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1. INTRODUCTION

Throughout this article, we fix a prime p.
Let d, d be integers such that 0 < d’ < d. Let n € N.

1.1. A theorem of E. Lau. The notion of n-truncated Barsotti-Tate group was introduced
by Grothendieck |[Gr|. We recall it in §3.

n-truncated Barsotti-Tate groups of height d and dimension d’ < d form an algebraic stack
over Z, denoted by B7%? (see §3.1.4 for more details). This stack is rather mysterious.

Let AT Z’d = 7% @ F,. Using (a covariant version of) crystalline Dieudonné theory,

/

E. Lau defined in |[L13] a canonical morphism ¢, : A7 f;d — Dispfl’dl, where Dispi’d/ is a
certain explicit algebraic stack! over F, (which is called the stack of n-truncated displays of
height d and dimension d'). Moreover, he proved the following

Theorem 1.1.1. (i) The morphism ¢, : W:’dl — Disp‘fl’d/ 1s a gerbe banded by a commu-
tative locally free finite group scheme over Dispi’d’, which we denote by Lauf;d,.

(i) The group scheme Laufl’d/ has order p" =) and is killed by F", where F is the
geometric Frobenius.

This theorem of E. Lau is a combination of [L13, Thm. B| and |L13, Rem. 4.8|.

1.2. Main results. In this article we describe Laui’dl explictly. We also prove a property
of Lauf;d,, which we call n-smoothness®. A group scheme G over an F,-scheme S is said to

1Dispﬁ’d/ was defined in [L13| using Th. Zink’s ideas.
2In |Gr, §VIL.2] Grothendieck used a different name for this property.
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be n-smooth if locally on S, there exists an isomorphism of pointed S-schemes
G 5 8 xSpec Ay, Apyi=TFylzy, .. x]/ @, 22"

for some r € Z, (here Spec A, , is viewed as a pointed F,-scheme). If n > 1 then n-
smoothness is stronger than being a finite locally free group scheme killed by F™.

1.3. The description of Laui’d/. The stack Dispf;d, is very explicit: it is the quotient of
the [F,-scheme GL(d,W,) by an explicit action of a certain group scheme, see §B.0.6 of
Appendix B (which goes back to [LZ]). In this article we give an explicit description of the
group scheme Laufll’d/, see Theorem 9.1.5. Namely, Lauf;dl is obtained by applying the Zink
functor (see §7) to a certain n-truncated semidisplay on Disp>® (in the sense of §6).
Moreover, in §C.7 of Appendix C we describe the Cartier dual (Laui’d/)* as an explicit
closed subgroup of a very simple smooth group scheme over Dispd’dl. In fact, we describe there

n
the Cartier duals of more general group schemes Lauf’“ discussed in the next subsection.

1.4. A “Shimurian” generalization of LauZ’d/ and two conjectures. For any smooth
affine group scheme G over Z/p"Z and any 1-bounded® homomorphism p : G,, — G, one
has certain stacks? Disp®* and BTS* (hopefully, they are related to Shimura varieties);
in the case G = GL(d) these are the stacks Disp?® and Z7% where d' depends on .
In Appendix C we formulate Conjecture C.5.3, which says that BTS* ®IF, is a gerbe over
DispS* banded by a certain commutative group scheme Lau$*. The definition of Lau&*
given in Appendix C is inspired by our description of Lauf;d/; in fact, Laufb’d/ is a particular
case of Lau®*. In some sense, the main result of this article is that Conjecture C.5.3 is true
for G = GL(d).

We also give a conjectural description of the stack BTS’” for any 1-bounded p and any n,
see Conjecture D.8.4.

1.5. Organization. In §2 we discuss the notion of n-smoothness and the Cartier-dual notion
of n-cosmoothness. In §2.4.4-2.4.9 we study the natural tensor structure on the category of
1-cosmooth group schemes; Corollary 2.4.8 is used in the proof of Theorems 4.2.2 and 4.4.2.

In §3.1 we recall the notion of n-truncated Barsotti-Tate group. In §3.2 we discuss auto-
morphisms of such groups.

In §4 we formulate Theorems 4.2.2 and 4.4.2, which provide some information about Laui’d/
(including n-smoothness). To transform Theorem 4.4.2 into an explicit description of Laui’d’,
we need further steps, which are briefly discussed in §4.5.

In §5 we prove Theorems 4.2.2 and 4.4.2.

In §6 we introduce the stack of n-truncated semidisplays and two related stacks (weak and
strong n-truncated semidisplays).

In §7 we discuss the Zink functor 3.

In §8 we prove Proposition 8.1.1, which plays a key role in the proof of Theorem 9.1.5.

In §9 we formulate and prove Theorem 9.1.5, which gives an explicit description of Laui’d'.
The proof uses [LZ, Lemma 3.12].

In §10 we discuss the category of n-truncated higher displays from [L21]. We use it to
reformulate a certain construction from §9.1.3 in a way convenient for Appendix C.

31-boundedness means that all weights of the action of G, on Lie(G) are < 1.
4Disp§’“ was defined in [BP, L21]; we recall the definition in Appendix C. For BTS’” see [GM].
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In Appendix A we recall the description of the Cartier dual of the group of Witt vectors
(p-typical or “big” ones).

In Appendix B we describe the stacks from §6 in very explicit terms.

In Appendix C we define the group scheme Lauf’” mentioned in §1.4 and formulate Con-
jecture C.5.3. Using §10, we show that Laui’dl is a particular case of Laug’” . We also describe
(Lau$*)* very explicitly.

In Appendix D we formulate Conjecture D.8.4 describing the stack BTE’“ for any 1-
bounded p and any n.

1.6. Simplifications if n = 1. A complete description of Lau‘f’d/ is given already by Theo-
rem 4.4.2(ii) combined with §9.2.2. Moreover, in the n = 1 case §8 and §10 are unnecessary
and §7 is almost unnecessary (because if n = 1 then the Zink functor 3 from §7 is just the
classical functor from restricted Lie algebras to group schemes of height 1).

1.7. Acknowledgements. This paper is based on the theory of displays developed by
Th. Zink and E. Lau. T also benefited from discussions with them.
On the other hand, Conjecture D.8.4 is strongly influenced by the theory of sheared
prismatization [BMVZ, BKMVZ]| and by my discussions with D. Arinkin and N. Rozenblyum.
The author’s work on this project was partially supported by NSF grant DMS-2001425.

2. Nn-SMOOTHNESS AND n-COSMOOTHNESS

2.1. Recollections on exact sequences of group schemes.
2.1.1. Definition of exactness. Let S be a scheme. A sequence
(2.1) ¢ -La o

of affine group S-schemes is said to be exact if the corresponding sequence of fpqc-sheaves
on the category of S-schemes is exact. If S is the spectrum of a field, exactness just means
that Kerh =Im f.

2.1.2. How to check exactness. Exactness of (2.1) clearly implies fiberwise exactness. Now
suppose we have a diagram (2.1) such that ho f = 0 and G',G,G" are flat schemes of
finite presentation over S. In this situation it is well known (e.g., see [dJ, Prop. 1.1] and its
proof) that if the sequence (2.1) is fiberwise exact then it is exact, Ker h is flat (and finitely
presented) over S and the morphism G’ — Ker h is faithfully flat. The latter implies that
Ker f is flat (and finitely presented) over S.

From now on, let us assume that the group schemes G’, G, G” from the exact sequence (2.1)
are finite and locally free. Then Ker h and Ker f are also finite and locally free. Moreover,
the morphism G/ Kerh — G” is a closed immersion, so if G” is commutative we also have
the group scheme Coker h, which is finite and locally free.

Note that exactness of the fiber of (2.1) over s € S is equivalent to the condition

| Ker hg| = | Im fsl;
this condition is open because | Ker hy| is upper-semicontinuous and |Im f,| is lower-semi-
continuous (since |Im fs| - | Ker f| = |G%|).

If the groups G,G’,G” in a complex (2.1) are commutative then exactness of (2.1) is

equivalent to exactness of the Cartier-dual complex.
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2.2. n-smooth group schemes. From now on, we assume that S is an IF,-scheme.

2.2.1. Pointed S-schemes. By a pointed S-scheme we mean an S-scheme equipped with a
section. We have a forgetful functor from the category of group S-schemes to that of pointed
S-schemes (forget multiplication but remember the unit).

2.2.2. Definition. Let n € N. A group S-scheme G is said to be n-smooth® if Zariski-locally
on S, there exists an isomorphism of pointed S-schemes

(2.2) G =5 S xSpecA,,, A, =F)z,... ,a:r]/(:l:lfn, o)

r

for some r € Z, (here Spec A,,, is viewed as a pointed [F,-scheme).

If G is an n-smooth group S-scheme then the Og-module coLie(G) is a vector bundle. Its
rank is a locally constant function on S, which is called the rank of G. (This is the number r
from (2.2)). It is clear that an n-smooth group S-scheme is finite and locally free; moreover,
its order equals p™", where r is the rank.

The next lemma implies that the property of n-smoothness is fpqc-local with respect to S.

Lemma 2.2.3. Let r € Zy and G a group scheme over an F,-scheme S. The following are
equivalent:

(a) G is n-smooth of rank r;

(b) G is a finite locally free group scheme of order p™ killed by F™, and dim Lie(G5) = r
forall s € S. O

The following variant of Lemma 2.2.3 will be used in §5.1.2.

Lemma 2.2.4. Let r € Z;. Let H be a finite group scheme over an IF,-scheme S. Let
H' C H be a closed subgroup. Suppose that

(i) H is killed by F™;

(1) H' is a finite locally free group S-scheme of order p™;

(i1i) dim Lie(Hy) < r for all s € S.

Then H' = H and H is n-smooth of rank r. O

Proposition 2.2.5. A group S-scheme G is n-smooth if and only if it is finite, locally free,
killed by F™ : G — (Fr'e)*G, and satisfies the following condition: the complex

(2.3) ¢ 5 (B TS ()G
is an exact sequence for every m € {1,...,n — 1}.

This is due to W. Messing [Me72, Prop. 11.2.1.2] and Grothendieck (see Proposition 2.1 of
|Gr, Ch. VI|). Here is a slight improvement of the above proposition.

Proposition 2.2.6. Let G be a finite locally free S-scheme killed by F™ : G — (Fre)*G. If
the complex (2.3) is exact for at least one m € {1,...,n— 1} then G is n-smooth.

Proof. This was proved by Grothendieck (see Proposition 2.1 of [Gr, Ch. VI]). On the other
hand, the argument from [Me72| works with the following modification: in line 10 of p.29 of
[Me72] replace 1® Ty by 1 ® T", where i = max(0,n; — m). O

°In |Gr, §VI.2] Grothendieck used a different name for the class of n-smooth group schemes.
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2.2.7. The case n = 1. A group scheme G over S is 1-smooth if and only if it is finite, locally
free, and killed by Frobenius. This is a part of Theorem 7.4 of [SGA3, Exp.VIIA| (more
precisely, the equivalence (ii)<(iv) of the theorem). On the other hand, this follows from
Proposition 2.2.5.

2.2.8. The kernel of F™. For a group scheme (or ind-scheme) G over S, we set
G = Ker(G RN (Fre)*G).

It is easy to see that GU™) is n-smooth if G is either smooth or N-smooth for some N > n.

2.2.9. Notation. Let Sm*(S) be the category of n-smooth group schemes over S. Let
Sm,,(S) € Sm™(S) be the full subcategory of commutative group schemes. The categories

Sm*!(S) form a projective system: for N > n the functor Sm¥y (S) — Sm*'(S) is G — GU™).

n n
The same is true for the categories Sm,(S).

2.2.10. Relation to formal Lie groups. By a formal Lie group over S we mean a group
ind-scheme G over S such that Zarsiski-locally on S, there exists an isomorphism of pointed
S-ind-schemes G —» (Ag, 0) (here Ag is the formal completion of A% along the zero section).

Let Sm™(S) (resp. Sm!(S)) be the category of all (resp. commutative) formal Lie groups

over S. If G € Sm™!(S) then GF") € Sm™(S). As noted in [Me72, Ch. II|, this construction
defines equivalences

(2.4) Sm?(S) lim Sm*(S),  Smy(S) — lim Sm,(S).

2.3. n-cosmooth group schemes. Recall that every n-smooth group scheme over S is
finite and locally free.

2.3.1. Definitions. Let n € N. A group S-scheme G is said to be n-cosmooth if it is Cartier
dual to a commutative n-smooth group S-scheme. The rank of GG is defined to be the rank

of G*.

2.3.2. Notation. The category of n-cosmooth group schemes over S is denoted by Sm (.S).
By definition, it is anti-equivalent to Sm,,(.5).
If S = Spec R we write Sm,,(R), Sm},(R) instead of Sm,,(.S), Sm},(S).

2.3.3. Remarks. By definition, any n-cosmooth group S-scheme G is commutative, finite,
and locally free; moreover, its order equals p™", where r is the rank of G (this follows from
a similar statement about n-smooth group schemes).

2.3.4. Example. Let m,n € N. The group S-scheme WT(Lgm) = Ker(W,, s RN W,.s) is clearly

m-smooth. It is also n-cosmooth because its Cartier dual is isomorphic to WTE@F;)

2.4. The category Smj(R). Let R be an F,-algebra.
7



2.4.1. Let B(R) be the category of pairs (P, ), where P is a finitely generated projective
R-module and ¢ : P — P is a p-linear map. If (P, ¢) € B(R) and R is an R-algebra, let
Ap,(R) be the group of R-linear maps ¢ : P — R such that {(@(x)) = £(z)? for all x € P.
For any (P, ) € B(R) the functor Ap,, is an affine group R-scheme. The following theorem
is well known (see §2 of [dJ], which refers to [SGA3, Exp.VIIA]).

Theorem 2.4.2. (i) For any (P, ) € B(R), the group scheme Ap,, is 1-cosmooth. Its rank
equals the rank of P.

(i1) The functor

B(R)® — Smj(R), (P,¢)+— Apy

18 an equivalence.

(i1i) The inverse functor takes A € Smi(R) to (P,y), where P = Hom(A, (G,)r) and
¢ P — P is given by composition with F : (G,)r — (G4)r. Fquivalently, (P, ©) is the
restricted Lie algebra of A* € Smy(R). O

2.4.3. Smi(R) as a tensor category. B(R) is clearly a tensor category (i.e., a symmetric
monoidal additive category). So Theorem 2.4.2(ii) provides a structure of tensor category
on Smj(R). We are going to describe this structure directly (without using B(R)), see
Propositions 2.4. 5(ii) and 2.4.7. A similar tensor structure on Sm) (R) is briefly mentioned

2.44. Let (P, ;) € B(R), where 1 < i < m. Let (P,¢) := Q(P;,¢;). Then we have a

1

poly-additive morphism

(25) APLsOl X ... X ApmMm — 14137%77

where the Cartesian product is over R: namely, (&1,...,&,) € Ap, o, (R) X ... x Ap, . (R)
goes to the R-linear map

Proposition 2.4.5. (i) The map

(26) HOHI(APM, (Ga)R> — Poly—add(pr,l X ... X APm,‘,Dm? (Ga>R))
induced by (2.5) is an isomorphism (here Poly-add stands for the group of poly-additive
maps).
(11) For any A € Smi(R), the map
Hom(Ap,,, A) = Poly-add(Ap, o, X ... X Ap,, ¢, A)

induced by (2.5) is an isomorphism
Note that (i) would become false if G, is replaced by G,,, see §2.4.6 below.

Proof. To simplify the notation, we assume that m = 2.

(i) We can assume that the R-modules Py and P; are free. Let z1,...,z, (resp. yi,...,Vs)
be a basis in P, (resp. in P). Then the monomials x7" ...z}" with a;,...a, < p—1 form
a basis in the R-module of regular functions on Ap, . Using this fact and a similar fact

for (P, @), we see that a bi-additive morphism Ap, ,, X Ap, ,, = (G,4)p is the same as a
8



polynomial f € R[zy,...,%.,y1,...,ys] which has degree < p with respect to each variable
and is bi-additive in the usual sense. Such f is bilinear.
(11) IfA= AP’,QO’ then

Poly—add(Aplm X AP2’¢2, Ap/’@/) = HOH’IR[F]<P/, POly—&dd(Apl,Lpl X Ap27<p2, (Ga)R)>7
where R[F] := End(G,)r acts on P’ via ¢'. Similarly,
I‘IOHI(/‘lp#77 Ap/#,/) = HOH]R[F](P,, HOII](AP#,, (Ga)R))'

So statement (ii) follows from (i). O

2.4.6. In the situation of §2.4.4, the map (2.5) induces a homomorphism
(27) A}(;#J = Ho_m(Ap,‘p, (Gm)R) — Poly-add(Aplm X ... X APm,st? (Gm)R))a

where Poly-add stands for the group scheme of poly-additive maps. Note that (2.7) is not
an isomorphism, in general. E.g., let (P, p1) = (P2, ¢2) = (P,¢) = (R,0). Then

Apior = Apygo = App = ()r, Hom((op)r, (Gm)r) = (ap)r,
Poly-add((ap)r % (ap)r, (Gm)r)) = Hom((ay)r, ((2)r)") = Hom((ep) R, (ap)r) = (Ga)r -
Proposition 2.4.7. The homomorphism (2.7) induces an isomorphism

(2.8) Ap,, = Poly-add(Ap, o, X ... X Ap, 4., (G ).

As usual, Poly-add(Ap, o, X ... X Ap,, o, (G)r)E) stands for the kernel of Frobenius in
the group scheme Poly-add(Ap, 4, X ... %X Ap,, 4, (Gm)R)-

Proof. Let H := Poly-add(Ap, o, X ... X Ap,, o, (Gn)r) ). Since A, is killed by F, the
map (2.7) induces a homomorphism f : A, — H. The problem is to show that f is an
isomorphism.

(i) By definition, H is killed by F'. Moreover, H has finite type over R because the scheme
parametrizing all invertible functions on Ap, ,, X ... x Ap,, .. has finite type over R. So H
is finite over R.

(ii) Assume that R is a field. Then the theory of height 1 group schemes tells us that to
prove that f : A, — H is an isomorphism it suffices to show that Lie(f) is an isomorphism.
But Lie(f) is the map (2.6), which is an isomorphism by Proposition 2.4.5(i).

