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The content is the minimal model theorem for foliations by curves. It continues the roll out of the various ingredients in the

Green-Griffiths conjecture for algebraic surfaces, [McQ]. The result is, however, presented as a self contained theorem in complex

algebraic geometry without foliation dynamics, and independent of its motivation. Working famaliarity with algebraic champs

(the mis-translation stack will be eschewed) is essential. Indices of notation and definitions are provided.
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INTRODUCTION

In a historical quirk, cf. [Kol96, Intro.], the study of the canonical bundle of
higher dimensional varieties initiated by [Mor82], and, as such, often called Mori
theory, has long ceased the original focus on rational curves in favour of a co-
homological approach which would be better described as Kawamata theory. It is,
therefore, not without irony that the study of rational curves on varieties foliated by
curves is, arguably, Mori theory as Mori intended and leads to a complete minimal
model programme.

Everything takes place in characteristic zero, so, say a projective variety X=C,
and a foliation by curves, F , is just a (usually saturated) rank 1 sub-sheaf of the
tangent sheaf, (I.19). Locally where both X and F are smooth this corresponds,
by the classical Frobenius theorem, to a smooth fibration in the analytic topology.
We therefore adopt the notation (and it’s only notation) X ! ŒX=F � for foliations
in order to reflect better the underlying geometry/real definition of a quotient of X
by the holonomy groupoid, cf. Fact/Definition II.a.1 & Fact/Definition II.a.3. Irre-
spectively, there is, under mild hypothesis, e.g. X smooth, a well defined bundle,
KF , of forms along the leaves, and corresponding notions, Definition I.b.1, of foli-
ated Gorenstein, resp. Q Gorenstein singularities. Similarly, there are, functorially
with respect to the ideas, notions of foliated terminal, log-terminal, canonical and
log-canonical singularities, Definition I.b.3. Unlike their classical counterparts,
however, these definitions always admit a simple description in terms of local alge-
bra. For example, terminal (Gorenstein) is equivalent, Revision I.b.13, to smooth
along the foliation, or, equivalently given everywhere locally by a non-vanishing
vector field, @, while a Gorenstein log-canonical singularity is a point, p, where
although @ vanishes, the implied linearisation

(0.1) @ W
m.p/

m2.p/
!

m.p/

m2.p/

is non-nilpotent, Revision I.b.5.
Already this local global translation is highly indicative of why Mori theory of

foliations by curves is that much more tractable than that of varieties. Neverthe-
less, there is no free lunch, i.e. it transpires that from ambient dimension 3 on
that there are foliations by curves which never have log-canonical singularities on
any smooth bi-rational model of the ambient space. The phenomenon is quite gen-
eral, [MP13, §.III.iii], and, in se, straightforward enough, i.e. there are certain
finite group actions on vector fields whose fixed points cannot be separated from
the singularities while preserving smoothness of the ambient space. In practice,
however, it means that if one wants a model of a foliation X ! ŒX=F � with (foli-
ated) log-canonical singularities, and X smooth, then one is obliged to pass from
the category of varieties to the 2-category of Deligne-Mumford champs. In this
context, the main theorem of [MP13] is the existence of log-canonical resolutions
in ambient dimension 3, and, the reader should be aware that for the moment the
existence of log-canonical resolutions in higher dimension is open.

Irrespectively, we are obviously obliged to take as our starting point smooth fo-
liated champ X ! ŒX=F � with log-canonical singularities- from the existence of
the Gorenstein covering champ, Fact/Definition I.b.7 & [BM97]: if there is a model
with log-canonical singularities then there is one in which the ambient champ is
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smooth. This begins, however, to show signs of a rather pleasing loop since the nat-
ural context of the classification, [McQ08], of foliated algebraic surfaces is exactly
foliated smooth bi-dimensional champs, while the universal algebraic foliation in
(hyperbolic) curves Mg;1 !Mg is again, naturally, a smooth Deligne-Mumford
champ.

To say that this begs the question of whether the minimal model programme
for foliations by curves could be run wholly inside the 2-category in which the
ambient champ is smooth may, to experts in the Mori theory of varieties, seem
rather absurd. It transpires, however, to be the case in a way highly reminiscent of
the structure of Mg;1 !Mg . The precise theorem is,

Theorem. (IV.e.6, IV.e.7, IV.e.8) Let X ! ŒX=F � be a foliated champ which
enjoys the following further properties

smooth; projective moduli; log canonical, resp.canonical, foliation
singularities

(0.2)

then there is a sequence of contractions and flips

(0.3)

X D X0 X1 � � � � � � Xn D Xmin??y ��99K

??y ��99K ��99K

??y
ŒX=F � D ŒX0=F0� ŒX1=F1� ŒXn=Fn� D ŒXmin=Fmin�

such that each Xi ! ŒXi=Fi � enjoys all the (respective) properties (0.2), and
exactly one of the following occurs

(a) KFmin is nef.
(b) Xmin ! ŒXmin=Fmin� is a Mori fibre space, i.e. the locus of a single ex-

tremal ray is all of Xmin, and the foliation is a bundle of foliated varieties where
the universal cover of a fibre is the radial (supposed saturated in dimension 1) fo-
liation on a weighted projective champ, Definition I.d.2, whose dimension is 1 iff
the foliation singularities are canonical.

Here a radial foliation is just the champ/weighted projective space variant of
a pencil of lines through a point of projective space, and in a further irony, the
harder part of the theorem is (b) in which the use of the word flip is slightly loose
since it may, when the singularities are canonical, involve “very exceptional flips”,
Fact/Definition IV.e.5, i.e. a little invariant blowing up in the final stage, to preserve
projectivity. The content of the theorem, however, should be clear: i.e. either we
get a minimal model, or a bundle of Fano objects, and the Fano objects are partic-
ularly simple, in fact, to all intents and purposes, rational curves if the singularities
are canonical.

This said, let us give a brief breakdown both of the paper and the proof.
I. The first chapter is preliminary in nature. It contains: generalities, I.a, on

Deligne-Mumford champs; a revision of foliation singularities, I.b; the theory of
weighted projective champs, I.c, and their radial foliations, I.d; a non-embedded
variant of completion, I.e; and some remarks on the analytic topology, I.f. Tech-
nically, it’s worth flagging the last 2 sections since the fact that many things fail
to be an embedding for (separated) champs which are trivially so in the world of
varieties, e.g. graphs of maps, is an issue, albeit sometimes it’s true for trivial rea-
sons, i.e. that the étale topology is non-classical, but in the analytic topology one
can still embed.
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II. The second chapter is the critical one. It first proves the cone theorem,
Fact II.d.1, in maximal generality. This was already done in [BM16] for foliated
Gorenstein varieties, and its extension to foliated Gorenstein champ, II.a-II.d, may,
largely, be considered technical in nature. In any case, it reveals, that the KF -
negative extremal rays are invariant parabolic (i.e. dominated by a rational curve)
champs, L, not factoring through the singular locus. Their particularly simple in-
tersection with the singular locus, which occurs at a unique point p W pt ! L,
of the foliation is described in II.e, their normal bundle (should they have only
nodes) by II.f, and their formal neighbourhoods (again for singularities no worse
than nodes) in II.g. The key point here, Proposition/Summary II.g.3, is not only
that the normal bundle determines the formal neighbourhood, but that everything is
determined by the linearisation, (0.1), at the singularity p whose eigenvalues are,
up to scaling, the slopes of the Harder-Narismhan filtration of the normal bundle.
The section concludes with an examination of the functoriality of the relationship
between between (0.1) and the Harder-Narismhan filtration, II.h, i.e. the said scal-
ing is ambiguous in a non-trivial way up to˙1, and this has a global manifestation;
along with the necessary preliminaries, II.i, for studying extremal rays with cusps.

III. The third chapter globalises the infinitesimal information of the second to
describe the sub-champs swept out by extremal rays beginning with the general
discussion III.a which leads to a definition in the specific, Fact III.a.4, of extremal
champs. As such III.b-III.d is devoted to describing their structure, which, as one
might imagine from item (b) of the main Theorem is, Large Fact III.d.7, basically
that of a bundle of radially projective champs. The base of this bundle is essentially
a smooth component of the singular locus, but the aforesaid issue of ˙1 in the
scaling of (0.1) means that even when it has sense for it to be a bundle in the
Zariski topology, it may not be.

IV. Finally we construct contractions and flips, or, better, flaps, since everything
is just a question of blowing up and down. Indeed, as one might imagine, contrac-
tions, IV.a-IV.b, are easy. A critical fact, however, emerges, Proposition/Summary
IV.a.4, that although a contraction renders the ambient champ less space like, i.e.
can increase the local monodromy, it renders the foliation completely smooth about
the contracted locus. As such, when one brings the full weight of the infinitesimal
knowledge of §.II to bear in order to describe the formal neighbourhoods of ex-
tremal champ in a similar manner, IV.c, to that of a single ray in order to flip, IV.d,
by the simple expedient of weighted blowing up and down, one concludes that flip-
ping must terminate because it destroys a component of the singular locus at each
stage. This leaves only loose ends, IV.e, to tie up related to scaling by˙1 of (0.1),
all of which can only occur when the generic leaf of the foliation is dominated by a
rational curve. Consequently we conclude the demonstration of the main Theorem
in IV.e, and provide a log-variant in IV.f.

I am indebted to Bogomolov for pointing out that the language of algebraic
champs was the correct setting for the main theorem; to Brunella for explaining to
me the role of holonomy; to McKernan for furnishing an example that the issue
of (0.1) with integer eigenvalues being only well defined up tp ˙1 is genuine;
to Marie Claude for the figures; and Cécile for the original typesetting, with any
subsequent flaws being the result of my own clumsy modification.
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I. PRELIMINARIES

I.a. Normal-folds. A normal-fold is a particularly simple kind of champ,to wit:

I.a.1. Definition. A normal fold is a not necessarily tame (although this will always
be our context) excellent normal separated Noetherian Deligne-Mumford champ
every generic point of which is scheme like.

A particularly important class of examples is given by

I.a.2. Fact/Definition. ([Vis89, 2.8]) Following standard usage a smooth (over an
implicit base S ) normal-fold will be referred to as an orbifold. In particular: a
(separated) algebraic space, X , of finite type over a field k has strict (or even non-
strict if the action is tame) quotient singularities iff there is an almost étale map,
� W X ! X , from a smooth (over k) orbifold. In this case X is the moduli,
[KM97, 1.3], of X , and conversely X is unique up to equivalence. As such X will
be referred to as the Vistoli covering champ of X .

The following is a tiny variation on [Vis89, 2.8]’s treatment of the Vistoli cov-
ering champ

I.a.3. Lemma. Let � W X ! X be the moduli of a normal-fold, with U ! X an
étale atlas then

(I.1) R WD
�

normalisation of U �X U
�
⇒ U

defines a groupoid and X is equivalent to the classifier ŒU=R�.

Proof. U�XU ⇒ U is a groupoid, so its normalisation is too. Now, let V ,! X be
the everywhere scheme like embedded dense Zariski open guaranteed by Definition
I.a.1, and U 0 WD U �X V , then V is embedded inX , so U 0�V U 0 is a Zariski dense
open of R. It is, however, also a Zariski dense open of R1 WD U �X U , and we
have a fibre square

(I.2)

U �X U  ���� R1??y ??y
X �X X

�X=X
 ���� X

where by hypothesis the lower horizontal is finite. Consequently R1 ! R is a
finite bi-rational map of excellent normal schemes so they’re equal. �

Irrespective of normality we have the further simplification

I.a.4. Lemma. Let � W X ! X be the moduli of a separated excellent Deligne-
Mumford champ, X 0 ,! X the (open, possibly empty) locus where � is an iso-
morphism, and f W Y ! X a map such that f �1.X 0/ meets every generic point
then f lifts to a composition Y ! X

�
�! X iff it lifts everywhere locally, i.e. for

every étale neighbourhood U ! X of the image f .y/ of a geometric point y there
is an étale neighbourhood Vy of y and a lifting Vy ! U of f .

Proof. Necessity is obvious. By [KM97, 1.3] and [Vis89, 2.8], there is, indepen-
dently of any normal-fold hypothesis, an étale atlas U D

`
˛ U˛ of X and finite

groups G˛ acting on U˛ such that V WD
`
˛ V˛ WD U˛=G˛ is an étale atlas of X
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with ŒU˛=G˛� D X �X V˛. Now for anything with a well defined map toX denote
with a 0 the fibre over X 0, so, we have open embeddings

(I.3) Y 0 ,! Y; Y 0˛ ,! Y˛ WD Y �X V˛
Consequently, by hypothesis, and refining U˛ if necessary, there is an étale atlas
Y˛ ! Y˛ and maps f˛ W Y˛ ! U˛ such that

(I.4)

Y˛ ����!
f˛

U˛??y ??y
Y˛ ����! V˛

commutes. In particular, the G˛ torsor Y˛ �V˛ U
0
˛ is trivial, and we consider

(I.5)

Y0 WD
`
Y˛ �G˛

y��
�������!
7!�:f˛.y/

U˛

left vertical

??yin (I.4)

Y
which leads (it’s here, cf. Remark I.a.5, we use generically scheme like) to a com-
mutative square

(I.6)

Y 00
horizontal
������!

in (I.5)
U 0

via vertical

??yin (I.5)
??y

X 0 ����! X

As such, if we form the groupoidsR WD U �X U ⇒ U , and Y1 WD Y0�Y Y0 ⇒ Y0
then (I.6) ensures that Y 0 ! X 0 ,! X is equivalent to the composition of functors

(I.7) Y 01 ! R0 D U 0 �X U
0 ,! R

while by hypothesis Y 01 is dense in Y1 and X is separated, so the simple of expedient
of taking the closure in (I.7) defines a functor Y1 ! R. �

This is sufficiently close to optimal as to merit

I.a.5. Remark. One cannot replace X 0 by a Zariski open sub-champ X 0 ,! X in
Lemma I.a.4. Indeed take X to be the weighted projective champ P.n; n/, Defi-
nition I.c.1, n > 1. It’s moduli is P1, so the fibre, X 0, over a standard A1 is an
embedded Zariski open. Moreover it’s isomorphic to A1 � B�n , so in particular
admits a section, and we could try to take Y D P1. The gerbe P.n; n/ ! P1
is, however, non-trivial so the map Y 0 ! X 0 cannot be extended to Y ! X
even though it is locally trivial, whence a fortiori without local obstruction. The
problem is that if one replaces the moduli X , resp. X 0, by X , resp. X 0, in (I.6)
then the diagram needn’t 2-commute in a slightly unusual way. Specifically, it’s
2-commutative on geometric points, p say, by way of a natural transformation �p
between either possible composition, which, in the specific example, if sayU0, U1
are points in the standard affines around 0 and infinity, is

(I.8) �p D

8<:1p if p 2 U0;

p�1
p�1=n

����! p if p 2 U1n0;
6



where the latter arrow is to be understood in the presentation (I.32). Plainly,
however, p ! �p isn’t even continuous for p in U1n0, and (I.6) fails to be 2-
commutative.

This can often be combined with

I.a.6. Fact. Let X be a (connected) normal (or slightly more general uni-branch)
excellent Deligne-Mumford champ then there is a unique normal-fold X 0 (slightly
more generally uni-branch-fold with the obvious definition of that notion) such that
X ! X 0 is a locally constant gerbe under some finite group BG .

Proof. Since X is excellent and uni-branch one can insist, [EGA-IV, 7.6.3], that
the atlas U D

`
˛ U˛ encountered at the beginning of the proof of Lemma I.a.4

consists solely of irreducible (affine) schemes U˛. Now for G˛ of op. cit. define
G0˛ as the kernel of the representation G˛ ! Aut.U˛/ with G00˛ the image, then
since X is uni-branch

`
˛ U˛ � G

0
˛ is a normal (groupoid sense [KM97, 7.1]) U -

group scheme of the stabiliser, so for R WD U �X U ⇒ U , there is, op. cit. 7.4, a
well defined quotient R! R00 where the latter is locally of the form ŒU˛=G

00
˛�. As

such define X 0 to be ŒU=R00�, and observe that all the G0˛ are isomorphic. �

Finally another important application of normality. Specifically let U be the
spectrum of a Noetherian local ring, A, with closed point x, and j W U 0 ! U a
Zariski open whose complement is defined by a regular sequence of length at least
2. As such, for n 2 N the Kummer sequence,

(I.9) 0! �n ! Gm
n
�! Gm ! 0;

applied to U and U 0 combine to afford a short exact sequence

(I.10) 0! H1.U; �n/! H1.U 0; �n/! Pic.U 0/Œn�! 0

In particular therefore, if A is strictly Henselian and n�1 2 A,

(I.11) H1.U 0; �n/
�
�! Pic.U 0/Œn�

Now in the particular case that A is normal excellent we can take U 0 to be the
regular locus, and identify (primitive) generators of the right hand side of (I.11)
with Q-Cartier divisors, L, on U of index n D n.x/, i.e. a Weil divisor, L, on U
such that nL, but no smaller multiple, mL, 1 � m < n, is a line bundle, while the
elements of order n on the left are just �n-torsors V 0 ! U 0 of order exactly n, and
we assert

I.a.7. Fact/Definition. For a Q-Cartier divisor, L, of index n on a normal strictly
Henselian U over which n is invertible, the associated index 1-cover, V ! U , is
the integral closure ofU in the corresponding�n-torsor V 0 ! U 0. By construction
L j V is the trivial bundle, and, in a sense, universally so, i.e. if W ! U is any
finite map from a normal scheme W every component of which is dominant such
that L j W is trivial then it factors uniquely as W ! V ! U . In particular
if � ! U is the strict Henselisation of some (scheme) point u of U of index
mjn then the normalisation, N , of V �U � is the trivial � n

m
-torsor over the index

1-cover, M , of �.

Proof. It remains to address the universal property, wherein, without loss of gener-
ality W is connected. As such all of U , V , W are the spectra of normal Henselian
local rings, so they are all domains, while the function field of V over that of U is

7
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Galois by construction, so the factorisation is unique if it exists. Now letW 0 be the
fibre over U 0 then by (I.11) the �n-torsorW 0�U 0 V 0 has a section, which gives the
factorisation W 0 ! V 0 ! U 0, and since everything is S2 the simple expedient of
taking global functions on these opens gives W ! V ! U . Applying this to the
in particular: there is a map from N to M , while V 0 �U 0 � is a Zariski dense open
of the former which is the trivial � n

m
torsor over the fibre of U 0 in the latter. �

In the category of spaces it’s rare that index 1-covers can be glued whereas:

I.a.8. Fact. Let L be a Q-Cartier divisor on an excellent normal Deligne-Mumford
champ X then there is a finite map, f W Y ! X , from a normal Deligne-Mumford
champ such that f �L is Cartier enjoying the following universal property: if
g W Z ! X is a finite map from a normal champ every component of which is
dominant and such that g�L is Cartier, then there is a 2-commutative factorisation

(I.12) Z X

Y
h

==
f

!!

g
//

�

KS

such that for any other factorisation, N� W g ) f Nh there is a unique � W h) Nh for
which .g��/� D N� .

Proof. For every closed point x of X let n.x/ be the index of L at x, and Ux ! X
a sufficiently small étale neighbourhood such that the index 1-cover Vx ! Ux
of Fact/Definition I.a.7 is well defined, with U 0x , V 0x as per op. cit.. Now, for
U D

`
x Ux , we can without loss of generality suppose that X is the classifying

champ of the étale groupoid R0 WD U �X U ⇒ U , and that U 0 WD
`
x U
0
x is the

locus where U is regular. As such, the restriction, R00 ⇒ U 0 is a dense Zariski
open of R0 equivalent to the restrictions R0 ⇒ V 0 WD

`
V 0x , where R0 ! R00 is

both étale and finite, and we define R ⇒ V to be the integral closure of R0 in R0.
Consequently from the commutative diagram of fibre squares

(I.13)

R0  ���� R00  ���� R0??y ??y ??y
U � U  ���� U 0 � U 0  ���� V 0 � V 0

and V � V ! U � U finite, R⇒ V defines a groupoid which by the in particular
in Fact/Definition I.a.7 has étale source and sink.

Now let g W Z ! X be given, then, up to equivalence, we can identify this with
a functor of groupoids, g W W1 ! R0, whereW1 D W �ZW ⇒ W for some étale
cover W ! Z finer than the pre-image of U . By Fact/Definition I.a.7, W ! U

factors (uniquely) through V affording a (unique) map,

(I.14) h1 W W1 ! R0 �U�U V � V

and R is the normalisation of the latter, while every local ring of W1 is finite over
U � U so this actually factors as a functor (because everything is unique) h W
W1 ! R. As such we get a unique strictly commutative factorisation g D hf

given W ! U . This supposes, however, that all of X , Y , Z were the classifying
champ of the said groupoids, whereas they may be no better than equivalent to
such, and whence the uniqueness statement (I.12). �
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In the same vein one has

I.a.9. Fact/Definition. Let D ,! X be an effective Cartier divisor on a normal
champ X . As such for a sufficiently fine atlas U ! X we may identify X with the
classifier of a groupoid .s; t/ W R0 ⇒ U and suppose that DjU is defined by ´ D 0
where s�´ D gt�´ for some co-cycle g W R0 ! Gm. Now for n 2 N invertible in
every local ring of X define a groupoid with objects

(I.15) normalisation of .T n D ´/ ,! U � A1.

and arrows the normalisation, R0, of the base change groupoid R0 ⇒ V , i.e. the
fibre

(I.16)

R00 ����! V � V??y ??y
R0

s�t
����! U � U

so that R0 ⇒ V is a groupoid because R00 ⇒ V is, and everything is normal.
Equally R0 admits the explicit description:

(I.17) normalisation of .T n1 D s
�´; T n2 D t

�´/ ,! R0 � A2.

which is the same thing as taking normalised nth roots of s�´ and the (invert-
ible) transition function g. By hypothesis, however, n is everywhere invertible, so
R0 ⇒ V has étale source and sink, and we define X 1=n D ŒV=R0� ! X to be the
(extraction of a) nth root of D. Observe, moreover, that a section of s W R0 ! V

is a choice of nth root of g, so from the Cěch boundary in (I.9), the class of the
fibration D0 D D �X X 0 ! D in B�n’s is exactly

(I.18) c1.D/ 2 H2.D; �n/

I.b. Foliation singularities. This section is largely a summary, for the conve-
nience of the reader of the relevant parts of [MP13]. The one exception to this
rule is the concluding digression from Definition I.b.12 to Construction I.b.15, on
how to avoid the study of boundaries altogether. Our interest is exclusively in foli-
ations by curves, i.e. if X is a Deligne-Mumford champ of finite type over a field
k (so �1X=k is well defined) a torsion free quotient

(I.19) �1X=k ! Q! 0

which is locally free of rank 1 at every generic point. Arguably this is not the right
definition in positive or mixed characteristic since in such situations (I.19) is not
likely to be locally integrable in any meaningful sense. Fortunately we never have
to worry about this, so we proceed directly from (I.19) to

I.b.1. Definition. If X is normal and the double dual Q__ is a bundle, resp. a Q-
Cartier divisor, then we say that the foliation, F , is Gorenstein, resp. Q-Gorenstein,
or possibly foliated Gorenstein, resp. foliated Q-Gorenstein, if there is any danger
(which there won’t be) of confusion. In either case, and indeed even if X were
only normal, we write KF instead of Q__ for the canonical divisor, so that in the
Gorenstein case there is an ideal IZ supported in the co-dimension 2 (schematic)
singular locus of the foliation Z such that

(I.20) Q D KF � IZ ,! Q__ D KF
9



As such, even in the analytic topology, the classifying champ, ŒX=F � may have
no sense, albeit analytically (and with probability zero in any algebraic topology)
ŒXnZ=F � has sense. Nevertheless to better convey the idea we write

(I.21) X ! ŒX=F �

as a short hand for (I.19), and �1X=F for the kernel in op. cit..

Unfortunately it’s not technically correct to view a quasi-projective variety as a
proper champ with infinite monodromy on the boundary, so we make

I.b.2. Remark. All of this is equally valid for champs with boundary, i.e. a couple
.X ;D/, for D ,! X a reduced Weil divisor. Usually there’ll be some further
regularity, e.g. X and D smooth over k, but all that’s a priori required is that we
can give a sense to the sheaf �1X .logD/, so, X normal is sufficient. In any case, it
therefore follows that the canonical bundle of the foliation F may have competing
definitions according as to whether a boundary is involved, KF , or not, Knolog

F .
These are related by,

(I.22) KF D K
nolog
F C

X
i

�.Di /Di

where Di are the irreducible components of D, and for W a Weil divisor

(I.23) �.W / D

(
0 if W is F (in the sense of Definition I.b.1) invariant,
1 otherwise.

Similarly there may also be competing definitions of invariant according as to
whether this is understood for a saturated sub-sheaf of TX or TX .� logD/ so that
should there be any risk of confusion the former, equiavelently, Definition I.b.1
will, following [MP13, I.i.2], be refered to as strictly invariant. Regardless, almost
always our boundary will be empty, but when it isn’t: KF will, as suggested by
(I.22), be reserved for the canonical with log-poles since this is more natural and
the resulting formulae are cleaner.

A case in point is the following cut and paste of [MP13, I.ii.1]

I.b.3. Definition. Let .U;D;F/ be an irreducible local germ of a Q-Gorenstein
foliated logarithmic geometrically normal k-variety, i.e. the germ about the generic
point of a sub-variety Y of a geometrically normal variety such that the log canon-
ical bundle KF is a Q-divisor, then for v a divisorial valuation of k.U / centred on
Y the log discrepancy, aF .v/ is defined as follows:
By hypothesis there is a normal modification � W QU ! U of finite type, together
with a divisor E on QU such that O QU;E is the valuation ring of v. In particular,
bearing in mind (I.22), there is an induced foliation QF with log canonical bundle
K QF , i.e. whose dual is saturated in T QU .� logE/. Thus there is a unique rational
number aF .v/ such that

(I.24) K QF D �
�KF C aF .v/E

10



and for � as in (I.23) we say that the local germ .U;D;F/ is,
(1) Terminal if aF .v/ > �.v/.

(2) Canonical if aF .v/ � �.v/.

(3) Log-Terminal if aF .v/ > 0.

(4) Log-canonical if aF .v/ � 0.

(I.25)

Where the slightly unsettling shift of the definitions by �.v/ occurs as a result
of the convention adopted in Remark I.b.2 together with their correct functorial
interpretation.

In contrast to this functorial framework, there is a “competing” local notion of
what ought to be a good class of foliation singularities, viz:

I.b.4. Set Up. Let @ be a singular derivation of a local ring, O , with residue field
k. Thus, by definition, if m is the maximal ideal of O , @ W O ! m and

(I.26) N@ W
m

m2
!

m

m2
W x 7! @.x/

is k-linear by Leibniz’s rule.

The relation between the linearisation (I.26) and (I.25) is as good as possible

I.b.5. Revision. [MP13, I.ii.3]. A Gorenstein foliation over the complex numbers
is log-canonical iff every point is either smooth, or, its linearisation, (I.26), is non-
nilpotent.

Better still, one can always reduce to the Gorenstein case thanks to the specifics
of one dimensional leaves, i.e.

I.b.6. Revision. Let .V; QD; QF/ ! .U;D;F/ be the index 1-cover of the germ in
Definition I.b.3 associated to the log-canonical bundleKF in the sense of Fact/Def-
inition I.a.7, or, more generally an almost étale map, then for any .n/ in (I.25),
1 � n � 4, .U;D;F/ is .n/ iff .V; QD; QF/ is.

Proof. The easy ones are n D 4, [MP13, I.ii.5], and the if direction for 1 � n � 3,
[MP13, III.i.5], which also covers the subtler converse. �

Manifestly, therefore,

I.b.7. Fact/Definition. Let XnD ! ŒXnD=F � be a Q-foliated Gorenstein loga-
rithmic champs, then the index 1-cover, � W QX ! X , defined by the log-canonical
divisor KF , Fact I.a.8, will be referred to as the Gorenstein covering champ. The
map � is étale in co-dimension 2; there is an identity K QF D ��KF of log-
canonical divisors; QXn QD ! Œ QXn QD= QF � is Gorenstein; and the cover enjoys .n/,
1 � n � 4, of (I.25) iff XnD! ŒXnD=F � does.

As such, we work almost exclusively with Gorenstein foliations. Similarly the
already small difference between log-canonical and canonical becomes close to
irrelevant for minimal model theory, i.e.

I.b.8. Definition. Let .U;D;F/ be a germ of a normal foliated Gorenstein log-
variety about a point p such that a generator (in the sense of Definition I.b.1) van-
ishes along a sub-variety Y then a singularity is called radial iff after completion
in the maximal ideal we can find a generator of the foliation of the form,

(I.27) @ D n1x1
@

@x1
C : : :C nrxr

@

@xr
C ı

11



where xi D 0 defining Y are linearly independent modulo m2U;p, ni 2 N, and
ı 2 Der.K; IY / for some quasi-coefficient field K. In particular for U smooth: D
is strictly invariant, Remark I.b.2, iff codim.Y / D r � 2.

By way of clarification let us make

I.b.9. Remark. This isn’t quite a cut and paste from [MP13], since op. cit. III.i.2 in-
sists that Y of Definition I.b.8 has co-dimension at least 2, which, although entirely
a question of convention, isn’t right for doing minimal model theory. In particular,
therefore, when Y has co-dimension 1, e.g. Revision I.b.10.(c), D D Y .

Irrespectively, the above definition of a radial singularity shouldn’t be confused
with the closely related notion of a radial foliation encountered in Definition I.d.2,
and in any case the important point is,

I.b.10. Revision. [MP13, III.i.3]. For .U;D;F/ a germ of a normal foliated Goren-
stein variety over a field k of characteristic 0 the following are equivalent,

(a) The singularity is radial.
(b) The singularity is log-canonical but not canonical.
(c) Y is the centre of a divisorial valuation of k.U / of (log)-discrepancy zero

and exceptional divisor, cf. Remark I.b.9, not strictly invariant.

It thus follows that the passage from log-canonical to canonical is exactly

I.b.11. Revision. [MP13, III.ii.2]. If XnD ! ŒXnD=F � is a foliated smooth
champ over a field of characteristic zero which has log-canonical but not canonical
singularities then every component of sing.F/ where this occurs is smooth, and
there is a smoothed weighted blow up, [MP13, I.iv.3], in each of which such that
the induced log-foliation on the resulting bi-rational modification QX ! X has
everywhere log-canonical logarithmic foliation singularities, which amounts to the
rather strong: at every point of the exceptional divisor, E , the induced foliation is
smooth and every where transverse to E .

Such attention to the details of the logarithmic case notwithstanding our ultimate
intention is to work almost exclusively with an empty boundary. In order to do this
we introduce

I.b.12. Definition. A foliated space with orbifold boundary is a triple .U;�;F/,
where U ! ŒU=F � is a foliation in the sense of Definition I.b.1 and �, is a formal
linear combination

P
i ai�i of effective Weil divisors, where ai D 1 � n�1i for

some positive integers ni < 1; and we say (slightly contrary to standard usage)
that .U;�;F/ is Q-Gorenstein if U ! ŒU=F � is and each �i is Q-Cartier. More-
over if D is the Weil divisor

P
i �i , then the discrepancy, a�F .v/, of .U;�;F/

along a divisorial valuation v is defined to be

(I.28) a�F .v/ WD aF .v/ �
X
i

�.�i /mi .1 � ai /

where aF .v/ are the logarithmic discrepancies, (I.24), of the foliated log-variety
.U;D;F/; � is as (I.23); and mi are the multiplicities of the �i along the ex-
ceptional divisor E encountered in Definition I.b.3. As such, we then say that
.U;�;F/ satisfies the corresponding properties (I.25) if the respective inequali-
ties hold for a�F .v/ rather than ˛F .v/.

The introduction of such orbifold boundaries is very much temporary since
12



I.b.13. Revision. [MP13, III.i.1]. Let .U;D;F/ be a foliated germ of a smooth
log-variety supported at Z then the following are equivalent,

(1) .U;D;F/ is terminal.
(2) .U;D;F/ is log-terminal.
(3) D is strictly (i.e. in the sense of Definition I.b.1) invariant and F is smooth

transverse to the generic point of Z.

which in turn affords

I.b.14. Corollary. Let .U;�;F/ be a germ of a log-canonical foliation singularity
with F-Gorenstein and non-empty orbifold boundary every component, �i , of
which is Cartier, then in fact it’s canonical, and exactly one of the following holds

(1) Not only .U;F/ but also .U;�;F/ is terminal while the non-invariant part
of � has multiplicity 1 and is everywhere transverse to F .

