ENDOMORPHISM ALGEBRAS AND AUTOMORPHISM
GROUPS OF CERTAIN COMPLEX TORI

YURI G. ZARHIN

ABSTRACT. We study the endomorphism algebra and automorphism
groups of complex tori, whose second rational cohomology group enjoys
a certain Hodge property introduced by F. Campana.

1. INTRODUCTION

As usual, we write Q, R, C for the fields of rational, real, complex numbers
and Z for the ring of integers. We write Q for the subfield of all algebraic
nunbers in C, which is an algebraic closure of Q. If p is a prime then
Fp, Zy, Qp stand for the p-element field, the ring of p-adic integers, the field of
p-adic numbers respectively. If E' is a number field of degree n = [E : Q] then
rg and sg are nonnegative integers such that the R-algebra Fr = F ®g R
is isomorphic to a product R"” x C*. (In other words, rg is the number of
“real” field embeddings F — R and 2sg is the number of “imaginary” field
embeddings E < C, whose images do not lie in R.) In particular,

[EZQ]:TE—I—QSE. (1)

Let X be a connected compact complex Kihler manifold, H?(X, Q) its sec-
ond rational cohomology group equipped with the canonical rational Hodge
structure, i.e., there is the Hodge decomposition

H?(X,Q) ®¢ C = H*(X, C) = B*(X) & H'(X) & H*"(X)

where H2?(X) = Q2(X) is the space of holomorphic 2-forms on X, H*?(X)
is the “complex-conjugate” of H2?(X) and H"!(X) coincides with its own
“complex-conjugate” (see [13, Sections 2.1-2.2], [23, Ch. VI-VII])). The
following property of X was introduced and studied by F. Campana [10,
Definition 3.3]. (Recently, it was used in the study of coisotropic and la-
grangian submanifolds of symplectic manifolds [1].)

Definition 1.1. A manifold X is irreducible in weight 2 (irréductible en
poids 2) if it enjoys the following property.

2010 Mathematics Subject Classification. 32MO05, 32J18, 32J27, 14J50.

Key words and phrases. complex tori, Hodge structures, endomorphism algebras.

The author was partially supported by Simons Foundation Collaboration grant #
585711. Most of this work was done in January—May 2022 during his stay at the Max-
Planck Institut fiir Mathematik (Bonn, Germany), whose hospitality and support are
gratefully acknowledged.

1



2 YURI G. ZARHIN

Let H be a rational Hodge substructure of H2(X, Q) such that
He NH2(X) £ {0}
where H¢ := H ®q C.
Then Hc contains the whole H20(X).

Our aim is to study complex tori T' that enjoy this property. Namely,
we discuss their endomorphism algebras, automorphism groups and Hodge
groups.

Let T'= V/A be a complex torus of positive dimension g where V is a
g-dimensional complex vector space, and A is a discrete lattice of rank 2g
in V. One may naturally identify A with the first integral homology group
Hi(T,Z) of T and

Ap=A®Q={veV|3IneZ\{0} such that nv € A}

with the first rational homology group H; (7, Q) of T'. There are also natural
isomorphisms of real vector spaces

A®R:AQ®@R—)‘/, ARTr—= 1T

that may be viewed as isomorphisms related to the first real cohomology
group Hy(T,R) of T

H(T,R)=H(T,Z) ® R = Hy(T,Q) ® R — V.
In particular, there is a canonical isomorphism of real vector spaces
Hi(T,R) =V, (2)
and a canonical isomorphism of complex vector spaces
Hy(T,C) = Hi(T,Q) @ C=H (T,R) g C=V g C = V¢  (3)

where H; (T, C) is the first complex homology group of T
There are natural isomorphisms of R-algebras

Endz(A) @ R =2 Endr(V), v ® 7+ ru,
Endg(Ag) ® R = Endg(V), u®r +— ru,

which give rise to the natural ring embeddings
Endz(A) C EndQ(A@) C EndR(V) C EndR(V) Qr C = Endc(v(c). (4)

Here the structure of an 2g-dimensional complex vector space on V¢ is de-
fined by

zv@s)=v®zs YwseVerC=V, zcC.
If u € Endg (V') then we write uc for the corresponding C-linear operator in
Ve, i.e.,

uc(v®z)=uv)®z YueV,zeCv®ze V. (5)

Remark 1.2. Sometimes, we will identify Endg (V') with its image Endr(V)®
1 C End¢(Ve) and write u instead of uc, slightly abusing notation.
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As usual, one may naturally extend the complex conjugation z — Z on C
to the C-antilinear involution
Ve—=> Vo, w— 0, 12— 1Q02=0v® Z,

which is usually called the complex conjugation on V. Clearly,

uc(w) = u(w) Yu € Endr(V),w € V¢. (6)
This implies easily that the set of fixed points of the involution is
V=V®I1c.

Let End(7") be the endomorphism ring of the complex commutative Lie
group T and End®(T) = End(T) ® Q the corresponding endomorphism al-
gebra, which is a finite-dimensional algebra overQ, see [20, 6, 3]. There are
well known canonical isomorphisms

End(T) = Endz(A) NEndc(V), End®(T) = Endg(Ag) N Endc (V).

Let g > 2 and

H*(T,Q) = Aj(Ag, Q)
be the second rational cohomology group of T', which carries a natural ra-
tional Hodge structure of weight two:
H*(T,Q) = HY(T, Q) ®q C = H**(T) & H"/(T) & H**(T)
where H?9(T) = Q2%(T) is the g(g — 1)/2-dimensional space of holomorphic
2-forms on T'.

Definition 1.3. Let g = dim(7) > 2. We say that T is 2-simple if it is
irreducible in weight 2, i.e., enjoys the following property.
Let H be a rational Hodge substructure of H?(T, Q) such that

He MH2(T) # {0}

where H¢ := H ®q C.
Then Hc contains the whole H20(T).

Remark 1.4. We call such complex tori 2-simple, because they are simple
in the usual meaning of this word if g > 2, see Theorem 1.7(i) below.

Example 1.5. (See [10, Example 3.4(2)].) If g = 2 then dim¢(H20(T)) = 1.
This implies that (in the notation of Definition 1.3) if Hc N H2(T) # {0}
then Hc contains the whole H*?(T'). Hence, every 2-dimensional complex
torus is 2-simple.

In what follows we write Aut(7) = End(7T)* for the automorphism group
of the complex Lie group T'. We will need the following well known definition.

Definition 1.6. A number field is called primitive if its only proper subfield
is Q.

Our main result is the following assertion.
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Theorem 1.7. Let T be a complex torus of dimension g > 3. Suppose that
T is 2-simple.
Then T enjoys the following properties.
(i) T is simple.
(i) If E is any subfield of End®(T) then it is a number field, whose degree
over Q is either 1 or g or 2g.
(ii) End®(T) is a number field E such that its degree [E : Q] is either 1
or g or 2g.
(iv) If [E: Q] = 1 then

End®(T) = Q,End(T) = Z, Aut(T) = {£1}.

(v) If E = End%(T) and [E : Q] = 2g then E is a purely imaginary
number field and Aut(T) = {£1} x Z9~L. In addition, if E is not
primitive then it contains precisely one proper subfield except Q and
this subfield has degree g.

(vi) If E = End%(T) and [E : Q| = g then E is a primitive number
field and Aut(T) = Z¢ x {£1} where the positive integer d equals
rg + sgp — 1. In particular,

1 _yg

s<y-l<d<g-1
In addition, if T is a complex abelian variety then E is a primitive
totally real number field and d = g — 1.

Remark 1.8. (i) It is well known (and can be easily checked) that T is
simple if and only if the rational Hodge structure on Ag = Hi(T',Q)
is irreducible.!

(ii) We may view H?(T,Q) as the Q-vector subspace H?(T,Q) ® 1 of
H?(T,Q) ®g C = H?(T,C). Let us consider the Q-vector (sub)space

HYY(T,Q) := H*(T,Q) nH"(T)

of 2-dimensional Hodge cycles on T'. Notice that the irreducibility of
the rational Hodge structure on Ag implies the complete reducibility

2 of the rational Hodge structure on H?(T, Q) = Homg (/\?QAQ, Q).

(It follows from the reductiveness of the Mumford-Tate group of a
simple torus [11, Sect. 2.2].) In light of (i) and Theorem 1.7(i), a
complex torus T of dimension > 2 is 2-simple if and only if it is
simple and H?(T, Q) splits into a direct sum of H!(T,Q) and an
irreducible rational Hodge substructure.

1A rational Hodge structure H is called irreducible or simple if its only rational Hodge
substructures are H itself and {0} [11, Sect. 2.2].

2A rational Hodge structure is called completely reducible it it splits into a direct sum
of simple rational Hodge structures.
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Theorem 1.9. Let g > 3 be an integer. Let r,s be nonnegative integers
such that
r+2s=g.
Then there exists a 2-simple torus T of degree g that enjoys the following

properties.
The endomorphism algebra End®(T) is a number field E such that

[E:Q =g, re=r, sgp=s.
In particular, if d is an integer such that
g—lgdgg—l

then there exists a g-dimensional 2-simple complex torus T such that
Aut(T) = 2% x {£1}.

The paper is organized as follows. We prove Theorem 1.7 in Section
3, using explicit constructions related to the Hodge structure on Ag that
will be discussed in Section 2. Section 4 deals with (mostly well known)
results about number fields that will be used in the computations of Hodge
groups of complex tori. In Section 5 we discuss general properties of Hodge
groups of 2-simple tori. In Section 6 we concentrate on the case when the
endomorphism algebra is a number field of degree g.

This paper may be viewed as a follow up of [20] and [3].

I am grateful to Frédéric Campana and Ekaterina Amerik for interesting
stimulating questions. My special thanks go to Grigori Olshanski for a very
informative letter about plethysm.

2. HODGE STRUCTURES

2.1. It is well known that Ag = H; (7, Q) carries the natural structure of a
rational Hodge structure of weight —1. Let us recall the construction. Let
J : V — V be the multiplication by i = v/—1, which is viewed as an element
of Endg (V) such that
J?=—1.

Hence, J(% = —1in End¢ (V) and we define two mutually complex-conjugate
C-vector subspaces (of the same dimension) H_; o(T") and Ho _1(T) of V¢
as the eigenspaces V(i) and Vi (—1i) of Jo attached to eigenvalues i and —i
respectively. Clearly,

Ve =Ve(@i) @ Ve(—i) = Hoo(T) @ Ho 1 (T),

which defines the rational Hodge structure on Ag, in light of Ve = Ag ®g C.
It also follows that both H_; ¢(7") and Hp —i(7T") have the same dimension
29/2=g.

Recall that V is a complex vector space. I claim that the map

UV:V V(i) =H10(T), v— Jo®l+ov®i (7)
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is an isomorphism of complex vector spaces. Indeed, first, ¥ defines a ho-
momorphism of real vector spaces V — V. Second, if v € V' then

Jo(Jvel+vei) =Jwel+Jvei=—0el+Jvei=i(Jvel+vei),

ie, Ju®l4+v®ie V(i) = H_ o(T) and therefore the map (7) is defined
correctly. Third, taking into account that J is an automorphism of V' and
Ve =V ®1eV ®i, we conclude that ¥ is an injective homomorphism of
real vector spaces and a dimension argument implies that it is actually an
isomorphism. It remains to check that ¥ is C-linear, i.e.,

U(Jv) =i¥(v).
Let us do it. We have
U(Jv)=J(Jn)@1l+Jvei=-vel+Joei=i(Jvel+v®i) =i¥(v).

Hence, V¥ is a C-linear isomorphism and we are done.
Now suppose that v € Endg (V) commutes with J, i.e., u € End¢(V).
Then

Vou=ucoV. (8)
In particular, H_; o(7") is uc-invariant. Indeed, if v € V' then
Vou(v) = Ju(v)@14u(v)®i = uJ (v)@1+uc(vRi) = uc(J (v)®1)+uc(vei) = uco¥(v),

which proves our claim.
Similarly, there is an anti-linear isomorphism of complex vector spaces

V = Ve(=i) =Ho1(T), v Jo®1l-v®i

It is also well known that there is a canonical isomorphism of rational
Hodge structures of weight 2

H*(T, Q) = Homg(AgH1(T, Q), Q)
where the Hodge components H?4(T") (p,q > 0,p + q = 2) are as follows.

H>(T") = Home (AZH_, o(T),C), H"*(T) = Homg(A2H,_1(T), C),
(9)
H“Y(T) = Hom¢(H_1,0(T),C) A Home(Hg _1(T), C) =
Hom¢ (H,LQ(T), C) ®c Hom¢ (H(],,l(T), (C)

Clearly,

dime (H2(T)) = @.
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3. ENDOMORPHISM FIELDS AND AUTOMORPHISM GROUPS

Proof of Theorem 1.7. Let T be a 2-simple complex torus and assume that
g =dim(T) > 3.