(iii) Let R be any ring. Let C' and C” be the coordinate rings of the finite schemes Ap,
and H. Then f*: (C" — C is a homomorphism of finitely generated R-modules. By (i), f*
is a fiberwise isomorphism. But C' is projective, so f* is an isomorphism. O

Corollary 2.4.8. For any Ay,..., A, € Smi(R) the group scheme
Poly-add(A; X ... x Ay, (Gp)g)
is 1-smooth. Its rank equals the product of the ranks of A1, ..., A,,. One has a canonical iso-

morphism of restricted Lie R-algebras® Lie Poly-add(A; x. .. x Ay, (G,)r)") — & Lie(A?).

6The commutator in these restricted Lie algebras is, of course, zero.
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2.4.9. Remarks. (i) In the case m = 2 one has
Poly-add(A; x Ay, (Gu)r)!" = Hom(Ay, 43)1".

(ii) If Ay, Ay € Smi(R) then the group scheme Hom(A;, A3) does not have to be either
finite or flat, see §3.2.2-3.2.3 below.

2.5. A general principle. Objects of Sm’ (R) (i.e., n-cosmooth group schemes) are easier
to handle than objects of the dual category Sm,,(R).

E.g., the 1-cosmooth group scheme Ap,, from §2.4.1 is a subgroup of the very simple group
scheme V(P) := Spec Sym(P), and this subgroup is defined by very simple equations. On
the other hand, A% , is a quotient of the group ind-scheme V(P)*; this is less elementary.
Note that V(P)* is the PD-nilpotent PD neighborhood of zero in V(P*).

3. n-TRUNCATED BARSOTTI-TATE GROUPS

3.1. Recollections.

3.1.1. Definition of n-truncated Barsotti-Tate group. The notion of n-truncated Barsotti-
Tate group was introduced by Grothendieck |Gr|. It is reviewed in [Me72, 1185, dJ|.

Let n € N. By definition, an n-truncated Barsotti-Tate group (in short, a BT,, group)
over a scheme S is a finite locally free commutative group scheme G over S which is killed
by p", is (Z/p"Z)-flat (as an fpqc sheaf) and satisfies an extra condition in the case n = 1.
If n =1 and S is an F,-scheme we have complexes

(3.1) ¢ LHrie 56 iG-S 6 -5 RGG,

and these complexes are required to be exact sequences; as noted by Grothendieck, exactness
of one of them implies exactness of the other.” If n = 1 and S is any scheme then the above
condition is required for the restriction of G' to S ® [, .

The above-mentioned (Z/p"Z)-flatness condition is equivalent to exactness of the se-
quences

epam e aye
for all m < n. By §2.1.2, the group scheme Ker(G RN () is finite and locally free over S.
Moreover, it is a BT, group (even if m = 1), see [Gr, I11.3.3| or [MeT72, 11.3.3.11].
If G is a BT,, group then so is its Cartier dual G*.

The groupoid of BT,, groups over S will be denoted by BT, (S). If S = Spec R we write
BT, (R) instead of BT, (.5).

3.1.2. Height and dimension. From now on, we assume that S is an F,-scheme. If G is

a BT,, group over S then the group schemes Ker(G -+ G) and Ker(G N Fry G) are
finite and locally free by §2.1.2, and they are killed by p. So there exist locally constant
functions d : S — Z, and d’ : S — Z. such that the orders of these groups equal p® and p?
respectively; clearly d’ < d. Names: d is the height of G, and d’ is the dimension of G.

The group scheme G*) := Ker(G N Frg G) is 1-smooth (see §2.2.7), so its Lie algebra
is a vector bundle of rank d’. The Lie algebra of G is the same.

"See |1185, §1.3 (b)]. The idea is to use §2.1.2 and look at the orders of the kernels and images.
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3.1.3. Some results of Messing. Let G € BT,,(S). Similarly to (3.1), we have a complex
(3.2) ¢ 5wy S e L (:n)G.

By [Me72, 11.3.3.11 (b)], this complex is exact. So it gives rise to exact sequences of finite
locally free group S-schemes

(3.3) 0—G¥) 5 G = aG/GEF") =0,

(3.4) 0— G/GE) - (Fr)*G — G — 0.

Moreover, G™) is n-smooth (see [Me72, 11.3.3.11 (a)] and [Me72, 11.2.1.2]). On the other
hand, (G/GY™"))* = (G*)*™), so G/GF™) is n-cosmooth.

Thus (3.3) exhibits G as an extension of an n-cosmooth group scheme by an n-smooth one,
and (3.4) exhibits (Fr')*G as an extension of an n-smooth group scheme by an n-cosmooth
one.

3.1.4. The stacks BT and Wﬁ’d/. For any scheme S, let 7% (S) be the groupoid
of BT,, groups over S whose restriction to S ® I, has height d and dimension d’. The
assignment S+ A7%?(S) is an algebraic stack of finite type over Z with affine diagonal,
see [W, Prop. 1.8]. Moreover, the stack 7% is smooth over Z by a deep theorem of
Grothendieck, whose proof is given in Illusie’s article [I185].

3.2. A subgroup of Aut G, where G € BT,,(S) and S is over F,,.

3.2.1. As before, let S be an F,-scheme and G € BT,,(S). Then one has a monomorphism
Hom (G /G GF™)) — Aut G defined by f + 1+ f, where f is the composite morphism

G- G/GF Ly gt o @,
Thus we get a homomorphism
Hom(G/GY") GH™")) — Aut G,

which is a closed immersion.

3.2.2. Ewvample. Suppose that S = SpecF, and G = Ker(E -+ E), where E is an elliptic
curve over S. If F is not supersingular then

Hom(G/G"),GP) o= pi,,  Aut G = (F} x FX) x Hom(G/G"),G"),

where the action of ¥ x F)* on Hom (G/G) GF) is nontrivial for p > 2. On the other
hand, if F' is supersingular then

Hom(G /G, GF)) ~ Hom(ay, o) = G,,  AutG = Fl, x Hom (G /G, G,

where the action of F, on Hom(G/G"), G)) is nontrivial.

3.2.3. Remark. The above example implies that Hom(G /G GUF™) is neither finite nor

flat, in general.
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4. FORMULATING THEOREMS 4.2.2 AND 4.4.2

, / ) , ——d,d .
4.1. The group scheme Z%%. Let Z»% be the inertia stack of 7, . Thus an S-point of
’. . .. . ——d,d’ . . .
744 is a pair consisting of an S-point of 87, and an automorphism of this point.

It is clear that Z%% is an affine group scheme of finite type over the stack Wﬁ’d,.
4.2. The first main theorem.
4.2.1. The group scheme Lau®® . E. Lau defined in [L13, §4] a canonical morphism
On W‘i’d/ — Disp??’.

He proved that ¢, is a gerbe banded by a commutative locally free finite group scheme
over Dispi’dl, which we denote by Lau,‘i’d/. He also proved some properties of Laufll’d/; we
formulated them in Theorem 1.1.1.

Note that ¢} Lau, is a subgroup of I,‘f’d'. This subgroup is closed because Lau, is finite

over Dispi’d/ and the morphism Z&4 — Wﬁ’d is separated.
Theorem 4.2.2. (i) ¢* Lau®? = (Z4)F")  where
(Z2)F = Ker(Z3 T (Fr")*Z29).
(ii) The group scheme Lau®? is n-smooth of rank d'(d — d').

The proof will be given in §5.
The above theorem and Theorem 4.4.2 below are steps towards an explicit description of
Lau®®

n .

4.2.3. Remarks. (i) Theorem 4.2.2(i) improves Proposition 4.2 of [LZ].

(ii) Theorem 4.2.2 implies that the group scheme (Z&¢)(F") is finite, locally free, and
commutative. On the other hand, by §3.2.2, the group scheme 112 ! is neither finite nor flat,
nor commutative.

4.3. Reconstructing Lau®? from ¢ Lau®?’.

Lemma 4.3.1. Let ¢ : 2~ — % be a morphism of algebraic stacks. If ¢ is an fppf gerbe
then the functor

(4.1) ¢" : { Group schemes over %'} — {Group schemes over 2"}
is fully faithful.

(In fact, the lemma and its proof given below remain valid if the words “group scheme"

YRR

are replaced by “scheme”, “vector bundle”, etc.)

Proof. We can assume that the gerbe is trivial, so 2 is the classifying stack of a flat group
scheme H over 2. Then a group scheme over 2 is the same as a group scheme over %
equipped with an action of H, and the functor ¢* takes a group scheme over % to the same
group scheme equipped with the trivial action of H. O

By Lemma 4.3.1, Laufll’d/ can be reconstructed from ¢; Laui’d', in principle. In practice,

this requires some work.
12



4.3.2. The essential image of the functor (4.1). In the situation of Lemma 4.3.1, let Ty /5
be the relative inertia stack; this is the group scheme over 2" defined by

Ig[/g/ = Ker(Zgg — gb*I@),

where Zo and Zy are the inertia stacks of 2" and #'. The proof of Lemma 4.3.1 implies the
following description of the essential image of the functor (4.1) (assuming that ¢ : 2" — %
is a gerbe): a group scheme H over 2" belongs to the essential image of (4.1) if and only if
the canonical action of Zy-,» on H is trivial.

4.4. A complement to Theorem 4.2.2.

4.4.1. The group schemes Aﬁ’d',égvd/. Let S be an F,-scheme and G a BT,, group scheme
over S of height d and dimension d’. Then G") and (G/GF")* = (G*)F") are n-smooth
group schemes over S (see §3.1.3); their ranks equal d’ and d — d’, respectively. As S and
G vary, GI™) and (G*)™) determine commutative n-smooth group schemes A%% and B%Y

——d.d .
over A7, , whose ranks equal d’ and d — d’, respectively.

Theorem 4.4.2. (i) A% and B&Y descend® to commutative n-smooth group schemes A%
and BT over Dispg’dl.
(ii) One has a canonical isomorphism of (commutative) restricted Lie algebras

Lie(Lau®?) = Lie(A%?) @ Lie(B%%).
(i1i) One has a canonical isomorphism

(4.2) Lau®? 5 Hom((B&4)*, AD?)(F"),

n

where as usual,
Hom(((B)*, A) ™) = Ker(F" : Hom(((B2" )", A%") —» (")* Hom(B;, AL")).

The proof will be given in §5.6. Note that Theorem 4.4.2(ii) is really informative if n =1
(indeed, the group scheme Laufl’d/ is 1-smooth, so it is uniquely determined by its restricted
Lie algebra).

4.5. Improving formula (4.2). Eventually, we will transform formula (4.2) into an ezplicit
description of Laui’d/ (see Theorem 9.1.5) using two ingredients. The first one is an explicit
description (due to E. Lau and T. Zink) of the group schemes A%? and B%¥ defined in
Theorem 4.4.2(i). The other ingredient is Proposition 2.4.7 for n = 1 and Proposition 8.1.1
for an arbitrary n. In the case n = 1 Proposition 2.4.7 allows one to rewrite the r.h.s of (4.2)
as a tensor product of Af’d, and Bf’d/ in the sense of the tensor structure on Smj(R) defined
in §2.4.3. For n > 1 we will do something similar.

5. PROOFS OF THEOREMS 4.2.2 AND 4.4.2

5.1. Deducing Theorem 4.2.2 from the key lemma. Here is the key lemma, which will
be proved in §5.5.

U

Lemma 5.1.1. The Lie algebra of the fiber of (I,‘f’dl)(Fn) over any geometric point of %ﬂi’d
has dimension d'(d — d').

8By Lemma 4.3.1, the descent is unique up to unique isomorphism.
13



5.1.2. Deducing Theorem 4.2.2 from the key lemma. ¢} Laui’dl is a closed subgroup of the
group scheme Z%%. Moreover, ¢ Lau®? c (Z&%)F") by Theorem 1.1.1(ii). (Z¢¢)F™) is
finite over A7 i’d because Z¢% has finite type. By Theorem 1.1.1(ii), ¢} Lau®® is finite

and locally free over 7 Z’dl of order p"®(@=@) So Theorem 4.2.2 follows from Lemma 5.1.1

combined with Lemma 2.2.4 (the latter has to be applied to the pullbacks of ¢} Laufll’d/ and
(Z4)F™) to a scheme S equipped with a faithfully flat morphism to A7 i’d ).

5.2. A description of (Z¢?)U™), The goal of this subsection is to prove Corollary 5.2.2,

which can be regarded as a description of (Z%4)(*™),
Let S be an F,-scheme and G € BT,,(5).

Lemma 5.2.1. If f € End G and (Ft")*(f) =0 then f : G — G factors as
G — G/GT") & I — @,

In particular, f* = 0.
Proof. One has F"o f = (Fr")*(f)oF™ = 0and foV" = V"o(Frt")*(f) = 0. SoIm f ¢ GU™)
and Ker(f) D Im((Fr")*G L5 G) = GU™). O
Corollary 5.2.2. One has group isomorphisms

(AutG)0™) = (End G) ™) < Hom(G/GU™), GI™)™),
where the first map is h+— h — 1. As usual, Hom(G/GF") GF"))E") denotes the kernel of
F™: Hom(G/GU™) GI™) — (Fr")* Hom(G /G GUE™), O

Note that by §3.2.2, the group scheme Hom(G/GU™) GU™) is neither finite nor flat, in
general.

5.3. The case n = 1. In this case, Lemma 5.1.1 follows from the next one.

Lemma 5.3.1. Let G € BT (S). Then the group scheme (Aut G)F) is 1-smooth (in particu-
lar, finite and locally free), and one has a canonical isomorphism of (commutative) restricted
Lie Og-algebras

Lie((Aut G)*) — Lie(G") ® Lie((G/G")*) = Lie(G®) ® Lie((G*)").
Proof. Use Corollary 5.2.2, Corollary 2.4.8, and §2.4.9(i). O
5.4. On End G,,, where m < n and G,, := Ker(p™ : G — G). As before, let G € BT,,(.5),
where S is an Fj,-scheme. Let m < n and
G = Ker(p™ : G — G).

The subgroup G,, C G can also be regarded as a quotient of G via p"™™ : G — G,,. We
have an additive homomorphism

(5.1) EndG,, = EndG, [ f,

where f : G — G is the composition G " Gpn -1 G = G. The map (5.1) induces
additive isomorphisms

(5.2) End Gy, — Ker(End G 25 End G),
14



(5.3) End G,, - Ker(End G 25 End G).
Moreover, (5.3) induces an additive isomorphism
(5.4) (End G,,) "™ = (End G)"™)
because (End G)*™) C Ker(End G LN End G).
Using the group isomorphism
(End )™

and a similar group isomorphism (End G,,,)¥™) = (Aut G,,,)F™), we get from (5.4) a group
isomorphism

(5.5) (Aut G,) "™ = (Aut &)

~

S (AT, fe 1t f

5.5. Proof of Lemma 5.1.1. The problem is to show that for any field £ of characteristic
p and any G € BT, (k), one has

(5.6) dim Lie((Aut G)™) = d'(d — d'),

where d,d’ are the height and the dimension of G. Note that (Aut G)*™) and (Aut G)"")
have the same Lie algebra. So applying (5.5) for m = 1, we reduce the proof of (5.6) to the
case n = 1, which was treated in §5.3.

5.6. Proof of Theorem 4.4.2.

5.6.1. Proof of Theorem 4.4.2(i). By §4.3.2 and Theorem 4.2.2(i), it suffices to show that
the action of (Z¢4)F") on A, d,d and B*¥ is trivial. This follows from Corollary 5.2.2. [

5.6.2. Proof of Theorem 4.4.2(ii). By Theorem 4.2.2(i), ¢* Lau®? = (Z4)(*™) So Lemma 4.3.1
implies that proving Theorem 4.4.2(ii) amounts to constructing an 1somorphlsm

Lie((Z44)F") =5 Lie(A%?) @ Lie(B4).

For n = 1, such an 1somorphlsm is provided by Lemma 5. 3 1 It remains to note that

the pullbacks of (Idd) Add de via the morphism %’9 %’ﬂ e re canonically
isomorphic to (Z&4)(), (.Aﬁd/) . (B ) (in the case of (Idd) this is the isomor-
phism (5.5)). O

5.6.3. Proof of Theorem 4.4.2(iii). Combining Theorem 4.2.2(i) and Corollary 5.2.2, we get

a canonical isomorphism ¢f Lau®? 5 Hom(B*, A%¥)(F™)_ It remains to use Lemma 4.3.1.
O

6. Nn-TRUNCATED SEMIDISPLAYS

Let R be an F,-algebra and n € N. Let Disp,,(R) be the additive category of n-truncated
displays in the sense of [L13, Def. 3.4]. In §6.1-6.2 we will construct a diagram of additive
categories

Disp,,(R) < sDispS™"8(R) — sDisp,,(R) — sDisp"***(R)
in which the first functor is fully faithful and the other functors are essentially surjective;
sDisp,,(R) and sDisp"**(R) are defined in §6.1, Disp, (R) and sDispS™"¢(R) are discussed

in §6.2. Objects of sDisp,,(R) are called n-truncated semidisplays.
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Unlike Disp,,(R), the categories sDisp,, (R), sDisp™***(R), and sDispS"™"¢(R) are tensor
categories, see §6.3 and §6.2.3.

The category Disp,,(R) is equipped with a duality functor’ 2 s 22! (see [L13, Rem. 4.4]).
There is no such functor on sDisp,,(R), sDisp?***(R), or sDispS™"¢(R).

In §7.1-7.2 we discuss a functor

sDisp,,(R) — Sm,(R),

where Sm,,(R) is the category of commutative n-smooth group schemes over R. The corre-
sponding functor Disp,,(R) — Sm,,(R) was defined in [LZ].

6.1. n-truncated semidisplays.

6.1.1. Notation. Let R be an Fp-algebra. Fix n € N. We have natural epimorphisms
Wa(R) » Wy, 1(R) = ... » Wi(R) = R — Wy(R) =0.
Let I, g := Ker(W,,(R) - Wi(R)), Jor := Ker(W,(R) - W,_1(R)).

