5 = 0if x; 1 x”. As for the 1%t-case we do what
we can. Specifically, again without loss of generality we can replace x; by,
(I11.39) Xixit Y x7
Ai — )\ J
AiFEAy

sothata;y = 0if A; # Ay, while if A; = Ay we conclude that u; g is algebraic.
Thus if we replace d by,

(I11.40) 3> (1 + ) u,-KxK)a

Ag=0

then u;x = 0if Ax = 0, so in fact we can suppose a;5 = 0 for all J. Conse-
quently, d has the form,

(IL.41) (1 + Y uik xK>8
A #0

A

However if we replace d by.

- —1.
(IL.42) §= (1 + Y sK) 5
A #0
for u; g appropriate functions of coordinates z in & z,¢ Which restrict from coordi-
nates in ﬁU ¢ annihilated by 9, and of course il;x = u;x (mod Iz), then by Claim

IL.h.2 3 is still semi- simple, with respect to a possibly different basis Sl of the form
vi ki, vi =113 k=1) To complete the induction, therefore, it suffices to observe,

on supposing without loss of generality that & = §i, that,

(IIL.43) Eim&i— Y bhi)E

Ag=0
xJ =x; xK
for bi; satisfying much the same prescriptions as the #; g is still a trivialising basis

for 0. O
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Consequently over an appropriately small affine U containing ¢, and bearing in
mind that for any ¢’ € Z we know we can find appropriate coordinates in Oy ¢/

annihilated by 0, we obtain formal subschemes U-q, U<o of the completion U
of U in Z, whose subsequent completion at any ¢’ € Z N U is the non-strict
Harder-Narismhan pair of Remark/Definition II.h.10. The monodromy of the pair
{Us¢, U<p} is precisely the monodromy of the pair {TX>0, T)2<0}’ so either these
patch to formal subchamps, X>¢o, X<o of the completion of X in Z, which com-
pleted at any point is the non-strict H-N pair, and of course we normalise so that
V¢e Z T-o() = T}?>0 ® C(¢), T<o(¢) = T)?<0 ® C(¢), or we get the same
conclusion on a double covering of the completion.

With this out of the way we can quickly proceed to a conclusion. To begin with
complete X>¢ in Z, call it ). By Claim IIl.c.1 there is, forevery { € Z,a—1/d F
curve through ¢ with at worst nodes and parallel to the given extremal ray. By
the unicity of the New Notation III.d.1 up to + such a curve must factor through
X>0UX<0, whichis always well defined even if X>¢, X <0 are only well defined on
a cover. In addition, exactly as post (II1.31), the deformation space of the universal
cover of the normalisation of such a curve is un-obstructed, so locally, it covers
whichever of X0, X< it factors through, and we’ve normalised so that our initial
curve factors through X, so 2) is either X~ or, X>0 U X<¢. In particular, there
is a smooth Zariski open U — X\ Z, which close to Z is just the complement of
the same, so, all leaves in X>o meetl{. On the other hand the singular locus of X’>¢
is invariant by the induced foliation, so it’s at worst contained in Z, and indeed it’s
either empty or all of Z according to whether its completion ¥) is smooth or not, i.e.
iff the H-N pair is without monodromy or not. In the latter case, 2) = X0 U X<o
so the normalisation Xsg is smooth, and indeed X>g — X is everywhere an
isomorphism except over Z where it’s the double cover Zt~ — Z, and for the
unity of notation we put Z s /'920 to be ZT~ or Z as appropriate.

We next wish to consider the operation of “projecting to Z”, by sending an in-
variant 1-dimensional champ to its unique singular point. To this end, we introduce
the moduli, X>¢, and the associated orbifold 2?20 of Fact I.a.6, of the normalisa-

tion /’\?20- Again the issue is that we have to be careful about the gerbe structure on
Z, s0, say

(I1L44) N /'\?ZOO the fibre over the moduli Z — X of Z, and 20 the
' associated orbifold, so that Z” — Z° is a locally constant gerbe.

We now proceed as in Claim IILb.9. In the first instance (II.18) again affords a
(well defined by Claim I11.d.3) weighted blow up X1y — X2, whose exceptional
divisor, &, is the projectivisation of the graded &'z~-algebra

(1145) A:=]JAn:=1®Ozr. I, =1 ...yF caiti +...arty = n)

In particular therefore the automorphism group of any geometric point of Z” has a
projective representation in the automorphisms of Proj(A), and better still

III.d.4. Claim. The kernel, S’, of the representation of the stabiliser, S — Z”,
in automorphisms of Proj(A4) is locally constant, and the operation of quotienting
by this kernel, cf. Fact L.a.6, affords a factorisation 2" — Z’ — Z0° of locally
constant gerbes.
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Proof. LetU — A?>00 be a small étale neighbourhood of { € Z”, with G the local
monodromy, then by definition any 0 € G which acts trivially on Proj(A4) acts
trivially on the pre-image Z < U of Z”,i.e. o is a well defined element of every
stabiliser G; < G of every z € Z, which stabilises Proj(A4) around z by the
uniform definition of the y;’s in (II1.45), i.e. Claim III.d.3. O

Now, modulo notation, the diagram (II1.19) and the proof of Claim III.b.9 (which
doesn’t employ the simple connectedness of ) in (II1.19) ) are valid as stated, so
“projection along a leaf” certainly yields, in the notation of op. cit.

(111.46) Y&

On the other hand &£ maps, cf. (III.14) et seq., to Proj(A4) understood as a cone
over Z’, and whence (I11.46) affords a composition

(I11.47) X\2" - 2 — 2°

which may, plainly, be extended everywhere locally around Z” while Z© itself is
an orbifold so by Lemma [.a.4 we finally get a projection

~ - - 0
(II1.48) 70 Xgo — 2% and a composition 77 : Xs¢ — XZOO X, 20
Before proceeding, let us emphasise the need for caution by way of

I11.d.5. Warning. In general (I11.48) needn’t extend to a map to Z” or even Z’. As
such the extent to which one can profit from Fact III.b.11 is limited according to
whether we can glue together the universal covers of the fibres of & in (I11.48), or
some variant thereof for a different champ structure over the base, which de facto
requires that 7, or the said variant has a section.

Consequently we confine our description of & to

I1.d.6. Claim. Let X>o — [Xs0/F] be the induced foliation then 7 is a smooth
F -equivariant (foliated) fibre bundle (in the étale topology) with fibre a foliated
champ whose (finite) universal cover is described by Fact IIL.b.11, i.e. a weighted
projective champ in its radial foliation.

Proof. By construction, (I11.47), functions on 20 are invariant, i.e. 7 is certainly a
F-equivariant morphism of smooth champs. As such the map

(I11.49) dm QL — Q;?ZO

is given, locally, by a s x (r + s) matrix, P, say such that for d a local generator
of the foliation there is a (r + s) X (r 4 s) matrix B for which dP = PB, so the
locus where d 7 fails to have full rank is F-invariant. By definition, however, every
leaf of F meets Z, and, Claim II1.d.3, 7 is smooth in a formal neighbourhood of
Z , whence the co-kernel of (II1.49) is a vector bundle of rank s everywhere, and a
surjective map of smooth varieties is flat as soon as the fibres are equidimensional,
so 7 is smooth. As such the condition, (I1.58), for 7 to be a bundle of champs is
is true by Fact III.b.11, Fact I.c.3 and (because we’re in characteristic zero) the
Hoschild-Serre spectral sequence. Consequently, by Fact IILb.11, for V — 2% a
sufficiently small étale neighbourhood, 71 (V) is of the form [V x¢c Pc(a)/ G] for
G a finite group of automorphisms of a weighted projective champ Pc(a). Again,
however, by he Hoschild-Serre spectral sequence, the representation of G cannot
be deformed, so the only obstruction to having a bundle of foliated champs is that
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radial foliations on weighted projective champs might deform. This is, however,
excluded by Fact/Definition 1.d.4. U

We have, therefore, established

I1.d.7. Large Fact. Given a —1/d F curve f : £ — X parallel to an extremal
ray R in Néron-Severi meeting sing(F) with p the unique geometric point of
their intersection, then after multiplication by a suitable constant, a linearisation in
End(Qx®C(p)) of a generator 0 of the foliation is a diagonal matrix diag{ay, ...,
ar, 0, =b1,..., =b¢}, a;, bj € N without common divisor and s zeroes. Better
still, normalising so that the tangent space to f(£) lies in the positive eigenspace,
there is an R-extremal champ X < X containing f such that,

(a) X>p contains a unique, smooth s-dimensional component Z of the singular
locus of F. ~ ~ _

(b) The normalisation X’>¢ retracts onto Z9 where the pre-image Z — A>¢ of
the singular locus is a locally constant gerbe over 20, (111.44), via 7 of (I11.48),
and we have exactly one of,

(i) K |z is trivial, and Xsg — Xso.

(ii) K}‘?z |z is trivial, but K7 | Z is not, then Z — Z is an étale u» covering
which is exactly where /"?20 — X fails to be an isomorphism.