(i) Suppose that T is not simple. This means that there is a proper
complex subtorus S = W/I' where W is a complex vector subspace of V'
with

0 <d=dimc(W) <dimg(V) =g
such that
r=wnA
is a discrete lattice of rank 2d in W. Then the quotient 7'/S is a complex
torus of positive dimension g — d.

Let H C H?(T,Q) be the image of the canonical injective homomor-
phism of rational Hodge structures H2(T'/S, Q) — H?(T, Q) induced by the
quotient map 7" — T'/S of complex tori. Clearly, H is a rational Hodge
substructure of H%(T, Q) and its (2,0)-component

H*? C He

has C-dimension

(g—d)(g—d—1) <g(9*1)

dime(H*?) = dimg (H*(T/9)) = 5 2

= dimc(H*(T)).
In light of the 2-simplicity of T,
dime (H?Y) = 0,

which implies that

g—d=1.
On the other hand, let H be the kernel of the canonical surjective homo-
morphism of rational Hodge structures H?(T,Q) — H2(S,Q) induced by
the inclusion map S C T of complex tori. Clearly, H is a rational Hodge
substructure of H2(T, Q). Notice that the induced homomorphism of (2, 0)-
components H*?(T) — H20(9) is also surjective, because every holomorphic
2-form on S obviously extends to a holomorphic 2-form on 7. This implies
that the (2,0)-component

H*° ¢ He
of H has C-dimension

dime (29) = dime(H20(T) — dime(H20(s)) = 241 _ A0 =1)

0.
2 2

In light of the 2-simplicity of T',

dime () = dime(H2Y(T)) = 9(92_1),

which implies that d(dgl) =0, i.e., d = 1. Taking into account that g—d = 1,

we get ¢ = 1+ 1 = 2, which is not true. The obtained contradiction proves
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that T is simple and (i) is proven. In particular, End(T) is a division
algebra over Q.

In order to handle (ii), let us assume that F is a subfield of End®(T"). The
simplicity of T" implies that 1 € FE is the identity automorphism of 7. Then
Ag becomes a faithful F-module. This implies that E is a number field and
Aq is an E-vector space of finite positive dimension

29
[E:Q
This implies that Vo = Ag®gC is a free E®gpC-module of rank dg. Clearly,

both H_1 ¢(T") and Hy_1(T") are E ®g C-submodules of its direct sum V.
Let

dp =

trg: EF—Q
be the trace map attached to the field extension E/Q of finite degree. Let

HOHlE( /\]25 AQ, E)

be the %—dimensional FE-vector space of alternating E-bilinear forms

on Ag; it carries a natural structure of a rational Hodge structure of Q-

dimension [F : Q) - %. There is the natural embedding of rational

Hodge structures

Hompg (/\QEAQ, E) — HomQ (/\?QAQ,@) = HQ(T, Q), Op — ¢ = trE/Q o g,
(10)

i.e.,

P(A1, X2) = trg/g(de(A1, A2)) VAL, A2 € Ag. (11)

The image of Hompg (/\%EAQ, E) in Homg (/\?QAQ, Q) = H?(T, Q) coincides

with the Q-vector subspace

Hg = {¢ € Homg (A§Aq, Q) | d(ur1, A2) = ¢(A1,ul2) Vu € E, A, A2 € Ag}
(12)

Indeed, it is obvious that the image lies in Hg. In order to check that the

image coincide with the whole subspace Hg, let us construct the inverse

map

Hrp — Hompg (/\QEAQ,E) , O Op
to (10) as follows. If A1, A2 € Ag then there is a Q-linear map
D E Q, ur d(udi, A2) = d(A1,ud2) = —p(ur2, A1) = —d(A2, ul1).

(13)

The properties of the trace map imply that there exists precisely one 5 € F

such that

D(u) = trg/g(up) Vu € E.
Let us put
Pp(A1, A2) = .
It follows from (13) that ¢z € Homp (A%Ag, E). In addition,

tre/0(0E(A1, A2)) = tre/Q(B) = trg/g(l - B) = ®(1) = ¢(A1, A2),
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which proves that ¢ — ¢p is indeed the inverse map, in light of (11).

Clearly, Hg is a rational Hodge substructure of H?(T, Q).

By 2-simplicity of 7', the C-dimension of the (2,0)-component HJ(EQ’O) of
Hp is either 0 or g(g — 1)/2. Let us express this dimension explicitly in
terms of g and [E : Q).

In order to do that, let us consider the set g of all field embeddings
o : E — C, which consists of [E : Q]-elements. We have

Ec:=E®qC= @ Cs where C, = F®p, C=C, (14)

O'GEE

which gives us a splitting of Ec-modules

Ve = @oespVo = € (Ho10(T)g ® Ho—1(T)o) (15)

oEXE

where for all o € X we define
H—I,O(T)a = CUH_L()(T) = {1‘ S H_170(T) ‘ ucxr = a(u)x Yu € E} C H_170(T);
Ng :— dimC(H—l,O(T)a);

Ho—1(T)y := CoHo1(T) = {z € Hy—1(T) | ucx = o(u)x Vu € E} C Ho,_1(T);
Mme = dimC(HO,—l(T)U);

Vo=Co=CoVe={z Ve |ucx=0(u)zVu e E} =H_1(T),®Ho,—1(T),

Since H_; o(T)®Ho,_1(T) = V¢ is a free Eg-module of rank dg, its direct
summand V, is a vector space of dimension dg over C, = C and therefore

Ng + My = dg (16)

for all 0. Since H_1(T") and Hp_1(7") are mutually complex-conjugate
subspaces of V¢, it follows from (6) that

me =ns where 5 : E<— C, ur o(u)
is the complex-conjugate of o. Therefore, in light of (16),
ng +ns = dg Vo. (17)
We have
> ne =Y dime(Ho1(T),) = dime(H_1 o(T)) = g. (18)

O’EEE O’EEE

Let us consider the complexification of Hg
Hgc:= Hg ®pC C Homg (/\21\(@,(@) ®q C =
Hom¢ (/\%(AQ 0Ve) (C), C) = Hom¢ (/\2V(C, C) .
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In light of (12),
HE,(C = {¢ € Homc (/\%V(C,(C) | ¢(U(C£L’,]J) = Cf’(%u({:y) Vue E,;x,y € V(C}
(19)
= {¢ € Homg (A&Ve,C) | ¢(ucw,y) = ¢(x, ucy) Yu € Eg;z,y € Ve}.
In particular, if o, 7 € X are distinct field embeddings then for all ¢ € Hg ¢

¢(VO'7 VT) = ¢(VT7 VO’) = {0}
This implies that
Hpc = ®pex,Home (AEV;, C) (20)

= P Home( A2 (Ho10(T)s @ Ho 1(T), ) ,C).

O'EEE
In light of (9), the (2,0)-Hodge component of Hg ¢ is

HE" = ®ges, Home (AAH_10(T)5, C) and dime(Hy”) = ””(”;1)
oEXE
(21)
This implies that dim@(H(EQ’O)) = 0 if and only if all n, are in {0,1}. If
this is the case then, in light of (17), dg € {1,2}, i.e., [E: Q] = 2g or g.
On the other hand, it follows from (18) combined with the second formula
in (21) that dimC(Hg’O)) = g(g — 1)/2 if and only if there is precisely one
o with n, = g (and all the other multiplicities n, are 0). This implies that
either dg = 29 and EF = Q, or dg = g and E an imaginary quadratic field
with the pair of the field embeddings

0,06 : FE—:C
such that
Ne =g, ng = 0.

It is therefore enough to rule out the case dg = g. By way of contradiction,
assume that dg = g. Then FE is an imaginary quadratic field; in addition,

u € E C Endg(Ag) C Endgr(V)

then uc acts on H_j o(7") as multiplication by o(u) € C. In light of (6),
uc acts on the complex-conjugate subspace Ho —1(T") as multiplication by

o(u) = g(u) € C. Since F is an imaginary quadratic field, there are a
positive integer D and o € E such that a? = —D and E = Q(«). It follows
that o(a) = #iv/D. Replacing if necessary a by —«, we may and will
assume that

o(a) =ivVD
and therefore ac acts on H_; o(7) as multiplication by iv/'D. Hence, ac
acts on Ho _1(7") as multiplication by iv'D = —ivD. Since

Ve =H_1,0(T) @ Ho—1(T),
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we get ac = \/BJC and therefore
a=vVDJ.

This implies that the centralizer End®(T’) of J in Endg(Ag) coincides with
the centralizer of o in Endg(Ag), which, in turn, coincides with the central-
izer Endg(Ag) of £ in Endg(Ag), i.e.,

End’(T) = Endg(Ag) = Maty, (F).

This is a matrix algebra, which is not a division algebra, because dp = g > 1.
This contradicts the simplicity of T". The obtained contradiction rules out
the case dg = ¢g. This ends the proof of (ii).

In order to prove (iii), recall that End’(7T) is a division algebra over Q,
thanks to the simplicity of 7' [20]. Hence Ag is a free End’(T)-module of
finite positive rank and therefore

dimg(End"(T)) | 29, (22)

because 2g = dimg(Ag). We will apply several times the already proven
assertion (ii) to various subfields of End®(T).

Suppose that End®(T) is not a field and let Z be its center. Then Z is a
number field and there is an integer d > 1 such that dimz(End%(T)) = d2
and therefore

dimg(End*(T)) = d* - [2 : Q]

divides 2g, thanks to (22). Since Z is a subfield of End’(T), the degree
[Z : Q] is either 1 or g or 2¢g. If [Z : Q] > 1 then 2g is divisible by

d*-[2:Q] > 2°g = 4y,

which is nonsense. Hence, [Z: Q] = 1, i.e., Z = Q and End®(T) is a central
division Q-algebra of dimension d? with d?|2g. Then every maximal subfield
E of the central division Q-algebra End®(T") has degree d over Q [21, Sect.
13.1, Cor. b]. By the already proven assertion (ii), d € {1,g,2¢}. Since
d > 1, we obtain that either d = g and ¢? | 2¢g or d = 2g and (29)? | 2g.
This implies that d = g and g = 1 or 2. Since g > 3, we get a contradiction,
which implies that End®(T) is a field.

It follows from the already proven assertion (ii) that the degree dimg(End’(T))
of the number field End®(T) is either 1 or g or 2g.

Assertion (iv) is obvious and was included just for the sake of complete-
ness.

In order to handle the structure of Aut(T'), let us check first that the only
roots of unity in End®(7) are 1 and —1. If this is not the case then the
field End®(T) contains either v/—1 or a primitive pth root of unity ¢ where
pis a certain odd prime. In the former case EndO(T) contains the quadratic
field Q(v/—1), which contradicts (ii). In the latter case End®(T") contains
either the quadratic field Q(y/—p) or the quadratic field Q(,/p): each of
these outcomes contradicts (ii) as well.
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Now recall that End(7) is an order in the number field E = End®(T) and
Aut(T) = End(7T)* is its group of units. By the Theorem of Dirichlet about
units [5, Ch. II, Sect. 4, Th. 5|, the group of units is

Aut(T) = 24 x {+1} with d=rg +sp —1 (23)
where g is the number of real field embeddings E <— R and
E:Q]—
re+2sp =[E:Q], ie., sE:[Q;]TE. (24)

Let us prove (v). Assume that the number field E = End®(T) has degree
2g. A dimension argument implies that Ag is a 1-dimensional E-vector
space and V = Ag ®gR is a free Er = F ®gR-module of rank 1. Hence Er
coincides with its own centralizer Endg, (V') in Endg (V). Since J commutes
with End’(T) = E, it also commutes with Er and therefore

J € Endg, (V) = Exg.

Recall that the R-algebra Epg is isomorphic to a product of copies of R and
C. Since J? = —1, only copies of C appear in Eg, i.e., E is purely imaginary,
which means that rg = 0 and therefore 2g = [E : Q] = 2sg. This proves
the first assertion of (v); the second one follows readily from (23) combined
with (24).

In order to prove the last assertion, assume that F contains two distinct
proper subfields F; and Fs, none of which coincides with Q. Clearly,

[E1: Q] =g=[E:Q],

which means that both field extensions E/FE; and E/Ey are quadratic. This
implies that the (finite) automorphism group G := Aut(£/Q) of the field
extension F/Q contains two distinct elements ¢; and t2 of order 2 such that

Ei={ueE|ti(u)=u1}, FEs={u€FE|ty(u)=us},

It follows that G is a group of order M where M is an even integer that
is strictly greater than 2. Then the subfield F := E¢ of G-invariants is a
proper subfield of £ and its degree

It follows from (ii) that F' = Q and therefore M = [E : Q] = 2g.