6.1.2. Definition. An n-truncated semidisplay over R is a quadruple (P, Q, F, F}), where P
is a finitely generated projective W, (R)-module,  C P a submodule, F' : P — P and
Fy : Q — P/J, g - P are semilinear with respect to F' : W(R) — W(R), and the following
conditions hold:

(i) P/Q is a projective module over Wi (R) = R (in particular, @ D I,, g - P);

(ii) for a € W(R), x € P, one has F1(V(a) - 1) = a - F(z), where F(x) is the image of
F(z)in P/J, g - P;

(ili) F(x) = pFi(x) for x € Q.

Let sDisp,,(R) be the additive category of n-truncated semidisplays over R.
6.1.3. Remarks. (a) By §6.1.2(ii), one has

(6.1) Fz) = R(V(1) - 2) = Fy(po).

(b) If x € @ then (6.1) implies that F(z) — pFi(x) € J, g - P, which is weaker than
§6.1.2(iii).

(c) We have
(6.2) Fi(Jor-Q) =0, F(Jyg-Q)=0.

Indeed, the first equality is clear because P/J, g- P is killed by J,, g, and the second equality
follows from the first one by §6.1.2(iii).

(d) By §6.1.2(iii), F' : P — P induces a p-linear map P.QQ — P/Q (so P/@ is a commuta-
tive restricted Lie R-algebra).

6.1.4. Normal decompositions. By §6.1.2(i), there exists a decomposition P = T' @ L such
that Q@ = I, g - T @ L. Following Th. Zink and E. Lau [Zi02, L13, LZ], we call this a normal
decomposition.

Let us note that the notation 7', L for the terms of a normal decomposition is standard.
Mnemonic rule: 7" stands for “tangent” (in fact, the R-module T'/I, r - T = P/Q is the Lie
algebra of the n-smooth group scheme discussed in §7.1 below, see Lemma 7.1.4).

9As explained to me by E. Lau, this functor can be defined by formula (10.17) below; in this formula Disp,, (R)
is identified with DISPL!(R) as explained in §10.7.2.
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6.1.5. Weak n-truncated semidisplays. Given (P, Q, F, F}) € sDisp,,(R), set
M:=P/l,r-Q, Q:=Q/Jnr Q.

By (6.2), the maps F': P — P and F, : Q — P/J, r - P induce maps
F:M—M F:Q—-M/J,r-M.

The quadruple (M, Q,F : M — M, Fy : Q — M/J, r - M) has the following properties:

(a) F and Fy are semilinear with respect to F': W,(R) — W,,(R) and satisfy the relations
from §6.1.2(ii)-(iii).

(b) The pair (M, Q) is isomorphic to (T, I, - T) @ (L, L) for some finitely generated
projective W,,(R)-module T and some finitely generated projective W,,_;(R)-module L.

Quadruples (M, Q, F, F}) satisfying (a)-(b) are called weak n-truncated semidisplays. They
form an additive category, denoted by sDisp?®**(R). We have defined a functor

n

sDisp,,(R) — sDisp**(R).

n

Using normal decompositions, one checks that it is essentially surjective.

6.1.6. Example: n = 1. sDisp,(R) is the category of triples (P, @, F'), where P is a finitely
generated projective R-module, () C P is a direct summand of P, and F': P/Q) — P is a p-
weak

linear map. On the other hand, sDisp**(R) is the category of finitely generated projective
R-modules equipped with a p-linear endomorphism. The functor sDisp, (R) — sDisp"**(R)

takes (P, @, F') to P/Q equipped with the composite map P/Q L p P/Q.

6.2. n-truncated displays. As before, let R be an F-algebra and n € N. Let Disp,, (R) be
the category of n-truncated displays in the sense of [L13, Def. 3.4]. This category is studied
in [L13, §3| and [LZ, §1]. (Note that the setting of [LZ] is more general than we need: the
ring R is required there to be a (Z/p™Z)-algebra for some m.)

6.2.1. The functor Disp,,(R) — sDisp,,(R). According to [L13, Def. 3.4], an object of Disp,,(R)
is a collection

(6.3) (P,Q,t: Q= Pe:InyirQwrP—Q, F:P—P F:Q—P)
with certain properties. We consider the functor
(6.4) Disp,,(R) — sDisp,,(R)

that takes a collection (6.3) to (P,Q’, F, F]), where Q' := +(Q)) and F| : Q' — P/J,r- P is
induced by F; : Q — P.

6.2.2. Strong n-truncated semidisplays. One of the properties of a collection (6.3) required
in [L13, Def. 3.4] is as follows: P has to be generated by F;(Q) as a module. Skipping
this property, one gets a generalization of the notion of n-truncated display, which we call
strong n-truncated semidisplay. The category of strong n-truncated semidisplays over R is
denoted by sDispS"°"¢(R). The functor (6.4) extends from Disp, (R) to the bigger category

sDisp?""¢(R).
In the last paragraph on p.141 of [L13] it is explained that the pair (F, F}) from (6.3) is
described by a semilinear map ¥ : L & T — P, where (L, T) is a normal decomposition'® of

(P,Q,t,¢). In the case of an n-truncated display, the linear map corresponding to ¥ has to

101 this context, the notion of normal decomposition is defined in [L13] before Lemma 3.3.
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be invertible; in the case of a strong n-truncated semidisplay, this is not required. Roughly
speaking, the difference between n-truncated displays and strong n-truncated semidisplays
amounts to the difference between the group of invertible matrices and the semigroup of all
matrices.

Using normal decompositions, one checks that the functor sDisp’""¢(R) — sDisp,,(R) is
essentially surjective.

6.2.3. Remark. According to E. Lau, a good way of dealing with Disp,,(R) is to replace it by
the equivalent category DISPL?’H(R) (see §10.5.1 and §10.7.2 below). Similarly, one can work
with sDispS™8(R) using the equivalence preDISP(R) =5 sDisps™¢(R) from §10.7.2;
e.g., one can use it to define the structure of tensor category on sDisp>"*"¢(R) (see §10.7.3

below). !

6.3. Tensor product in sDisp,(R) and sDisp?***(R).

n

Lemma 6.3.1. Let (P,Q, F, Fy) and (P',Q', F', F}) be objects of sDisp,,(R). Let
(6.5) P'"=P®P, Q"=PQ+Q®P =Ker(P® P — (P/Q)® (P'/Q")).
Define F" : P" — P" by

(6.6) F'=FoF
Then there ezists a (unique) additive map FY' : Q" — P"/J, g - P" such that
(6.7) Hlpeq =F@F, Flgep =R

Moreover, (P",Q", F", F{") € sDisp,,(R).

Proof. The composite maps

000 QP " popP andQeQ - PaQ 8 po P

are both equal to pF} ® F| by §6.1.2(iii). If z € P, 2’ € P', a € W,(R) then

(6.8) (FRF)V()(r®a))=aF(z®2)=(Fy® F)(V(a)(r®2")).

These facts imply the existence of F|' because
(PRQ)INQeP)=Im(Q®Q - PRP)+Iz (PP

By (6.8), F” and F| satisfy the relation from §6.1.2(ii). Finally, it is easy to check that

Flqn = pF. .

6.3.2. sDisp,,(R) as a tensor category. In the situation of Lemma 6.3.1, (P”,Q", F" F/') is

called the tensor product of (P,Q, F, F}) and (P',Q’, F', F}); it is denoted by

(P,Q,F,F))® (P ,Q F' F)).

This tensor product makes sDisp,,(R) into a tensor category (by which we mean a symmetric
monoidal additive category). The object

(6.9) o= (Wu(R), L, F, V'L, g = W, 1(R))

is the unit in sDisp, (R).
Let us note that in the case n = oo the object (6.9) appears in [Zi02, Example 16| under
the name of “multiplicative display” (because it corresponds to the multiplicative formal

group).
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6.3.3. sDisp*(R) as a tensor category. If (M,Q, F, Fy) and (M’',Q', F', F!) are objects of

n

the category sDisp"**(R) defined in §6.1.5, we set

(M, Q. F. ) e (M,Q, F' F) = (M",Q", F", FY),
where
M"'=MeM, Q":=Ke(MeM - (M/Q)® (M)/Q)), F'=FQF
and F' : Q" — M"/J, r- M" is the unique additive map such that

Flx®y)=F(z)® F/(y)ifv e M,y €@,

Hzoy) =)oy ifre@,ye M.

The existence of F|' follows from Lemma 6.3.1 and essential surjectivity of the functor
sDisp,,(R) — sDisp™***(R).

Thus sDisp?®**(R) becomes a tensor category equipped with a tensor functor

sDisp, (R) — sDisp*(R).

n

The quadruple 1, g given by (6.9) is the unit object of sDisp***(R).

n

weak

6.4. sDisp,, and sDisp,,
assignment R +— Disp, (R) is an fpqc stack of categories.!! The same is true for sDisp
sDisp,,, sDisp™*®* and proved in the same way.

For a morphism of Fp-algebras f : R — R, the corresponding base change functor
sDisp,,(R) — sDisp, (R) takes (P,Q, F, F}) to (P,Q, F, F), where

P =Wu(R) ®w, ) P, P/Q=W,(R) @w.r (P/Q),

as stacks of tensor categories. In [L13] it is proved that the
strong

F : P — P is the base change of F', and Fi:Q— P/JnyR . P is the ungiue F-linear map
such that the diagram

Qi> P/Jor- P

b,

Q—=P/) ;P

commutes and Fy(V(a) ® z) = a ® F(x) for all a € W(R) and 2 € P. The existence of F}
can be proved using a normal decomposition of (P, Q, F, F}). i
The above description of the base change functor sDisp,,(R) — sDisp,(R) and the quite

similar description of the functor sDisp®*(R) — sDispl®*(R) shows that these are tensor

n n
functors. Thus sDisp,, and sDisp!®** as fpqc stacks of tensor categories

HGiven a morphism of F,-algebras f : R — R, there is an obvious notion of f-morphism from an object

of Disp,,(R) to an object of Disp,, (R). Existence of a (unique) base change functor is proved in [L13,
Lemma 3.6]. Descent for n-truncated displays is proved in [L13, §3.3].
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6.5. Algebraicity of the stacks. It is easy to show that the stacks of categories Disp,,
sDisp,,, sDisteak, sDispS™°™8 are algebraic c-stacks in the sense of [D20, §2.3]. For the pur-
poses of this paper, it is enough to know that the corresponding stacks of groupoids are
algebraic (in the usual sense). We will formulate a more precise statement, see Proposi-
tion 6.5.1 below.

Given integers d and d' such that 0 < d' < d, let SDiSpZ’d/(R) be the full subgroupoid of the
underlying groupoid of sDisp,,(R) whose objects are quadruples (P, Q, F, F}) € sDisp,(R)
such that rank P = d and rank(P/Q) = d'.

Define sDisp®®"*(R), sDisp®?*""¢( R), and Disp>? (R) similarly but with the following
changes:

(i) in the case of Disp®® (R) and sDisp®® *""8(R) replace P/Q by Coker(Q — P);

(i) in the case of sDisp®? ™2 (R) the condition for P is that rank(P/I, zP) = d.

n

Note that sDisp®® = () only if @’ = d; this follows from condition (b) from §6.1.5.

Proposition 6.5.1. FEach of the stacks sDisp?? | sDigp®? ek sDispi’dl’Strong, and Dispﬁ’dl

is a smooth algebraic stack of finite type over F,. Moreover, SDiSng’d/ has pure dimension
—(d — d')?, and the other three stacks have pure dimension 0.

In the case of Dispfll’d/, this is |[L13, Prop. 3.15].

Proof. Follows from the explicit presentation of the four stacks given in Appendix B. 0J

7. ZINK’S FUNCTOR

7.1. Zink’s functor sDisp,,(R) — Sm,(R). As before, Sm,(R) stands for the category of
commutative n-smooth group schemes over R, see §2.2. In this subsection we recall the
functor sDisp,,(R) — Sm,,(R), which was essentially'? constructed in [LZ, §3.4]. In §7.3.3 we
will decompose this functor as sDisp,, (R) — sDisp**(R) — Sm, (R).

n

7.1.1. Format of the construction. To an object & = (P, Q, F.F}) € sDisp,,(R) one functo-
rially associates a diagram of commutative group ind-schemes

(7.1) ;=Y

in which C';]l is a closed subgroup of CY%. It is proved in |[LZ, Prop. 3.11] that Ker(1—®) =0

and the functor R + Coker(C,'(R) =2 C%(R)) (where R is an R-algebra) is representable
by an n-smooth group scheme. We denote this group scheme by 3. Thus

7.2 35 := Coker(C} =2 C9%).
P P>

The functor & — 34 will be called the Zink functor; in the case n = oo it was defined by
Th. Zink in |Zi02, §3| (under the name of BT»). The complex of group ind-schemes

(7.3) 0—C;l =3¢C% =0

will be called the Zink complex of &.

12The caveat is due to the fact that the authors of [LZ] worked with displays rather than semidisplays.
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7.1.2. Defining (7.1). Let W™ := Ker(F™ : W — W), where W is the formal Witt group
(see Appendix A). For any F,-algebra R, the subgroup W¥")(R) C W (R) consists of Witt
vectors 2 € W (R) such that F™(z) = 0 and almost all components of z are zero. Note that
WU™(R) is a W (R)-submodule of W (R) and moreover, a W, (R)-submodule.

The group ind-schemes C%, C';! from (7.1) are as follows: for any R-algebra R,
C%(R) == WF(R) @w, ) P.

C!(R) = Ker(CH(R) = G (R) ©r (P/Q)),
where 7 comes from the map W™ — G that takes a Witt vector to its O-th component.

The additive homomorphism ® : ngl(]:?) — C’%,(ﬁi) is uniquely determined by the follow-
ing properties:

(7.4) d(V(a)®@z)=a® F(z) for ac WI)N(R), z € P,

(7.5) Pla®y) =Fla)@ F(y) for aec WFINR), yeQ.
The r.h.s. of (7.5) makes sense (despite the fact that Fi(y) is defined only modulo J, 5 - P)
because for any a € WF")(R) and b € W (R) one has V*~'(b) - F(a) = V" '(b- F™(a)) = 0.

7.1.3. On the proof of Proposition 3.11 of [LZ]. In §7.1.1 we formulated a result from [LZ].
In [LZ] it is deduced from Theorem 81 of [Zi02], whose proof (given on p.80-81 of [Zi02])
does not use the surjectivity assumption'® from Zink’s definition of display. So Theorem 81
of [Zi02] and Proposition 3.11 of [LZ] are valid for semidisplays'*.

The idea behind the proof of the result mentioned in §7.1.1 is roughly as follows: the group
ind-schemes CY,, C;/—} are n-smooth in a certain sense'®, and one checks that the map

(7.6) [ : Lie(C3') — Lie(C)

induced by 1 — ® is a monomorphism whose cokernel is a finitely generated projective R-
module. For completeness, let us prove these properties of f; we will also give an explicit
description of Coker f = Lie(3»).

Lemma 7.1.4. (i) The map (7.6) is injective.
(ii) One has a canonical isomorphism of restricted Lie R-algebras

(7.7) Lie(35) — P/Q,

where the structure of restricted Lie algebra on P/Q is as in §6.1.3(d). In particular,
rank(34) = rank(P/Q).

Proof. A commutative restricted Lie R-algebra g is the same as a left R[F]-module, where
Fa = aPF for all @ € R. If g = Lie(G), where G is a commutative group (ind)-scheme
over R, then F : g — g comes from V : Fr* G — G.

Let us describe (7.6) as a homomorphism of R[F]-modules. One has a canonical isomor-
phism of R[F]-modules

R[F] =5 Lie(Wg) = Lie(W§ );
13Part (ii) of [Zi02, §1, Def. 1].
MMore details about this can be found in the proof of [L25, Prop. 11.13].

5We defined n-smoothness only for group schemes.
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namely, 1 € R[F] corresponds to the the derivative of the Teichmiiller map AL, — Wj at
0 € Ag. Let P = P/I,zP, Q = Q/I, rP. Then Lie(C%) = R[F] ®g P, and Lie(C,) is the
R[F]-submodule of R[F| ®g P generated by 1 ® () and the elements F' ® x, where x € P.
Our map f : Lie(C') — Lie(CY%) equals Lie(1 — ®), where ® is given by (7.4)-(7.5). So
fl@r)=1®z forxe@, f(Fez)=F®r—1®F(z) forze P.

This description of f implies the lemma. U
7.2. The Cartier dual of 3.

7.2.1. Goal of this subsection. Let & = (P,Q, F, F) € sDisp,,(R). Let 3%, := Hom(3»,G,,),
where 34 € Sm,(R) is as in §7.1.1-7.1.2. According to the general principle from §2.5, the
group scheme 3%, € Smj (R) is easier to understand than 34 itself. Namely, we are going to
prove Proposition 7.2.3, which establishes a canonical isomorphism

(7.8) 3% — Hom(Z, 1, )

where 1, € sDisp,,(R) is given by (6.9). Here Hom(Z, 1,, g) is the group R-scheme whose
group of points over any R-algebra R’ is Hom(<”', 1,, /), where &' is the base change of &
to R'. Explicitly, Hom(<”, 1, r) is the group of W, (R)-linear maps n : P — W, (R’') such
that

(7.9) n(F(z)) = F(n(x)) forall z € P,

(7.10) n(y) =Vn(Fi(y))) forallye@.
Note that

(711> I‘IO_IH(:@, 1an> C HOHan(R)<P, Wn,R)-

7.2.2. 3% as a subgroup of Homyy, g (P, W, ). By §7.1.1-7.1.2, 35 is a quotient of the
group ind-scheme CY, := VAV}(ZFH) Qw,(r) P, so 3% is a subgroup of (C%)*.
We will be using the canonical nondegenerate pairing

(7.12) W x Wor = (Gm)r,
which comes from the usual Cartier duality between Wx and Wg, see Appendix A. This
pairing induces an isomorphism
(C%)* — Homy, (r) (P, Wy r).
Thus
(7.13) 3% C Homyy, () (P, Wy r).

Proposition 7.2.3. The subgroups of Homy, (r)(P, Wy r) given by (7.11) and (7.13) are
equal to each other.