(c) The fibration & is actually an étale bundle of foliated varieties where the
transition functions are automorphisms of a foliated variety ) — [)/F] whose
(finite) universal cover is the radial foliation on some P(aq, aay, ..., aa,) forag, a
as per Fact [1L.b.11.

(d) Every extremal champ meeting sing(F) is of this form.

There are a few loose ends here which we’ll tidy up via

II1.d.8. Remark. All of the above includes the case that sing(F) has dimension
zero at z but non-trivial monodromy, cf. Fact IL.h.9. Indeed, by item (c) of
Fact/Definition II.d.5, the only way that an extremal ray can fail to meet sing(F)
is if the foliation is generically a fibration in parabolic champs. This is also the
only way that not just (b).(ii) (so inter alia an isolated singularity with monodromy
switching the H-N pair) can occur, but that (possibly different) extremal rays can
factor through both the positive and negative parts of the H-N pair. This is, how-
ever, more subtle, so its proof is postponed. It is, therefore, not unreasonable to
paraphrase Large Fact I11.d.7 as “every” extremal sub-champ is a smoothly embed-
ded bundle of radially foliated weighted projective spaces.

Irrespectively, however, of clarifying when b.(ii) does occur, we have

II1.d.9. Corollary. The number of extremal rays in the half space, NEg . <o is
finite.

Proof. An extremal ray which meets a singularity is described by Large Fact I11.d.7,
and by Fact I1.h.9 it must factor through either X >0 Or X <o of the H-N pair, so ev-
ery connected component of sing(F) meets at most two such sub-champs which
themselves are maximal amongst those covered by extremal rays meeting sing(F).
By item (c¢) of Fact/Definition II.d.5 we’re therefore done unless X — [X/F] is
generically a fibration in rational curves, but in this case, cf. op. cit., the component
of the deformation space of an invariant curve which doesn’t meet sing(F) cover
X with leaves, so all such rays are equivalent. U
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IV. FLIP, FLAP, FLOP

IV.a. Contractions. We will profit from a number of simplifications afforded by
the analytic topology. As such we spell out our

IV.a.l. Set Up. Let X — [X'/F] be a foliated champ with projective moduli, and
Y < X an embedded invariant sub-champ equal to 2?20 of Large Fact II1.d.7 in
case b.(i) for some extremal ray. Fix a (not necessarily scheme like) point z < Z0,
i.e. the pre-image of a point in the moduli, for Z° as in op. cit., and let X} < X be
an embedded analytic open neighbourhood of ), whose intersection ), < ) with
Y is (as a foliated variety) of the form 7 ~1(Z,), with 7 as per item (c) of Large
Fact I11.d.7, and 2, < Z° a small embedded analytic neighbourhood of z. Such
data admits, therefore, arbitrarily small shrinkings around )/, which, in order to
employ Fact L.f.5, we ’1l make without warning. This is equally the good set up for
constructing flips, so in our immediate context we add the precision that uniquely
for this section, IV.a, ) is a divisor.

Profiting from Fact II1.b.11, and shrinking as necessary, we have, from item (c)
of Large Fact I11.d.7 and Fact 1.f.5, that for some polydisc V' there is a fibred square

Y= P(ag,aay,...,aa;) XV —— X!
(IV.1) l l
(2 — &

where the horizontal arrows are embeddings; the vertical arrows étale Galois cov-

erings under 71 ()/;); a; as in the New Notation III.d.1; and @, a¢ as in Fact I1L.b.11.
In particular, therefore, for &’(1) the tautological bundle on the weighted projective
space in the left hand corner of (IV.1), Proposition/Summary II.g.3 implies

IV.2) Nyt /xt — O(—ab)
for b = b; of the New Notation III.d.1. Now consider the operation of extracting
a d'th root of the Cartier divisor y’, as defined in Fact/Definition I.a.9,

Yy —— A

(IV.3) l l

y! X!

then, for any d the left hand vertical is a locally constant gerbe under B;,, and
if, moreover d = ab this gerbe is trivial, so by Fact I.f.5 again, after appropriate
shrinking there is a fibre square,

y! X!!

(IV.4) l l

Yy —— Xy

where, once more, the horizontals are embeddings, and the verticals étale cover-
ings, but now under p,p. This construction has a number of convenient properties,
to wit:
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IV.a.2. Claim. The complement X* := X'\ ) is everywhere space like, and an
étale Galois covering of X\ ) with group an extension of the form

(IV.5) 1= pap = Ez > m(Vz) = 1, ie. X\V — [X*/E;]

Proof. That we have a covering with the said group is immediate from (IV.1),

(IV.3), and (IV.4), while by (IV.2) Ny, pu is isomorphic to &'(—1). As such the

local monodromy acts faithfully on the complement of the zero section ))' <>

Ny!/X!!, s0, a fortiori X* is space like. O
Before profiting from this let us make,

IV.a.3. Remark. One could certainly take an abth root globally of ) < X, say:

(IV.6) xlaeb _ x

with X!l/ ab Xy xx X1/ the resulting neighbourhood. This does not imply,
however, that (IV.5) is split since there may be torsion effects in Pic(}))- cf. (I.18).

Similarly, if one is prepared to assume that Pic(X h = Pic()") then one can do
the steps (IV.3)-(IV.4) in a single move, viz: extract the abth root of the section of
O(—ab) defined by )'. This is easy if one completes in ', i.e. the exponential
sequence for the nth thickening

(IV.7) 0— [/ 220 g e 0

and Fact I.c.3, but otherwise would requires a little analysis that can reasonably be
avoided, via Fact L.f.5, by confining ourselves to purely topological statements.

Irrespectively, having arrived to this juncture, we can complete X" in ' to a
formal champ, X ”, with trace y’, and argue as in (IV.7) to deduce

(IV.8) Pic(X'") S Pic()') = Zo(1)

As such the G,,-torsor X — X! defined by €'(1) has trace a product with V' of
the Gy, -torsor, (1.33), in the definition of a weighted projective space. The latter is
space like, and the formal space, X, may be described wholly explicitly, i.e.

(IV.9) X5 ATN0) x AxV, A :=SpfC[[x]]
on which A € G, acts according to
(AP0 X A XV 35(Do, Y1 Vr) XX X Z >
(A9 30, A%y A%y Y x A x 7

Now observe that the ring, A, of G, invariant functions affords maps
Iv.11
~ duli A ~
X - X" XY S ¥ x SpfA (S C[x% g, X%y, ..., x4 y,]])

(Iv.10)

where, by definition, A is equally the ring of formal functions on X" Conse-
quently the final map in (IV.11) is a formal contraction in the sense of [Art70], and
whence by op. cit. is the completion in V' of the contraction of analytic spaces

y! Py " moduli X "
(IV.12) projection 7 of (IIL48)JV Pl PO lcontraction
|4 X Z X Z
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In particular, by (IV.11), X, is smooth, and we’re well advanced in proving:

IV.a.4. Proposition/Summary. There is a Galois covering X' — X}, under the
group E, of (IV.5), ramified uniquely over J' — ), and there (in the New Nota-
tion of I1I.d.1 and that of Fact IIL.b.11) to order exactly ab such that

(a) The contraction, X, of (IV.12) is smooth.
(b) It’s E, equivariant, and although X} — [X,/E;] may not be defined at ),

/'\,’!1/ ab, as encountered in (IV.6) et seq., to [X;/ E,] is everywhere defined.

(¢) The contraction is birational, i.e. X}\) = [X\V/E;] = [X*/E,].
Better still, all of this globalises, i.e. there is a foliated smooth champ Xy —
[Xo/Fo] fitting into a diagram (the contraction of ))) -described locally by the
above items (a)-(c) and an isomorphism off ), to wit:

Xl/ab X,
0
(IV‘ 13) Kr unramiﬁedl(IVb)
X
Proof. We’ve done (a) & (c), and as per Remark I'V.a.3 we have from the construc-
tion, (1.15), of extracting roots a map X — X1/92_If, however, y}/“b SN X!I/ab
is the reduced fibre over ) then

Yy — )
(IV.14) l l
y!l/ab Yy

is not just commutative but the top horizontal is the pull back of the locally constant
gerbe defined by the bottom horizontal. As such, the square is fibred so the left
vertical is a representable étale cover, and whence y! is the universal cover of
y,l/ ab, so that shrinking as necessary, X'' — X!l/ ab i equally the universal cover.

In particular, therefore, we have a diagram

X' —— X,

(IV.15) l l

;e X/ Ex]

wherein the left hand vertical is an Ez-torsor, and the pull-back of & ,1/a» (y}/ ab)

to ' < X' is €(—1), so there is an E, action on the torsor X commuting with
the G,,-action (IV.10). Consequently, the top horizontal is E, equivariant, so, by
the definition of the bottom right hand corner, the square can be completed along
the bottom horizontal, i.e. (b) holds.