(2) .U;F/, but not .U;�;F/, is terminal, the weight of every non-invariant
component of� (of which there are at most 2) is 1=2, and the non-invariant part of
D is defined by a single equation f of multiplicity 2 such that for a local generator,
@, of the foliation @2.f / is a unit.

(3) As per item (2) except that f has multiplicity 1 and enjoys a simple tangency
with F , i.e. @2.f / is again a unit.

Proof. From (I.24) and (I.28), the singularity .U;F/ without boundary is log-
terminal, while it is Gorenstein by hypothesis. Thus by Revision I.b.13 it is de-
fined by a no-where vanishing vector field @, and, [MP13, III.i.1], every valuation,
v, centred on the singularity has �.v/ D 0. In particular, therefore, .U;�;F/ is
always canonical, and it’s terminal iff it’s log-terminal.

Now, supposing, without loss of generality, that no component, �i , is invariant
consider the effect of blowing up in the maximal ideal of the germ. The discrep-
ancy of .U;F/ is 1, so the only way for the multiplicity of D to be more than
1 is if it’s 2 and all the weights ai D 1=2. In this latter case the initial modi-
fication of .U;�;F/ is, therefore, crepant, so the proper transform must itself be
log-canonical, and whence the proper transform ofD must only cut the exceptional
divisor in smooth points of the induced foliation, i.e. @2.f / is a unit for f of mul-
tiplicity 2 defining D. To see that such a singularity is indeed canonical observe
(proof of [MP13, III.i.1]) that in the local ring, R, of a divisorial valuation v, we
can write

(I.29) @ D ��m Q@; f D �n Qf ; Q@.�/ D 0; v.�/ D 1; m; n 2 N

for Q@ a derivation of R. As such,

(I.30) �.v/ D 0 D v.@2f / D .n � 2m/C v.Q@2. Qf // � n � 2m

which is exactly the canonical condition.
Alternatively, therefore, the multiplicity of D is exactly 1, and if it’s not ev-

erywhere transverse to the induced foliation then the proper transform of D must
cut the exceptional divisor in the singular locus of the transformed foliation, and a
blow up in this (singular) locus affords a valuation of negative discrepancy unless
the weight is 1=2. As such, we’re in case (1) of Corollary I.b.14 or most of case
(3), i.e. it remains to prove that the tangency is simple. Observe, however, that
D cuts the exceptional divisor in a smooth invariant sub-space, and blowing up
in this not only yields a second exceptional divisor along which the discrepancy
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is zero, but separates the proper transform of D from the proper transform of the
initial exceptional divisor. Consequently, if the tangency weren’t simple, the dou-
bly transformed D would contain an invariant subspace of the induced foliation in
the second exceptional divisor, and a blow up in this would afford a valuation of
negative discrepancy. Conversely a simple tangency with weight 1=2 is canonical
for the same reason as (I.29)-(I.30), while an everywhere transverse divisor of any
weight is log-terminal because the "weight 1 case", i.e. r D 1 in (I.27) is, Revision
I.b.10, log-canonical. �

This can be applied to reduce to an empty boundary in the obvious way, to wit:

I.b.15. Construction. Suppose .U;�;F/ is a Q-Gorenstein log-canonical foliated
germ with orbifold boundary, with no boundary component invariant. Then com-
posing the index 1-covers associated to F and the boundary components �i , we
find a foliated germ with orbifold boundary .U 0; �0;F 0/ satisfying the hypothesis
of Corollary I.b.14 such that U 0 ! U is almost étale. By op. cit. and [MP13,
III.i.1], the proof of [MP13, III.i.5] goes through verbatim, and the obvious variant
of Revision I.b.6 holds, i.e. for any .n/ in (I.25), 1 � n � 4, .U;�;F/ is .n/ iff
.U 0; �0;F 0/ is. Ignoring, for the sake of argument, the cases (2) and (3) of Corol-
lary I.b.14, the latter boundary is, in the presence of log-canonical singularities
an everywhere transverse Cartier divisor of multiplicity 1 together with a weight
1 � n�1. As such if f D 0 is a local equation for �0 then we could extract a nth
root � W V ! U 0 to obtain a Gorenstein foliation V ! ŒV= QF � such that,

(I.31) K QF D �
�.KF C�/

and again the obvious variant of Revision I.b.6 holds- for any .n/ in (I.25), 1 � n �
4, .V; QF/ is .n/ iff .U 0; �0;F 0/ is- for exactly the same reason as above. Plainly
all such local constructions will glue as champs by much the same argument as
Fact/Definition I.b.7, so all this is just the obvious fact that minimal model theory
for foliations with orbifold boundary can be deduced from the minimal model the-
ory of champs without boundary. The slightly subtler point, however, is that if one
were to begin with a foliated champ XnD ! ŒXnD=F � with (integral) bound-
ary, then extracting a n.> 2/th root, X 1=n ! X of D yields a foliation X 1=n !

ŒX 1=n=F1=n� which has log-canonical singularities iff XnD ! ŒXnD=F � does,
so that not only the minimal model theory for foliations with orbifold boundary,
but also with integral boundary, §.IV.f, can be deduced from the champs theorem
without boundary.

I.c. Weighted projective champs. All of this section works in arbitrary gener-
ality, so over a base, say Spec.k/, where k is a ring, with the object of interest
being

I.c.1. Definition. For a D .a0; : : : ; an/ 2 ZnC1>0 , n > 0, letAk WD AnC1
k
n0 then by

the weighted projective champ Pk.a0; : : : ; an/, or just Pk.a/, is to be understood
the classifying champ ŒAk=Gm;k� of the action,

Rk WD Gm;k � Ak ⇒ Ak W

.x0; : : : ; xn/ [ ��.x0; : : : ; xn/ 7! x� WD .�a0x0; : : : ; �
anxn/

(I.32)

Just like any quotient space under a group there is a tautological torsor, i.e.
Ak �Gm with Gm action

(I.33) Gm �
�
Ak �Gm

�
W � � .x � ´/ 7! x� � .�´/
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which one extends to a line bundle in the usual way, to wit:

I.c.2. Fact/Definition. Choose an embedding Gm ,! Ga W ´ 7! ´, then by
the tautological line bundle, O.1/, on Pk.a/ is to be understood the line bundle
Ga � Ak with Gm action given by (I.33) and by multiplication on the first fac-
tor via our aforesaid choice of embedding. In particular, therefore, we’ve defined
V.O.1// jAk - EGA notation- whence as an equivariant OAk -module O.1/ has
generator T where

(I.34) T � D ��1T

so that the bundle !Ak=k of volume forms on Ak descends to the bundle ! WD
O.�a0 � : : : � an/ on Pk.a/.

Unsurprisingly Serre’s explicit calculation generalises to:

I.c.3. Fact. The bundle O.1/ freely generates the Picard group of Pk.a/; there are,
for p � 0, canonical (dual) isomorphisms of free k-modules

H0.Pk.a/;O.p// D Sp WD
a

k � x
p0a0
0 � � � xpnann

Hn.Pk.a/; !.�p// D S 0p WD
Y

k �
dx0 � � � dxn

x0 � � � xn
� x
�p0a0
0 � � � x�pnann

(I.35)

where the sum, resp. product, is taken over intergers such that p0a0C� � �Cpnan D
p, and any other co-homology of any other line bundle in any other degree van-
ishes.

Proof. The Picard group of Ak is trivial, so a line bundle on Pk.a/ is the same
thing as a map � W Rk ! Gm from the groupoid (I.32) satisfying the co-cycle
condition �.gf / D �.g/�.f /. There are, however, no (algebraic) maps from Ak
to Gm, so all such co-cycles are integer multiples of the tautological one. As to the
second part: if � W Ak ! Pk.a/ is the projection then for any sheaf F on Ak the
Leray spectral sequence reads

(I.36) Hi .Pk.a/; Rj��F/) HiCj .Ak;F/
Now the co-homology of the right hand side of (I.36) is known, i.e. there are
canonical dual, [SGA-II, Exposé IV.5.5], isomorphisms

(I.37) H0.Ak;OAk / D
a
p

Sp; Hn.Ak; !Ak=k/ D
a
p

S 0p

while on the left hand side there are canonical isomorphisms

(I.38) ��OAk
�
�!

a
q2Z

O.q/; ��!Ak=k
�
�!

Y
q2Z

!.q/

and all higher direct images in (I.36) vanish, whence (I.35) by identifying the
weight of the action of Gm in the equivariant isomorphism between (I.37) and
(I.38) afforded by (I.36). �

In addition the bundle ! is the bundle of volume forms on Pk.a/ when this has
sense, i.e.

I.c.4. Claim. The moduli of any Pk.a/ is projective, in fact better there is a finite
flat map

(I.39) Pnk ! Pk.a/ W Œx0; : : : ; xn� 7! Œx
a0
0 ; : : : ; x

an
n �
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and Pk.a/ is Deligne-Mumford iff all the ai are invertible in k. In addition the
coordinate functions, @i D @

@xi
, afford a Gm equivariant isomorphism

(I.40)
`
i O.ai /

�
�������!
@0C���C@n

TAk=k

leading to the Euler sequence of Gm-modules on Ak , equivalently bundles on
Pk.a/

(I.41) 0! TGm
�
�! O

aixi@i
����!

a
i

O.ai /! ��TPk.a/=k ! 0

whenever Pk.a/ is Deligne-Mumford, so in particular

(I.42) ƒn�Pk.a/=k
�
�! !

Proof. The functor ��xi 7! ��x
ai
i of the corresponding groupoids in (I.32) yields

(I.39), while the stabiliser of the point with all but the i th coordinate 0 is �ai so the
Deligne-Mumford criteria is plainly necessary, and, similarly it is sufficient since
slicing (I.32) along xi D 1 covers Pk.a/ by affines with �ai -action. The rest just
amounts to � acting on @i by ��ai . �

The triviality of (I.39) notwithstanding we have

I.c.5. Corollary. If k is simply connected, then every Pk.a/ is simply connected,
i.e. irrespectively of any Deligne-Mumford criteria, there are no non-trivial �-
torsors over Pk.a/ for every finite group � .

Proof. By hypothesis Pn
k

is simply connected, so it’s sufficient by (I.39) to prove
vanishing of a suitable Cěch group, i.e. that the groupoid

(I.43) R WD Pnk �Pk.a/ P
n
k ⇒ Pnk

doesn’t admit any non-trivial functors to � . The space R may, by (I.32), be ex-
pressed as the classifier of the Gm action .xi ; yi / 7! .�xi ; �yi / on the product of
affine curves

(I.44) x
ai
i D y

ai
i � A2k

complemented in 0 � 0. Now the curves in (I.44) are geometrically connected, so
their product is connected. It’s also l.c.i. of dimension at least 2, so it’s homotopy
depth is at least 2, whence the complement in 0 of the product is connected, and
we’re done a fortiori- the fact that projections in (I.44) are the source and sink in
(I.43) isn’t even needed. �

Of which we will require the following variant

I.c.6. Corollary. If k is simply connected, and � W P ! Pk.a/ is a fibration in lo-
cally constant gerbes BG for some finite group G such that P is simply connected,
then G is a cyclic group of order a (invertible in k) and P �

�! Pk.aa/ in such a
way that � is just � 7! �a in Definition I.c.1.

Proof. The right way to prove this is the long exact sequence of homotopy groups
of a fibration, which may be done wholly algebraically [McQ15, III.g]. However,
for convenience here is an ad hoc argument.
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From Corollary I.c.5, Pk.a/ is simply connected, so by [Gir71, IV.3.4] the lo-
cally constant gerbes up to isomorphism in BG’s over Pk.a/ are canonically iso-
morphic to

(I.45) H2.Pk.a/; Z/
where Z is the centre of G. In particular if P ! P 0 is P modulo the centre, cf.
Fact I.a.6, then P 0 ��! Pk.a/ � BG=Z , which isn’t simply connected. As such,
without loss of generality G D Z is abelian, and the Leray spectral for � affords
an isomorphism

(I.46) E0;12 D End.Z/
�

����!

d
0;1
2

H2.Pk.a/; Z/ D E2;02

If, however, p is the characteristic of k then from inductive application of the
Artin-Schrier sequence

(I.47) 0! Fp ! Ga ! Ga ! 0

the latter group in (I.46) is the prime to p part of Z, so our initial G is cyclic of
some order a prime to p. We have however a fibration,

(I.48) Pk.aa/! Pk.a/
in B�a ’s by the simple expedient of sending � to �a in Definition I.c.1, which is
the generator of (I.45). �

Another very important fact which generalises is

I.c.7. Fact. Let n D 1 and E a vector bundle on Pk.a/ then there are unique
integers bj such that (non-canonically)

(I.49) E
�
�!

a
j

O.bj /

Proof. We’ve done the rank 1 case in Fact I.c.3, and we go by induction on the
rank, r > 1. The push-forward of E to the moduli of Pk.a/ is coherent, so there
are plenty of meromorphic sections. As such, choose one of maximal degree to get
a short exact sequence of bundles

(I.50) 0! O.br/! E ! E 00 ! 0

Now by the induction hypothesis and Fact I.c.3 this is split unless there is some
bj > br , j < r , such that

(I.51) H0.Pk.a/;O.bj � br � a0 � a1// ¤ 0
Consequently if we twist (I.50) by O.�br�a0/ then the kernel has no co-homology
by Fact I.c.3, while the co-kernel has a direct summand O.bj � br � a0/ which
has a non-trivial section given by tensoring anything in (I.51) with Xa11 , and we
contradict the maximality of br . �

We’ve passed over the unicity since

I.c.8. Remark. The uniqueness of the integers bj in (I.49) is just an easy version
of the uniqueness of the Harder-Narismhan filtration which, for ˇj a complete
repetition free list of the bj ordered by ˇ1 < ˇ2 < � � � < ˇm takes the form

E D E0 � E1 D
a
bj>ˇ1

O.bj / � � � � � E
m�1
D

a
bj>ˇm�1

O.bj / � E
m
D 0
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I.d. Radial foliations. In this section we work over C, and, unfortunately we’ll
need

I.d.1. Notation. The vector a 2 ZnC1>0 will be written (at least for this section) as
the n-tuple of positive integers .a0; aa1; : : : ; aan/, n � 1, where a1; : : : ; an are
relatively prime, and a 2 N.

The lack of symmetry in the notation is in the nature of

I.d.2. Definition. The radial foliation, R, on PC.a/ is equivalently
(a) The foliation defined by the 0th coordinate O.a0/ ! TPC.a/ in the Euler se-
quence (I.41).
(b) The foliation defined by the (rational) projection PC.a/ 99K PC.aa1; : : : ; aan/.

In the particular case that n D 1 there is a certain ambiguity in the definition
according as to whether one saturates the map in (a) at the centre of the projection
in (b), albeit, fortunately this tends to be clear according to context.

The following bunch of properties will aid in radial foliation recognition:

I.d.3. Facts. Given a radial foliation PC.a/! ŒPC.a/=R�,
(a) It’s canonical bundle, KR (understood logarithmically if n D 1) is O.a0/.
(b) On the étale neighbourhood of the (unique) singular point given by x0 D 1,

xi D 0, i � 1 in (I.32), R is generated by the vector field a1x1 @
@x1
C � � � anxn

@
@xn

(c) The i th coordinate axis in (b) is a smooth embedded R-invariant PC.a0; aai /
withKR degree �1=aai , while the degree of the generic invariant champ is �1=a.

(d) The smoothed weighted blow up, [MP13, I.iv.3], P ! PC.a/ in the sin-
gularity with weights a1; : : : ; an resolves the rational map of Definition I.d.2.(b).
Indeed, cf. Revision I.b.11, the induced foliation P ! ŒP= QR� is a bundle of
PC.a0; a/’s over a PC.aa1; : : : ; aan/, and K QR.CE/ D KR for E the exceptional
divisor.

Proof. Of these only (d) merits comment. Specifically smoothed weighted blow
ups in [MP13, I.iv.3] are understood to have weights without a common divisor, so
in the first place by the formulae of [MP13, pg. 89] and Lemma I.a.4, we have a
resolution

(I.52)

P0 ����!
�0

PC.a1; : : : ; an/

�0

??yweighted blow up with weights ai

PC.a0; aa1; : : : ; aan/

in which the exceptional divisor E0 is isomorphic to B�a0 � PC.a1; : : : ; an/, and
the various bundles are related by

(I.53) ��0OPC.a1;:::;an/.1/ D �
�
0O.a/ � E0

All of which becomes much cleaner if, the common divisor not withstanding, one
permits the weights aa1; : : : ; aan. This is equivalent to taking an ath root of E0, so
we get a diagram in which the square (whose horizontals are rightmost) is fibred

(I.54)

PC.a0; aa1; : : : ; aan/
weighted blow up
 ����������

with weights aai
P extract ath root
���������!

of E0
P0

�

??y ??y�0
PC.aa1; : : : ; aan/

non-trivial gerbe
���������!

of order a
PC.a1; : : : ; an/
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by (I.53), i.e. the gerbe of the bottom horizontal is the class of O.1/ in

(I.55) H2.PC.a1; : : : ; an/; �a/:

In particular, therefore, if E is the new exceptional divisor then (I.53) becomes

(I.56) ��OPC.aa1;:::;aan/.1/ D �
�O.1/ � E

while the fibres of � are identically those of �0. The latter, however, are simply
connected since �0 has a section, so, [BN06, 1.1], a local calculation of their non-
scheme like points implies that they’re all PC.a0; a/’s. �

By way of disambiguation let us present the next proposition in the form

I.d.4. Fact/Definition. Every deformation of a radial foliation is locally trivial, i.e.
if for a (geometrically) pointed scheme pt

s
�! S we have a map X ! ŒX=F �! S

(equivalently of foliations indexed by the points of S ) for which the special fibre
Xs ! ŒXs=Fs� is a radial foliation, then there is an étale neighbourhood U ! S

such that

(I.57)

X �S U
�

����! Xs � U??y ??y
ŒX �S U=F �

�
����! ŒXs=Fs� � U

commutes, with the horizontal arrows isomorphisms.

Proof. By [Art69] it will suffice to replace S , resp. X , by its completion in s, resp.
the fibre, and to prove (I.57) in the formal category- so, keeping the same notation,
U
�
�! S . Consequently, if m is the ideal of s and Sn D Spec.OS=m

n/, it will even
suffice to prove (I.57) with U D Sn, where, by way of notation, Xn WD X �S Sn.
Proceeding by induction on n � 1, the case n D 1 is given, while [SGA-I, Exposé
III.5] applies as written to show that the obstruction to extending an isomorphism
from Xn to X0 � Sn to the nC 1th thickening lies in

(I.58) H1.X0; TX0 ˝mn=mnC1/

By the Euler sequence, (I.41), and Serre’s explicit calculation, (I.c.3), this is zero.
As such, we can certainly find an isomorphism f W Xn

�
�! X0 � Sn, but it may not

be foliated, i.e. the composition

(I.59) f ��X0�SnC1=F ! �XnC1 ! KF ˝ OXnC1

may be non-trivial. We have, however, a foliated isomorphism at the nth level, and
X0 is S2 so (I.59) is, equivalently, a non-trivial map

(I.60) TF jX0
�
�! O.a0/! TX0=F
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where the normal sheaf to the radial foliation is by (I.41) described by the commu-
tative diagram with exact rows and columns

(I.61)

0 0??y ??y
O O??y ??y

0 ����! O.a0/ ����!
`
j O.aaj / ����!

`
j>0O.aaj / ����! 0


 ??y ??y

0 ����! O.a0/ ����! TX0 ����! TX0=F ����! 0??y ??y
0 0

Twisting by O.�a0/ an arrow (I.60) is, therefore, a quotient of the space of global
sections in the middle of the rightmost column of (I.61), i.e. the C-vector space of
vector fields with, in the notation of (I.32), basis

(I.62) x
i0
0 x

i1
1 � � � x

in
n �

@

@xj
; a0i0 C aa1 C � � � aan D aj � a0 j > 0; ik � 0

On the other hand- [SGA-I, Exposé III.5] again- the possibilities for changing the
isomorphism f are a principal homogeneous space under

(I.63) H0.X0; TX0 ˝mn=mnC1/

whose effect on (I.60) is given by the Lie bracket

(I.64) TX0 ! Hom.TF ; TX0=F / W D 7! Œ�;D�

which at the level of global sections has, by explicit calculation, image exactly
(I.62), so a suitable twist of f under (I.63) is a foliated isomorphism. �

We will equally need a slight generalisation, to wit:

I.d.5. Remark. The same statement is equally true under the hypothesis that the
universal cover of Xs is a radial foliation. Indeed for �1 a finite group, all modules
in which the cardinality of �1 is invertible are acyclic, and we’re in characteristic
zero, so the obstruction (I.58) still vanishes and (I.64) is still surjective on global
sections.

I.e. Net completion. The entire contents of this section should be standard, but
it’s not in the EGA’s, so we give the details. We begin with the easiest case, viz:
a local embedding f W Y ! X of (not necessarily separated) schemes. Thus
by definition, [EGA-I, 4.2.1 & 4.5.1], for every y 2 Y there are (Zariski) open
neighbourhoods Y � U 3 y, resp. X � V 3 f .y/, such that

(I.65) f W U ,! V

is a closed embedding. In particular, therefore, we have a short exact sequence

(I.66) 0! I ! f �1OX ! OY ! 0

of sheaves, for some ideal I, and we observe
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I.e.1. Fact/Definition. For every n 2 Z>0, define Ofn WD f �1OX=In, then the
ringed space Yn WD .Y;Ofn/ is a scheme.

Proof. The question is local on Y , so, modulo notation we can, (I.65), suppose
f W Y ,! X is a closed embedding of affines. In particular, therefore, it’s defined
by a quasi-coherent sheaf of ideals J . As such Ofn is the sheaf (on Y ) associated
to the pre-sheaf,

(I.67) U 7! lim
�!

V\YDU

�.V;OX /=�.V;J /n

This is, however, already not only a sheaf, but the structure sheaf, OX=J n, of the
nth thickening of Y in X , so Yn is a scheme. �

For the avoidance of possibly competing definitions when (without relevance to
our current considerations) things fail to be Noetherian or excellent or whatever let
us make

I.e.2. Fact/Definition. A morphism f W Y ! X of Deligne-Mumford champs is
net if it is étale locally a closed embedding, i.e. for every geometric point y of Y
there are étale neighbourhoods U ! Y of y, resp. V ! X of x D f .y/, together
with a closed embedding U ,! V such that

(I.68)

U ����! V??y ??y
Y

f
����! X

commutes. Consequently if everything is Noetherian, then f is net iff the strict
Henselisation Oh

Y;y is a quotient of Oh
X ;x in every point, cf. [SGA-I, Exposé I,3.7].

Now suppose f W Y ! X is a net map of algebraic spaces. Replacing X by
a suitable (embedded) Zariski open, we may by I.68 find étale covers U ! Y ,
resp. V ! X , affording (a not necessarily fibred) square of the form (I.68) in
which U ,! V is a closed embedding. As such R0 WD V �Y V ⇒ V , resp.
R WD U � U ⇒ U are (not necessarily closed unless Y , resp. X is separated)
embedded in V � V , resp. U � U so that the induced functor R0 ! R is a not
necessarily closed embedding, and we make

I.e.3. Fact/Definition. For every n 2 N, Rn ,! R, resp. Un ,! V is the nth
thickening of R0 ,! R, resp. U ,! V , in the sense of Fact/Definition I.e.1.
In particular Rn ⇒ Un is an étale equivalence relation, and we define the nth
thickening, Yn, of Y along f to be the quotient Un=Rn. Consequently if Y is a
scheme, then Yn is too.

Proof. Consider the diagram

(I.69)

R0 ����! RU ����! R

s

??y ??y ??ys
U U ����! V

where the rightmost square is fibred. Thus all the verticals are étale, the rightmost
horizontals are closed embeddings, while the composition of the top row is an
embedding, so R0 ,! R is an open embedding, and whence the source and sink
of Rn ⇒ Un are étale. Finally for any scheme T , the sets R.T /⇒ V.T / form an
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equivalence relation, and we can identify the T -points of Rn with those of R such
that the nth power of the ideal of the fibre over R0 is 0, which since everything is
étale implies that Rn.T /⇒ Un.T / is an equivalence relation. �

This brings us to a net map, f W Y ! X , of champs, then proceeding exactly
as above, (U ! X , V ! Y étale covers etc.) we find that f is equivalent to a

functor R0
F
�! R between groupoids, which as a map is itself net, and whence

I.e.4. Fact/Definition. The nth thickening of Yn along f is the classifying champ
ŒUn=Rn� of the étale groupoid Rn ⇒ Un where Rn is the nth thickening of R0
along the functor F , so, inter alia there is a natural extension fn W Yn ! X of f .

Proof. The fact that Rn ⇒ Un is an étale groupoid is mutatis mutandis the proof
of Fact/Definition I.e.3, and the description of the T -points therein also suffices
to conclude that fn exists. Finally, refining the covers U , V as necessary, the
definition of Yn is, up to equivalence, independent of the given presentation. �

It therefore only remains to make

I.e.5. Fact/Definition. The completion, Y, along a net map f W Y ! X of
schemes is the direct limit, lim

�!n
Yn, in the category of formal schemes of the nth

thickenings fn W Yn ! X of Fact/Definition I.e.3. Similarly the completion, OY ,
along a net map f W Y ! X of champ is the classifier of the étale groupoid which
is the completion, R ⇒ U, along the net functor F W R0 ! R of Fact/Definition
I.e.4. Consequently, by construction, f factors as

(I.70) Y ,! OY
Of
�! X

where the former map is an embedding, and the latter is net.

I.f. Trivial remarks on the analytic topology. As we’ve observed in the proof of
Lemma I.a.4 every separated Deligne-Mumford champ is étale locally the classi-
fier, ŒU=G�, of a (not necessarily faithful) finite group action G � U ⇒ U . An
étale neighbourhood is, however, rarely embedded, so this isn’t quite as convenient
as the corresponding analytic statement, i.e.

I.f.1. Fact. If X=C is a separated Deligne-Mumford champ of finite type, then for
every geometric point, x, there is an étale neighbourhood x 2 � ! X in the
analytic topology together with a finite group action Gx ��⇒ � of the stabiliser
such that Œ�=Gx� ,! X is an open embedding.

Proof. From the algebraic statement: the coarse moduli U=Gx is an étale neigh-
bourhood of the moduli � W X ! X such that we have a fibre square

(I.71)

X  ���� ŒU=Gx�

�

??y ??y
X  ���� U=Gx

There is however an open embedding �0 ,! U=Gx whose composition with the
lower horizontal in (I.71) is an embedding, so ��1.�0/ is embedded in both X and
ŒU=Gx�, while it’s pre-image, �, in U is both embedded and Gx equivariant. �

We will only ever have to consider smooth champs in the analytic topology, but
as it happens, everything works in maximal generality. We require:
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I.f.2. Lemma. IfX is a reduced complex space then the sheaf, RX , of real analytic
functions on X is coherent (as a module over itself).

Proof. The discussion is local, so we can suppose thatX is a closed analytic subset
of U � Cn with finitely many irreducible components X1; � � � ; Xr . Each Xi has
a conjugate NXi and by [Nar66, V, Prop. 8] for any x 2 Xi the complexification
of Xi at x in the real manifold Rn � R.1/n is Xi � NXi . Consequently, op. cit. V,
Prop. 1, [iXi � NXi contains the complexification of X at any x 2 X ; and each
Xi is everywhere locally Zariski dense in Xi � NXi , so X is everywhere locally
Zariski dense in [iXi � NXi . Consequently by op. cit., [iXi � NXi is everywhere
the complexification of X , so by op. cit. V, Prop. 5, RX is coherent. �

This combines with Malgrange’s preparation theorem to afford:

I.f.3. Fact/Definition. If C� is the sheaf of continuous functions on a topological
space, and X=C is a reduced complex space then, functorially in X , there is a
well defined subsheaf, AX ,! CX of smooth functions. In the particular case that
� W X ! X is the moduli of a separated Deligne-Mumford champ,

(I.72) ��AX � AX � ��CX D CX

Proof. First pass to the real analytic functions RX , and for a local embedding
i W X ,! M in a smooth about x 2 X , with ideal IX in RM we have by Lemma
I.f.2 and [Mal02, VI.3.10] an exact sequence

(I.73) 0 RX ˝RM AM  AM  AM ˝RM IX  0

wherein AM ˝RM IX is equally the ideal of smooth functions, AM , vanishing on
X . In particular, therefore, we have an embedding

(I.74) AMX WD RX ˝RM AM ,! CX
Now observe (by way of the obvious diagram chase implied by (I.73)) that ifM has
the embedding dimension ofX at x then for any other smooth embeddingX ,! N

at x, there is a unique isomorphism which fills the right hand side of

(I.75)

RX ����! ANX



RX ����! AMX

in such a way that the diagram commutes. As such X 7! AX is a well defined,
and functorial, while (I.72) is immediate from Fact I.f.1 and (I.74). �

In order to apply this we need another

I.f.4. Lemma. Let � W X ! X be the moduli of a Deligne-Mumford champ and`
˛2AW˛ ! X an open cover (in the classical sense) then up to passing to a

locally finite refinement there are functions

(I.76) �˛ 2 �.X;��AX / with support in W˛ such that
X
˛

�˛ D 1

In particular for M any sheaf of AX -modules,

(I.77) Hq.X ;M/ D 0; 8q > 0
23

http://www.worldscientific.com/doi/pdf/10.1142/S0252959902000213


Proof. Refining as necessary we can suppose that without loss of generality we
have covers

`
˛2A U˛,

`
˛2A V˛ with NU˛ � V˛; NV˛ � W˛ and each of U˛, V˛,

W˛ satisfies Fact I.f.1, i.e. there are étale covers
`
˛2A U

0
˛ ! X , etc.; finite group

actions G˛ ⇒ U 0˛ etc.; G˛ equivariant inclusions NU 0˛ � V 0˛ etc.; and compatible
identifications of U˛ with U 0˛=G˛ etc.. As such if f˛ W W 0˛ ! Œ0; 1� is a smooth
(in the sense of Fact/Definition I.f.3) function which is identically 1 on U 0˛, resp.
identically 0 off V 0˛ then its trace, g˛, is a global section of ��AX supported inW˛
which is identically 1 on U˛, resp. identically 0 off V˛, and

(I.78) �˛.x/ WD
g˛.x/P
ˇ gˇ .x/

does the job. Consequently any sheaf of ��AX modules is flasque, while �� is
acyclic on Q-vector spaces, and whence (I.77). �

We come therefore to the point of the discussion, by way of

I.f.5. Fact. If Y ,! X is an embedding of smooth complex Deligne-Mumford
champ with Y proper, then there are a family of open embeddings Y ,! Ut ,! X
with \tUt D Y and each Y

it
�! Ut

rt
�! Y a deformation retract with itrt homotopic

to the identity.

Proof. The expedient of taking the trace under Gx in Fact I.f.1 affords locally
equivariant metrics which by (I.76) can be patched to a smooth metric, !, on X .
As such at every geometric point x there is aGx equivariant neighbourhood Vx ,!
TX ;x of 0 such that the exponential afforded by ! yields an embedding

(I.79) exp W ŒVx=Gx�! X
On the other hand by (I.77) the exact sequence

(I.80) 0! TY ! TX ! NY=X ! 0

has a smooth splitting, n W NY=X ! TX so exp.n/ restricted to appropriate neigh-
bourhoods of the zero section in NY=X gives what we want. �

This is, of course, just the usual proof of the corresponding fact for smooth
manifolds so it’s worth making

I.f.6. Remark. Slightly, but not much, more subtly if X is Kähler then so is X .

Finally we require a baby GAGA,

I.f.7. Fact. Let X=C be a normal complex analytic champ, i.e. the classifier of
an étale groupoid R ⇒ U in the analytic topology, whose moduli � W X ! X

is a finite map to an algebraic space with algebraic ramification in co-dimension 1
then X is an algebraic Deligne-Mumford champ. Similarly, if Y 0t ! Ut is a smooth
champ finite over the neighbourhoods of Fact I.f.5, then there is an algebraic champ
Y 0 ! Y such that (in the notation of op. cit.) Y 0t is equivalent to r�t Y 0.