Proof. Let R’ be an R-algebra and 1 an R'-point of Homyy, () (P, Wy r), i.e., n: P — W,(R')
is a W, (R)-linear map. The problem is to show that n € 3%,(R’) if and only if (7.9) and
(7.10) hold.

Looking at formulas (7.1)-(7.5), we see that n € 3%,(R’) if and only if for every R'-algebra
R" and every a € W) (R") the following conditions hold:

(7.14) (V(a),n(x)) = (a,n(};;(x))) for all x € P,



(7.15) (a,n(y)) = (F(a),n(Fi(y))) forallyeqQ.

Here (,) stands for the pairing (7.12).
Finally, conditions (7.14)-(7.15) are equivalent to (7.9)-(7.10). This follows from the equal-

ities
(V(a),n(z)) = (a, F(n(x))), (F(a),n(Fi(y))) = (a,V(n(F1(y)))
(see formula (A.8) from Appendix A) and the nondegeneracy of the pairing (7.12). O

7.2.4. Remark. 35 = Hom(3%,,G,, r), so Lie(3») = Hom(3%,, G, r). Therefore (7.7) is a
canonical isomorphism Hom(3%,, G, r) — P/Q. Looking at the proof of Lemma 7.1.4(ii),
we see that the the following diagram commutes:

(7.16) P ——— Hom(3%, Wy, r)

|

P/Q —= Hom(3%,G,4r)

(the upper row of the diagram comes from the embedding 3%, < Homy, r)(P, Wy r), see
formula (7.13)).

7.3. The functor sDisp!***(R) — Sm,(R). Recall that 1,z is the unit object in both

n

sDisp,,(R) and sDisp"**(R) (see §6.3.2-6.3.3). For & € sDisp"***(R) we define the group

n n

R-scheme Hom(Z, 1,, i) just as in §7.2.1.
Lemma 7.3.1. Let 2’ € sDisp,(R). Let & € sDisp,**(R) be the image of &' (see §6.1.5).

n

Then the natural map Hom(22,1,, r) — Hom (', 1, r) is an isomorphism.

Proof. Write &' = (P, Q, F, F}). The problem is to show that for every f € Hom(<', 1, r)
one has f(J, g - Q) = 0. By the definition of 1,, z (see formula (6.9)), we have f(Q) C I, g,
SO f(th,RQ) C Jn,R'In,R:O- ]

weak
n

Lemma 7.3.2. For every & € sDisp,**(R), the group scheme Hom (2, 1, g) is n-cosmooth.

Proof. As noted in §6.1.5, the functor sDisp?®**(R) — sDisp,, (R) is essentially surjective. So
by Lemma 7.3.1, it suffices to prove n-cosmoothness of Hom(%', 1,, ) for &’ € sDisp,,(R).
By (7.8), Hom(2',1,, g) = 3%,. Finally, 3 is n-smooth by the result of [LZ| mentioned in

§7.1.1. 0
7.3.3. The functor sDisp?***(R) — Sm,(R). Let & € sDisp****(R). By Lemma 7.3.2,

Hom(Z#,1,r) = 3% for some 35 € Sm,(R). The assignment & — 3p is a functor
sDisp?®*(R) — Sm,(R). By Lemma 7.3.1, precomposing this functor with the functor

n

sDisp,,(R) — sDisp**(R), we get the functor 3 from §7.1.1.

n

7.3.4. Evample: n = 1. An object of sDisp™**(R) is a quadruple (M, Q, F, F}) see §6.1.5.
Now suppose that n = 1. Then Q@ = 0, F; = 0, and M is a projective R-module. So
an object & € sDispl*™*(R) is just a pair (M, F), where M is a projective R-module and
F: M — M is a p-linear map. To such a pair we associated in §2.4 a 1-cosmooth group

scheme A p. It is easy to see that
(7.17) 3% =Amr.

7.4. 3%, via Dieudonné modules. Let R be an F,-algebra.
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7.4.1. The ring ©, r. Let ®,, r be the n-truncated Dieudonné-Cartier ring of R. It is gen-
erated by the ring W,,(R) and elements F,V'; the defining relations in ©,, r are

Vr=0, FV =p,

F-a=F(a)-F, a-V=V-F(a), V-a-F=V(a) forallaecW,(R).
Note that VF =V -1-F =V (1) = p. For every a € W, (R) and every i € {1,...,n—1} we
have V- (V" (a)) = V" -a- F"" = 0; in particular,

(7.18) V. Jur=0.

7.4.2. The goal. Let ®,, g-mod be the category of left ©,, p-modules. We will define a func-
tor'® D : sDisp?®*(R) — ®,, g-mod such that for every & € sDisp!**(R) one has

(7.19) 3% = Homg, ,(D(2), Wi, R).

The r.h.s. of (7.19) makes sense because ©,, g acts on the group scheme W, g.

7.4.3. Definition of D(2). By §6.1.5, an object & € sDisp"®*(R) is a quadruple

(M, Q,F: M — M,Fy: Q— M/J,r-M).

D(Z) € ®y,r-mod is defined as follows: if N € D, zg-mod then Homgp, ,(D(Z),N) is the
group of W, (R)[F]-homomorphisms f : M — N such that

(7.20) V(f(Fi(y)) = f(y) forallye Q.

Although Fy(y) lives in M/.J, g - M rather than in M, the Lh.s. of (7.20) makes sense by
virtue of (7.18).

Formula (7.19) immediately follows from the definition of 3%, (see §7.3.3) and the definition
of 1, r (see formula (6.9)).

Proposition 7.4.4. The ©,, g-module D(Z?) is n-cosmooth in the sense of [KM, Def. 1.0.2].
The proposition will be proved in §7.4.8.

Corollary 7.4.5. D(Z?) is the n-cosmooth ©,, g-module corresponding to 35 via the “n-
truncated Cartier theory” developed in [KM].

Proof. Combine Proposition 7.4.4 with formula (7.19). O

7.4.6. An economic presentation of D(Z?). Let Z, M, Q, F, F} be as in §7.4.3. Choose a
normal decomposition

M:T@[_/y Q: n,R'T@IM

where T is a finitely generated projective W, (R)-module and L is a finitely generated pro-
jective W,,_1(R)-module. Then F : T — M is a pair (¢rr : T — T,pr : T — L), and
Fy: L — M is a pair (pr; : L = T/Jor - T,pr; : L — L). The following proposition
represents D(Z) as a quotient of D, r @w, (r) 1" by an explicit submodule.

16Without n-truncation, the functor D is well known: see [Zi02, Prop. 90] and formula (4) on p.141 of [Zi01]
(this formula goes back to the article [N], which inspired Zink’s notion of display).
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Proposition 7.4.7. If N € ©,, g-mod then Homy , ,(D(Z?), N) is the group of W, (R)-linear
maps g : T"— N such that

n—1

(7.21) F(g(x)) = glerr(x)) + > Vieriy ()  forallz € T.

=1

Note that by (7.18), the r.h.s. of (7.21) is well-defined even though ngyp%’ElgpiT is a map
T —T/JopT.

Proof. Write the map f : M — N from §7.4.3 as a pair (g, h), where g € Homy, (r) (T, N),
h € Homyy, (r)(L, N). The conditions for g, h are as follows:

(7.22) Fog=goprr+hoyprr,

(7.23) h—Vohoypr; =V ogoppr;.
Since V"™ = 0, the map h — V o h o ¢z is nilpotent. So using (7.23), one can express h in

terms of g. Then (7.22) becomes condition (7.21). O

7.4.8. Proof of Proposition 7.4.4. Proposition 7.4.4 follows from Proposition 7.4.7 combined
with [KM, Prop. 4.3.1]. (On the other hand, C. Kothari noticed that one can deduce Propo-
sition 7.4.4 from [Zi02, Prop. 90].) O

8. A FORMULA FOR 3,6..02, WHERE 2; € sDisp,“(R)
Let R be an IF,-algebra.

weak

We(R) is a tensor category, see §6.3.

8.1. Formulation of the result. Recall that sDisp
By §7.3, we have a functor
(8.1) sDisp®®*(R)°? — Sm’(R), £+ 3%, = Hom(Z,1,).

For each &, ..., P, € sDisp?®*(R), we have the tensor product map

(8.2) Hom(#,1,,r) X ... x Hom(Z#,1,, ) > Hom(Z ® ... ® X, 1, Rr),
which is a poly-additive map

(8.3) 3 X3 = A0

The map (8.3) induces a group homomorphism

(8.4) 3700 — Poly-add(3%, x ...3%,, Gy,

as before, the superscript (F™) means passing to the kernel of F™.

Proposition 8.1.1. The map (8.4) is an isomorphism.

The proposition will be proved in §8.3.
25



8.1.2. Remarks. (i) In the n = 1 case Proposition 8.1.1 is equivalent to Proposition 2.4.7;
this follows from §7.3.4.

(ii) Proposition 8.1.1 is a part of a bigger and “cleaner” picture, which is more or less
described in §8 of an older version of this paper'” (but without detailed proofs). The main
point is that Sm) (R) has a natural structure of a tensor category and the functor (8.1) has
a natural structure of a tensor functor. In the case n = 1 this was proved in §2.4.

(iii) Let ©,, r be the n-truncated Dieudonné-Cartier ring of R, see §7.4. The “n-truncated
Cartier theory” developed in [KM]| provides a fully faithful functor from Sm,(R) to the
category of ®,, g-modules; the functor is G — Hom(G*,W,,). It is natural to expect that
this is a tensor functor if Sm,(R) is equipped with the tensor product mentioned in the
previous remark and the category of ®,, p-modules is equipped with the Antieau-Nikolaus
tensor product [AN, §4.2-4.3]. By §2.4, this is true for n = 1 (in this case a ©,, g-module is
just an R-module equipped with a p-linear endomorphism, and the Antieau-Nikolaus tensor
product is just the tensor product over R).

8.2. Some lemmas.
Lemma 8.2.1. Let G,...,G; € Sm},(R). Then the natural map

Hom(G4,G,) ®g ... ®g Hom(G,, G,) — Poly-add(G; x ... G, G,)
18 an isomorphism.

Proof. To simplify the notation, assume that [ = 2. Let G} := Coker(V : Fr* G; — G;), then

G} € Smj(R). Since G, is killed by V', we have Hom(G;, G,) = Hom(G}, G,). Since
Poly-add(G; x G, G,) = Hom(G1, Hom(Gs, G,)) = Hom(Gy, Hom(G4, G,))

and G, is killed by V', we see that Poly-add(G; x Ga,G,) = Poly-add(G} x GY, G,). So the

lemma reduces to the particular case n = 1, which was treated in Proposition 2.4.5(i). O
Lemma 8.2.2. The map

(8.5) Hom(3%, 5. o5, Ga) — Poly-add(3%, x ...3%,, Ga)

induced by (8.3) is an isomorphism.

Proof. To simplify the notation, assume that [ = 2. By essential surjectivity of the functor
sDisp,, (R) — sDisp™**(R), we can assume that 22;, 2, are objects of sDisp, (R) (rather

n

than sDisp***(R)). Then so is the tensor product & := &2, @ P,.

n

Recall that &7; is a quadruple (P;, Q;, F, F}), see §6.1.2. Then & is a quadruple (P, Q,...)
with P=P, @ P, Q = (P, ® Q2) + (Q1 ® P), so we have a canonical isomorphism
(8.6) (P1/Q1) ® (P2/Qs2) — P/Q.
By §7.2.4, Hom(3%, G,) = P/Q, Hom(3%,,G,) = F;/Q;. So by Lemma 8.2.1, (8.5) can be
viewed as a map
(8.7) P/Q — (P1/Q1) ®r (P2/Q2).
Commutativity of diagram (7.16) implies that (8.7) is the inverse of (8.6). O

17See version 5 of the e-print arXiv:2307.06194.
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8.3. Proof of Proposition 8.1.1. Poly—add(B(*O},1 X ...3%,Gp) is a scheme of finite type
over R. So the scheme H := Poly-add(3%, x B*Jl Gn)F ") is a finite group R-scheme
killed by F™. We have Lie(H) = Poly-add(3%, x ...3%,,Ga).

Let H = 35,5..92,, then Lie(H') = Lle(Ho_m(f')jl@m@J,l Gn)) = Hom(3%, 5. 05,5 Ga)-

The homomorphism Lie(H’) — Lie(H) corresponding to our homomorphism f : H — H
is the map (8.5), which is an isomorphism by Lemma 8.2.2. Moreover, for any R-algebra R,
the map Lie(H' ®x R) — Lie(H ®x R) corresponding to f is an isomorphism.

Thus f : H — H is a closed immersion satitsfying the conditions of Lemma 2.2.4. So f
is an isomorphism. O

9. EXPLICIT DESCRIPTION OF Lau®?

9.1. Formulation of the result.

9.1.1. The goal. Let Sm] denote the stack of groupoids formed by commutative n-smooth
group schemes of rank . Our goal is to describe the commutative group scheme Laudd on
the stack Disp®?. By Theorem 4.2.2(ii), this group scheme is n-smooth of rank d'(d — d').
Thus Lauf; ¢ corresponds to a morphism Dlspdd — Smd, (=) " Our goal is to describe this
morphism explicitly.

9.1.2. Remark. By the second part of Lemma 7.1.4(ii), Zink’s functor defines a morphism
3: sD1spdd — SmZI,

where sDispr’d/ is the stack of groupoids defined in §6.5.

9.1.3. A morphism Dispfl’d/ — sDisprQ’d/(d’d/). According to [L13, Rem. 4.4], there is a duality
functor'®

Disp,, (R)®® — Disp,(R), £~ P'

parallel to the duality functor for non-truncated displays defined in [Zi02, Def. 19]. Tt induces
an isomorphism of stacks of groupoids

(9.1) Disp? 5 Disp®d—

,d’

Combining it with the morphisms DlSpd — SDiSpn’ ¢ and Dlspdd 4 SDlSpdd d , we get

a morphism

(9.2) D1spdd — sDispn x sDisph®™ .
The tensor product from §6.3.2 gives a morphism

(9.3) sDisp?? x sDisphd=¢ N lespd &' (d=d")
Composing (9.2) and (9.3), we get a morphism

(9.4) Disp? — lespd ' (d=d')

BAs explained to me by E. Lau, this functor can be defined by formula (10.17) below; in this formula
Disp,, (R) is identified with DISPI>"Yl(R) as explained in §10.7.2.
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9.1.4. Remark. In §10.8 we will give another description of the above morphism (9.4).

Theorem 9.1.5. The n-smooth group scheme Laui’d/ on Dispf;d' corresponds to the com-
posite morphism

&' (d—d’) &' (d—d")

Dlspdd — lesp 3, Sm ,

where the first arrow is (9.4) and the second one is given by Zink’s functor (see §9.1.2).

The proof will be given in §9.3. It is based on the result of E. Lau and T. Zink described
in the next subsection.

9.2. The group schemes A%? and B%?. In §4.4 we defined commutative n-smooth group
schemes A% and B4 on Disp®®. The rank of A%? (resp. B4%) equals d’ (resp. d — d').
Thus Ag’d/ corresponds to a morphism
(9.5) Disp?? — Sm?
and B%? corresponds to a morphism
(9.6) Disp®? — Smé~¢ .
Proposition 9.2.1. (i) The morphism (9.5) equals the composition
Disp?? — sDisp®? N Sm?
(ii) The morphism (9.6) equals the composition

d,d—d’ d

DlSpd g Disp;; — SDlSpdd SN Smfl_d/,

where the first arrow comes from the duality functor for n-truncated displays.

Proof. Statement (i) is [LZ, Lemma 3.12 |. Statement (ii) follows from (i) and commutativity
of the diagram

——=d,d—d’

(9.7) BT~ BT

l |

. d U
Dlspi’ —>Dlspdd d

whose horizontal arrows are given by the duality functors. A proof of commutativity of (9.7)
was communicated to me by E. Lau; for the non-truncated version of this statement, see
[L13, Rem. 2.3] and references therein. O

9.2.2. Remark. Combining Proposition 9.2.1 with Lemma 7.1.4(ii), one gets an explicit de-
scription of the restricted Lie algebras Lie(A%?) and Lie(B%?) from Theorem 4.4.2(ii).

9.3. Proof of Theorem 9.1.5. Theorem 4.4.2(iii) provides an isomorphism
Lauy® — Poly-add((AL")" x (BL")",G,) ™).

~

Proposition 9.2.1 provides isomorphisms A% 5 3, B4 =5 3, where ), P, are

certain n-truncated semidisplays over the stack Dispﬁ’d/. Finally, by Proposition 8.1.1,

Poly-add((A%?)* x (B2, G,,) ™) = 35,0, O
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10. THE MORPHISM Disp;’“ — sDisp VIA HIGHER DISPLAYS

10.1. The goal and plan of this section.

10.1.1. The goal and the idea. In §9.1.3 we defined a canonical morphism
(10.1) Disp? — sDigpd 4 (=)

n

Our goal is to describe this morphism in “Shimurizable” terms, i.e., in a way which makes
it clear how to generalize'® (10.1) to a morphism Dispf’“ — sDisp,,, where G is a smooth
affine group scheme over Z/p"Z and u : G, — G is a 1-bounded homomorphism.

The idea is roughly as follows. The definition of the morphism (10.1) given in §9.1.3
involves something like p ® p*, where p is the standard d-dimensional representation of
GL(d). Since p ® p* is the adjoint representation, it has an analog for any G (while the
decomposition of the adjoint representation as a tensor product is specific for GL(d)).

To implement this idea, we will use the notion of higher display, which was developed by
Langer-Zink and then by Lau [L21].

10.1.2. The plan. In §10.2-10.5 we recall some material from [L21]: the n-truncated Witt
frame, the category of finitely generated projective graded modules over it, and the category
of n-truncated higher (pre)displays. In §10.6 we construct a tensor functor from finitely gen-
erated projective higher predisplays to semidisplays. In §10.7 we discuss the interpretation
of Disp,, and sDisp;""¢ via higher predisplays. In §10.8 we implement the idea from §10.1.1.

§10.9-10.11 can be skipped by the reader. The goal of §10.9-10.10 is to introduce the tensor

structure on sDisp’""#( R) promised in §6, and §10.11 will be used in a single sentence in §C.5.