If g is not a power of 2 then there is an odd prime p dividing ¢ and
therefore dividing M. It follows that G contains an element t of order p.
Therefore the subfield E? of t-invariants is a proper subfield of F and its
degree [E' : Q] is 2g/p < g. By (ii), E' = Q and therefore 2g = [E : Q] = p,
which is wrong, since p is odd. Hence g is a power of 2 and therefore G is a
finite 2-group. It follows that G has a normal subgroup H of index 2. Then
the subfield F2 is a proper subfield of E and its degree [F» : Q] equals the
index [G : H] = 2. This also contradicts (ii), which ends the proof of the
last assertion of (v).
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Let us prove (vi). Assume that [F : Q] = ¢g. Then the assertion about
Aut(T) follows readily from (23) combined with (24). If F' # Q is a proper
subfield of E then

1=Q:Q<[F:Q<[E:Q =gy

and therefore 1 < [F': Q] < g, which contradicts (ii) applied to F' instead of
E. So, such an F' does not exist, i.e., F is primitive.

Assume now that 7' is a complex abelian variety. By Albert’s classification
[18], E = End®(T) is either a totally real number field or a CM field. If E is
a CM field then it contains a subfield Ey of degree [E : Q]/2 = g/2. Since Ej
is a subfield of End®(T") and 1 < g/2 < g (recall that g > 3), the existence
of Ey contradicts the already proven assertion (ii). This proves that E is a
totally real number field, i.e., s = 0,7 = ¢g. Now the assertion about Aut(7T)
follows from (23). O

4. NUMBER FIELDS AND TRANSITIVE PERMUTATION GROUPS

All the results of this section are standard and pretty well known except,
may be, the notion of almost double transitivity.

Definition 4.1. Let 7 be a set that consists of at least three elements. We
write Perm(7") for the group of all permutations of S. Let G be a group
that acts on S, i.e., we are given a group homomorphism

G — Perm(S),

whose image we denote by G, which is a subgroup of Perm (7). We say that
a transitive action of G on 7T is almost doubly transitive if the action of G
on the set of all two-element subsets of T is transitive.

Remarks 4.2. (1) Every doubly transitive action is almost doubly tran-
sitive.

(2) Every almost doubly transitive action of G on 7T is primitive, i.e.,
the stabilizer of a point is a maximal subgroup. Indeed, suppose the
action is not primitive, i.e., that 7 partitions into a disjoint union of
r sets T1,..., 7T, such that r > 2, each 7; consists of m > 2 elements,
and G permutes 7;s. Let A be a 2-element subset of 1. Pick b; € T;
and by € Ty, and consider a 2-element subset B = {b1,ba} of T.
Clearly, no s € GG sends A to B, i.e., the action is not almost doubly
transitive.

(3) If S consists of three elements then every transitive action on S of
any group G is almost doubly transitive.

(4) Let G be the image of G in the group Perm(S) of permutations
of 7. If S is a finite set then the group G is a finite group of
permutations of 7 that is primitive (resp. almost doubly transitive,
resp. doubly transitive) if and only if G is primitive (resp. almost
doubly transitive, resp. doubly transitive)



14 YURI G. ZARHIN

(5) Suppose that T is a finite set that consists of n > 3 elements and G
is a group that acts faithfully and almost doubly transitively on 7.
Let N be the order of G.

Then N is divisible by n(n — 1)/2. If N is even then G contains
an element & of order 2 and therefore there are two distinct elements
$1,89 € T such that

5’(81) = 82,&(82) = S1.

It follows that the action of G on 7T is doubly transitive and therefore
the action of G on T is also doubly transitive. This implies that if
either 4|n or n = 1 mod 4 then the action of G on T is doubly
transitive, because in these cases n(n —1)/2 is even.

(6) Let n = g be a prime power that is congruent to 3 modulo 4. Let F,
be a g-element finite field and F; the multiplicative group of nonzero
elements of IFy. Then [}, splits into a direct product F;, = H x {£1}
where H is a cyclic group of odd order (¢ —1)/2. Let us put S =F,
and let G be the group of affine transformations of I,

v ar+b, a€ HCF,,bel,

Then the action of G on F is almost doubly transitive but not doubly
transitive.

Let Q be the algebraic closure of Q in C and
Gal(Q) = Gal(Q/Q) = Aut(Q/Q)

the absolute Galois group of Q. Let us consider the humongous group
Aut(C) of all automorphisms of the field C. Obviously, the subfield Q is
Aut(C)-invariant, which gives rise to the (restriction) homomorphism of
groups

Aut(C) - Gal(Q), s+ {ar s(a)} Vs € Aut(C),a € Q (25)
which is surjective.

Let E be a number field of degree n = [E : Q]. We write X g for the
n-element set of all field embeddings o : E < C. For each o € ¥ the
image o(F) lies in Q. If ¢ is an element of Aut(C) (or of Gal(Q)) then the
composition

too: E< Q N Qcc
also lies in X g. Then the map
Aut((C)XEE%ZE, (t,O’)i—>tOU (26)

is a transitive group action of Aut(C) on g, which factors through Gal(Q)
via (25). This action is primitive (i.e., the stabilizer of a point is a maximal
subgroup) if and only if E' is a primitive number field. Similarly, the map

Gal(Q) x Xp = Xp, (t,0)—too (27)

is a transitive group action of Gal(Q) on X g, which is primitive if and only
if E is a primitive number field.
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We say that E is a doubly transitive (respectfully almost doubly tran-
sitive) number field if the action (26) (or equivalently the action (27)) is
doubly transitive (respectfully almost doubly transitive). The correspond-

—_—

ing finite subgroup~é = Aut(C) = Gal(Q) of Perm(Xg) is isomorphic to the
Galois group Gal(E/Q) where E is a normal closure of E.

Remark 4.3. Clearly, if £ and F are isomorphic number fields then E
is primitive (resp. doubly transitive) (resp. almost doubly transitive) if
and only if F' is primitive (resp. doubly transitive) (resp. almost doubly
transitive).

Example 4.4. (i) Let f(z) € Q[z] be an irreducible polynomial of de-
gree n > 2 on Q and Ey = Q[z]/ f(x)Q|x] the corresponding number
field of degree n. We write SRy for the n-element set of roots of f(x)
in Q and Q(Ry) for the subfield of Q generated by ;. By definition,
Q(MRy) is a splitting field of f(zx) that is a finite Galois extension of
Q. We write Gal(f) for the Galois group Gal(Q(%)/Q) of the field
extension Q(Ry)/Q. It is well known that Gal(Q) acts transitively
(through Gal(f) ) on M. There is a Gal(Q)-equivariant bijection
between X g ; and Ry that is defined as follows. To each a € Py
corresponds the field embedding
0o : By = Qls)/f(2)Qlz] = @ C C, h(z) + f(@)Qla] — h(a)
(in particular, the coset of = goes to «). This implies that the field
Ey is doubly transitive (respectfully almost doubly transitive) if and
only if the action of Gal(f) on R is doubly transitive (respectfully
almost doubly transitive). The similar characterization of primitive
number fields is well known:

the field Ey is primitive if and only if the action of Gal(f) on Ry
is primitive.
Conversely, let F' be a number field of degree n and z € is a primi-
tive element of E, i.e., the small subfield Q(z) of E that contains z
coincides with F' (such an element always exists). Let f(z) € Q[z]
be the minimal polynomial of z, i.e., f(x) is irreducible over Q and
f(2z) = 0; in addition, deg(f) = n. Then there is a field isomorphism
E¢ = F such that the coset x4+ f(2)Q[z] € Ef goes to z € F. There-
fore the number field F' is (almost) doubly transitive if and only if
Gal(f) acts (almost) doubly transitively on Ry.

(ii

~—

Theorem 4.5. Let n > 2 be an integer. Let r,s be nonnegative integers
such that
r+2s=n. (28)
Then there exists a number field E of degree n that enjoys the following
properties.
(i) TE =71, SE = S.
(ii) E is doubly transitive.
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Proof. We will use a week approximation in F, approximating several poly-
nomials with respect to several metrics in F.

First, fix a degree n monic polynomial hoo(x) € Z[z]ts that has precisely r
distinct real roots and s distinct pairs of non-real complex-conjugate roots.
(E.g., one may take

S S

hoo() = [[(@ — i) [[(=* + 5°) € Zlz] € Qla].)

i=1 j=1

Second, take any prime p and choose a monic p-adic Fisenstein polynomial
hy(z) € Z[z], all whose coefficients (except the leading one) are divisible by
p while the constant term is not divisible by p?. (E.g., one may take

ho(z) = 2" — p € Z[z] C Q|x].)

Third, take any prime ¢ =# p and choose a monic irreducible polynomial
tg(z) € Fylx] of degree (n — 1) over Fy. (Such a polynomial always exists
for any given ¢ and n — 1.) Let uy(x) € Z[x] be any monic degree (n — 1)
polynomial with integer coefficients, whose reduction modulo ¢ coincides
with ,(x). Let us put

he(x) ==z - up(x) € Z[z] C Q[z].

By a weak approximation theorem [2, Th. 1], there is a monic degree n
polynomial f(x) € Q[z] that enjoys the following properties.

(a) f(x) is so close to hoo(x) in the archimedean topology that it also
has precisely r distinct real roots and s distinct pairs of non-real
complex-conjugate roots.

(b) f(z)—hy(x) € p? x-Zp[x]. This implies that f(x) is irreducible over
the field Q, of p-adic numbers and therefore irreducible over Q.

(¢) f(x) — hy(x) € €-x-Zy[z]. This implies that

f(@) € Zy[z], f(x) mod l =z uy(x) € Felz].
By Hensel’s Lemma, there are
o €07y C Zy
and a monic degree (n — 1) polynomial v(x) € Zy[z] such that
f(z) = (z — a)v(z) € Ze[z], v(x)modl = uy(zx) € Fpz]. (29)

By [29, Sect. 66], the irreducibility of y(z) combined with (29) imply
that Gal(Ry), viewed as the certain permutation group of fR¢, contains a
permutation s that is a cycle of length n — 1. In particular, if o € %Ry is the
fixed point of s then the cyclic subgroup < s > of Gal(9) generated by s
acts transitively on %M \ {a}. Now the transitivity of Gal(?Ry) implies its
double transitivity, which ends the proof.

O
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5. HODGE GROUPS

Recall that Agx = V carries the natural structure of a complex vector
space. This gives rise to the injective homomorphism of real Lie groups

h:C* < Autr(Agr)

where h(z) is multiplication by a nonzero complex number z in Ag = V. Let
S! ¢ C* be the subgroup of all complex numbers z with |z| = 1. Clearly,
h(S') is a one-dimensional closed connected real Lie subgroup of Autg(Ag);
in addition, the Lie algebra of h(S!) is

R-JC EndR(AR).

Actually, h(S?) lies in the special linear group SL(Ag) while R - J lies in the
Lie algebra sl(Ar) of traceless operators in Ag.

By definition [17, 25] (see also [34]), the Hodge group Hdg(7") of the ra-
tional Hodge structure H; (7, Q) = Ag is the smallest algebraic Q-subgroup
G of GL(Ag), whose group of real points

G(R) C AutR(AR)
contains h(S'). One may easily check that Hdg(T) enjoys the following
properties that we will freely use throughout the text.

(i) Hdg(T) is a connected algebraic Q-group that is a subgroup of the
special linear group SL(Aq).
(ii) The centralizer of Hdg(7') in Endg(Ag) coincides with End’(T).
(ili) A Q-vector subspace Hg of Ag is Hdg(T')-invariant if and only if it
is a rational Hodge substructure of Ag.
(iv) The subspace of Hdg(7T')-invariants

H2(T, Q)%™  HY(T,Q) = Homg(AdAg, Q)

coincides with the subspace H?(T, Q) N HYY(T) of two-dimensional
Hodge classes on T'.

(v) The group of Q-points Hdg(T")(Q) is Zariski dense in Hdg(T), be-
cause Hdg is connected and the field Q in infinite (see [4, Cor. 18.3]).

Let us consider the Q-Lie algebra hdgy of the linear algebraic Q-group
Hdg(T). By definition, hdgy is a linear algebraic Lie subalgebra of Endg(Ag).

Remark 5.1. Clearly, hdgy is the smallest algebraic Lie QQ-subalgebra g of
Endg(Ag) such that

Jeg®gR. (30)
Properties (i) and (ii) above imply that
hdgy C sl(Ag) C Endg(Ag) (31)
and the centralizer of hdgs in Endg(Aq) is described as follows.
Endpgg, (Ag) = End’(T). (32)
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Clearly,
J € hdgr := hdgr ®g R C Endg(Ag) ® R = Endg(Ag)
contains J. Let us consider the complexification
hdgy ¢ := hdgyr ®g C C Endg(Ag) ® C = Endc(Ac)

where
AC:AQ®QC:AR®RC.
We have

J € hdgpp = hdgyr ® 1 C hdgyp ©r C = hdgy ¢ C Ende(Ac).

