
ENDOMORPHISM ALGEBRAS AND AUTOMORPHISM

GROUPS OF CERTAIN COMPLEX TORI

YURI G. ZARHIN

Abstract. We study the endomorphism algebra and automorphism
groups of complex tori, whose second rational cohomology group enjoys
a certain Hodge property introduced by F. Campana.

1. Introduction

As usual, we write Q,R,C for the fields of rational, real, complex numbers
and Z for the ring of integers. We write Q̄ for the subfield of all algebraic
nunbers in C, which is an algebraic closure of Q. If p is a prime then
Fp,Zp,Qp stand for the p-element field, the ring of p-adic integers, the field of
p-adic numbers respectively. If E is a number field of degree n = [E : Q] then
rE and sE are nonnegative integers such that the R-algebra ER = E ⊗Q R
is isomorphic to a product Rr × Cs. (In other words, rE is the number of
“real” field embeddings E ↪→ R and 2sE is the number of “imaginary” field
embeddings E ↪→ C, whose images do not lie in R.) In particular,

[E : Q] = rE + 2sE . (1)

LetX be a connected compact complex Kähler manifold, H2(X,Q) its sec-
ond rational cohomology group equipped with the canonical rational Hodge
structure, i.e., there is the Hodge decomposition

H2(X,Q)⊗Q C = H2(X,C) = H2,0(X)⊕H1,1(X)⊕H2,0(X)

where H2,0(X) = Ω2(X) is the space of holomorphic 2-forms on X, H0,2(X)
is the “complex-conjugate” of H2,0(X) and H1,1(X) coincides with its own
“complex-conjugate” (see [13, Sections 2.1–2.2], [23, Ch. VI-VII])). The
following property of X was introduced and studied by F. Campana [10,
Definition 3.3]. (Recently, it was used in the study of coisotropic and la-
grangian submanifolds of symplectic manifolds [1].)

Definition 1.1. A manifold X is irreducible in weight 2 (irréductible en
poids 2) if it enjoys the following property.
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Let H be a rational Hodge substructure of H2(X,Q) such that

HC ∩H2,0(X) 6= {0}

where HC := H ⊗Q C.
Then HC contains the whole H2,0(X).

Our aim is to study complex tori T that enjoy this property. Namely,
we discuss their endomorphism algebras, automorphism groups and Hodge
groups.

Let T = V/Λ be a complex torus of positive dimension g where V is a
g-dimensional complex vector space, and Λ is a discrete lattice of rank 2g
in V . One may naturally identify Λ with the first integral homology group
H1(T,Z) of T and

ΛQ = Λ⊗Q = {v ∈ V | ∃n ∈ Z \ {0} such that nv ∈ Λ}

with the first rational homology group H1(T,Q) of T . There are also natural
isomorphisms of real vector spaces

Λ⊗ R = ΛQ ⊗Q R→ V, λ⊗ r 7→ rλ

that may be viewed as isomorphisms related to the first real cohomology
group H1(T,R) of T :

H1(T,R) = H1(T,Z)⊗ R = H1(T,Q)⊗Q R→ V.

In particular, there is a canonical isomorphism of real vector spaces

H1(T,R) = V, (2)

and a canonical isomorphism of complex vector spaces

H1(T,C) = H1(T,Q)⊗Q C = H1(T,R)⊗R C = V ⊗R C =: VC (3)

where H1(T,C) is the first complex homology group of T .
There are natural isomorphisms of R-algebras

EndZ(Λ)⊗ R ∼= EndR(V ), u⊗ r 7→ ru,

EndQ(ΛQ)⊗ R ∼= EndR(V ), u⊗ r 7→ ru,

which give rise to the natural ring embeddings

EndZ(Λ) ⊂ EndQ(ΛQ) ⊂ EndR(V ) ⊂ EndR(V )⊗R C = EndC(VC). (4)

Here the structure of an 2g-dimensional complex vector space on VC is de-
fined by

z(v ⊗ s) = v ⊗ zs ∀v ⊗ s ∈ V ⊗R C = VC, z ∈ C.
If u ∈ EndR(V ) then we write uC for the corresponding C-linear operator in
VC, i.e.,

uC(v ⊗ z) = u(v)⊗ z ∀u ∈ V, z ∈ C, v ⊗ z ∈ VC. (5)

Remark 1.2. Sometimes, we will identify EndR(V ) with its image EndR(V )⊗
1 ⊂ EndC(VC) and write u instead of uC, slightly abusing notation.
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As usual, one may naturally extend the complex conjugation z 7→ z̄ on C
to the C-antilinear involution

VC → VC, w 7→ w̄, v ⊗ z 7→ v ⊗ z = v ⊗ z̄,

which is usually called the complex conjugation on VC. Clearly,

uC(w̄) = u(w) ∀u ∈ EndR(V ), w ∈ VC. (6)

This implies easily that the set of fixed points of the involution is

V = V ⊗ 1 ⊂ VC.

Let End(T ) be the endomorphism ring of the complex commutative Lie
group T and End0(T ) = End(T ) ⊗ Q the corresponding endomorphism al-
gebra, which is a finite-dimensional algebra overQ, see [20, 6, 3]. There are
well known canonical isomorphisms

End(T ) = EndZ(Λ) ∩ EndC(V ), End0(T ) = EndQ(ΛQ) ∩ EndC(V ).

Let g ≥ 2 and

H2(T,Q) = ∧2
Q(ΛQ,Q)

be the second rational cohomology group of T , which carries a natural ra-
tional Hodge structure of weight two:

H2(T,Q) = H2(T,Q)⊗Q C = H2,0(T )⊕H1,1(T )⊕H0,2(T )

where H2,0(T ) = Ω2(T ) is the g(g − 1)/2-dimensional space of holomorphic
2-forms on T .

Definition 1.3. Let g = dim(T ) ≥ 2. We say that T is 2-simple if it is
irreducible in weight 2, i.e., enjoys the following property.

Let H be a rational Hodge substructure of H2(T,Q) such that

HC ∩H2,0(T ) 6= {0}

where HC := H ⊗Q C.
Then HC contains the whole H2,0(T ).

Remark 1.4. We call such complex tori 2-simple, because they are simple
in the usual meaning of this word if g > 2, see Theorem 1.7(i) below.

Example 1.5. (See [10, Example 3.4(2)].) If g = 2 then dimC(H2,0(T )) = 1.
This implies that (in the notation of Definition 1.3) if HC ∩ H2,0(T ) 6= {0}
then HC contains the whole H2,0(T ). Hence, every 2-dimensional complex
torus is 2-simple.

In what follows we write Aut(T ) = End(T )∗ for the automorphism group
of the complex Lie group T . We will need the following well known definition.

Definition 1.6. A number field is called primitive if its only proper subfield
is Q.

Our main result is the following assertion.
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Theorem 1.7. Let T be a complex torus of dimension g ≥ 3. Suppose that
T is 2-simple.

Then T enjoys the following properties.

(i) T is simple.
(ii) If E is any subfield of End0(T ) then it is a number field, whose degree

over Q is either 1 or g or 2g.
(iii) End0(T ) is a number field E such that its degree [E : Q] is either 1

or g or 2g.
(iv) If [E : Q] = 1 then

End0(T ) = Q,End(T ) = Z, Aut(T ) = {±1}.

(v) If E = End0(T ) and [E : Q] = 2g then E is a purely imaginary
number field and Aut(T ) ∼= {±1} × Zg−1. In addition, if E is not
primitive then it contains precisely one proper subfield except Q and
this subfield has degree g.

(vi) If E = End0(T ) and [E : Q] = g then E is a primitive number
field and Aut(T ) ∼= Zd × {±1} where the positive integer d equals
rE + sE − 1. In particular,

1

2
≤ g

2
− 1 ≤ d ≤ g − 1.

In addition, if T is a complex abelian variety then E is a primitive
totally real number field and d = g − 1.

Remark 1.8. (i) It is well known (and can be easily checked) that T is
simple if and only if the rational Hodge structure on ΛQ = H1(T,Q)
is irreducible.1

(ii) We may view H2(T,Q) as the Q-vector subspace H2(T,Q) ⊗ 1 of
H2(T,Q)⊗Q C = H2(T,C). Let us consider the Q-vector (sub)space

H1,1(T,Q) := H2(T,Q) ∩H1,1(T )

of 2-dimensional Hodge cycles on T . Notice that the irreducibility of
the rational Hodge structure on ΛQ implies the complete reducibility
2 of the rational Hodge structure on H2(T,Q) = HomQ

(
∧2
QΛQ,Q

)
.

(It follows from the reductiveness of the Mumford-Tate group of a
simple torus [11, Sect. 2.2].) In light of (i) and Theorem 1.7(i), a
complex torus T of dimension > 2 is 2-simple if and only if it is
simple and H2(T,Q) splits into a direct sum of H1,1(T,Q) and an
irreducible rational Hodge substructure.

1A rational Hodge structure H is called irreducible or simple if its only rational Hodge
substructures are H itself and {0} [11, Sect. 2.2].

2A rational Hodge structure is called completely reducible it it splits into a direct sum
of simple rational Hodge structures.
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Theorem 1.9. Let g ≥ 3 be an integer. Let r, s be nonnegative integers
such that

r + 2s = g.

Then there exists a 2-simple torus T of degree g that enjoys the following
properties.

The endomorphism algebra End0(T ) is a number field E such that

[E : Q] = g, rE = r, sE = s.

In particular, if d is an integer such that

g

2
− 1 ≤ d ≤ g − 1

then there exists a g-dimensional 2-simple complex torus T such that

Aut(T ) ∼= Zd × {±1}.

The paper is organized as follows. We prove Theorem 1.7 in Section
3, using explicit constructions related to the Hodge structure on ΛQ that
will be discussed in Section 2. Section 4 deals with (mostly well known)
results about number fields that will be used in the computations of Hodge
groups of complex tori. In Section 5 we discuss general properties of Hodge
groups of 2-simple tori. In Section 6 we concentrate on the case when the
endomorphism algebra is a number field of degree g.

This paper may be viewed as a follow up of [20] and [3].
I am grateful to Frédéric Campana and Ekaterina Amerik for interesting

stimulating questions. My special thanks go to Grigori Olshanski for a very
informative letter about plethysm.

2. Hodge structures

2.1. It is well known that ΛQ = H1(T,Q) carries the natural structure of a
rational Hodge structure of weight −1. Let us recall the construction. Let
J : V → V be the multiplication by i =

√
−1, which is viewed as an element

of EndR(V ) such that

J2 = −1.

Hence, J2
C = −1 in EndC(VC) and we define two mutually complex-conjugate

C-vector subspaces (of the same dimension) H−1,0(T ) and H0,−1(T ) of VC
as the eigenspaces VC(i) and VC(−i) of JC attached to eigenvalues i and −i
respectively. Clearly,

VC = VC(i)⊕ VC(−i) = H−1,0(T )⊕H0,−1(T ),

which defines the rational Hodge structure on ΛQ, in light of VC = ΛQ⊗QC.
It also follows that both H−1,0(T ) and H0,−1(T ) have the same dimension
2g/2 = g.

Recall that V is a complex vector space. I claim that the map

Ψ : V → VC(i) = H−1,0(T ), v 7→ Jv ⊗ 1 + v ⊗ i (7)
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is an isomorphism of complex vector spaces. Indeed, first, Ψ defines a ho-
momorphism of real vector spaces V → VC. Second, if v ∈ V then

JC(Jv⊗ 1 + v⊗ i) = J2v⊗ 1 + Jv⊗ i = −v⊗ 1 + Jv⊗ i = i(Jv⊗ 1 + v⊗ i),

i.e., Jv ⊗ 1 + v ⊗ i ∈ VC(i) = H−,0(T ) and therefore the map (7) is defined
correctly. Third, taking into account that J is an automorphism of V and
VC = V ⊗ 1 ⊕ V ⊗ i, we conclude that Ψ is an injective homomorphism of
real vector spaces and a dimension argument implies that it is actually an
isomorphism. It remains to check that Ψ is C-linear, i.e.,

Ψ(Jv) = iΨ(v).

Let us do it. We have

Ψ(Jv) = J(Jv)⊗ 1 + Jv ⊗ i = −v ⊗ 1 + Jv ⊗ i = i(Jv ⊗ 1 + v ⊗ i) = iΨ(v).

Hence, Ψ is a C-linear isomorphism and we are done.
Now suppose that u ∈ EndR(V ) commutes with J , i.e., u ∈ EndC(V ).

Then

Ψ ◦ u = uC ◦Ψ. (8)

In particular, H−1,0(T ) is uC-invariant. Indeed, if v ∈ V then

Ψ◦u(v) = Ju(v)⊗1+u(v)⊗i = uJ(v)⊗1+uC(v⊗i) = uC(J(v)⊗1)+uC(v⊗i) = uC◦Ψ(v),

which proves our claim.
Similarly, there is an anti-linear isomorphism of complex vector spaces

V → VC(−i) = H0,−1(T ), v 7→ Jv ⊗ 1− v ⊗ i.

It is also well known that there is a canonical isomorphism of rational
Hodge structures of weight 2

H2(T,Q) = HomQ(∧2
QH1(T,Q),Q)

where the Hodge components Hp,q(T ) (p, q ≥ 0, p+ q = 2) are as follows.

H2,0(T ) = HomC(∧2
CH−1,0(T ),C), H0,2(T ) = HomC(∧2

CH0,−1(T ),C),
(9)

H1,1(T ) = HomC(H−1,0(T ),C) ∧HomC(H0,−1(T ),C) ∼=

HomC(H−1,0(T ),C)⊗C HomC(H0,−1(T ),C).

Clearly,

dimC(H2,0(T )) =
g(g − 1)

2
.
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3. Endomorphism Fields and Automorphism Groups

Proof of Theorem 1.7. Let T be a 2-simple complex torus and assume that

g = dim(T ) ≥ 3.

(i) Suppose that T is not simple. This means that there is a proper
complex subtorus S = W/Γ where W is a complex vector subspace of V
with

0 < d = dimC(W ) < dimC(V ) = g

such that

Γ = W ∩ Λ

is a discrete lattice of rank 2d in W . Then the quotient T/S is a complex
torus of positive dimension g − d.

Let H ⊂ H2(T,Q) be the image of the canonical injective homomor-
phism of rational Hodge structures H2(T/S,Q) ↪→ H2(T,Q) induced by the
quotient map T → T/S of complex tori. Clearly, H is a rational Hodge
substructure of H2(T,Q) and its (2, 0)-component

H2,0 ⊂ HC

has C-dimension

dimC(H2,0) = dimC(H2,0(T/S)) =
(g − d)(g − d− 1)

2
<
g(g − 1)

2
= dimC(H2,0(T )).