10.2. The Lau equivalence. In this subsection we retell a part of E. Lau’s paper [L21]
(but not quite literally).

10.2.1. The category C. Let C be the category of triples (A,¢,u), where A = @ A; is a
Z-graded ring and t € A_;, u € A; are such that leZ

(i) multiplication by u induces an isomorphism A; — A, for i > 1;

(i) multiplication by ¢ induces an isomorphism A4; — A;_; for i < 0.

Because of (i) and (ii), C has an “economic” description. To formulate it, we will define a
category C (where “ec” stands for “economic”) and construct an equivalence C — C.

10.2.2. The category C*°. Let C* be the category of diagrams

F
(10.2) Ag = Ay,

v
where Ay and A; are rings, F' is a ring homomorphism, and V' is an additive map such that
(10.3) a-V(d)=V(F(a)d') forae€ Ay, d € Ay
and for ' € A; we have
(10.4) F(V(d')) =pd', wherep:=F(V(1)) € A;.

Note that by (10.3) we have VF = V(1), which implies (10.4) if o’ € F(A) (but not in
general).

9For the actual generalization, see §C.4 of Appendix C.
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10.2.3. The functor C — C*°. Given a triple (A,t,u) € C, we construct a diagram (10.2) as
follows:

(i) Ap is the 0-th graded component of A;

(i) A; is the first graded component of A, and the product of z,y € A; is as follows: first
multiply by v in A, then apply the isomorphism A, — A; inverse to u : A — Aj;
equivalently, the product in A; comes from the product in A/(u —1)A and the natural map
Ay — A/(u—1)A, which is an isomorphism by virtue of §10.2.1(i);

(iii) F': Ag — A;p is multiplication by u, and V' : A; — Ag is multiplication by t.

Proposition 10.2.4. The above functor C — C* is an equivalence. The inverse functor

F
£:C — C takes a diagram Ay = A; to a certain graded subring of the graded ring
1%

Aolt,t7 ] x Afu,u™t], degt:= —1, degu = 1;

namely, the i-th graded component of the subring is the set of pairs (at™, a'u’), where a € Ay
and a' € Ay satisfy the relation

(10.5) d =p 'F(a) ifi <0, a=V(p~'d)ifi>0.
(As before, p := F(V (1)) € A;.) O

The functor £ : C* — C will be called the Lau equivalence.
The proof of the proposition is left to the reader. However, let us make some remarks.

10.2.5. Remarks. (i) The description of £ from Proposition 10.2.4 is motivated by the fol-
lowing observation: if (A,¢,u) € C then the natural map A — A[l/t] x A[l/u] is injec-
tive, A[1/t] = Ao[t,t™1], and A[l/u] = A;[u,u™"], where the ring structure on A; is as in
§10.2.3(ii).

(ii) If (A,t,u) € C then the nonpositively graded part of A identifies with Ag[¢] and the
positively graded one identifies with uA;[u], where the ring structure on A; is as in §10.2.3(ii).
So instead of describing A as a subring of Ag[t, '] x A;[u,u '], one could describe A as the
group A[t] ® uA;[u] equipped with a “tricky” multiplication operation.

(iii) There exists a natural situation in which p # p and moreover, p € p- A}*. Namely, in
the case p = 2 this happens for the triple (*W, F, V) mentioned in §D.7.1.

10.2.6. The Witt frame. For any ring R the maps F,V : W(R) — W(R) satisfy the proper-
F

ties from §10.2.2 (with p = p). Applying the Lau equivalence to the diagram W (R) = W(R),
v

one gets an object of C. Following [L21|, we call it the Witt frame. Following |[Dal, we denote
it by W(R)® (in [L21, Example 2.1.3| it is denoted by W (R)).

10.2.7. The n-truncated Witt frame. Let n € N and let R be an F,-algebra. Then we have
a map F : W,(R) — W,(R) (in addition to V : W, (R) — W,(R)). Applying the Lau

F
equivalence to the diagram W,(R) = W, (R), one gets an object of C. Following [L21], we
v

call it the n-truncated Witt frame. Following [Da], we denote it by W,,(R)® (in Example 2.1.6
of [L21] it is denoted by W, (R)).
Let us note that W(R)® and W, (R)® are particular examples of “higher frames” in the

sense of [L21, §2]. We will not use more general higher frames.
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10.3. Recollections on the n-truncated Witt frame. Let n € N and let R be an [F)-
algebra. Let us recall the material from [L21] about the n-truncated Witt frame W, (R)®.

10.3.1. The definition of W,,(R)? given in §10.2.7 amounts to the following. We equip the
rings W, (R)[t,t7!] and W, (R)[u,u"!] with the Z-grading such that degt = —1, degu = 1,
and dega = 0 for all @ € W,(R). Then

Wo(R)® € Wy (R)[u,u™ '] x W, (R)[t,t™]
is the graded subring whose i-th graded component consists of all pairs (au’, a’t™"), where

a,a’ € W,(R) are related as follows:
(10.6) a=p 'F(a)ifi <0,

(10.7) d =p"~'W(a)if i > 0.

It is easy to check that W, (R)® is indeed a subring of W,,(R))[u,u™"] x W, (R))[t,t']; this
is believable because (10.7) is an “avatar” of (10.6) (since F'V =V F = p).

10.3.2. (i) The projection W,,(R)® — W, (R)[t,t™'] identifies the nonpositively graded part
of W,,(R)® with W,(R)[t]. In particular, the 0-th graded component of W,,(R)® identifies
with W, (R).

(i) The projection W,(R)® — W, (R)[u,u"'] identifies the positively graded part of
W, (R)® with u - W,,(R)[u].
10.3.3. By §10.3.2, we can view t, u as elements of W,,(R)®. As such, they satisfy the relation

tu = p. The 0-th graded component of W, (R)¥ identifies with W,,(R). So we get a graded
homomorphism W, (R)[t,u]/(tu — p) — W,(R)®. If R is perfect, this is an isomorphism.

10.3.4. As before, consider t, u as elements of W,,(R)®. Then we have canonical isomorphisms
Wo(R)®u™ == Wo(R)[u,u™], WL(R)®[t™] = WL(R)[t,t ]

induced by the projections W,,(R)® — W,,(R)[u,u™!] and W,(R)® — W, (R)[t,t7"].

10.3.5. The quotient of W,,(R)® by the ideal generated by its graded components of nonzero

degrees identifies with W, (R)/V (W, (R)) = R. Thus we get a canonical homomorphism
W.(R)® — R.

10.3.6. The homomorphisms o,7 : W,(R)® — W,(R). Let 7 : W,(R)¥ — W,(R) be the
composite map
t=1

W (R)® — W, (R)[t,t '] — W,.(R).

Let o : W,,(R)® — W,(R) be the composite map
W, (R)® = W, (R)[u,u™ '] = W, (R).
The homomorphisms o, 7 : W,,(R)® — W, (R) are surjective, and one has
Kert = (t — 1)W,(R)®, Kero = (u—1)W,(R)®.
The restriction of 7 to the 0-th graded component W, (R) C W,,(R)® equals the identity
map. But the restriction of o to W,,(R) C W,,(R)® equals F : W,,(R) — W, (R). Presumably,

this was the motivation for introducing the notation ¢ in the paper [L21] (where the Witt

vector Frobenius is also denoted by o).
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10.3.7. Relation with the notation of Bhatt’s lectures |Bh|. In [Bh, §3.3] the letters ¢, u have
essentially the same meaning as above. However, his grading is opposite (i.e., degt = 1,

degu = —1).
10.4. The category Vec,(R).

10.4.1. Let R be an Fy-algebra. Let S := W,(R)®. Let S; be the i-th graded component of
S, 50 Sy = W,(R). If M = @ M; is a graded S-module, we write?® M{i} for the graded

J
S-module whose i-th graded component is M, ;.
Let Vec,(R) be the Sp-linear category of finitely generated projective graded S-modules.
By [L21, Lemma 3.1.4], every M € Vec,(R) can be represented as

(10.8) M = P Li @s, S{~i},

where L;’s are finitely generated projective Sp-modules. As noted in [L21, §3|, the ranks of
L;’s do not depend on the choice of a decomposition (10.8) (to see this, use the homomor-
phism S — R from §10.3.5).

10.4.2. For every a > 0, let Vec™¥(R) be the full subcategory of all M € Vec, (R) such that

n

L; # 0 only if 0 <4 < a. Let Vec! (R) be the union of Vecl®®(R) for all @ > 0. It is easy to

see that an object M € Vec, (R) belongs to Vec, (R) if and only if the map ¢ : M; — M; 4
is an isomorphism for all ¢ < 0; this condition is often called effectivity.

10.4.3. Tensor structure. Vec,(R) is a rigid tensor category. Vec, (R) is a tensor subcategory
of Vec, (R), which is not rigid if R # 0. The subcategory Vec>(R) c Vec} (R) is not closed
under tensor product if a > 0 and R # 0. (Nevertheless, Vec/®?(R) has a natural structure
of tensor category, see §10.9.4 below.)

10.5. n-truncated higher (pre)displays. Let us recall the notion of higher (pre)display
from [L21, Def. 3.2.1].

10.5.1. Definitions. If M is a W, (R)®-module then we write M7, M7 for the W,,(R)-modules
obtained from M by base change via the homomorphisms o,7 : W, (R)® — W, (R) from
§10.3.6. Let preDISP, (R) be the category of pairs (M, f), where M is a graded W, (R)®-
module and f € Hom(M?, M™). Let preDISP, (R) C preDISP, (R) be the full subcategory
defined by the condition M € Vec,(R). Let DISP,(R) be the full subcategory of objects
(M, f) € preDISP,,(R) such that f is an isomorphism; thus DISP,, (R) is the category whose
objects are pairs

(10.9) (M, f), M € Vec,(R), f € Isom(M, MT).

Objects of preDISP, (R) (resp. DISP,,(R)) are called n-truncated higher predisplays (resp. dis-
plays) over R.

Let DISP(R) C DISP,(R) be the full subcategory defined by the condition M € Vec, (R).
The categories DISP%(R), preDISP; (R), preDISP"? (R) are defined similarly.

20This notation is motivated by the following. A graded S-module is the same as an O-module on the
quotient stack (Spec S)/G,, . If R is perfect this stack is the Nygaard-filtered prismatization RV (see [Bh]),
and our notation M{i} agrees with the notation for Breuil-Kisin twists.
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The functors M + M7 and M — M are tensor functors. So preDISP,, (R), preDISP; (R),
DISP, (R), DISP;  (R) are tensor categories.

10.5.2. On M° and M7. Given a graded W, (R)®-module M, set
M_oo := M/(t — )M = lim(My —— M_; - ..),
—}

My := M/(u— 1)M = lim(My — M; - ...).
—

Define a W, (R)-structure on M., via the embedding W,,(R) < W,(R)®. Then M_,, = M7,
and M, is obtained from M7 by restriction of scalars via F': W, (R) — W, (R).

Hom(M?, M7) identifies with the group of o-linear maps M — M_,. Since o(u) = 1 and
My, = M/(u — 1)M, the latter identifies with the group of F-linear maps Mo, — M_..

10.6. The tensor functor preDISP; (R) — sDisp,(R). The definition of sDisp,,(R) was
given in §6.1. As before, we will use the notation S := W,,(R)® and the notation S; for the
i-th graded component of S, so Sy = W,,(R).

10.6.1. The functor preDISP; (R) — sDisp,(R). Given (M, f) € preDISP;}(R), we will
define an object (P, Q, F, Fy) € sDisp,,(R).
Since M € Vec! (R), we have a decomposition

(10.10) M =P Li ®s, S{-i},
i>0
where each L; is a finitely generated Sy-module and L; = 0 for ¢ big enough. Set
P:=M, Q:=tM,CP.

By (10.10), P is a finitely generated Sp-module and P/Q is a finitely generated projective
module over Sy/tS; = R.

By §10.5.2, we can think of f € Hom(M?, M7) as a o-linear map M — M_,, = My = P.
Restricting it to My and M;, we get F-linear maps F' : P — P and Fl My — P. We will
show that

(10.11) Fy(Ker(M, — My)) € Jor- P, where J, g = Ker(W,(R) — W,(R))
and therefore F} induces an F-linear map F; : Q — P/Jug- P.
By (10.10), Ker(M; —— My) = S} - My, where S| := Ker(S; —— Sp). So to prove (10.11),

it suffices to show that o(S]) = J,,.g. To see this, apply (10.7) for i = 1.
One checks that (P,Q, F, F}) € sDisp,(R).

10.6.2. Tensor structure. Both preDISP; (R) and sDisp,,(R) are tensor categories (in the
case of sDisp,,, see §6.3). Let us upgrade the functor preDISP;' (R) — sDisp,,(R) constructed
in §10.6.1 to a tensor functor.

If M, M’ € Vec,(R) and M" = M ® M’ then we have a morphism
(10.12) B My® M, — M.
If M, M’ € Vec!(R) then (10.12) is an isomorphism and
B((tMy) @ M)+ My @ tM]) = t MY

(it suffices to check these statements if M = S{—i}, M' = S{—i'}, where i,i' > 0).
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Now let (M, f) € preDISP; (R) and (M, f') € preDISP; (R). Let
(M7, ") = (M, f) @ (M, f').

Then we have F-linear maps F' : My — My and Fy : tMy; — My/J, g - My defined in §10.6.1.
We also have similar maps
F':Mi— Mg, F|:tM] — Mg/ Jor- My, F":M{— M, F/:tM] — M/J.r- M.
It remains to check the following properties of the map (10.12):

F'(B(x @) = B(F(z)®@ F(2')) for x € My, 2’ € M,

F/(B(x @ ")) = B(F(x) @ F{(z")) for x € My, 2’ € tMj,

F/'(B(z @ ")) = B(Fi(z) ® F'(z)) for x € tMy, 2’ € Mj,.
This is straightforward.

10.7. The equivalence DISP>Y(R) = Disp, (R). The categories
Disp,,(R) and sDisp?™"¢(R)

n

were discussed in §6.2.

10.7.1. In §10.6.1 we defined a functor preDISP;(R) — sDisp,(R). One upgrades it to a
functor

(10.13) preDISP (R) — sDisp*™*"¢(R)

n

by making the following modifications. First, instead of setting @ := tM; C M, we set
Q := M. Second, the map € : I,41,r ®w,(r) P — @ mentioned in formula (6.3) is defined
by identifying I, 41 r with S;.

10.7.2. One checks that the functor (10.13) induces equivalences
(10.14) preDISPO(R) =5 sDisps™8(R),

(10.15) DISP*Y(R) =5 Disp, (R),

and similarly, Ve (R) identifies with the category of “truncated pairs” from [L13, Def. 3.2].
This is known to the experts. The equivalence (10.15) is constructed in [Da, Lemma 2.25]
in the case n = oo.

10.7.3. Tensor structure on sDisp®™"8(R). In §10.10 we will see that preDISPI®(R) is a

n

tensor category. So (10.14) yields a structure of tensor category on sDisp "™ "¢(R).

d,d’
n

/(d-d)

10.8. The morphism Disp® — sDisprQ’d .

10.8.1. In §9.1.3 we defined a morphism Dispﬁ’d/ — sDisprz’dl(d’d/) by associating to a display
S Dispﬁ’dl(R) the tensor product of the semidisplays corresponding to &2 and !, where
P is the dual display.

By §10.7.2, we can think of &2 as an object of DISPI%Y(R). Then the construction of

§9.1.3 can be written as
(10.16) P (P) 2 (2,

where @ : preDISP; (R) — sDisp,,(R) is the functor from §10.6.1.
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10.8.2. By §10.6.2, ® is a tensor functor. We have

(10.17) Pt = P{-1},
where &* := Homg (<, S) and S := W,,(R)®. So formula (10.16) can be rewritten as
(10.18) P = (P @ P {-1}).

10.8.3. Suppose that the graded projective W,,(R)®-module underlying & has rank d. Such
a module is the same as a G,,-equivariant G L(d)-torsor on Spec W,,(R)®. Thus & can
be viewed as a G,,-equivariant G L(d)-torsor on Spec W,,(R)® equipped with an additional
structure (the latter corresponds to f from formula (10.9)). & ® 22* is just the vector bundle
corresponding to this GL(d)-torsor and the adjoint representation of GL(d).

10.9. Tensor structure on VecL?’“}(R). The reader may prefer to skip the remaining part
of §10. The goal of §10.9-10.10 is to define a tensor structure on the category preDISPL(R)
(and therefore on sDispy™"¢(R)), and §10.11 will be used in a single sentence in §C.5.

n

Lemma 10.9.1. Let f : M’ — M be a morphism in Vec, (R). The following properties of
f are equivalent:
(i) f induces an isomorphism Hom(M", M') s Hom(M", M) for all M" € Vecl®®(R);
(ii) f induces an isomorphism Hom(S{—i}, M') — Hom(S{—i}, M) fori=0,1,...,a;
(iii) f induces an isomorphism M! — M, for all i < a. O

Lemma 10.9.2. (i) The inclusion Vecl®¥(R) < Vect (R) has a right adjoint
I1, : VecH(R) — Vec%(R).

n

(ii) The functor 11, identifies Vec'>®(R) with the localization of Vec (R) by the morphisms
M’ — M inducing an isomorphism M/ — M, for each i < a.

Proof. Let us prove (i). Given M € Vec(R), we have to construct a pair (M’, f), where
M' € Vec™(R) and f € Hom(M’, M) satisfies the equivalent conditions of Lemma 10.9.1.
We can assume that M = S{—i}, ¢ > a. In this case let M’ = S{—a} and let f be equal to
t=* e S, ; = Hom(M', M).

Statement (ii) follows from Lemma 10.9.1 and the fact that I, is right adjoint to the
inclusion Vec%?(R) — Vec! (R). O

Lemma 10.9.3. Let M, M', N € Vec,(R). Let M := M®N, M' := M'®N. If f : M — M’
induces an isomorphism M; —>~Mi' Jor all i < a then the morphism M — M' corresponding
to f induces an isomorphism M; — M/ for all i < a.