(See (5) and Remark 1.2.) In what follows, we will write J instead of Jg,
slightly abusing notation.

The group Aut(C) acts naturally, semi-linearly and compatibly on Ac,
Endc(Ac) and hdgg .

The minimality property of Hdg(T) allows us to give the following “ex-
plicit” description of the complexification hdgy ¢ (compare with [34, Lemma
6.3.1]).

Theorem 5.2. The complex Lie algebra hdgyp ¢ coincides with the Lie sub-
algebra uw of Endc(Ac) generated by all s(J) where s run over the group
Aut(C). In particular, hdgy coincides with the smallest Q-Lie subalgebra
g C Endg(Agq) such that

g &0 R C End@(AQ) X0 R = EndR(AR)
contains J.

Proof. Clearly, u C hdgy ¢. Let us prove that u is an algebraic complex Lie
subalgebra of Endc(Ac).
Recall that
J € Endg(Ag) C Ende(Ac); J? = —1. (33)

Clearly, J : Ac — Ac is a semisimple C-linear operator, whose spectrum
consists of eigenvalues, i and —i, because J? = —1 Similarly, for all s €
Aut(C) the C-linear operator s(J) : Ac — Ac is also semisimple and its
spectrum is also {i, —i}, because (in light of (33))

s(J)? = s(J%) = s(—1) = —1. (34)

It follows that the Q-vector subspace Q(s(J)) of C generated by the spec-
trum of s(J) coincides with @ - i; in particular, the Q-vector (sub)space
Q(s(J)) is one-dimensional. This implies that each C - s(.J) is an algebraic
C-Lie subalgebra of End¢(Ac), because each replica of s(J) is a scalar multi-
ple of s(J). Thus, the linear C-Lie algebra u is generated by the algebraic Lie
subalgebras C - o(f) and therefore is algebraic itself, thanks to [12, volume
2, Ch. 2, Sect. 14]. Clearly, u is defined over Q, i.e., there is an algebraic
Q-Lie subalgebra
ug C EndQ (AQ)
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such that
u =1y ®q C.
Clearly,
u=u RO =uy @R
as a real vector vector space. This implies that

Uup XQ R=un EndR(AR). (35)

Let U be the connected algebraic Q-subgroup of GL(Ag), whose Lie algebra
coincides with ug. We need to prove that

Clearly, ug C hdgp, because the comlexification of ug lies in the complexifi-
cation of hdgyp. We know that J € up ®g C. Since J € Endg(Ag),

J € up ®q R.

In light of Remark 5.1, ug D hdgy. This implies that ug = hdgy, which ends
the proof. O

Corollary 5.3. Let us put
1
fr:= ;J S End(c(A(c).
Then

s(fr)? =1 Vs € Aut(C) (36)

and the complex Lie algebra hdgy ¢ coincides with the Lie subalgebra u of
Endc(Ac) generated by all s(fr) where s run over the group Aut(C). In
particular, hdgp coincides with the smallest Q-Lie subalgebra g C Endg(Aq)
such that

g ®g C C Endg(Ag) ®g C = Endc(Ac)
contains fr.
Proof. Since i = /-1,
s(i) = £i, s(fr) = £i- s(J) Vs € Aut(C). (37)
Therefore
s(fr)? = (Fi-s(J)* = =s(J)".
It follows from (34) that
s(fr)? =—(-1) =1,
which proves our first assertion. It follows from (37) that
C-s(fr)=C-s(J) Vs € Aut(C).

Now our second assertion follows from Theorem 5.2.
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Remark 5.4. Let a be the smallest ideal of hdg, such that ac := a®q C
contains fp. Clearly, ac contains s(fr) for all s € Aut(C). It follows from
Corollary 5.3 that ac = hdgy ¢. This implies that

The latter equality means that fr is a Hodge element of the Q-Lie algebra
hdg, in a sense of [36, Definition 1.1] where

k=Q, V=Ag C=C.

For the sake of simplicity, from now on let us assume that T is simple.
This means that the natural faithful representation of Hdg(7") in

AQ = Hl (T7 Q)

is irreducible and therefore End®(T) is a division algebra over Q. This
implies that the Q-algebraic (sub)group Hdg(T') is reductive. In addition,
the Q-Lie (sub)algebra

hdg, C sl (H1(7,Q)) C Endg (Hi(T,Q))

is reductive algebraic, the faithful hdg-module Hy (7T, Q) is simple and the
centralizer of hdg, in Endg (Hy(T,Q)) is the division Q-algebra End’(T).
Then the center Z(T) of End"(T) is a number field.

Let us split the reductive Q-Lie algebra hdgs into a direct sum

hdg; = hdg} @ cp
of the semisimple Q-Lie algebra
hdg7 = [hdgy, hdgr]
and the center c¢p of hdg; with
¢r C Z(T) C End%(T).
The following useful assertion is well known in the case of abelian varieties.

Lemma 5.5. Suppose that T is simple and Z(T) = Q (e.g., End*(T) = Q).
Then ¢y = {0}, i.e., the Q-Lie algebra is semisimple and therefore Hdg(T')
is a semisimple Q-algebraic group.

Proof. The result follows readily from the combination of inclusions
cr C Z(T) = @7 cr C hdgT Csl (Hl(Ta Q)) :
O

The next example deals with the opposite case when the endomorphism
algebra of a simple torus 7' is a number field of (largest possible) degree
2dim(T').
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Example 5.6. Suppose that a complex torus "= V/A is simple of dimen-
sion g and End®(T) is a number field E of degree 2¢g. Then Ag becomes a
one-dimensional vector space over . Therefore
E = EndE(AQ), E* = AutE(AQ).
This implies that
Hdg(T)(Q) ¢ BV = {e € E* | Normp/g(e) = 1} C E* = Autp(Ag). (38)

Here
Normpg/g : £ — QF, e H o(e)
oEX R

is the norm homomorphism of the multiplicative groups of fields attached
to the field extension E/Q

Let Sg = Resg /Q(Gm) be the 2g-dimensional algebraic torus over Q ob-
tained from the multiplicative group Gy, by the Weil’s restriction of scalars
from FE to Q. Then Sg(Q) = E* and for each 0 € X there is a certain
character

Sy :Sp:=Sg X@@—)Gm XQ@
of the algebraic torus Sg over Q such that the restriction of 5 to
E*=8p(Q) C Sp(Q) = Sk(Q)
coincides with
oc: E*— Q*
. In addition, the 2g-element set {0, | 0 € Yk} constitutes a basis of the
free Z-module X(Sg) of characters of the algebraic torus Sg over Q. Since

Sk is defined over Q, the group X(Sg) is provided with the natural structure
of a Gal(Q)-module in such a way that

$(ds) = d5(¢) Vo € X, s € Gal(Q) (39)
([26, Ch. II, Sect. 1], [30, Ch. III, Sect. 5 and 6]). Clearly, the character
x= ][] 4 € X(Sk)

cEXE

is Gal(Q)-invariant and may be viewed as the character of Sg such that
x(e) = Normpg/g(e) € Q" Ve € E* = Sp(Q).

Let us put

Sk = ker(x).
Since x is obviously non-divisible in the group of characters, 8}3 is an alge-
braic Q-subtorus of dimension 2g — 1 in Sg such that

S5(Q) = ker(Normp g) = EW. (40)

Combining (38) and (40), and taking into account that Hdg(7)(Q) is Zariski
dense in Hdg(7T'), we conclude that

Hdg(T) C Sg. (41)
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In particular, if 8}5 is a simple algebraic torus over Q then
Hdg(T) = Sk.

By definition of 8%, the Galois module X(S},) of characters of the alge-
braic Q-torus
Sk =3SpxqQ
is the quotient X(Sg)/(Z - x). It follows from (39) that the Gal(Q)-module
X(S%) is isomorphic to the quotient Z*F/Z - 1 where Z*F is the free Z-
module of functions ¢ : ¥ — Z and 1 is the constant function 1. It follows
easily that the Galois module X(S}E) ®Q is isomorphic to the Q-vector space

(@%)" == {95 = Q| Y ¢(c) =0}
oEXE

of Q-valued functions on ¥ with zero “integral”. Recall that the action
of Gal(F) on X is transitive and this action induces the structure of the
Galois module on ((@EE)O. Notice that if the action of Gal(Q) on (QEE)O
is doubly transitive (i.e., E is doubly transitive) then the representation
of Gal(Q) in (QZE)O is irreducible, i.e., the Galois module X(S}) ® Q is
simple, which means that the algebraic Q-torus S}E is simple and therefore
Hdg(T) = Si. So we have proven that

Hdg(T) = S} (42)
if F is doubly transitive. In particular, the algebraic Q-torus is simple.

Theorem 5.7. Let T = V/A be a simple complez torus of dimension g > 2
such that its endomorphism algebra is a number field E of degree 2g that is
doubly transitive.
Then:
(i) The Hodge group Hdg(T) of T coincides with Si. In addition,
Hdg(T) is a simple algebraic Q-torus of dimension 2g — 1.
(ii) The Hdg(T)-module H?(T, Q) is simple. In particular, T is 2-simple.

Proof. We keep the notation of Example 5.6 where the assertion (i) and the
simplicity of Hdg(T') are already proven.

In order to prove (ii), notice that H?(T,Q) = HomQ(/\éAQ,Q), so, it
suffices to check that the Hdg(7T)-module /\?QA@ is simple.

If 0 € ¥ then let us congider the character 5((,1) of 5’}5 that is the restric-
tion of the character d, to Si. Clearly,
IT &Y =1eX(Sk)
ceXE
and this is the only “nontrivial” multiplicative relation between 5&1). In
particular, if A and B are two distinct 2-element subsets of X g then

oy =[] 60 # I 6V =: op. (43)

oc€EA o€EB
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In other words, 5}4 and 5}3 are distinct characters of 3}3.
Let us fix an order on the 2g-element set ¥ and consider the Q-vector
space
A= Ag ®q Q,
which is provided with the natural faithful action of S}E, and splits into a
direct sum
/_\ = @UEZEAU
of one-dimensional weight subspaces A, defined by the condition that 3}5

acts on A, by the character 55-1).

We have
/\éAQ ®q Q= /\(%_)A = Ba—{orespo<riNa,
where
/_\A:/_XU/\QI_\Tgl_\g@@/_\T
are one-dimensional S}E—invariant subspaces; the action of 3}3 on Ay is de-
fined by the character 0}

It follows from (43) that if W is a nonzero Si-invariant Q-vector subspace
of Ag then W = W ®q Q is a direct sum of some of A4. The double
transitivity condition implies that all Ay’s are mutually Galois-conjugate
over Q. It follows that W = A%A, ie., W= /\éA@ and we are done.

O

Remark 5.8. See [3] for explicit examples of complex tori that satisfy the
conditions of Theorem 5.7.

In the case of arbitrary simple complex tori (or even abelian varieties) the
Hodge group may be neither semisimple nor commutative (see [31, 32, 33]
for explicit examples). This is not the case for 2-simple tori in dimensions
> 2, in light of the following assertion.

Proposition 5.9. Let T be a 2-simple torus of dimension g > 2. (In
particular, T is simple.) Then Hdg(T') is either semisimple or commutative.
The latter case occurs if and only if End®(T) is a number field of degree 2g.

Proof. We know (thanks to Theorem 1.7) that £ = End’(T) is a number
field of degree
[E: Q] € {L,9,29}.

If [E:Q] =1 then E = Q. In light of Lemma 5.5, Hdg(T) is semisimple.

If [E: Q] = 2g then Ag = H;(7,Q) is a one-dimensional E-vector space,
ie.,

E = EndE (Hl(T, Q)) .
This implies that
hdg, C Endg (Hy(T,Q)) C E

and therefore hdg; is a commutative Q-Lie algebra. It follows that Hdg(T')
is commutative.
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Assume that [E : Q] = g, i.e., Ag = Hi(T,Q) is a two-dimensional E-
vector space. Then

hdgT C Endg (Hl(T, Q)) O FE Doer.

Let

Trg : Endg (H,(T,Q)) — E (44)
be the (surjective) E-linear trace map, which is a homomorphism of Q-Lie
algebras (here we view E as a commutative Q-Lie algebra); in addition, the
restriction of Trg to E is multiplication by

We write sl (Hy(7T,Q)/E) for ker(Trg), which is an absolutely simple E-Lie
algebra of traceless E-linear operators in Hi (7, Q). (Viewed as the Q-Lie
algebra, sl (H1(7T,Q)/FE) is a simple but not absolutely simple.)