Turning to globalisation, the unicity of contractions ensures that the contraction
of the subspace of the moduli, X, of X defined by the moduli of ) to that of Z0is
an algebraic space Xo. Now denote by * the complement of ), or the contracted

locus as appropriate, then for ¢ another point of Z° the normalisation of X} x x, X Z‘

*

is equally that of X xx X ¢ SO by Lemma I.a.3, either projection of

(IV.16) R := ( normalisation of U xx, U) = U, U =]]X;

Z
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is unramified in co-dimension 1. Consequently, by purity, they’re unramified ev-
erywhere, and since R* = U* is both a groupoid and dense in R, (IV.16) defines
an étale groupoid, or, equivalently, an orbifold Mo — X with atlas U. At the
same time, we can express X 1/ab a5 a locally constant gerbe in Br’s over an orb-
ifold M for some finite group I'. Thus M and M agree on an open dense set, so
by Lemma I.a.4 and (IV.12), there is a map p : M — M. Next observe that the
contracted locus is an embedded smooth sub-champ of real co-dimension at least
4, whence the homotopy depth about the same, [SGA-II, Exposé XIII.6], is also at
least 4, so the locally constant gerbe X'* — M™* extends uniquely to a locally con-
stant gerbe Xy — M. Equally, locally the universal cover is generically scheme
like by Claim I'V.a.2, so from the long exact sequence of a fibration we must have

(IV.17) 15T = E; = m(X7?) 5 my(My) - 1

1/ab

for M, a small neighbourhood of ), """ On the other hand in the diagram

X, «—— "

(IV.18) l l

Mo(———M!

the left hand is the universal cover of it’s image under the group E;/T", so by
(IV.17), the diagram (IV.18) is a pull-back of a covering along the bottom hori-
zontal. In particular, therefore, (IV.18) is fibred so for a locally constant sheaf, A,
R'ps« A = 0, and the Leray spectral sequence yields an exact sequence

(IV.19) 0 — H2(My, A) = H2(M, A) — H° (Mg, R?psA)

In addition 71 (M) Sm (M), so X and p* Xy are locally constant gerbes for the
same link in the sense of [Gir71, IV.1.1.7.3], and their difference, op. cit. IV.3.4,
defines a class in H2 (M, A) for A the centre of the link- so locally the centre of the
aforesaid I'. Finally Xo — M is locally trivial by definition, so the image of this
class in the far right of (IV.19) is zero by (IV.18) and (IV.12), while the resulting
class in the leftmost group is trivial because this is the same as H>(M*, A). 0O

It follows that we’ve actually proved a little more, to wit:

IV.a.5. Remark/Definition. From (IV.15), the fibre of the horizontal arrow in
(IV.13) has fibre X" over X, which, is also the smooth weighted blow up (compo-
sition of left vertical and top horizontal in (III.19)) with weights ag, aay,...,aa,
in the obvious coordinates suggested by (IV.11) while by purity the left vertical
in (IV.13) is exactly the same as the rightmost vertical in (IIL.19), i.e. killing a
group (here p,p) of pseudo reflections. Moreover, since p : X — Xy needn’t be
everywhere defined it’s more technically correct to call the birational map p a flip,
which, in turn has the very specific structure of (IV.13), which might reasonably be
described as a flap.

The resulting foliation on Xy is described by
IV.a.6. Corollary. The canonical bundles of the various foliations are related by
(IV.20) Kri/av = K7 |y1/a0= p* Kz, + ag¥'/?°

S0, in particular, Fy is smooth and everywhere transverse to the contracted locus.
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Proof. The first identity in (IV.20) is just that the left vertical in (IV.13) is unram-
ified along the foliation because ) is invariant, while the 2nd identity follows, for
purely numerical reasons, from (IV.2) and Fact IIl.b.11. Now say D is a local gen-
erator of Fo on X, and sg is the coordinate function of weight ag in (IV.11), then,
by (IV.20), p*(soD) is an everywhere regular derivation which coincides with a
local generator of F 1/ab ¢ every point where p*(so) only vanishes along the ex-
ceptional divisor. In particular, therefore, it coincides by Fact II1.b.11 with a local
generator close to sing(F 1/aby " where by op. cit. a local equation x = 0 for the
exceptional divisor may be supposed of the form x?° = p*s¢. Now the exceptional
divisor is invariant, and by (II.g.3) defines a non-zero eigenspace at the singularity,
so p*(D(sp)) is non-zero everywhere, whence, idem D(sg), U

IV.b. Projectivity of the contraction. We start with a general projectivity criteria,

IVb.1. Lemma. Let X be a proper algebraic space over a field k, then X is pro-
jective iff both of the following conditions hold

(a) for every irreducible subspace ¥ — X
(NE1(Y)2a+—0eNE|(X)) =>a=0
(b) The cone NE;(X) € NS;(X)gr doesn’t contain a line.

Proof. The conditions are clearly necessary. The second condition is equivalent to
the existence of a Cartier divisor H non-negative on NE; (X)) such that

Iv.21) (NE1(X)2a—~> Ha=0)=a=0

Thus if (a) & (b) hold for X they hold for every sub-variety, so, by induction we
can suppose H dim@) 'y > 0 for every non-trivial sub-variety of dimension smaller
than that of X. Consequently, by the Nakai-Moishezon criteria, [Kol90, 3.11], we
require to prove for every irreducible component of X of maximal dimension the
top power of H is positive. As such, say, without loss of generality, X irreducible
of dimension d + 1 and p : X’ — X a projective modification, then p* H is nef.
Better still some Zariski open of X is a scheme, whence it contains sub-varieties
of all possible dimensions, thus HY = D (p*Hd) is a non-zero class in NE; (X),
and so by (b) H4t! > 0. a

A less general, but more relevant variation of the same is

IV.b.2. Corollary. Let p : X’ — X be proper; an isomorphism off Z — X;
with X’ projective and X a Q-factorial algebraic space over a field k, then X is
projective iff both of the following conditions hold

(a) for every irreducible subspace Y — Z
(NE1(Y)2a+—>0eNE|(X)) =>a=0
(b) The cone NE{(X) € NS;(X)gr doesn’t contain a line.

Proof. Again necessity is obvious and (b) affords a Cartier divisor H non-negative
on NE (X) satisfying (IV.21) which we prove satisfies op. cit. (and whence Claim
Lemma IV.b.1.(a) ) for all sub-varieties Y < X by induction on their dimension.
In dimension 1, there are two cases a curve, Y, factors through Z so H - Y > 0 by
Corollary IV.b.2.(a), or it doesn’t. In the latter case, however, Y \ Z is a non-empty
curve in the quasi-projective variety X\ Z, so it certainly intersects non-trivially
some divisor D — X\ Z without being contained in it. By hypothesis, however,
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the closure D < X of D is Q-Cartier so D - Y # 0 and item (a) of Lemma IV.b.1
holds. Similarly for Y of dimension d 4+ 1 < dim(X) we again distinguish 2-
cases. If Y factors through Z we’re done by hypothesis, otherwise we prove H |y
is ample. In the latter case, by Nakai-Moishezon and our induction hypothesis it’s
sufficient to prove H d+1.y > (. As before, however, there is a Cartier divisor, D
on X intersecting Y non-trivially, so H 4.p.Y > 0, while: foralle > 0 sufficiently
small, H —e D satisfies (IV.21), so p*(H —e D) is nef., and (H —eD)dtl.y >,
whence H4*1.Y > 0. U

Of which a corollary to the corollary is

IV.b.3. Corollary. Let everything be as in Corollary IV.b.2 then we can replace
condition (a) by

(IV.22) Z is projective and (NE{(Z) > @ = 0 € NE{(X)) = « =0
Which may be applied to the case in point, i.e.
IV.b.4. Fact. The contraction, Proposition/Summary IV.a.4, has projective moduli.

Proof. Observe that under the hypothesis of Set Up IV.a.1 the locus of the extremal
ray R must be the connected smooth divisor ) because ) - R < 0. Now, let
p : X — Xo be the moduli of the contraction (IV.13), with Z the moduli of
the singular locus in X meeting the extremal ray, then since X¢ is Q-factorial,
p* : NS'(Xo) — NS!(X) is injective with image classes in the latter annihilated
by R. Consequently, by duality there is an exact sequence

(IV.23) 0 — R — NS;(X) 25 NS (Xo) = 0

while NE; (X) —» NE; (Xo), so Corollary IV.b.2.(b) holds because R is extremal.
Now although there may be ambiguity, Warning I11.d.5, about the champ structure
on the singular locus and the base of the contraction, there is no such ambiguity
at the level of the moduli, i.e. Z is a section of the locus where p fails to be an
isomorphism, so by (IV.22) and (IV.23) we need only check that a non-zero class
in NE{(Z) cannot belong to R, which is clear, e.g. Kr |7 is nef. (]