In light of the 2-simplicity of T ,

dimC(H2,0) = 0,

which implies that

g − d = 1.

On the other hand, let H̃ be the kernel of the canonical surjective homo-
morphism of rational Hodge structures H2(T,Q) � H2(S,Q) induced by

the inclusion map S ⊂ T of complex tori. Clearly, H̃ is a rational Hodge
substructure of H2(T,Q). Notice that the induced homomorphism of (2, 0)-
components H2,0(T )→ H2,0(S) is also surjective, because every holomorphic
2-form on S obviously extends to a holomorphic 2-form on T . This implies
that the (2, 0)-component

H̃2,0 ⊂ H̃C

of H̃ has C-dimension

dimC(H̃2,0) = dimC(H2,0(T ))− dimC(H2,0(S)) =
g(g − 1)

2
− d(d− 1)

2
> 0.

In light of the 2-simplicity of T ,

dimC(H̃2,0) = dimC(H2,0(T )) =
g(g − 1)

2
,

which implies that d(d−1)
2 = 0, i.e., d = 1. Taking into account that g−d = 1,

we get g = 1 + 1 = 2, which is not true. The obtained contradiction proves
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that T is simple and (i) is proven. In particular, End0(T ) is a division
algebra over Q.

In order to handle (ii), let us assume that E is a subfield of End0(T ). The
simplicity of T implies that 1 ∈ E is the identity automorphism of T . Then
ΛQ becomes a faithful E-module. This implies that E is a number field and
ΛQ is an E-vector space of finite positive dimension

dE =
2g

[E : Q]
.

This implies that VC = ΛQ⊗QC is a free E⊗QC-module of rank dE . Clearly,
both H−1,0(T ) and H0,−1(T ) are E ⊗Q C-submodules of its direct sum VC.
Let

trE/Q : E → Q
be the trace map attached to the field extension E/Q of finite degree. Let

HomE

(
∧2
E ΛQ, E

)
be the dE(dE−1)

2 -dimensional E-vector space of alternating E-bilinear forms
on ΛQ; it carries a natural structure of a rational Hodge structure of Q-

dimension [E : Q] · dE(dE−1)
2 . There is the natural embedding of rational

Hodge structures

HomE

(
∧2
EΛQ, E

)
↪→ HomQ

(
∧2
QΛQ,Q

)
= H2(T,Q), φE 7→ φ := trE/Q ◦ φE ,

(10)
i.e.,

φ(λ1, λ2) = trE/Q
(
φE(λ1, λ2)

)
∀λ1, λ2 ∈ ΛQ. (11)

The image of HomE

(
∧2
EΛQ, E

)
in HomQ

(
∧2
QΛQ,Q

)
= H2(T,Q) coincides

with the Q-vector subspace

HE := {φ ∈ HomQ
(
∧2
QΛQ,Q

)
| φ(uλ1, λ2) = φ(λ1, uλ2) ∀u ∈ E, λ1, λ2 ∈ ΛQ}.

(12)
Indeed, it is obvious that the image lies in HE . In order to check that the
image coincide with the whole subspace HE , let us construct the inverse
map

HE → HomE

(
∧2
EΛQ, E

)
, φ 7→ φE

to (10) as follows. If λ1, λ2 ∈ ΛQ then there is a Q-linear map

Φ : E 7→ Q, u 7→ φ(uλ1, λ2) = φ(λ1, uλ2) = −φ(uλ2, λ1) = −φ(λ2, uλ1).
(13)

The properties of the trace map imply that there exists precisely one β ∈ E
such that

Φ(u) = trE/Q(uβ) ∀u ∈ E.
Let us put

φE(λ1, λ2) := β.

It follows from (13) that φE ∈ HomE

(
∧2
EΛQ, E

)
. In addition,

trE/Q(φE(λ1, λ2)) = trE/Q(β) = trE/Q(1 · β) = Φ(1) = φ(λ1, λ2),
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which proves that φ 7→ φE is indeed the inverse map, in light of (11).
Clearly, HE is a rational Hodge substructure of H2(T,Q).

By 2-simplicity of T , the C-dimension of the (2, 0)-component H
(2,0)
E of

HE is either 0 or g(g − 1)/2. Let us express this dimension explicitly in
terms of g and [E : Q].

In order to do that, let us consider the set ΣE of all field embeddings
σ : E ↪→ C, which consists of [E : Q]-elements. We have

EC := E ⊗Q C =
⊕
σ∈ΣE

Cσ where Cσ = E ⊗E,σ C = C, (14)

which gives us a splitting of EC-modules

VC = ⊕σ∈ΣEVσ =
⊕
σ∈ΣE

(H−1,0(T )σ ⊕H0,−1(T )σ) (15)

where for all σ ∈ ΣE we define

H−1,0(T )σ := CσH−1,0(T ) = {x ∈ H−1,0(T ) | uCx = σ(u)x ∀u ∈ E} ⊂ H−1,0(T );

nσ := dimC(H−1,0(T )σ);

H0,−1(T )σ := CσH0,−1(T ) = {x ∈ H0,−1(T ) | uCx = σ(u)x ∀u ∈ E} ⊂ H0,−1(T );

mσ := dimC(H0,−1(T )σ);

Vσ = Cσ = CσVC = {x ∈ VC | uCx = σ(u)x ∀u ∈ E} = H−1,0(T )σ⊕H0,−1(T )σ

Since H−1,0(T )⊕H0,−1(T ) = VC is a free EC-module of rank dE , its direct
summand Vσ is a vector space of dimension dE over Cσ = C and therefore

nσ +mσ = dE (16)

for all σ. Since H−1,0(T ) and H0,−1(T ) are mutually complex-conjugate
subspaces of VC, it follows from (6) that

mσ = nσ̄ where σ̄ : E ↪→ C, u 7→ σ(u)

is the complex-conjugate of σ. Therefore, in light of (16),

nσ + nσ̄ = dE ∀σ. (17)

We have ∑
σ∈ΣE

nσ =
∑
σ∈ΣE

dimC(H−1,0(T )σ) = dimC(H−1,0(T )) = g. (18)

Let us consider the complexification of HE

HE,C := HE ⊗Q C ⊂ HomQ
(
∧2ΛQ,Q

)
⊗Q C =

HomC
(
∧2
C(ΛQ ⊗Q C),C

)
= HomC

(
∧2VC,C

)
.
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In light of (12),

HE,C = {φ ∈ HomC
(
∧2
CVC,C

)
| φ(uCx, y) = φ(x, uCy) ∀u ∈ E, ;x, y ∈ VC}

(19)

= {φ ∈ HomC
(
∧2
CVC,C

)
| φ(uCx, y) = φ(x, uCy) ∀u ∈ EC;x, y ∈ VC}.

In particular, if σ, τ ∈ ΣE are distinct field embeddings then for all φ ∈ HE,C

φ(Vσ, Vτ ) = φ(Vτ , Vσ) = {0}.

This implies that

HE,C = ⊕σ∈ΣEHomC
(
∧2
CVσ,C

)
(20)

=
⊕
σ∈ΣE

HomC
(
∧2
C

(
H−1,0(T )σ

⊕
H0,−1(T )σ

)
,C
)
.

In light of (9), the (2, 0)-Hodge component of HE,C is

H
(2,0)
E = ⊕σ∈ΣEHomC

(
∧2
CH−1,0(T )σ,C

)
and dimC(H

(2,0)
E ) =

∑
σ∈ΣE

nσ(nσ − 1)

2
.

(21)

This implies that dimC(H
(2,0)
E ) = 0 if and only if all nσ are in {0, 1}. If

this is the case then, in light of (17), dE ∈ {1, 2}, i.e., [E : Q] = 2g or g.
On the other hand, it follows from (18) combined with the second formula

in (21) that dimC(H
(2,0)
E ) = g(g − 1)/2 if and only if there is precisely one

σ with nσ = g (and all the other multiplicities nτ are 0). This implies that
either dE = 2g and E = Q, or dE = g and E an imaginary quadratic field
with the pair of the field embeddings

σ, σ̄ : E ↪→: C

such that

nσ = g, nσ̄ = 0.

It is therefore enough to rule out the case dE = g. By way of contradiction,
assume that dE = g. Then E is an imaginary quadratic field; in addition,

u ∈ E ⊂ EndQ(ΛQ) ⊂ EndR(V )

then uC acts on H−1,0(T ) as multiplication by σ(u) ∈ C. In light of (6),
uC acts on the complex-conjugate subspace H0,−1(T ) as multiplication by

σ(u) = σ̄(u) ∈ C. Since E is an imaginary quadratic field, there are a
positive integer D and α ∈ E such that α2 = −D and E = Q(α). It follows

that σ(α) = ±i
√
D. Replacing if necessary α by −α, we may and will

assume that

σ(α) = i
√
D

and therefore αC acts on H−1,0(T ) as multiplication by i
√
D. Hence, αC

acts on H0,−1(T ) as multiplication by i
√
D = −i

√
D. Since

VC = H−1,0(T )⊕H0,−1(T ),
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we get αC =
√
DJC and therefore

α =
√
DJ.

This implies that the centralizer End0(T ) of J in EndQ(ΛQ) coincides with
the centralizer of α in EndQ(ΛQ), which, in turn, coincides with the central-
izer EndE(ΛQ) of E in EndQ(ΛQ), i.e.,

End0(T ) = EndE(ΛQ) ∼= MatdE (E).

This is a matrix algebra, which is not a division algebra, because dE = g > 1.
This contradicts the simplicity of T . The obtained contradiction rules out
the case dE = g. This ends the proof of (ii).

In order to prove (iii), recall that End0(T ) is a division algebra over Q,
thanks to the simplicity of T [20]. Hence ΛQ is a free End0(T )-module of
finite positive rank and therefore

dimQ(End0(T )) | 2g, (22)

because 2g = dimQ(ΛQ). We will apply several times the already proven
assertion (ii) to various subfields of End0(T ).

Suppose that End0(T ) is not a field and let Z be its center. Then Z is a
number field and there is an integer d > 1 such that dimZ(End0(T )) = d2

and therefore

dimQ(End0(T )) = d2 · [Z : Q]

divides 2g, thanks to (22). Since Z is a subfield of End0(T ), the degree
[Z : Q] is either 1 or g or 2g. If [Z : Q] > 1 then 2g is divisible by

d2 · [Z : Q] ≥ 22g = 4g,

which is nonsense. Hence, [Z : Q] = 1, i.e., Z = Q and End0(T ) is a central
division Q-algebra of dimension d2 with d2|2g. Then every maximal subfield
E of the central division Q-algebra End0(T ) has degree d over Q [21, Sect.
13.1, Cor. b]. By the already proven assertion (ii), d ∈ {1, g, 2g}. Since
d > 1, we obtain that either d = g and g2 | 2g or d = 2g and (2g)2 | 2g.
This implies that d = g and g = 1 or 2. Since g ≥ 3, we get a contradiction,
which implies that End0(T ) is a field.

It follows from the already proven assertion (ii) that the degree dimQ(End0(T ))
of the number field End0(T ) is either 1 or g or 2g.

Assertion (iv) is obvious and was included just for the sake of complete-
ness.

In order to handle the structure of Aut(T ), let us check first that the only
roots of unity in End0(T ) are 1 and −1. If this is not the case then the
field End0(T ) contains either

√
−1 or a primitive pth root of unity ζ where

p is a certain odd prime. In the former case End0(T ) contains the quadratic
field Q(

√
−1), which contradicts (ii). In the latter case End0(T ) contains

either the quadratic field Q(
√
−p) or the quadratic field Q(

√
p): each of

these outcomes contradicts (ii) as well.
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Now recall that End(T ) is an order in the number field E = End0(T ) and
Aut(T ) = End(T )∗ is its group of units. By the Theorem of Dirichlet about
units [5, Ch. II, Sect. 4, Th. 5], the group of units is

Aut(T ) ∼= Zd × {±1} with d = rE + sE − 1 (23)

where rE is the number of real field embeddings E ↪→ R and

rE + 2sE = [E : Q], i.e., sE =
[E : Q]− rE

2
. (24)

Let us prove (v). Assume that the number field E = End0(T ) has degree
2g. A dimension argument implies that ΛQ is a 1-dimensional E-vector
space and V = ΛQ⊗QR is a free ER = E⊗QR-module of rank 1. Hence ER
coincides with its own centralizer EndER(V ) in EndR(V ). Since J commutes
with End0(T ) = E, it also commutes with ER and therefore

J ∈ EndER(V ) = ER.

Recall that the R-algebra ER is isomorphic to a product of copies of R and
C. Since J2 = −1, only copies of C appear in ER, i.e., E is purely imaginary,
which means that rE = 0 and therefore 2g = [E : Q] = 2sE . This proves
the first assertion of (v); the second one follows readily from (23) combined
with (24).

In order to prove the last assertion, assume that E contains two distinct
proper subfields E1 and E2, none of which coincides with Q. Clearly,

[E1 : Q] = g = [E2 : Q],

which means that both field extensions E/E1 and E/E2 are quadratic. This
implies that the (finite) automorphism group G := Aut(E/Q) of the field
extension E/Q contains two distinct elements t1 and t2 of order 2 such that

E1 = {u ∈ E | t1(u) = u1}, E2 = {u ∈ E | t2(u) = u2},

It follows that G is a group of order M where M is an even integer that
is strictly greater than 2. Then the subfield F := EG of G-invariants is a
proper subfield of E and its degree

[F : Q] =
[E : Q]

M
<

2g

2
= g.

It follows from (ii) that F = Q and therefore M = [E : Q] = 2g.
If g is not a power of 2 then there is an odd prime p dividing g and

therefore dividing M . It follows that G contains an element t of order p.
Therefore the subfield Et of t-invariants is a proper subfield of E and its
degree [Et : Q] is 2g/p < g. By (ii), Et = Q and therefore 2g = [E : Q] = p,
which is wrong, since p is odd. Hence g is a power of 2 and therefore G is a
finite 2-group. It follows that G has a normal subgroup H of index 2. Then
the subfield FH2 is a proper subfield of E and its degree [F2 : Q] equals the
index [G : H] = 2. This also contradicts (ii), which ends the proof of the
last assertion of (v).
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Let us prove (vi). Assume that [E : Q] = g. Then the assertion about
Aut(T ) follows readily from (23) combined with (24). If F 6= Q is a proper
subfield of E then

1 = [Q : Q] < [F : Q] < [E : Q] = g

and therefore 1 < [F : Q] < g, which contradicts (ii) applied to F instead of
E. So, such an F does not exist, i.e., E is primitive.