On the other hand, let

detp : Autg (H1(7,Q)) — E*
be the multiplicative determinant map. Clearly,

Hdg(T)(Q) C Autg (Hi(T,Q))

and the group Autg (Hi(7,Q)) acts naturally on the one-dimensional FE-
vector space Hompg (/\%Hl(T,Q),E) via the character detg. I claim that
detg kills Hdg(7T)(Q). Indeed, if this is not the case, then the rational
Hodge substructure Homp (A%H:(T,Q), E) of H*(T, Q) has nonzero (2,0)-
component, whose C-dimension

[E:Q] g

5 99

which contradicts the 2-simplicity of 7. Hence, detg kills Hdg(7")(Q). Tak-
ing into account that Hdg(7T")(Q) is dense in Hdg(7T') in Zariski topology and
the minimality property in the definition of the Hodge group, we conclude
that

<

Hdg(T) C RespoSL((HA(T,Q)/ E)
where SL((H;(7,Q)/E) is the special linear group of the E-vector space
Hi(T,Q), which is a simple algebraic E-group, and Resg/q is the Weil re-
strictions of scalars. Taking into account that the Q-Lie algebra sl (H; (T, Q)/E)
is the Lie algebra of the Q-algebraic group Resg/oSL((H1(T,Q)/E), we con-
clude that

hdg, C sl (Hy(T,Q)/E) 2 sl(2, E). (45)
In particular, Trg kills ¢p. Since ¢p C E,

0="Trg(c)=2cVeecp C E.

This implies that ¢z = {0}, i.e., hdgy is semisimple, i.e., Hdg(T) is semisim-
ple. This ends the proof. ([

The following assertion may be viewed as a variant of a theorem of P.
Deligne [14] about abelian varieties (see also [27]).
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Theorem 5.10. Let T' be a simple complex torus. Let hdgy C Endg(Ag)
be the (reductive) Q-Lie algebra of Hdg(T), whose natural representation in
Aq is irreducible.

Let g be a simple (non-abelian) factor of the complex reductive Lie algebra

hdgT,(C = hdgT XKQ Cc EndQ(A@) XQ C= End(c(A(C) = End¢ (Vc) .

Then

(i) The simple complex Lie algebra g is of classical type (A, By, Ci, D)
of a certain positive rank [.

(ii) Let W be a nontrivial simple g-submodule of V. Then its highest
weight is minuscule one.

Proof. The result follows readily from Corollary 5.3 combined with Propo-
sition 2.4.1 of [34] applied to

k=C,ko=QW =Ag,g =hdgy, f = fr,A={1,-1}

and
n=1,a0=1,a1 = —1.

0

The following assertion may be viewed as a variant of a theorem of M.V.
Borovoi about abelian varieties [7], see also [36].

Theorem 5.11. Suppose that T is a simple complex torus with End®(T) =
Q.
Then its Hodge group Hdg(T') is a Q-simple linear algebraic group, i.e.,
its Q-Lie algebra hdgy is simple.

Proof. Clearly, hdg, is a semisimple Q-Lie algebra, whose natural faithful
representation in Ag is absolutely irreducible. By Remark 5.4, fr € hdgy ¢
is a Hodge element of hdg;. The spectrum of the linear semisimple operator
fr in Ag consists of precisely two eigenvalues, 1 and —1. Now it follows from
Theorem 1.5 of [34] that hdgy is simple. This means that Hdg(T) is a Q-
simple algebraic group.

O

Corollary 5.12. Suppose that T is a simple complex torus of dimension g
with End®(T) = Q. Assume also that 2g is not a power (e.g., g is odd).

Then Hdg(T) is an absolutely simple Q-algebraic group that enjoys pre-
cisely one of the following two properties.

e Hdg(T) is of type Azg_1,Cg, Dg.
e Hdg(T) is of type or A, where r is a positive integer that enjoys the
following properties.
1 <r <2g—1 and there is an integer j such that 1 < j <29 —1
and 2g = (T']H).
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Proof. By Theorem 5.11, hdgy is a simple Q-Lie algebra. Suppose that hdgp
is not absolutely simple, i.e., the complex Lie algebra hdg; ¢ splits into a
direct sum

hdgrc = ®7_10¢
of d simple complex Lie algebras g, where d > 1. We are going to prove that
2¢g is a dth power and get a contradiction. The simplicity of hdg;r means

that Aut(C) permutes the set {g,}¢_, transitively. Namely, each s € Aut(C)
gives rise to the semi-linear automorphism of the C-vector space

Ac = Ac,z®z—2®s(z) Vo € Ag,z€ C
and to the semi-linear automorphism of the C-algebra
Endc(Ac) = Endc(Ac),u ® 2z — u® s(z) Vo € Endg(Ag), z € C.

We continue to denote those automorphisms by s.
The simplicity of hdg, implies that for each g, there is sy € Aut(C) such
that

gr=s0(g1) -

We know that the hdgy c-module Ac is (absolutely) simple. Since each gy
is a direct summand of gy, the gyi-module Ac is isotypic, i.e., there is a
simple gg-submodule W, C Ac such that all simple gy-submodules of A¢ are
isomorphic to Wy. In addition, the hdgy ¢ = @gzl ge-module Ac splits into
a tensor product ®Zi:1Wg. Let us prove that dimc(W;) does not depend on
L.

Indeed, s;(W7) is a simple gg-submodule of Ac and therefore is isomorphic
to Wi. This implies that dim(W;) = dim(Wy) and therefore

2g = dimg(Ac) = dime (W1),

which gives us a desired contradiction. So, hdgp ¢ is a simple complex
Lie algebra and I'c is a faithful simple hdg;, c-module. By Theorem 5.10,
hdgy ¢ is a classical Lie algebra (of type A, By, C, or Dy), and the highest
weight of I'c is minuscule. The remaining assertion follows readily from
the inspection of dimensions of minuscule representations of classical Lie
algebras [9, Tables].

O

Example 5.13. Suppose that T" is a complex torus of dimension g such
that one of the following conditions holds.

(i) Hdg(T) = SL(Aq).
(ii) There exists a nondegenerate quadratic form
(;5 : AQ — Q

of even signature (2p,2q) with p + ¢ = g > 3 such that Hdg(T)
coincides with the corresponding special orthogonal group. SO(Ag)
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(iii) There exists a nondegenerate alternating Q-bilinear form
AQ X AQ — Q

such that Hdg(7T') coincides with the corresponding symplectic group
Sp(Ag)-

Then T is 2-simple.

Indeed, in the cases (i) and (ii), (in the obvious notation) the natural
representation of SL(Ac) (resp. SO(Ac)) in AZ(Ac) is irreducible, see [9,
Ch. 8, Sect. 13]. This implies that the natural representation of SL(Ag)
(resp. SO(Aq, ¢)) in /\é (Aq) is absolutely irreducible. By duality, the same
is true for HomQ(/\é(A@), Q) = H¥(T,Q), i.e., the Hdg(T)-module H?(T, Q)
is simple. This implies that T' is 2-simple. Notice that in these cases we
deal with simple complex tori that are not abelian varieties (since they do
not carry nonzero 2-dimensional Hodge classes), and whose endomorphism
algebra is Q.

In the case (iii), the natural representation of Sp(Ac) in AZ(Ac) is a
direct sum of an irreducible representation and a trivial one-dimension rep-
resentation [28, Tables|. This implies that the natural representation of
Sp(Ag) in /\(QQ(AQ) is a direct sum of an absolutely irreducible representa-
tion and a trivial one-dimension representation. By duality, the same is
true for Hom@(/\?@(AQ),Q) = H?(T,Q), i.e., the Hdg(T)-module H*(T, Q)
is a direct sum of an absolutely simple simple module and a trivial module
of Q-dimension 1 The latter consists of all Hdg(T)-invariants in H?(T,Q),
i.e., coincides with HY1 (T, Q). The former is an irreducible rational Hodge
structure. Tt follows from Remark 1.8 (i) that T is 2-simple.® See [37] for
explicit examples (in all dimensions) of complex abelian varieties 7' with

Hdg(T') = Sp(Aq)-

Theorem 5.14. Let Ilg be a Q-vector space of positive even dimension 2g,
and G a Q-simple algebraic subgroup of GL(Ilg), whose Q-Lie algebra g may
be viewed as a simple Q-Lie subalgebra of Endg(Ilg). Let us consider the
real Lie subalgebra
gr = g @ R C Endg(Ig) ®g R = Endr(Ilg)
where IIr = Ilg ®g R is the corresponding 2g-dimensional real vector space.
Suppose that there exists an element
Jo € gr C Endg(IIR)

such that J3 = —1 in Endg(Ilg). Then there exists J € gr that enjoys the
following properties.

(i) J? = —1.

(ii) Let us endow Ilg with the structure of a g-dimensional complex vec-

tor space by defining
(a+bi)v =av +bJ(v) Va+bieC witha,beR.

3For abelian varieties T the case (iii) was done in [1, Sect. 5.1].
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Then for every discrete subgroup A of rank 2g in Ilg the correspond-
ing complex torus T = Ilg /A has Hodge group G.

Proof. We will need the following auxiliary statement.

Lemma 5.15. If v is a proper nonzero Q-vector subspace of g then the real
vector subspace

R =0®9R Cg®gR =gr
does not contain a nonzero ideal of gr.

Notice that the the set of proper nonzero Q-Lie subalgebras L of g is
countable. By Lemma 5.15, every Lr = L ®g R does not contain a nonzero
ideal of gr. By [38, Lemma 2 on p. 494], the closed subset

G(Lg,Jo) ={uecgGR)| Jy € U_ILRU}
is nowhere dense in G(R). It follows that there exists u € G(R) such that Jy
does not lie in any of u~!Lru. Let us put
J :=uJyJ ! € gr C Endg(IIR).

Then J does not lie in any of Lg and J? = —1 € Endg(IIg). It follows that
g coincides with the smallest Q-Lie subalgebra u of g such that ug contains
J. This implies that g coincides with the smallest Q-Lie subalgebra u of
EndQ(IIg) such that ug contains J. It follows readily that g coincides with
the Lie algebra of the Hodge group of a complex torus 7' = IIg /A where the
complex structure on the real vector space Ilr is defined by J and A is any
discrete subgroup A of rank 2g in Ilg. O

Proof of Lemma 5.15. Suppose that Lr contains a nonzero ideal a of gg.
Then the C-vector subspace

Lc=Lr@rC=L®gC
contains a nonzero ideal a¢c = a ®g C of the complex Lie algebra

gc = gr ®r C = g®q C.

a= Z s(a)

s€Aut(C)

is a Aut(C)-invariant ideal of gc that lies in Lc. Hence, there is a Q-vector
subspace ag such that

Then

a=ag ®q C;
in addition, ag is an ideal of g, which contradicts the simplicity of the Q-Lie
algebra g. This ends the proof. O

Example 5.16. We keep the notation of Theorem 5.14. Let g > 3 be an
integer, Ilg a 2g-dimensional vector space over Q. Let G be a Q-simple
algebraic subgroup of GL(Ilg) that enjoys one of the following properties.

(i) G = SL(Ilg).
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(ii) There exists a nondegenerate quadratic form
¢ : HQ — Q
of even signature (2p,2q) with p + ¢ = g such that G coincides with
the corresponding special orthogonal group. SO(Ilg).

In both cases there exists Jy € gg with J§ = —1. (Here g C Endg(Ilgp) is the
Lie algebra of }.) In light of Theorem 5.14, there exists a complex structure
on the real vector space Ilg such that the Hodge group of corresponding
complex tori T" = IIg /A coincides with G. In light of Example 5.13, T is
2-simple.

6. THE DEGREE g CASE

In this section we discuss g-dimensional 2-simple tori, whose endomor-
phism algebra is a number field of degree g.

Theorem 6.1. Let T a 2-simple torus of dimension g > 2. If End®(T) is a
number field E of degree g then

Hdg(T) = Resp/oSL((Hi(T,Q)/E).
Proof. 1t suffices to check that
hdg; =sl(Hi(T,Q)/E) . (46)
In light of (45), the desired equality (46) is an immediate corollary of the
following observation applied to

E=Q, K=FEW =H|(T,Q), g=hdgy.

Lemma 6.2. Let g be a positive integer, W a 2g-dimensional vector space
over a field k of characteristic 0, g C Endg(W) a linear semisimple k-
subalgebra such that the centralizer

K :=End,W C Endy(W)

is an overfield of K such that [K : k] = g. Then g coincides with the Lie
algebra s(W/K) of traceless K -linear operators in W.

Proof of Lemma 6.2. The semisimplicity of g implies that
g Csl(W/K). (47)

In what follows we mimick the arguments of [24, pp. 790-791, Proof of Th.
4.4.10] where f-adic Lie algebras are treated.