IV.c. The H-N Filtration again. We will require knowledge of the normal bundle
of the extremal smooth sub-champ ) <— X of Set Up [V.a.1 akin to that of Propo-
sition/Summary Il.g.3 so, without loss of generality dim()) > 1. Our primary
interest is the local variation of Ny, y over a small embedded analytic open, Zi, of
the base/singular locus, so to begin with, and essentially without loss of generality,
we’ll restrict attention to the case s = 0 of Large Fact III1.d.7. As ever we first
carry out our analysis at the level of the universal cover of )/, i.e. a radially foli-
ated weighted projective champ by Fact III.b.11, and so abuse notation slightly, i.e.
replace Y by its universal cover, X’ by a small neighbourhood of the former etc..
There are two tautological bundles of relevance, namely, ¢'(1), on the weighted
projective champ ), which, op. cit. is related to the radial foliation, R, by

(IV.24) Kr — O(—ap)

and the relative tautological bundle of p : P := IP’(N)\;’/X) = P(Ny)x) = Y

which we’ll denote H, while P, Y etc. will be the corresponding moduli. Now

say JF is the specialisation, cf. Fact/Definition Il.e.5 & Claim IL.f.1, of our origi-

nal foliation to the projective normal cone, then Kr = p*Kp so a Kr-negative
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extremal ray, R, of P, has, by Fact I1.d.1, to be an invariant curve of F lying over
an invariant curve of R. By Claim IIl.c.1 we may suppose that the former has at
worst nodes, and whence also the latter from our explicit knowledge, Fact I1.i.2, of
the singularity. The moduli of such a champ is the moduli of its normalisation, so,
without loss of generality, R is an extremal ray of P(f*Ny x) for f : L — Y
some coordinate axis of the radial foliation R- all of which are smooth and em-
bedded on a weighted projective space. By Proposition/Summary I1.g.3 we know
exactly what these are, and in terms of Fact 11.i.2 & the New Notation II1.d.1 we
may describe them as follows: the local monodromy at the singularity, p, of the
radial foliation is 4, and by hypothesis, Large Fact I11.d.7.(b).(i), there is a local
generator, d, of the ambient foliation on X’ which is j14,-invariant so that the eigen-
vectors of Jordan decomposition of d at p afford a 114, equivariant decomposition,

(IV.25) Nyx®Cp)= ] v

1<i<l

for V; the subspace generated by the eigenvectors of weight —8; for 8; a complete
repetition free list of the b;, amongst which, in the Notation IL.h.6, —f; is largest.
The decomposition (IV.25) then describes the singular locus of the specialised fo-
liation exactly, i.e. it is a disjoint union

(IV.26) sing(F) = | [ P(Vi) x By,

1<i<l

and the extremal ray in question is any invariant section over £ which cuts P(V}),
or, to be more precise, cuts P(V;) xB jtag <> P which is the embedded component
of the singular locus. We can, therefore, apply Large Fact I11.d.7 to conclude that
the extremal rays define a sub-champ ); < ‘P together with a projection

(IV.27) Vi — P(V))

whose fibres have universal cover a weighted projective champ P(co, c1,...,¢r)
for some weights ¢; to be determined, radially foliated by R’, say. Now, by (IV.26),
(IV.27) has a section so P(c) x P(V7) is the universal cover of );. We have,
however, by Proposition/Summary II.g.3, F-invariant embeddings £; — ) lifting
any coordinate axis f; : £; < ), and each £; is simply connected, so there are

R/-invariant embeddings f; : £; < P(c) of every L; = P(ag, aa;), and whence
P(c) — ). Better still,

Krr = K7 [poxpP(r)= KR [p()xP(1) and

(IV.28) Kp/ ! L;i = Kr ¢, L; by Fact/Definition I1.d.5

so P(¢) — [P(c)/R/] is, unsurprisingly, the radial foliation ) — [)/R] that we
started with. Consequently the map

(IV.29) Vi = Y xPV))

afforded by the structural projection p and (IV.27) is an étale cover. As such (IV.29)
exhibits the former as a locally constant gerbe over the latter. By explicit local
calculation, however, cf. (IV.26), (IV.29) is an isomorphism in a neighbourhood
of the fibre over the singularity p, so it’s an isomorphism everywhere. We have,
therefore, proved most of
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IV.c.1. Fact. Suppose, as above, that ) of Set Up IV.a.l is simply connected
(whence isomorphic to the product of a polydisc with a radially foliated weighted
projective space) then there is a filtration of Ny x |y, by invariant sub-bundles for
the induced foliation,

O=NGN_1GN >G-S No=Nyx

such that if B; > --- > B; is a complete repetition free list of the by, ..., b; of the
New Notation III.d.1, and g, 1 < j < k the corresponding multiplicities, then for
a as per Fact II1.b.11, locally over Z:

Nj—1/Nj — Oy(=ap)® .

Proof. Yy of (IV.27) is, by our Large Fact IIl.d.7, the image of a deformation
space of extremal rays, which is constant on taking products with a small poly-
disc, whence this addition changes nothing, and for notational convenience we’ll
continue to ignore it. In any case, the embedding }; < ‘P affords a sub-bundle

(IV.30) (pxH |y,)" < Ny/x

which is the N;_;th term in the above filtration. Moreover there is a canonical
isomorphism

(IV.31) Ny,/p — p*(Ny/x/Ni_1) ® H

and so we conclude by induction. U

Unsurprisingly we continue to refer to this as the H-N filtration, and observe

IV.c.2. Corollary. Let ), — A} be simply connected, then there is a non-canonical
splitting

(IV.32) Nysx [n—= | | Ov(—aB;)®%

J
and, better still, any section over ) of Iy x /1 32} /2 ® Oy, (_61'3 j) can be lifted to a
(formal) section of Iy x®O 4, (—ap ) over the completion X of & in ).

Proof. The non-trivial case, given Fact IV.c.1, is when the fibres of }J — Z; have
dimension 1. This is, however, Proposition/Summary II.g.3, and otherwise it’s
immediate by Fact I'V.c.1 and Fact I.c.3. O

The apparentarbitrarity of such sections notwithstanding, choose some, say
(IV.33) E:=&:03(aB)) > 1:=Iyr&0;. 1<j<t
and define, cf. (II1.18), a filtration on [ by way of:
(IV.34) FPT:= (&' &/ | buji + - + beje = p) bj := ap;

i.e. the ideal generated by the images of the &5 (j1b1 + -+ jiby) under (IV.33),
and observe '

IV.c.3. Claim. The filtration (IV.34) is algebraic, i.e. shrinking as necessary, there
is a filtration F? Iy x |x, whose completion is (IV.34). Better still this is indepen-
dent of the choice (IV.33), and JF invariant.
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Proof. Plainly F? contains some power, say ¢, of I, so the first part just amounts
to the coherence of F?/ 1 on the gth thickening of )1. As to the first part of the
better still: say 7; is another choice, then either this is the same as &, or there is a
smallest p > 0 such that

(IV.35) 0 # &—n; € (FY/FP T @0y, (<)) — I Oy (p—bj)
- by j1++b: ji=p

sop >bj,whencen;: Oy (b;) — F, bi , and we’re done by symmetry. Similarly,
suppose the composition a

(IV.36) 04, (b)) YLpbif s Oy — Kr

doesn’t factor through K7 ® F2 I, then there is a smallest b j > p > 0 through
which it does factor, so (IV.36) affords a non-zero Oy,-linear map

(IV.37) 05,(bj) = Kr ® 03 (p)®N = 0y,(p —ag)®N

where N is the number of integers ji,..., j; such that byji + --- + bsj; = p,
which is nonsense. (]

Putting this all together we have therefore

IV.c.4. Fact/Definition. Let J) < X be as in Set Up [V.a.1 then there is a F-
invariant filtration

(IV.38) CFP...Cc FP%=1yx C Ox

such that

(a) The restriction of (IV.38) to a small embedded analytic neighbourhood &) as
defined in the Set Up I'V.a.1 pulls back to (IV.34) on the universal cover of A).

(b) For f : L <> X — X the normalisation of an extremal ray with at worst
nodes embedded in its net completion, the pull back of (IV.38) is the filtration de-
fined by the invariant divisors in item (2) of Proposition/Summary I1.g.3 combined
in the (obvious) way suggested by (IV.34).