Assume now that T is a complex abelian variety. By Albert’s classification
[18], E = End0(T ) is either a totally real number field or a CM field. If E is
a CM field then it contains a subfield E0 of degree [E : Q]/2 = g/2. Since E0

is a subfield of End0(T ) and 1 < g/2 < g (recall that g ≥ 3), the existence
of E0 contradicts the already proven assertion (ii). This proves that E is a
totally real number field, i.e., s = 0, r = g. Now the assertion about Aut(T )
follows from (23). �

4. Number Fields and transitive permutation groups

All the results of this section are standard and pretty well known except,
may be, the notion of almost double transitivity.

Definition 4.1. Let T be a set that consists of at least three elements. We
write Perm(T ) for the group of all permutations of S. Let G be a group
that acts on S, i.e., we are given a group homomorphism

G→ Perm(S),

whose image we denote by G̃, which is a subgroup of Perm(T ). We say that
a transitive action of G on T is almost doubly transitive if the action of G
on the set of all two-element subsets of T is transitive.

Remarks 4.2. (1) Every doubly transitive action is almost doubly tran-
sitive.

(2) Every almost doubly transitive action of G on T is primitive, i.e.,
the stabilizer of a point is a maximal subgroup. Indeed, suppose the
action is not primitive, i.e., that T partitions into a disjoint union of
r sets T1, . . . , Tr such that r ≥ 2, each Ti consists of m ≥ 2 elements,
and G permutes Tis. Let A be a 2-element subset of T1. Pick b1 ∈ T1

and b2 ∈ T2, and consider a 2-element subset B = {b1, b2} of T .
Clearly, no s ∈ G sends A to B, i.e., the action is not almost doubly
transitive.

(3) If S consists of three elements then every transitive action on S of
any group G is almost doubly transitive.

(4) Let G̃ be the image of G in the group Perm(S) of permutations

of T . If S is a finite set then the group G̃ is a finite group of
permutations of T that is primitive (resp. almost doubly transitive,
resp. doubly transitive) if and only if G is primitive (resp. almost
doubly transitive, resp. doubly transitive)
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(5) Suppose that T is a finite set that consists of n ≥ 3 elements and G
is a group that acts faithfully and almost doubly transitively on T .
Let N be the order of G̃.

Then N is divisible by n(n − 1)/2. If N is even then G̃ contains
an element σ̃ of order 2 and therefore there are two distinct elements
s1, s2 ∈ T such that

σ̃(s1) = s2, σ̃(s2) = s1.

It follows that the action of G̃ on T is doubly transitive and therefore
the action of G on T is also doubly transitive. This implies that if
either 4|n or n ≡ 1 mod 4 then the action of G on T is doubly
transitive, because in these cases n(n− 1)/2 is even.

(6) Let n = q be a prime power that is congruent to 3 modulo 4. Let Fq
be a q-element finite field and F∗q the multiplicative group of nonzero
elements of Fq. Then F∗q splits into a direct product F∗q = H ×{±1}
where H is a cyclic group of odd order (q− 1)/2. Let us put S = Fq
and let G be the group of affine transformations of Fq

x 7→ ax+ b, a ∈ H ⊂ F∗q , b ∈ Fq.
Then the action ofG on Fq is almost doubly transitive but not doubly
transitive.

Let Q̄ be the algebraic closure of Q in C and

Gal(Q) = Gal(Q̄/Q) = Aut(Q̄/Q)

the absolute Galois group of Q. Let us consider the humongous group
Aut(C) of all automorphisms of the field C. Obviously, the subfield Q̄ is
Aut(C)-invariant, which gives rise to the (restriction) homomorphism of
groups

Aut(C) � Gal(Q), s 7→ {α 7→ s(α)} ∀s ∈ Aut(C), α ∈ Q̄ (25)

which is surjective.
Let E be a number field of degree n = [E : Q]. We write ΣE for the

n-element set of all field embeddings σ : E ↪→ C. For each σ ∈ ΣE the
image σ(E) lies in Q̄. If t is an element of Aut(C) (or of Gal(Q)) then the
composition

t ◦ σ : E
σ
↪→ Q̄ t→ Q̄ ⊂ C

also lies in ΣE . Then the map

Aut(C)× ΣE → ΣE , (t, σ) 7→ t ◦ σ (26)

is a transitive group action of Aut(C) on ΣE , which factors through Gal(Q)
via (25). This action is primitive (i.e., the stabilizer of a point is a maximal
subgroup) if and only if E is a primitive number field. Similarly, the map

Gal(Q)× ΣE → ΣE , (t, σ) 7→ t ◦ σ (27)

is a transitive group action of Gal(Q) on ΣE , which is primitive if and only
if E is a primitive number field.
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We say that E is a doubly transitive (respectfully almost doubly tran-
sitive) number field if the action (26) (or equivalently the action (27)) is
doubly transitive (respectfully almost doubly transitive). The correspond-

ing finite subgroup G̃ = Ãut(C) = G̃al(Q) of Perm(ΣE) is isomorphic to the

Galois group Gal(Ẽ/Q) where Ẽ is a normal closure of E.

Remark 4.3. Clearly, if E and F are isomorphic number fields then E
is primitive (resp. doubly transitive) (resp. almost doubly transitive) if
and only if F is primitive (resp. doubly transitive) (resp. almost doubly
transitive).

Example 4.4. (i) Let f(x) ∈ Q[x] be an irreducible polynomial of de-
gree n ≥ 2 on Q and Ef = Q[x]/f(x)Q[x] the corresponding number
field of degree n. We write Rf for the n-element set of roots of f(x)
in Q̄ and Q(Rf ) for the subfield of Q̄ generated by Rf . By definition,
Q(Rf ) is a splitting field of f(x) that is a finite Galois extension of
Q. We write Gal(f) for the Galois group Gal(Q(Rf )/Q) of the field
extension Q(Rf )/Q. It is well known that Gal(Q) acts transitively
(through Gal(f) ) on Rf . There is a Gal(Q)-equivariant bijection
between ΣEf and Rf that is defined as follows. To each α ∈ Rf

corresponds the field embedding

σα : Ef = Q[x]/f(x)Q[x] ↪→ Q̄ ⊂ C, h(x) + f(x)Q[x] 7→ h(α)

(in particular, the coset of x goes to α). This implies that the field
Ef is doubly transitive (respectfully almost doubly transitive) if and
only if the action of Gal(f) on Rf is doubly transitive (respectfully
almost doubly transitive). The similar characterization of primitive
number fields is well known:

the field Ef is primitive if and only if the action of Gal(f) on Rf

is primitive.
(ii) Conversely, let F be a number field of degree n and z ∈ is a primi-

tive element of E, i.e., the small subfield Q(z) of E that contains z
coincides with F (such an element always exists). Let f(x) ∈ Q[x]
be the minimal polynomial of z, i.e., f(x) is irreducible over Q and
f(z) = 0; in addition, deg(f) = n. Then there is a field isomorphism
Ef ∼= F such that the coset x+f(x)Q[x] ∈ Ef goes to z ∈ F . There-
fore the number field F is (almost) doubly transitive if and only if
Gal(f) acts (almost) doubly transitively on Rf .

Theorem 4.5. Let n ≥ 2 be an integer. Let r, s be nonnegative integers
such that

r + 2s = n. (28)

Then there exists a number field E of degree n that enjoys the following
properties.

(i) rE = r, sE = s.
(ii) E is doubly transitive.
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Proof. We will use a week approximation in E, approximating several poly-
nomials with respect to several metrics in E.

First, fix a degree n monic polynomial h∞(x) ∈ Z[x]ts that has precisely r
distinct real roots and s distinct pairs of non-real complex-conjugate roots.
(E.g., one may take

h∞(x) =

s∏
i=1

(x− i)
s∏
j=1

(x2 + j2) ∈ Z[x] ⊂ Q[x].)

Second, take any prime p and choose a monic p-adic Eisenstein polynomial
hp(x) ∈ Z[x], all whose coefficients (except the leading one) are divisible by
p while the constant term is not divisible by p2. (E.g., one may take

h2(x) = xn − p ∈ Z[x] ⊂ Q[x].)

Third, take any prime ` =6= p and choose a monic irreducible polynomial
ũ`(x) ∈ F`[x] of degree (n − 1) over F`. (Such a polynomial always exists
for any given ` and n − 1.) Let u`(x) ∈ Z[x] be any monic degree (n − 1)
polynomial with integer coefficients, whose reduction modulo ` coincides
with ũ`(x). Let us put

h`(x) := x · u`(x) ∈ Z[x] ⊂ Q[x].

By a weak approximation theorem [2, Th. 1], there is a monic degree n
polynomial f(x) ∈ Q[x] that enjoys the following properties.

(a) f(x) is so close to h∞(x) in the archimedean topology that it also
has precisely r distinct real roots and s distinct pairs of non-real
complex-conjugate roots.

(b) f(x)−hp(x) ∈ p2 ·x ·Zp[x]. This implies that f(x) is irreducible over
the field Qp of p-adic numbers and therefore irreducible over Q.

(c) f(x)− h`(x) ∈ ` · x · Z`[x]. This implies that

f(x) ∈ Z`[x], f(x) mod ` = x · ũ`(x) ∈ F`[x].

By Hensel’s Lemma, there are

α ∈ `Z` ⊂ Z`

and a monic degree (n− 1) polynomial v(x) ∈ Z`[x] such that

f(x) = (x− α)v(x) ∈ Z`[x], v(x) mod ` = ũ`(x) ∈ F`x]. (29)

By [29, Sect. 66], the irreducibility of ũ`(x) combined with (29) imply
that Gal(Rf ), viewed as the certain permutation group of Rf , contains a
permutation s that is a cycle of length n− 1. In particular, if α ∈ Rf is the
fixed point of s then the cyclic subgroup < s > of Gal(Rf ) generated by s
acts transitively on Rf \ {α}. Now the transitivity of Gal(Rf ) implies its
double transitivity, which ends the proof.

�
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5. Hodge groups

Recall that ΛR = V carries the natural structure of a complex vector
space. This gives rise to the injective homomorphism of real Lie groups

h : C∗ ↪→ AutR(ΛR)

where h(z) is multiplication by a nonzero complex number z in ΛR = V . Let
S1 ⊂ C∗ be the subgroup of all complex numbers z with |z| = 1. Clearly,
h(S1) is a one-dimensional closed connected real Lie subgroup of AutR(ΛR);
in addition, the Lie algebra of h(S1) is

R · J ⊂ EndR(ΛR).

Actually, h(S1) lies in the special linear group SL(ΛR) while R · J lies in the
Lie algebra sl(ΛR) of traceless operators in ΛR.

By definition [17, 25] (see also [34]), the Hodge group Hdg(T ) of the ra-
tional Hodge structure H1(T,Q) = ΛQ is the smallest algebraic Q-subgroup
G of GL(ΛQ), whose group of real points

G(R) ⊂ AutR(ΛR)

contains h(S1). One may easily check that Hdg(T ) enjoys the following
properties that we will freely use throughout the text.

(i) Hdg(T ) is a connected algebraic Q-group that is a subgroup of the
special linear group SL(ΛQ).

(ii) The centralizer of Hdg(T ) in EndQ(ΛQ) coincides with End0(T ).
(iii) A Q-vector subspace HQ of ΛQ is Hdg(T )-invariant if and only if it

is a rational Hodge substructure of ΛQ.
(iv) The subspace of Hdg(T )-invariants

H2(T,Q)Hdg(T ) ⊂ H2(T,Q) = HomQ(∧2
QΛQ,Q)

coincides with the subspace H2(T,Q) ∩H1,1(T ) of two-dimensional
Hodge classes on T .

(v) The group of Q-points Hdg(T )(Q) is Zariski dense in Hdg(T ), be-
cause Hdg is connected and the field Q in infinite (see [4, Cor. 18.3]).

Let us consider the Q-Lie algebra hdgT of the linear algebraic Q-group
Hdg(T ). By definition, hdgT is a linear algebraic Lie subalgebra of EndQ(ΛQ).

Remark 5.1. Clearly, hdgT is the smallest algebraic Lie Q-subalgebra g of
EndQ(ΛQ) such that

J ∈ g⊗Q R. (30)

Properties (i) and (ii) above imply that

hdgT ⊂ sl(ΛQ) ⊂ EndQ(ΛQ) (31)

and the centralizer of hdgT in EndQ(ΛQ) is described as follows.

EndhdgT (ΛQ) = End0(T ). (32)
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Clearly,

J ∈ hdgT,R := hdgT ⊗Q R ⊂ EndQ(ΛQ)⊗ R = EndR(ΛR)

contains J . Let us consider the complexification

hdgT,C := hdgT ⊗Q C ⊂ EndQ(ΛQ)⊗ C = EndC(ΛC)

where

ΛC = ΛQ ⊗Q C = ΛR ⊗R C.
We have

J ∈ hdgT,R = hdgT,R ⊗ 1 ⊂ hdgT,R ⊗R C = hdgT,C ⊂ EndC(ΛC).

(See (5) and Remark 1.2.) In what follows, we will write J instead of JC,
slightly abusing notation.

The group Aut(C) acts naturally, semi-linearly and compatibly on ΛC,
EndC(ΛC) and hdgT,C.

The minimality property of Hdg(T ) allows us to give the following “ex-
plicit” description of the complexification hdgT,C (compare with [34, Lemma
6.3.1]).

Theorem 5.2. The complex Lie algebra hdgT,C coincides with the Lie sub-
algebra u of EndC(ΛC) generated by all s(J) where s run over the group
Aut(C). In particular, hdgT coincides with the smallest Q-Lie subalgebra
g ⊂ EndQ(ΛQ) such that

g⊗Q R ⊂ EndQ(ΛQ)⊗Q R = EndR(ΛR)

contains J .

Proof. Clearly, u ⊂ hdgT,C. Let us prove that u is an algebraic complex Lie
subalgebra of EndC(ΛC).