Proof. Without loss of generality X is connected, so exactly as in Fact I.a.6, there
is a map X ! X 0 expressing X as a locally constant gerbe in B� ’s for some
finite group � wherein the stabiliser of the generic point of X 0 is trivial, and by
[Art66, 5.1] X0 is algebraic. As to X ! X 0, we must first consider the link in the
sense of Giraud, [Gir71, IV.1.1.7.3], i.e. the representation of �1.X 0/ in the outer
automorphisms of � , but these are the same in the algebraic and analytic categories,
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so the next port of call is the obstruction to the existence of a champ with a given
link. This is, [Gir71, VI.2.3], a class in H3.X 0; Z/, where Z is the centre of
the link, i.e. the locally constant sheaf in the centre of � with induced �1.X 0/

action. By [SGA-IV, Exposé XVI.4.1], étale and analytic cohomology coincide,
while the obstruction vanishes analytically, so there is at least one algebraic champ,
X 0 ! X 0 which is a locally constant gerbe in B� ’s for the same link. Equally X 0
is an analytic champ, so, in either case the equivalence class of all possible champs
with this link is, [Gir71, IV.3.4], the orbit of X 0 under H2.X 0; Z/, and whence
X ! X 0 is algebraic by another application of [SGA-IV, Exposé XVI.4.1]. The
second part about the Ut ’s proceeds mutatis mutandis given Fact I.f.5. �

II. KF NEGATIVE CURVES

II.a. Foliations as groupoids. As we’ve already remarked prior to Definition I.b.1
the point of view of a foliation as an integrable quotient of the cotangent sheaf is
misleading. Rather a foliation should be considered as an infinitesimal equivalence
relation outside of its singularities, and the equivalence of this definition to that
involving linear 1st order data as a non-trivial theorem (not withstanding the trivi-
ality of the proof) specific to characteristic zero. In any case we work over C, and
begin by reviewing the aforesaid equivalence; whence let U be a complex affine
scheme, and F a smooth foliation on U . Notice that U may be singular, or even
non-reduced, so F smooth means that (I.19) is everywhere a locally free rank 1
quotient, or, equivalently, in the notation of op. cit. for some (and indeed any)
embedding of U in a smooth variety M the composition,

(II.1) TF DH om.Q;OU /! TU ! TM ˝ OU

is, since Q is supposed torsion free, an injection of bundles, which, by hypothesis
(immediately post (I.19)) is the case at every generic point. Now observe,

II.a.1. Fact/Definition. Lat U=C be a foliated affine scheme such that TF in (II.1)
is a line bundle, but not that the composition therein is an injection of bundles, i.e.,
if U were normal, and F saturated, a Gorenstein foliation by curves, with D�1F
the OU sub-algebra of D iff�1U generated by TF then for @ a local generator the
dual of the co-product,

(II.2) D�1F ! D�1F ˝OU D�1F W
@n

nŠ
7!

X
iCjDn

@i

i Š
˝
@j

j Š
; n 2 Z�0

respectively, the product,

(II.3) D�1F ˝OU D�1F ! D�1F W @i ˝ @j 7! @iCj i; j 2 Z�0

define a sheaf of adic algebras, OF Dlim
 �
n

H om.D�nF ;OU /, whence a relatively

smooth formal scheme,

(II.4) p W F WD SpfOF ! U

respectively, an infinitesimal groupoid structure,

(II.5) .p1; p2/ W F⇒ U
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factoring through the infinitesimal equivalence relation (all points are equivalent)
defined by Grothendieck’s jets, i.e.

.p1; p2/ WPU D Spf P1U ⇒ U; P1U D lim
 �
n

P.n/
U

F
p1�p2
����! PU

p1�p2
����! U � U

(II.6)

As such (II.5) defines an infinitesimal equivalence relation around x 2 U iff F
embeds via p1 � p2 in PU , which in turn is iff (II.1) is an embedding, i.e. F is
smooth at x.

Proof. The infinitesimal version of the relation all points are equivalent, i.e.

(II.7) .p1; p2/ W U � U ⇒ U

is the completion of the same in the diagonal, � ,! U � U , to wit, in the notation
of [EGA-IV][16.3.1], the formal specturm of the I�-adic algebra in the first line
in (II.6). In particular, therefore, the co-product of differential operators is just the
dual of the product in P1U . Furthermore, PU of (II.6) satisfies the axioms for a
relation in the category of formal schemes, and, op. cit. 16.8.9.1, the product of
differential operators is dual to the pull-back along composition of arrows,

(II.8) c� WP1U !P1
U p�2
˝OX ; p

�
Š

P1U

wherein, as indicated, one should be carefull about the bi-module structure on
P1U . Specifically (since working with sheaf valued operators slightly obscures
op. cit. §16.7-8) given differential operators A, B , we have a map,

P1
U p�2
˝OU ; p

�
Š

P1U
A�B
��! OU W j ˝ k 7! A.jB.k//I fA � B.j ˝ k/ D

A � B.p�1fj ˝ k/; A � B.jp
�
2f ˝ k/ D A � B.j ˝ p

�
1f k/; f 2 O;

(II.9)

and the operator composition, AB , is the composite of (II.9) with (II.8). In any
case, dualising just puts everything back the way it was modulo the fact that things
aren’t reflexive at singularities. More precisely, by (II.2),

(II.10) OF D OU ŒŒ@
_��; @_.@/ D 1; p�1f D f; p

�
2 .f / D

1X
nD01

@n.f /@�n

nŠ

so not only is (II.4) formally smooth (even if U were nowhere reduced) the graded
algebra in the adic filtration afforded by its trace is canonically SymKF . On the
other hand the graded algebra of the I�-adic structure on the jet groupoid is a
quotient,

(II.11) Sym�U � grP1U

so F embeds in PU iff KF is a quotient of �U . �

Rather more picturesquely, what we have done at the smooth points is to add an
infitesimal germ of the leaf in the p�2TF direction for each point in the diagonal,
which we have completed as a groupoid at the singularities. However as noted at
the end of Fact/Definition II.a.1, cf. Further Claim II.c.2, this is never a relation at
the singular points, so the image of the smooth groupoid (II.5) in the jet groupoid,
(II.6), always degenerates at such, to wit:
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FIGURE 1. Relation afforded by a groupoid with an essential singularity.

In any case the infinitesimal nature of Fact/Definition II.a.1 renders its extension
to a Deligne-Mumford champ, X , automatic since by definition this is equivalent
to a groupoid with étale source and sink so there are well defined sheaves of nilpo-
tent OX -algebras, P.n/

X of n-jets, and of course idem, modulo replacing nilpotent
by topologically so, for the inverse limit P1X . Equally the formation of the for-
mal spectrum is a local construction, while both the projectors and the diagonal
embedding patch, i.e. the étale local nature of (II.6) affords,

II.a.2. Definition. The jet groupoid of a Deligne-Mumford champ X is the formal
champ,

(II.12) PX D Spf P1X ⇒ X

with (formally representable) source map p1, sink p2, and identity the diagonal.

We have, however, already met a better description of this in Fact/Definition
I.e.4 to wit,

II.a.3. Fact/Definition. For every n 2 Z�0,

(II.13) Spec.P.n/
X /⇒ X

is the nth thickening, in the sense of Fact/Definition I.e.4, of X along the diagonal
� W X ! X �X , so the jet groupoid of Definition II.a.2 along with the projections
p1, p2 is the net completion of X along the diagonal. Consequently (II.12) is a
honest groupoid, i.e. the source p1, sink p2, identity, inverse and composition are
representable maps identically satisfying the axioms of a groupoid, and not just up
to equivalence. In particular the composition is strictly associative. Similarly if
X ! ŒX=F � is a foliation in curves given by a line bundle TF ,

(II.14) TF ! TX

then (II.2)-(II.5) are valid as stated, so there is an infinitesimal groupoid

(II.15) .p1; p2/ W F⇒ X

where, again source, sink, identity, inverse and composition are representable maps
satisfying the groupoid axioms identically. In particular the identity/diagonal, � W
X ! F is a section of either projection and, there is an isomorphism,

(II.16) N�=F
�
�! O�.TF /
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Proof. Let .s; t/ W R⇒ U be a presentation of X then the sheaf of algebras P.n/
X ,

n 2 Z�0, defined, immediately priori to Definition II.a.2, by étale local patching
may be identified with the sheaf of functions on the classifier of the groupoid,

(II.17)

Spec.P.n/
U /

Spec.t�/
 ������
 �������

Spec.s�/
Spec.P.n/

R /??y ??y
U

t

 ����
 ������

s
R

and in the limit n ! 1 we can replace Spec in (II.17) by Spf to obtain a pre-
sentation in formal schemes of (II.12). At the same time, by Fact/Definition I.e.4,
a presentation of the nth thickening of X along its diagonal, is given by the nth
thickening of the diagonal in,

(II.18)

R ����!
�

R �R

s

??yt s�s

??yt�t
U

�
����! U � U

so that such a tickening is exactly (II.17). As to the groupoid axioms, the com-
position of the diagonal in the top row of (II.18) with either projection is, rather
than just equivalent to, the identity functor, so, a fortiori, the diagonal affords the
identity after net completion. Similarly the transposition,

(II.19) T W R �R! R �R W .f1; f2/ 7! .f2; f1/

respects the nth thickening and satisfies T 2 D id, while the composition given by,

(II.20) .R �R/p2 �p1 .R �R/! .R �R/ W .f1; f2/ � .g1; g2/ 7! .f1; g2/

respects net completion and is strcitly associative. Similarly the bundle TF of
(II.14) generates sheaves of modules,

D�1F D lim
�!
n

D�.n/F ! lim
�!
n

D iff�.n/X D D iff�1X ; whose duals,

OF D lim
 �
n

OFn DH om.D�.n/F ;OX /; F WD Spf.OF/
(II.21)

are sheaves of nilpotent OX -algebras, supported on the diagonal, with limit an
adic algebra with trace X . In particular, (II.16) is immediate from (II.21), while
the fact that we have a groupoid in representable maps satisfying the groupoid
axioms identically is just the independence of p�2 from the choice of @ in (II.10).
Alternatively, if the foliation is smooth at every generic point then the identity,
inverse, and composition satisfy the groupoid axioms identically because the jet
groupoid does. �

Notice in particular that the diagonal is actually embedded in the jet groupoid,
so its worth making,

II.a.4. Remark. At a geometric diagonal point x � x in X � X , its automorphism
group is simply Aut.x/ � Aut.x/. Inside this group we have a copy of Aut.x/
sitting diagonally. Now any attempt to define diagonal type subgroups of automor-
phisms for off diagonal points, and whence define an actual étale “neighbourhood”
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in which X embeds in some sort of diagonal way, is doomed to failure. At the
infinitesimal level this can be, and is, achieved by net completion in the diagonal,
or equivalently the étale local description of Definition II.a.2.

II.b. Chow’s Lemma. We’ll confine ourselves to that which is strictly necessary
for applications. Our interest centres on smooth formal champs F whose trace C is
a smooth proper champ of dimension 1 over C. From our utilitarian point of view
we’ll confine ourselves to the case where dimF D 2. Irrespectively there is a well
defined normal bundle NC=F, and we make,

II.b.1. Definition. F is a concave formal neighbourhood of C if deg.NC=F/ > 0.

Unsurprisingly the classical Chow lemma continues to hold, i.e.

II.b.2. Lemma. (Chow, Grauert et al.) Let L be a line bundle on F then there is a
quadratic polynomial PL, depending on L, such that for all n 2 N,

(II.22) h0.F; L˝n/ � PL.n/ :

Proof. Let Fm be the mth-thickening of C then we have an exact sequence,

(II.23) 0! SymmN_C=F ! OFmC1 ! OFm ! 0 :

On the other hand if h0.C; Ln ˝ SymmN_C=F/ ¤ 0, then,

(II.24) mdeg.NC=F/ � ndegC.L/ :

Consequently for any n 2 N,

(II.25) H0.OFmC1 ˝ L
n/ ,! H0.OFm ˝ L

n/

is injective, provided m > M WD n degC.L/deg.NC=F/
�1 and

H0.F; L˝n/ D lim
 �
m

H0.Fm; L
˝n/; so;

h0.F; L˝n/ �

MX
kD0

h0.C; Ln ˝N�kC=F/:

(II.26)

Equally, by [BN06, 1.1] there is a map, � W C ! C from an honest curve, while for
any bundle E, h0.C; E/ � h0.C; ��E/, so we conclude by Riemann-Roch. �

II.c. Bend & Break. We are now in a position to extend the results of [BM16], so
to this end let X ! ŒX=F � be a foliated Gorenstein normal champ with projective
moduli space � W X ! X , and H an ample bundle on the latter. As ever the basic
object of study is KF negative curves on X , i.e., profiting once more from [BN06,
1.1], maps f W C ! X from a smooth curve such thatKF �f C < 0. Consequently
if we consider the infinitesimal groupoid of (II.15) as fibred over X via p WD p1,
then base changing along f affords,

(II.27)

F  ���� FC ����!
p�p2

C � X

pWDp1

??y ??yp
X  ����

Qf

C
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Furthermore, the identity map of the groupoid gives a section s of p of the left,
thus a fortiori of the right, vertical arrow in (II.27), so, by II.16, FC is a concave
neighbourhood of s.C / in the sense of Definition II.b.1, and we assert,

II.c.1. Claim. The Zariski closure of the image of FC in C � X is irreducible of
dimension at most 2, and exactly 2 if f does not factor through the singular locus
Z D sing.F/.

Proof. Let Y be the Zariski closure, which is irreducible since FC is. Moreover X
is projective by hypothesis, thus C �X admits an ample line bundle L and,

(II.28) H0.Y; L/! H0.FC ; L/

is injective by the definition of Y , so the Chow lemma, Lemma II.b.2 does the first
part. As to the second, by hypothesis there is an étale neighbourhood U ! X of
the generic point of f .C / on which the foliation is smooth. As such, by (II.6) et
seq., we have an embedding,

(II.29) FU
p1�p2
����! U � U

thus for B D f �1.U / ! C , we have an embedding of FB WD FC �C B in the
étale neighbourhood Y �C�X .B � U/ of Y so the dimension of the latter is at
least two. �

Now let Y0 WD Y �X X then, bearing in mind that C is smooth, we additionally
assert,

II.c.2. Further Claim. Let �0 W FC ! Y0 be the natural map afforded by the
definition of fibre products, and s W C ! FC the trace then around �0s.C /, the
singularities of Y0 can be resolved (by a possibly zero length) chain,

(II.30) Y0  Y1  � � �  Yn
of blow ups in closed points of �0s.C /, and proper transforms thereof. Moreover,
if Y WD Yn is the shortest such resolution, then for all 0 � i � n, there are liftings
�i W FC ! Yi , and � WD �n is étale.

Proof. If the claim is true locally then it’s true since a postiori the singularities of Y
around �0s.C / and its proper transforms are isolated so (II.30) is just the minimal
resolution obtained by blowing up in the same, while any �i agrees with �0 on a
dense set, so it lifts globally iff it lifts locally. As such we can replace X by an
étale neighbourhood U ! X of the image of a closed point c of B , for some étale
B ! C , F by a formal scheme, F , with trace B , and identify Y with a closed
subvariety V ,! B �U . Now, let @ be a local generator of the Gorenstein foliation
F on U , and @2 its pull back to B �U via the 2nd projection, then, (II.10), V is @2
invariant, which in turn lifts to F , and either implied foliation is just the projection
to B . Consequently, from,

(II.31)

0 ����! �B ����! �F js.B/ ����! KF js.B/ ����! 0


 x??��0 



0 ����! �B ����! �V j�0s.B/ ����! KF j�0s.B/

wherever @2 is non-singular, the bottom arrow in (II.31) is surjective, so Y is
smooth and �0 is étale. Equally if it is singular around a maximal ideal m of OV ,
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then, by definition, m is @2 invariant, and whence ��10 m is too. However, @2 is ev-
eryhwere non-singular on F , so the latter ideal is the pull-back along F ! B of an
ideal on B . In particular, therefore, it is Cartier and �0 lifts to a map �1 to the blow
up of V in any singular point of @2 contained in the image of s.B/. Now, plainly,
none of the above changes if we replace �0 by �1, so it suffices to observe, [BM97,
1.3.3] that, after a finite sequence of such blow ups, @2 is everywhere non-singular
around the proper transform of �0s.B/. �

As such, on replacing Y0 by Y D Yn, and �0 by � D �n, of our Further Claim
II.c.2, we arrive to,

II.c.3. Final Claim. For Y=C viewed as a C -champ via Y ! Y ! C �X ! C

there is an étaleC -map � W FC ! Y . In particular, therefore, if for ease of notation
we confuse s and �s,
(a) Y is smooth in a neighbourhood of s.C /.
(b) KY=C �s C D KF �f C .
(c) The 2nd projection yields a map of foliated champs .Y=C /! .X ! ŒX=F �/.

Proof. We’ve done everything in (II.c.2) except possibly (b) which is (II.16). �

Before proceeding to produce rational curves in Fact II.c.5 from our Final Claim
II.c.3 it is opportune to make,

II.c.4. Remark. The resolution procedure in Further Claim II.c.2 is really a reso-
lution procedure for the foliation p�2F in a neighbourhood of the diagonal � !
X � X . As with all resolution procedures, it’s more demanding to achieve it with
smooth centres, but the key point here is to make p�2F smooth around the proper
transform of the diagonal, and this can be achieved with a single blow up in the
diagonal of the singularities. Specifically, the question is local, so, say, U ,! M

an embedding of an affine scheme into a smooth, with coordinates x1; : : : ; xn on
M restricting to functions on U , then since F jU is Gorenstein, we may, on shrink-
ing U as necessary, suppose that the foliation is defined by a vector field @ on U ,
which we write using the summation convention as,

(II.32) @ D ai
@

@xi

As such the ideal IZ of the singular locus Z is .ai /. Now introduce xi ; yi as
coordinates on U � U via the first, respectively second, projection, and put ´i D
xi � yi , then in ´i ; xi coordinates,

(II.33) p�2@ D p
�
2ai

@

@yi
D �p�2ai

@

@´i
:

Now the diagonal embedding of Z has ideal .p�1ai ; ´i / so on the proper trans-
form Q� of � not only can we locate each point in some p�1ai ¤ 0 patch for an
appropriate i , but even,

(II.34) @

�
´i

p�1ai

�
D
�p�2ai

p�1ai
D 1C

.p�1ai � p
�
2ai /

p�1ai
:

so p�2@ is everywhere smooth around Q�.

In any case, the following, together with our Final Claim II.c.3, affords invariant
rational curves through a generic point of the image of C .
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II.c.5. Fact. Suppose in addition to items (a) & (b) of Final Claim II.c.3 a family
p W Y ! C of uni-dimensional champ with a section s satisfies KY=C �s C < 0

then there is a finite extension C.C /! K such that YK is dominated by P1K .

Proof. We may, without loss of generality, suppose that Y , and indeed any base
change thereof, is normal. In particular, therefore, Fact I.a.6, there is a fibration
Y ! Y0 expressing the former as a locally constant gerbe over a normal-fold,
so that by [BN06, 1.1] we may further suppose that Y D Y0. As such if the
generic fibre of p is not dominated by a rational curve then, op. cit., there is a finite
extension C.C /! K such that Y�CK is an orbifold of the form ŒSK=G� for some
non-rationalK-curve SK and finite groupG acting generically freely. Denoting by
Y the moduli of Y , and identifying K with the function field of a smooth curve B ,
we can suppose that SK is the generic fibre over B of the integral closure S of Y
in the function field of SK . The normalisation S of the fibre Y �Y S is, therefore,
a gerbe over S with generic fibre SK . Consequently, by purity, q W S ! Y is
ramified only in components of fibres of Y ! C . In addition q is étale locally
Galois since S ! Y is and Y ! C is smooth in a neighbourhood of the section
s.C /, so by [SGA-I, Exp. XIII, Cor. 5.3], q is étale locally around s.C / the
extraction of roots of fibres. As such, by the simple expedient of taking C.C /! K

sufficiently large, we can suppose- around s.C / and it’s pre-image- that q is scheme
like and S is smooth. Better still since q is only ramified in fibres,

(II.35) KS=B D q
�KY=C ; and thus, KS=B �Qs B < 0;

for any lifting Qs of s. Consequently, we may from from either [BM16] or the
classical theorem of Arakelov, [Szp81], conclude to the absurdity that the generic
fibre of S ! B is a rational curve. �

The fibres of p in Fact II.c.5 may not themselves be rational curves, and it is
convenient to give them a name, to wit

II.c.6. Fact/Definition. A smooth connected 1-dimensional Deligne-Mumford ch-
amp, L, over a field k is said to be parabolic if its geometric fibre is dominated by
a rational curve. Rather conveniently this occurs, [BN06, 1.1], iff the topological
Euler-characteristic, �.L/, is strictly positive.

From which we can proceed to our conclusion

II.c.7. Proposition. Let X ! ŒX=F � be a foliated normal gerbe over a projective
variety X , which is foliated Gorenstein along some KF negative curve C0 � X

around the generic point of which F is a non-singular foliation of X , then for a
generic c 2 C0 there is an invariant parabolic champ, gc W Lc ! X such that for
M any nef. R-divisor on X , and jj the moduli,

(II.36) M�jgc j jLcj � 2
M�f C

�KF � C

Proof. We apply the Final Claim II.c.3 with C a curve mapping to the normalisa-
tion of the gerbe over C0 in X . By Fact II.c.5 the generic fibre of Y ! C is an
invariant parabolic champ, so it only remains to produce the degree bound. To this
end identify the image of the section s with a curve C such that C 2 D �KF � C
in the normal surface which is the moduli. Whence if L is a generic fibre of the
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same, M is notationally confused with the restriction of the given nef. R-divisor,
and x 2 R>0 then by the Hodge index theorem,

(II.37) 2x � .L �M/C 2 � .LC xM/2 C 2 � fC � .LC xM/g2

so taking x D .M � C/�1 we conclude. �

The same proof works, under the weaker hypothesis that only a neighbourhood
of C0 in the moduli is projective. More interestingly, the presence of even the most
mild non-scheme like structure on X can necessitate the precision of Proposition
II.c.7 that the existence of a parabolic invariant champ L 3 c is only guaranteed
for generic c. Indeed:

II.c.8. Remark. Take a sectionC with positive square of a Hizerbruch surfaceP !
C . In the fibre through some c 2 C , choose some set Q of points off C , and for
q 2 Q let nq 2 N>1 be given. Choose a germ of a smooth curve, 
 transverse
to the fibre Pc at q. Blowing up in q, we get the proper transform 
1 of 
 , we
then blow up in the point where this crosses the exceptional divisor, and repeat this
process nq times before blowing down the first nq�1 curves. The resulting surface
S then has isolated cyclic quotient singularities with monodromy Z=nq at each q
in the proper transform of Pc , which itself meets at each q a rational curve in the
fibre, but the said proper transform is the only component of the fibre meeting the
section. Passing to the Vistoli covering champ, we see the necessitate for taking
c 2 C generic in Proposition II.c.7, since the gerbe over the proper transform fails
to be parabolic as soon as,

P
q.1 � 1=nq/ > 2.

II.d. The Cone of Curves. We may now apply the basic estimate of Proposition
II.c.7 to the cone of curves of a foliated Gorenstein normal champ X ! ŒX=F �
over C. Indeed, more precisely, we have,

II.d.1. Fact. Let X ! ŒX=F � be a foliated Gorenstein normal champ with log-
canonical singularities in dimension 1 and projective moduli, then there are count-
ably many F-invariant parabolic, champ Li , with, 0 < �KF � Li � 2 such that,

(II.38) NE .X /R D NE .X /KF�0 C

X
i

RC Li

where NE .X /KF�0 is the sub-cone of the closed cone of curves on which KF is
non-negative. Better still the RC Li are locally discrete, and if R � NE .X /R is
an extremal ray in the half space NEKF<0 then it is of the form RC Li .

This is a wholly formal consequence, as per [Kol96, III.1.2], of the following
variant of Proposition II.c.7.

II.d.2. Variant. Let X ! ŒX=F � be as above, and C0 � X a KF -negative curve
in the moduli, then for generic c 2 C0 there is a F-invariant parabolic champ
Lc 3 f .c/ in X with 0 < �KF �Lc � 2 such that for all nef. R-divisors M on X ,
and jj the moduli,

(II.39) M� jLcj � 2
.M� C0/

�KF � C0
:

The variant requires a couple of facts of independent interest to wit

II.d.3. Fact. If Z is the singular locus of a foliated Gorenstein-champ X ! ŒX=F �
with log-canonical singularities in dimension 1, then OZ.KF / is semi-ample.
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Proof. Consider the linearisation map, i.e. the composition of,

(II.40) D W IZ=I2Z
d
�! �X ˝Ox OZ �! KF ˝ IZ=I2Z

By the Leibniz rule, this map is OZ linear, and since the singularities are log-
canonical in dimension 1, for ´ 2 Z outside a finite set, some symmetric function
of D defines a section over Z , non-vanishing at ´, of some power K˝nF , [MP13,
I.ii.4], and we conclude by the Zariski-Fujita theorem. �

II.d.4. Fact/Definition. Let X ! ŒX=F � be a foliated Gorenstein champ; f W
L ! X the normalisation of an invariant uni-dimensional champ not factoring
through the singular locus Z; �.L/ its topological Euler-characteristic; and sZ.f /
the Segre class of f along Z , i.e. the multiplicity (counted with stabilisers) of the
pre-image f �1IZ of the ideal of singularities, then

KF �f L D ��.L/ � Ramf C sZ.f /

� ��.L/C
X

l2f �1.Z/

jAutL.l/j
�1(II.41)

Proof. The image of f ��1X in�1L is always�1L.�Ramf /, while in the particular,
(I.20), it’s also f �KF :f

�1IZ , which proves the 1st line in (II.41). To get the
second, observe that in characteristic 0 f can only ramify where it meets Z , while
if f W �! U is a local branch of f meeting a singularity in f .0/, and

(II.42) @ D a1
@

@x1
C � � � C an

@

@xn

is a local generator of F with xi coordinates on a smooth embedding of U then the
local contribution to �Ramf C sZ.f / is

�min
i
ford. Pxi .t//g Cmin

i
ford.f �.ai //g; f W t 7! xi .t/

D1C .min
i
ford.f �.ai //g �min

i
ford.f �.xi //g/ � 1

(II.43)

whence the 2nd line on correcting for the order of the stabiliser. �

At which point we can return to

proof of Variant II.d.2. By Fact II.d.3 we need only prove the variant under the
additional condition present in Proposition II.c.7 that the foliated champ is non-
singular over a generic point of C0. As such re-taking the notation of the proof of
op. cit., we have a bi-dimensional champ p W Y ! C whose fibres map invariantly
by g to X , which is the normalisation of its image. The said image, A, say, admits a
possibly non-saturated, injection TF ! TA. Every component of the singular locus
is invariant by every vector field, so by [BM97], normalisation (in characteristic 0)
can be realised in co-dimension 1 by a sequence of blow ups in F-invariant centres.
Thus g�TF maps to TY=C in co-dimension 1, whence, everywhere since Y , and
therefore TY=C , is S_2. Consequently for generic c 2 C ,

(II.44) �KF �gc C � TY=C � C
while by the adjunction formula of Fact/Definition II.d.4, and smoothness of Y in
co-dimension 2, we have,

(II.45) TY=C � Yc D ��.Yc/ � 2
so, indeed �KF �gc C � 2 for generic c as required. �
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In particular, under the hypothesis of log-canonical singularities in dimension
1, KF -negative curves are never contained in the singular locus of the foliation,
and we proceed to examine the possibilities for KF negative invariant parabolic
champs outside the same. Whence let f W L ! X be the normalisation of such,
which we express as a locally constant gerbe, � W L! L0, over a champ without
generic stabiliser, then by (II.41),

(II.46) 0 >
KF �f L
.L W L0/

� �2C ] f �1.Z/C
X

q…�f �1.Z/

.1 �
1

dq
/

where in the sum, dq is the order of the local monodromy, and ] means integer
valued cardinality of a set. As such,

II.d.5. Fact/Definition. For a Gorenstein foliation X ! ŒX=F � in the presence
of log-canonical singularities in dimension 1, an irreducibleKF -negative invariant
champ (or just an irreducible KF -negative invariant champ whose generic point
meets the smooth locus of the foliation if there are no hypothesis on the singular-
ities of X ! ŒX=F �) has a normalisation, f W L ! X , with L parabolic, and
furthermore:

(a) The pre-image under f of the singular locus Z is supported in at most 1
point.

(b) If this pre-image is ¤ ;, then L0 has at most one non-scheme like point
outside it.

(c) If there is no such singular point X ! ŒX=F � is generically a fibration in
parabolic champs.

Proof. Items (a) and (b) are clear from (II.46) which leaves (c). In this case f is
an embedding whose normal bundle is flat via the representation afforded by the
linear holonomy, while �1.L/ is finite, so, for Qf W QL! X the composition with the
universal cover, the deformations of Qf are (locally) a smooth space of dimension
dim.X / � 1, and every deformation of Qf is invariant. �

II.e. Singular structure of KF -negative curves. Throughout this section f W
L! X is a map from a smooth invariantKF -negative curve with the further spec-
ifications of Fact/Definition II.d.5. In particular f is an embedding everywhere
except possibly at a point p 2 f �1.Z/. At p, however not only may the mon-
odromy exceed that of the generic point of L, but f may fail to be an embedding
because it has a cusp and/or because the image is not uni-branched. Nevertheless
there is a certain limit to the complication, whose description is the goal of this
section, i.e.

II.e.1. Fact/Definition. Let everything be as in Fact/Definition II.d.5 albeit we in-
sist that X ! ŒX=F � has log-canonical singularities, and suppose moreover that
f �1.Z/ ¤ ; with p W pt ! L the resulting geometric point, then the étale local
contribution, (II.43), to �Ramf C sZ.f / at p is exactly 1. As such by (II.41) and
(II.46)

(II.47) KF � L D �1=d
where d is the maximum value of a stabiliser of L outside p, which is either at-
tained at a unique point or is the same everywhere in the complement of p, and we
refer to such curves as � 1

d
F curves.
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We proceed by a series of lemmas beginning with

II.e.2. Claim. The foliation F , by way of restriction over the generic point, affords
a singular derivation of L.

Proof. We re-take the notation of (II.42)-(II.43) in the proof of Fact/Definition
II.d.4. It therefore follows exactly as in the proof of Variant II.d.2 that @ defines a
derivation of O�, and it remains to prove that it’s actually singular at p. To see this
observe that if b W QX ! X were the blow up in p then the induced foliation (under-
stood without saturation if the singularities are not canonical, i.e. locally defined
by b�@) cannot (by the Frobenius theorem) be smooth where the proper transform
of f crosses the exceptional divisor. On the other hand, a sequence of blow ups in
singular points resolves any singularity of any branch of f , so for b W QX ! X now
a chain of such, we can suppose that the proper transform Qf W L ! QX is an em-
bedding crossing the exceptional divisor in a singular point, Qf .p/, of the regular
derivation b�@, i.e. @ affords a singular derivation of O�. �

Applying Claim II.e.2, we can, in the said notation, write the restriction to L of
a generator étale locally as

(II.48) @ D yrC1u.y/
@

@y
; u.y/ 2 O��; r 2 Z�0;

and the content of Fact/Definition II.e.1 is that r D 0. All of which is a useful, if
non-essential, point of reference in establishing our next

II.e.3. Claim. Understanding X ! ŒX=F � in the log-sense of Remark I.b.2 if
necessary, cf. Revision I.b.10, without loss of generality X in Fact/Definition II.e.1,
is a smooth champ.

Proof. By [BM97] there is a F-equivariant resolution of singularities

(II.49) b W QX ! X
So that understanding QX ! Œ QX= QF � in the log-sense if necessary the canonical
bundle is unchanged. As such if b is an isomorphism at the generic point of f ,
there is a unique lifting Qf W L ! QX satisfying the hypothesis of Fact/Definition
II.e.1, and there is nothing to do. It may, however, happen that b is a modification
around the image of f . Nevertheless every component of the fibre over the said
image is invariant, amongst which we choose one over the generic point of f and
normalise it to get a not necessarily fibred square

(II.50)

QX  ����
F

Y

b

??y ??yB
X

Qf
 ���� L

wherein any vector field along F on the bottom left hand corner lifts naturally
everywhere else. In particular, therefore, there is a possibly very far (even logarith-
mically) from saturated (cf. Claim II.e.2) bundle of derivations

(II.51) F �b�TF ! TY
whose singular locus is contained in B�1.p/, so that the restriction

(II.52) F �b�TF jsing.F �b�TF /
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is trivial. On the other hand b, and whence B , is relatively projective, so Y has
projective moduli and since (II.52) provides an appropriate variant of Fact II.d.3
we may, since it makes no other use of saturation, apply Fact II.d.1 to conclude
that there are F �b�KF D B

�f �KF -negative invariant curves

(II.53) Qf W QL! Y ! QX

lifting f . Of course, plausibly, QL ! L is ramified over p, but this would only
cause a non-zero value of r in (II.48) to go up. �

Now, as we’ve said, and item (a) of Fact/Definition II.d.5 notwithstanding, the
image of f in X can even fail to be uni-branch. However

II.e.4. Claim. Hypothesis as in Claim II.e.3, then without loss of generality f is
an embedding.