Proof. The filtration has already been defined on the universal cover, say X' — X
with Galois group m;. As such, it descends to A) provided (IV.34) admits a 7y
action, which is clear from the proof of Claim IV.c.3 because by Fact IV.c.1 the
H-N filtration is mj-equivariant. Similarly: to compare the filtrations on 2-small
analytic open embeddings X}y — X, Xjg < X we only need to compare them
on any (faithfully flat) €tale covering of X}, N X)g, so again this is just Claim I'V.c.3
and the definition (IV.34) as is (b). O

IV.d. Existence of flips. Let )V < X be as in Set Up [V.a.1 then by (IV.38) there
is a K r-invariant smoothed weighted blow up, [MP13, 1.iv.3], defined as in (II.19),
to wit:

Vistoli covering

X1 :=Proj([], F?) X%, Kr2 = Kr |2

(IV 39) weighted blowuplEverything F invariant

X

Before progressing let us make a clarifying:
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IV.d.1. Remark. The implied weights in (IV.39) are not the af8; of IV.34 but b} :=
b; /b where b; are as per the New Notation III.d.1 and b is their gcd. Following
(IV.13), however, we’ll be taking the covering

1 2

ab £

and the totality, i.e. the horizontal in (IV.39) composed with (IV.40), is, functorially
with respect to the ideas the smoothed weighted blow up with weights ab; where
a is given by Fact IIL.b.11 and the b; by the New Notation III.d.1. Consequently
there’s a certain convenience in doing both steps at once, or, at least, referring, as
we will, to their totality in terms of the unifying idea.

bth root of £2
e—_

(IV.40) x2 < xtlab - yliab .-

This said the exceptional divisor £2 on X2 is described by:

IV.d.2. Claim. The weighted projective bundle £2 — ) enjoys the following triv-
iality property: for )y < ) as per Set Up IV.a.l (with Z, < Z° understood
sufficiently small) and J' — ) its finite universal cover

(IV.41) E2 |V SV X P®Y,....b)

Moreover the induced foliation (understood either logarithmically, Remark 1.b.2,
or, equivalently, without saturation if the fibres )) — Z° have dimension 1) has
canonical bundle the restriction of K r, and singular locus the fibre over the unique
connected component Z of sing(F) contained in ).

Proof. The pth factor of the graded algebra associated to (IV.34) is 0y, (p) ten-
sored with the pth factor of the trivial graded algebra freely generated by genera-
tors of weights b;, 1 < i < t, cf. (IV.35) & (IV.37), which has the same Proj as
that which is freely generated after cancelling the common factors, Remark IV.d.1,
whence (IV.41). As to the moreover: the exceptional divisor of a (weighted) blow
up in an invariant centre is always smooth in the foliation direction, so we only
have to compute what happens over the singular locus which we can do explicitly
using Fact/Definition IV.c.4 by way of its relation, Proposition/Summary I1.g.3.(3),
with the Jordan decomposition, and appropriate local coordinates, cf. (I1.137). [

Now, irrespectively of whether £2 is extremal in X2, the cone theorem applies to
&2 init’s induced foliation, while extremal rays in Y with at worst nodes lift (cf. the
preamble to the proof of Fact IV.c.1 ) to the same in £2 by Proposition/Summary
I.g.3. As such Large Fact I11.d.7 applies to £2 in se (i.e. as the locus of its own
extremal ray) to imply

IV.d.3. Fact/Definition. The champ £ is a bundle of foliated varieties (whose
fibres have universal covers radial foliations on a P(ag,aay,...,aa,)) over an
orbifold Z° which by Claim IV.d.2 is itself a bundle of P(b}, ..., b})’s over the
orbifold structure on the singular locus of . Consequently for X'1/4% as in (IV.40)
there is a contraction py4 : X 1/ab _, Xyof Yy 1/ab (g 4 locally constant gerbe over
Z9 such that the induced foliation Xy — [Xy/F4] is smooth and everywhere
transverse to the locus where p4 is not an isomorphism. The bi-rational map p4 :
X — X4 will, irrespectively of whether the moduli of X is projective, be referred
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to as a flip, and the more precise data

Blow down, p4, with weights aa;

Xl/ab
(IV.13) +

(IV42) Blow up, p— lwith weights ab ;, (IV.39) &(1V.40)
X_:=4X
of a weighted blow up followed by a weighted blow down as a flap.

Proof. As observed the structure of £2 is implied by Large Fact II1.d.7 given
the structure, Claim IV.d.2, of the singular locus. This is, however, the sum to-
tal of what we need to deduce the existence of the contraction p from Proposi-
tion/Summary IV.a.4, i.e. the condition that yl/ab is covered by extremal rays of
the ambient space is necessary for the projectivity of the moduli of the contraction,
but not for its existence as an algebraic space. U

To examine the projectivity of this construction let us suppose in addition to the
Set Up IV.a.1,

IV.d.4. Set Up. Fix an extremal ray R and suppose that every —1/d F curve equiv-
alent to R belongs to a connected smooth embedded sub-champ, )V, — X, of
the form encountered in Set Up IV.a.1, and that all such sub-champs are disjoint,
equivalently none of the following occur
(a) For some smooth connected component Z — sing(F) there are 2 such
sub-champs (for the same R) meeting in Z, Fact IL.h.9.
(b) For some smooth connected component Z — sing(F), and, again, the
same R, item (b).(ii) of the Large Fact I11.d.7 occurs.
(c) There is a representative of R avoiding the singular locus.

Observe that the criteria for the projectivity of the flip is particularly simple, i.e.

IV.d.5. Claim. In the context of (IV.42), the following are equivalent
(a) The moduli of the flipped champ A’} is projective.
(b) The cone NE; (X ) does not contain a line.
(¢) The —1/d F curve contracted by p4 is extremal.

Proof. Plainly (a) implies (b), and (IV.22) always holds- same argument as end
of the proof of Fact IV.b.4- whence, conversely, Corollary IV.b.3, (b) implies (a),
while (b) iff (c) is the general duality considerations of (IV.23). O

The same applies, a little more generally, if one flips several sub-champs in X at
the same time, provided, as is our context, Set Up IV.d.4, the champs being flipped
are all disjoint, which we’ll employ without further comment in

IV.d.6. Claim. The flip, (IV.42), of any of the ), has projective moduli.

Proof. Since the horizontal arrows in (IV.42) are (étale locally) weighted blow
downs it will suffice to do everything at once, which is all we need anyway. As
such, consider the totality, at the level of the moduli, of the flaps (IV.42) performed
in all of the Vp, i.e.

X(R) — X4
o+
(IV.43) ,,_l

X_
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with E? the exceptional divisors; C? curves in the same contracted by p—; and
C _l,_) — EP a Kr-negative invariant curve contracted by p4+. Fix p, then by the
cone theorem, Fact I1.d.1, there are finitely many extremal rays represented by
(multiples of) K F-negative invariant curves, R;, and a (pseudo) effective class Z,
on which K r is non-negative such that on X(R)

(IV.44) CP=> "R +2,

4

Now, by construction, (IV.12), (,o_)*(C_f) is parallel to R, so (p—)«(Zp) is too.
However, p_ is unramified in the foliation direction, so (p—)«(Z,) = 0. Conse-
quently, by the projectivity of X_, Z is a sum

(IV.45) > oelcd, 2 =0

q
On the other hand all the R; lie over R, so by the hypothesis of our Set Up 1V.d.4
and (IV.12) every R; is parallel to some Ci for some g. Thus we equally have

(IV.46) YRi=)clcl. =0
q

Combining all of (IV.44)-(IV.46) we have therefore

Iv.47) C_f = Xj(c_q|r Ci + ¢2CY), every Ci extremal by (IV.46),
q

while all the divisors £, are disjoint and strictly negative on both C ?,C4, so the

only index that can occur on the right of (IV.47) is p. Consequently, C _f is extremal
and we’re done by Claim IV.d.5. (]

IV.e. Exceptional flips and termination. The first case to be considered is:

IVe.l. Set Up. Y < X is an extremal sub-champ satisfying item (b).(ii) of the
Large Fact 111.d.7 with Z < ) the unique (smooth) connected component of
sing(F) contained in it.

Now observe that by the unicity and local uniformity of Jordan decomposition
in Claim III.d.3, there is a well defined (smoothed) weighted blow up supported in
Z whose weights in the New Notation III.d.1 are

(Iv.4g) yi, resp. X;, has weight a;, resp. b;, where a; = b; andr = t.
and whose effect is described by:

IVe.2. Claim. Let X! — X be the smoothed weighted blow up defined by (IV.48)
with €1 its exceptional divisor and J'! the proper transform of ) then

(a) The singular locus of F L over Z is the intersection of £! and Y!. It is smooth
connected, and, for good measure, a P(ay, ..., ar)-bundle over the w5 covering of
Z defined in item (b).(ii) of Large Fact I11.d.7.

(b) The embedded sub-champ Y! — X 1 is the locus of (rather than just a
connected component of) an extremal ray R; satisfying item (b).(i) of Large Fact
II1.d.7.

(c) The exceptional divisor £! is covered by K 7-nil invariant parabolic champs.
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Proof. To calculate the singular locus we use the Jordan coordinates of the New
Notation II1.d.1, so, [MP13, Liv.3], on, say the y; # 0 chart we have local coordi-
nates 7;, §; defined by

(IVA9) yi =10, ya = nan®, - yr = e i = 80 X = Ef

which gives that étale locally there are 2 smooth component of the singular locus
in the fibre of £! over Z, which in turn are the intersection of ! and 1. Plainly
(paragraph prior to (II1.45)) the local system defined by these components is the
same as the 115 cover ZT~ — Z, so the singular locus is connected, and the good
measure part is clear. As to (b) this is just an easy variation on (IV.44)-(1V.45).
Specifically suppose the proper transform, L1, of an invariant curve isn’t extremal
then op. cit. and £'- L1 > 0 imply the absurd. Finally (c) follows from the explicit
coordinates (IV.49) and the fact that the canonical, K 71 is just Kz | 1. O

We can, therefore, combine this with (IV.42) to make

IV.e.3. Fact/Definition. By an exceptional flip (or, better, flap) is to be understood,
for Y — X asin Set Up IV.e.1, the diagram

xlab oy
(IV.42)
flip of V! in Claim lV.e.Zlby way of p—of (1V.42)
(Iv.50) Y=yl gl
Weighted blow uplof Claim IV.e.2

X
Better still
(a) The moduli of X4 is projective.
(b) The image £ of £! is covered by invariant parabolic champs (it’s a bundle
of such over a P(a;) x P(b;)-bundle over Z7 ) none of which meet the singular
locus, so the generic fibre of X4 — [X4/F4] is a smooth parabolic champ.