Proof. This is clear if N = S{—j}, j > 0. The general case follows. O
10.9.4. Tensor structure on Vec>¥(R). Recall that Vec, (R) is a tensor category. The sub-

category Vec™(R) ¢ Vec!(R) is not closed under tensor product if a > 0 and R # 0.
However, Lemma 10.9.2(ii) combined with Lemma 10.9.3 provides a structure of tensor cate-
gory on Vec/>?(R) and a structure of tensor functor on the functor I, : Vec, (R) — Vec%,

Explicitly, for My, M, € Vec/®J(R) one has
(1019) M1 ® M2 == Ha(Ml ® MQ),

where ® (resp. ®) denotes the tensor product in Vec/®(R) (resp. in Vec, (R)).
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10.10. Tensor structure on preDISP%4(R).

10.10.1. T, as a functor preDISP!(R) — preDISP?(R). Let M € preDISP}(R). Define
M' € Vec®d(R) ¢ VectH(R) by M’ := T1,(M), where II, is as in Lemma 10.9.2. In Vec! (R)
we have a canonical morphism M’ — M. It induces isomorphisms M; — M, for i < a and
therefore an isomorphism (M’')" = M’ — M_,, = M". The composite map

(M) — M7 — M™ — (M')"
makes M’ into an object of preDISPI"®(R). Thus we have defined II, as a functor
preDISP; (R) — preDISP*9(R).
The functor II, : preDISP; (R) — preDISP>?(R) is right adjoint to the inclusion
preDISPI®(R) — preDISP} (R).

10.10.2. Tensor structure on preDISPg)’“](R). Now one gets a structure of tensor category
on preDISPI®Y(R) and a structure of tensor functor on the functor

11, : preDISP; (R) — preDISPL-
just as in §10.9.4, see formula (10.19).

10.11. The Zink complex of an object of preDISP,(R). To any M € preDISP, (R)
we will associate a complex €, of commutative group ind-schemes over R. If M is in
preDISP; (R) then C;; = C},, where & is the semidisplay corresponding to M (in the sense
of §10.6) and C', is given by formula (7.3). We will use the notation of §10.5.1.

10.11.1. The complex K. Let (N, f) € preDISP, (R); according to §10.5.1, this means that
N is a graded W,,(R)®-module and f € Hom(N?, N7). We have canonical maps « : Ng — N7
and 8 : No — N7, where a is W,,(R)-linear and J is F-linear. Define K to be the following
complex of abelian groups:

(i) K =0fori#0,—1, Ky' = Ny, K% = N7,

(ii) the differential d : K" — K% is the additive map o — fo 3: Ny — N”.

10.11.2. Remark. Suppose that (N, f) € preDISP, (R) satisfies the following conditions:
(i) f is an isomorphism;
(i) Ker(N —= N) N Ker(N - N) = 0.
Then the map (o, f o 3) : No — N7 x N7 is injective, so it identifies K' = Ny with
a subgroup of K% x K%. After this identification, d : Ky' — K% is just the difference
between the two projections Kg,l — K.

10.11.3. Cohomological interpretation. If f : N° — N7 is an isomorphism then (N, f) can be
interpreted as an O-module on a certain stack %%, and K [—1] computes the cohomology of
this O-module. The stack %5 is obtained from the quotient stack (Spec W,,(R)%®)/G,, by glu-
ing together the disjoint open substacks (Spec W,,(R)®[t7'])/G,, and (Spec W,,(R)®[u™]) /G,
which are both equal to Spec W, (R) by §10.3.4. If R is perfect then Z = RS ® Z/p"Z,

where R%" is the syntomification stack from [Bh.
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10.11.4. A canonical object of preDISP,(R). Let W(R)® be the non-truncated Witt frame,
see §10.2.6. To describe W(R)® explicitly, one just replaces W,, by W in all formulas from
§10.3.1.

As a group, each graded component of W(R)® is isomorphic to W(R). Replacing each

W (R) by WF)(R) (where WF™) € W is as in §7.1.2), one gets a graded ideal of W (R)®,
which we denote by W) (R)®. The W (R)®-module W) (R)® is, in fact, a W, (R)®-

module. Moreover, one has a canonical isomorphism
(WEIR)®)” = (WED(R))T,
so WF)(R)® is an object of preDISP, (R). (Usually, it is not in preDISP, (R).)

10.11.5. The Zink complex. Let M € preDISP, (R). For any R-algebra R, we set

Cu(R) = Ky s,
where N (R) is the tensor product of M {1} and WUE(R)® over W,,(R)® (the goal of shifting
the grading of M in the definition of N(R) is to simplify the formulation of Lemma 10.11.7).
The complex C,; will be called the Zink complex of M. Each of its terms is a functor from

R-algebras to abelian groups. According to the next lemma, the functors C%, are nice if
M € preDISP, (R) (i.e., if M is fintely generated and projective as a W,,(R)®-module).

Lemma 10.11.6. Let M € preDISP,(R). Let r be the rank of M wviewed as a finitely
generated projective W, (R)®-module.

(i) For each i, the functor C'; is an ind-scheme over R.

(ii) If i € {0, —1} then Zariski-locally on Spec R, the group ind-scheme C'; is isomorphic
to the direct sum of r copies of WI({FR). Ifi ¢ {0, —1} then Ci; = 0.

O

Proof. Use the decomposition (10.8).

Lemma 10.11.7. Let M € preDISP; (R). Then one has a canonical isomorphism Cy; —
C,, where & is the semidisplay corresponding to M (in the sense of §10.6) and C', is given
by formula (7.3). O

Corollary 10.11.8. Let M € preDISP, (R).

(i) If M € preDISP; (R) then C,, is quasi-isomorphic to 34, where 2 is the semidisplay
corresponding to M and 3 € Sm,(R) is defined by formula (7.2).

(ii) If M{1} € preDISP; (R) then C;, is acyclic.

Here the words “acyclic” and “quasi-isomorphic” are understood in the sense of complexes
of functors { R-algebras} — Ab.

Proof. Statement (i) immediately follows from Lemma 10.11.7 and the definition of 3. In
the situation of (ii), the semidisplay & = (P, Q, F, F) satisfies the condition ) = P. This
condition implies that 35 = 0 by Lemma 7.1.4(ii). U

10.11.9. Remarks. (i) If M & preDISP;  (R) then H~!(C};;) can be nonzero, see formula (10.22)

below.
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(ii) Let N(R) be as in §10.11.5. If M € DISP,,(R) then N(R) satisfies the two conditions?!
from §10.11.2. So we can identify the group Ky' with a subgroup of K% x K%, after which
d: Ky' — K% is just the difference between the two projections Ky — K.

10.11.10. The case n = 1. By |L21, Example 3.6.4], DISP;(R) is canonically equivalent®?
to the category of F-zips over R. An F-zip over R is an R-module L equipped with a
descending filtration Fil L, an ascending filtration Fil. L, and an isomorphism

(10.20) gr. L — Fr*gr’ L;
it is assumed that gr' L is a finitely generated projective R-module and

Fil' L=Lfori<0, Fil'L=0fori>0, Fi;L=0fori<0, Fil;L=L fori> 0.
Let M € DISP;(R) correspond to an F-zip L. Then one checks that the Zink complex Cj; is
as follows. First, C}Q = L* where Lf = L®g (W( ). So by §10.11.9(ii), we can think of C}!
as a subgroup of L Xspec R L and then d : C’ — CY = LFis just the difference between

the two projections C — Lﬂ Second, this subgroup 1S the fiber product of (FllO L)A and
(Fily L) over (gr° L), where the map (Fily L)? — (gr° L)? is the composition

(10.21) (Filo L)* = (gr, L)} = Fr*(gr® L)} -5 (g1° L)%,
Note that C;/ D (Fil' L)jj Xspec i (Fil_1 L)Ii S0
(10.22) H(C;,) > (Fil' L) n (Fil_; L)%,

In particular, H~!(C},) can be nonzero.

Let C;, be the quotient of €'y, by the acyclic subcomplex 0 — (Fil' L)* =% d < (Fil* L)13 —0
(so the map C}; — C is a quasi-isomorphism). To describe C more explicitly, note that
Cift C (gr° L)13 x (Filg L)ﬁ is just the graph of the map (10.21), so C;;* identifies with (Fil, L)
via the projection (gr’ L)ﬁ x (Filg L)ﬁ — (Filg L)&. After this identification, C';; becomes the
complex

(10.23) 0 — (Filo L)F 223 (L/ Fil' L)} — 0,
where 7y is the composite map
(10.24) (Fily L)* — (gro L) =5 Fr*(gr° L)* -5 (@° L)f — L/ Fil' L

and ¢ is the composite map (Fily L)ii < LF (L/Fil* L) :
Note that if M € DISP;"(R) then the first and last arrow of (10.24) are isomorphisms, so
(10.23) is isomorphic to the complex

ﬁV_

0 — Fr*(gr’ L)F — (gr’ L) — 0,

where A : Fr* g1’ L — g1 L is the composition of the following linear maps:
Fr*gr® L =5 gry L — L — g1’ L.
21T check condition (ii), note that Ker(L —— L) N Ker(L —% L) = 0 if L = (WF™)®.
2Warning: in [L21, Example 3.6.4] the filtration C* is always descending and the filtration D, is always

ascending, even if stated otherwise! (The confusion in loc. cit. is purely terminological.)
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APPENDIX A. RECOLLECTIONS ON W

A.1. The group ind-schemes W, WP, For aring R, let W (R) be the set of all € W (R)
such that all components of the Witt vector x are nilpotent and almost all of them are zero.
Then W(R) is an ideal in W (R) preserved by F and V. Quite similarly, one defines an ideal
Wbig(R) in the ring WP(R) of big Witt vectors, which is preserved by F, and V,, for all
n € N.

The functors W and WP are group ind-schemes over Z. It is known that WP is Cartier
dual to WP, and Wz(p) is dual to Wz, (here Z,) is the localization of Z at p, and Wz(m is

the base change of ). Details are explained below.
A.2. Duality between W"# and Jybis,

A.2.1. The canonical character of WP, One has
WhE(R) = Ker(R[H])* — R¥), WYS(R) = Ker(R[t)* — R*),

where the maps R[[t]] — R* and R[t]* — R* are given by evaluation at t = 0. Define
A WPE(R) — R* to be the map that takes f € Ker(R[t]* — R*) to f(1).
One has

(A1) AoV, =X forallneN.

A.2.2. The pairing. We have a pairing

(A.2) WPE(R) x WY8(R) — R*, (z,y) — (x,y) = Axy).
Formula (A.1) implies that

(A.3) (Fu(2),y) = (2, Va(y)),  (Val@),9) = (2, Faly)).
One can view (A.2) as a paring

(A.4) WP x TWhe 5 G, .

A.2.3. Nondegeneracy of the pairing. P. Cartier proved that (A.4) induces an isomorphism
(A.5) whe =5 Hom (WP, G,,),

see [Ca, Thm. 2|. A detailed exposition is given in [H, §37.5]; according to [H, §E.6.2], it is
based on some lecture notes of Cartier. Key idea: WP"® identifies with the inductive limit of
Sym™ A!, where the transition map Sym™ A' — Sym"™ A! comes from 0 € A'.

A.2.4. Relation to Contou-Carrére’s symbol. The pairing (A.4) is closely related to Contou-
Carrére’s tame symbol, see [Col, [De, §2.9], and [BBE, Prop. 3.3(ii)(c)].

A.3. Duality between Wz(p> and Wz(p).
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A.3.1. The pairing. Let R be a Zy)-algebra. Then one has a canonical embedding
W(R) — W"&(R).

So (A.2) induces a pairing

(A.6) W(R) x W(R) = R*, (x,y) — (2,y),

which can be viewed as a paring

(A7) Wz, x WZ(p) = (Gm)z,-

By (A.3), we have
(A-8) (Fa,y) = (&, Vy), (Va,y) = {z, Fy).

A.3.2. Nondegeneracy of the pairing. It is known that the pairing (A.7) induces an isomor-
phism

(A.9) W, — HO—““(WZ@)’ (Gm)z,)-

This follows from Cartier’s theorem mentioned in §A.2.3: indeed, WZ(p) identifies with
Wzg)/ Z Va (Wzg)) so (A.5) implies that Hom(WZ( ’ (Gm)z<p)) identifies with

(n,p)=

bi bi
n Ker(F, : Wz(i — Wz(f)) =Wz,

(n,p)=1

Let us note that in this article we only need nondegeneracy of the pairing
WFP X WFP — (Gm)[E‘p ,
which is proved in [DG, Ch. V, §4.5|. A related fact is proved in §4 of Chapter III of [Dem]|.

APPENDIX B. EXPLICIT PRESENTATIONS OF THE STACKS sDisp?? | sDisphdveak,

. 4 . ’
sDisph®strong - AND Disp®?

B.0.1. The goal. Given integers d and d’ such that 0 < d’ < d and an integer n > 0, we
defined in §6.5 the stacks sDispr’d , lespdd weak sDispg’d,’Strong, and Dispg’d,. We are going
to describe each of them as a quotient of an exphcit scheme by an explicit group action.

Let R be an [F,-algebra. Recall that sDisp?® (R) is the full subgroupoid of the underlying
groupoid of sDisp,, (R) whose objects are quadruples (P, @, F, Fy) € sDisp,,(R) such that
rank P = d and rank(P/Q) = d’. The groupoids sDisp®?""**(R), sDisp%? *""¢(R), and
Dispz’d/(R) are defined similarly but with the following changes:

(i) in the case of Disp®® (R) and sDisp®? *""¢( R) replace P/Q by Coker(Q — P);

(ii) in the case of lespdd weak(R) the condition for P is that rank(P/I, zP) = d.

Note that sDisp™® #  only if d’' = d.
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B.0.2. Rigidifications. Let Ty := W, (R)¥, Lo :=

By a rigidiﬁcation of an object of (P,Q, F, F}
(P,Q) — (To ® Lo, In.g - To ® Ly).

By a rlgldlﬁcatlon of an object of (M, Q, F, ) € sDisp® d'weak(( ) we mean an isomorphism
(M, Q) — (Ty ® Lo, I, g - Ty ® L), where Ly := Lo/ Jn.r - Lo.

By a rigidification of an object of Dispf;’d'(R) or sDisp A'strong(BY we mean a normal
decomposition (in the sense of [L13, §3.2]) plus an isomorphism between the corresponding
pair (7', L) and the pair (7, L).

Let SDiSpr’Crlilg(R) be the set of isomorphism classes of pairs consisting of an object of

d,d’ ;weak d,d’ ;strong
n,rig n,rig ’

W, (R).
) € sDisp®™@(R) we mean an isomorphism

sDispr’d/(R) and a rigidification of it. Similarly, define functors sDisp,’ , sDisp
and Disp‘i’vri/g. Each of the four functors can be described in terms of matrices (see §B.0.3

below). This description shows that each of the functors is representable by an affine scheme.

B.0.3. Rigidfications in terms of matrices. One has

Dispirti, (R) = GL(d, W,(R)), sDispl&=""8(R) = Mat(d, W, (R)).

n,rig
The first equality is explained in [LZ, §1.2]; see also [BP, §2.3|, where only the case n = oo

is considered. The second equality is quite similar to the first one.
sDispi”fig(R) is the set of block matrices of the following shape:

Wn Wn—l
Wn Wn—l

By this we mean that sDispZ’ffilg(R) is the set of block matrices

(B.l) <$11 11312>

L21 T22
where 11 (resp. xgy) is a square matrix of size d’ (resp. d — d’) and the entries of the matrix
x;; are in Wy,(R) if j = 1 and in W,,_;(R) if j = 2. The first d columns of (B.1) are the
images of the basis vectors of Ty under F': P — P; the other columns are the images of the

basis vectors of Ly under Fy : Q — P/J, g - P.

Similarly, sDisp® Crllgweak(R) is the set of block matrices of the following shape:

Wn Wn—l
anl anl

B.0.4. sDispfl’d/ as a quotient stack. Let Hff’d/(R) = Aut(Py, Qo), where Py := Ty & Ly,
d,d’

nrig? and

Qo :=1I,r Ty ® Lo. Then Hg’d/ is a group scheme acting on the scheme sDisp
sDispZ’ = lespn ig /Y dd’

In the language of §B.0.3, HT‘f’d/ is the group of invertible block matrices of the following
shape:

32) ()
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(here I,, denotes the functor R +— I, ). An element

hiy g dd’
h = HY" (R
(h21 h22) € HyO(R)

acts on sDisp™®_(R) by

n,rig

pF(ha1)  F(hg2)

B(h) = (pol (1)) F(h) (g (1))

B.0.5. sDisp®? " 4s ¢ quotient stack. This is parallel to §B.0.4, but instead of (B.2) one

n
has to consider invertible matrices of the following shape:

W, I,
Wn—l Wn—l
B.0.6. Dispi’d' and sDispZ’d/’Strong as quotient stacks. One has

: ' . dd ' . ' o dd st '
Disp®? = Disp,, 5 / BP%%  sDisphd strone — sD1spn’rij: rons / gpdd
d,d’ ;strong
n,rig

(B.3) v haed(h)~,  where ®(h) = (F (o) V1<h12)> |

Informally,

d,d’

and preserving Disp,;,

where BPZ’dl is a certain group scheme acting on sDisp
(which is an open subscheme of sDispi’il’gStrong). The group scheme BP%? was introduced by
O. Biiltel and G. Pappas® in the case n = oo and then used (for arbitrary n) in [LZ, §1.2] to
describe Disp®® . The definition of BP%? and its action on sDispZ’vfi/;trong is recalled below.
Let GL(d,W,,) be the group scheme over [, representing the functor R — GL(d, W,(R)).
The group BP%' is a certain subgroup of GL(d, W,,)x GL(d, W,,), and it acts on sDigphd strone

by two-sided translations; more precisely, a pair o
(9,h) € BP*(R) ¢ GL(d, W, (R)) x GL(d, W, (R))

acts by
x> hrg™',  where x € Mat(d, W,(R)) = sDispi’ffi/éStrong(R)‘
The subgroup BP%? (R) ¢ GL(d, W,(R))) x GL(d, W,(R)) consists of pairs (g, k) such that
(B.4) 95 =P F(hi) for 1 < j <i<2,
(B.5) hia = V(g12),

where g¢;;, h;; are the blocks of the block matrices g, h (as before, the blocks g1, hy; have
size d'). Note that (B.5) is an “avatar” of (B.4) because F'V =V F = p.