Proof. In an easier variant of the proof of Claim II.e.3: given f W L! X with X
smooth, we can find a composition, b W QX ! X , of blow ups in singular points of
the foliation such that the unique lifting Qf W L! QX is an embedding. �

At which juncture we have a well defined normal bundleNL=X and a specialised
foliation to the same. Indeed somewhat more generally

II.e.5. Fact/Definition. Let f W Y ! X be net, Fact/Definition I.e.2 albeit that
much more, Fact/Definition I.e.5, is true, descent yields a well defined normal
cone CY=X . Specifically if V ! X is étale, then there is a sufficiently small étale
neighbourhood U of any geometric point of Y �X V such that U ,! V , and the
pull-back to U of the associated cone is,

(II.54) SpecS WD

1M
nD0

InU;V

InC1U;V

:

In particular if the image of f is invariant, then the foliation leaves IU;V invari-
ant, so a local generator @ of TF passes to a graded derivation of S by way of
applying it to any lifting of an element in the nth-graded piece, and then reducing
modulo InC1U;V . This process may not immediately lead to a foliation, but only a
pre-foliation, i.e. the specialisation may not be saturated. Nevertheless, for ease of
notation, cf. Claim II.e.3, we continue to ignore such a distinction, which, in any
case, we’ll clear up in Claim II.f.1. Irrespectively, if Y is a smooth invariant curve
not factoring through the singular locus, Z , for y a coordinate along U around
a point of f �1.Z/, and xi normal coordinates the specialisation of @ takes, by
(II.48), the form,

(II.55) @ W y 7! b.y/ D yrC1u.y/@y ; xi 7! aij .y/ xj D @xi both mod IU;V

where the summation convention is employed, so, equivalently the specialisation
may be viewed as a connection on NY=X with singularities.

Via Claim II.e.3 and Claim II.e.4 this may be applied to the case in point, i.e.

II.e.6. Fact. Let X ! ŒX=F � be a foliated smooth champ, and f W L ! X
an invariant net map from a (smooth) parabolic champ not factoring through the
singularities such that KF �f L < 0 then either r D 0 or the linearisation, (I.26), N@
of a generator at the singular point is nilpotent.
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Proof. Without loss of generality, L is simply connected so L �
�! P.d; e/ for

some d; e 2 N, [BN06, 1.1]. We thus have an explicit description of L, to wit:

(II.56)

Gm
t 7!t�e

�����!
ˇ

U 0
�
�! A1 ! ŒA1=�d � ,! L

t 7!td

??y˛
U

�
����! A1 �! ŒA1=�e� ,! L

Furthermore, by Fact/Definition II.d.5, we may suppose that the pre-image of the
singular locus is a point p which we identify with 0 (the origin in U ) while 1
will denote the origin in U 0. Consequently by Fact I.c.7 there is a longitudinal
coordinate y, resp. �, and normal coordinates xi , resp. �i in neighbourhoods of 0,
resp. 1 such that

(II.57) ˇ�� D t�e; ˛�y D td ; ˇ��i D t
�ai˛�xi

where the integers ai are afforded by the Harder-Narismhan filtration

(II.58) NL=X
�
�!

a
i

OL.ai /

so, the basis xi , resp �i may even be supposed �e, resp �d invariant, i.e.

(II.59) .�; xi / 7! ��aixi ; .ı; �i / 7! ı�ai �i ; � 2 �e; ı 2 �d

Irrespectively, TF
�
�! OL.e�dr/, where by hypothesis e > dr , and we normalise

generators around 0 and1 according to

(II.60) @0.y/ D dy
rC1; @1.�/ D �e

so that for a specialised foliation described, cf. (II.55), by matrices A, resp. B ,
over U , resp. U 0,

(II.61) A.td / � tdr� D
1

te�dr
DB.t�e/D�1

where �, resp. D, is the diagonal matrix with entries ai , resp tai . Consequently
if we order the ai to be decreasing in i , then every i � j th entry of DBD�1 on
the right of (II.61) is a polynomial in t�1, so from e > dr , A.td / is an upper
semi-triangular matrix with diagonal ai tdr , and whence the said linearisation is
nilpotent if r > 0. �

By Revision I.b.5 this completes the proof of Fact/Definition II.e.1, and merits,

II.e.7. Remark. The difficulty in Fact/Definition II.e.1 comes from the fact that if
X were the completion in the singularity p,

(II.62) H0.X; TF /

may not contain a generator, @. Indeed supposing f an embedding (just to fix ideas
since it’s of no importance) so that the monodromy, G, at p acts on the coordinate
y of (II.48) by a character, 
 , then

(II.63) @� D @ ) 
.�/r D 1 � 2 G
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On the other hand from the adjunction formula of Fact/Definition II.d.4, in the
notation of (II.46)

(II.64)
KF � L
.L W L0/

D
r

ord.
/
�
1

dq

which from (II.63) is non-negative as soon as r > 0. There is, however, not only no
way to guarantee that (II.62) contains a generator, but this may well be impossible
on every birational model with log-canonical singularities since this is the root
cause, [MP13, III.iii.3.bis], of why log-canonical resolutions need not exist in the
category of varieties.

II.f. Linear Holonomy of, at worst, nodal � 1
d
F Curves. Throughout X !

ŒX=F � is a (saturated) foliation of a smooth complex Deligne-Mumford champ;
f W L ! X is a � 1

d
F curve, with f net, and L smooth. As such we have the

specialised foliation of Fact/Definition II.e.5 to the normal bundle, NL=X , and,

II.f.1. Claim. The specialised foliation is in fact saturated.

Proof. Suppose L is simply connected (which one can always reduce to by [SGA-I,
Exposé I, 8.3], or [McQ15, IV.a.2] in a slightly more appropriate generality, and
Fact/Definition I.e.5) then by the definition of a � 1

d
F curve we have r D 0 in

(II.61), while lack of saturation is equivalent to the matrix A of op. cit. being
divisible by t which can only happen if the matrix � therein is 0, i.e. the normal
bundle is trivial. Thus, exactly as in the proof of Fact/Definition II.d.5, f moves
in a covering family, ft , of disjoint invariant parabolic champ each of which must
meet sing.F/ for numerical reasons- i.e. KF �f L D KF �ft L, (II.41), and generic
ft a generic embedding- so the singular locus of F must be a divisor. �

Thus we can cease to worry about whether the foliation is a saturated or not, and

II.f.2. Set Up. We further suppose that L is simply connected, i.e. it is the weighted
projective champ P1.d; e/ of Definition I.c.1.

In particular therefore we can describe the total space, N WD NL=X ! L, of the
normal bundle as the classifying champ ŒE=Gm� of the action

(II.65) .y0; y1/ � .x1; � � � ; xn/ � � 7! .�dy0; �
ey1/ � .�

aixi /; � 2 Gm

on E WD .A2n0/ � An/, where as in Fact II.e.6 the weights

(II.66) a1 � a2 � � � � an

are those of the Harder-Narismhan filtration of Fact I.c.7 of the normal bundle.
Consequently if � W E ! N is the projection then the tangent space to the normal
bundle is described by an Euler sequence of Gm-equivariant, cf. Fact/Definition
I.c.2, bundles

(II.67) 0! O
17!�
���! TE D O.d/q O.e/qi O.ai /! ��TN ! 0

where � is the radial, cf. Definition I.d.2, vector field

(II.68) � WD dy0
@

@y0
C ey1

@

@y1
C a1x1

@

@x1
C � � � C anxn

@

@xn
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Now by Fact/Definition II.e.1 the canonical bundle of the specialised foliation is
O.�e/, while for any Gm-equivariant coherent sheaf E we have, in the notation of
Definition I.c.1, a Höschild-Serre spectral sequence

(II.69) Hp.BGm ;H
q.Ak; E//) HpCq.P1.d; e/; E/

and whence by Fact I.c.3

(II.70) H1.BGm ; �
�KF / D 0

Combining this with (II.67) implies that the specialised foliation on the normal
bundle is defined by a vector field @ on the total space E such that

(II.71) @� D ��e@; � 2 Gm
At the same time, by construction, (II.55), there are functions Fp, Aij in CŒA2�
such that

(II.72) @ D F0
@

@y0
C F1

@

@y1
C Aijxj

@

@xi
; 1 � i; j � n

where as per op. cit. we employ the summation convention. As such from (II.66),
(II.71), and our normalisation, (II.56), that the singularity is at .0; 1/,

(II.73) F0 D 0; F1 2 C�; Aij ; is ai � aj � e weighted homogeneous.

In particular therefore, by (II.66), Aij is an upper semi-triangular matrix with 0
diagonal. We can, however, do better, to wit:

II.f.3. Fact. For a possibly different splitting of the Harder-Narismhan filtration,
Remark I.c.8, of NL=X and after a trivial renormalisation by a constant

(II.74) @ D �e
@

@y1

Proof. Consistent with the notation of (II.66) the Harder-Narismhan filtration may
be written as

(II.75) Œ0� D N0 $ N1 $ N2 $ � � � $ Nk D NL=X

where the normal bundle of Ni in NiC1 restricted to the zero section is a trivial
bundle twisted by some OL.˛i / for ˛i a complete repetition free list of the ai ’s;
thus strictly decreasing as one proceeds up the chain. By (II.73) this is equally a
filtration by F-invariant sub-bundles, so, understanding the induced foliation on a
sub-bundle logarithmically, Remark I.b.2, if necessary (i.e. if a1 D 0) we prove
(II.74) by induction on the length of the chain (II.75). The case k D 1 is immediate
by (II.73), so by induction the matrix Aij is an idempotent of the form

(II.76)
h
0 A

0 0

i
; A 2 HomGm.Nk=Nk�1; Nk�1/.�e/

Plainly, we aim for (II.73) via a change of coordinates of the form

(II.77)
h
Qxai<˛k
QxaiD˛k

i
D

h
1 B

0 1

ih
xai<˛k
QxaiD˛k

i
; B 2 HomGm.Nk=Nk�1; Nk�1/

so that what we have to solve (in matrices of function in CŒA2�) is:

(II.78) e
@B

@y1
D A;

while respecting the Gm-equivariance of (II.76)-(II.77), which, (II.73), is clear. �
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To re-interpret this in terms of the standard affine patchesU ,U 0 of (II.56)-(II.57)
one simply splits (II.67) along the inclusion of the respective (quasi) transversals
yp D 1, for p D 0 or 1, i.e.

II.f.4. Summary. Suppose the (embedded) � 1
d
F curve has at worst nodes, equiv-

alently that its normalisation is net over X , and that the universal cover, L, of the
same is a P1.d; e/, then L ! X is net with a well defined normal bundle NL=X
such that after pulling back to the universal cover of Set Up II.f.2 we have in the
étale description, (II.56)-(II.57), of the normal bundle

(1) On U
�
�! A1 an étale neighbourhood of the singularity a �e invariant

generator of the specialised foliation, and � 2 �e-action given by,

(II.79) @ D dy
@

@y
C aixi

@

@xi
; y 7! �dy xi 7! �aixi ; ai 2 N

(2) On U 0
�
�! A1 a complementary neighbourhood of the singularity, a basis

�i of functions invariant by the specialised foliation, on which � 2 �d acts
via �i 7! �ai �i :

(3) A patching taiˇ��i D ˛�xi in the notation of (II.56), and whence, an
isomorphism

(II.80) NL=X
�
�!

a
i

OL.ai /

In particular the canonical or Harder-Narismhan filtration of NL=X , (II.75), is a
filtration by F-invariant sub-bundles whose slopes and rank may be read directly
from the generator (II.79) at the singularity.

II.g. Formal Holonomy. We wish to extend the previous discussion of linear ho-
lonomy of smooth � 1

d
F champs to the rather more delicate case of formal holo-

nomy. Plainly when the curve, L, is smooth and simply connected, the calculations
are easier, and we denote by X ! ŒX=F � a foliated smooth formal champ whose
trace L is a � 1

d
F champs isomorphic to P1.d; e/. In practice X will, by [SGA-I,

Exposé I, 8.3] or [McQ15, IV.a.2], be the universal cover of the net completion of
Fact/Definition I.e.5 of a smooth foliated algebraic champ X ! ŒX=F � along the
net map afforded by the normalisation of an at worst nodal � 1

d
F curve. For the

moment, however, this is logically irrelevant. Supposing no risk of confusion with
the notation of (II.54)-(II.55), we replace U 0 by V in (II.56), and take U! X, resp.
V! X, to be formal étale neighbourhoods in the analytic topology with trace the
A1’s U , resp. V of (II.56). In particular, therefore, U, resp. V, has a �e, resp. �d ,
action and there are open analytic embeddings ŒU=�e� ,! X, resp. ŒV=�d � ,! X,
extending ŒU=�e� ,! L, resp. ŒV=�d � ,! L. Whence V is simply connected,
and, in the analytic topology, there is a certain strengthening of Summary II.f.4,
viz: the foliation may be supposed trivial over V, i.e. we have analytic coordinate
functions �i , � normal and parallel to our A1 respectively such that in V the folia-
tion is just the formal fibration �1 � � � � � �n W V ! O�n, where the latter space is
a n-polydisc completed in the origin. The algebra C ŒŒ�1; : : : ; �n�� comes equipped
with a �d action- the formal holonomy representation- which, modulo the square
of the maximal ideal, is nothing other than that of the linear holonomy, (II.59). The
said algebra is, however, an inverse limit of finite dimensional vector spaces over
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a field in which d is invertible, so the action may be written �i ! ��ai �i without
prejudice to items (1)-(3) of Summary II.f.4.

Now, we can choose @ on U to be �e invariant, and, inductively we further
suppose: for m 2 N given, and a possibly different �e-invariant generator, @, on
U that there is a coordinate function y restricting to that of item (1) of Summary
II.f.4 such that,

(II.81) @y � dy.ImL /; .�; y/ 7! �dy .ImL /; .�; @/ 7! @ 2 Der.OU /; � 2 �e

The space U, unlike its trace U , has non-trivial units, so, a priori this isn’t equiva-
lent to the weaker

(II.82) @y � duy.ImL /; .�; y/ 7! �dy .ImL /; .�; @/ 7! @ 2 Der.OU /; � 2 �e

for u invertible modulo ImL . Nevertheless, we’re in characteristic zero, so, in fact

II.g.1. Claim. The conditions (II.81) and (II.82) are equivalent.

Proof. Supposing (II.82), we have

(II.83) @.y/ � duy D f; y� � �dy D g f; g 2 �.U; ImL /
from which the invariance of @ affords,

(II.84) d�dy.u� � u/ D �df � f � C @.g/ � du�g 2 �.U; ImL /

and we conclude that u� � u 2 H1.�e; ImL /. Since everything is tame, however,
such a co-homology group vanishes, so we can find a �e-invariant unit v equal to
u modulo ImL , and replacing @ by v�1@ we deduce (II.81) from (II.83). �

Denoting by Xm, Um, Vm, etc. the reduction of whatever modulo ImL , observe
that by item (3) of Summary II.f.4 for y as in (II.81) there is a function t0 on
Um �X Vm such that yt�d0 is congruent to 1 modulo nilpotents. Now, we’re in
characteristic 0, so, from the power series of the logarithm, yt�d0 has a d th root.
Thus

(II.85) 9 t 2 �.Um �X Vm/ 3 y jUm�XVmD t
d ;

and we further assert,

II.g.2. Claim. Suppose that (II.81) holds, then for a possibly different �d linear
basis �i of the algebra C ŒŒ�1; : : : ; �n�� compatible with any previous choice of the
same modulo Im0L for m0 < m, then:

(1) There are coordinates xi normal to L on U such that in IL=ImC1L ,

(II.86) @.xi / D aixi xi 7! �aixi ; � 2 �e; ai 2 N; 1 � i � n
(2) The xi glue to the �i via ˛�xi D taiˇ��i as global sections of the OXm

module

(II.87) IL=ImC1L .ai /

where OXm .1/ is the bundle with transition function t on Um �X Vm.

Proof. We proceed inductively onm, the casem D 1 being Summary II.f.4, so, by
the first item of the induction hypothesis for m� 1, m � 2, we can find coordinate
functions xi normal to L whose reduction modulo I2L are a basis of the normal
bundle over U such that,

(II.88) @.xi / � aixi D aiJ .y/ x
J
2 �.Um; ImL =I

mC1
L /;
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where xJ is the monomial xj11 : : : x
jn
n , j1C� � �C jn D m, the summation conven-

tion is employed, and aiJ .y/ is an entire function. Similarly by the second part of
the inductive hypothesis:

(II.89) tai �i � xi jUm�xVmD biJ .t/ x
J
2 �.Um �X Vm; ImL =I

mC1
L /

with the same conventions, but where, now, biJ .t/ are only holomorphic for t 2
Gm. Combining (II.88) & (II.89), we obtain,

(II.90) t PbiJ C biJ .aJ � ai / D �aiJ .t
d / 2 OGm

where aJ D
P
i

ji ai , and no summation is implied. Again we can integrate this,

by way of

(II.91)
d

dt
.t .aJ�ai / biJ / D � aiJ .t

d / taJ�ai�1 :

A priori, however, the biJ are holomorphic for t 2 Gm, so the biJ are, in fact,
meromorphic, and no aiJ taJ�ai�1 has a residue, whence:

(II.92) biJ D hiJ .t
d /C

�iJ

taJ�ai

where hiJ is entire, and �iJ is a constant. In particular,

(II.93) Qxi WD xi C hiJ .t
d /xJ satisfies @. Qxi / D ai Qxi .mod ImC1L /

and defines n normal coordinate functions on U, such that,

(II.94) Qxi D t
ai Q�i ; where, Q�i WD �i � �iJ �J :

The far left hand side of (II.93) is entire in td , so Q�i is still a �d -linear basis of
IL=InC1L jVm (compatible with our previous choices), and aJ � ai .d/ if �iJ ¤ 0
by the coincidence of the formal holonomy with the linear holonomy (II.59). It
therefore only remains to guarantee the �e linearity, (II.59). To this end, supposing
the change of basis in (II.93) & (II.94) already made so as to momentarily drop the
Qfrom the notation, we have for � 2 �e a generator:

(II.95) x
�
i � �

aixi D giJ .y/x
J
2 �.Um; ImL =I

mC1
L /

Applying the invariance of @ in (II.81), the right hand side of (II.95) must belong
to the eigenspace of ai for @ viewed as a C-linear map. As such,

(II.96) giJ .y/ D
X

ndCaJDai

giJny
n

and we can suppose xi has been rendered �e-linear by a coordinate change,

(II.97) Qxi D xi C
X

ndCaJDai

fiJny
nxJ

which yields new functions over1,

(II.98) Q�i WD t
�ai Qxi D �i C

X
ndCaJDai

fiJn�
J

and since J now has cardinality� 2, this is also a�d linear coordinate change. �
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Let us now observe how to boot strap in the presence of Claim II.g.2, by find-
ing some y satisfying (II.81) modulo ImC1L , m � 1. Over U we have, in the
notation/spirit of the proof of Claim II.g.2,

(II.99) @y D dy C cJ x
J .ImC1L / ; @xi D ai xi C ciK x

K.ImC2L /

where the summation convention is back in force, with respect to multi-indices J
andK of degreesm,mC 1 respectively, all the c�’s are regular functions of y, and
by tameness of the monodromy .�; y/ 7! �dy, � 2 �e in all of OU . We know that
the holonomy of the system (II.99) is a quotient of �d , so, we again take t as in
(II.85), and at a presumably negligible risk of notational confusion let,

(II.100) �i D t
�ai xi C biK.t/ x

K .mod ImC2L /

be a basis of invariant functions on an analytic étale neighbourhood of Gm, with
summation over the multi-index K of degree m C 1 being implied. Combining
these, yields for any i ,

ciK t
.aK�ai�1/ C

d

dt
.taK biK/

D

(
ai
d
� cJ t

aJ�.dC1/ if xK D xJxi for some J ,
0 otherwise

(II.101)

By Claim II.f.1, we known there is some i with ai ¤ 0, while biK must be holo-
morphic in Gm, so

(II.102) if aJ D d then cJ .0/ D 0,

since in such an eventuality the exponent of the leftmost term, aJ � 1, is non-
negative. Similarly, if much more straightforwardly, the �e invariance of @, and
our insistence that y 7! �dy implies,

(II.103) c
�
J D �

d�bJ cJ ; bJ D
X
i

biji ; for, J D .j1; : : : ; jn/

with bi as per item (1) of Claim II.g.2, and whence,

(II.104) if cJ .0/ ¤ 0; then bJ � d.e/:

On the other hand consider the obstruction to finding a coordinate Qy over U re-
stricting to the same on L such that,

(II.105) @ Qy D d.1C �/ Qy .ImC1L / ; � D �J x
J
2 ImL ; �J 2 OU\L :

If we look for such a Qy in the form, yCƒJ xJ , withƒJ constants, then we require
to solve,

(II.106) .aJ � d/ƒJ � d�J y D �cJ

for all J . However if aJ ¤ d , then ƒJ D �cJ .0/.aJ � d/�1, and �J whatever,
will do, while if aJ D d , then by (II.102) we can takeƒJ D 0, and �J D cJ y�1.
Whether trivially in the latter case, or by (II.103)-(II.104) in the former case, Qy� �
�d Qy .ImC1L /, so we obtain (II.82), and whence (II.81) by Claim II.g.1.

As per Claim II.g.2, the coordinate Qy also restricts to the previous choice mod-
ulo ImL , so we obtain in the limit an extension of the canonical/Harder-Narismhan
filtration to the whole neighbourhood, i.e.
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II.g.3. Proposition/Summary. Let X! ŒX=F � be a foliated smooth formal champ
whose trace is a smooth simply connected � 1

d
F curve, L �

�! P1.d; e/, then,
(1) There is a bundle OX.1/ lifting OL.1/ and a smooth formal invariant divisor

D, with OX.D/ D OX.d/ transverse to L which restricts to the unique point ´ of
L \ sing .F/.

(2) There is a filtration of formal invariant sub-champs,

(II.107) L D X0 $ X1 $ � � � $ Xk D X

such that if ˛1 > � � � > ˛k are the distinct eigenvalues of @ considered linearised in
End .NL=X˝C.´//, and normalised via item (1) of Summary II.f.4 with n1; : : : ; nk
the dimensions of the corresponding eigenspaces then Xi is defined by F-invariant
global sections 
j of OX.˛j /, j > i , and nj -sections for each j . In particular,

(II.108) NL=Xi
�
�!

a
j�i

OL.˛j /
nj

(3) All of this is encoded in a particular �e linear coordinate system, y; xi , y 7!
�dy, xi 7! �aixi of an étale neighbourhood U ! X with trace A1 containing the
singular point over which we have a �e invariant generator,

(II.109) @ D dy
@

@y
C ai xi

@

@xi

where the summation convention is in force, so that the ˛j , are a complete repeti-
tion free list of the ai .

II.h. Jordan Decomposition. We briefly interrupt our discussion of KF -negative
invariant champs to recall some salient facts on Jordan decomposition which will
be relevant both to our study of cusps, and the local uniqueness of the Harder-
Narismhan filtration. The situation is entirely local and, initially, scheme-like, i.e.
O is the ring of formal power series C ŒŒx1; : : : ; xn��, m its maximal ideal, and
@ a C-derivation of O with a singularity at the origin. Recall that since O is an
inverse limit of finite dimensional vector spaces @ admits a Jordan decomposition,
i.e. @ D @S C @N , where the semi-simple part @S acts as a semi-simple matrix on
each O=mn, n 2 N, @N is nilpotent, and of course Œ@S ; @N � D 0. In particular if
@S D �i xi

@
@xi

, summation convention, then a conventional choice of basis for the
nilpotent fields commuting with @S is,

II.h.1. Revision. (cf. [Mar81]) Notations as above then @N D
nP
iD1

P
Qi

aQix
Qixi

@
@xi

aQi 2 C, where for ƒ D .�1; : : : ; �n/ the inner prodict ƒ �Qi D 0 and either,

(i) Qi D .q1; : : : ; qn/, qj 2 N [ f0g, xQi D xq11 : : : x
qn
n , or

(ii) Qi D .q1; : : : ; qn/, qi D �1, qj 2 N [ f0g, j ¤ i , xQi D xq11 : : : x
qn
n .

Now the Jordan decomposition of a vector field is certainly unique, and whence
the property of semi-simplicity of a vector field is wholly unambiguous. For a
foliation however the situation is rather more delicate since there is a question of
rescaling by units. Whence suppose our field @ is semi-simple, and consider a field
Q@ D u@, where u � 1.m/ to avoid stupidity. Furthermore let’s say, without loss of
generality, that @ D @S D �i xi @

@xi
then we assert,
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II.h.2. Claim. Notations as above, there is a change of coordinates of the form,
�i D ui xi , ui � 1.m/, and " � 0.m/ with @" D 0 such that the Jordan decompo-
sition of Q@ is,

(II.110) Q@ D �i �i
@

@�i
C " �i �i

@

@�i

i.e. Q@ may not be semi-simple, but the extent to which it is not is very particular.

Proof. Consider the following inductive proposition for k 2 N:
there are coordinates xik D uik xi , uik � 1.m/, Q@ D uk @k , @k D �i xik

@
@xik

,
uk � 1.m/ such that u�1

k
D 1C "k C ık , where "k , ık are defined by way of the

Jordan decomposition of m as Ker @k ˚ Im @k , and ık 2 mk .
The case k D 1 is simply our given data. Otherwise consider trying to improve the
situation by putting, xikC1 D vik xik , vik � 1.m/ to be chosen. If such a change
were to actually render Q@ semi-simple then we would have to solve,

(II.111) @k log vik D �i

� 1
uk
� 1

�
D �i ."k C ık/

which may not be possible if �i ¤ 0, and "k ¤ 0. However we can solve
@k log vik D �i ık , so, in particular, vik � 1.mk/, while in the new coordinates,

(II.112) Q@ D
1C ık

1C "k C ık
�i xikC1

@

@xikC1

which is indeed what we’re looking for, since putting ukC1 D .1C ık/ uk then,

(II.113) u�1kC1 D 1C "k.1C ık/
�1
D 1C "k C

1X
nD1

.�1/n "k ı
n
k

so that ıkC1 2 mkC1. Certainly therefore the ık ! 0, but the proof also shows that
for each i the infinite product,

Q
k

vik converges to some ui , so putting �i D ui xi

we’re certainly done on observing that @" D 0 obliges,

(II.114)
�
�i �i

@

@�i
; " �i �i

@

@�i

�
D 0 :

�

The consequence of the fact that not only can Jordan decomposition of a rescal-
ing of semi-simple only fail in a very controlled way, but also that Jordan decom-
positions of rescalings are related in such a straight forward way suggests that we
introduce,

II.h.3. Definition. On a formal disc O�n, i.e. Spf.CŒŒt1; � � � ; tn��/, a foliation . O�n;
F/, with a not necessarily isolated singularity at the origin is said to be semi-
simple, if TF D O O�n@ for some semi-simple vector field @.

As an important example/application consider the situation of blowing up in
the origin, i.e. � W .X; QF/ ! . O�n; F/ is the said modification with induced
foliation and X is the completion in the exceptional divisor of the blow up of
SpecO . Denoting by, @ D @S C @N a Jordan decomposition of any generator TF
we have,
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II.h.4. Fact. Suppose @S ¤ 0 and .X; QF/ is not everywhere smooth (which in any
case could only happen if in suitable coordinates @ D xi

@
@xi

) then the following
are equivalent,

(1) . O�n; F/ is semi-simple.
(2) .X; QF/ is semi-simple at all of its singular points.
(3) .X; QF/ is semi-simple at one of its singular points, and . O�n; F/ is semi-

simple modulo m2.
(4) .X; QF/ is semi-simple at one of its singular points.

Before proceeding, we will require a lemma, to wit:

II.h.5. Lemma. Notations as above, then at every point of its singular locus, ��@N
is nilpotent.

Proof. Without loss of generality we can suppose the projective coordinates of
some singular point, p, in the exceptional divisor to be Œ1; 0; : : : ; 0�. Thus if @N D
aijxj

@
@xi

, summation convention in force, then ai1.0/ D 0 for every i � 2. This
is equivalent, however, to the column vector defined by p being an eigenvector,
so a11.0/ D 0 too. Now, observe that a square matrix, Œcij �i;j�1 with a zero first
column is nilpotent iff the matrix Œcij �i;j�2 is nilpotent, while the linearisation of
��@N in p is,

(II.115)

26664
a11.0/ 0 : : : 0
@a21
@x1

.0/ : : : : : : : : : : : : : : :

: : : : : : aij .0/ : : :
@an1
@x1

.0/ : : : : : : : : : : : : : : :

37775
which has a zero first row, so it’s also nilpotent. �

proof of Fact II.h.4. Since .X; QF/ is not everywhere smooth the induced foliation
is given everywhere by �� @ (cf. Revision I.b.10) so trivially (1) implies everything
else, while both (2) & (3) trivially imply (4). Consider therefore (4)) (1). As in
the above proof of Lemma II.h.5, a singular point of the singular locus of ��@ is
an eigenvector of its linearisation, whence an eigenvector of the linearisations of
��@S & ��@N , and thus a singularity of both ��@S & ��@N . We know, however,
that every singularity of the former is semi-simple, so by Lemma II.h.5, ��@ D
��@S C �

�@N remains a Jordan decomposition at every point of the singular locus
of QF . By hypothesis, at such a point p, there is some semi-simple generator Q@, so
an application of Claim II.h.2 yields " 2 OOX;p such that �� @."/ D 0, and,

(II.116) " �� @S D �
� @N :

As such, if, x1 is an eigenvector of @S , with eigenvalue �1 ¤ 0, then for f D
@N .x1/, " D ��.f =�1x1/, while:

(II.117) 0 D x1@.f=x1/ D @f �
f

x1
� .�1 x1 C f /

so x1 j f , and " is actually a function on O�n, from which we conclude. �

A further question which we may reasonably address here is the uniqueness, or
lack thereof, of the Jordan decomposition. Even without rescaling the particular
choice of coordinates in which we may write a semi-simple field as �i xi @=@xi
may be catastrophically non-unique. Plainly the worst possible case is when all the
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�i are rational, or equivalently up to a harmless rescaling integers. Even this is of
course not unique but it’s not too bad since of course any rational point in some
PN .Q/ is up to multiplication by ˙1 uniquely represented by a tuple of relatively
prime integers, consequently let’s establish some notation,

II.h.6. Notation. Let @ be a semi-simple derivation of O with integer eigenvalues
a1; : : : ; ar , �b1; : : : ; �bt , ai ; bj 2 Z>0, s zeroes, r � 1, although possibly
t D 0, i.e. no negatives, and .a1; : : : ; ar , b1; : : : ; bt / D 1, then we will suppose
these ordered by decreasing size, i.e.

(II.118) a1 � a2 � � � � � ar > 0 > �bt � � � � � �b1

and by ˛1; : : : ; ˛k , k � r , ˇ1; : : : ; ˇl , l � t a complete repetition free list of the
same, so that,

a1 D ˛1 > ˛2 > � � � > ˛k > 0

0 > �ˇl > � � � � ˇ2 > � � � > �ˇ1 D �b1 :
(II.119)

Now for a given choice of basis of a semi-simple derivation @ with the said
eigenvalues i.e. a particular way of writing it as ai yi @

@yi
� bj xj

@
@xj

, with say ´k
the null vectors, we can introduce,

II.h.7. Definition. The Harder-Narismhan pair of . O�n; F/ with respect to the data
.@; yi ; xj / is the invariant formal sub-schemes, OX>0, OX<0 whose ideals are gener-
ated by the non-positive, respectively non-negative, eigenvectors of @. If instead we
take strictly negative, respectively strictly positive, eigenvectors then the resulting
subschemes, OX�0, OX�0, will be called the non-strict Harder-Narismhan pair.