Proof. Part (a) follows from Claim IV.d.5 and item (b) of Claim IV.e.2, while £+
is contained in the smooth locus of F by Fact/Definition 1V.d.3 whence (b) by
Claim IV.e.2.(c) and Fact/Definition I1.d.5.(c). O

Similarly should item (a) of Set Up I'V.d.4 occur. or slightly more generally:

IV.e.4. Claim. If there are 2 extremal (not necessarily for the same ray) champ
meeting in the same component of sing(F) then the generic fibre of X — [X/F]
is a parabolic champ. Moreover if both varieties arise from the same extremal ray,
i.e. Set Up IV.d.4.(a), then the flip of (IV.42) does not have projective moduli, and
there are invariant parabolic champ in (the original X’) which do not meet sing(F)
and are parallel to the given extremal rays, i.e. Set Up IV.d.4.(c) also holds.

Proof. Choose one, say ), of the extremal varieties, flip it, then whether, or not,

the moduli is projective Fact/Definition IV.d.3 and Fact/Definition II.d.5.(c) still

apply. Furthermore, if both rays are extremal then as in the proof of Claim IV.e.2

the proper transform, Ry, of an invariant curve in the other, say, )", is an extremal

ray. Plainly, however, the invariant curves, L, in the fibre over )/’ have the form

R; + C_ where C_ is contracted by p—, while the exceptional divisor, £_, of
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p— is negative on L, and positive on R;, whence it’s negative on C_, so C_ is
effective; L isn’t extremal, and the moduli of X isn’t projective. On the other
hand (p—)«R1 is an invariant parabolic champ missing sing(F4), so it can be
moved off the flipped locus to some R.. As such the proper transform R (in
x1/ab of (1V.42)) is a linear combination of L and R, so (p_)« (R ) is parallel to
the original extremal ray. (]

Given the well defined way in which it occurs, the loss of projectivity in Claim
IV.e.4 is very far from deadly. However, it’s better avoided, so we make:

IV.e.5. Fact/Definition. By a very exceptional flip (or, better, flap) is to be under-
stood, for )/ < X and )" <> X a pair of extremal varieties meeting in the same
component of the singular locus of F and parallel to the same extremal ray as per
Claim IV.e.4, then the diagram (IV.50) with the further proviso

The arrow p_, resp. p+, is the weighted blow up,

IV.51
( ) resp. down, in both ) and )”'.

The moduli of the resulting champ A’; is projective, while the resulting foliation
F+ is smooth and everywhere transverse to the locus where p4 is not an isomor-
phism for exactly the same reasons that the corresponding statements hold for the
exceptional flips of Fact/Definition IV.e.3.

Now flipping, exceptional or otherwise, terminates for the simple reason that the
number of connected components of the singular locus decreases by at least 1 with
the flip of any extremal ray, and so in increasing order of difficulty we have,

IV.c.6. Proposition/Summary. Let X — [X/F] be a foliated champ which is not
a foliation in parabolic champs and which enjoys the following further properties

smooth; projective moduli; log canonical,

(IV.52) resp. canonical, foliation singularities

then there is a sequence of contractions and flips in the sense of Proposition/Summ-
ary IV.a.4 and Fact/Definition IV.d.3 (or alternatively just flaps (IV.13) & (IV.42) ),

X =X Xy e Xn = Xmin

(IV.53) l — l . ____,l

[X/F] = [Xo/Fol [X1/F1] [Xn/Fn] = [Xmin/ Fmin]
such that each X; — [X}/F;] enjoys the properties (IV.52), and K r,

- i 18 mef.
Proof. The hypothesis that the foliation isn’t in parabolic champs implies by item
(b) of Fact/Definition IV.e.3 & Claim IV.e.4, that we must, at every stage, be in the
situation of (IV.d.4), i.e. Large Fact I11.d.7.(b).(i). Consequently we eventually run
out of components of the singular locus through which a —1/d F-curve can pass,

and we terminate with K r nef. by the cone theorem of Fact I1.d.1. U
The alternative to which is

IV.e.7. Proposition/Summary. Let everything be as per the hypothesis of Propo-

sition/Summary IV.e.6 with the exception of the hypothesis “not a foliation in

parabolic champs” which we replace by “no model has nef. (foliated) canonical

bundle” then after a sequence of contractions and flips in the sense of Proposi-

tion/Summary IV.a.4, resp. Fact/Definition 1V.d.3, as described in (IV.53) all of
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(IV.52) continues to hold (i.e. we’re still excluding the exceptional cases Fact/Defi-
nition I'V.e.3 and Fact/Definition I'V.e.5) and exactly one of the following happens

(a) X, — [X/Fn]is a Mori fibre space, i.e. the locus of a single extremal ray is
all of X}, and the foliation is a bundle of foliated varieties where the universal cover
of a fibre is the radial (supposed saturated in dimension 1) foliation on a weighted
projective space whose dimension is 1 iff the foliation singularities are canonical.

(b) At least one of items (a) or (b) of Set Up 1V.d.4 occurs at every connected
component of the singular locus. In particular, therefore, all of the foliation singu-
larities are canonical.

Proof. If we exclude (b), then the only other thing that can happen is that the locus
of an extremal ray is everything with the champ itself described by item (b).(i) of
Large FactI11.d.7, i.e. (a), while the various facts about canonical vs. log-canonical
singularities are just the definitions. (]

This leaves us to elaborate the final case

IV.e.8. Proposition/Summary. Should case (b) of Fact/Definition IV.d.3 occur
then, without loss of generality, there are no occurrences of either the contractions
of Proposition/Summary IV.a.4, or the flips of Fact/Definition IV.d.3, and should
there be any exceptional flips we continue by

(IV.54) (Xn - [Xn/-/rn]) -2 (Xn+1 - [Xn+1/}—n+1])

wherein all possible exceptional flips of Fact/Definition 1V.e.3 are performed at
once with all of (IV.52) being preserved. If we’re still not done, i.e. Fj41 isn’t
smooth, then iitem (a) of Set Up IV.d.4 occurs, and we have the following choices
for (Xn+1 = [Xnt1/Fnt1l) -=> (Xn+2 = [Xns1/Fns2l)s

(a) For each component of the singular locus of ;41 choose an extremal sub-
champs and flip it according to Fact/Definition IV.d.3. This will necessarily result
in the loss of projectivity, Claim IV.e.4, but otherwise the list (IV.52) is conserved.

(b) Perform at the same time all possible very exceptional flips of Fact/Definition
IV.e.5, and thus preserve the list (IV.52) in its entirety. In either case X4+, —
[Xn+2/Fn+2] is a bundle of 1-dimensional parabolic champs which is identically
its own Mori fibre space.

Proof. All exceptional or very exceptional flips can only occur at smooth con-
nected components of the singular locus so the extremal sub-champs that they
determine cannot intersect (except, of course, in a very exceptional flip wherein
Y'UY” of Fact/Definition I'V.e.5 should be thought of as a single entity) so, without
loss of generality, all these operations can be combined into one. Better still both
the extremal champ, ), of an exceptional flip of Fact/Definition IV.e.3, or Y’ U )"
in the case of the very exceptional flip of Fact/Definition IV.e.5 are the only invari-
ant sub-champs meeting their respective components of the singular locus, whence
the two exceptional cases commute with the contractions of Proposition/Summary
IV.a.4, and the (non-exceptional) flips of Fact/Definition IV.d.3, so there’s no loss
of generality in a priori axhausting all such operations. (]

IV.f. Logarithmic remarks. In order to reference it we spell out our

IV.f.1. Set Up. By hypothesis D < X will be a divisor, no generic point of
which is invariant, in a connected smooth proper champ, and XY\D — [X\D/F]
a foliation with log-canonical singularities.
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As such, by Revision 1.b.10, D is smooth and everywhere transverse to F. In
particular, therefore, for every e € Z-, the extraction € : X /e _, X of a eth
root, Fact/Definition 1.a.9, of D is smooth, and the induced foliation X1/¢ —
[X1/e/ F1/e] has, by Construction Lb.15, log-canonical singularities which, Re-
vision 1.b.13, are terminal around the pre-image of D. Furthermore we assert,

IV.£2. Claim. Let everything be as above with f : C — X a map from a (smooth
irreducible) curve such that (K + D) -y C < 0 then f does not factor through D.