Recall that

J ∈ EndR(ΛR) ⊂ EndC(ΛC); J2 = −1. (33)

Clearly, J : ΛC → ΛC is a semisimple C-linear operator, whose spectrum
consists of eigenvalues, i and −i, because J2 = −1 Similarly, for all s ∈
Aut(C) the C-linear operator s(J) : ΛC → ΛC is also semisimple and its
spectrum is also {i,−i}, because (in light of (33))

s(J)2 = s(J2) = s(−1) = −1. (34)

It follows that the Q-vector subspace Q(s(J)) of C generated by the spec-
trum of s(J) coincides with Q · i; in particular, the Q-vector (sub)space
Q(s(J)) is one-dimensional. This implies that each C · s(J) is an algebraic
C-Lie subalgebra of EndC(ΛC), because each replica of s(J) is a scalar multi-
ple of s(J). Thus, the linear C-Lie algebra u is generated by the algebraic Lie
subalgebras C · σ(f) and therefore is algebraic itself, thanks to [12, volume
2, Ch. 2, Sect. 14]. Clearly, u is defined over Q, i.e., there is an algebraic
Q-Lie subalgebra

u0 ⊂ EndQ(ΛQ)
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such that

u = u0 ⊗Q C.
Clearly,

u = u0 ⊗Q R⊕ i· = u0 ⊗Q R
as a real vector vector space. This implies that

u0 ⊗Q R = u ∩ EndR(ΛR). (35)

Let U be the connected algebraic Q-subgroup of GL(ΛQ), whose Lie algebra
coincides with u0. We need to prove that

u0 = hdgT .

Clearly, u0 ⊂ hdgT , because the comlexification of u0 lies in the complexifi-
cation of hdgT . We know that J ∈ u0 ⊗Q C. Since J ∈ EndR(ΛR),

J ∈ u0 ⊗Q R.

In light of Remark 5.1, u0 ⊃ hdgT . This implies that u0 = hdgT , which ends
the proof. �

Corollary 5.3. Let us put

fT :=
1

i
J ∈ EndC(ΛC).

Then

s(fT )2 = 1 ∀s ∈ Aut(C) (36)

and the complex Lie algebra hdgT,C coincides with the Lie subalgebra u of
EndC(ΛC) generated by all s(fT ) where s run over the group Aut(C). In
particular, hdgT coincides with the smallest Q-Lie subalgebra g ⊂ EndQ(ΛQ)
such that

g⊗Q C ⊂ EndQ(ΛQ)⊗Q C = EndC(ΛC)

contains fT .

Proof. Since i =
√
−1,

s(i) = ±i, s(fT ) = ±i · s(J) ∀s ∈ Aut(C). (37)

Therefore

s(fT )2 = (±i · s(J))2 = −s(J)2.

It follows from (34) that

s(fT )2 = −(−1) = 1,

which proves our first assertion. It follows from (37) that

C · s(fT ) = C · s(J) ∀s ∈ Aut(C).

Now our second assertion follows from Theorem 5.2.
�
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Remark 5.4. Let a be the smallest ideal of hdgT such that aC := a ⊗Q C
contains fT . Clearly, aC contains s(fT ) for all s ∈ Aut(C). It follows from
Corollary 5.3 that aC = hdgT,C. This implies that

a = hdgT .

The latter equality means that fT is a Hodge element of the Q-Lie algebra
hdgT in a sense of [36, Definition 1.1] where

k = Q, V = ΛQ, C = C.

For the sake of simplicity, from now on let us assume that T is simple.
This means that the natural faithful representation of Hdg(T ) in

ΛQ = H1(T,Q)

is irreducible and therefore End0(T ) is a division algebra over Q. This
implies that the Q-algebraic (sub)group Hdg(T ) is reductive. In addition,
the Q-Lie (sub)algebra

hdgT ⊂ sl (H1(T,Q)) ⊂ EndQ (H1(T,Q))

is reductive algebraic, the faithful hdgT -module H1(T,Q) is simple and the
centralizer of hdgT in EndQ (H1(T,Q)) is the division Q-algebra End0(T ).
Then the center Z(T ) of End0(T ) is a number field.

Let us split the reductive Q-Lie algebra hdgT into a direct sum

hdgT = hdgss
T ⊕ cT

of the semisimple Q-Lie algebra

hdgss
T = [hdgT , hdgT ]

and the center cT of hdgT with

cT ⊂ Z(T ) ⊂ End0(T ).

The following useful assertion is well known in the case of abelian varieties.

Lemma 5.5. Suppose that T is simple and Z(T ) = Q (e.g., End0(T ) = Q).
Then cT = {0}, i.e., the Q-Lie algebra is semisimple and therefore Hdg(T )
is a semisimple Q-algebraic group.

Proof. The result follows readily from the combination of inclusions

cT ⊂ Z(T ) = Q, cT ⊂ hdgT ⊂ sl (H1(T,Q)) .

�

The next example deals with the opposite case when the endomorphism
algebra of a simple torus T is a number field of (largest possible) degree
2dim(T ).
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Example 5.6. Suppose that a complex torus T = V/Λ is simple of dimen-
sion g and End0(T ) is a number field E of degree 2g. Then ΛQ becomes a
one-dimensional vector space over E. Therefore

E = EndE(ΛQ), E∗ = AutE(ΛQ).

This implies that

Hdg(T )(Q) ⊂ E(1) = {e ∈ E∗ | NormE/Q(e) = 1} ⊂ E∗ = AutE(ΛQ). (38)

Here
NormE/Q : E∗ → Q∗, e 7→

∏
σ∈ΣE

σ(e)

is the norm homomorphism of the multiplicative groups of fields attached
to the field extension E/Q

Let SE = ResE/Q(Gm) be the 2g-dimensional algebraic torus over Q ob-
tained from the multiplicative group Gm by the Weil’s restriction of scalars
from E to Q. Then SE(Q) = E∗ and for each σ ∈ ΣE there is a certain
character

δσ : S̄E := SE ×Q Q̄→ Gm ×Q Q̄
of the algebraic torus S̄E over Q̄ such that the restriction of δσ to

E∗ = SE(Q) ⊂ SE(Q̄) = S̄E(Q̄)

coincides with
σ : E∗ ↪→ Q̄∗

. In addition, the 2g-element set {δσ | σ ∈ ΣK} constitutes a basis of the
free Z-module X(S̄E) of characters of the algebraic torus S̄E over Q̄. Since
SE is defined over Q, the group X(S̄E) is provided with the natural structure
of a Gal(Q)-module in such a way that

s(δσ) = δs(σ) ∀σ ∈ ΣE , s ∈ Gal(Q) (39)

([26, Ch. II, Sect. 1], [30, Ch. III, Sect. 5 and 6]). Clearly, the character

χ =
∏
σ∈ΣE

δσ ∈ X(S̄E)

is Gal(Q)-invariant and may be viewed as the character of SE such that

χ(e) = NormE/Q(e) ∈ Q∗ ∀e ∈ E∗ = SE(Q).

Let us put
S1
E = ker(χ).

Since χ is obviously non-divisible in the group of characters, S1
E is an alge-

braic Q-subtorus of dimension 2g − 1 in SE such that

S1
E(Q) = ker(NormE/Q) = E(1). (40)

Combining (38) and (40), and taking into account that Hdg(T )(Q) is Zariski
dense in Hdg(T ), we conclude that

Hdg(T ) ⊂ S1
E . (41)
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In particular, if S1
E is a simple algebraic torus over Q then

Hdg(T ) = S1
E .

By definition of S1
E , the Galois module X(S̄1

E) of characters of the alge-
braic Q̄-torus

S̄1
E = S1

E ×Q Q̄
is the quotient X(S̄E)/(Z · χ). It follows from (39) that the Gal(Q)-module
X(S̄1

E) is isomorphic to the quotient ZΣE/Z · 1 where ZΣE is the free Z-
module of functions φ : ΣE → Z and 1 is the constant function 1. It follows
easily that the Galois module X(S̄1

E)⊗Q is isomorphic to the Q-vector space(
QΣE

)0
:= {φ : ΣE → Q |

∑
σ∈ΣE

φ(σ) = 0}

of Q-valued functions on ΣE with zero “integral”. Recall that the action
of Gal(E) on ΣE is transitive and this action induces the structure of the

Galois module on
(
QΣE

)0
. Notice that if the action of Gal(Q) on

(
QΣE

)0
is doubly transitive (i.e., E is doubly transitive) then the representation

of Gal(Q) in
(
QΣE

)0
is irreducible, i.e., the Galois module X(S̄1

E) ⊗ Q is

simple, which means that the algebraic Q-torus S1
E is simple and therefore

Hdg(T ) = S1
E . So we have proven that

Hdg(T ) = S1
E (42)

if E is doubly transitive. In particular, the algebraic Q-torus is simple.

Theorem 5.7. Let T = V/Λ be a simple complex torus of dimension g > 2
such that its endomorphism algebra is a number field E of degree 2g that is
doubly transitive.

Then:

(i) The Hodge group Hdg(T ) of T coincides with S1
E. In addition,

Hdg(T ) is a simple algebraic Q-torus of dimension 2g − 1.
(ii) The Hdg(T )-module H2(T,Q) is simple. In particular, T is 2-simple.

Proof. We keep the notation of Example 5.6 where the assertion (i) and the
simplicity of Hdg(T ) are already proven.

In order to prove (ii), notice that H2(T,Q) = HomQ(∧2
QΛQ,Q), so, it

suffices to check that the Hdg(T )-module ∧2
QΛQ is simple.

If σ ∈ ΣE then let us consider the character δ
(1)
σ of S̄1

E that is the restric-
tion of the character δσ to S̄1

E . Clearly,∏
σ∈ΣE

δ(1)
σ = 1 ∈ X(S̄1

E)

and this is the only “nontrivial” multiplicative relation between δ
(1)
σ . In

particular, if A and B are two distinct 2-element subsets of ΣE then

δ1
A :=

∏
σ∈A

δ(1)
σ 6=

∏
σ∈B

δ(1)
σ =: δ1

B. (43)
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In other words, δ1
A and δ1

B are distinct characters of S̄1
E .

Let us fix an order on the 2g-element set ΣE and consider the Q̄-vector
space

Λ̄ = ΛQ ⊗Q Q̄,
which is provided with the natural faithful action of S̄1

E , and splits into a
direct sum

Λ̄ = ⊕σ∈ΣE Λ̄σ

of one-dimensional weight subspaces Λ̄σ defined by the condition that S̄1
E

acts on Λ̄σ by the character δ
(1)
σ .

We have

∧2
QΛQ ⊗Q Q̄ = ∧2

Q̄Λ̄ = ⊕A={σ,τ∈ΣE ;σ<τ}Λ̄A,

where

Λ̄A = Λ̄σ ∧Q̄ Λ̄τ ∼= Λ̄σ ⊗Q̄ Λ̄τ

are one-dimensional S̄1
E-invariant subspaces; the action of S̄1

E on Λ̄A is de-
fined by the character δ1

A

It follows from (43) that if W is a nonzero S1
E-invariant Q-vector subspace

of ΛQ then W̄ = W ⊗Q Q̄ is a direct sum of some of Λ̄A. The double
transitivity condition implies that all Λ̄A’s are mutually Galois-conjugate
over Q. It follows that W̄ = ∧2

Q̄Λ̄, i.e., W = ∧2
QΛQ and we are done.

�

Remark 5.8. See [3] for explicit examples of complex tori that satisfy the
conditions of Theorem 5.7.

In the case of arbitrary simple complex tori (or even abelian varieties) the
Hodge group may be neither semisimple nor commutative (see [31, 32, 33]
for explicit examples). This is not the case for 2-simple tori in dimensions
> 2, in light of the following assertion.

Proposition 5.9. Let T be a 2-simple torus of dimension g > 2. (In
particular, T is simple.) Then Hdg(T ) is either semisimple or commutative.
The latter case occurs if and only if End0(T ) is a number field of degree 2g.

Proof. We know (thanks to Theorem 1.7) that E = End0(T ) is a number
field of degree

[E : Q] ∈ {1, g, 2g}.
If [E : Q] = 1 then E = Q. In light of Lemma 5.5, Hdg(T ) is semisimple.
If [E : Q] = 2g then ΛQ = H1(T,Q) is a one-dimensional E-vector space,

i.e.,

E = EndE (H1(T,Q)) .

This implies that

hdgT ⊂ EndE (H1(T,Q)) ⊂ E
and therefore hdgT is a commutative Q-Lie algebra. It follows that Hdg(T )
is commutative.
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Assume that [E : Q] = g, i.e., ΛQ = H1(T,Q) is a two-dimensional E-
vector space. Then

hdgT ⊂ EndE (H1(T,Q)) ⊃ E ⊃ cT .

Let
TrE : EndE (H1(T,Q))→ E (44)

be the (surjective) E-linear trace map, which is a homomorphism of Q-Lie
algebras (here we view E as a commutative Q-Lie algebra); in addition, the
restriction of TrE to E is multiplication by

dimE (H1(T,Q)) = 2.

We write sl (H1(T,Q)/E) for ker(TrE), which is an absolutely simple E-Lie
algebra of traceless E-linear operators in H1(T,Q). (Viewed as the Q-Lie
algebra, sl (H1(T,Q)/E) is a simple but not absolutely simple.)

On the other hand, let

detE : AutE (H1(T,Q))→ E∗

be the multiplicative determinant map. Clearly,

Hdg(T )(Q) ⊂ AutE (H1(T,Q))

and the group AutE (H1(T,Q)) acts naturally on the one-dimensional E-
vector space HomE

(
∧2
EH1(T,Q), E

)
via the character detE . I claim that

detE kills Hdg(T )(Q). Indeed, if this is not the case, then the rational
Hodge substructure HomE

(
∧2
EH1(T,Q), E

)
of H2(T,Q) has nonzero (2, 0)-

component, whose C-dimension

≤ [E : Q]

2
=
g

2
< g,

which contradicts the 2-simplicity of T . Hence, detE kills Hdg(T )(Q). Tak-
ing into account that Hdg(T )(Q) is dense in Hdg(T ) in Zariski topology and
the minimality property in the definition of the Hodge group, we conclude
that

Hdg(T ) ⊂ ResE/QSL((H1(T,Q)/E)

where SL((H1(T,Q)/E) is the special linear group of the E-vector space
H1(T,Q), which is a simple algebraic E-group, and ResE/Q is the Weil re-
strictions of scalars. Taking into account that the Q-Lie algebra sl (H1(T,Q)/E)
is the Lie algebra of the Q-algebraic group ResE/QSL((H1(T,Q)/E), we con-
clude that

hdgT ⊂ sl (H1(T,Q)/E) ∼= sl(2, E). (45)

In particular, TrE kills cT . Since cT ⊂ E,

0 = TrE(c) = 2c ∀c ∈ cT ⊂ E.
This implies that cT = {0}, i.e., hdgT is semisimple, i.e., Hdg(T ) is semisim-
ple. This ends the proof. �

The following assertion may be viewed as a variant of a theorem of P.
Deligne [14] about abelian varieties (see also [27]).
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Theorem 5.10. Let T be a simple complex torus. Let hdgT ⊂ EndQ(ΛQ)
be the (reductive) Q-Lie algebra of Hdg(T ), whose natural representation in
ΛQ is irreducible.