Manifestly, apart from abbreviating Harder-Narismhan to H-N, what’s important
is that the H-N pairs are well defined up to˙1, i.e.

II.h.8. Fact. Fix a choice of semi-simple @ with integer eigenvalues normalised as
per Notation II.h.6, then the following are equivalent,

(1) f OX>0; OX<0g, respectively f OX�0; OX�0g, is the H-N, resp. non-strict H-N,
pair with respect to @ in the basis fxi ; yj g.

(2) f OX>0; OX<0g, resp. f OX�0; OX�0g, is the H-N, resp. non-strict H-N, pair
with respect to @ in any semi-simple basis.

(3) f OX>0; OX<0g, resp. f OX�0; OX�0g, is the H-N, resp. non-strict H-N, pair
of any semi-simple Q@ D u@ in any semi-simple basis for the same, where
u � 1.m/.

Proof. (3)) (2)) (1) are all trivial, so consider (1)) (3). By Claim II.h.2, we
know that we can find units ui ; vj � 1.m/ such that if �i D ui yi , �j D vj xj

then Q@ D ai �i
@
@�i
� bj �j

@
@�j

. As such f OX>0; OX<0g, resp. f OX�0; OX�0g, is the

H-N, resp. strict, pair of Q@ in the basis f�i ; �j g. Now suppose Q@ D ai fi
@
@fi
�

bj gj
@
@gj

in some other basis fi ; gj . At the mod m2 level this is just a question of
the uniqueness of diagonalisation/the commutator of a diagonal matrix, so without
loss of generality let’s say fi � �i , and gj � �j .m

2/. On the other hand, for
higher order terms, consider the Taylor expansion,

(II.120) fi D �i C
X

#JC#K�2

ciJKL �
J �K �L ;
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where, as ever, �J etc. is the monomial �j11 : : : �
jr
r etc., and �1; : : : ; �s are the null

vectors. Now Q@ fi D ai fi so,

(II.121) ciJKL ¤ 0)
X
˛

a˛ j˛ �
X
b

bˇ kˇ D ai :

Consequently if fi … .�1; : : : ; �r/, then we have a manifest absurdity, and so con-
clude by symmetry. �

The dependence on˙1 is, however, unavoidable. Indeed let, O�n ! Œ O�n=F � be
a singular foliation invariant by a finite group G, or, equivalently for @ a generator,

(II.122) @� D �@��1 D u.�/@; u W G ! O�
O�n

where u is a group co-cycle, so, better, by the acylicity of BG on torsion free
abelian groups, a character � on replacing @ by v@ for a suitable unit. At which
point, however, if @ D @SC@N is a Jordan decomposition of @, then @� D @�SC@

�
N

is a Jordan decomposition of @� , so by unicity of the same,

(II.123) @�S D �.�/@S ; and, @�N D �.�/@N

As such, if in addition O�n ! Œ O�n=F � is semi-simple, then, by Claim II.h.2, @ and
@S generate the same foliation, so,

II.h.9. Fact. If O�n ! Œ O�n=F � is a germ of a singular semi-simple foliation invari-
ant by a finite group G, then there is a character � W G ! Q.1/=Z.1/ of G and
a semi-simple generator @ of the foliation such that, @� D �.�/@, for all � 2 G.
In particular, if the eigenvalues of a linearisation in m=m2 are in Pn�1.Q/ then �
takes values in f˙1g, and,

(a) If � is trivial, all of OX>0; OX<0; OX�0; OX�0 are G invariant, and there is a
H-N pair, respectively non-strict H-N pair, of embedded F-invariant formal sub-
champs, fŒ OX>0=G�; Œ OX<0=G�g, respectively fŒ OX�0=G�; Œ OX�0=G�g, in Œ O�n=G�.

(b) Otherwise, in the notation of Notation II.h.6, ai D bi , r D t , etc., and
Œ OX>0=Ker��, respectively Œ OX�0=Ker��, is isomorphic to Œ OX<0=Ker��, respectively
Œ OX�0=Ker��, but is only net in Œ OX>0 [ OX<0=G�, respectively Œ OX�0 [ OX�0=G�,
which in turn are embedded in Œ O�n=G�, being defined by the G-invariant ideal
.xiyi ; ´k/, respectively .xiyi /.

Proof. If x is an eigenvector of @ with eigenvalue �, then for any � 2 G, x� is an
eigenvector of @ with eigenvalue ��.�/�1, so when the eigenvalues are rational, �
must take values in rational roots of unity. �

Consequently, even in a purely scheme like situation, we have two canonical
pairs rather than two pairs of canonical sub-schemes, and we make:

II.h.10. Remark/Definition. Let O�n ! Œ O�n=F � be a germ of a singular semi-
simple foliation such that the eigenvalues of a linearisation in m=m2 are in Pn�1.Q/
then there are two canonical pairs of invariant formal subschemes, the H-N pair,
f OX>0; OX<0g, and the non-strict H-N pair f OX�0; OX�0g, where the former intersect
in the origin, the latter in the whole singular locus. If no-confusion is likely, the
suffices may be dropped.

In the particular case of Proposition/Summary II.g.3, the trace of the formal
neighbourhood X affords a distinguished eigenvector, so the character appearing
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in Fact II.h.9 around the singularity, p, is trivial. As such, by op. cit., the H-
N pair, respectively non-strict H-N pair, extends from a formal neighbourhood of
p to a pair of embedded invariant formal sub-champs fX>0; X<0g, respectively,
fX�0; X�0g of X. An important further task will be to extend this to cusps.

II.i. Cusps. We consider the consequences of the previous discussion for cuspidal
�
1
d
F curves, f W L ! X , where, as ever, X ! ŒX=F � is a foliated smooth

champ. In the first instance the discussion is purely local, so, say, f W O�1 ! OX ,
the map between completions in the singularity 0 2 f �1.Z/, for Z D sing.F/.
By, for example [BM97], the cusp may, cf. Claim II.e.4, be resolved by the étale
local operation of blowing up in the sequence of closed points,

(II.124) QX D XN ! : : :! X1 ! X0 D X
of which the first is ´ WD f .0/, and subsequently where the proper transform of f
meets the exceptional divisor until such time that f becomes an embedding, Qf , say,
meeting the proper transform in Q́ . Necessarily each blow up in (II.124) is in a point
where the foliation is singular, so K QF � KF j QX , and Qf can only fail to be a � 1

d
F

curve if QF is smooth everywhere around Qf . Now although such an occurrence
is highly simplifying, e.g. F is algebraic in conics by item (c) of Fact/Definition
II.d.5; the foliation has a first integral in a (finite) étale neighbourhood of L etc.;
it’s preferable to avoid a separation of cases by viewing such a final situation as
a � 1

d
F curve for K QF C E, equivalently working logarithmically, in the sense of

Remark I.b.2, around the final exceptional divisor, E, in (II.124). In this way, item
(3) of Proposition/Summary II.g.3 and Fact II.h.4 are always valid, from which:

II.i.1. Lemma. Let f W L ! X be a � 1
d
F curve meeting the singular locus in ´,

then around ´ the foliation is semi-simple.

Consequently, let’s say, @ D �ixi
@
@xi

a semi-simple generator of the foliation
in the complete local ring O OX;´, with f W t 7! xi .t/ D tviui .t/ an expression
for the cusp in terms of some local parameter t , with vi 2 Z>0, and ui units
whenever f �xi is not identically zero. As such, for any pair of indices i; j for
which f �.xixj / is not identically zero,

(II.125)
Pxi .t/

�ixi
D
Pxj .t/

�jxj

Whence, if we re-label the coordinate system as yi for those non-zero on the curve,
xj for those identically zero, and y1.t/ D tv1 , then:

(II.126)
Pyi .t/

yi
D
vi

t
C holomorphic D

�iv1

�1t

so, yi .t/ D �i tvi , for some constant �i , thus, without loss of generality �i D 1 and
�i D vi . Proceeding thus, there may be some mild redundancy. Indeed, the cusp
has an embedding dimension k, and re-labelling so that v1 is minimal, then if v1jvi
one can replace any xi by something in the same eigenspace (of @ qua operator on
O) which vanishes identically, viz: yi � y

vi=v1
1 , and in general, one can achieve,

(II.127) v1 < v2 < � � � < vk; with viC1 … Z�0 v1 C � � � C Z�0 vi :
for each 1 � i � k, so we get exactly k yi ’s, the vi have gcd 1 since f is bi-
rational, and every other coordinate is a xj vanishing identically.
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Now, by hypothesis the local monodromy group, G, preserves the foliation on
the formal completion, OX , of X at the singular point. Appealing to (II.123), we
may suppose that it acts on the above @ by a character �, and we denote by H
the stabiliser of the image C of (the irreducible branch) f W L ! OX obtained by
completing the local ring of L at p. Consequently there is a factorisation,

(II.128) f W ŒL=H�
�
�! ŒC=H�

�
�! Œ OX=G�

and since everything is convergent in the étale topology, this can be glued to a
global factorisation,

(II.129) f W L �
����! C

�
����! X

where the first map is the normalisation of C, � is net, and C is uni-branch. As
such, outwith the unique singular point p, � is an isomorphism, and � a closed
embedding. Equally, the wholly general Fact/Definition I.e.5 applies, so there is a
formal champ X with trace C such that X ! OX onto the completion of X in the
image of f is étale representable, and,

II.i.2. Fact. Let f W L! C ,! X! X be the above factorisation of the normal-
isation, f W L ! X of a �1=d F cusp, with vi as (II.127), and yi ; xj , as above,
suitable formal coordinates (on OX ) about the singular point, then there are aj 2 Z
such that the foliation is generated by,

(II.130) @ D dvi yi
@

@yi
C aj xj

@

@xj

Proof. If there is a divisorial valuation of negative discrepancy passing through the
closed singular point, then the proposition follows from Revision I.b.10, (II.127),
and the fact that the vi have g.c.d. 1, so we may suppose that the singularity is
canonical rather than just log-canonical.

Now we require a certain re-appraisal of (II.125)-(II.127) in the presence of the
action of H in (II.128). To this end let I be the ideal of the image, C , of the cusp
in the completion OX in the singular point p whose maximal ideal we denote by m,
then we have a H -equivariant exact sequence

(II.131) 0! I=I \m2 ! � OX ˝ C.p/! �C ˝ C.p/! 0

which is equally equivariant under a semi-simple generator @ of the foliation. In
particular, therefore, the induced endomorphism

(II.132) @ W �C ˝ C.p/! �C ˝ C.p/

may be supposed to have eigenvalues the (distinct) vi of (II.127) with multiplicity
(both geometric and algebraic) equal to 1. As such, althoughH acts on @ a priori by
a character, (II.123), such an action must, cf. Fact II.h.9, be trivial. Consequently
the C-linear decomposition of m into eigenspaces of @ is also H -equivariant. On
the other hand all exact sequences of CŒH �-modules are split exact, so from

0! .I.�/ \m2/=.I.�/ \mk/! I.�/=.I.�/ \mk/! .I.�/ \m2/! 0;

k � 2, etc. for any eigenvalue � of @, we can write the H -action as blocks of
C-linear actions

(II.133) H 3 � W xi;� 7! Aij .�/xj;�; yi 7! �i .�/yi
51



for a coordinates system fxi;�; yig in which xi;� 2 I.�/, the yi ’s afford eigenvec-
tors of (II.132) with eigenvalues vi , and the �i are characters. In particular there is
a filtration which is both H and F equivariant

(II.134) F p D
�Y
i

y
bi
i

Y
j;�

x
cj;�
j;�
W

X
i

.bivi /C
X
j;�

cj;� � p
�

of the complete local ring. Plainly, however, the filtration (II.134) is actually the
completion of a bi-equivariant filtration of the Henselian local ring of X (in fact
even that of X , albeit here, (II.128), the invariance under the possibly larger lo-
cal monodromy may fail) so it affords, [MP13, I.iv.3], a smoothed F-invariant
weighted blow up

(II.135) � W QX! X

which is an isomorphism off p. In particular, therefore, the unique lift Qf W L! QX
of f of (II.129) is a � 1

d
F curve with smoothly embedded image, and Proposi-

tion/Summary II.g.3 holds. By direct calculation, (II.137), cf. [MP13, pg. 180],
however, the eigenvalues (in an étale patch) of @ and ��@ along the proper trans-
forms of the xi;�’s differ by 1, so (II.130) follows from (II.109) applied to ��@. �

Of course, we also proved that not just the linear holonomy, but actually all of
the holonomy is cyclic of order dividing d , so although Fact II.i.2 is sufficient for
applications, we can actually do better thanks to,

II.i.3. Fact. Let X! ŒX=F � be a foliated smooth formal champ whose trace has an
étale neighbourhood the invariant affine cusp, C , i.e. image of t 7! .tv1 ; : : : ; tvk /,
for vi as per (II.127), t 2 A1, with the origin the unique point where C meets the
foliation singularities, then the formal holonomy is cyclic of order at most d iff
we can find formal holomorphic functions, y1; : : : ; yk; x1 ; : : : ; x`, restricting to
a coordinate system on an analytic neighbourhood in X of the singular point with
the yi ’s embedding coordinates respecting (II.127), xj vanishing on the cusp and
a generator @ for the foliation all of which are holomorphic on an étale neighbour-
hood (in the analytic topology) of X with trace C such that for some aj 2 Z,

(II.136) @ D dvi yi
@

@yi
C aj xj

@

@xj

holds on an any analytic étale neighbourhood of the singularity where the yi , xj
form a system of coordinates.

Proof. The if direction is trivial, and for smooth curves this is the conclusion of
Proposition/Summary II.g.3, or, more accurately a slight re-phrasing thereof. In
any case, the affine cusp has no (holomorphic) Picard group, so a global holomor-
phic generator, @, of the foliation on X exists, and we proceed to combine Proposi-
tion/Summary II.g.3 with Fact II.i.2 to achieve the said form. In particular, by the
latter, and Claim II.h.2, there are coordinates yi , xj and an invariant function ", all
in the completion in the singularity, 0, which render Q@ WD .1C "/�1@ in the given
form. A local coordinate system for the weighted blow up (II.135) is given by:

(II.137) y1 D Qy
v1
1 ; yi D Qyi Qy

vi
1 ; xj D Qxj Qy1

in which Qyi D 1, i > 1 where our cusp crosses the exceptional divisor, p, say, so
the v1th roots of unity act without fixed points in a neighbourhood of p, and Qy1,
Q́ i WD Qyi � 1, Qxj furnish coordinates in which �� Q@ is semi-simple at p.
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Now we appeal to the conclusion of Proposition/Summary II.g.3, to find a pos-
sibly different generator, D D v��@ for v a (holomorphic) unit on an étale neigh-
bourhood of QX with trace the resolution QC of C , such that,

(II.138) D D d�
@

@�
C .aj � d/�j

@

@�j

along with some other coordinate �i , such that, �, �i , �j agree with Qy1, Q́ i , Qxj
modulo m.p/2, but the former are defined on all of QX. Both coordinate systems
are semi-simple, so Claim II.h.2 applies to yield units u, ui , i > 1, wj in the
completion at p such that Q� D u Qy, Q�i D ui Q́ i , Q�j D wj Qxj are a semi-simple
coordinate system for D in the complete local ring at p. Effecting an appropriate
linear change, this latter coordinate system is related to that in the �, �i , �j by,

(II.139) Q� D �C
X
m�2

X
jI jCjJ jDm

cIJ .�/�
I �J

and similarly, employing the notation of (II.88) et seq., for the Q�i , and the Q�j . Both
the left and right hand sides in (II.139) have the same eigenvalue, viz: d , so for all
I , J we must have,

(II.140) d�c0IJ .�/C .aJ � d jJ j/cIJ .�/ D 0

and aJ takes only finitely many values for jI j C jJ j bounded. Consequently, for
everym such that, jI jCjJ j D m, cIJ is a polynomial in �, from which Q� converges
not just in the completion at p, but in the full étale neighbourhood with trace QC .

Arguing similarly for the Q�i , Q�j ’s, and ", we may, without loss of generality,
suppose, Q� D �, �i D Q�i , �i D Q�j , and that " is defined in a neighbourhood with
trace C . Thus we may suppose that " D 0, and whence

(II.141)
Du

u
D d.1 � v/;

Dui

ui
D 0;

Dwj

wj
D .aj � d/.1 � v/

where, without loss of generality, all of u, ui , wj are congruent to 1 modulo I QC .
Thus, for example, we can write,

(II.142) u D exp
�X
m�2

X
jI jCjJ jDm

uIJ .�/�
I �J

�
so if QvIJ .�/ are the coefficients of a similar Taylor expansion for v.1 C �/, then
from (II.141)-(II.142),

(II.143) d�u0IJ .�/C aJuIJ .�/ D �d QvIJ .�/

where the right hand side is holomorphic in �, while, a priori, the left hand side is
formal, whence, a postiori, holomorphic. Consequently u is well defined on our
étale neighbourhood with trace QC , so, idem for Qy1, and by an identical argument,
all of the Q́ i , Qxj are equally so defined on the said neighbourhood. The relation
of these to the original coordinates yi , xj defined on completing X in the singular
point is given by (II.137), so, not just the normalising factor .1 C "/, but also the
yi , xj , are defined on an étale neighbourhood of X with trace C . By construction,
however, yi , xj are already a formal coordinate system at the singularity, so they
are in fact coordinates on at worst an analytic neighbourhood of the same, while
on any such (II.136) holds by construction. �

The role of the analytic topology in Fact II.i.3 and its proof merits a clarifying,
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II.i.4. Remark. Profiting from the Euclidean algorithm to solve c1v1C� � �Cckvk D
1, for some integers ci , one would might like to make a more strict analogue of
Proposition/Summary II.g.3. Indeed in the above notation, � D y

c1
1 : : : y

ck
k

is a
meromorphic function on the affine cusp which, close to the singularity, restricts to
a coordinate function on the normalisation, and one might hope to form an explicit
patch with an étale affine neighbourhood of the non-scheme like point at infinity
according to the relation �e D s�d , for s a coordinate on the A1 3 1, cf. (II.56)
& (II.137). In principle, however, � so constructed has an essential singularity at
infinity. Plainly the problem is the intervention of v in (II.141), which unlike the
smooth case cannot be avoid. Specifically, as in the smooth case, for t the unique
(up to scaling by a constant) coordinate on the normalisation of the affine cusp, one
would like to normalise, cf. (II.60), a generator @ of the foliation restricted to the
cusp according to

(II.144) @.t/ D t

so that a postiori � D t and everything is meromorphic over1. It can, however,
happen under the hypothesis of Fact II.i.3 that (II.144) doesn’t admit a solution. If
one follows the proof of Fact II.i.3 and takes @ to be holomorphic then this is equiv-
alent to asking that the unit v which appears restricts to a unit defined on the affine
cusp rather than just its normalisation. Similarly, if one works algebraically this is
equivalent to KF restricting to an algebraically (rather than just holomorphically)
trivial bundle on the affine cusp. Consequently a counter example where (II.144)
cannot be solved is

(II.145) @ D 2.x C y/
@

@x
C 3.y C x2/

@

@y
; y2 D x3 � A2:

Since for t D
p
x, @.t/ D t .1 C t /, and TF defined by gluing this to the unique

(up to scaling by a constant) nowhere vanishing field, @1, on V
�
�! A1 3 1 along

the open set V nf�1;1g by way of

(II.146) @ D
.1C t /

t
� @1

defines a bundle whose restriction to the affine cusp is algebraically non-trivial. As
such:

II.i.5. Warning. Formal neighbourhoods of cusps, even though the problem is
wholly at the level of the bundle of derivations defined by restricting the foliation
to the reduced cuspidal curve, do not admit a description comparable to Proposi-
tion/Summary II.g.3. Ultimately, therefore, our treatment of cusps, §III.c, requires
global hypothesis, Claim III.c.1, rather than the local hypothesis of Fact II.i.3

On the bright side, however:

II.i.6. Remark. We’ve complemented Proposition/Summary II.g.3 in the course of
the proof even in the smooth case, since, in principle, even if a generator @ on
the étale neighbourhood U of item (3) of Proposition/Summary II.g.3 were semi-
simple at the singular point, there might have been an obstruction to expressing @
in terms of semi-simple coordinates on an analytic neighbourhood of 0 2 U , as
found in op. cit., due to a possible re-scaling by a unit implicit in (II.105). We see,
however, from the proof of Fact II.i.3, that there is no such obstruction.
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III. EXTREMAL SUBVARIETIES

III.a. Generalities. Throughout this chapter X ! ŒX=F �, unless specified other-
wise, will be a foliated non-singular champ, with log-canonical foliation singular-
ities. We switch our attention from KF negative curves, to KF negative extremal
rays R. The moduli X is of course supposed projective so if HR is a nef. Cartier
divisor supporting the ray, i.e. HR� ˛ D 0, and ˛ in the closed cone of curves iff
˛ 2 R, then for sufficiently large m 2 N, AR WD mHR � KF is ample. In any
case following Kollàr, Mori, et al., cf. [Kol96] III.1, we introduce our main object
of study, by way of,

III.a.1. Definition. The locus of R, Loc .R/ is the set of closed points x 2 X.C/
such that there is a curve x 2 C � X with ŒC � 2 R � NS1.X/.

Observe that a priori Loc .R/ is not a subvariety of X . Indeed for m 2 N, we
can filter Loc .R/ by sub-schemes Locm .R/ on demanding that x 2 Locm .R/ if
we can take the curve C of the definition to have AR� C � m. That Locm .R/ is
a sub-scheme is immediate from the existence of the Hilbert scheme. To remedy
this let us introduce,

III.a.2. Definition. A R-pre-extremal subvariety is an irreducible subvariety Y �
Loc .R/ maximal amongst the set of irreducible varieties contained in the locus.

Trivially, the dimension in chains of proper inclusions of irreducible varieties
must increase so R-pre-extremal subvarieties exist; any x 2 Loc .R/ is contained
in one; and Loc .R/ is the a priori countable union of all of them. Now if Y is R-
pre-extremal, and y 2 Y then there is a Cy with ŒCy � � R containing y. However
applying Variant II.d.2, we know, for y generic, there is an invariant parabolic
champ fy W Ly ! X through y with moduli Ly such that,

(III.1) HR�Ly � 2
HR� Cy

�KF � Cy
D 0 :

So in fact Ly 2 R, and AR�Ly � 2. Additionally Ly cannot be contained in
sing .F/ since it hasKF -negative degree, so we can make a F-invariant subvariety
W by adding to generic points of Y an appropriate Ly . On the other hand Y is by
hypothesis R-pre-extremal, so W D Y , i.e. Y is F invariant, with the induced
foliated variety Y ! ŒY=F � being a pencil of rational curves of AR degree at
most 2. Hilbert schemes, however, exist, and being invariant is a closed condition
so in fact there are at most finitely many R-pre-extremal subvarieties for a given
R. Better still the Hilbert scheme yields for any R-pre-extremal subvariety Y a flat
family,L! T , for some irreducible sub-scheme T of the Hilbert scheme such that
the projection of L to X factors as a generically finite map over Y . An awkward
case occurs when X is itself a R-pre-extremal subvariety, i.e. X ! ŒX=F � is a
pencil in parabolic champs. As a result we introduce,

III.a.3. Definition/More Terminology. A R-extremal subvariety Y is a subvariety
of a R-pre-extremal subvariety Y 0 which is maximal amongst the subvarieties of
Y 0 which are covered by invariant curves passing through at least one point of the
image in X of the singular locus of X ! ŒX=F �.

So indeed unless X ! ŒX=F � is a pencil in parabolic champs then extremal and
pre-extremal coincide, while in the awkward case an extremal variety will be spec-
ified by taking the invariant curves passing through an appropriate component of
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the singular locus. Now pulling everything back by the moduli map, � W X ! X ,
define a R-extremal champ as the fibre over an extremal sub-variety, idem whether
for pre-extremal or the locus, denoted Loc .R/, and observe,

III.a.4. Fact. The locus Loc .R/ of an extremal ray, is a finite union of R-pre-
extremal champs. Denote by Loc0 .R/ the subchamp which is the union of R-
extremal champs, then any Y � Loc0 .R/ making up this union is covered by
�1=d F curves, where d may vary from curve to curve. There is however a family
L ! T of champs, possibly non-flat at the non-scheme like points, such that,
.L! T /! .Y ! ŒY=F �/ is a generically finite map of foliated champs.

In a similar, albeit more refined, vein we will also employ:

III.a.5. Fact. Suppose X is a smooth separated champ (over a field for ease of
exposition) and f W Y ! X a map from a proper algebraic space then there is
a separated (Deligne-Mumford) champ T and a deformation F W Y � T ! X
of f such that if G W Y �M ! X is any deformation of f parametrised by an
algebraic space M , then there is a map g W M ! T and a natural transformation

 W G ) F.idY � g/ such that if h W M ! T is any other map for which there
is a natural transformation � W G ) F.idY � h/ then there is a unique natural
transformation ˛ W g) h for which � D F�.id�˛/
 . In addition the dimension of
T at the point afforded by the trivial deformation and the above universal property
is at least,

(III.2) h0.f � TX / � h1.f � TX /

Proof. The existence of T is a special (if key) case of the main theorem of [Ols06].
As such the dimension computation is infinitesimal and wholly space like in nature,
cf. Definition II.a.2, i.e. deformations of the trace of the formal space

(III.3) P WD Spf.f �PX /

so we can replace X in III.2 by P and appeal to [Kol96, I.2.16]- we only need the
case Y projective. �

III.b. Finding Weighted Projective Spaces. As ever let X ! ŒX=F � be a foli-
ated smooth champ with log canonical foliation singularities, albeit with projective
moduli, and f W L ! X the normalisation of a � 1

d
F curve with at worst nodes,

and, in the notation of Proposition/Summary II.g.3, eigenvalues a1 � a2 � � � � �
an of a generator @, in the normal directions, at the unique point p where f meets
the singular locus. If a1 � 0, then we simply have nothing to say for the moment.
Otherwise, consider the net completion, q W X ! OX , of Fact/Definition I.e.5 of
X along the composite of f with the the universal cover, q W QL ! L. By Propo-
sition/Summary II.g.3, cf. Remark/Definition II.h.10, there is a unique invariant
closed formal sub-champ, X>0 ,! X such that,

(III.4) N QL=X>0
�
�!

a
ai>0

O QL.ai /

By the Chow lemma, Lemma II.b.2, there is an irreducible sub-variety X>0 of
the moduli X of X of the same dimension as X>0 obtained by taking the Zariski
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closure of the image of this in X . We therefore have maps,

(III.5)

X>0 ����! X>0??y ??y
X ����! X

so the leftmost vertical factors through the gerbe X>0 WD X �X X>0 ! X>0,
and even through the normalisation, QX>0 ! X>0, since X>0 is smooth. The said
vertical arrow is, however, net so X>0 ! QX>0 is étale. Indeed the assertion is local,
and everything is excellent, so it suffices to work with the corresponding complete
local rings in geometric points, but then X>0 can be identified with an irreducible
component of X>0, from which it’s isomorphic to its image in the normalisation,
and we assert:

III.b.1. Claim. There is a smoothed weighted, [MP13, I.iv.3], blow up ˇ W Xb !
QX>0 supported in the point p such that the induced (after saturation) foliation
Xb ! ŒXb=Fb� is smooth and everywhere transverse to the exceptional divisor.

Proof. Since p is isolated and, as above, X>0 and QX>0 have isomorphic complete
local rings it will suffice to prove that there is a smoothed weighted blow up of
the complete local ring, OO , of X>0 completed in p which is independent of any
automorphism, � , of OO preserving the foliation.

Now by Proposition/Summary II.g.3.(3) there are coordinates y0; y1; � � � ; yr in
OO; positive integers ai > 0, 0 � i � r ; and a generator @ of the foliation such that

(III.6) @ D a0y0
@

@y0
C ai yi

@

@yi

wherein yi D 0, i > 0 define L, so that for i > 0, ai are as in (III.4), while a0 D d
in the notation of (II.109). As such if � is an automorphism of OO preserving the
foliation, then there is a unit u� such that

(III.7) @� D �@��1 D u�@

and y�i is an eigenvector of the linearisation of @ with eigenvalue u� .0/�1ai , for
all 0 � i � r , so u� .0/ D 1. Consequently, by Claim II.h.2 and ai > 0, @� is not
only semi-simple but

(III.8) @ D a0�0
@

@�0
C ai �i

@

@�i

for a coordinate system of the form �i D uiyi , ui a unit, 0 � i � r . If, therefore,
we define a filtration of OO by the ideals

(III.9) In D .y
t0
0 � � �y

tr
r j a0t0 C � � � C ar tr � n/

then this is independent of the choice of yi in (III.6) since a basis of the eigenvec-
tors of @ with eigenvalue ai are monomials yt00 � � �y

tr
r with a0t0C� � �Car tr D ai ,

and it is independent whether of � , resp. the choice of @, by (III.8), resp. mutatis
mutandis. The filtration, (III.9), defines a weighted blow up exactly as in (III.18)
with smoothing as per (III.19). �

Now let us apply this to a qualitative description of X>0, i.e.
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III.b.2. Corollary. If L corresponds to an extremal ray R in Néron-Severi, with
supporting function HR, and ample bundle AR D mHR � KF , then for all x 2
X>0, there is a �1=d.x/F- so, a fortiori from Fact/Definition II.d.5-an invariant
parabolic champ Lx 3 x in X which, in addition, meets the singular locus in the
same singular point p as L; and every invariant curve is not only of this form, but
is parallel to R in Néron-Severi. In particular the singular locus of the induced
foliation in X>0 is the isolated point p.

Proof. The in particular follows from the antecedents. Otherwise, without loss of
generality, we can replace X>0 by QX>0; form the weighted blow up ˇ W Xb ! QX>0
of Claim III.b.1; lift f to Qf W QL ! Xb , for a possibly different but still parabolic
QL by item (b) of Fact/Definition II.d.5, and argue as in item (c) of op. cit. to find a

deformation M=T , T proper, of Qf composed with the universal cover of QL which
covers QXb , so, equivalently the push-forward of which covers QX>0.

If, however,
P
ai Ci is some effective invariant 1-cycle numerically equivalent

to a rational multiple of ��ŒL� then every Ci generates R, so the gerbe Ci over
any such Ci is a KF negative invariant curve. Consequently, we require, in the
first instance, to show that every KF negative invariant curve, with f W C ! QX>0
it’s normalisation, is a �1=d F curve for some d , so, equivalently, avoiding the
possibilities,

(a) f .C/ � sing.F/\X>0 � sing.F/, which is impossible by the definition of
log canonical singularities as encountered in the proof of Variant II.d.2.

(b) f .C/ \ sing.F/ D ;. Should this occur then f is an embedding, and for
QC ! C the universal cover, another application of item (c) of Fact/Definition II.d.5

affords a finite étale neighbourhood QV ! V of the completion in C with trace QC,
such that the induced foliation in QV is a smooth fibration. From which, the generic
invariant curve misses p, which is absurd.

Now, a fortiori, the singularities of the induced foliation in X>0 are contained
in sing.F/ \ X>0, and by construction this has at least the isolated point p. The
leaves of F in X>0 afford, however, a family of connected curves C ! T in
X over an irreducible base T , the gerbes over each component of each fibre of
which have been seen to be �1=d F curve for some d . As such, suppose there is
another singular point q, then there is a �1=d F curve through it, and this must be
the gerbe over some component Ci of some fibre Ct . By definition, however, a
�1=d F curve cannot meet sing.F/ in any other point, while meeting p is a closed
condition, so there is a different curve Cj in the fibre Ct through p. The fibre is,
however, connected, so there must be a third curve Ck meeting the singular locus
twice, which is nonsense. �

From which we deduce a series of corollaries,

III.b.3. Corollary. The champ QX>0, but, cf. the pre-amble to §II.e, maybe not
X>0, is smooth.

Proof. The singular locus, B, of X>0 is invariant by every vector field, so, a for-
tiori by F , while every leaf meets p, so B must meet it, yet, by construction the
complete local rings at p of QX>0 and X>0 coincide, while the latter is smooth. �

III.b.4. Corollary. The moduli Y>0 of any representable étale cover Y>0 ! QX>0
has exactly one point over p, so, in particular if C ,! QX>0 is any embedded
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�1=d F curve, then the natural map, �1.C/ � �1.X>0/, be it of analytic or alge-
braic fundamental groups, is surjective.