In particular, there is a lifting f1/¢ : ¢'/¢ — x'1/¢ and Krie - fiye cl/e <o.

Proof. The tangency between D and F always yields a section of Op(Kr + D),
which by hypothesis is trivial, i.e. in a highly degenerate case of Fact I1.d.3 the
trace is a constant section over D, so f certainly cannot factor through it. As such
there is certainly a lifting f1/¢ : c1/¢ — x1/¢ while

(IVSS) K]:l/e Tfl/e Cl/e = (K]:l/e + Dl/e) “f1/e Cl/e = (K]: + D) °f C<0
where €*D = e¢D!/¢, and D1/¢ is smooth. O

It certainly therefore follows that if Kr1/. is nef. then Kz + D is nef., but,
plausibly in running the minimal model programme for X’ /e _, [X 1/e J/F 1/ €] we
could loose the hypothesis of Set Up IV.f.1. Observe, however, that the operations
of flipping and extracting roots commute, i.e.

IV.f.3. Fact. For any any contraction, resp. flip,
M0 () o (1

in the sense of Proposition/Summary IV.a.4, resp. Fact/Definition IV.d.3, there is a
contraction, resp. flip,

(IV.57) (X N [X/f]) s (;q — [X1/F+))

such that the proper transform, D4 — X satisfies Set Up IV.f.1, and Xi/ ¢ > X,
is the extraction of an eth root of D.

Proof. That a contraction, resp. flip, of X1/¢ — [x1/¢/F1/€] determines the
same of X — [X/F] is immediate from Claim IV.f.2 and the definitions if X" has
projective moduli. However, even without this, it still follows since projectivity is
only used, cf. Claim II1.d.2, to ensure that the contracted, resp. flipped, sub-champ
Y meets a unique component of sing(F) through which each of the —1/d FF curves
which cover ) must pass. Irrespectively, what we need to do in the first instance is
to prove that there is a map,

(IV.58) xle

To this end observe, exactly as in the final steps of the proof, (IV.19) et seq., of
Proposition/Summary 1V.a.4, the expression of either side of (IV.58) as a locally
constant gerbe over an orbifold, Fact 1.a.6, is determined in co-dimension 2, so,
without loss of generality, there is no generic stabiliser. Furthermore, flips are
actually flaps, so by the unicity of contraction both sides of (IV.58) have the same
moduli X4, and whence they equally factor through the same Vistoli covering
champ X} — X of Fact/Definition I.a.2. Now, the Vistoli covering of the moduli
of a smooth champ is obtained, [Vis89, 2.8], by killing pseudo reflections, while a
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pseudo reflection of a foliated champ stabilises exactly one of an invariant divisor
or a generically transverse divisor, so we have further factorisations such as

1/e Kill transverse ;  Killinvariant v
(IV.59) Xy pi T v

reflections reflections

and similarly for X3 — &V. Now let x be a geometric point of the proper trans-

form D}r/ ¢ X}r/ ¢ of D; Gy its stabiliser; and U — Xi/ ¢ an étale neigh-
bourhood then there is a non-trivial normal sub-group, Sy, generated by pseudo-
reflections fixing smooth branches of pY ¢, while X_il_/ ¢ > [X}F/ ¢/ Fi/ ¢] is smooth
at x by the hypothesis of Set Up IV.f.1 and Proposition/Summary IV.a.4. As such
by Revision I.b.13 and (the non-subtle) part of Revision 1.b.6, the induced folia-
tion, G, on V := U/Sy is also smooth. Equally U — V is ramified uniquely in
the image, A, of D, to order e so, there is a factorisation

(IV.60) U—-vie sy

through an eth root of A in which the first map is almost étale, so by op. cit. yl/e
in the induced foliation G'/¢ is log-terminal. Consequently, V — [V//F] with the
orbifold boundary (1 — 1/e)A is also log-terminal, whence by Corollary I.b.14 A
is smooth and everywhere transverse to G, and so D}r/ ¢ is too. This is, however,
equivalent to: Sy is a cyclic normal sub-group of G, and the restriction of the

character, yx : Gy — G, afforded by D_lir/ ¢ to Sy is an isomorphism, so every

sub-group of Sy is normal. The monodromy of every generic point of D_lir/ € is,

moreover, of the form
(Iv.el) 0— e = Ueer = er — 0

where ¢’ is the order of the corresponding stabiliser in the original X'. Conse-
quently, the w, in (IV.60) afford a well defined normal sub-group scheme of the

stabiliser S — Di/ ¢ which just as in (IV.59) can be killed to yield a factorisation

1/e Kkill reflections j  Kkill all further v
_— _—
(IV.62) Xy X! xv

in e reflections

in which the image in X'/ of Di/ ¢ is smooth everywhere transverse to the foliation,
and the first map in (IV.62) is just the extraction of an eth root. By definition,
however, X' i and X4 coincide in co-dimension 1, and since they’re both smooth
they’re equal by purity and Lemma [.a.4. O

Next observe that we equally have a log cone theorem, i.e.

IV.f4. Fact. Let XY\D — [X\D/F] be a logarithmic foliated normal champ with
both Kr and D Cartier; log-canonical singularities in dimension 1 and projective
moduli, then there are countably many F-invariant parabolic, champ £;, with,
0 < —(Kx. +7D)-L; <2 such that,

(IV.63) NE (X)g = NE (X)k,4p20 + »_ Ry L;

1

where NE (X) K »+D>0 1s the sub-cone of the closed cone on which K + D is
non-negative. Better still the Ry £; are locally discrete, and if R C NE (X)g is

an extremal ray in the half space ﬁKfHkO then it is of the form R £;.
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Proof. By Corollary 1.b.14, Claim I'V.f.2 is independent of any smoothness hypoth-
esis, so, by Fact I.d.1, we have a cone theorem for K r1/.. On the other hand, if
R C NE (X)g is an extremal ray in the half space NEk+p<o then it’s an ex-
tremal ray in the half space NE K1/e<0 for all e > 0, whence by Fact I1.d.1 there
is an invariant parabolic champ f : L — X with Kz1/e -y £ > —2 parallel to
it. In particular, therefore, the extremal rays in this half space are locally discrete.
Similarly if p is the dimension of Néron-Severi, with & € NE(X), then there are
a sequence of classes o, € NE (X) K 11/0205 and generators R.; of extremal rays,
0 <i < ne < p, in the half space NEK]:l/e <o such that

Nne
(IV.64) o =0+ Y Rei

i=1
Subsequencing in e as necessary, we may suppose n = 1, is independent of n, and
all of «e, Re; converge. Plainly, however, the o, converge to a class in the half
space K ri1/e > 0, which, equally is either true of a given R,;, or it belongs to a
half space Kr + D 4+ eH < 0- H is ample, € > 0- in which, as noted, extremal
rays are discrete, so Ry R,; is independent of e. O

Which can be combined with Fact IV.f.3 to yield

IV.£.5. Proposition/Summary. Let XY\D — [X\D/F] be as in Set Up IV.f.1 with
projective moduli, and non-empty boundary D; X1/2 — [x1/2/ F1/2] the square
root of D; /'\,’ﬁl I{ :1 — [Xﬁl r{ jl / ]-"é g ﬁl] the result of a maximal sequence of contractions
and flips in the sense of Proposition/Summary IV.a.4, resp. Fact/Definition 1V.d.3,
as described in (IV.53) (i.e. we exclude the exceptional cases Fact/Definition
IV.e.3 and Fact/Definition 1V.e.5) then there is is a foliated logarithmic champ
Xenal \Dtinal = [Xfinal \Phinal/ Final] satisfying Set Up IV.f.1 with projective mod-
uli, and non-empty boundary of which Xﬁlr{i — Xfnal is the square root of Dgpal,
and exactly one of the following happens
(a) K F1/25 80, by Claim IV.f.2, a fortiori K7, ., + Dfnal, is nef.

(b) The foliation Xﬁl r{ azl — [Xﬁl I{ jl / ]-"é r/1 21] is a bundle of foliated varieties where
the universal cover of a fibre is the radial foliation on a weighted projective space
of dimension at least 2, so idem for Xgna\Dainal = [Xanal\Phinal/ Final]; D the
hyperplane at infinity, i.e. after a weighted projective coordinates xo = 0O on the
universal cover in the notation of Definition 1.d.2; and Kz ., + Dgnal iS torsion.

(c) As per item (b) but with fibres of the bundle weighted projective space of di-
mension one, and the implied Mori fibre space is exactly the foliation AXxpa1\Dgnal
— [Xfinal \ Dfinal/ Ffinall, i.e. on each parabolic fibre K7, ., + Danal is negative.