Let k be an algebraic closure of k, and g the g-element set of field
embeddings ¢ : K < k that coincide with the identity map on k. Let
us consider the 2g-dimensional k-vector space W = W ®;, k and the k-Lie
algebra

g =9 ®; k C Endp(W) @k k = Endg(W). (48)
The semisimplicity of the k-Lie algebra g implies the semisimplicity of the
k-Lie algebra g.
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Clearly, the centralizer Endg(W) of g in Endg (W) equals
Endg(W) @, k= K @ k (49)

and W is a free K ®j, k-module of rank 2, because W is a vector space over
K of dimension 2. We have

K Rk ]% = @UGEKK ®K,a ];3 = @UEEK]?:G (50)
where - o
ke = K Qo k=k.
We have B B - o B
W = @oex i Ws where W, = k,W C W.
The freeness of the K ®y k-module W with rank 2 implies that each W, is
a k,-vector space of dimension 2. Since

ke C K @y k = Endg(W),
each W, = k, W is a g-invariant subspace of W and the centralizer of g
End;(Wy) = ko = k. (51)
Let

g, C Endg_(W,) = Endg(W,)

be the image of the natural k-Lie algebra homomorphism

g— EndE(WU).
The semisimplicity of g implies the semisimplicity of the Lie algebra g,,
because the latter is isomorphic to a quotient of the former. This implies
that B _ _
0o C sl(Wy,) =2 sl(2, k,) =s1(2,k).

Taking into account (51) and the semisimplicity of g,, we conclude that

0o = SI(WO') = 51(27 E) (52)
This implies that

0 C Boenplo = Doengsl(Wy) C Goexn Endg (Wy). (53)
Let o and 7 be distinct elements of Y. Clearly, Wg &) WZ is a g-invariant
subspace of W. Let g, be the image of g in Enc},;(Wa @ W;). Since gy, r is
isomorphic to a quotient of g, it is a semisimple k-Lie algebra such that

907 C sl(W,) @ sl(W;) C Endg(W,) ® Endi(W,) C End(W, @ Wy).
Notice that g, projects surjectively on both

9o =sl(W,) and g, = sl(W,),

because g does. The simplicity of both mutually isomorphic Lie algebras

sl(Wy) and sl(W;) and the semisimplicity of g, implies that either

Oo,r = sl(Wy) & sl(W;) (54)

or

Go.r 2 sl(W,) = sl(W) 2 s1(2, k).
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In the latter case the g, -modules W, and W, are isomorphic, because the
Lie algebra s1(2, k) has precisely one nontrivial 2-dimensional representation
over k, up to an isomorphism. This implies that the g-modules W, and W,
are isomorphic as well and therefore the centralizer Endg(W) is noncommu-
tative, which is not the case. The obtained contradiction proves that the
equality (54) holds for any o, 7. Now, it follows from Lemma on p. 790-791

of [24] that

@ = @O'EZKga' = @JEZKSI(WU)'
This implies that

dimz(g) = 39 = dimysl(W/K).
By (47), g C sl(W/K). Taking into account that dimg(g) = dimg(g), we
conclude that dimy(g) = dimgsl(W/K). This implies that g = sl(W/K),
which ends the proof.

O

O

Theorem 6.3. Let T a simple complex torus of dimension g > 2. Suppose
that End®(T) is a number field E of degree g and

Hdg(T) = Resp/oSL((Hi (T, Q)/ E) -
Then the following conditions are equivalent.

(i) T is 2-simple.
(ii) E is almost doubly transitive.

Theorem 6.3 is an immediate corollary of the following observation applied
to
k=Q, K=FE, W=H(T,Q).

Lemma 6.4. Let g be a positive integer > 2, W a 2g-dimensional vector
space over a field k of characteristic 0, g C Endg(W) a linear semisimple
k-subalgebra such that the centralizer of g

K :=EndgW C End, (W)

is an overfield of k such that [K : k] = g, and g = s(W/K) is the Lie algebra
of traceless K -linear operators in W.
Then the following conditions are equivalent.

(i) The g-module NiW s a direct sum of its submodule (/\iVV)g of g-
mvariants and a simple g-module.
(ii) The g-module Hom(AZW, k) is a direct sum of its submodule Hom(AZW, k)9
of g-invariants and a simple g-module.
(iii) Let Gal(k) = Aut(k/k) be the absolute Galois group of k. Let Sk be
the set of k-linear field embeddings K < k. Then the natural action
of Gal(k) on Xk is almost doubly transitive.

Remark 6.5. The equivalence of (i) and (ii) follows readily from the semisim-
plicity of g.
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Corollary 6.6. Let T a simple complex torus of dimension 3. Suppose that
End®(T) is a cubic number field E and
Hdg(T) = RespoSL((H1(T,Q)/E) .
Then T s 2-simple.
Proof of Corollary 6.6. The result follows readily from Theorem 6.3, since

every transitive action on the 3-element set X is almost doubly transitive.
O

Proof of Lemma 6.4. We use the notation of the Proof of Lemma 6.2. In
particular,

8o = sl(W,), Oo,r = sSW,) @ sl(W,) Yo, 7 € X, 0 # T
W = @oesWo, 8= Poenyos -
Let us start with the g-module
W =W, W — W.
There is an involution
S W2 W2 u@veveu,

whose subspace of invariants is the symmetric square S%W of W and the
subspace of anti-invariants is the exterior square /\%W. Clearly, 6 commutes
with the action of g; in particular, both S%W and /\%W are g-invariant
subspaces of the tensor square of W.

Let us consider the g-module

W2 .= W Qf w.
Extending by k-linearity the involution d, we get the involution
bW W u@uv—veu,

whose subspace of invariants is the symmetric square S%W of W and the
subspace of anti-invariants is the exterior square /\%W. Clearly, 6 commutes
with the action of g; in particular, both S%W and /\%V_V are g-invariant
subspaces of W®2,

Let us choose an order on ¥g. Let X2 be the set of all two-element
subsets B of ¥ with

B={o,1}; 0,71 € XK; 0 <T. (55)

Let us consider the following decomposition of the g-module W2 into a
direct sum of J-invariant g-submodules

W®2 = <€BU€ZK Ws Ok Wa) D (GBB:{U,T}GZ}KQ (WJ % WT) 2] (WT F Wa)) .
(56)
Clearly, the action of the Lie algebra g on the tensor product W, @ W,
factors through
g0 = SI(WU)
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while the action of g on
WE = (W, @ Wy) & (Wr @ W)
factors through
4(B) = Go,r = sl(Ws) @ sl(W;) with B = {o,7}.
We have
W, @5 Wo = SEW, & A2W,

where first summand is a simple g,-module that lies in S%W while the action
of g, (and therefore of g) on the second one is trivial.

Both 9B) = go,--modules W, @z W, and W, @z W, are faithful simple;

in addition, they are mutually isomorphic. Let us split W(5) into a direct

sum
W = @ g @)

of the subspaces WJ(FB) of 5-invariants and W) of §-anti-invariants. Clearly,

both subspaces are nonzero g, r-invariant subspaces and therefore are non-
trivial simple g, --modules that are isomorphic to

W, @5 Wr 2 W, @ W,.
The last sentence remains true if we replace “g, --modules” by “g-modules”.
Obviously,
WP cs2w, w c a2
It follows from (56) that the g-module AZW splits into a direct sum of
the trivial g-module @sex /\% W, and a direct sum of nontrivial mutually

non-isomorphic simple g-modules G pex K’QWE; . So,

SIW = (@ SIWs) © (Dpenic, W) (57)
/\%V_V = (@UEEK /\% WJ) ® (@BEZK,QWEB)> . (58)

Clearly,
WO = @gex, N2 Ws
coincides with the subspace of all g-invariants in /\%W.

Notice that Gal(k) acts naturally on both ¥x and Yo in such a way
that for all s € Gal(K)

- : = (sB)

s (NBWo) = N3 Wi, s (W) = WL (59)
for all s € Gal(k); it follows that
W =W
It is also clear that if we put
U= @pesy, WP c A2W. (60)
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then sU = U for all s € Gal(k). This implies that both W' and U are

defined over k, i.e., there are vector k-subspaces Wﬁol) and U of /\iW such
that

WEO) = WEO) . k, U=U®y k.
It follows from (58) and (60) that

2w =w9gu. (61)

The g-invariance of both k-vector subspaces WSO) and U implies that both
_ (0)
k-vector subspaces W

that WEO) coincides with the subspace (/\zI/V)g of all g-invariants in AFW.
Combining this with (61), we obtain that the property (i) of our Lemma is
equivalent to the simplicity of the g-module U.

Let O be a Gal(k)-orbit in Xk . Let us consider the corresponding g-
submodule of U defined by

and U are g-submodules of /\zW. It is also clear

0o =5 w”. (62)
BeO

Clearly, sUC = U for all s € Gal(K). This means that U is defined over
k, i.e., there is a g-submodule U? of U such that
U° =U° @y k.

Since all the summands in the RHS of (62) are mutually non-isomorphic
simple g-modules that (in light of (59)) are permuted transitively by Gal(k),
we conclude that U is a simple g-submodule of U. Clearly, U° = U if and
only if O = X 5, i.e., if and only if the action of Gal(k) on X o is transitive.
This implies that the g-module U is simple if and only if the action of Gal(k)
on Y o is transitive. It follows that conditions (i) and (iii) of our Lemma are
equivalent. We have already seen that conditions (ii) and (iii) are equivalent.
This ends the proof.

]

Theorem 6.7. Let E be a number field of degree g > 2. Then there exists
a simple g-dimensional complex torus T' =V /A such that

End’(T') = E, Hdg(T') = Resp/oSL((H1(T,Q)/E).
In particular, T is 2-simple if and only if E is almost doubly transitive.

Proof. Let us consider the matrix

Jo = |:_Ol (1):| S Matz(Q) C Matz(E) C Matg(E]R)

where Er := E ®q R is the realification of E. By [20, Prop. 2.8 on p. 19],
there is u € Matg(FERr) such that

J = exp(u)Jyexp(—u) = exp(u)Jyexp(u) ™' € Maty(ER)
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enjoys the following property. If D is a Q-subalgebra of Maty(FE) such that
D = D®q contains J then D = Maty(E). Notice that

Jg =-1, Jpe€ SIQ(ER) C MatQ(ER)

It follows that
J? = -1, Je€ SlQ(ER)MatQ(ER).
Let g be the smallest Q-Lie subalgebra of Mate(E) such that its realifi-
cation
gr = g ®g R C Maty(E) ®g R = Mata(ER)

contains J. Clearly,
g Csly(E) (63)

and the Q-subalgebra of Maty(FE) generated by g coincides with Mate(E).
It makes the 2g-dimensional Q-vector space

E2=FEaoFE

a faithful simple g-module such that the centralizer of g in Endg(E?) coin-
cides with £. This implies that g is a reductive Q-Lie algebra and its center
lies in E. In light of (63), this center is {0}, i.e., g is a semisimple Q-Lie
algebra. Applying Lemma 6.2 to

k=Q, K=E, W=F

we conclude that
g =sl(F). (64)

Now we are ready to construct the desired complex torus 7. The operator
J provides the structure of a complex vector space on

V:=FE’@qR=FE}=Fr®Er

such that J € Endg(V) defines multiplication by i. Pick any Z-lattice of
rank 2¢ in E? and put T := V/A. One may naturally identify A ® Q with
E?. In light of Theorem 5.2, the Q-Lie algebra hdg; coincides with g, i.e.,
hdgy =2 (E). It follows that Hdg(7T) = Resg/oSL((H1(7,Q)/E), which
ends the proof of the forst assertion of our Theorem. Now the second one
follows from Theorem 6.3.

O

Proof of Theorem1.9. The first assertion follows readily from Theorem 6.7
combined with Theorem 4.5 applied to n = g.
In order to prove the second assertion, one should take

s=g—d—1>0, r=g—-2s=9g—-2(¢g—d—1)=2(d+1)—g>0.
O
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7. SEMI-LINEAR ALGEBRA

This section contains auxiliary results that will be used for the study of
Hodge groups of 2-simple tori without nontrivial endomorphisms. In what
follows k stands for a field of characteristic 0 and K for an overfield of &
such that the automorphism group Aut(K/k) of k-linear automorphisms of
K enjoys the following property.

The subfield KAK/R) of Aut(K/k)-invariants coincides with k. (This
property holds if K is an algebraically closed field.)

Definition 7.1. Let V be a finite-dimensional vector space over K and
o € Aut(K/k). Then the finite-dimensional vector space V over K is
defined as follows. Viewed as an additive group, °V coincides with V' but
multiplication by elements a € K is defined in “V" by the formula

a,v o La)v.

Clearly,
dimg (V) = dimg (7).

Remark 7.2. (1) If z € Endg (V) is a K-linear operator in V then
(e a)w) = o Y a)z(v) Vae K,ve’ V.