Let g be a simple (non-abelian) factor of the complex reductive Lie algebra

hdgT,C = hdgT ⊗Q C ⊂ EndQ(ΛQ)⊗Q C = EndC(ΛC) = EndC (VC) .

Then

(i) The simple complex Lie algebra g is of classical type (Al,Bl,Cl,Dl)
of a certain positive rank l.

(ii) Let W be a nontrivial simple g-submodule of VC. Then its highest
weight is minuscule one.

Proof. The result follows readily from Corollary 5.3 combined with Propo-
sition 2.4.1 of [34] applied to

k = C, k0 = Q,W = ΛQ, g = hdgT , f = fT , A = {1,−1}

and

n = 1, a0 = 1, a1 = −1.

�

The following assertion may be viewed as a variant of a theorem of M.V.
Borovoi about abelian varieties [7], see also [36].

Theorem 5.11. Suppose that T is a simple complex torus with End0(T ) =
Q.

Then its Hodge group Hdg(T ) is a Q-simple linear algebraic group, i.e.,
its Q-Lie algebra hdgT is simple.

Proof. Clearly, hdgT is a semisimple Q-Lie algebra, whose natural faithful
representation in ΛQ is absolutely irreducible. By Remark 5.4, fT ∈ hdgT,C
is a Hodge element of hdgT . The spectrum of the linear semisimple operator
fT in ΛQ consists of precisely two eigenvalues, 1 and −1. Now it follows from
Theorem 1.5 of [34] that hdgT is simple. This means that Hdg(T ) is a Q-
simple algebraic group.

�

Corollary 5.12. Suppose that T is a simple complex torus of dimension g
with End0(T ) = Q. Assume also that 2g is not a power (e.g., g is odd).

Then Hdg(T ) is an absolutely simple Q-algebraic group that enjoys pre-
cisely one of the following two properties.

• Hdg(T ) is of type A2g−1,Cg,Dg.
• Hdg(T ) is of type or Ar where r is a positive integer that enjoys the

following properties.
1 < r < 2g − 1 and there is an integer j such that 1 < j < 2g − 1

and 2g =
(
r+1
j

)
.
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Proof. By Theorem 5.11, hdgT is a simple Q-Lie algebra. Suppose that hdgT
is not absolutely simple, i.e., the complex Lie algebra hdgT,C splits into a
direct sum

hdgT,C = ⊕d`=1g`

of d simple complex Lie algebras g` where d > 1. We are going to prove that
2g is a dth power and get a contradiction. The simplicity of hdgT means
that Aut(C) permutes the set {g`}d`=1 transitively. Namely, each s ∈ Aut(C)
gives rise to the semi-linear automorphism of the C-vector space

ΛC → ΛC, x⊗ z 7→ x⊗ s(z) ∀x ∈ ΛQ, z ∈ C

and to the semi-linear automorphism of the C-algebra

EndC(ΛC)→ EndC(ΛC), u⊗ z 7→ u⊗ s(z) ∀x ∈ EndQ(ΛQ), z ∈ C.

We continue to denote those automorphisms by s.
The simplicity of hdgT implies that for each g` there is s` ∈ Aut(C) such

that

g` = s` (g1) .

We know that the hdgT,C-module ΛC is (absolutely) simple. Since each g`
is a direct summand of g`, the g`-module ΛC is isotypic, i.e., there is a
simple g`-submodule W` ⊂ ΛC such that all simple g`-submodules of ΛC are
isomorphic to W`. In addition, the hdgT,C = ⊕d`=1g`-module ΛC splits into

a tensor product ⊗d`=1W`. Let us prove that dimC(W`) does not depend on
`.

Indeed, s`(W1) is a simple g`-submodule of ΛC and therefore is isomorphic
to W1. This implies that dim(W1) = dim(W`) and therefore

2g = dimC(ΛC) = dimC(W1)d,

which gives us a desired contradiction. So, hdgT,C is a simple complex
Lie algebra and ΓC is a faithful simple hdgT,C-module. By Theorem 5.10,
hdgT,C is a classical Lie algebra (of type Ar,Br,Cr or Dr), and the highest
weight of ΓC is minuscule. The remaining assertion follows readily from
the inspection of dimensions of minuscule representations of classical Lie
algebras [9, Tables].

�

Example 5.13. Suppose that T is a complex torus of dimension g such
that one of the following conditions holds.

(i) Hdg(T ) = SL(ΛQ).
(ii) There exists a nondegenerate quadratic form

φ : ΛQ → Q

of even signature (2p, 2q) with p + q = g ≥ 3 such that Hdg(T )
coincides with the corresponding special orthogonal group. SO(ΛQ)
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(iii) There exists a nondegenerate alternating Q-bilinear form

ΛQ × ΛQ → Q
such that Hdg(T ) coincides with the corresponding symplectic group
Sp(ΛQ).

Then T is 2-simple.
Indeed, in the cases (i) and (ii), (in the obvious notation) the natural

representation of SL(ΛC) (resp. SO(ΛC)) in ∧2
C(ΛC) is irreducible, see [9,

Ch. 8, Sect. 13]. This implies that the natural representation of SL(ΛQ)
(resp. SO(ΛQ, φ)) in ∧2

Q(ΛQ) is absolutely irreducible. By duality, the same

is true for HomQ(∧2
Q(ΛQ),Q) = H2(T,Q), i.e., the Hdg(T )-module H2(T,Q)

is simple. This implies that T is 2-simple. Notice that in these cases we
deal with simple complex tori that are not abelian varieties (since they do
not carry nonzero 2-dimensional Hodge classes), and whose endomorphism
algebra is Q.

In the case (iii), the natural representation of Sp(ΛC) in ∧2
C(ΛC) is a

direct sum of an irreducible representation and a trivial one-dimension rep-
resentation [28, Tables]. This implies that the natural representation of
Sp(ΛQ) in ∧2

Q(ΛQ) is a direct sum of an absolutely irreducible representa-
tion and a trivial one-dimension representation. By duality, the same is
true for HomQ(∧2

Q(ΛQ),Q) = H2(T,Q), i.e., the Hdg(T )-module H2(T,Q)
is a direct sum of an absolutely simple simple module and a trivial module
of Q-dimension 1 The latter consists of all Hdg(T )-invariants in H2(T,Q),
i.e., coincides with H1,1(T,Q). The former is an irreducible rational Hodge
structure. It follows from Remark 1.8 (ii) that T is 2-simple.3 See [37] for
explicit examples (in all dimensions) of complex abelian varieties T with
Hdg(T ) = Sp(ΛQ).

Theorem 5.14. Let ΠQ be a Q-vector space of positive even dimension 2g,
and G a Q-simple algebraic subgroup of GL(ΠQ), whose Q-Lie algebra g may
be viewed as a simple Q-Lie subalgebra of EndQ(ΠQ). Let us consider the
real Lie subalgebra

gR = g⊗Q R ⊂ EndQ(ΠQ)⊗Q R = EndR(ΠR)

where ΠR = ΠQ⊗Q R is the corresponding 2g-dimensional real vector space.
Suppose that there exists an element

J0 ∈ gR ⊂ EndR(ΠR)

such that J2
0 = −1 in EndR(ΠR). Then there exists J ∈ gR that enjoys the

following properties.

(i) J2 = −1.
(ii) Let us endow ΠR with the structure of a g-dimensional complex vec-

tor space by defining

(a+ bi)v = av + bJ(v) ∀a+ bi ∈ C with a, b ∈ R.
3For abelian varieties T the case (iii) was done in [1, Sect. 5.1].
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Then for every discrete subgroup Λ of rank 2g in ΠQ the correspond-
ing complex torus T = ΠR/Λ has Hodge group G.

Proof. We will need the following auxiliary statement.

Lemma 5.15. If v is a proper nonzero Q-vector subspace of g then the real
vector subspace

vR = v⊗Q R ⊂ g⊗Q R = gR

does not contain a nonzero ideal of gR.

Notice that the the set of proper nonzero Q-Lie subalgebras L of g is
countable. By Lemma 5.15, every LR = L⊗Q R does not contain a nonzero
ideal of gR. By [38, Lemma 2 on p. 494], the closed subset

G(LR, J0) = {u ∈ G(R) | J0 ∈ u−1LRu}
is nowhere dense in G(R). It follows that there exists u ∈ G(R) such that J0

does not lie in any of u−1LRu. Let us put

J := uJ0J
−1 ∈ gR ⊂ EndR(ΠR).

Then J does not lie in any of LR and J2 = −1 ∈ EndR(ΠR). It follows that
g coincides with the smallest Q-Lie subalgebra u of g such that uR contains
J . This implies that g coincides with the smallest Q-Lie subalgebra u of
EndQ(ΠQ) such that uR contains J . It follows readily that g coincides with
the Lie algebra of the Hodge group of a complex torus T = ΠR/Λ where the
complex structure on the real vector space ΠR is defined by J and Λ is any
discrete subgroup Λ of rank 2g in ΠQ. �

Proof of Lemma 5.15. Suppose that LR contains a nonzero ideal a of gR.
Then the C-vector subspace

LC = LR ⊗R C = L⊗Q C

contains a nonzero ideal aC = a⊗R C of the complex Lie algebra

gC = gR ⊗R C = g⊗Q C.

Then

ã =
∑

s∈Aut(C)

s(a)

is a Aut(C)-invariant ideal of gC that lies in LC. Hence, there is a Q-vector
subspace aQ such that

ã = aQ ⊗Q C;

in addition, aQ is an ideal of g, which contradicts the simplicity of the Q-Lie
algebra g. This ends the proof. �

Example 5.16. We keep the notation of Theorem 5.14. Let g ≥ 3 be an
integer, ΠQ a 2g-dimensional vector space over Q. Let G be a Q-simple
algebraic subgroup of GL(ΠQ) that enjoys one of the following properties.

(i) G = SL(ΠQ).



2-SIMPLE COMPLEX TORI 29

(ii) There exists a nondegenerate quadratic form

φ : ΠQ → Q

of even signature (2p, 2q) with p+ q = g such that G coincides with
the corresponding special orthogonal group. SO(ΠQ).

In both cases there exists J0 ∈ gR with J2
0 = −1. (Here g ⊂ EndQ(ΠQ) is the

Lie algebra of }.) In light of Theorem 5.14, there exists a complex structure
on the real vector space ΠR such that the Hodge group of corresponding
complex tori T = ΠR/Λ coincides with G. In light of Example 5.13, T is
2-simple.

6. The degree g case

In this section we discuss g-dimensional 2-simple tori, whose endomor-
phism algebra is a number field of degree g.

Theorem 6.1. Let T a 2-simple torus of dimension g > 2. If End0(T ) is a
number field E of degree g then

Hdg(T ) = ResE/QSL((H1(T,Q)/E) .

Proof. It suffices to check that

hdgT = sl (H1(T,Q)/E) . (46)

In light of (45), the desired equality (46) is an immediate corollary of the
following observation applied to

k = Q, K = E,W = H1(T,Q), g = hdgT .

Lemma 6.2. Let g be a positive integer, W a 2g-dimensional vector space
over a field k of characteristic 0, g ⊂ Endk(W ) a linear semisimple k-
subalgebra such that the centralizer

K := EndgW ⊂ Endk(W )

is an overfield of K such that [K : k] = g. Then g coincides with the Lie
algebra sl(W/K) of traceless K-linear operators in W .

Proof of Lemma 6.2. The semisimplicity of g implies that

g ⊂ sl(W/K). (47)

In what follows we mimick the arguments of [24, pp. 790–791, Proof of Th.
4.4.10] where `-adic Lie algebras are treated.

Let k̄ be an algebraic closure of k, and ΣK the g-element set of field
embeddings σ : K ↪→ k̄ that coincide with the identity map on k. Let
us consider the 2g-dimensional k̄-vector space W̄ = W ⊗k k̄ and the k̄-Lie
algebra

ḡ = g⊗k k̄ ⊂ Endk(W )⊗k k̄ = Endk̄(W̄ ). (48)

The semisimplicity of the k-Lie algebra g implies the semisimplicity of the
k̄-Lie algebra ḡ.
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Clearly, the centralizer Endḡ(W̄ ) of ḡ in Endk̄(W̄ ) equals

Endg(W )⊗k k̄ = K ⊗k k̄ (49)

and W̄ is a free K ⊗k k̄-module of rank 2, because W is a vector space over
K of dimension 2. We have

K ⊗k k̄ = ⊕σ∈ΣKK ⊗K,σ k̄ = ⊕σ∈ΣK k̄σ (50)

where
k̄σ = K ⊗K,σ k̄ = k̄.

We have
W̄ = ⊕σ∈ΣKW̄σ where W̄σ = k̄σW̄ ⊂ W̄ .

The freeness of the K ⊗k k̄-module W̄ with rank 2 implies that each W̄σ is
a k̄σ-vector space of dimension 2. Since

k̄σ ⊂ K ⊗k k̄ = Endḡ(W̄ ),

each W̄σ = k̄σW̄ is a ḡ-invariant subspace of W̄ and the centralizer of g

Endḡ(W̄σ) = k̄σ = k̄. (51)

Let
ḡσ ⊂ Endk̄σ(W̄σ) = Endk̄(W̄σ)

be the image of the natural k̄-Lie algebra homomorphism

ḡ→ Endk̄(W̄σ).

The semisimplicity of ḡ implies the semisimplicity of the Lie algebra ḡσ,
because the latter is isomorphic to a quotient of the former. This implies
that

ḡσ ⊂ sl(W̄σ) ∼= sl(2, k̄σ) = sl(2, k̄).