Proof. Any étale cover Y>0 ! QX>0 still has étale neighbourhoods around a cover
of L satisfying Proposition/Summary II.g.3 with QX>0 instead of X in op. cit. As
such the proof of Corollary III.b.2 certainly applies to deduce that Y>0, or, more
correctly Y>0 has foliation singularities supported in an isolated point whenever
Y>0 is algebraic. It applies, however, even if Y>0 were a priori analytic since
the deformations of smooth parabolic invariant champs in the weighted blow up
guaranteed by Claim III.b.1 are certainly open, but they’re also closed by the simple
expedient of taking the limit algebraically and lifting to the universal cover. As to
the in particular, otherwise, C� QX>0Y>0 is disconnected, and C ! QX>0 is supposed
an embedding, so there would be at least two singular points in Y>0. �

III.b.5. Corollary. For each eigendirection @
@xi

of the linearisation of a foliation
generator in End .NL= QX>0 ˝ C.p// there is an at worst nodal �1=di F invariant

champ fi W L! X through p with a branch parallel to @
@xi

and a rational multiple
of R in Néron-Severi.

Proof. There is a formal invariant curve in the said direction in the formal étale
neighbourhood X>0, but every leaf is a �1=d F curve for some d , and all branches
of the embedded image are isomorphic. �

Additionally points in Pt .Q/, t 2 N, are, up to ˙1, uniquely represented by
t C 1 tuples of integers with gcd D 1, so if we change to a more homogeneous
notation, viz:

III.b.6. New Notation. Linearise a local generator @ of TF in the completion of
OOX ;p of OX ;p in mX .p/ by way of, @ D a1 y1 @

@y1
C � � � C ar yr

@
@yr
� bi xi

@
@xi

,
ai 2 N, bi 2 N [ f0g, .a1; : : : ; ar ; b1; : : : ; bt / D 1, with xi D 0 local equations
for QX>0, the summation convention in the obvious way, and t the codimension of
X>0. As such in the above situation of Corollary III.b.5, ai j di .

By Corollary III.b.4 we can (since otherwise Corollary I.c.5 will do) conclude
that QX>0 has finite analytic, and whence finite algebraic, fundamental group on
establishing,

III.b.7. Claim. Let C ! P1 be a gerbe with at most 2 points whose monodromy
exceeds that of the generic point, and which has a unique singular point, p, every
branch of which is smooth, then the topological fundamental group �1.C/ is finite.

Proof. The local model, C , of C is b-smooth branches through p on which a finite
group, G, acts transitively on the branches branches while fixing p. In particular,
the monodromy of the generic point is isomorphic to the stabiliser of any point
other than p, which, in turn, is a proper sub-group of G since its image in the
permutation representation on branches fixes at least one such. Consequently, p
is a point of C with non-generic monodromy, and we denote by q the other such,
should it exist, or some point distinct from p otherwise. In either case, let U 3 p
be the complement of q in P1.

Now, observe, that if L! C is the normalisation, and B ,! C a branch whose
stabiliser in the permutation representation is H , then ŒB=H� is a local model for
L, and LU WD L�P1 U has fundamental groupH , and universal cover isomorphic
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to U , with H acting linearly. In particular, if we identify a branch with a disc, �,
in U , embed C in V where the latter is b copies of U through the point p, and for
good measure observe that all of this is necessarily compatible with a linearisation
of G in appropriate coordinates, we find a commutative diagram of fibre squares
with vertical embeddings,

(III.10)

C ����! ŒC=G� ����! �??y ??y ??y
V ����! C �P1 U ����! U

The upper left horizontal arrow is, however, the universal cover, and all the verticals
are homotopy equivalences since the rightmost is, so the lower left is a universal
covering. As in (II.56), the mapping U ! LU may not extend over q as a map
from P1 to L, but this holds over some cyclic Galois cover QU ! U ramified
exactly in p which respects the commutativity of,

(III.11)

QU ����! P1??y ??y
U ����! L

Better still, taking b copies QV of QU , the resulting composition QV ! C �P1 U with
the lower left map in (III.10), now admits an extension, NV ! C, over b copies of
P1 meeting in a single point since the upper horizontal in (III.11) is an embedding.
By construction, NV ! C is open in the origin, and everywhere else it’s flat, so it’s
open everywhere. As such if M ! L is any (not necessarily finite) representable
connected étale covering with group � , then M�L NV

�
�! NV �� , and the image of

any NV � 
 !M, 
 2 � is open and closed, so it’s all of M. �

Now let Y ! QX>0 be the finite universal cover assured by Corollary III.b.4 and
Claim III.b.7, then we further assert,

III.b.8. Claim. Pic.Y/ ��! Z.

Proof. By construction � W Y ! Y is a gerbe over a projective variety, and
the proof of [DI87] that the Hodge-De Rham spectral sequence degenerates at
E1 is valid mutatis mutandis since it only requires local smoothness and the co-
homological criteria for ampleness both of which hold on Y . As such, since Y is
simply connected and � is acyclic,

(III.12) H1.Y;OY/ D H1.Y; ��OY/ D H1.Y;OY / D 0

Now quite generally we have that Pic .Y/Q D Pic .Y /Q, and by (III.12), these
are equally their respective Néron-Severi groups with Q-coefficients. The Néron-
Severi group, NS1.Y /Q, of Y is, however, known, e.g. [Kol96] II.4.21, to be of
rank 1, so: Pic .Y/Q

�
�! Q, which is equally the image of the Picard group under

.c1/Q in H2.Y;Q.1// as deduced from the exponential sequence,

(III.13) H1.Y;OY/ D H1.Y;OY /! Pic.Y/
c1
�! H2.Y;Z.1//

while the remaining possibility of torsion is excluded by Y simply connected, and
the exact sequence,

H1.Y;Q.1/=Z.1//! H2.Y;Z.1//! H2.Y;Q.1// �
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We will need some auxiliary constructions, so, initially, Y0, i.e. Y modulo its
generic stabiliser as defined in Fact I.a.6, and their common moduli, Y . At the
singular point p identified with the origin as found in the New Notation III.b.6,
we have, therefore, its stabiliser G in Y , of which the stabiliser G0 in Y0 is a
quotient acting faithfully on the local ring. Furthermore in a minor variant of the
New Notation III.b.6 we have, étale locally at p, a foliation generator @ with co-
prime positive integer eigenvalues ai which is invariant by the actionG. Under this
action, however, eigenvectors must go to eigenvectors, so the linear representation,
� ofG, which is equally its local action, splits as a direct sum of �˛’s, where ˛ 2 A
is a complete repetition free list of the ai ’s, and �˛ permutes the eigenvectors of @
with eigenvalue ˛. In particular, therefore, following the New Notation III.b.6, the
action of G commutes with the action of Gm defined by,

(III.14) � � .y1; : : : ; yr/ 7! y� D .�a1y1; : : : �
aryr/

while the leaves may be identified with the images of,

(III.15) �c W t 7! .c1t
a1 ; : : : ; cr t

ar /; where, c 2 Arn0

with two such functions �c ; �c0 defining the same leaf in Y iff,

(III.16) c0 D .�.g/c/�; g 2 G; � 2 Gm

with Gm action as per (III.14), which, as we’ve said, commutes with G, so if H is
the image of the representation

(III.17) G ! Aut.P.a1; : : : ; ar//

in automorphisms of the moduli of the weighted projective champ P.a1; : : : ; ar/,
then the leaf space is P.a1; : : : ; ar/=H .

Similarly, if we consider the weighted blow up,

(III.18) Y1 WD Proj.
a
n

In/! Y0; In D .y
t1
1 : : : y

tr
r W a1t1 C : : : ar tr � n/

then the moduli, E, of the exceptional divisor is equally the said leaf space, so
we have a map Y1 ! E. In addition Y1 has only quotient singularities, so we
can form the smoothed weighted blow up Y2 ! Y1, [MP13, I.iv.3], or if one
prefers not to cross reference, replace Y1 by what is locally its Vistoli covering
champ of Fact/Definition I.a.2. In particular Y2 is smooth, with smooth connected
exceptional divisor E2. Certainly the moduli of E2 is E, but it’s usually false that
Y2 maps to E2 because the latter is highly non-scheme like. Indeed since �jG0 is
faithful, the stabiliser of a generic point is the kernel, K of G0 ! H , which by
(III.16) and (III.14) is isomorphic under the restriction of � to some finite group of
roots of unity �a0 acting according to (III.14), albeit for � 2 �a0 . Alternatively: in
the stabiliser of every geometric point of E2, K may be identified with the normal
sub-group of pseudo-reflections in E2, and killing such reflections affords a map
Y2 ! QY , where QY is smooth, still a gerbe over the moduli of Y1, and Y2 ! QY
is the extraction of an a0th root of a smooth divisor E �

�! ŒP.a1; : : : ; ar/=H�-
this latter notation being absolutely unambiguous since H acts on P.a1; : : : ; ar/
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because of the commutativity ofG with (III.14). Consequently we have a diagram,

(III.19)

.Y1; E1/
Vistoli covering
 ��������� .Y2; E2 D 1

a0
� QE/

Weighted blowup
??y ??ya0th root

Y0 3 p
not defined at p
 ���������

if a0 > 1.
. QY; QE ��! ŒP.a1; : : : ; ar/=H�/

where, to be precise, the final arrow is an isomorphism off QE and is defined over p
iff a0 D 1. This final pair is the good one for extending the map Y1 ! E, to wit:

III.b.9. Claim. The map Y1 ! E to the moduli lifts to a map � W QY ! QE , and
better still, not only is this the quotient QY ! Œ QY= QF � but there is an a 2 N such that
this expresses that foliation as a fibration in P.1; a/’s in the étale site of QE , while
the identity,

(III.20) KF jY2 D KF2 C E2 D K QF C QE jY2

with implied pull-backs those in (III.19) not only gives sense to KF on QY , but is a
well defined tautological bundle, i.e. of degree 1=a on geometric fibres.

Proof. We will give a proof in the analytic topology, since by [Gir71, IV.3.4] and
[SGA-IV, XVI.4.1], cf. [McQ15, IV.a.3], it is equivalent, and trying to avoid this
just leads to repeating variations on the steps in op. cit.

The smoothed weighted blow up operation- left vertical followed by top hori-
zontal in (III.19)- smooth the foliation, and dropping to QY it remains smooth since
E is everywhere transverse. Now let q be a geometric point of QE , with Sq its sta-
biliser in QY , then we can find a polydisc �r centred on q with coordinates yi ,
y1 D 0 an equation for QE , Q@ D @

@y1
generating the foliation, and Sq acting linearly

via,

(III.21) y1 � � 7! �.�/y1; yi � � 7! �ij .�/yj

From which, we can naturally identify � W Sq ! GL.r � 1;C/ with the full (not
just linear) holonomy of the piece- Œ�=Sq�- of the leaf Lq 3 q through q in QY , and
� is faithful because there are no pseudo-reflections in QE .

The foliation is smooth with proper leaves, so their universal cover is constant,
and since the leaves are � 1

d
F-curves in Y0 without generic monodromy, and the

generic point of QE has no-monodromy, this is P.1; a/ for some a 2 N, and the
monodromy representation extends to,

(III.22) Sq D �1.Œ�=Sq�/! �1.Lq/! GL.r � 1/

so the first arrow in (III.22) is an injection. By either the long exact sequence of
a fibration or, more algebraically [McQ15, III.c.3], �1.Lq/ is an extension of the
fundamental group of the orbifold over which it is a locally constant gerbe by a
quotient of the generic monodromy by a central element, so Sq is also surjective
by item (b) of Fact/Definition II.d.5. As such, the holonomy covering of Lq is its
universal covering, so that for Sq acting diagonally, we have an embedding,

(III.23) ŒP.1; a/ ��r�1=Sq� ,! QY
for some possibly smaller transversal polydisc, and the natural projection,

(III.24) ŒP.1; a/ ��r�1=Sq�! Œ�r�1=Sq� ,! QE
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is the unique analytic continuation of our initial projection Œ�r=Sq� ! QE . This
latter exists everywhere in a neighbourhood of QE- in fact everywhere in a formal
neighbourhood would be enough which follows from the normal form of the New
Notation III.b.6- so the projections (III.24) glue by Lemma I.a.4 to a projection on
all of QY . Finally (III.20) is an easy local calculation at the singularity. �

The fibration in Claim III.b.9 has connected and simply connected fibres, so,

(III.25) �1. QY/
�
�! �1. QE/

�
�! �1.ŒP.a1; : : : ; ar/=H�/

and by Corollary I.c.5, a weighted projective space is simply connected, so this
latter group is H , which in turn affords a connected H -covering of QYn QE since this
is embedded as a representable Zariski open of QY . Further the diagram (III.19)
can be formed locally with Y0 either Œ�r=G0�, or Œ�r=K�, yielding a pair of dia-
grams with the obvious commutativity between them. Consequently the above H -
covering of QYn QE implied by (III.25) glues to theH -covering Œ�r=K�! Œ�r=G0�,
while Y is simply connected, so we must have H D 1, and we further assert,

III.b.10. Claim. The foliation Y0 ! ŒY0=F � is isomorphic to the radial foliation,
R, on the weighted projective champ P.a0; aa1; : : : ; aan/. In particular, since Y0
is generically scheme like, a, and a0 are relatively prime.

Proof. The start of the Leray spectral sequence applied to the fibration � of Claim
III.b.9 yields an exact sequence,

(III.26) 0! H1. QE ;Gm/
��

��! Pic. QY/! H0. QE ; R1��Gm/
d
0;1
2
���! : : :

and by (III.20) this latter group is generated by the image of KF , so d0;12 D 0, and
for a as per Claim III.b.9 we can write,

(III.27) O QY.
QE/ D T aF ˝ O QE.�m/

for some m 2 N, with the latter bundle the tautological bundle of Fact/Definition
I.c.2 on our weighted projective space. Forming, the exact sequence,

(III.28) 0! O QY.aTF � E/! O QY.aTF /! O QE ! 0

and pushing forward by � , affords,

(III.29) 0! O QE.m/! ��O QY.aTF /! O QE ! 0

which by Fact I.c.3 is a split rank 2 vector bundle, V , with the splitting even being
canonical if a > 1. Indeed, we already know by Claim III.b.9 that if there were
extra monodromy at1 then it forms a smooth divisor on QY admitting a group of
reflections of order a, so, equivalently if we killed these pseudo reflections, then all
of the above is equally valid for some Y0a ; QYa, etc., and QY ! QYa is an extraction
of an ath root of a section,1, of the P1 bundle, P.V / D QYa.

Now, by (III.25) et. seq. G0 D K, and the important thing to observe is that
because of the commutativity of the action of G0 with the Gm-action (III.14), the
locally constant gerbe E2 ! QE of (III.19) in BK’s is in fact trivial, so a0jm by
(I.18). If, however, a0 and a were to have a non-trivial gcd, ˛ > 1, then the
leafwise universal cover,

(III.30) P.
a0

˛
;
a1

˛
/! P.a0; a/
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of the fibres of Y2 ! QE is globally well defined, i.e. by (III.29): raising to the
power ˛ on the Gm torsor O QE.

m
˛
/ and extending over 0 and 1. The resulting

covering QY2 ! Y2 is étale representable, and locally about the singularity, patches
to the �˛ covering Œ�r=�a0

˛
�! Œ�r=�a0 �, and whence the absurdity that Y isn’t

simply connected.
Having thus established the in particular, everything else follows quickly. The

fact that a0 and a are relatively prime imply that in an embedded neighbourhood
(formal will do) of the singularity p, Y ! ŒY=F � is isomorphic to the radial
foliation, R, of Definition I.d.2, on the said weighted projective champ, P . All of
the above, and specifically (III.19), apply, cf. Facts I.d.3, if our starting points is
P ! ŒP=R�. The fact that we have an isomorphism at p, and the same monodromy
at infinity, obliges us to have the same P.1; a/ bundle, so QY ! Œ QY= QF � and QP !
Œ QP= QR� are isomorphic in a way compatible with the initial isomorphism at p, and
whence, item (d) of Facts I.d.3, Y0 ! ŒY0=F � is isomorphic to P ! ŒP=R�. �

Our initial Y is simply connected, and a locally constant gerbe over Y0, so
by Corollary I.c.6, it is again a weighted projective champ, and only the notation
changes, to wit:

III.b.11. Fact. The foliation Y ! ŒY=F � is isomorphic to the radial foliation on
the weighted projective space P.a0; aa1; : : : ; aan/, where a0 is the order of the
stabiliser of the singularity p, and the generic leaf is a �1

a
-curve. In particular the

generic stabiliser is cyclic of order the gcd of a0 and a.

III.c. Ignoring Cusps. So far we haven’t discussed what may happen if our ex-
tremal ray R is represented by an invariant champ f W L ! X which has a cusp
at the unique singular point ´ where f meets sing .F/. This is, however, easily
reduced to the previous case by way of

III.c.1. Claim. Let ´ be a geometric point of the singular locus of a foliated smooth
champ, X ! ŒX=F �, with log-canonical foliation singularities, and projective
moduli, then if there is a KF -negative extremal ray, R, represented by a �1=d F
curve through ´ there exists a �1=d 0 F curve through ´ with at worst nodes.

Proof. Let � W QX ! X be the blow up in ´ then the exceptional divisor, E is
invariant and ��KF is again the foliated canonical bundle unless perhaps all the
eigenvalues in the New Notation III.b.6, are equal, but then there are no �1=d F
cusps through ´ by Fact II.i.2, and we’re done. As such, by the cone theorem,
Fact II.d.1, there is a �1=d 0 F curve whose class, QR, in NE1. QX / is extremal and
��R� QR. Consequently, without loss of generality, we may suppose that there is
a �1=d F curve f W L! X which has a cusp at ´, and whose class, resp. that of
its proper transform Qf , is extremal in NE1.X /, resp. NE1. QX /. The local structure
of a branch of a cusp is described by (II.127) and Fact II.i.2, and, in the notation of
op. cit. Qf meets the exceptional divisor with a (local) multiplicity v1 in any scheme
like chart. Now consider, � 0 W X 0 ! X where X 0 is the extraction of a v1th root of
E , then the induced map f 0 W L ! X 0 has at worst nodes. On the other hand E is
invariant so the canonical class is the same and f 0 is still extremal, and, somewhat
superfluously, the singularities X 0 ! ŒX 0=F 0� are still log-canonical since E is
smooth. In any case, at the point ´0 where f 0 crosses the exceptional divisor we
can apply Corollary III.b.5 to find �1=di F curves with smooth branches parallel
to every axis afforded by the embedding dimensions of the original cusp, any of
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which represent the extremal ray. In particular if one takes the �1=d 0 F curve in
an eigendirection normal to the exceptional divisor in the local coordinates at ´0

implied by those of Fact II.i.2 at ´, then the projection of this curve to X has at
worse nodes. �

III.d. Structure of Extremal Champs. We begin with exactly the same prelimi-
naries as §.III.b prior to (III.4) except that in the notation of op. cit. our interest is
the unique formal champ X�0 ,! X with normal bundle

(III.31) N QL=X�0
�
�!

a
ai�0

O QL.ai /

Now X! X is net so the tangent space to the deformation space (wherein we insist
that the deformation meets sing.F/) whether of Qf W QL ! X or any composition
with P1 ! QL is the tangent space to the deformation space whether of QL ,! X�0,
or such a composition. The latter are however un-obstructed, (III.2), so by way
of X�0 ,! X ! X the former are too. Consequently there is a Zariski closed
sub-variety, X�0, of the moduli- the variety swept out by the deformations of Qf or
compositions thereof with P1 ! QL- of the same dimension as X�0 and containing
its image. Exactly as in (III.5) we therfore get maps

(III.32)

X�0 ����! QX�0 ����! X�0 ����! X�0??y ??y
X ����! X

wherein the square is fibred, QX�0 ! X�0 is normalisation, and the top leftmost
arrow is an étale cover over its image. As ever we normalise a local generator @ of
the foliation in the complete local ring OOX ;p, for p D f �1.singF/, according to
the New Notation III.b.6 with d1 D a1d , d 2 N albeit with the further refinement,

III.d.1. New Notation. Linearise a local generator @ of TF in the completion OOX ;p
of OX ;p in mX .p/ by way of, @ D a1 y1 @

@y1
C� � �Car yr

@
@yr
�bi xi

@
@xi

, ai 2 N,

bi 2 N, .a1; : : : ; ar ; b1; : : : ; bt / D 1, with xi D 0 local equations for QX�0, and
´1; : : : ; ´s the additional (formally invariant) functions which cut out QX>0, (III.5),
so that t is now the codimension of X�0, and s C t the co-dimension of X>0.

Now let us suppose that the �1=d F curve f W L ! X affording (III.31) is an
extremal ray, R, then we have constructed an integral invariant sub-champ X�0 of
X through every point of which there is a �1=e F champ, for varying e, parallel to
R in Néron-Severi, and we assert

III.d.2. Claim. Let Z be the intersection of X�0 with the singular locus of F , then
Z is smooth and connected.

Proof. Firstly, suppose Z is a disjoint union of components Z1, Z2, then we may
consider the sub-champs Y1, Y2 whose moduli is covered byKF -negative extremal
1-dimensional champs parallel toR through Z1 and Z2 respectively. Consequently
if y 2 Y1 \ Y2, it is a singular point of some extremal 1-dimensional invariants
champs L1, L2, so in Z1 \ Z2 by Fact/Definition II.d.5.(a), which is nonsense,
and Z is connected. Better still at the singularity, p, of the initial curve f , we
know from Fact II.i.2, that Z is irreducible and smooth of dim D s, so there is
some irreducible component Z0 of sing.F/ of dimension s contained wholly in
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Z . However 8� 2 Z , there is a �1=e.�/F champ L� 3 � contained in X�0, so
sing.F/ is smooth at � by another application of Fact II.i.2. Consequently � 7!
dim� sing.F/ is not just upper semi-continuous but continuous, i.e. the constant
s in the New Notation III.d.1, and since Z is connected: Z0 D Z is smooth
irreducible of dimension s. �

Now consider the ideal IZ of Z in X , then the composition

(III.33) IZ �!
d
�X �! KF �IZ :

affords an OZ -linear map

(III.34) IZ=I
2
Z ����!

DZ
IZ=I

2
Z ˝KF

of which the trace gives a global section of OZ.KF /. Plausibly this is zero, but by
Fact II.i.2 it may, on normalising in the direction of some smooth branch guaran-
teed by Claim III.c.1 and (III.31), be identified locally with a Q-valued function,
so, by Claim III.d.2, it’s non-zero iff the trace of a generator normalised according
to the New Notation III.d.1 is non-zero at some p 2 Z . Similarly the 2nd symmet-
ric function is a global section of OZ.2KF / which may locally be identified with
a Q-valued function, whose expression in the notation of op. cit. is

(III.35)
1

2

�X
i

ai �
X
j

bj

�2
�
1

2

�X
i

a2i C
X
j

b2j

�
so if the trace doesn’t define a nowhere vanishing section of OZ.KF / there is at
worst an étale double cover ZC� ! Z such thatKF jZC� is trivial. As a result the
eigenvalues ofDZ are well defined constant functions up to a choice of generator of
OZ.KF / when this is possible, and otherwise they’re well defined on ZC�. Thus
if necessary we choose a lifting pC of the singularity p of the curve of (III.31)
to the double cover, and subsequently choose our local generator in such a way to
have compatibility with our formal linearisation at p (identified locally with pC if
necessary), i.e. the eigenvalues of DZ are everywhere a1; : : : ; ar ; �b1; : : : ; �bt ,
with ai ; bj 2 N, and gcd.a1; : : : ; ar ; b1; : : : ; bt / D 1. In any case, for every
� 2 Z , there is a well defined pair of eigenspaces, fTC.�/; T�.�/g of TX˝C.�/, and
everyKF -negative 1-dimensional invariant champ has tangent space at � contained
in precisely one of these. To fully profit from this we will have to extend from the
normal bundle to a formal neighbourhood of Z , which probably shows that being
lazy about convergence wasn’t perhaps an optimal use of time. The discussion is
local over affine neighbourhoods U covering Z over which the normal bundle and
KF trivialise, and which we consider centred on a point � of Z . To momentarily
simplify the notations let �i denote the necessarily non-zero eigenvalues of the
normal bundle, and consider the following inductive proposition,

III.d.3. Claim. Let OOU be the completion of OU in mX .�/, then for k 2 N, we have
coordinates xi normal to Z (evidently giving a basis for N_

Z=x
) and a generator @

of F over U such that,

(1) @xi D �i xi .modI kZ/

(2) There is a semi-simple generator O@ of TF ˝ OOU;� of the form �i �i
@
@�i

, for

�i 2 OOU;� and �i D xi .modI kZ/.
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Proof. The case k D 2 trivially follows from the previous discussion, so consider
going from k to kC1, which evidently we wish to be compatible with restriction so
that things converge. In any case, in terms of our usual notations about monomials
and summation conventions we have, mod I kC1Z ,

(III.36) @xi D �i xi C aiJ x
J ; aiJ 2 OU ; �i D xi C biJ x

J ; biJ 2 OOU;� :

Furthermore, O@ D u@, u 2 OOU;� , and, u D 1 C uiK x
K , uiK 2 OOU;� , with

#J D k, #K D k � 1, so if we put these equations together then we obtain,

(III.37) aiJ D

(
.�i � �J / biJ � uiK �i if xK xi D xJ ,
.�i � �J / biJ otherwise

without any summations. The latter is rather good since if �i ¤ �J WD jp �p we
conclude that the biJ are algebraic, so replacing, without loss of generality. xi , by,

(III.38) xi 7! xi C
X
�i¤�J

xi -xJ

biJ x
J

then in fact we conclude that aiJ D 0 if xi - xJ . As for the 1st-case we do what
we can. Specifically, again without loss of generality we can replace xi by,

(III.39) xi 7! xi C
X
�i¤�J

aiJ

�i � �J
xJ

so that aiJ D 0 if �i ¤ �J , while if �i D �J we conclude that uiK is algebraic.
Thus if we replace @ by,

(III.40) @ 7!
�
1C

X
�KD0

uiK x
K
�
@

then uiK D 0 if �K D 0, so in fact we can suppose aiJ D 0 for all J . Conse-
quently, O@ has the form,

(III.41)
�
1C

X
�K¤0

uiK x
K
�
@ :

However if we replace O@ by,

(III.42) Q@ D
�
1C

X
�K¤0

QuiK �
K
��1
O@

for QuiK appropriate functions of coordinates ´ in OOZ;� which restrict from coordi-
nates in OOU;� annihilated by @, and of course QuiK D uiK (mod IZ), then by Claim
II.h.2 Q@ is still semi-simple, with respect to a possibly different basis Q�i of the form
vi �i , vi � 1 .I k�1Z /. To complete the induction, therefore, it suffices to observe,
on supposing without loss of generality that �i D Q�i , that,

(III.43) �i 7! �i �
X
�KD0

xJDxi x
K

QbiJ .´/ �
J

for QbiJ satisfying much the same prescriptions as the QuiK is still a trivialising basis
for O@. �
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Consequently over an appropriately small affine U containing �, and bearing in
mind that for any �0 2 Z we know we can find appropriate coordinates in OOX ;� 0

annihilated by @, we obtain formal subschemes U>0, U<0 of the completion OU
of U in Z, whose subsequent completion at any �0 2 Z \ U is the non-strict
Harder-Narismhan pair of Remark/Definition II.h.10. The monodromy of the pair
fU>0; U<0g is precisely the monodromy of the pair fT OX>0 ; T OX<0g, so either these
patch to formal subchamps, X�0, X�0 of the completion of X in Z , which com-
pleted at any point is the non-strict H-N pair, and of course we normalise so that
8 � 2 Z, T>0.�/ D T OX>0

˝ C.�/, T<0.�/ D T OX<0
˝ C.�/, or we get the same

conclusion on a double covering of the completion.
With this out of the way we can quickly proceed to a conclusion. To begin with

complete X�0 in Z , call it Y. By Claim III.c.1 there is, for every � 2 Z , a �1=d F
curve through � with at worst nodes and parallel to the given extremal ray. By
the unicity of the New Notation III.d.1 up to ˙ such a curve must factor through
X�0[X�0, which is always well defined even if X�0, X�0 are only well defined on
a cover. In addition, exactly as post (III.31), the deformation space of the universal
cover of the normalisation of such a curve is un-obstructed, so locally, it covers
whichever of X�0, X�0 it factors through, and we’ve normalised so that our initial
curve factors through X�0, so Y is either X�0 or, X�0 [ X�0. In particular, there
is a smooth Zariski open U ,! X�0nZ , which close to Z is just the complement of
the same, so, all leaves in X�0 meet U . On the other hand the singular locus of X�0
is invariant by the induced foliation, so it’s at worst contained in Z , and indeed it’s
either empty or all of Z according to whether its completion Y is smooth or not, i.e.
iff the H-N pair is without monodromy or not. In the latter case, Y D X�0 [ X�0
so the normalisation QX�0 is smooth, and indeed QX�0 ! X�0 is everywhere an
isomorphism except over Z where it’s the double cover ZC� ! Z , and for the
unity of notation we put QZ ,! QX�0 to be ZC� or Z as appropriate.

We next wish to consider the operation of “projecting to Z”, by sending an in-
variant 1-dimensional champ to its unique singular point. To this end, we introduce
the moduli, X�0, and the associated orbifold QX 0

�0 of Fact I.a.6, of the normalisa-
tion QX�0. Again the issue is that we have to be careful about the gerbe structure on
Z , so, say

Z 00 ,! QX 0
�0 the fibre over the moduli Z ,! X�0 of Z , and Z0 the

associated orbifold, so that Z 00 ! Z0 is a locally constant gerbe.
(III.44)

We now proceed as in Claim III.b.9. In the first instance (III.18) again affords a
(well defined by Claim III.d.3) weighted blow up QX 1

�0 ! X 0
�0, whose exceptional

divisor, E , is the projectivisation of the graded OZ 00-algebra

(III.45) A WD
a

An WD In ˝ OZ 00 ; In D .y
t1
1 : : : y

tr
r W a1t1 C : : : ar tr � n/

In particular therefore the automorphism group of any geometric point of Z 00 has a
projective representation in the automorphisms of Proj.A/, and better still

III.d.4. Claim. The kernel, S 0, of the representation of the stabiliser, S ! Z 00,
in automorphisms of Proj.A/ is locally constant, and the operation of quotienting
by this kernel, cf. Fact I.a.6, affords a factorisation Z 00 ! Z 0 ! Z0 of locally
constant gerbes.
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Proof. Let U ! QX 0
�0 be a small étale neighbourhood of � 2 Z 00, with G the local

monodromy, then by definition any � 2 G which acts trivially on Proj.A/ acts
trivially on the pre-image Z ,! U of Z 00, i.e. � is a well defined element of every
stabiliser G´ ,! G of every ´ 2 Z, which stabilises Proj.A/ around ´ by the
uniform definition of the yi ’s in (III.45), i.e. Claim III.d.3. �

Now, modulo notation, the diagram (III.19) and the proof of Claim III.b.9 (which
doesn’t employ the simple connectedness of Y in (III.19) ) are valid as stated, so
“projection along a leaf” certainly yields, in the notation of op. cit.

(III.46) QY ! QE
On the other hand QE maps, cf. (III.14) et seq., to Proj.A/ understood as a cone
over Z 0, and whence (III.46) affords a composition

(III.47) QX 0
�0nZ 00 ! Z 0 ! Z0

which may, plainly, be extended everywhere locally around Z 00 while Z0 itself is
an orbifold so by Lemma I.a.4 we finally get a projection

(III.48) �0 W QX 0
�0 ! Z0 and a composition � W QX�0 ! QX 0

�0

�0

��! Z0.

Before proceeding, let us emphasise the need for caution by way of

III.d.5. Warning. In general (III.48) needn’t extend to a map to Z 00 or even Z 0. As
such the extent to which one can profit from Fact III.b.11 is limited according to
whether we can glue together the universal covers of the fibres of � in (III.48), or
some variant thereof for a different champ structure over the base, which de facto
requires that � , or the said variant has a section.

Consequently we confine our description of � to

III.d.6. Claim. Let QX�0 ! Œ QX�0= QF � be the induced foliation then � is a smooth
QF-equivariant (foliated) fibre bundle (in the étale topology) with fibre a foliated

champ whose (finite) universal cover is described by Fact III.b.11, i.e. a weighted
projective champ in its radial foliation.