In other words, one may view x as a K-linear operator in V that we
denote by %id(z) € Endg (7V).
(2) Let m :=dimg (V) > 0, and {ey,...,en} be a basis of V. Then one

may view {ei,...,en} as a basis of V.
If A = (ai;)]%_; is the matrix of € Endg (V) with respect to
{e1,...,em} then obviously o(A) = (0(aij)){—; is the matrix of

7z € Endg (V) with respect to {e1,...,en}.
Lemma 7.3. The formula
%id : Endg (V) = Endg (°V), z+— {v— z(v)} Ve € Endg(V), vV =V

defines a ring isomorphism that enjoys the following properties.
(i) “id(az) = o(a) - %id(z) Va € K,z € Endg (V).
(i) Let
Px,min(t)a Px,char(t) € K[t]

be the minimal and characteristic polynomials of x respectively.
Then the minimal and characteristic polynomials of 7id(z) coin-
cide with 0(Pymin(t)) and o(Pychar(t)) respectively.
(iii) If a € K is the trace of x € Endg (V) then o(a) is the trace of
%id(x) € Endg (7V).

Proof. (i) is obvious. Both assertions (ii) and (iii) follow from Remark 7.2.
O
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Let Vy be a finite-dimensional k-vector space and
Vi=Tyx(V)=)Vo®, K
the corresponding K-vector space endowed by the following semi-linear ac-
tion of Aut(K/k).
o(vo®a) =vy®o(a) Yae K,vg € V.
We will identify Vy with the k-subspace
VoR1={vo®@1|vg€Vo} CVo®p K =V.

Clearly, the k-vector subspace Vy = Vy ® 1 coincides with the k-vector
subspace VAUE/E) of Aut(K/k)-invariants.
The next asertion is probably known but I was unable to find a reference.

Lemma 7.4. Let W be a K-vector subspace of V. Then the following con-
ditions are equivalent.

(1) V is Aut(K/k)-invariant.

(ii) There exists a k-vector subspace Wy of Vo such that
W= Tk,K(WO) =Wk K = {w0®a ‘ wg € W, a € K} C V@i K = Tk7K(V0).
If this is the case then Wy =W N V.

Proof. Let us put
m = dim; (Vo) = dimg (V); n:=dimg(W) < m.

If either n = 0 or n = m then the desired result is obvious. So, we may and
will assume that 0 < n < m, i.e.,

1<n<m-1, m2>2.

Let us fix a k-basis {ey, ..., en} of Vy, which we will view as a K-basis of
V.

Step 1. Assume that n = 1. Take a nonzero vector w € W. Then at
least one of its coefficients with respect to our basis is not 0, i.e.,

n
w = Zaiei, a; € K
i=1
and 35 € {1,...,n} such that a; # 0. Replacing w by aj_lw € W, we may
and will assume that a; = 1. Then
n
K-w=W>3o0(w) = Za(ai)ei Vo € Aut(K/k).
i=1
We have

and
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Since both w and o(w) have the same (non-zero) jth coordinate, we conclude
that o(w) = w for all o, i.e., all the coefficients a; € k and therefore w € Vg
and W =W, ®; K with
Wo=Fk- -we).
So, we have proven our assertion in the case of n = 1.
Step 2. Let us prove that the k-vector subspace of Aut(K)-invariants

Wo := WARETR) — w11 (65)

is not {0}. Let us use induction by n and m. By Step 1, our assertion is
true for n = 1. This implies its validity for for m = 2. So, we may assume
that

l<n<m>2.

Let us consider the hyperplanes

m—1 m—1
Ho=> k-eiCVo, H=Tpx(Ho)=Ho&k K=Y K-e;CW.
i=1 =1

Clearly, the intersection
Wa=WNHCH

is an Aut(K/k)-invariant subspace of both W and H. Clearly, either Wy =
W or dimg (Wpg) = n—1 > 0. In the former case Wy is Aut(K/k)-invariant
subspace of the (m — 1)-dimensional K-vector space H = Ho ®x K. Now
the induction assumption for m (applied to H instead of V) implies that

WO _ WAut(K/k) _ (WH)Aut(K/k) ?é 0.

In the latter case, the induction assumption for n applied to Wy implies
that (Wy)AE/E) oL 0. Since W D Wy, we get WAUE/R) —£ 0 which ends
the proof.

Step 3 We have

T;@K(Wo) = Wo QR K C W.
This implies that
no = dim(Wp) < dimg (W) = n.

The assertion of our Lemma actually means that the equality holds. By Step
2, ng > 0. Suppose that ny < n and choose in Vy a (n — np)-dimensional
k-vector subspace Uy such that Uy N Wy = {0} (i.e., Vo = Wy @ Up). Let us
consider the (m — ng)-dimensional K-vector subspace

U= Tk,K(UO) =Uy R K C V.
Clearly,
V=TpxWo) ®Trr(lU) =TrxWo) ®U,

and therefore
Un Tk,K(WO) = {0}
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Dimension arguments imply that 4; := U N W is a nonzero Aut(K/k)-

invariant K-vector subspace of V. By Step 2, the subspace U; := Z/I? ut(K/k) #*

{0}; on the other hand, Uf; obviously lies in WA™(E/E) but meets the latter
only at {0}. The obtained contradiction proves that ng = n;, which ends
the proof. O

Remark 7.5. Let us consider the dual vector spaces
Vo = Homy (Vp, k), V™ =Homg(V, K).
Obviously, the restriction map
resg V' = Homg (V, K) = Homg (Vo®, K, K) — Homy(Vp, K), ¢ — {vg — ¢(vo®1)}

is a Aut(K/k)-equivariant isomorphism of K-vector spaces where the actions
of Aut(K/k) are defined as follows.

c:proopot Vo€ Homg(V, K),
o1 ¢o = {vo > a(¢o(vo)) Yoo € Homy(Vp, K)
for all o € Aut(K/k). As usual, we have
o(@)(oc(v)) =0o(od(v)) YveV,peV* oe Aut(K/k).

7.6. What is discussed in this section (and in Theorem 7.13 below) is pretty
well known in the case of K = R and K = C, see [19].
Let u be a Lie k-algebra of finite dimension and

u=u, K
the corresponding finite-dimensional Lie K-algebra. Let
p:u— Endg (V)

be a homomorphism of Lie k-algebras. Extending p by K-linearity, we get
the homomorphism of Lie K-algebras

p:u— Endg(V),
which coincides with p on
u=u®l Cu®; K =u.

Thus p endows V with the structure of a ti-module.
If 0 € Aut(K/k) then we may define the composition

7p 15 Endg (V) 2 Endg (7)),

which is a homomorphism of k-Lie algebras. Then the corresponding homo-
morphism of Lie K-algebras

p:u— Endg (7)),

provides ?V with the structure of a t-module.
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Remark 7.7. Let VW be a K-vector subspace of V. Clearly, W is u-invariant
if and only if it is u-invariant. It follows easily that W is a ui-submodule of
V if and only if it is a u-submodule of V. This implies that the ti-module
V is simple if and only if the ti-module ?V is simple.

7.8. Let 1y be a finite dimensional k-vector space endowed with a homo-
morphism of k-Lie algebras

po U — Endk(Vo)

that endowed V), with the structure of a u-module. Let us consider the K-
vector space V := V) ®; K and the obvious homomorphism of k-Lie algebras

po®1:u=u®l— Endpy(Vy) @ K = Endg (Vo ® K) = Endg (V).

obtained from pg by extension of scalars.

Let W be a u-invariant K-vector subspace of V. If 0 € Aut(K/k) then
obviously o(W) is also a u-invariant K-vector subspace of V. Clearly, both
W and o(W) carry the natural structure of modules over the Lie K-algebra

u=uy; K.
We will need the following assertion.
Proposition 7.9. The ti-modules o~ (W) and °W are isomorphic.

Proof. 1t suffices to check that the u-modules o(W) and ?V are isomorphic.
Let us consider the k-linear isomorphism

II:0(W) =W, o(w)— o(w) Vw e W.
Actually, 1T is K-linear, because for all a € K,w € W the vector
ac(w) = o (a)w) € W

(recall that in )V multiplication by a is defined as multiplication by o ~!(a)).
Clearly, the actions of u and Aut(K/k) on V do commute. This implies that

MMoo=00oIl VoeAut(K/k).

It follows that II is an isomorphism of u-modules, which ends the proof.
O

Till the end of this section we assume that K is algebraically closed (e.g.,
K is an algebraic closure of k). Let g be a nonzero semisimple finite-
dimensional Lie algebra over k of rank [ and consider the corresponding
semisimple finite-dimensional Lie algebra

g:=gQ; K
over K. If § is a Cartan subalgebra of g then
dimg(h) = 1.

We write
hi=h@ K CgQr K =g
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for the corresponding Cartan subalgebra of g; we have

dimg (h) = 1.
As usual, let us consider the dual K-vector space
h* := Homg (b, K)
of K-dimension [ endowed by the action of Aut(K/k) defined by the formula
o {psoogpool} Vo:h— K

and o € Aut(K/k). As above, the restriction map

resg i : b* := Homg (h, K) — Homg(h, K)
is an isomorphism of K-vector spaces. (Here as above we identify h with

holcherK=5)
The inverse map
res;. : Homy,(h, K') — Homp (h, K) = Homg (h @ K, K),
is described explicitly by the formula
p—{h®a—a-puh)} VYhebhaekK.

Let R C b* be the root system of (g, b) [9]. By definition, R consists of
all nonzero a € h* such that

go:={z€g|[H a] =a(H)z VH € b} # {0}.
Clearly,
§o={z€§|[H 2] =a(H)z VH € b}
and therefore
0(a) = Bo(a) Vo € Aut(K/k).
It follows that the subset R of h* is Aut(K/k)-invariant. We write

W(R) C Autg(b*)

for the Weyl group of the root system R. Notice that W(R) permutes
elements of R.

Let us choose a basis (a simple root system) B of R. The l-element set B is
a basis of the K-vector space h*. Every root o € R is a linear combination of
elements of B with integer coefficients; in addition, the nonzero coefficients
are either all positive or all negative. (Actually, these properties characterize
a basis of R.) This implies the equality of abelian subgroups

Z-R:=) Z-a=>» Z-p (66)
a€ER peB
Z- R is a free abelian group of rank [ that is a W(R)-invariant subgroup of
b*.
The set B does not have to be Aut(K/k)-invariant. However, if o €
Aut(K/k) then o(B) is a basis of R as well. Since the Weyl group W(R) acts
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transitively on the set of all simple root systems of R, there is w, € W(R)
such that

wo(0(B)) = B
(compare with [22, p. 203]). In particular,

Se = Wy 0 0 € Autg(h)

permutes elements of B. It is also clear that s, permutes elements of R.
Hence, Z - R is s,-invariant.

7.10. Throughout this subsection we use the notation and constructions of
Subsection 7.6 applied to

u=g, u=g.
Let V be a nonzero finite-dimensional vector space over K endowed by the
homomorphism of K-algebras

g — Endg(V), (67)
which may be viewed (in the notation of Subsection 7.6) as p where
p:g— Endg(V)

is the restriction of the homomorphism (67) to g = g®1. The homomorphism
p that appeared in (67) provides V with the structure of a g-module. Let us
assume that this module is simple.

Let us consider the set

Supp(V) C b*
of weights of the g-module V, i.e., u € b* lies in Supp(V) if and only if the
weight subspace

Vii={v eV | p(H)@) = u(H)v VH € b} # {0},
Then
Supp(V) CQ-R:=> Q-a=:» Q-BCH", (68)
aER peB
and there exists the highest weight A of the g-module V that enjoys the
following properties.
(i) X € Supp(V).
(ii) If g € Supp(V) then X — p is a linear combination of elements of B
with nonnegative integer coefficients.

Remark 7.11. It is well known that:
(i)
Supp(V)C Y Q-8=Q:R.
BEB
(ii) The subset Supp(V) is W(R)-invariant.
Remark 7.12. It follows from the W(R)-invariance of Z - R (defined in
(66)) that the [-dimensional Q-vector (sub)space Q - R is W(R)-invariant.
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Recall (Subsection 7.6) that one may attach to each o € Aut(K/k) the
homomorphism of Lie K-algebras
% g — EndK(UV),
and the corresponding g-module °V is simple.

Theorem 7.13. Suppose that X is the dominant weight of a simple g-module
V of finite dimension. If o € Aut(K/k) then s,-1(X) is the dominant weight
of the simple g-module 7V .