Taking into account (51) and the semisimplicity of ḡσ, we conclude that

ḡσ = sl(W̄σ) ∼= sl(2, k̄). (52)

This implies that

ḡ ⊂ ⊕σ∈ΣK ḡσ = ⊕σ∈ΣK sl(W̄σ) ⊂ ⊕σ∈ΣKEndk̄(W̄σ). (53)

Let σ and τ be distinct elements of ΣK . Clearly, W̄σ ⊕ W̄τ is a ḡ-invariant
subspace of W̄ . Let ḡσ,τ be the image of ḡ in Endk̄(W̄σ ⊕ W̄τ ). Since ḡσ,τ is
isomorphic to a quotient of ḡ, it is a semisimple k̄-Lie algebra such that

ḡσ,τ ⊂ sl(W̄σ)⊕ sl(W̄τ ) ⊂ Endk̄(W̄σ)⊕ Endk̄(W̄τ ) ⊂ Endk̄(W̄σ ⊕ W̄τ ).

Notice that ḡσ,τ projects surjectively on both

ḡσ = sl(W̄σ) and ḡτ = sl(W̄τ ),

because ḡ does. The simplicity of both mutually isomorphic Lie algebras
sl(W̄σ) and sl(W̄τ ) and the semisimplicity of ḡσ,τ implies that either

ḡσ,τ = sl(W̄σ)⊕ sl(W̄τ ) (54)

or
ḡσ,τ ∼= sl(W̄σ) ∼= sl(W̄τ ) ∼= sl(2, k̄).
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In the latter case the ḡσ,τ -modules W̄σ and W̄τ are isomorphic, because the
Lie algebra sl(2, k̄) has precisely one nontrivial 2-dimensional representation
over k̄, up to an isomorphism. This implies that the ḡ-modules W̄σ and W̄τ

are isomorphic as well and therefore the centralizer Endḡ(W̄ ) is noncommu-
tative, which is not the case. The obtained contradiction proves that the
equality (54) holds for any σ, τ . Now, it follows from Lemma on p. 790-791
of [24] that

ḡ = ⊕σ∈ΣK ḡσ = ⊕σ∈ΣK sl(W̄σ).

This implies that
dimk̄(ḡ) = 3g = dimksl(W/K).

By (47), g ⊂ sl(W/K). Taking into account that dimk(g) = dimk̄(ḡ), we
conclude that dimk(g) = dimksl(W/K). This implies that g = sl(W/K),
which ends the proof.

�

�

Theorem 6.3. Let T a simple complex torus of dimension g > 2. Suppose
that End0(T ) is a number field E of degree g and

Hdg(T ) = ResE/QSL((H1(T,Q)/E) .

Then the following conditions are equivalent.

(i) T is 2-simple.
(ii) E is almost doubly transitive.

Theorem 6.3 is an immediate corollary of the following observation applied
to

k = Q, K = E, W = H1(T,Q).

Lemma 6.4. Let g be a positive integer ≥ 2, W a 2g-dimensional vector
space over a field k of characteristic 0, g ⊂ Endk(W ) a linear semisimple
k-subalgebra such that the centralizer of g

K := EndgW ⊂ Endk(W )

is an overfield of k such that [K : k] = g, and g = sl(W/K) is the Lie algebra
of traceless K-linear operators in W .

Then the following conditions are equivalent.

(i) The g-module ∧2
kW is a direct sum of its submodule

(
∧2
kW
)g

of g-
invariants and a simple g-module.

(ii) The g-module Hom(∧2
kW,k) is a direct sum of its submodule Hom(∧2

kW,k)g

of g-invariants and a simple g-module.
(iii) Let Gal(k) = Aut(k̄/k) be the absolute Galois group of k. Let ΣK be

the set of k-linear field embeddings K ↪→ k̄. Then the natural action
of Gal(k) on ΣK is almost doubly transitive.

Remark 6.5. The equivalence of (i) and (ii) follows readily from the semisim-
plicity of g.
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Corollary 6.6. Let T a simple complex torus of dimension 3. Suppose that
End0(T ) is a cubic number field E and

Hdg(T ) = ResE/QSL((H1(T,Q)/E) .

Then T is 2-simple.

Proof of Corollary 6.6. The result follows readily from Theorem 6.3, since
every transitive action on the 3-element set ΣE is almost doubly transitive.

�

Proof of Lemma 6.4. We use the notation of the Proof of Lemma 6.2. In
particular,

ḡσ = sl(W̄σ), ḡσ,τ = sl(W̄σ)⊕ sl(W̄τ ) ∀σ, τ ∈ ΣK , σ 6= τ ;

W̄ = ⊕σ∈ΣKW̄σ, ḡ = ⊕σ∈ΣK ḡσ, .

Let us start with the g-module

W⊗2 := W ⊗k W →W.

There is an involution

δ : W⊗2 →W⊗2, u⊗ v 7→ v ⊗ u,
whose subspace of invariants is the symmetric square S2

kW of W and the
subspace of anti-invariants is the exterior square ∧2

kW . Clearly, δ commutes
with the action of g; in particular, both S2

kW and ∧2
kW are g-invariant

subspaces of the tensor square of W .
Let us consider the ḡ-module

W̄⊗2 := W̄ ⊗k̄ W̄ .

Extending by k̄-linearity the involution δ, we get the involution

δ̄ : W̄⊗2 → W̄⊗2, u⊗ v 7→ v ⊗ u,
whose subspace of invariants is the symmetric square S2

k̄
W̄ of W̄ and the

subspace of anti-invariants is the exterior square ∧2
k̄
W̄ . Clearly, δ̄ commutes

with the action of g; in particular, both S2
k̄
W̄ and ∧2

k̄
W̄ are g-invariant

subspaces of W̄⊗2.
Let us choose an order on ΣK . Let ΣK,2 be the set of all two-element

subsets B of ΣK with

B = {σ, τ}; σ, τ ∈ ΣK ; σ < τ. (55)

Let us consider the following decomposition of the ḡ-module W̄⊗2 into a
direct sum of δ̄-invariant ḡ-submodules

W̄⊗2 =
(
⊕σ∈ΣK W̄σ⊗k̄ W̄σ

)
⊕
(
⊕B={σ,τ}∈ΣK,2 (W̄σ⊗k̄ W̄τ )⊕ (W̄τ ⊗k̄ W̄σ)

)
.

(56)
Clearly, the action of the Lie algebra ḡ on the tensor product W̄σ ⊗k̄ W̄σ

factors through
ḡσ = sl(W̄σ)
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while the action of ḡ on

W̄ (B) :=
(
W̄σ ⊗k̄ W̄τ

)
⊕
(
W̄τ ⊗k̄ W̄σ

)
factors through

ḡ(B) := ḡσ,τ = sl(W̄σ)⊕ sl(W̄τ ) with B = {σ, τ}.

We have

W̄σ ⊗k̄ W̄σ = S2
k̄W̄σ ⊕ ∧2

k̄W̄σ

where first summand is a simple ḡσ-module that lies in S2
k̄
W̄ while the action

of ḡσ (and therefore of ḡ) on the second one is trivial.
Both ḡ(B) = ḡσ,τ -modules W̄σ ⊗k̄ W̄τ and W̄τ ⊗k̄ W̄σ are faithful simple;

in addition, they are mutually isomorphic. Let us split W̄ (B) into a direct
sum

W̄ (B) = W̄
(B)
+ ⊕ W̄ (B)

−

of the subspaces W̄
(B)
+ of δ̄-invariants and W̄

(B)
− of δ̄-anti-invariants. Clearly,

both subspaces are nonzero ḡσ,τ -invariant subspaces and therefore are non-
trivial simple ḡσ,τ -modules that are isomorphic to

W̄σ ⊗k̄ W̄τ
∼= W̄τ ⊗k̄ W̄σ.

The last sentence remains true if we replace “ḡσ,τ -modules” by “ḡ-modules”.
Obviously,

W̄
(B)
+ ⊂ S2

k̄W̄ , W̄
(B)
− ⊂ ∧2

k̄W̄ .

It follows from (56) that the ḡ-module ∧2
k̄
W̄ splits into a direct sum of

the trivial ḡ-module ⊕σ∈ΣK ∧2
k̄
W̄σ and a direct sum of nontrivial mutually

non-isomorphic simple ḡ-modules ⊕B∈ΣK,2W̄
B
− . So,

S2
k̄W̄ =

(
⊕σ∈ΣKS2

k̄W̄σ

)
⊕
(
⊕B∈ΣK,2W̄

(B)
+

)
; (57)

∧2
k̄W̄ =

(
⊕σ∈ΣK ∧

2
k̄ W̄σ

)
⊕
(
⊕B∈ΣK,2W̄

(B)
−

)
. (58)

Clearly,

W̄
(0)
− := ⊕σ∈ΣK ∧

2
k̄ W̄σ

coincides with the subspace of all ḡ-invariants in ∧2
k̄
W̄ .

Notice that Gal(k) acts naturally on both ΣK and ΣK,2 in such a way
that for all s ∈ Gal(K)

s
(
∧2
k̄W̄σ

)
= ∧2

k̄W̄sσ, s
(
W̄

(B)
−

)
= W̄

(sB)
− (59)

for all s ∈ Gal(k); it follows that

sW̄
(0)
− = W̄

(0)
− .

It is also clear that if we put

Ū := ⊕B∈ΣK,2W̄
(B)
− ⊂ ∧2

kW. (60)
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then sŪ = Ū for all s ∈ Gal(k). This implies that both W̄
(0)
− and Ū are

defined over k, i.e., there are vector k-subspaces W
(0)
−1 and U of ∧2

kW such
that

W̄
(0)
− = W

(0)
− ⊗k k̄, Ū = U ⊗k k̄.

It follows from (58) and (60) that

∧2
kW = W

(0)
− ⊕ U. (61)

The ḡ-invariance of both k̄-vector subspaces W̄
(0)
− and Ū implies that both

k-vector subspaces W
(0)
− and U are g-submodules of ∧2

kW . It is also clear

that W
(0)
− coincides with the subspace

(
∧2
kW
)g

of all g-invariants in ∧2
kW .

Combining this with (61), we obtain that the property (i) of our Lemma is
equivalent to the simplicity of the g-module U .

Let O be a Gal(k)-orbit in ΣK,2. Let us consider the corresponding ḡ-
submodule of Ū defined by

ŪO =
∑
B∈O

W̄
(B)
− . (62)

Clearly, sŪO = ŪO for all s ∈ Gal(K). This means that ŪO is defined over
k, i.e., there is a g-submodule UO of U such that

ŪO = UO ⊗k k̄.

Since all the summands in the RHS of (62) are mutually non-isomorphic
simple ḡ-modules that (in light of (59)) are permuted transitively by Gal(k),
we conclude that UO is a simple g-submodule of U . Clearly, UO = U if and
only if O = ΣK,2, i.e., if and only if the action of Gal(k) on ΣK,2 is transitive.
This implies that the g-module U is simple if and only if the action of Gal(k)
on ΣK,2 is transitive. It follows that conditions (i) and (iii) of our Lemma are
equivalent. We have already seen that conditions (ii) and (iii) are equivalent.
This ends the proof.

�

Theorem 6.7. Let E be a number field of degree g > 2. Then there exists
a simple g-dimensional complex torus T = V/Λ such that

End0(T ) = E, Hdg(T ) = ResE/QSL((H1(T,Q)/E) .

In particular, T is 2-simple if and only if E is almost doubly transitive.

Proof. Let us consider the matrix

J0 =

[
0 1
−1 0

]
∈ Mat2(Q) ⊂ Mat2(E) ⊂ Mat2(ER)

where ER := E ⊗Q R is the realification of E. By [20, Prop. 2.8 on p. 19],
there is u ∈ Mat2(ER) such that

J = exp(u)J0 exp(−u) = exp(u)J0 exp(u)−1 ∈ Mat2(ER)
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enjoys the following property. If D is a Q-subalgebra of Mat2(E) such that
DR = D⊗Q contains J then D = Mat2(E). Notice that

J2
0 = −1, J0 ∈ sl2(ER) ⊂ Mat2(ER)

It follows that

J2 = −1, J ∈ sl2(ER)Mat2(ER).

Let g be the smallest Q-Lie subalgebra of Mat2(E) such that its realifi-
cation

gR = g⊗Q R ⊂ Mat2(E)⊗Q R = Mat2(ER)

contains J . Clearly,

g ⊂ sl2(E) (63)

and the Q-subalgebra of Mat2(E) generated by g coincides with Mat2(E).
It makes the 2g-dimensional Q-vector space

E2 = E ⊕ E

a faithful simple g-module such that the centralizer of g in EndQ(E2) coin-
cides with E. This implies that g is a reductive Q-Lie algebra and its center
lies in E. In light of (63), this center is {0}, i.e., g is a semisimple Q-Lie
algebra. Applying Lemma 6.2 to

k = Q, K = E, W = E2,

we conclude that

g = sl2(E). (64)

Now we are ready to construct the desired complex torus T . The operator
J provides the structure of a complex vector space on

V := E2 ⊗Q R = E2
R = ER ⊕ ER

such that J ∈ EndR(V ) defines multiplication by i. Pick any Z-lattice of
rank 2g in E2 and put T := V/Λ. One may naturally identify Λ ⊗ Q with
E2. In light of Theorem 5.2, the Q-Lie algebra hdgT coincides with g, i.e.,
hdgT =2 (E). It follows that Hdg(T ) = ResE/QSL((H1(T,Q)/E), which
ends the proof of the forst assertion of our Theorem. Now the second one
follows from Theorem 6.3.

�

Proof of Theorem1.9. The first assertion follows readily from Theorem 6.7
combined with Theorem 4.5 applied to n = g.

In order to prove the second assertion, one should take

s = g − d− 1 ≥ 0, r = g − 2s = g − 2(g − d− 1) = 2(d+ 1)− g ≥ 0.

�
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7. Semi-linear algebra

This section contains auxiliary results that will be used for the study of
Hodge groups of 2-simple tori without nontrivial endomorphisms. In what
follows k stands for a field of characteristic 0 and K for an overfield of k
such that the automorphism group Aut(K/k) of k-linear automorphisms of
K enjoys the following property.

The subfield KAut(K/k) of Aut(K/k)-invariants coincides with k. (This
property holds if K is an algebraically closed field.)

Definition 7.1. Let V be a finite-dimensional vector space over K and
σ ∈ Aut(K/k). Then the finite-dimensional vector space σV over K is
defined as follows. Viewed as an additive group, σV coincides with V but
multiplication by elements a ∈ K is defined in σV by the formula

a, v 7→ σ−1(a)v.

Clearly,

dimK(V) = dimK(σV).

Remark 7.2. (1) If x ∈ EndK(V) is a K-linear operator in V then

x(σ−1(a)v) = σ−1(a)x(v) ∀a ∈ K, v ∈σ V.

In other words, one may view x as a K-linear operator in V that we
denote by σid(x) ∈ EndK(σV).