Proof. By construction, (III.47), functions on Z0 are invariant, i.e. � is certainly a
QF-equivariant morphism of smooth champs. As such the map

(III.49) d� W �1Z0 ! �1
QX�0

is given, locally, by a s � .r C s/ matrix, P , say such that for @ a local generator
of the foliation there is a .r C s/ � .r C s/ matrix B for which @P D PB , so the
locus where d� fails to have full rank is QF-invariant. By definition, however, every
leaf of QF meets QZ , and, Claim III.d.3, � is smooth in a formal neighbourhood of
QZ , whence the co-kernel of (III.49) is a vector bundle of rank s everywhere, and a

surjective map of smooth varieties is flat as soon as the fibres are equidimensional,
so � is smooth. As such the condition, (I.58), for � to be a bundle of champs is
is true by Fact III.b.11, Fact I.c.3 and (because we’re in characteristic zero) the
Höschild-Serre spectral sequence. Consequently, by Fact III.b.11, for V ! Z0 a
sufficiently small étale neighbourhood, ��1.V / is of the form ŒV �CPC.a/=G� for
G a finite group of automorphisms of a weighted projective champ PC.a/. Again,
however, by he Höschild-Serre spectral sequence, the representation of G cannot
be deformed, so the only obstruction to having a bundle of foliated champs is that
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radial foliations on weighted projective champs might deform. This is, however,
excluded by Fact/Definition I.d.4. �

We have, therefore, established

III.d.7. Large Fact. Given a �1=d F curve f W L ! X parallel to an extremal
ray R in Néron-Severi meeting sing.F/ with p the unique geometric point of
their intersection, then after multiplication by a suitable constant, a linearisation in
End.�X˝C.p// of a generator @ of the foliation is a diagonal matrix diagfa1; : : : ;
ar ; 0; �b1; : : : ; �btg, ai ; bj 2 N without common divisor and s zeroes. Better
still, normalising so that the tangent space to f .L/ lies in the positive eigenspace,
there is an R-extremal champ X�0 ,! X containing f such that,

(a) X�0 contains a unique, smooth s-dimensional component Z of the singular
locus of F .

(b) The normalisation QX�0 retracts onto Z0 where the pre-image QZ ,! QX�0 of
the singular locus is a locally constant gerbe over Z0, (III.44), via � of (III.48),
and we have exactly one of,

(i) KF jZ is trivial, and QX�0
�
�! X�0.

(ii) K˝2F jZ is trivial, but KF j Z is not, then QZ ! Z is an étale �2 covering
which is exactly where QX�0 ! X�0 fails to be an isomorphism.

(c) The fibration � is actually an étale bundle of foliated varieties where the
transition functions are automorphisms of a foliated variety Y ! ŒY=F � whose
(finite) universal cover is the radial foliation on some P.a0; aa1; : : : ; aan/ for a0; a
as per Fact III.b.11.

(d) Every extremal champ meeting sing.F/ is of this form.

There are a few loose ends here which we’ll tidy up via

III.d.8. Remark. All of the above includes the case that sing.F/ has dimension
zero at ´ but non-trivial monodromy, cf. Fact II.h.9. Indeed, by item (c) of
Fact/Definition II.d.5, the only way that an extremal ray can fail to meet sing.F/
is if the foliation is generically a fibration in parabolic champs. This is also the
only way that not just (b).(ii) (so inter alia an isolated singularity with monodromy
switching the H-N pair) can occur, but that (possibly different) extremal rays can
factor through both the positive and negative parts of the H-N pair. This is, how-
ever, more subtle, so its proof is postponed. It is, therefore, not unreasonable to
paraphrase Large Fact III.d.7 as “every” extremal sub-champ is a smoothly embed-
ded bundle of radially foliated weighted projective spaces.

Irrespectively, however, of clarifying when b.(ii) does occur, we have

III.d.9. Corollary. The number of extremal rays in the half space, NEKF<0 is
finite.

Proof. An extremal ray which meets a singularity is described by Large Fact III.d.7,
and by Fact II.h.9 it must factor through either OX>0 or OX<0 of the H-N pair, so ev-
ery connected component of sing.F/ meets at most two such sub-champs which
themselves are maximal amongst those covered by extremal rays meeting sing.F/.
By item (c) of Fact/Definition II.d.5 we’re therefore done unless X ! ŒX=F � is
generically a fibration in rational curves, but in this case, cf. op. cit., the component
of the deformation space of an invariant curve which doesn’t meet sing.F/ cover
X with leaves, so all such rays are equivalent. �
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IV. FLIP, FLAP, FLOP

IV.a. Contractions. We will profit from a number of simplifications afforded by
the analytic topology. As such we spell out our

IV.a.1. Set Up. Let X ! ŒX=F � be a foliated champ with projective moduli, and
Y ,! X an embedded invariant sub-champ equal to QX�0 of Large Fact III.d.7 in
case b.(i) for some extremal ray. Fix a (not necessarily scheme like) point ´ ,! Z0,
i.e. the pre-image of a point in the moduli, for Z0 as in op. cit., and let XŠ ,! X be
an embedded analytic open neighbourhood of Y´ whose intersection YŠ ,! Y with
Y is (as a foliated variety) of the form ��1.ZŠ/, with � as per item (c) of Large
Fact III.d.7, and ZŠ ,! Z0 a small embedded analytic neighbourhood of ´. Such
data admits, therefore, arbitrarily small shrinkings around Y´ which, in order to
employ Fact I.f.5, we ’ll make without warning. This is equally the good set up for
constructing flips, so in our immediate context we add the precision that uniquely
for this section, IV.a, Y is a divisor.

Profiting from Fact III.b.11, and shrinking as necessary, we have, from item (c)
of Large Fact III.d.7 and Fact I.f.5, that for some polydisc V there is a fibred square

(IV.1)

Y Š WD P.a0; aa1; : : : ; aar/ � V ����! X Š??y ??y
��1.ZŠ/ ����! XŠ

where the horizontal arrows are embeddings; the vertical arrows étale Galois cov-
erings under �1.Y´/; ai as in the New Notation III.d.1; and a, a0 as in Fact III.b.11.
In particular, therefore, for O.1/ the tautological bundle on the weighted projective
space in the left hand corner of (IV.1), Proposition/Summary II.g.3 implies

(IV.2) NYŠ=X Š
�
�! O.�ab/

for b D b1 of the New Notation III.d.1. Now consider the operation of extracting
a d th root of the Cartier divisor Y Š, as defined in Fact/Definition I.a.9,

(IV.3)

YŠŠ ����! XŠŠ??y ??y
Y Š ����! X Š

then, for any d the left hand vertical is a locally constant gerbe under B�d and
if, moreover d D ab this gerbe is trivial, so by Fact I.f.5 again, after appropriate
shrinking there is a fibre square,

(IV.4)

Y Š ����! X ŠŠ??y ??y
YŠŠ ����! XŠŠ

where, once more, the horizontals are embeddings, and the verticals étale cover-
ings, but now under �ab . This construction has a number of convenient properties,
to wit:

71



IV.a.2. Claim. The complement X� WD X ŠŠnY Š is everywhere space like, and an
étale Galois covering of XŠnYŠ with group an extension of the form

(IV.5) 1! �ab ! E´ ! �1.Y´/! 1; i:e: XŠnYŠ
�
�! ŒX�=E´�

Proof. That we have a covering with the said group is immediate from (IV.1),
(IV.3), and (IV.4), while by (IV.2) NYŠ=X ŠŠ is isomorphic to O.�1/. As such the
local monodromy acts faithfully on the complement of the zero section Y Š ,!
NYŠ=X ŠŠ , so, a fortiori X� is space like. �

Before profiting from this let us make,

IV.a.3. Remark. One could certainly take an abth root globally of Y ,! X , say:

(IV.6) X 1=ab
! X

with X 1=ab
Š

,! XŠ �X X 1=ab the resulting neighbourhood. This does not imply,
however, that (IV.5) is split since there may be torsion effects in Pic.Y/- cf. (I.18).
Similarly, if one is prepared to assume that Pic.X Š/

�
�! Pic.Y Š/ then one can do

the steps (IV.3)-(IV.4) in a single move, viz: extract the abth root of the section of
O.�ab/ defined by Y Š. This is easy if one completes in Y Š, i.e. the exponential
sequence for the nth thickening

(IV.7) 0! In=InC1
x 7!1Cx
�����! O�nC1 ! O�n ! 0

and Fact I.c.3, but otherwise would requires a little analysis that can reasonably be
avoided, via Fact I.f.5, by confining ourselves to purely topological statements.

Irrespectively, having arrived to this juncture, we can complete X ŠŠ in Y Š to a
formal champ, OX ŠŠ, with trace Y Š, and argue as in (IV.7) to deduce

(IV.8) Pic. OX ŠŠ/
�
�! Pic.Y Š/ D ZO.1/

As such the Gm-torsor X ! OX ŠŠ defined by O.1/ has trace a product with V of
the Gm-torsor, (I.33), in the definition of a weighted projective space. The latter is
space like, and the formal space, X, may be described wholly explicitly, i.e.

(IV.9) X
�
�! .ArC1nf0g/ � O� � V; O� WD SpfCŒŒx��

on which � 2 Gm acts according to

.ArC1nf0g/ � O� � V 3.y0; y1; : : : ; yr/ � x � ´ 7!

.�a0y0; �
aa1y1; : : : ; �

aanyr/ � �
�1x � ´

(IV.10)

Now observe that the ring, A, of Gm invariant functions affords maps
(IV.11)

X! OX ŠŠ moduli
����! OX ŠŠ ! V � SpfA .

�
�! CŒŒxa0y0; xaa1y1; : : : ; xaanyr �� /

where, by definition, A is equally the ring of formal functions on OX ŠŠ. Conse-
quently the final map in (IV.11) is a formal contraction in the sense of [Art70], and
whence by op. cit. is the completion in V of the contraction of analytic spaces

(IV.12)

Y Š ����! X ŠŠ moduli
����! X ŠŠ

projection � of (III.48)
??y �

??y �0

??ycontraction

V ����! X´ X´
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In particular, by (IV.11), X´ is smooth, and we’re well advanced in proving:

IV.a.4. Proposition/Summary. There is a Galois covering X ŠŠ ! XŠ, under the
group E´ of (IV.5), ramified uniquely over Y Š ! YŠ, and there (in the New Nota-
tion of III.d.1 and that of Fact III.b.11) to order exactly ab such that

(a) The contraction, X´, of (IV.12) is smooth.
(b) It’s E´ equivariant, and although XŠ ! ŒX´=E´� may not be defined at Y ,

X 1=ab
Š

, as encountered in (IV.6) et seq., to ŒX´=E´� is everywhere defined.

(c) The contraction is birational, i.e. XŠnY
�
�! ŒX´nV=E´� D ŒX

�=E´�.
Better still, all of this globalises, i.e. there is a foliated smooth champ X0 !
ŒX0=F0� fitting into a diagram (the contraction of Y) -described locally by the
above items (a)-(c) and an isomorphism off Y , to wit:

(IV.13)

X 1=ab ����!
�

X0

KF unramified

??y(IV.6)

X
Proof. We’ve done (a) & (c), and as per Remark IV.a.3 we have from the construc-
tion, (I.15), of extracting roots a map XŠŠ ! X 1=ab . If, however, Y1=ab

Š
,! X 1=ab

Š
is the reduced fibre over Y then

(IV.14)

YŠŠ ����! Y Š??y ??y
Y1=ab
Š

����! YŠ
is not just commutative but the top horizontal is the pull back of the locally constant
gerbe defined by the bottom horizontal. As such, the square is fibred so the left
vertical is a representable étale cover, and whence Y Š is the universal cover of
Y1=ab
Š

, so that shrinking as necessary, X ŠŠ ! X 1=ab
Š

is equally the universal cover.
In particular, therefore, we have a diagram

(IV.15)

X ŠŠ ����! X´??y ??y
X 1=ab
Š

ŒX´=E´�

wherein the left hand vertical is an E´-torsor, and the pull-back of OX1=abŠ

.Y1=ab
Š

/

to Y Š ,! X ŠŠ is O.�1/, so there is an E´ action on the torsor X commuting with
the Gm-action (IV.10). Consequently, the top horizontal is E´ equivariant, so, by
the definition of the bottom right hand corner, the square can be completed along
the bottom horizontal, i.e. (b) holds.

Turning to globalisation, the unicity of contractions ensures that the contraction
of the subspace of the moduli, X , of X defined by the moduli of Y to that of Z0 is
an algebraic space X0. Now denote by � the complement of Y , or the contracted
locus as appropriate, then for � another point of Z0 the normalisation ofX�´�X0X

�
�

is equally that of X�´ �X X
�
�

so by Lemma I.a.3, either projection of

(IV.16) R WD
�

normalisation of U �X0 U
�
⇒ U; U D

a
´

X´
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is unramified in co-dimension 1. Consequently, by purity, they’re unramified ev-
erywhere, and since R� ⇒ U � is both a groupoid and dense in R, (IV.16) defines
an étale groupoid, or, equivalently, an orbifold M0 ! X0 with atlas U . At the
same time, we can express X 1=ab as a locally constant gerbe in B� ’s over an orb-
ifold M for some finite group � . Thus M and M0 agree on an open dense set, so
by Lemma I.a.4 and (IV.12), there is a map � WM !M0. Next observe that the
contracted locus is an embedded smooth sub-champ of real co-dimension at least
4, whence the homotopy depth about the same, [SGA-II, Exposé XIII.6], is also at
least 4, so the locally constant gerbe X � !M� extends uniquely to a locally con-
stant gerbe X0 !M0. Equally, locally the universal cover is generically scheme
like by Claim IV.a.2, so from the long exact sequence of a fibration we must have

(IV.17) 1! � ! E´ D �1.X 1=ab
Š

/! �1.MŠ/! 1

for MŠ a small neighbourhood of Y1=ab
Š

. On the other hand in the diagram

(IV.18)

X´  ���� X ŠŠ??y ??y
M0  ���� MŠ

the left hand is the universal cover of it’s image under the group E´=� , so by
(IV.17), the diagram (IV.18) is a pull-back of a covering along the bottom hori-
zontal. In particular, therefore, (IV.18) is fibred so for a locally constant sheaf, ƒ,
R1��ƒ D 0, and the Leray spectral sequence yields an exact sequence

(IV.19) 0! H2.M0; ƒ/! H2.M; ƒ/! H0.M0; R
2��ƒ/

In addition �1.M/
�
�! �1.M0/, so X and ��X0 are locally constant gerbes for the

same link in the sense of [Gir71, IV.1.1.7.3], and their difference, op. cit. IV.3.4,
defines a class in H2.M; ƒ/ forƒ the centre of the link- so locally the centre of the
aforesaid � . Finally X0 !M0 is locally trivial by definition, so the image of this
class in the far right of (IV.19) is zero by (IV.18) and (IV.12), while the resulting
class in the leftmost group is trivial because this is the same as H2.M�; ƒ/. �

It follows that we’ve actually proved a little more, to wit:

IV.a.5. Remark/Definition. From (IV.15), the fibre of the horizontal arrow in
(IV.13) has fibre X ŠŠ overX´, which, is also the smooth weighted blow up (compo-
sition of left vertical and top horizontal in (III.19)) with weights a0; aa1; : : : ; aan
in the obvious coordinates suggested by (IV.11) while by purity the left vertical
in (IV.13) is exactly the same as the rightmost vertical in (III.19), i.e. killing a
group (here �ab) of pseudo reflections. Moreover, since � W X ! X0 needn’t be
everywhere defined it’s more technically correct to call the birational map � a flip,
which, in turn has the very specific structure of (IV.13), which might reasonably be
described as a flap.

The resulting foliation on X0 is described by

IV.a.6. Corollary. The canonical bundles of the various foliations are related by

(IV.20) KF1=ab D KF jX1=abD �
�KF0 C a0Y1=ab

so, in particular, F0 is smooth and everywhere transverse to the contracted locus.
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Proof. The first identity in (IV.20) is just that the left vertical in (IV.13) is unram-
ified along the foliation because Y is invariant, while the 2nd identity follows, for
purely numerical reasons, from (IV.2) and Fact III.b.11. Now say D is a local gen-
erator of F0 on X´, and s0 is the coordinate function of weight a0 in (IV.11), then,
by (IV.20), ��.s0D/ is an everywhere regular derivation which coincides with a
local generator of F1=ab at every point where ��.s0/ only vanishes along the ex-
ceptional divisor. In particular, therefore, it coincides by Fact III.b.11 with a local
generator close to sing.F1=ab/, where by op. cit. a local equation x D 0 for the
exceptional divisor may be supposed of the form xa0 D ��s0. Now the exceptional
divisor is invariant, and by (II.g.3) defines a non-zero eigenspace at the singularity,
so ��.D.s0// is non-zero everywhere, whence, idem D.s0/, �

IV.b. Projectivity of the contraction. We start with a general projectivity criteria,

IV.b.1. Lemma. Let X be a proper algebraic space over a field k, then X is pro-
jective iff both of the following conditions hold

(a) for every irreducible subspace Y ,! X�
NE1.Y / 3 ˛ 7! 0 2 NE1.X/

�
) ˛ D 0

(b) The cone NE1.X/ � NS1.X/R doesn’t contain a line.

Proof. The conditions are clearly necessary. The second condition is equivalent to
the existence of a Cartier divisor H non-negative on NE1.X/ such that

(IV.21)
�
NE1.X/ 3 ˛ 7! H:˛ D 0

�
) ˛ D 0

Thus if (a) & (b) hold for X they hold for every sub-variety, so, by induction we
can supposeH dim.Y /:Y > 0 for every non-trivial sub-variety of dimension smaller
than that of X . Consequently, by the Nakai-Moishezon criteria, [Kol90, 3.11], we
require to prove for every irreducible component of X of maximal dimension the
top power of H is positive. As such, say, without loss of generality, X irreducible
of dimension d C 1 and p W X 0 ! X a projective modification, then p�H is nef.
Better still some Zariski open of X is a scheme, whence it contains sub-varieties
of all possible dimensions, thusHd D p�.p

�Hd / is a non-zero class in NE1.X/,
and so by (b) HdC1 > 0. �

A less general, but more relevant variation of the same is

IV.b.2. Corollary. Let p W X 0 ! X be proper; an isomorphism off Z ,! X ;
with X 0 projective and X a Q-factorial algebraic space over a field k, then X is
projective iff both of the following conditions hold

(a) for every irreducible subspace Y ,! Z�
NE1.Y / 3 ˛ 7! 0 2 NE1.X/

�
) ˛ D 0

(b) The cone NE1.X/ � NS1.X/R doesn’t contain a line.

Proof. Again necessity is obvious and (b) affords a Cartier divisorH non-negative
on NE1.X/ satisfying (IV.21) which we prove satisfies op. cit. (and whence Claim
Lemma IV.b.1.(a) ) for all sub-varieties Y ,! X by induction on their dimension.
In dimension 1, there are two cases a curve, Y , factors through Z so H � Y > 0 by
Corollary IV.b.2.(a), or it doesn’t. In the latter case, however, Y nZ is a non-empty
curve in the quasi-projective variety XnZ, so it certainly intersects non-trivially
some divisor D ,! XnZ without being contained in it. By hypothesis, however,
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the closure ND ,! X ofD is Q-Cartier so ND � Y ¤ 0 and item (a) of Lemma IV.b.1
holds. Similarly for Y of dimension d C 1 � dim.X/ we again distinguish 2-
cases. If Y factors through Z we’re done by hypothesis, otherwise we prove H jY
is ample. In the latter case, by Nakai-Moishezon and our induction hypothesis it’s
sufficient to proveHdC1 �Y > 0. As before, however, there is a Cartier divisor, ND
onX intersecting Y non-trivially, soHd � ND�Y > 0, while: for all � > 0 sufficiently
small,H �� ND satisfies (IV.21), so p�.H �� ND/ is nef., and .H �� ND/dC1 �Y � 0,
whence HdC1 � Y > 0. �

Of which a corollary to the corollary is

IV.b.3. Corollary. Let everything be as in Corollary IV.b.2 then we can replace
condition (a) by

(IV.22) Z is projective and
�
NE1.Z/ 3 ˛ 7! 0 2 NE1.X/

�
) ˛ D 0

Which may be applied to the case in point, i.e.

IV.b.4. Fact. The contraction, Proposition/Summary IV.a.4, has projective moduli.

Proof. Observe that under the hypothesis of Set Up IV.a.1 the locus of the extremal
ray R must be the connected smooth divisor Y because Y � R < 0. Now, let
� W X ! X0 be the moduli of the contraction (IV.13), with Z the moduli of
the singular locus in X meeting the extremal ray, then since X0 is Q-factorial,
�� W NS1.X0/ ! NS1.X/ is injective with image classes in the latter annihilated
by R. Consequently, by duality there is an exact sequence

(IV.23) 0! R! NS1.X/
��
�! NS1.X0/! 0

while NE1.X/ � NE1.X0/, so Corollary IV.b.2.(b) holds because R is extremal.
Now although there may be ambiguity, Warning III.d.5, about the champ structure
on the singular locus and the base of the contraction, there is no such ambiguity
at the level of the moduli, i.e. Z is a section of the locus where � fails to be an
isomorphism, so by (IV.22) and (IV.23) we need only check that a non-zero class
in NE1.Z/ cannot belong to R, which is clear, e.g. KF jZ is nef. �

IV.c. The H-N Filtration again. We will require knowledge of the normal bundle
of the extremal smooth sub-champ Y ,! X of Set Up IV.a.1 akin to that of Propo-
sition/Summary II.g.3 so, without loss of generality dim.Y/ > 1. Our primary
interest is the local variation of NY=X over a small embedded analytic open, ZŠ, of
the base/singular locus, so to begin with, and essentially without loss of generality,
we’ll restrict attention to the case s D 0 of Large Fact III.d.7. As ever we first
carry out our analysis at the level of the universal cover of Y , i.e. a radially foli-
ated weighted projective champ by Fact III.b.11, and so abuse notation slightly, i.e.
replace Y by its universal cover, X by a small neighbourhood of the former etc..
There are two tautological bundles of relevance, namely, O.1/, on the weighted
projective champ Y , which, op. cit. is related to the radial foliation, R, by

(IV.24) KR
�
�! O.�a0/

and the relative tautological bundle of � W P WD P.N_Y=X / D P.NY=X / ! Y
which we’ll denote H , while P; Y etc. will be the corresponding moduli. Now
say F is the specialisation, cf. Fact/Definition II.e.5 & Claim II.f.1, of our origi-
nal foliation to the projective normal cone, then KF D ��KR so a KF -negative
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extremal ray, R, of P , has, by Fact II.d.1, to be an invariant curve of F lying over
an invariant curve of R. By Claim III.c.1 we may suppose that the former has at
worst nodes, and whence also the latter from our explicit knowledge, Fact II.i.2, of
the singularity. The moduli of such a champ is the moduli of its normalisation, so,
without loss of generality, R is an extremal ray of P.f �NY=X / for f W L ! Y
some coordinate axis of the radial foliation R- all of which are smooth and em-
bedded on a weighted projective space. By Proposition/Summary II.g.3 we know
exactly what these are, and in terms of Fact II.i.2 & the New Notation III.d.1 we
may describe them as follows: the local monodromy at the singularity, p, of the
radial foliation is �a0 , and by hypothesis, Large Fact III.d.7.(b).(i), there is a local
generator, @, of the ambient foliation on X which is �a0-invariant so that the eigen-
vectors of Jordan decomposition of @ at p afford a �a0 equivariant decomposition,

(IV.25) NY=X ˝ C.p/ D
a
1�i�l

Vi

for Vi the subspace generated by the eigenvectors of weight �ˇi for ˇi a complete
repetition free list of the bi , amongst which, in the Notation II.h.6, �ˇl is largest.
The decomposition (IV.25) then describes the singular locus of the specialised fo-
liation exactly, i.e. it is a disjoint union

(IV.26) sing.F/ D
a
1�i�l

P.Vi / � B�a0

and the extremal ray in question is any invariant section over L which cuts P.Vl/,
or, to be more precise, cuts P.Vl/�B�a0 ,! P which is the embedded component
of the singular locus. We can, therefore, apply Large Fact III.d.7 to conclude that
the extremal rays define a sub-champ Yl ,! P together with a projection

(IV.27) Yl ! P.Vl/

whose fibres have universal cover a weighted projective champ P.c0; c1; : : : ; cr/
for some weights ci to be determined, radially foliated by R0, say. Now, by (IV.26),
(IV.27) has a section so P.c/ � P.V1/ is the universal cover of Yl . We have,
however, by Proposition/Summary II.g.3, F-invariant embeddings Li ! Yl lifting
any coordinate axis fi W Li ,! Y , and each Li is simply connected, so there are
R0-invariant embeddings f 0i W Li ,! P.c/ of every Li

�
�! P.a0; aai /, and whence

P.c/
�
�! Y . Better still,

KR0 D KF jP.c/�P.V1/D KR jP.c/�P.V1/ and
KR0 �f 0

i
Li D KR �fi Li by Fact/Definition II.d.5

(IV.28)

so P.c/ ! ŒP.c/=R0� is, unsurprisingly, the radial foliation Y ! ŒY=R� that we
started with. Consequently the map

(IV.29) Yl ! Y � P.Vl/

afforded by the structural projection � and (IV.27) is an étale cover. As such (IV.29)
exhibits the former as a locally constant gerbe over the latter. By explicit local
calculation, however, cf. (IV.26), (IV.29) is an isomorphism in a neighbourhood
of the fibre over the singularity p, so it’s an isomorphism everywhere. We have,
therefore, proved most of
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IV.c.1. Fact. Suppose, as above, that YŠ of Set Up IV.a.1 is simply connected
(whence isomorphic to the product of a polydisc with a radially foliated weighted
projective space) then there is a filtration of NY=X jYŠ by invariant sub-bundles for
the induced foliation,

O D Nl $ Nl�1 $ Nl�2 $ � � � $ N0 D NY=X

such that if ˇ1 > � � � > ˇl is a complete repetition free list of the b1; : : : ; bt of the
New Notation III.d.1, and qj , 1 � j � k the corresponding multiplicities, then for
a as per Fact III.b.11, locally over Z:

Nj�1=Nj
�
�! OY.�aˇj /

˚qj :

Proof. Yl of (IV.27) is, by our Large Fact III.d.7, the image of a deformation
space of extremal rays, which is constant on taking products with a small poly-
disc, whence this addition changes nothing, and for notational convenience we’ll
continue to ignore it. In any case, the embedding Yl ,! P affords a sub-bundle

(IV.30)
�
��H jYl

�_
,! NY=X

which is the Nl�1th term in the above filtration. Moreover there is a canonical
isomorphism

(IV.31) NYl=P
�
�! ��

�
NY=X =Nl�1

�
˝H

and so we conclude by induction. �

Unsurprisingly we continue to refer to this as the H-N filtration, and observe

IV.c.2. Corollary. Let YŠ ,! XŠ be simply connected, then there is a non-canonical
splitting

(IV.32) NY=X jYŠ
�
�!

a
j

OY.�aˇj /
˚qj

and, better still, any section over YŠ of IY;X =I 2Y=X ˝OYŠ.�aˇj / can be lifted to a

(formal) section of IY;X Ő O OXŠ.�aˇj / over the completion OXŠ of XŠ in YŠ.

Proof. The non-trivial case, given Fact IV.c.1, is when the fibres of Y ! ZŠ have
dimension 1. This is, however, Proposition/Summary II.g.3, and otherwise it’s
immediate by Fact IV.c.1 and Fact I.c.3. �

The apparentarbitrarity of such sections notwithstanding, choose some, say

(IV.33) � WD �j W O OXŠ.aˇj /!
OI WD IY;X Ő O OXŠ ; 1 � j � t

and define, cf. (III.18), a filtration on OI by way of:

(IV.34) F
p

�
OI WD

�
�
j1
1 � � � �

jt
t j b1j1 C � � � C btjt � p

�
bj WD aˇj

i.e. the ideal generated by the images of the O OXŠ.j1b1 C � � � jtbt / under (IV.33),
and observe

IV.c.3. Claim. The filtration (IV.34) is algebraic, i.e. shrinking as necessary, there
is a filtration F pIY;X jXŠ whose completion is (IV.34). Better still this is indepen-
dent of the choice (IV.33), and F invariant.
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Proof. Plainly F p contains some power, say q, of OI , so the first part just amounts
to the coherence of F p= OI q on the qth thickening of YŠ. As to the first part of the
better still: say �j is another choice, then either this is the same as �j , or there is a
smallest p > 0 such that

(IV.35) 0 ¤ �j��j 2
�
F
p

�
=F

pC1

�

�
˝OYŠ.�bj /

�
�!

a
b1j1C���CbtjtDp

OYŠ.p�bj /

so p � bj , whence �j W O OXŠ.bj /! F
bj
�

, and we’re done by symmetry. Similarly,
suppose the composition

(IV.36) O OXŠ.bj /
�j
�! F bj OI ! O OXŠ ! KF

doesn’t factor through KF ˝ F
bj OI , then there is a smallest bj > p � 0 through

which it does factor, so (IV.36) affords a non-zero OYŠ-linear map

(IV.37) O OYŠ.bj /! KF ˝ OYŠ.p/
˚N �
�! OYŠ.p � a0/

˚N

where N is the number of integers j1; : : : ; jt such that b1j1 C � � � C btjt D p,
which is nonsense. �

Putting this all together we have therefore

IV.c.4. Fact/Definition. Let Y ,! X be as in Set Up IV.a.1 then there is a F-
invariant filtration

(IV.38) � � � � F p � � � � F>0 D IY;X � OX

such that
(a) The restriction of (IV.38) to a small embedded analytic neighbourhood XŠ as

defined in the Set Up IV.a.1 pulls back to (IV.34) on the universal cover of XŠ.
(b) For f W QL ,! X ! X the normalisation of an extremal ray with at worst

nodes embedded in its net completion, the pull back of (IV.38) is the filtration de-
fined by the invariant divisors in item (2) of Proposition/Summary II.g.3 combined
in the (obvious) way suggested by (IV.34).

Proof. The filtration has already been defined on the universal cover, say X Š ! XŠ
with Galois group �1. As such, it descends to XŠ provided (IV.34) admits a �1
action, which is clear from the proof of Claim IV.c.3 because by Fact IV.c.1 the
H-N filtration is �1-equivariant. Similarly: to compare the filtrations on 2-small
analytic open embeddings XŠ˛ ,! X , XŠˇ ,! X we only need to compare them
on any (faithfully flat) étale covering of XŠ˛\XŠˇ , so again this is just Claim IV.c.3
and the definition (IV.34) as is (b). �

IV.d. Existence of flips. Let Y ,! X be as in Set Up IV.a.1 then by (IV.38) there
is aKF -invariant smoothed weighted blow up, [MP13, I.iv.3], defined as in (III.19),
to wit:

(IV.39)

X 1 WD Proj
�`

p F
p
� Vistoli covering
 ��������� X 2; KF2 D KF jX2

weighted blowup
??yEverything F invariant

X
Before progressing let us make a clarifying:
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IV.d.1. Remark. The implied weights in (IV.39) are not the aˇj of IV.34 but b0i WD
bi=b where bi are as per the New Notation III.d.1 and b is their gcd. Following
(IV.13), however, we’ll be taking the covering

(IV.40) X 2 abth root of E2
 ��������� X 1=ab; Y1=ab WD

1

ab
� E2

and the totality, i.e. the horizontal in (IV.39) composed with (IV.40), is, functorially
with respect to the ideas the smoothed weighted blow up with weights abi where
a is given by Fact III.b.11 and the bi by the New Notation III.d.1. Consequently
there’s a certain convenience in doing both steps at once, or, at least, referring, as
we will, to their totality in terms of the unifying idea.

This said the exceptional divisor E2 on X 2 is described by:

IV.d.2. Claim. The weighted projective bundle E2 ! Y enjoys the following triv-
iality property: for YŠ ,! Y as per Set Up IV.a.1 (with ZŠ ,! Z0 understood
sufficiently small) and Y Š ! YŠ its finite universal cover

(IV.41) E2 j Y Š ��! Y Š � P.b01; : : : ; b
0
t /

Moreover the induced foliation (understood either logarithmically, Remark I.b.2,
or, equivalently, without saturation if the fibres Y ! Z0 have dimension 1) has
canonical bundle the restriction ofKF , and singular locus the fibre over the unique
connected component Z of sing.F/ contained in Y .