Informally, BP%? (R) is the graph of a multivalued map ® : H*(R) — GL(d, W,(R)),
where H*? C GL(d,W,) is the group of invertible block matrices of the shape

W, I,
W, Wy
233ee |BP, §2.3]. Let us note that the authors of [BP] refer (after their Definition 1.0.1) to other works in

which the subgroup was introduced and used; one of them is a 2008 e-print by Biiltel.
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and @ is essentially as in formula (B.3) (except that @ is multi-valued now).

APPENDIX C. Disp&# AND Lau$*
C.1. The setting and the plan.

C.1.1. The setting. Let G be a smooth affine group scheme over Z/p"Z equipped with a
homomorphism x : G, — G.

C.1.2. Key example. Let d > d > 0. Let G = GL(d) and
(C.1) p(A) =diag(A, ..., A\ 1,...,1),

where \ appears d’ times and 1 appears d — d’ times.

C.1.3. Plan. In the setting of §C.1.1, there is a stack DispS* over F, such that in the
situation of §C.1.2 one has Dispg’“ = Dispfll’d/. We will recall the definition of Dispg’“ in §C.2.
Assuming that u is 1-bounded in the sense of §C.4.1, we will define in §C.4-C.5 a group scheme
Lau%# over Disp* such that in the situation of §C.1.2 one has Lau$* = Lau®?. If u is
1-bounded then according to [GM], one has an algebraic stack BTS* ®F,. We conjecture
that it is a gerbe over Dispg’“ banded by Laug’“ (see §C.5). In §C.7 we describe the Cartier

dual of Lau®* very explicitly.

C.1.4. On the setting of §C.1.1. The setting of [BP, 121, GM| is more general than that of
§C.1.1: p is there a cocharacter of G ® O/p"O, where O is the ring of integers of a finite
unramified extension of Q,. This generalization is important.

C.2. The stack DispS*. Let us recall the definition of DispS** from [L21] (in the earlier
article [BP| this was a description rather than the definition). It is quite parallel to the

description of Dispi’d/ given in §B.0.6 of Appendix B.

C.2.1. Outline. Let G(W,,) be the affine group scheme over F, representing the functor
R — G(W,(R)) on the category of F,-algebras. The group scheme G(W,,) x G(W,,) acts on
the scheme G(W,,) as follows: a pair (g,h) in G(W,(R)) x G(W,(R)) acts by

(C.2) Uws hUg™ ", where U € G(W,(R)).

The stack DispS* is defined to be the quotient of the scheme G(W,) by the action of a
certain subgroup® BPS* ¢ G(W,) x G(W,,). The subgroup is defined below.

C.2.2. Definition of BPS*. G,, acts on G and H°(G,Og): namely, A € G,, acts on G by
g p(N\)gu(N) 7t and it acts on H°(G, Og) by taking ¢ € H°(G, Og) to the function

g = @(p(N)gp\) ™).
The action of G,, on H°(G,O¢) induces a grading
(C.3) H(G,0q) = P H(G, Og)x.-

keZ

241y [L21, §5.1] it is called the display group.
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For a Z-graded ring A, let G(A)®" C G(A) denote the subgroup of graded ring homo-
morphisms H°(G, O¢) — A; this is indeed a subgroup because G(A)®m = Mor® (Spec A, G).
Finally,

BP(R) = G(Wa(R)®)%,
where W, (R)® is the n-truncated Witt frame, see §10.3.1. Since W,,(R)? is a graded subring
of Wy (R)[u,u™'] x W,(R)[t,t™'], we see that BPS*(R) is a subgroup of the group

GWa(R)[u, u™'] x Wa(R)[t,t71])* = G(Wa(R) x Wy(R)) = G(Wu(R)) x G(W,(R))

(we have used the homomorphisms W, (R)[u,u™!] — W,(R) and W,(R)[t,t7'] — W,.(R)
given by evaluation at u =1 and t = 1).
The following lemma describes BPS# in matrix terms.

Lemma C.2.3. Let p: G — GL(r) be a homomorphism such that

p(p(X)) = diag(A™, ..., A™).
Let pij € HY(G,O¢) be its matriz elements.
(i) If (g, h) € BPS*(R) C G(W,(R)) x G(W,(R)) then
(C.4) pij(g) = p™ " F(pi(h)

)
(i1) If p : G — GL(r) is a closed immersion and g,h € G(W,(R)) satisfy (C.4)-(C.5) then
(9.h) € BPIH(R).

Proof. (i) Note that in terms of the grading (C.3), we have p;; € H*(G, Og)m,—m,-
Let (g,h) € BPS#(R). According to the definition of BPS* (see §C.2.2), this implies that
the pair (pi;(g), pij(h)) € Wi(R) x W,(R) belongs to f(Sm,—m,), where

S = W,(R)® C Wo(R)[u,u™ "] x Wo(R)[t, t7]

and the map f : W, (R)[u,u™'] x W, (R)[t,t7'] = W,(R) x W,(R) is given by evaluation at
u=1t=1. So formulas (C.4)-(C.5) follow from (10.6)-(10.7).

(i) If p : G — GL(r) is a closed immersion then the ring H(G, Og) is generated by the
functions p;;, so the above argument can be reversed. O

Corollary C.2.4. In the situation of §C.1.2 one has BPS* = BP4? | Lau$* = Lau®?
Proof. Compare equations (C.4)-(C.5) with (B.4)-(B.5). O
C.3. BPf’“ and Dispf’“ in terms of G-torsors. For an F,-algebra R, let

Xpg = Spec W, (R)®.

C.3.1. The G-torsor Py. The group G,, acts on Xg. On the other hand, G,, acts on G by
left translations via u : G,, — G. Thus we get an action of G,, on Xz x G. It commutes with
the action of G on Xy x G by right translations. So X x G is a G,,-equivariant G-torsor
over Xg. The corresponding G-torsor over the stack Xz/G,, is denoted by Pf. (In other
words, Ph is the G-torsor over Xg/G,, induced via p by the G,,-torsor Xr — Xz/G,,.)
One checks that
(C.6) Aut Pk = BPS#(R).
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C.3.2. G-torsors of type u. We say that a G-torsor over Xg/G,, has type p if it becomes
isomorphic to P} after etale localization with respect to R. By (C.6), a G-torsor of type
w over Xr/G,, is the same as an etale BPS’“—torsor over Spec R. In fact, “etale” can be
replaced by “fpqc” because BPS* is smooth by [L.21, Lemma 2.3.8].

C.3.3. Remarks. (i) If 4/ and p are conjugate then 77}’{ ~ Pp. Conversely, if R # 0 and
771’%, ~ Py then p' and p are conjugate; to see this, use the homomorphism W,(R)® — R
from §10.3.5.

(i) It follows from |GM, Prop. 5.5.2| that for every G-torsor F on Xg/G,, and every
x € Spec R there exist a homomorphism p : G,, — G and an open subset Spec R’ C Spec R
containing x such that the pullback of F to Xr /G, has type p.

C.3.4. DispS" in terms of G-torsors. By §C.3.2, one can reformulate [L21, Lemma 5.3.8]
as follows: DispS*(R) identifies with the groupoid of G-torsors F of type pu over Xg/G,,
equipped with an isomorphism f : 77 —+ F7. Here F°, F" are the pullbacks of F via the
morphisms Spec W,,(R) — Xg/G,, corresponding to the homomorphisms

o Wn(R)® = Wo(R), 7:Wa(R)® — W,(R)

from §10.3.6. In this language, the canonical map G(W,,(R)) — DispS*(R) takes an element
U e G(W,(R)) to (F, ), where F = Pk and f : F7 — F7 is given by U.

C.4. A morphism Dispg’“ — sDisp,,.

C.4.1. The 1-boundedness condition. Let g := Lie(G). Composing the adjoint representation
of G with u : G,, — G, one gets an action of G, on g or equivalently, a grading

(C.7) g= @ gi

i€Z
compatible with the Lie bracket. From now on, we assume that the G,,-action is 1-bounded,
by which we mean that

(C.8) g, =0 forall i > 1.

Under this assumption, we will define in §C.4.3 a morphism DispS* — sDisp,,. In §C.6 we
will describe it more explicitly.

C.4.2. Twists of g. Let F be a G-torsor of type pu over Xr/G,,. Let gz be the F-twist of
the G-module g; this is a vector bundle on Xg/G,,. Pulling it back to Xz, we get a finitely
generated projective graded S-module, where S := W,,(R)®; by abuse of notation, we still
denote it by gr. We claim that

(C.9) gr{—1} € Vec, (R),

where {—1} denotes the shift of grading (see §10.4.1) and Vec,' (R) is as in §10.4.2. It suffices
to check this if F ~ P%. In this case gr ~ @ g;®S{i}, where {i} denotes the shift of grading

and the g;’s are as in (C.7). So (C.9) follows from the 1-boundedness assumption (C.7).
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C.4.3. A morphism DispS* — sDisp,. By §C.3.4, we can think of an object of Disp**(R)
as a pair (F, f : F° — F7), where F is a G-torsor of type u over Xr/G,,. By §C.4.2, we
have an object gr{—1} € Vec!(R). Using f : F° — F7, one upgrades it to an object of
the category DISP; (R) from §10.5. Thus we have constructed a functor

(C.10) DispS*(R) — DISP; (R).
Composing it with the functor DISP;f (R) — sDisp,,(R) from §10.6, one gets a functor
(C.11) DispS*#(R) — sDisp,,(R).

C.5. The group scheme Laug’“.

C.5.1. Let Laus # be the commutative n-smooth group scheme over Dispf’“ corresponding
to the composite morphism

(C.12) DispS* — sDisp, 35 Sm,,

where the first arrow is (C.11) and the second one is given by Zink’s functor (see §7.1).
By Lemma 10.11.7, the functor DispS*(R) — Sm,,(R) can also be described as follows?: it
takes a pair (F, f : F7 — F7) to the 0-th cohomology of the Zink complex Cori1} (the
latter is defined in §10.11.5).

In the situation of §C.1.2 one has

(C.13) Lau$* = Lau®?;

n n I

this follows from Theorem 9.1.5 combined with §10.8.

C.5.2. On the other hand, let BTS* be the stack defined in [GM]; the definition of BTS*
uses the syntomification functor R — R%™ from [Bh|. By [GM, Theorem DJ, if u is 1-
bounded then the stack BTS’“ ®Z/p™Z is algebraic for every m; moreover, in the situation
of §C.1.2 one has BTS* @Z/p"7 = BT @ 7./p" L.

One has a canonical morphism ¢, : BTS* ®F, — DispS*, see [GM, Rem. 9.1.3] (it is
given by pullback with respect to a certain morphism Xz/G,, — RN ® Z/p"Z, where Xg
is as in §C.3 and RV is the Nygaard-filtered prismatization®® of Spec R). In the situation of
§C.1.2 this is the morphism mentioned in Theorem 1.1.1.

Conjecture C.5.3. The morphism ¢, : BTS¢ ®F, — DispS* is a gerbe banded by LauS*.

C.5.4. Remarks. (i) Conjecture C.5.3 holds for n =1 (see [GM, Rem. 9.3.4] and the related
part of the proof of [GM, Thm. 9.3.2]).

(ii) In the situation of §C.1.2, Conjecture C.5.3 holds for all n. This follows from Lau’s
Theorem 1.1.1 combined with formula (C.13).

(iii) As far as I understand, E. Lau [L25] has proved Conjecture C.5.3 in general.

25This description shows that even without assuming y to be 1-bounded, Lauf’“ is defined as a complex of
group ind-schemes concentrated in degrees 0, —1, but 1-boundedness ensures that this complex is a group
scheme.
268ee [Bh, Def. 5.3.10]. By [Bh, §5.4], if R is smooth over F,, one can use [Bh, Def. 3.3.13].
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C.6. Explicit description of the morphism Dispg’“ — sDisp,,. In §C.6.2-C.6.3 we give
an explicit description of the morphism Dispg’“ — sDisp,, defined in §C.4. This description
is obtained by unraveling the definitions in a straightforward way, so we just formulate the
answer.

C.6.1. A preliminary remark. The composition DispS* — DISP! — Vec, was described
in §C.4.2. Combining this description with §C.3.4, we see that the composite map

(C.14) G(W,) — Disp&* — DISP} — Vec,”
is constant. More precisely, the map (C.14) takes every U € G(W,(R)) to the object
M = @gi ® S{i — 1} € Vec(R), where S :=W,(R)®.

Thus M; = @ Sitj—1 ® g;. Since g; =0 for i > 1, we get

MO = Wn(R) ® g, Ml = (Wn(R) @ ng) D ([n-‘rl,R ® 91)7
and the map ¢ : M; — My comes from the canonical map I,,11 g — W, (R).
C.6.2. The morphism G(W,) — sDisp,, in explicit terms. The composite morphism
G(W,,) — DispS* — sDisp,,

takes an element U € G(W,(R)) to the quadruple*” (Pg,Qr, Py, ®};) € sDisp,,(R), where
the W, (R)-modules Pr, Qr, and the F-linear maps ¢y : Py — Py, @}, : Qu — Py/JnrPu
are as follows:
(i) in terms of §C.6.1, Pp = My and Qg = Im(M; SN My); explicitly,
Pr=W,(R)®g, Qr=(W,(R)®g<0)® ([nr®g)C Pr.
(ii) @y : Pr — Pg and @} : Qr — Pr/J, r - Pg are the F-linear maps such that

(C.15) Py(a®x)=p" " Ady(F(a)®x) for a € W,(R),z € g,
(C.16) P (a®x)=p "Ady(F(a)®x) fora€ W,(R),z€g; ifi <O,
(C.17) P (a®z)=Ady(V H(a)®@x) fora€ g€ g

(

here F(a) € W,,_1(R) is the image of F(a)).
Thus &y = Ady 0Py, @, = Ady o®). Note that (C.17) is an “avatar” of (C.16).

C.6.3. The morphism Dispf’“ — sDisp,, in explicit terms. Recall that the stack Dispg’“ is
the quotient of the scheme G(W,,) by the following action of BP**: an element

(g,h) € BPS#*(R) C G(W,(R)) x G(W,(R)

takes U € G(W,,(R)) to hUg™'. So descending the morphism G(W,,) — sDisp,, described in
§C.6.2 to a morphism DispS* — sDisp,, amounts to specifying an isomorpism

(PR7 Q37 q)U> CDIU) % (PPw QR> CDhUg—la (I),hUgfl)’
where (g, h) € BPS*(R). This isomorphism is Ady, : P — Pg.

2Mn this quadruple &y : Py — Py and ®f; : Qu — Py play the role of F' and F from §6.1.2
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C.7. Explicit description of (Lau$*)*. Let (Lau%")* be the Cartier dual of Lau$". We
will describe (Laug’“)* as a subgroup of a very simple group scheme A over Dispg’“.

C.7.1. The group scheme A. Let A be the group scheme over [F, whose R-points are additive
maps g — W, (R) or equivalently, W, (R)-linear maps W,(R) ® g — W,(R). We have the
coadjoint action of G(W,,(R)) on A(R). So G(W,,) acts on A. Precomposing this action with
the homomorphism BPS# < G(W,,) x G(W,,) =2 G(W,,), we get an action of BPS* on A.
On the other hand, we have the BP¢*-torsor G(W,) — Disp$*. Define A to be the twist
of A by this torsor. Thus A is a smooth commutative group scheme over Disp&.

C.7.2. FExplicit description of (Laug’“)*. Recall that Laug’“ corresponds to the composition
DispS* — sDisp,, 3y Sm,. If 2 = (P,Q, F, Fy) € sDisp,(R) then by §7.2, 3%, is the sub-
group of the group scheme Homyy, (r)(P, W, r) defined by equations (7.9)-(7.10). Combining

this with §C.6, we see that (Lau$"*)* is a closed subgroup of A. It remains to describe the
closed subscheme

(C.18) (Laug )" xp o G(W,) C A X G(W,).

n

Combining equations (7.9)-(7.10) with (C.15)-(C.17), we get the following description of the
subscheme (C.18).

Let (n,U) be an R-point of A x G(W,,), so n € Hom(g, W,(R)), U € G(W,(R)). Then
(n,U) is an R-point of (LauS+)* X DyjgpGiot G(W,) if and only if n and U satisfy the equations

(C.19) F(n(z)) =n(Ady(z)) ifze€ g,

(C.20) n(x) = p 'V(n(Ady(z))) ifz € g andi<0.
Note that (C.19) is an “avatar” of (C.20).

In the next remark we describe a way to transform the system of equations (C.19)-(C.20)
by eliminating some of the unknowns (although it is not clear whether this is worth doing).

C.7.3. Remark. Recall that A := Hom(g,W,,). Let A; := Hom(g, W,); this is a direct

summand of A. Proposition 7.4.7 implies that the composite map

(Lau ™ )* oo G(W,) < A x G(W,) — Ay x G(W,)

is still a closed immersion. It also describes its image by rather explicit equations.

APPENDIX D. A CONJECTURAL DESCRIPTION OF BTS#

Just as in Appendix C, let G be a smooth affine group scheme over Z/p"Z equipped with
a homomorphism  : G,, — G. Let BTS* be the stack defined in [GM] along the lines
of [D23, Appendix C].

D.1. The goal. Suppose that g is 1-bounded. Then by [GM, Theorem D], the stack
BTS’“ ®Z/p™Z is algebraic for every m, i.e., it can be represented as a quotient of a scheme by
an action of a flat groupoid. One would like to have an explicit presentation of BTf HRLI "L
as such a quotient. The goal of this Appendix is to formulate a conjecture in this direction,

see Conjecture D.8.4.
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D.2. Format of the conjecture. The formulation of the conjecture uses ideas from the
theory of prismatization [Bh, D20] and “sheared prismatization” [BMVZ, BKMVZ|.

D.2.1. The format. We will define a stack of Z/p"Z-algebras denoted by *%#,,. Using *%,,
we will define a group stack G(*%,). We will also define another group stack, denoted by
G its definition involves the homomorphism p : G,, — G. One has a canonical
homomorphism G(*Z2)¢m — G(*%,) x G(*%,). It defines an action of G(*Z)% on the
stack G(*Z,) by two-sided translations. We conjecture that the quotient with respect to
this action is canonically isomorphic to BTS* (assuming that g is 1-bounded).