(2) Let m := dimK(V) > 0, and {e1, . . . , em} be a basis of V. Then one
may view {e1, . . . , em} as a basis of σV.

If A = (aij)
m
i,j=1 is the matrix of x ∈ EndK(V) with respect to

{e1, . . . , em} then obviously σ(A) = (σ(aij))
m
i,j=1 is the matrix of

σx ∈ EndK(V) with respect to {e1, . . . , em}.

Lemma 7.3. The formula

σid : EndK(V)→ EndK(σV), x 7→ {v 7→ x(v)} ∀x ∈ EndK(V), v ∈ σV = V

defines a ring isomorphism that enjoys the following properties.

(i) σid(ax) = σ(a) · σid(x) ∀a ∈ K,x ∈ EndK(V).
(ii) Let

Px,min(t), Px,char(t) ∈ K[t]

be the minimal and characteristic polynomials of x respectively.
Then the minimal and characteristic polynomials of σid(x) coin-

cide with σ(Px,min(t)) and σ(Px,char(t)) respectively.
(iii) If a ∈ K is the trace of x ∈ EndK(V) then σ(a) is the trace of

σid(x) ∈ EndK(σV).

Proof. (i) is obvious. Both assertions (ii) and (iii) follow from Remark 7.2.
�
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Let V0 be a finite-dimensional k-vector space and

V := Tk,K(V) = V0 ⊗k K

the corresponding K-vector space endowed by the following semi-linear ac-
tion of Aut(K/k).

σ(v0 ⊗ a) = v0 ⊗ σ(a) ∀a ∈ K, v0 ∈ V0.

We will identify V0 with the k-subspace

V0 ⊗ 1 = {v0 ⊗ 1 | v0 ∈ V0} ⊂ V0 ⊗k K = V.

Clearly, the k-vector subspace V0 = V0 ⊗ 1 coincides with the k-vector
subspace VAut(K/k) of Aut(K/k)-invariants.

The next asertion is probably known but I was unable to find a reference.

Lemma 7.4. Let W be a K-vector subspace of V. Then the following con-
ditions are equivalent.

(i) V is Aut(K/k)-invariant.
(ii) There exists a k-vector subspace W0 of V0 such that

W = Tk,K(W0) =W0⊗kK = {w0⊗a | w0 ∈ W0, a ∈ K} ⊂ V0⊗kK = Tk,K(V0).

If this is the case then W0 =W ∩ V0.

Proof. Let us put

m := dimk(V0) = dimK(V); n := dimK(W) ≤ m.

If either n = 0 or n = m then the desired result is obvious. So, we may and
will assume that 0 < n < m, i.e.,

1 ≤ n ≤ m− 1; m ≥ 2.

Let us fix a k-basis {e1, . . . , em} of V0, which we will view as a K-basis of
V.

Step 1. Assume that n = 1. Take a nonzero vector w ∈ W. Then at
least one of its coefficients with respect to our basis is not 0, i.e.,

w =
n∑
i=1

aiei, ai ∈ K

and ∃j ∈ {1, . . . , n} such that aj 6= 0. Replacing w by a−1
j w ∈ W, we may

and will assume that aj = 1. Then

K · w =W 3 σ(w) =

n∑
i=1

σ(ai)ei ∀σ ∈ Aut(K/k).

We have

σ(aj) = σ(1) = 1 = aj

and

σ(w) ∈ W = K · w.
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Since both w and σ(w) have the same (non-zero) jth coordinate, we conclude
that σ(w) = w for all σ, i.e., all the coefficients ai ∈ k and therefore w ∈ V0

and W =W0 ⊗k K with

W0 = k · w ∈ V0.

So, we have proven our assertion in the case of n = 1.
Step 2. Let us prove that the k-vector subspace of Aut(K)-invariants

W̃0 :=WAut(K/k) =W ∩ V0 (65)

is not {0}. Let us use induction by n and m. By Step 1, our assertion is
true for n = 1. This implies its validity for for m = 2. So, we may assume
that

1 < n < m > 2.

Let us consider the hyperplanes

H0 =

m−1∑
i=1

k · ei ⊂ V0, H = Tk,K(H0) = H0 ⊗k K =

m−1∑
i=1

K · ei ⊂ V0.

Clearly, the intersection

WH =W ∩H ⊂ H

is an Aut(K/k)-invariant subspace of both W and H. Clearly, either WH =
W or dimK(WH) = n−1 > 0. In the former caseWH is Aut(K/k)-invariant
subspace of the (m − 1)-dimensional K-vector space H = H0 ⊗k K. Now
the induction assumption for m (applied to H instead of V) implies that

W̃0 =WAut(K/k) = (WH)Aut(K/k) 6= 0.

In the latter case, the induction assumption for n applied to WH implies
that (WH)Aut(K/k) 6= 0. Since W ⊃WH , we get WAut(K/k) 6= 0, which ends
the proof.

Step 3 We have

Tk,K(W̃0) = W̃0 ⊗k K ⊂ W.

This implies that

n0 = dimk(W̃0) ≤ dimK(W ) = n.

The assertion of our Lemma actually means that the equality holds. By Step
2, n0 > 0. Suppose that n0 < n and choose in V0 a (n − n0)-dimensional

k-vector subspace U0 such that U0 ∩ W̃0 = {0} (i.e., V0 =W0 ⊕ U0). Let us
consider the (m− n0)-dimensional K-vector subspace

U = Tk,K(U0) = U0 ⊗k K ⊂ V.

Clearly,

V = Tk,K(W̃0)⊕Tk,K(Ũ0) = Tk,K(W̃0)⊕ U ,
and therefore

U ∩Tk,K(W̃0) = {0}.
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Dimension arguments imply that U1 := U ∩ W is a nonzero Aut(K/k)-

invariantK-vector subspace of V. By Step 2, the subspace Ũ1 := UAut(K/k)
1 6=

{0}; on the other hand, Ũ1 obviously lies in WAut(K/k) but meets the latter
only at {0}. The obtained contradiction proves that n0 = n1, which ends
the proof. �

Remark 7.5. Let us consider the dual vector spaces

V ∗0 = Homk(V0, k), V ∗ = HomK(V,K).

Obviously, the restriction map

resK,k : V ∗ = HomK(V,K) = HomK(V0⊗kK,K)→ Homk(V0,K), φ 7→ {v0 7→ φ(v0⊗1)}

is a Aut(K/k)-equivariant isomorphism of K-vector spaces where the actions
of Aut(K/k) are defined as follows.

σ : φ 7→ σ ◦ φσ−1 ∀φ ∈ HomK(V,K),

σ : φ0 7→ {v0 7→ σ(φ0(v0)) ∀φ0 ∈ Homk(V0,K)

for all σ ∈ Aut(K/k). As usual, we have

σ(φ)(σ(v)) = σ(φ(v)) ∀v ∈ V, φ ∈ V ∗, σ ∈ Aut(K/k).

7.6. What is discussed in this section (and in Theorem 7.13 below) is pretty
well known in the case of k = R and K = C, see [19].

Let u be a Lie k-algebra of finite dimension and

ū := u⊗k K

the corresponding finite-dimensional Lie K-algebra. Let

ρ : u→ EndK(V)

be a homomorphism of Lie k-algebras. Extending ρ by K-linearity, we get
the homomorphism of Lie K-algebras

ρ̄ : ū→ EndK(V),

which coincides with ρ on

u = u⊗ 1 ⊂ u⊗k K = ū.

Thus ρ̄ endows V with the structure of a ū-module.
If σ ∈ Aut(K/k) then we may define the composition

σρ : u
ρ→ EndK(V)

σ id→ EndK(σV),

which is a homomorphism of k-Lie algebras. Then the corresponding homo-
morphism of Lie K-algebras

σρ : ū→ EndK(σV),

provides σV with the structure of a ū-module.
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Remark 7.7. LetW be a K-vector subspace of V. Clearly,W is u-invariant
if and only if it is ū-invariant. It follows easily that W is a ū-submodule of
V if and only if it is a ū-submodule of σV. This implies that the ū-module
V is simple if and only if the ū-module σV is simple.

7.8. Let V0 be a finite dimensional k-vector space endowed with a homo-
morphism of k-Lie algebras

ρ0 : u→ Endk(V0)

that endowed V0 with the structure of a u-module. Let us consider the K-
vector space V := V0⊗kK and the obvious homomorphism of k-Lie algebras

ρ0 ⊗ 1 : u = u⊗ 1→ Endk(V0)⊗k K = EndK(V0 ⊗K) = EndK(V).

obtained from ρ0 by extension of scalars.
Let W be a u-invariant K-vector subspace of V. If σ ∈ Aut(K/k) then

obviously σ(W) is also a u-invariant K-vector subspace of V. Clearly, both
W and σ(W) carry the natural structure of modules over the Lie K-algebra

ū = u⊗k K.
We will need the following assertion.

Proposition 7.9. The ū-modules σ−1(W) and σW are isomorphic.

Proof. It suffices to check that the u-modules σ(W) and σV are isomorphic.
Let us consider the k-linear isomorphism

Π : σ(W)→ σW, σ(w) 7→ σ(w) ∀w ∈ W.

Actually, Π is K-linear, because for all a ∈ K,w ∈ W the vector

aσ(w) = σ−1(a)w) ∈ W
(recall that in σW multiplication by a is defined as multiplication by σ−1(a)).
Clearly, the actions of u and Aut(K/k) on V do commute. This implies that

Π ◦ σ = σ ◦Π ∀σ ∈ Aut(K/k).

It follows that Π is an isomorphism of u-modules, which ends the proof.
�

Till the end of this section we assume that K is algebraically closed (e.g.,
K is an algebraic closure of k). Let g be a nonzero semisimple finite-
dimensional Lie algebra over k of rank l and consider the corresponding
semisimple finite-dimensional Lie algebra

ḡ := g⊗k K
over K. If h is a Cartan subalgebra of g then

dimk(h) = l.

We write

h̄ := h⊗k K ⊂ g⊗k K = ḡ
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for the corresponding Cartan subalgebra of ḡ; we have

dimK(h̄) = l.

As usual, let us consider the dual K-vector space

h̄∗ := HomK(h̄,K)

of K-dimension l endowed by the action of Aut(K/k) defined by the formula

σ 7→ {φ : 7→ σ ◦ φ ◦ σ−1} ∀φ : h̄→ K

and σ ∈ Aut(K/k). As above, the restriction map

resK,k : h̄∗ := HomK(h̄,K)→ Homk(h,K)

is an isomorphism of K-vector spaces. (Here as above we identify h with

h⊗ 1 ⊂ h⊗k K = h̄.)

The inverse map

res−1
K,k : Homk(h,K)→ HomK(h̄,K) = HomK(h⊗k K,K),

is described explicitly by the formula

µ 7→ {h⊗ a 7→ a · µ(h)} ∀h ∈ h, a ∈ K.
Let R ⊂ h̄∗ be the root system of (ḡ, h̄) [9]. By definition, R consists of

all nonzero α ∈ h̄∗ such that

ḡα := {x ∈ ḡ | [H,x] = α(H)x ∀H ∈ h̄} 6= {0}.
Clearly,

ḡα = {x ∈ ḡ | [H,x] = α(H)x ∀H ∈ h}
and therefore

σ(ḡα) = ḡσ(α) ∀σ ∈ Aut(K/k).

It follows that the subset R of h̄∗ is Aut(K/k)-invariant. We write

W(R) ⊂ AutK(h̄∗)

for the Weyl group of the root system R. Notice that W(R) permutes
elements of R.

Let us choose a basis (a simple root system) B of R. The l-element set B is
a basis of the K-vector space h̄∗. Every root α ∈ R is a linear combination of
elements of B with integer coefficients; in addition, the nonzero coefficients
are either all positive or all negative. (Actually, these properties characterize
a basis of R.) This implies the equality of abelian subgroups

Z ·R :=
∑
α∈R

Z · α =
∑
β∈B

Z · β; (66)

Z ·R is a free abelian group of rank l that is a W(R)-invariant subgroup of
h̄∗.

The set B does not have to be Aut(K/k)-invariant. However, if σ ∈
Aut(K/k) then σ(B) is a basis of R as well. Since the Weyl group W(R) acts
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transitively on the set of all simple root systems of R, there is wσ ∈ W(R)
such that

wσ(σ(B)) = B

(compare with [22, p. 203]). In particular,

sσ := wσ ◦ σ ∈ Autk(h̄
∗)

permutes elements of B. It is also clear that sσ permutes elements of R.
Hence, Z ·R is sσ-invariant.

7.10. Throughout this subsection we use the notation and constructions of
Subsection 7.6 applied to

u = g, ū = ḡ.

Let V be a nonzero finite-dimensional vector space over K endowed by the
homomorphism of K-algebras

ḡ→ EndK(V), (67)

which may be viewed (in the notation of Subsection 7.6) as ρ̄ where

ρ : g→ EndK(V)

is the restriction of the homomorphism (67) to g = g⊗1. The homomorphism
ρ̄ that appeared in (67) provides V with the structure of a ḡ-module. Let us
assume that this module is simple.

Let us consider the set

Supp(V) ⊂ h̄∗

of weights of the ḡ-module V, i.e., µ ∈ h̄∗ lies in Supp(V) if and only if the
weight subspace

Vµ := {v ∈ V | ρ(H)(x) = µ(H)v ∀H ∈ h̄} 6= {0}.
Then

Supp(V) ⊂ Q ·R :=
∑
α∈R

Q · α =:
∑
β∈B

Q · β ⊂ h̄∗, (68)

and there exists the highest weight λ of the g-module V that enjoys the
following properties.

(i) λ ∈ Supp(V).
(ii) If µ ∈ Supp(V) then λ− µ is a linear combination of elements of B

with nonnegative integer coefficients.

Remark 7.11. It is well known that:

(i)

Supp(V) ⊂
∑
β∈B

Q · β = Q ·R.

(ii) The subset Supp(V) is W(R)-invariant.

Remark 7.12. It follows from the W(R)-invariance of Z · R (defined in
(66)) that the l-dimensional Q-vector (sub)space Q ·R is W(R)-invariant.
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Recall (Subsection 7.6) that one may attach to each σ ∈ Aut(K/k) the
homomorphism of Lie K-algebras

σρ : ḡ→ EndK(σV),

and the corresponding ḡ-module σV is simple.

Theorem 7.13. Suppose that λ is the dominant weight of a simple g-module
V of finite dimension. If σ ∈ Aut(K/k) then sσ−1(λ) is the dominant weight
of the simple g-module σV.