Proof. The pth factor of the graded algebra associated to (IV.34) is OYŠ.p/ ten-
sored with the pth factor of the trivial graded algebra freely generated by genera-
tors of weights bi , 1 � i � t , cf. (IV.35) & (IV.37), which has the same Proj as
that which is freely generated after cancelling the common factors, Remark IV.d.1,
whence (IV.41). As to the moreover: the exceptional divisor of a (weighted) blow
up in an invariant centre is always smooth in the foliation direction, so we only
have to compute what happens over the singular locus which we can do explicitly
using Fact/Definition IV.c.4 by way of its relation, Proposition/Summary II.g.3.(3),
with the Jordan decomposition, and appropriate local coordinates, cf. (II.137). �

Now, irrespectively of whether E2 is extremal in X 2, the cone theorem applies to
E2 in it’s induced foliation, while extremal rays in Y with at worst nodes lift (cf. the
preamble to the proof of Fact IV.c.1 ) to the same in E2 by Proposition/Summary
II.g.3. As such Large Fact III.d.7 applies to E2 in se (i.e. as the locus of its own
extremal ray) to imply

IV.d.3. Fact/Definition. The champ E2 is a bundle of foliated varieties (whose
fibres have universal covers radial foliations on a P.a0; aa1; : : : ; aan/) over an
orbifold Z0 which by Claim IV.d.2 is itself a bundle of P.b01; : : : ; b

0
t /’s over the

orbifold structure on the singular locus of Y . Consequently for X 1=ab as in (IV.40)
there is a contraction �C W X 1=ab ! XC of Y1=ab to a locally constant gerbe over
Z0 such that the induced foliation XC ! ŒXC=FC� is smooth and everywhere
transverse to the locus where �C is not an isomorphism. The bi-rational map �C W
X ! XC will, irrespectively of whether the moduli of XC is projective, be referred
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to as a flip, and the more precise data

(IV.42)

X 1=ab
Blow down, �C, with weights aai
��������������������!

(IV.13)
XC

Blow up, ��

??ywith weights abj , (IV.39) &(IV.40)

X� WD X
of a weighted blow up followed by a weighted blow down as a flap.

Proof. As observed the structure of E2 is implied by Large Fact III.d.7 given
the structure, Claim IV.d.2, of the singular locus. This is, however, the sum to-
tal of what we need to deduce the existence of the contraction � from Proposi-
tion/Summary IV.a.4, i.e. the condition that Y1=ab is covered by extremal rays of
the ambient space is necessary for the projectivity of the moduli of the contraction,
but not for its existence as an algebraic space. �

To examine the projectivity of this construction let us suppose in addition to the
Set Up IV.a.1,

IV.d.4. Set Up. Fix an extremal rayR and suppose that every �1=d F curve equiv-
alent to R belongs to a connected smooth embedded sub-champ, Yp ,! X , of
the form encountered in Set Up IV.a.1, and that all such sub-champs are disjoint,
equivalently none of the following occur

(a) For some smooth connected component Z ! sing.F/ there are 2 such
sub-champs (for the same R) meeting in Z , Fact II.h.9.

(b) For some smooth connected component Z ! sing.F/, and, again, the
same R, item (b).(ii) of the Large Fact III.d.7 occurs.

(c) There is a representative of R avoiding the singular locus.

Observe that the criteria for the projectivity of the flip is particularly simple, i.e.

IV.d.5. Claim. In the context of (IV.42), the following are equivalent
(a) The moduli of the flipped champ XC is projective.
(b) The cone NE1.XC/ does not contain a line.
(c) The �1=d F curve contracted by �C is extremal.

Proof. Plainly (a) implies (b), and (IV.22) always holds- same argument as end
of the proof of Fact IV.b.4- whence, conversely, Corollary IV.b.3, (b) implies (a),
while (b) iff (c) is the general duality considerations of (IV.23). �

The same applies, a little more generally, if one flips several sub-champs in X at
the same time, provided, as is our context, Set Up IV.d.4, the champs being flipped
are all disjoint, which we’ll employ without further comment in

IV.d.6. Claim. The flip, (IV.42), of any of the Yp has projective moduli.

Proof. Since the horizontal arrows in (IV.42) are (étale locally) weighted blow
downs it will suffice to do everything at once, which is all we need anyway. As
such, consider the totality, at the level of the moduli, of the flaps (IV.42) performed
in all of the Yp, i.e.

(IV.43)

X.R/ ����!
�C

XC

��

??y
X�
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with Ep the exceptional divisors; Cp� curves in the same contracted by ��; and
C
p
C
,! Ep a KF -negative invariant curve contracted by �C. Fix p, then by the

cone theorem, Fact II.d.1, there are finitely many extremal rays represented by
(multiples of) KF -negative invariant curves, Ri , and a (pseudo) effective class Zp
on which KF is non-negative such that on X.R/

(IV.44) C
p
C
D

X
i

Ri CZp

Now, by construction, (IV.12), .��/�.C
p
C
/ is parallel to R, so .��/�.Zp/ is too.

However, �� is unramified in the foliation direction, so .��/�.Zp/ D 0. Conse-
quently, by the projectivity of X�, Zp is a sum

(IV.45)
X
q

cq�C
q
�; cq� � 0

On the other hand all the Ri lie over R, so by the hypothesis of our Set Up IV.d.4
and (IV.12) every Ri is parallel to some C q

C
for some q. Thus we equally have

(IV.46)
X

Ri D
X
q

c
q
C
C
q
C
; c

q
C
� 0

Combining all of (IV.44)-(IV.46) we have therefore

(IV.47) C
p
C
D

X
q

�
c
q
C
C
q
C
C cq�C

q
�

�
, every C q

C
extremal by (IV.46),

while all the divisors Eq are disjoint and strictly negative on both C q
C

, C q�, so the
only index that can occur on the right of (IV.47) is p. Consequently, Cp

C
is extremal

and we’re done by Claim IV.d.5. �

IV.e. Exceptional flips and termination. The first case to be considered is:

IV.e.1. Set Up. Y ,! X is an extremal sub-champ satisfying item (b).(ii) of the
Large Fact III.d.7 with Z ,! Y the unique (smooth) connected component of
sing.F/ contained in it.

Now observe that by the unicity and local uniformity of Jordan decomposition
in Claim III.d.3, there is a well defined (smoothed) weighted blow up supported in
Z whose weights in the New Notation III.d.1 are

(IV.48) yi , resp. xi , has weight ai , resp. bi , where ai D bi and r D t .

and whose effect is described by:

IV.e.2. Claim. Let X 1 ! X be the smoothed weighted blow up defined by (IV.48)
with E1 its exceptional divisor and Y1 the proper transform of Y then

(a) The singular locus of F1 over Z is the intersection of E1 and Y1. It is smooth
connected, and, for good measure, a P.a1; : : : ; ar/-bundle over the �2 covering of
Z defined in item (b).(ii) of Large Fact III.d.7.

(b) The embedded sub-champ Y1 ,! X 1 is the locus of (rather than just a
connected component of) an extremal ray R1 satisfying item (b).(i) of Large Fact
III.d.7.

(c) The exceptional divisor E1 is covered byKF -nil invariant parabolic champs.
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Proof. To calculate the singular locus we use the Jordan coordinates of the New
Notation III.d.1, so, [MP13, I.iv.3], on, say the y1 ¤ 0 chart we have local coordi-
nates �i , �j defined by

(IV.49) y1 D �
a1
1 ; y2 D �2�

a2
1 ; � � � ; yr D �r�

ar
1 ; x1 D �1�

b1
1 ; � � � ; xr D �r�

br
1

which gives that étale locally there are 2 smooth component of the singular locus
in the fibre of E1 over Z , which in turn are the intersection of Y1 and E1. Plainly
(paragraph prior to (III.45)) the local system defined by these components is the
same as the �2 cover ZC� ! Z , so the singular locus is connected, and the good
measure part is clear. As to (b) this is just an easy variation on (IV.44)-(IV.45).
Specifically suppose the proper transform, L1, of an invariant curve isn’t extremal
then op. cit. and E1 �L1 > 0 imply the absurd. Finally (c) follows from the explicit
coordinates (IV.49) and the fact that the canonical, KF1 is just KF jX1 . �

We can, therefore, combine this with (IV.42) to make

IV.e.3. Fact/Definition. By an exceptional flip (or, better, flap) is to be understood,
for Y ,! X as in Set Up IV.e.1, the diagram

(IV.50)

X 1=ab
�C
����!
(IV.42)

XC

flip of Y1 in Claim IV.e.2

??yby way of ��of (IV.42)

X� D X 1  - E1

Weighted blow up
??yof Claim IV.e.2

X
Better still

(a) The moduli of XC is projective.
(b) The image EC of E1 is covered by invariant parabolic champs (it’s a bundle

of such over a P.ai / � P.bj /-bundle over ZC�) none of which meet the singular
locus, so the generic fibre of XC ! ŒXC=FC� is a smooth parabolic champ.

Proof. Part (a) follows from Claim IV.d.5 and item (b) of Claim IV.e.2, while EC
is contained in the smooth locus of FC by Fact/Definition IV.d.3 whence (b) by
Claim IV.e.2.(c) and Fact/Definition II.d.5.(c). �

Similarly should item (a) of Set Up IV.d.4 occur. or slightly more generally:

IV.e.4. Claim. If there are 2 extremal (not necessarily for the same ray) champ
meeting in the same component of sing.F/ then the generic fibre of X ! ŒX=F �
is a parabolic champ. Moreover if both varieties arise from the same extremal ray,
i.e. Set Up IV.d.4.(a), then the flip of (IV.42) does not have projective moduli, and
there are invariant parabolic champ in (the original X ) which do not meet sing.F/
and are parallel to the given extremal rays, i.e. Set Up IV.d.4.(c) also holds.

Proof. Choose one, say Y 0, of the extremal varieties, flip it, then whether, or not,
the moduli is projective Fact/Definition IV.d.3 and Fact/Definition II.d.5.(c) still
apply. Furthermore, if both rays are extremal then as in the proof of Claim IV.e.2
the proper transform, R1, of an invariant curve in the other, say, Y 00, is an extremal
ray. Plainly, however, the invariant curves, L, in the fibre over Y 0 have the form
R1 C C� where C� is contracted by ��, while the exceptional divisor, E�, of
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�� is negative on L, and positive on R1, whence it’s negative on C�, so C� is
effective; L isn’t extremal, and the moduli of XC isn’t projective. On the other
hand .��/�R1 is an invariant parabolic champ missing sing.FC/, so it can be
moved off the flipped locus to some RC. As such the proper transform QRC (in
X 1=ab of (IV.42)) is a linear combination of L and R, so .��/�. QRC/ is parallel to
the original extremal ray. �

Given the well defined way in which it occurs, the loss of projectivity in Claim
IV.e.4 is very far from deadly. However, it’s better avoided, so we make:

IV.e.5. Fact/Definition. By a very exceptional flip (or, better, flap) is to be under-
stood, for Y 0 ,! X and Y 00 ,! X a pair of extremal varieties meeting in the same
component of the singular locus of F and parallel to the same extremal ray as per
Claim IV.e.4, then the diagram (IV.50) with the further proviso

The arrow ��, resp. �C, is the weighted blow up,

resp. down, in both Y 0 and Y 00.
(IV.51)

The moduli of the resulting champ XC is projective, while the resulting foliation
FC is smooth and everywhere transverse to the locus where �C is not an isomor-
phism for exactly the same reasons that the corresponding statements hold for the
exceptional flips of Fact/Definition IV.e.3.

Now flipping, exceptional or otherwise, terminates for the simple reason that the
number of connected components of the singular locus decreases by at least 1 with
the flip of any extremal ray, and so in increasing order of difficulty we have,

IV.e.6. Proposition/Summary. Let X ! ŒX=F � be a foliated champ which is not
a foliation in parabolic champs and which enjoys the following further properties

smooth; projective moduli; log canonical,
resp. canonical, foliation singularities

(IV.52)

then there is a sequence of contractions and flips in the sense of Proposition/Summ-
ary IV.a.4 and Fact/Definition IV.d.3 (or alternatively just flaps (IV.13) & (IV.42) ),

(IV.53)

X D X0 X1 � � � � � � Xn D Xmin??y ��99K

??y ��99K ��99K

??y
ŒX=F � D ŒX0=F0� ŒX1=F1� ŒXn=Fn� D ŒXmin=Fmin�

such that each Xi ! ŒXi=Fi � enjoys the properties (IV.52), and KFmin is nef.

Proof. The hypothesis that the foliation isn’t in parabolic champs implies by item
(b) of Fact/Definition IV.e.3 & Claim IV.e.4, that we must, at every stage, be in the
situation of (IV.d.4), i.e. Large Fact III.d.7.(b).(i). Consequently we eventually run
out of components of the singular locus through which a �1=d F-curve can pass,
and we terminate with KF nef. by the cone theorem of Fact II.d.1. �

The alternative to which is

IV.e.7. Proposition/Summary. Let everything be as per the hypothesis of Propo-
sition/Summary IV.e.6 with the exception of the hypothesis “not a foliation in
parabolic champs” which we replace by “no model has nef. (foliated) canonical
bundle” then after a sequence of contractions and flips in the sense of Proposi-
tion/Summary IV.a.4, resp. Fact/Definition IV.d.3, as described in (IV.53) all of
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(IV.52) continues to hold (i.e. we’re still excluding the exceptional cases Fact/Defi-
nition IV.e.3 and Fact/Definition IV.e.5) and exactly one of the following happens

(a) Xn ! ŒXn=Fn� is a Mori fibre space, i.e. the locus of a single extremal ray is
all of Xn and the foliation is a bundle of foliated varieties where the universal cover
of a fibre is the radial (supposed saturated in dimension 1) foliation on a weighted
projective space whose dimension is 1 iff the foliation singularities are canonical.

(b) At least one of items (a) or (b) of Set Up IV.d.4 occurs at every connected
component of the singular locus. In particular, therefore, all of the foliation singu-
larities are canonical.

Proof. If we exclude (b), then the only other thing that can happen is that the locus
of an extremal ray is everything with the champ itself described by item (b).(i) of
Large Fact III.d.7, i.e. (a), while the various facts about canonical vs. log-canonical
singularities are just the definitions. �

This leaves us to elaborate the final case

IV.e.8. Proposition/Summary. Should case (b) of Fact/Definition IV.d.3 occur
then, without loss of generality, there are no occurrences of either the contractions
of Proposition/Summary IV.a.4, or the flips of Fact/Definition IV.d.3, and should
there be any exceptional flips we continue by

(IV.54)
�
Xn ! ŒXn=Fn�

�
99K

�
XnC1 ! ŒXnC1=FnC1�

�
wherein all possible exceptional flips of Fact/Definition IV.e.3 are performed at
once with all of (IV.52) being preserved. If we’re still not done, i.e. FnC1 isn’t
smooth, then iitem (a) of Set Up IV.d.4 occurs, and we have the following choices
for

�
XnC1 ! ŒXnC1=FnC1�

�
99K

�
XnC2 ! ŒXnC1=FnC2�

�
,

(a) For each component of the singular locus of FnC1 choose an extremal sub-
champs and flip it according to Fact/Definition IV.d.3. This will necessarily result
in the loss of projectivity, Claim IV.e.4, but otherwise the list (IV.52) is conserved.

(b) Perform at the same time all possible very exceptional flips of Fact/Definition
IV.e.5, and thus preserve the list (IV.52) in its entirety. In either case XnC2 !
ŒXnC2=FnC2� is a bundle of 1-dimensional parabolic champs which is identically
its own Mori fibre space.

Proof. All exceptional or very exceptional flips can only occur at smooth con-
nected components of the singular locus so the extremal sub-champs that they
determine cannot intersect (except, of course, in a very exceptional flip wherein
Y 0[Y 00 of Fact/Definition IV.e.5 should be thought of as a single entity) so, without
loss of generality, all these operations can be combined into one. Better still both
the extremal champ, Y , of an exceptional flip of Fact/Definition IV.e.3, or Y 0 [Y 00
in the case of the very exceptional flip of Fact/Definition IV.e.5 are the only invari-
ant sub-champs meeting their respective components of the singular locus, whence
the two exceptional cases commute with the contractions of Proposition/Summary
IV.a.4, and the (non-exceptional) flips of Fact/Definition IV.d.3, so there’s no loss
of generality in a priori axhausting all such operations. �

IV.f. Logarithmic remarks. In order to reference it we spell out our

IV.f.1. Set Up. By hypothesis D ,! X will be a divisor, no generic point of
which is invariant, in a connected smooth proper champ, and XnD ! ŒXnD=F �
a foliation with log-canonical singularities.
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As such, by Revision I.b.10, D is smooth and everywhere transverse to F . In
particular, therefore, for every e 2 Z>1, the extraction � W X 1=e ! X of a eth
root, Fact/Definition I.a.9, of D is smooth, and the induced foliation X 1=e !

ŒX 1=e=F1=e� has, by Construction I.b.15, log-canonical singularities which, Re-
vision I.b.13, are terminal around the pre-image of D. Furthermore we assert,

IV.f.2. Claim. Let everything be as above with f W C ! X a map from a (smooth
irreducible) curve such that .KF CD/ �f C < 0 then f does not factor through D.
In particular, there is a lifting f 1=e W C1=e ! X 1=e and KF1=e �f 1=e C1=e < 0.

Proof. The tangency between D and F always yields a section of OD.KF C D/,
which by hypothesis is trivial, i.e. in a highly degenerate case of Fact II.d.3 the
trace is a constant section over D, so f certainly cannot factor through it. As such
there is certainly a lifting f 1=e W C1=e ! X 1=e, while

(IV.55) KF1=e �f 1=e C1=e � .KF1=e CD1=e/ �f 1=e C1=e D .KF CD/ �f C < 0

where ��D D eD1=e, and D1=e is smooth. �

It certainly therefore follows that if KF1=e is nef. then KF C D is nef., but,
plausibly in running the minimal model programme for X 1=e ! ŒX 1=e=F1=e� we
could loose the hypothesis of Set Up IV.f.1. Observe, however, that the operations
of flipping and extracting roots commute, i.e.

IV.f.3. Fact. For any any contraction, resp. flip,

(IV.56)
�
X 1=e

! ŒX 1=e=F1=e�
�
99K

�
X 1=e
C
! ŒX 1=e

C
=F1=e
C
�
�

in the sense of Proposition/Summary IV.a.4, resp. Fact/Definition IV.d.3, there is a
contraction, resp. flip,

(IV.57)
�
X ! ŒX=F �

�
99K

�
XC ! ŒXC=FC�

�
such that the proper transform, DC ,! XC satisfies Set Up IV.f.1, and X 1=e

C
! XC

is the extraction of an eth root of DC.

Proof. That a contraction, resp. flip, of X 1=e ! ŒX 1=e=F1=e� determines the
same of X ! ŒX=F � is immediate from Claim IV.f.2 and the definitions if X has
projective moduli. However, even without this, it still follows since projectivity is
only used, cf. Claim III.d.2, to ensure that the contracted, resp. flipped, sub-champ
Y meets a unique component of sing.F/ through which each of the �1=d F curves
which cover Y must pass. Irrespectively, what we need to do in the first instance is
to prove that there is a map,

(IV.58) X 1=e
C
! XC

To this end observe, exactly as in the final steps of the proof, (IV.19) et seq., of
Proposition/Summary IV.a.4, the expression of either side of (IV.58) as a locally
constant gerbe over an orbifold, Fact I.a.6, is determined in co-dimension 2, so,
without loss of generality, there is no generic stabiliser. Furthermore, flips are
actually flaps, so by the unicity of contraction both sides of (IV.58) have the same
moduli XC, and whence they equally factor through the same Vistoli covering
champ X v

C
! XC of Fact/Definition I.a.2. Now, the Vistoli covering of the moduli

of a smooth champ is obtained, [Vis89, 2.8], by killing pseudo reflections, while a
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pseudo reflection of a foliated champ stabilises exactly one of an invariant divisor
or a generically transverse divisor, so we have further factorisations such as

(IV.59) X 1=e
C

kill transverse
��������!

reflections
X i
C

kill invariant
�������!

reflections
X v
C

and similarly for XC ! X v
C

. Now let x be a geometric point of the proper trans-

form D1=e
C

,! X 1=e
C

of D; Gx its stabiliser; and U ! X 1=e
C

an étale neigh-
bourhood then there is a non-trivial normal sub-group, Sx , generated by pseudo-
reflections fixing smooth branches of D1=e

C
, while X 1=e

C
! ŒX 1=e

C
=F1=e
C
� is smooth

at x by the hypothesis of Set Up IV.f.1 and Proposition/Summary IV.a.4. As such
by Revision I.b.13 and (the non-subtle) part of Revision I.b.6, the induced folia-
tion, G, on V WD U=Sx is also smooth. Equally U ! V is ramified uniquely in
the image, �, of D, to order e so, there is a factorisation

(IV.60) U ! V 1=e ! V

through an eth root of � in which the first map is almost étale, so by op. cit. V 1=e

in the induced foliation G1=e is log-terminal. Consequently, V ! ŒV=F � with the
orbifold boundary .1 � 1=e/� is also log-terminal, whence by Corollary I.b.14 �
is smooth and everywhere transverse to G, and so D1=e

C
is too. This is, however,

equivalent to: Sx is a cyclic normal sub-group of Gx and the restriction of the
character, �x W Gx ! Gm afforded by D1=e

C
to Sx is an isomorphism, so every

sub-group of Sx is normal. The monodromy of every generic point of D1=e
C

is,
moreover, of the form

(IV.61) 0! �e ! �ee0 ! �e0 ! 0

where e0 is the order of the corresponding stabiliser in the original X . Conse-
quently, the �e in (IV.60) afford a well defined normal sub-group scheme of the
stabiliser S ! D1=e

C
which just as in (IV.59) can be killed to yield a factorisation

(IV.62) X 1=e
C

kill reflections
��������!

in �e
X j
C

kill all further
��������!

reflections
X v
C

in which the image in X j
C

of D1=e
C

is smooth everywhere transverse to the foliation,
and the first map in (IV.62) is just the extraction of an eth root. By definition,
however, X j

C
and XC coincide in co-dimension 1, and since they’re both smooth

they’re equal by purity and Lemma I.a.4. �

Next observe that we equally have a log cone theorem, i.e.

IV.f.4. Fact. Let XnD ! ŒXnD=F � be a logarithmic foliated normal champ with
both KF and D Cartier; log-canonical singularities in dimension 1 and projective
moduli, then there are countably many F-invariant parabolic, champ Li , with,
0 < �.KF � CD/ � Li � 2 such that,

(IV.63) NE .X /R D NE .X /KFCD�0 C
X
i

RC Li

where NE .X /KFCD�0 is the sub-cone of the closed cone on which KF C D is
non-negative. Better still the RC Li are locally discrete, and if R � NE .X /R is
an extremal ray in the half space NEKFCD<0 then it is of the form RC Li .
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Proof. By Corollary I.b.14, Claim IV.f.2 is independent of any smoothness hypoth-
esis, so, by Fact II.d.1, we have a cone theorem for KF1=e . On the other hand, if
R � NE .X /R is an extremal ray in the half space NEKFCD<0 then it’s an ex-
tremal ray in the half space NEKF1=e<0

for all e � 0, whence by Fact II.d.1 there
is an invariant parabolic champ f W L ! X with KF1=e �f L � �2 parallel to
it. In particular, therefore, the extremal rays in this half space are locally discrete.
Similarly if � is the dimension of Néron-Severi, with ˛ 2 NE1.X /, then there are
a sequence of classes ˛e 2 NE .X /KF1=e�0

, and generators Rei of extremal rays,
0 � i � ne � �, in the half space NEKF1=e<0

such that

(IV.64) ˛ D ˛e C

neX
iD1

Rei

Subsequencing in e as necessary, we may suppose n D ne is independent of n, and
all of ˛e, Rei converge. Plainly, however, the ˛e converge to a class in the half
space KF1=e � 0, which, equally is either true of a given Rei , or it belongs to a
half space KF C D C �H < 0- H is ample, � > 0- in which, as noted, extremal
rays are discrete, so RCRei is independent of e. �

Which can be combined with Fact IV.f.3 to yield

IV.f.5. Proposition/Summary. Let XnD! ŒXnD=F � be as in Set Up IV.f.1 with
projective moduli, and non-empty boundary D; X 1=2 ! ŒX 1=2=F1=2� the square
root of D; X 1=2

final ! ŒX 1=2
final=F

1=2
final� the result of a maximal sequence of contractions

and flips in the sense of Proposition/Summary IV.a.4, resp. Fact/Definition IV.d.3,
as described in (IV.53) (i.e. we exclude the exceptional cases Fact/Definition
IV.e.3 and Fact/Definition IV.e.5) then there is is a foliated logarithmic champ
XfinalnDfinal ! ŒXfinalnDfinal=Ffinal� satisfying Set Up IV.f.1 with projective mod-
uli, and non-empty boundary of which X 1=2

final ! Xfinal is the square root of Dfinal,
and exactly one of the following happens

(a) KF1=2final
, so, by Claim IV.f.2, a fortiori KFfinal CDfinal, is nef.

(b) The foliation X 1=2
final ! ŒX 1=2

final=F
1=2
final� is a bundle of foliated varieties where

the universal cover of a fibre is the radial foliation on a weighted projective space
of dimension at least 2, so idem for XfinalnDfinal ! ŒXfinalnDfinal=Ffinal�; D the
hyperplane at infinity, i.e. after a weighted projective coordinates x0 D 0 on the
universal cover in the notation of Definition I.d.2; and KFfinal CDfinal is torsion.

(c) As per item (b) but with fibres of the bundle weighted projective space of di-
mension one, and the implied Mori fibre space is exactly the foliation XfinalnDfinal

! ŒXfinalnDfinal=Ffinal�, i.e. on each parabolic fibre KFfinal CDfinal is negative.

Proof. By Fact/Definition II.d.5 the structure of aKFCD negative invariant champ
f W L! X is particular, i.e. either it misses D completely, or it misses the singu-
lar locus completely, and cuts D in one point. If, however, Proposition/Summary
IV.e.7.(b) were to occur for X 1=2 ! ŒX 1=2=F1=2�, then the foliation is in para-
bolic champ; the generic champ must meet D; but none of the smooth invariant
champ in the exceptional flipped locus- EC in Fact/Definition IV.e.3.(b)- can meet
D because an extremal subvariety satisfying Set Up IV.e.1 must meet the singular-
ities. Consequently by Claim IV.f.2, Fact IV.f.3 and Proposition/Summary IV.e.6
it remains to show that Proposition/Summary IV.e.7.(a) implies items (b) or (c)
above, but this is clear since by Definition I.d.2.(a) and Fact I.c.3 the only divisors
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everywhere transverse to the radial foliation are, in the notation of op. cit., defined
by a weighted homogeneous function, F , of weight a0 such that @F

@x0
¤ 0. �

Finally, let us conclude with

IV.f.6. Remark. While it’s true, (I.22), that the only part of a divisor which is rele-
vant to minimal model theory are the components whose generic points are trans-
verse to the foliation, it may well be case that one starts with a divisor D D D0CD00
where, say, D0 satisfies Set Up IV.f.1, D00 is invariant, and whether D, or just D00
is simple normal crossing, and, for whatever reason, one wants to have a sim-
ilar situation on Xfinal after running the minimal model programme of Proposi-
tion/Summary IV.f.5. Now, certainly, hypothesis such as D00 simple normal cross-
ing are nothing to do with the definitions of log-canonical singularities, so there’s
no reason for them to be conserved by Proposition/Summary IV.f.5. On the other
hand, simple normal crossings whether of D or D00 can, by [BM97] and the def-
inition of log-canonical singularities, be restored by invariant blowing up without
prejudice to theKFCD nefness conclusion, resp. the smooth fibration in parabolic
champ statement of item (a), resp. (b), of Proposition/Summary IV.f.5.
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NOMENCLATURE

Sheaves of differentials, jets, and their duals
KF canonical divisor of a foliation, page 9
KF in the presence of a boundary, page 10
K

nolog
F canonical divisor without boundary, page 10

�1X=F bundle of invariant differentials, page 10
D�1F algebra of operators along the foliation, page 25
TF tangent sheaf along the foliation, page 25
P.n/
U sheaf of Grothendieck n-jets, page 26

P1U sheaf of adic algebras of Grothendieck jets., page 26
Weighted projective spaces
Pk.a/ shorthand for weighted projective champ over a ring k, page 14
Pk.a0; : : : ; an/ weighted projective champ over a ring k, page 14
PC.a/! ŒPC.a/=R� notation for a radial foliation, page 18
O.1/ tautological line bundle on a weighted projective champ, page 15
Ak WD AnC1

k
n0 punctured affine space over a ring k, page 14
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Flips and Flaps
X ŠŠ; Y ŠŠ etc. universal cover of XŠŠ, YŠŠ etc., see equation (IV.4), page 71
X Š; Y Š etc. universal cover of XŠ, YŠ etc., see equation (IV.1), page 71
XŠŠ; YŠŠ etc. result of extracting a root of X Š, Y Š etc., see equation (IV.3), page 71
XŠ; YŠ etc. arbitarily small embedded analytic opens in X , Y etc., page 71
XC result of a flip, or, equivalently a flap, see equation (IV.42), page 81
X� flipped, or, equivalently flappedi champ, see equation (IV.42), page 81
�C weighted blowing down occuring in a flap, see equation (IV.42), page 81
�� weighted blowing up occuring in a flap, see equation (IV.42), page 81
Harder Narismhan pairs
X>0 gerbe over the moduli, X>0, of the Zariski closure of the strictly positive

part, X>0, of the HN pair about a � 1
d
F curve, page 57

OX�0, OX�0 the non-strict Harder-Narismhan pair of a formal vector field, page 48
OX>0, OX<0 the Harder-Narismhan pair of a formal vector field, page 48
QX>0 normalisation of the gerbe,X>0, over the moduli, X>0, of the Zariski clo-

sure of the strictly positive part, X>0, of the HN pair about a � 1
d
F curve,

page 57
QX�0 normalisation of the gerbe,X�0, over the moduli, X�0, of the Zariski clo-

sure of the non-negative part, X�0, of the HN pair about a � 1
d
F curve,

page 65
fX>0, X<0g the Harder-Narismhan pair of a formal neighbourhood of a � 1

d
F

curve, page 50
fX�0, X�0g the non-strict Harder-Narismhan pair of formal neighbourhood of a

�
1
d
F curve, page 50

f OX�0, OX�0g non-strict Harder-Narismhan pair of a foliated formal disc, page 49
f OX>0, OX<0g the Harder-Narismhan pair of a foliated formal disc, page 49
X>0 moduli of the Zariski closure of the strictly positive part, X>0, of the HN

pair about a � 1
d
F curve, page 56

X�0 the gerbe over the moduli, X�0, of the Zariski closure of the non-negative
part, X�0, of the HN pair about a � 1

d
F curve, page 65

X�0 moduli of the Zariski closure of the non-negative part, X�0, of the HN pair
about a � 1

d
F curve, page 65

Miscellaneous
�
1
d
F curve, page 35

XnD! ŒXnD=F � foliated champ with boundary, page 11
X ! ŒX=F � notation for a foliation, page 10
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exceptional flip, 83
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extremal champ, 56
extremal subvariety, 55

flap of an extremal ray, 81
flip of an extremal ray, 81
foliated Q-Gorenstein, 9
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with orbfold boundary, 14
foliated Gorenstein, 9
foliated space with orbifold boundary, 12
foliations by curves, 9
formal disc, 46

Gorenstein, 9
Gorenstein covering champ, 11
Grothendieck jets., 26
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F curve, 49
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Jordan decomposition of a vector field, 45

linearisation of a singular derivation, 11
locus of an extremal ray, 55
locus of an extremal ray in a champ, 56
log discrepancy, 10
log-canonical foliation singularity, 11
log-canonical singularity of a foliated space

with orbfold boundary, 12
log-terminal foliation singularity, 11
log-terminal singularity of a foliated space

with orbfold boundary, 12

net map of champs, 21
non-strict Harder-Narismhan pair of a foli-

ated formal disc, 49
non-strict Harder-Narismhan pair of a formal
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F curve,

49
non-strict Harder-Narismhan pair of a formal

vector field, 48
normal fold, 5

orbifold, 5

parabolic champ, 32
pre-extremal champ, 56
pre-extremal subvariety, 55

radial foliation, 18
radial singularity, 11

semi-simple foliation of a formal disc, 46
Serre’s explicit calculation, 15
singular locus of the foliation, 9
smooth functions on a reduced complex

space, 23
specialisation of a foliation to the normal

cone., 37
strictly invariant divisor, 10

tautological line bundle on a weighted projec-
tive champ, 15

terminal foliation singularity, 11
terminal singularity of a foliated space with

orbfold boundary, 12

very exceptional flip, 84
Vistoli covering champ, 5

weighted projective champ over a ring, 14
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