Proof. By Fact/Definition I1.d.5 the structure of a K x+D negative invariant champ
f : L — X is particular, i.e. either it misses D completely, or it misses the singu-
lar locus completely, and cuts D in one point. If, however, Proposition/Summary
IV.e.7.(b) were to occur for X1/2 — [x1/2/F1/2]  then the foliation is in para-
bolic champ; the generic champ must meet D; but none of the smooth invariant
champ in the exceptional flipped locus- £+ in Fact/Definition IV.e.3.(b)- can meet
D because an extremal subvariety satisfying Set Up IV.e.1 must meet the singular-
ities. Consequently by Claim IV.f.2, Fact IV.f.3 and Proposition/Summary [V.e.6
it remains to show that Proposition/Summary IV.e.7.(a) implies items (b) or (c)
above, but this is clear since by Definition 1.d.2.(a) and Fact I.c.3 the only divisors
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everywhere transverse to the radial foliation are, in the notation of op. cit., defined
by a weighted homogeneous function, F, of weight a¢ such that gTFo # 0. U

Finally, let us conclude with

IV£.6. Remark. While it’s true, (1.22), that the only part of a divisor which is rele-
vant to minimal model theory are the components whose generic points are trans-
verse to the foliation, it may well be case that one starts with a divisor D = D'+D”
where, say, D’ satisfies Set Up IV.f.1, D” is invariant, and whether D, or just D"
is simple normal crossing, and, for whatever reason, one wants to have a sim-
ilar situation on X, after running the minimal model programme of Proposi-
tion/Summary IV.f.5. Now, certainly, hypothesis such as D" simple normal cross-
ing are nothing to do with the definitions of log-canonical singularities, so there’s
no reason for them to be conserved by Proposition/Summary IV.f.5. On the other
hand, simple normal crossings whether of D or D” can, by [BM97] and the def-
inition of log-canonical singularities, be restored by invariant blowing up without
prejudice to the K r+D nefness conclusion, resp. the smooth fibration in parabolic
champ statement of item (a), resp. (b), of Proposition/Summary I'V.f.5.
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NOMENCLATURE

Sheaves of differentials, jets, and their duals

Kr
Kr

nolog
K]—'

1
Sy/F
Pz
Tr
7%
7

canonical divisor of a foliation, page 9

in the presence of a boundary, page 10

canonical divisor without boundary, page 10

bundle of invariant differentials, page 10

algebra of operators along the foliation, page 25
tangent sheaf along the foliation, page 25

sheaf of Grothendieck n-jets, page 26

sheaf of adic algebras of Grothendieck jets., page 26

Weighted projective spaces

Py (a)

Pk(ao, ..

shorthand for weighted projective champ over a ring k, page 14
.,ay) weighted projective champ over a ring k, page 14

Pc(a) — [Pc(a)/R] notation for a radial foliation, page 18

o(1)

tautological line bundle on a weighted projective champ, page 15

Ay = AZH \O punctured affine space over aring k, page 14

90


http://library.msri.org/books/sga/djvu/SGA%204-3.tif.djvu
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=&s5=topos%20et%20co%2A&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=1&mx-pid=354654
http://www.jstor.org/stable/pdfplus/2951828.pdf
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=mori&s5=quot%2A&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=1&mx-pid=1432041
http://www.worldscientific.com/doi/pdf/10.1142/S0252959902000213
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=malgrange&s5=galois&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=3&mx-pid=1924138
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=malgrange&s5=galois&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=3&mx-pid=1924138
http://www.mat.uniroma2.it/~mcquilla
http://www.mat.uniroma2.it/~mcquilla/files/canmod.pdf
http://www.ams.org/mathscinet/search/publdoc.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&review_format=html&s4=mcquillan&s5=foliations&s6=&s7=&s8=All&vfpref=html&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=2&mx-pid=2435846
arXiv:1507.00797 

Flips and Flaps

X", Y etc. universal cover of X, Vn ete., see equation (IV.4), page 71

X !, y’ etc. universal cover of X}, ) etc., see equation (IV.1), page 71

X, Vn ete. result of extracting a root of X’ !, y’ etc., see equation (IV.3), page 71

Xy, W etc. arbitarily small embedded analytic opens in X, ) etc., page 71

X4+ result of a flip, or, equivalently a flap, see equation (IV.42), page 81

X_ flipped, or, equivalently flappedi champ, see equation (IV.42), page 81

P+ weighted blowing down occuring in a flap, see equation (IV.42), page 81

p— weighted blowing up occuring in a flap, see equation (IV.42), page 81

Harder Narismhan pairs

Xso gerbe over the moduli, X, of the Zariski closure of the strictly positive
part X0, of the HN pair about a —l [F curve, page 57

X >0, X <o the non-strict Harder-N arlsmhan pair of a formal vector field, page 48

X (>0, X <o the Harder-Narismhan pair of a formal vector field, page 48

X-o normalisation of the gerbe, X~ ¢, over the moduli, X~ ¢, of the Zariski clo-
sure of the strictly positive part, X~¢, of the HN pair about a —% F curve,
page 57

X>o normalisation of the gerbe,X’>¢, over the moduli, X, of the Zariski clo-
sure of the non-negative part, X>¢, of the HN pair about a —é F curve,
page 65

{X>0, X<0} the Harder-Narismhan pair of a formal neighbourhood of a —% F
curve, page 50

{X>0, X<o} the non-strict Harder-Narismhan pair of formal neighbourhood of a
—l [F curve, page 50

{X >0, X <0} non-strict Harder-Narismhan pair of a foliated formal disc, page 49

{X -0, X <0} the Harder-Narismhan pair of a foliated formal disc, page 49

X->0 moduli of the Zariski closure of the strictly positive part, X~ ¢, of the HN
pair about a —5 [ curve, page 56

X>o the gerbe over the moduli, X, of the Zariski closure of the non-negative
part, X>¢, of the HN pair about a —% F curve, page 65

X>0 moduli of the Zariski closure of the non-negative part, X>¢, of the HN pair
about a —% F curve, page 65

Miscellaneous

—% F curve, page 35

X\D — [X\D/F] foliated champ with boundary, page 11

X — [X/F] notation for a foliation, page 10

X0 a champ X modulo its generic stabaliser, page 7

X1/n s x extraction of a nth root of an effective Cartier divisor D < X, page 9

ZT~ — Z an étale double cover of the singular locus of an extremal sub-champ
over which K r may be trivialised, page 66

$ =2 U Notation for the infinitesimal groupoid of a foliation in curves, page 25

A" notation for a formal disc, page 46

By = U Infinitesimal relation defined by Grothendieck jets, page 26

ar(v) log discrepancy, page 10

Loc (R) the locus of an extremal ray in a champ, page 56

Loc’ (R) union of extremal champ , page 56

Loc (R) the locus of an extremal ray, page 55
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Q-Gorenstein, 9

€(W), log correction of a divisor, 10
—é F curve, 35

Q-Gorenstein foliated space with orbfold

boundary, 12

canonical divisor of a foliation, 9

canonical foliation singularity, 11

canonical singularity of a foliated space with
orbfold boundary, 12

champs with boundary, 10

completion along a net map, 22

concave formal neighbourhood, 29

discrepancy of a foliated space with orbfold
boundary, 12

exceptional flip, 83

extraction of a nth root of an effective Cartier
divisor, 9

extremal champ, 56

extremal subvariety, 55

flap of an extremal ray, 81

flip of an extremal ray, 81

foliated Q-Gorenstein, 9

foliated champ associated to a foliated space
with orbfold boundary, 14

foliated Gorenstein, 9

foliated space with orbifold boundary, 12

foliations by curves, 9

formal disc, 46

Gorenstein, 9
Gorenstein covering champ, 11
Grothendieck jets., 26

H-N, 48

Harder-Narismhan pair of a foliated formal
disc, 49

Harder-Narismhan pair of a formal neigh-
bourhood of a —% IF curve, 49

Harder-Narismhan pair of a formal vector

field, 48

index 1-cover, 7

index 1-covers can be glued, 8

index of a Q-Cartier divisor, 7

infinitesimal groupoid of a foliation in
curves., 25
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Jordan decomposition of a vector field, 45

linearisation of a singular derivation, 11

locus of an extremal ray, 55

locus of an extremal ray in a champ, 56

log discrepancy, 10

log-canonical foliation singularity, 11

log-canonical singularity of a foliated space
with orbfold boundary, 12

log-terminal foliation singularity, 11

log-terminal singularity of a foliated space
with orbfold boundary, 12

net map of champs, 21

non-strict Harder-Narismhan pair of a foli-
ated formal disc, 49

non-strict Harder-Narismhan pair of a formal
neighbourhood of a —% F curve,
49

non-strict Harder-Narismhan pair of a formal
vector field, 48

normal fold, 5

orbifold, 5

parabolic champ, 32
pre-extremal champ, 56
pre-extremal subvariety, 55

radial foliation, 18
radial singularity, 11

semi-simple foliation of a formal disc, 46

Serre’s explicit calculation, 15

singular locus of the foliation, 9

smooth functions on a reduced complex
space, 23

specialisation of a foliation to the normal
cone., 37

strictly invariant divisor, 10

tautological line bundle on a weighted projec-
tive champ, 15

terminal foliation singularity, 11

terminal singularity of a foliated space with
orbfold boundary, 12

very exceptional flip, 84
Vistoli covering champ, 5

weighted projective champ over a ring, 14
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