Proof. First, notice that

Supp(σV) = σ(Supp(V)).

Indeed, for any
H ∈ h ⊂ h̄,

the spectrum of the diagonalizable operator ρ(H) in V is the collection
{µ(H) | µ ∈ Supp(V)} (with multiplicities). In light of Lemma 7.3, the
spectrum of the diagonalizable operator σid ◦ ρ(H) in σV is the collection

{σ(µ(H)) | µ ∈ Supp(V)}
(with multiplicities). More precisely, let n = dim(V and {e1, . . . , en} be a
common (weight) eigenbasis of all elements of h̄ in V, i.e., for each index
i ∈ {1, . . . , n} there is a weight

µi ∈ Supp(V) ∈ h̄∗

such that
ρ(H)(ei) = µi(H)ei ∀H ∈ h̄.

(Clearly, the collection {µ1, . . . , µn} coincides with Supp(V).) In light of
Lemma 7.3, {e1, . . . , en} is a basis of σV, and if H ∈ h, then H = σ−1H and

σid ◦ ρ(H)(ei) = (σ−1)−1(µi(H))ei = σ(µi(σ
−1H))ei = (σ(µi))(H)(ei).

(69)
Since h̄ = h⊗k K, we conclude that

σρ(H)(ei) = (σ(µi))(H)ei ∀H ∈ h̄. (70)

In other words,

Supp(σV) = {σ ◦ µi | i = 1, . . . , n} = {σ ◦ µ | µ ∈ Supp(V)}.
Second, the W(R)-invariance of Supp(σV) implies that

Supp(σV) = wσ ◦ σ(Supp(V)) = (wσ ◦ σ)(Supp(V)) = sσ(Supp(V)).

It follows that Supp(σV) contains sσ(λ), and all the other weights in Supp(σV)
are of the form sσ(µ) where λ − µ is is a linear combination of elements of
B with nonnegative integer coefficients. Since sσ permutes elements of B,
the difference sσ(λ) − sσ(µ) is also a linear combination of elements of B
with nonnegative integer coefficients. It follows that sσ(λ) is the dominant
weight of the simple g-module σV.

�
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8. 2-Simple complex tori without nontrivial endomorphisms

Theorem 8.1. Suppose that T is a 2-simple complex torus of dimension
g ≥ 3 with End0(T ) = Q. Assume also that g 6= 10 and 2g is not a power
(e.g., g is odd) . Then Hdg(T ) enjoys one of the following properties.

(i) Hdg(T ) = SL(ΛQ);
(ii) There exists a nondegenerate symmetric Q-bilinear form

ΛQ × ΛQ → Q

such that Hdg(T ) coincides with the corresponding special orthoginal
group SO(ΛQ).

(iii) There exists a nondegenerate alternating Q-bilinear form

ΛQ × ΛQ → Q

such that Hdg(T ) coincides with the corresponding symplectic group
Sp(ΛQ).

Proof. It follows from Corollary 5.12 that hdgT,C is a complex simple classi-
cal Lie algebra, whose natural faithful representation in ΛC has a minuscule
weight as the highest weight, thanks to Theorem 5.10. Since 2g = dimC(ΛC)
is not a power of 2, one should exclude the cases when either hdgT,C is of
type Bl, or hdgT,C is of type Dl and ΓC is one of its two semi-spinorial
representations. Let us list the remaining cases.

(i) hdgT,C is of type Cg or Dg, and there is a nondegenerate alternating
or symmetric bilinear form on ΛC such that hdgT,C coincides with the
corresponding symplectic Lie algebra sp(ΛC) or the corresponding
orthogonal Lie algebra so(ΛC).

(ii) hdgT,C is of type Al, i.e., hdgT,C may be identified with the Lie
algebra sl(W ) of a (l+1)-dimensional complex vector spaceW in such
a way that the sl(W )-module ΛC is isomorphic to the jth exterior

power ∧jC(W ) of W for some integer j with 1 ≤ j ≤ l. We may
assume that 1 < j < l.

Let us handle the case (i). In this situation the hdgT,C-module ΛC is
self-dual, which implies that there is a non-zero homomorphism between
the hdgT,C-module ΛC and its dual. This, in turn, implies that there is
a non-zero homomorphism between the hdgT,Q-module ΛQ and its dual.
Now the simplicity of the hdgT -module ΛQ implies that ΛQ and its dual are
isomorphic, i.e., there is a nondegenerate hdgT -invariant bilinear form

ΛQ × ΛQ → Q.

The absolutely simplicity of the hdgT,Q-module ΛQ implies that this form is
unique (up to multiplication by a non-zero rational number) and therefore
is alternating if hdgT is of type Cg or symmetric if hdgT is of type Dg. Now
the dimension arguments imply that hdgT = sp(ΛC) in the former case and
hdgT = so(ΛC) in the latter case.
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Let us handle the case (ii). We know that T = V/Λ where the hdgT,C =

sl(W )-module VC is isomorphic to ∧jC(W ).
If l = 1 then the inequality 1 < j < l = 1 implies that this case does not

occur.
If l = 2 then the inequality 1 < j < l = 2 implies that j = 1 and VC is

isomorphic to W , which is a 3-dimensional complel vector space. Since 3 is
an odd integer and the C-dimension of VC is even, this case also does not
occur.

If l = 3 then the inequality 1 < j < l = 3 implies that j = 2 and VC
is isomorphic to ∧2

CW where W is a 4-dimensional complex vector space
and ∧2

CW is an irreducible 6-dimensional orthogonal representation of the
Lie algebra sl(W ). This implies that the representation of hdgT,C in the
6-dimensional complex vector space VC is orthogonal irreducible. It follows
that

dimQ(ΛQ) = dimC(W ) = 6

and hdgT is a Q-Lie subalgebra so(ΛQ) of the corresponding special or-
thogonal group SO(ΛQ). It follows that the representation of hdgT in the
6-dimensional Q-vector space ΛQ is orthogonal irreducible and therefore

dimQ(hdgT ) ≤ dimQ(so(ΛQ) = 15.

However,

dimQ(hdgT ) = dimC(hdgT,C) = dimC(sl(W )) = 15.

This implies that hdgT coincides with so(ΛQ), i.e., HdgT coincides with
SO(ΛQ).

So, we may and will assume that l > 3. Then there is an element u ∈
sl(W ) that acts on VC as J . Since J is a nonzero semisimple linear operator
in VC, the element u is also a semisimple (i.e., diagonalizable) nonzero linear
operator in W . Let {e1, . . . , el+1} be an eigenbasis of W and {z1, . . . , zl+1} ⊂
C be the corresponding eigenvalues of u, i.e,

u(ei) = ziei i = 1, . . . , l + 1

and the trace
l+1∑
i=1

zi = 0.

This implies that u has at least two distinct eigenvalues.

Then the collections of eigenvalues of J in VC ∼= ∧jC(W ) listed with mul-
tiplicities coincides with

{tA :=
∑
i∈A

zi}A

where A runs through all j-element subsets A of {1, . . . , l+1}. On the other
hand, we know that the spectrum of J in VC consists of two eigenvalues i
and −i, whose multiplicities coincide. It follows almost immediately that
u has precisely two (distinct) eigenvalues, say, a and b, and none of them
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is 0. Indeed, suppose that that the spectrum of u contains (at least) three
eigenvalues, say, a,b, c.

Reordering the eigenbasis if necessary, we may assume that

z1 = a, z2 = b, z3 = c.

Let B be any (j − 2)-element subset of {4, . . . , l + 1) Let us consider three
distinct j-element subsets

A1 = {2, 3} ∪B, A2 = {1, 3} ∪B, A3 = {1, 2} ∪B
of {1, . . . , l + 1}. If we put

C := {1, 2, 3} ∪B ⊂ {1, . . . , l + 1}, c :=
∑
i∈C

zi ∈ C

then we get three distinct eigenvalues

tA1 = c− a, tA2 = c− b, tA3 = c− c

of J , which do not exist. This proves the spectrum of u consists of precisely
two eigenvalues, say, a,b ∈ C. Since the trace of nonzero u is 0, both a and
b are not zero.

Let p be the multiplicity of the eigenvalue a and q the multiplicity of the
eigenvalue b. Both p and q are positive integers, whose sum

p+ q = l + 1 > 3 + 1 = 4.

Since u is traceless,
pa + qb = 0.

I claim that either p = 1 or q = 1. Indeed, suppose that

p ≥ 2, q ≥ 2.

Since p + q > 4, we may assume that p ≥ 3. Notice also that all three
complex numbers

2a, 2b, a + b

are distinct. Reordering the eigenbasis if necessary, we may assume that

z1 = a, z2 = a, z3 = a, zl = b, zl+1 = b

(recall that l + 1 > 4).
Let B be a (j−2)-element subset of the (l−3)-element subset of {3, 4, . . . , l−

1} and b :=
∑

i∈B zi. Let us consider three distinct j-element subsets

A1 = {1, 2} ∪B, A2 = {l, l + 1} ∪B, A3 = {1, l} ∪B
of {1, . . . , l + 1}. Then we get three distinct eigenvalues

tA1 = b+ 2a, tA2 = b+ 2b, tA3 = b+ (a + b)

of J , which could not be the case. The obtained contradiction proves that
either p = 1 or q = 1.

Without loss of generality we may assume that p = 1. Reordering the
eigenbasis if necessary, we may assume that z1 = a and all other zi = b
(for all i > 1). It follows easily that the spectrum of J consists of two
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eigenvalues, namely, jb of multiplicity
(
l
j

)
and a + (j − 1)b of multiplicity(

l
j−1

)
. It follows that (

l

j

)
=

(
l

j − 1

)
,

i.e.,
l − j + 1

j
= 1, l − j + 1 = j, l = 2j − 1.

It remains to put m = j and we get that

l = 2m− 1, j = m, 2g =

(
2m

m

)
.

Since 2m− 1 = l > 3, we get

m ≥ 3. (71)

Now it is natural to look at the structure of the sl(W )-module ∧2
C (∧mC (W )).

We are going to apply results of Section 7 with

k = Q, K = C, Aut(K/k) = Aut(C),

g = hdgT , ḡ = hdgT,C, V = ∧2
Q(∧mQ ΛQ), V̄ = ∧2

C(∧mC ΛC).

Let us fix a Cartan subalgebra h of the simple Lie Q-algebra hdgT , which
is a l-dimensional Q-vector space. Then

h̄ = h⊗Q ⊗C

is a Cartan subalgebra of the complex simple Lie algebra hdgT,C that is a
l-dimensional complex vector space endowed with the natural semi-linear
Aut(C)-action; its subalgebra of invariants coincides with h⊗ 1 = h.

As in Section 7, let us consider the dual complex vector space

h̄∗ = HomC(h̄,C).

Let

R ⊂ h
∗

be the root system of (hdgT,C, h).
Let us choose a simple root system B of simple roots (basis) of R and let

P++(R) ⊂ h
∗

be the corresponding semigroup of dominant weights [8].
If µ ∈ P++(R) then we write V(µ) for the simple hdgT,C-module with

highest weight µ [9]. In particular, V(0) stands for the one-dimensional

Q̄-vector space Q̄ with trivial (zero) action of hdgT,C. Then the
(

2m
m

)
-

dimensional Q̄-vector space

Λ̄ = ΛQ ⊗Q Q̄

becomes a simple hdgT,C-module that is isomorphic to V(ω̄m). Hereafter
we use the notation of Bourbaki ([8, Tables], [9, Tables]). In particular,

B = {α1, . . . , αl} = {α1, . . . , α2m−1}
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(see Root systems of type Al in [8, Tables]), and ω̄i is the dominant weight of

a fundamental representation of dimension
(

2m
i

)
(when 1 ≤ i ≤ l = 2m− 1),

see [9, Table 2]. In addition, we put

ω̄0 := 0 =: ω̄2m.

Notice that the only nontrivial automorphism of (R,B) is the involution

αi → α2m−i ∀i = 1, . . . , 2m− 1 = l.

Hence, each dominant weight ω̄m+i + ω̄m−i is Aut(R,B)-invariant for all
i = 0, . . . , 2m.

It follows from results of [16, p. 140, Example 9a, last displayed formula]
(see also [15, Exercises 6.16 on p. 81 and 15.32 on p. 226]) that the ḡ =
hdgT,C-module

V̄ = ∧2
C(V(ω̄m))

is isomorphic to a direct sum

⊕i odd, 1≤i≤mV(ω̄m+i + ω̄m−i). (72)

This implies that the ḡ-module V̄ splits into a direct sum of mutually non-
isomorphic simple ḡ-modules; one of them is trivial if and only if m is odd
(one should take i = m in order to get the summand V(0).)

Let W be a simple ḡ-submodule of V̄. Let λW be the highest weight of
W. We know that λW is Aut(R,B)-invariant. It follows from Theorem 7.13
combined with Proposition 7.9 that the simple ḡ-submodules W and σ(W)
have the same highest weight and therefore are isomorphic. This implies
that

σW =W ∀σ ∈ Aut(C).

By Lemma 7.4, W is defined over Q, i.e., there is a Q-vector subspace W of
V such that

W = W ⊗Q C.
Clearly, such W is a simple hdgT -submodule of V. It follows from (72) that
the hdgT -module V splits into a direct sum

⊕i odd, 1≤i≤mWi. (73)

of hdgT -modules such that

V(ω̄m+i + ω̄m−i) = TQ,C(Wi) = Wi ⊗Q C.

This implies that all Wi are mutually non-isomorphic simple hdgT -modules.
In adddition, one of them is trivial if and only if m is odd. (Namely, if m is
odd then Wm is a trivial hdgT -module of Q-dimension 1.)

Thus, if m is even, then the hdgT -module V splits into a direct sum of
(m/2) simple modules, none of which is trivial. If m is odd, then the hdgT -
module V splits into a direct sum of (m+1)/2) simple modules, and precisely
one of them is trivial. It follows that hdgT -module V is simple if and only
if m = 2. Since m ≥ 3 (71), we conclude that V is never simple. On the
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other hand, it’s clear that V is a direct sum of a simple hdgT -module and a
trivial one if and only if m = 3.

Recall that we are actually interested in the dual hdgT -module

H2(T,Q) = HomQ(V,Q).

By duality, the hdgT -module is never simple; it is a direct sum of a simple
hdgT -module and a trivial one if and only if m = 3. Now the 2-simplicity
of T implies that m = 3 and therefore

2g =

(
2 · 3

3

)
= 20,

i.e., g = 10. �
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