Proof. First, notice that

Supp("V) = o(Supp(V))-
Indeed, for any
HebcCh,
the spectrum of the diagonalizable operator p(H) in V is the collection

{w(H) | p € Supp(V)} (with multiplicities). In light of Lemma 7.3, the
spectrum of the diagonalizable operator %id o p(H) in ?V is the collection

{o(u(H)) | p € Supp(V)}

(with multiplicities). More precisely, let n = dim(} and {e1,...,e,} be a
common (weight) eigenbasis of all elements of  in V, i.e., for each index
i€ {l,...,n} there is a weight

pi € Supp(V) € b*
such that
p(H)(e;) = pi(H)e; VH € b.
(Clearly, the collection {1, ..., pun} coincides with Supp(V).) In light of
Lemma 7.3, {e1,...,e,} is a basis of °V, and if H € b, then H = ¢~ ' H and

“id o p(H)(e;) = (0~ (wi(H))e; = o(pui(o™ " H))e; = (U(Mz‘))(H)(eizég)
Since h = h ®;, K, we conclude that
Tp(H)(ei) = (o(us))(H)e; YH € b. (70)
In other words,

Supp(“V) ={oop;|i=1,....,n} ={oopu|pe Supp(V)}.
Second, the W(R)-invariance of Supp(?V) implies that

Supp(?V) = w, 0 a(Supp(V)) = (w, © 7)(Supp(V)) = s5(Supp(V)).
It follows that Supp(?V) contains s, (), and all the other weights in Supp(?V)
are of the form s,(u) where A — p is is a linear combination of elements of
B with nonnegative integer coefficients. Since s, permutes elements of B,
the difference s,(A) — sy(1) is also a linear combination of elements of B
with nonnegative integer coefficients. It follows that s, () is the dominant

weight of the simple g-module 7V.
O
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8. 2-SIMPLE COMPLEX TORI WITHOUT NONTRIVIAL ENDOMORPHISMS

Theorem 8.1. Suppose that T is a 2-simple complex torus of dimension
g > 3 with End®(T) = Q. Assume also that g # 10 and 2g is not a power
(e.g., g is odd) . Then Hdg(T) enjoys one of the following properties.

(i) Hdg(T) = SL(Ag);

(ii) There exists a nondegenerate symmetric Q-bilinear form
AQ X AQ — Q

such that Hdg(T') coincides with the corresponding special orthoginal
group SO(Aq).
(iii) There exists a nondegenerate alternating Q-bilinear form

AQXAQ-)Q

such that Hdg(T') coincides with the corresponding symplectic group
Sp(Ag)-

Proof. It follows from Corollary 5.12 that hdgp ¢ is a complex simple classi-
cal Lie algebra, whose natural faithful representation in A¢ has a minuscule
weight as the highest weight, thanks to Theorem 5.10. Since 2¢g = dim¢(Ac)
is not a power of 2, one should exclude the cases when either hdgy ¢ is of
type B, or hdgy ¢ is of type Dy and I'c is one of its two semi-spinorial
representations. Let us list the remaining cases.

(i) hdgyc is of type Cg or Dg, and there is a nondegenerate alternating
or symmetric bilinear form on A¢ such that hdg; ¢ coincides with the
corresponding symplectic Lie algebra sp(Ac) or the corresponding
orthogonal Lie algebra so(Ac).

(ii) hdgy ¢ is of type Ay, i.e., hdgy ¢ may be identified with the Lie
algebra sl(W) of a (I4+1)-dimensional complex vector space W in such
a way that the sl(W)-module Ac¢ is isomorphic to the jth exterior
power AL(W) of W for some integer j with 1 < j < I. We may
assume that 1 < j <.

Let us handle the case (i). In this situation the hdgs c-module Ac is
self-dual, which implies that there is a non-zero homomorphism between
the hdgy c-module Ac and its dual. This, in turn, implies that there is
a non-zero homomorphism between the hdgy g-module Ag and its dual.
Now the simplicity of the hdgp-module Ag implies that Ag and its dual are
isomorphic, i.e., there is a nondegenerate hdgp-invariant bilinear form

AQXAQ-)Q.

The absolutely simplicity of the hdg, g-module Ag implies that this form is
unique (up to multiplication by a non-zero rational number) and therefore
is alternating if hdgy; is of type Cg or symmetric if hdgy is of type Dg. Now
the dimension arguments imply that hdgy = sp(Ac) in the former case and
hdg; = so(Ac) in the latter case.
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Let us handle the case (ii). We know that 7' = V//A where the hdg; ¢ =
s[(W)-module V¢ is isomorphic to AL(WW).

If [ = 1 then the inequality 1 < j <! =1 implies that this case does not
occur.

If | = 2 then the inequality 1 < j < [ = 2 implies that 7 = 1 and V¢ is
isomorphic to W, which is a 3-dimensional complel vector space. Since 3 is
an odd integer and the C-dimension of V¢ is even, this case also does not
occur.

If I = 3 then the inequality 1 < j < [ = 3 implies that 7 = 2 and V¢
is isomorphic to /\(%W where W is a 4-dimensional complex vector space
and /\?CW is an irreducible 6-dimensional orthogonal representation of the
Lie algebra sl(W). This implies that the representation of hdgy ¢ in the
6-dimensional complex vector space V¢ is orthogonal irreducible. It follows
that

dimg(Ag) = dimc(W) =6
and hdgy is a Q-Lie subalgebra so(Ag) of the corresponding special or-
thogonal group SO(Aq). It follows that the representation of hdgy in the
6-dimensional Q-vector space Ag is orthogonal irreducible and therefore

dim@(hdgT) < dim@(so(AQ) = 15.
However,
dimg(hdgy) = dimc (hdgy ¢) = dime(sl(W)) = 15.

This implies that hdgy coincides with so(Ag), i.e., Hdgy coincides with
SO(Ag).

So, we may and will assume that [ > 3. Then there is an element u €
s[(W) that acts on Vi as J. Since J is a nonzero semisimple linear operator
in Vg, the element u is also a semisimple (i.e., diagonalizable) nonzero linear
operator in W. Let {e1, ..., €1} be an eigenbasis of W and {z1,...,2141} C
C be the corresponding eigenvalues of u, i.e,

ule;)) =ziegi=1,...,0+1

and the trace
+1

Z Z; = 0.
i=1

This implies that u has at least two distinct eigenvalues.
Then the collections of eigenvalues of J in Vg = AL(W) listed with mul-
tiplicities coincides with
{t A= Z ZZ‘} A

€A
where A runs through all j-element subsets A of {1,...,l+1}. On the other
hand, we know that the spectrum of J in V¢ consists of two eigenvalues i
and —1i, whose multiplicities coincide. It follows almost immediately that
u has precisely two (distinct) eigenvalues, say, a and b, and none of them
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is 0. Indeed, suppose that that the spectrum of u contains (at least) three
eigenvalues, say, a, b, c.
Reordering the eigenbasis if necessary, we may assume that
z1=a, 29 =Db, z3=c.
Let B be any (j — 2)-element subset of {4,...,l+ 1) Let us consider three
distinct j-element subsets
A = {2,3} UB, Ay = {1,3} UB, A3 = {1,2} UB
of {1,...,1+1}. If we put
C:={1,2,3}uBC{l,...,l+1}, c::Zzi eC
1eC
then we get three distinct eigenvalues
ta, =c—a, tg,=c—b, tg;,=c—c

of J, which do not exist. This proves the spectrum of u consists of precisely
two eigenvalues, say, a,b € C. Since the trace of nonzero u is 0, both a and
b are not zero.

Let p be the multiplicity of the eigenvalue a and ¢ the multiplicity of the
eigenvalue b. Both p and ¢ are positive integers, whose sum

p+qg=1+1>3+1=4

Since u is traceless,

pa+ gb = 0.
I claim that either p =1 or ¢ = 1. Indeed, suppose that

p=2q22.
Since p + ¢ > 4, we may assume that p > 3. Notice also that all three
complex numbers

2a, 2b, a+b
are distinct. Reordering the eigenbasis if necessary, we may assume that

z1=a, zp=a,z23=a, z1=0b, z;;1 =Db

(recall that I + 1 > 4).
Let B be a (j—2)-element subset of the (I—3)-element subset of {3,4,...,[—
1} and b:= ), g 2. Let us consider three distinct j-element subsets

Ay ={1,2}UB, Ay ={l,l+1}UB, A3={1,l}UB
of {1,...,1+ 1}. Then we get three distinct eigenvalues
ta, =b+2a, tg,=b+2b, t4,=b+ (a+Db)
of J, which could not be the case. The obtained contradiction proves that
either p=1or ¢ =1.
Without loss of generality we may assume that p = 1. Reordering the

eigenbasis if necessary, we may assume that z; = a and all other z; = b
(for all ¢ > 1). It follows easily that the spectrum of J consists of two
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eigenvalues, namely, jb of multiplicity (Jl) and a + (7 — 1)b of multiplicity
(jil). It follows that

@:(ail>

=1, l—j+1=4j, 1=2j—1

i.e.,
l—j5+1
J
It remains to put m = j and we get that

2
l=2m—1, j =m, 2g:<m).
m

Since 2m — 1 =1 > 3, we get
m > 3. (71)

Now it is natural to look at the structure of the s[(W)-module AZ (AZ(W)).
We are going to apply results of Section 7 with

k=Q, K=C, Aut(K/k) = Aut(C),

g =hdgy, §=hdgrc, V=n3(AGAg), V= AZ(AFAc).

Let us fix a Cartan subalgebra h of the simple Lie Q-algebra hdgy, which
is a [-dimensional Q-vector space. Then

6:[)@@@@

is a Cartan subalgebra of the complex simple Lie algebra hdgy ¢ that is a
[-dimensional complex vector space endowed with the natural semi-linear
Aut(C)-action; its subalgebra of invariants coincides with h ® 1 = b.

As in Section 7, let us consider the dual complex vector space

h* = Home(h, C).
Let

Rch
be the root system of (hdgyc,b).

Let us choose a simple root system B of simple roots (basis) of R and let
P, (R) C " be the corresponding semigroup of dominant weights [8].

If p € Py (R) then we write V(u) for the simple hdgy c-module with
highest weight 1 [9]. In particular, V(0) stands for the one-dimensional
Q-vector space Q with trivial (zero) action of hdgrc. Then the (2;:)—

dimensional Q-vector space
A= Ag ®q Q

becomes a simple hdgy c-module that is isomorphic to V(w,,). Hereafter
we use the notation of Bourbaki ([8, Tables|, [9, Tables]). In particular,

B={ay,...,oq} ={a1,...,aom-1}
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(see Root systems of type A, in [8, Tables|), and w; is the dominant weight of
a fundamental representation of dimension (27:”) (when1 <i<l=2m-—1),
see [9, Table 2]|. In addition, we put

wo = 0 =: Wop.
Notice that the only nontrivial automorphism of (R, B) is the involution
O — Oo9m—4 Vi:1,...,2m—1:l.

Hence, each dominant weight wy,4; + Wm—; is Aut(R, B)-invariant for all
1=0,...,2m.

It follows from results of [16, p. 140, Example 9a, last displayed formula]
(see also [15, Exercises 6.16 on p. 81 and 15.32 on p. 226|) that the g =
hdgz c-module

is isomorphic to a direct sum
®i odd, 1<i<m V (@mti + Om—i)- (72)

This implies that the g-module V splits into a direct sum of mutually non-
isomorphic simple g-modules; one of them is trivial if and only if m is odd
(one should take i = m in order to get the summand V(0).)

Let W be a simple g-submodule of V. Let Ay be the highest weight of
W. We know that Ay is Aut(R, B)-invariant. It follows from Theorem 7.13
combined with Proposition 7.9 that the simple g-submodules W and o (W)
have the same highest weight and therefore are isomorphic. This implies
that

oW =W VYo € Aut(C).
By Lemma 7.4, W is defined over Q, i.e., there is a Q-vector subspace W of
V such that
W =W ®qC.
Clearly, such W is a simple hdg;-submodule of V. It follows from (72) that
the hdgpr-module V splits into a direct sum

Di odd, 1<i<m Wi. (73)
of hdg,-modules such that
V(@mti + @m—i) = Toc(W;) = W; ®q C.

This implies that all W; are mutually non-isomorphic simple hdg;-modules.
In adddition, one of them is trivial if and only if m is odd. (Namely, if m is
odd then W,, is a trivial hdg;-module of Q-dimension 1.)

Thus, if m is even, then the hdgp-module V splits into a direct sum of
(m/2) simple modules, none of which is trivial. If m is odd, then the hdg-
module V splits into a direct sum of (m+1)/2) simple modules, and precisely
one of them is trivial. It follows that hdgpr-module V is simple if and only
if m = 2. Since m > 3 (71), we conclude that V is never simple. On the
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other hand, it’s clear that V is a direct sum of a simple hdg;-module and a
trivial one if and only if m = 3.
Recall that we are actually interested in the dual hdgr-module

H?(T,Q) = Homg(V, Q).

By duality, the hdgp-module is never simple; it is a direct sum of a simple
hdgp-module and a trivial one if and only if m = 3. Now the 2-simplicity
of T implies that m = 3 and therefore

2-3
29 = =20
o= (%) =

ie., g = 10. O
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