D.2.2. Analogy with the definition of DispS*. The format from §D.2.1 is similar to the format
of the definition of Disp$** given in §C.2: namely, G(*%,) and G(*%)® from §D.2.1 are
analogs of G(W,) and BP* from §C.2.

D.2.3. Remarks. (i) Let BTg’Hé‘p = BTY* x SpecF,, W, p, :== W, x SpecF,. Since W,,, is
a scheme of (Z/p"Z)-algebras, we have the group scheme G(W,r, ). The (Z/p"Z)-algebra
stack *%nr, is a quotient of W, r, (see §D.7.2 below), so the conjecture outlined in §D.2.1
ultimately represents BTS,%; as a quotient of the scheme G(W,,r,) by a certain groupoid.

(ii) The situation in mixed characteristic is almost the same. The stack *%,, can still be
represented?® rather naturally as a quotient of W, but the ring scheme W,, is not a scheme
of (Z/p™7Z)-algebras. However, if G is lifted to a scheme over Z, then G(W,,) is defined, and
the conjecture ultimately represents BTS’“ as a quotient of the scheme G(W,,) by a certain
groupoid.

(iii) The idea of representing BTi’ﬁ) as a quotient of the scheme G(W,,r, ) is natural in view

of Conjecture C.5.3, which says that BTC isa gerbe over Disp&

n,Fp
killed by Fr". The pullback of such a gerbe via the map Fr" : DispS* — Disp$* is trivial, so
we get a morphism DispS* — BTi’ﬁ) such that the composition Disp&* — BTSﬁ) — Disp&*
equals Fr". The composition G(W,r,) — DispS# — BT, r, is faithfully flat (but not

smooth), so it represents BTS’ﬁ) as a quotient of the scheme G(W,,r,) by some groupoid.

# banded by a group scheme

D.3. Conventions. A ring R is said to be p-nilpotent if the element p € R is nilpotent.
The word “stack” will mean a fpqc-stack on the category opposite to that of p-nilpotent
rings. The final object in the category of such stacks is denoted by Spf Z,; this is the functor
that takes each p-nilpotent ring to a one-element set.
Ind-schemes and schemes over Spf Z, are particular classes of stacks. The words “scheme
over Spf Z,” are understood in the relative sense (e.g., Spf Z,, itself is a scheme over SpfZ,).
W will denote the functor R — W(R), where R is p-nilpotent. So W is a ring scheme
over Spf Z,. Same for W,,.

D.4. Plan. To formulate the conjecture, we need the ring stacks *%,,,*%Z>. In §D.5-D.6 we
discuss the easier ring stacks %,,, Z2. In §D.7.1 we explain the idea of the definition of *%,,
and *Z% (the details are explained in [D25b]). In §D.7.2 we give a simple description of their
reductions modulo p; this description can be used as a definition. In §D.8 we formulate the
conjecture.

2836 [D25b, §8]. The presentation of *%,, as a quotient of W, given in [D25b, §8] depends on the choice of
an integer m > d,, where d, = 0 for p > 2 and J, = 1; it is natural to set m = ¢,,.
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D.5. The stacks %, and G(Z,). It is convenient to define various ring stacks as cones of
quasi-ideals, see [D20, §1.3]. We will be using this approach.

D.5.1. The casen =1. Let n =1 (so G is a group scheme over I,). Then %, = (A}Fp) and

G(%#,) = G , where the superscript  stands for prismatization in the sense of [Bh, D20].

Thus %, = Cone(W —2» W) (this is a stack of F,-algebras), and G(%,) is defined via the
procedure called transmutation in [Bh]. Namely, G(Z,) is the functor that associates to a
p-nilpotent ring A the groupoid G(#:(A)); here #;(A) is an animated F,-algebra, so the
expression G(#1(A)) makes sense.

D.5.2. The stacks %, and G(%,). Now let n be any positive integer. Similarly to §D.5.1,
Ry, is the stack of Z/p"Z-algebras defined by

(D.1) R, = Cone(W 25 W)

and G(Z,) is the functor that associates to a p-nilpotent ring A the groupoid G(Z,(A)).
Since %, (A) is an animated Z/p"Z-algebra and G is a scheme over Z/p"Z, the expression
G(%,(A)) makes sense. Since G is a group, G(%,) is a group stack.

D.5.3. Digression on n-prismatization. Similarly to the case n = 1 considered in [Bh, D20,
one can deform the ring stack (D.1) by replacing p" with &, where £ is a primitive Witt
vector of degree m, which matters only up to multiplication by W>. Then one can define

the functor of n-prismatization denoted by X +— X ~ (where X is a p-adic formal scheme)

so that if X is a scheme over Z/p"Z then X » = X(%,). We will not follow this path. The
following property of n-prismatization is somewhat strange: if X is a scheme over Z/p"~'Z

then X » = ().

D.5.4. An economic presentation of %,. The ring stack (D.1) has the following “economic”
description:
(D.2) P, = Cone(WUE™) = W),

where W) .= Ker(F" : W — W) and the map W) — W, is the tautological one. In
the case n = 1 this is [D20, Prop. 3.5.1] or [Bh, Cor. 2.6.8]. The argument for any n is
similar:

Cone(WF™) = W/V"W) = Cone(V"W — W/WF") = Cone(V*"W L5 W),
and Cone(V"W RN W) = Cone(W N W) = Cone(W 2, Ww).
D.6. The stacks Z? and G(#%)%.

D.6.1. The graded ring scheme W®. Let W® be the functor
{p-nilpotent rings} — {graded rings}, R+ W (R)?,

where W (R)® is the Witt frame (see §10.2.6). The functor W is a Z-graded ring ind-scheme
over Spf Z,. Each graded component of W is an affine scheme over Spf Z,, so by abuse of
language we usually call W a ring scheme (rather than a ring ind-scheme).
By definition, W is a graded ring subscheme of Wu,u™| x W[t,¢~!]; this subscheme is
defined by equations (10.6)-(10.7).
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D.6.2. Remark. Let F,V : Wu,u™'] — Wlu,u™"] be the Z,[u,u"!]-linear maps extending
FV :W — W. Similarly, one has F,V : W|t,t7!] — W[t,t71] and

FV o Wlu,u™ ] x Wit — Wiu,u™ '] x W[t t™1].
Warning: the subscheme W% C Wu,u™'] x W[t,t7'] is not preserved by F or by V. To

see this, look at equations (10.6)-(10.7) and recall that the maps F,V : W — W do not
commute.

D.6.3. The graded ring stack Z. Let Z be the stack of Z-graded (Z/p"Z)-algebras defined
by
(D.3) R = Cone(W® 5 W),

The embedding W® — Wu, u™'|x W[t, t~!] induces a homomorphism of Z-graded Z/p"Z-
algebra stacks

(D.4) R — Bu, =] x Byt, 1Y),

D.6.4. An economic presentation of,%fEFP. Let ,%S%Fp = %P x SpecF, (i.e., 93%7? is the base
change of ZY to Fp). Similarly, let Wg, := W x SpecF,, W, 5, := W, x SpecF,. Good
news: the subscheme W]ﬁ‘i C W, [u,u™'] x Wy, [t,t71] is preserved by F' and V (the warning
from §D.6.2 does not apply because in characteristic p one has F'V = VF = p). Thus we
have the maps F,V : W]ﬁ'i — Wﬁi.

Let WSB’FP be the n-truncated Witt frame, i.e., the functor

{F,-algebras} — {graded Z/p"Z-algebras}, R +— W,(R)?,
where W, (R)% is as in §10.3.1 or §10.2.7. We claim that
(D.5) %fﬁﬂrp = Cone((Wﬁi)(Fn) — WEFP).
The proof of (D.5) is similar to that of (D.2); it uses the maps F,V : Wﬁi — Wﬁi.

D.7. The Z/p"Z-algebra stacks *%,,*#> and the related group stacks.

D.7.1. Idea of the definition of *%,,*%>. One can define *%Z,,, *#? similarly to the defini-
tions of %, Z% given in §D.5-D.6 but replacing W, W® by certain ring “spaces” *W,sW¥¢
over Spf Z,. (*W is called the space of sheared Witt vectors, whence the superscript s in the
notation for it.) One has
W= lim W/W ™)
3

(the transition maps are equal to F'). The quotient W/ W™ is understood as an fpqc sheaf
(this sheaf is not a scheme). There is an obvious homomorphism F' : *W — *IV and a less
obvious operator V : W — . These data have the properties from §10.2.2, and W? is
obtained from (*W, F, f/) by applying the functor £ from Proposition 10.2.4. Finally, let

‘K, .= Cone(*W LN W), %P .= Cone(*W¥¢ LN W),

then 5%, is an Z/p"Z-algebra stack, and *Z} is a stack of Z-graded Z/p"Z-algebras. Simi-
larly to (D.4), we have a homomorphism of Z-graded Z/p"Z-algebra stacks

(D.6) SHE = Rnlu,u X SR, .
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The details are explained in [D25b].

D.7.2. The ring stacks *Z,, 59?1%%. The reductions of *%Z,, %S modulo p have the fol-
lowing simple descriptions, which can be used as definitions:

(D.7) Ry, = Cone(W]éfn) — War,),
(D.8) Ry, = Cone(WE)™ — W ).

Formulas (D.7)-(D.8) are parallel to (D.2) and (D.5). Let us note that (Wﬁi)(Fn) already
appeared in §10.11.4: for any F,-algebra R, the group of R-points of (Wﬁi )F") was denoted
there by WFE")(R)®.

D.7.3. The group stack G(*%,). As before, let G be a smooth affine group scheme over
Z/p"Z. Similarly to §D.5.2, we define G(°%,,) to be the functor that associates to a p-
nilpotent ring A the groupoid G(°%,,(A)). Since *%,,(A) is an animated Z/p"Z-algebra and
G is a scheme over Z/p"Z, the expression G(°*#,(A)) makes sense. Since G is a group,
G(°%,) is a group stack. Note that

(D.9) G(Z%,.(A)) = Hom(H*(G,0g),*Z.(A)),
where Hom is understood in the sense of animated Z/p"Z-algebras.

D.7.4. The group stack G(*Z2)®. Similarly to (D.9), we define the group stack G(*%Z%)¢m
to be the functor that takes a p-nilpotent ring A to Hom®"(H%(G, Og),*%.(A)), where
Hom®™ stands for homomorphisms of Z-graded (animated) Z/p"Z-algebras. The grading on
H°(G,Og) is defined using i : G,,, — G just as in §C.2.2.

The map (D.6) induces a group homomorphism

(D.10) GEHEN™ = GCERp[u,u ™)) x GERL[t, ) = GCR,) x G(R,,).
D.8. The conjecture.

D.8.1. The quotient of a groupoid by an action of a 2-group. A 2-group is a monoidal category
in which all objects and morphisms are invertible. Equivalently, a 2-group is a 2-groupoid
with a single object.

Recall that if a 2-group ¢ acts on a groupoid 2" then one defines the quotient 2-groupoid
X = X |9 as follows:

(i) Ob .2 :=Ob 2;

(ii) for x1,x9 € 2 let Mor (1, x2) be the following groupoid: its objects are pairs
(97 f)? where g€ g? f € Isom(a:Q,g:cl),

and a morphism (g, f) — (¢, f’) is a morphism g — ¢’ such that the corresponding morphism
gr1 — g'r1 equals f'f71

(iii) the composition functor Mor ,(x1, x3) X Mor ;- (22, £3) — Mor (21, x3) comes from
the product in 4.

D.8.2. The quotient of a stack by an action of a group stack. Apply the construction from

§D.8.1 at the level of presheaves, then sheafify the result.
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D.8.3. The 2-stack BTS*". The group stack G(*%,,) x G(*%,) acts on the stack G(*%,,) by
two-sided translations; our convention is that the first copy of G(°%,) acts by right trans-
lations and the second one by left translations, just as in formula (C.2). So the group stack
G(*%#2)%m (which depends on pu, see §D.7.4) acts on the stack G(°*%,,) via the homomorphism
(D.10). Let BTS*" be the quotient 2-stack, see §D.8.2.

The following conjecture is motivated by Conjecture C.5.3.

Conjecture D.8.4. Suppose that p : G,, — G is 1-bounded in the sense of §C.4.1. Then
there is a canonical isomorphism BTS* s BTS*! where BTS# is the 1-stack defined
in |[GM].

D.8.5. Remarks. (i) Conjecture D.8.4 implies that if ;2 is 1-bounded then BTS*7 is a 1-stack.

(ii) By [GM, Thm. D}, if 1 is 1-bounded then for every m € N the restriction of BTS* to the
category of (Z/p™Z)-algebras is a smooth algebraic stack over Z/p™Z. So Conjecture D.8.4
implies a similar statement for BTS’“’?. This statement is somewhat surprising since the
definition of BTS’“’? involves the ind-scheme W. It becomes less surprising once you think

about formula (7.2) or about the simpler formula Coker(Wg) N W]F(f)) = Q.

(iii) The above formulation of Conjecture D.8.4 appeared as a result of my conversations
with D. Arinkin and N. Rozenblyum. My original formulation was more “elementary” (in
the spirit of §D.8.6) but not elegant enough.

(iv) Two variants of Conjecture D.8.4 for n = oo are formulated on slides 12 and 13 of the
talk [D25c].

D.8.6. How explicit is BTS’“’? ¢ Short answer: rather explicit (but not quite explicit). Here
are some details.

(i) As already said in §D.2.3(i), BTi’ﬁ;? can be represented as a quotient of the scheme
G(W,r,) by a certain groupoid I'. More precisely, one has an explicit action of an explicit
group ind-scheme on the scheme G(W,,,) such that I' is a certain quotient of the groupoid
corresponding to this action.

The interested reader can reconstruct the details using [D25al. The point is that as ex-
plained in the Appendix of [D25a], the group stacks G(°*Z#yr,). G (S%’%FP)GT” naturally come
from certain crossed modules in the category of ind-schemes, and the map (D.10) naturally
comes from a certain homomorphism of crossed modules. One can apply §2 of [D25a| to this
homomorphism.

(ii) Assuming® that G is lifted to a group scheme over Z,, one has a similar situation in
mixed characteristic, i.e., a presentation of BTS’“’? as a quotient of the scheme G(W,,) by a
rather explicit groupoid I'. To get such a presentation, represent *#,, as a quotient of the
ring scheme C' = W, (see [D25b, §8]) and define C' as in [D25b, §9.2.1]. Then the group
ind-scheme G(C)®" acts on G(W,,) by 2-sided translations, and I' is a certain quotient of
the groupoid corresponding to this action.

REFERENCES

[AN] B. Antieau and T. Nikolaus, Cartier modules and cyclotomic spectra, J. Amer. Math. Soc. 34 (2021),
no. 1, 1-78.
[Bh]  B. Bhatt, Prismatic F-gauges. Available at https://www.math.ias.edu/ bhatt/teaching.html.

29The reason for this assumption was explained in §D.2.3(ii).
53



[BMVZ] B. Bhatt, A. Mathew, V. Vologodsky, and M. Zhang, Sheared Witt vectors, work in progress.
[BKMVZ] B. Bhatt, A. Kanaev, A. Mathew, V. Vologodsky, and M. Zhang, Sheared prismatization, work

[BBE]
[BP]
[Cal
[Col
[Da]

[De]
[Dem]

[DG]
[D20]
[D23]
[D25a)
[D25b|
[D25¢]
[GM]

|Gr]

[H]
[KM]
[L13]
[L21]
[L.25]
[LZ]
1185
[dJ]
[Me72]

N]

in progress.

A. Beilinson, S. Bloch, and H. Esnault, e-factors for Gauss-Manin determinants, Mosc. Math. Jour-
nal 2 (2002), no.3, 477-532.

O. Biiltel and G. Pappas, (G, p)-displays and Rapoport-Zink spaces, J. Inst. Math. Jussieu 19 (2020),
no. 4, 1211-1257.

P. Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris Sér. A-B,
265 (1967), A49-A52.

C. Contou-Carrére, Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré,
C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no.8, 743-746.

P. Daniels, A Tannakian framework for G-displays and Rapoport-Zink spaces, Int. Math. Res. Not.
2021, no. 22, 16963-17024.

P. Deligne, Le symbole modéré, Publ. Math. ITHES 73 (1991), 147-181.

M. Demazure, Lectures on p-divisible groups, Lecture Notes in Math., 302, Springer-Verlag, Berlin,
1972.

M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes
commutatifs, North-Holland Publishing Co., Amsterdam, 1970.

V. Drinfeld, Prismatization, Selecta Mathematica New Series 30 (2024), article no. 49,
https://doi.org/10.1007/s00029-024-00937-3.

V. Drinfeld, On Shimurian generalizations of the stack BT1 ® F;,, Journal of Mathematical Physics,
Analysis, Geometry, 21 (2025), No. 3, 276-301. Also available as arXiv:2304.11709.

V. Drinfeld, On the quotient of a groupoid by an action of a 2-group, arXiv:2504.21764.

V. Drinfeld, Ring stacks conjecturally related to the stacks BT,CL:’“, arXiv:2510.04958.

The ring space *W and Barsotti-Tate groups, a talk whose recording and slides are available at
https://archive.mpim-bonn.mpg.de/id/eprint/5179

Z. Gardner and K. Madapusi, An algebraicity conjecture of Drinfeld and the moduli of p-divisible
groups, arXiv:2201.06124, version 3.

A. Grothendieck, Groupes de Barsotti-Tate et cristaur de Dieudonné, Séminaire de Mathématiques
Supérieures, No. 45 (1970), Les Presses de 'Université de Montréal, Montreal, Quebec, 1974. Avail-
able at www.grothendieckcircle.org.

M. Hazewinkel, Formal groups and applications, Pure Appl. Math. 78, Academic Press, New York-
London, 1978.

C. Kothari and J. Mundinger, Dieudonné theory for n-smooth group schemes, arXiv:2408.15333,
version 1.

E. Lau, Smoothness of the truncated display functor, J. Amer. Math. Soc. 26 (2013), no. 1, 129-165.
E. Lau, Higher frames and G-displays, Algebra Number Theory 15 (2021), no. 9, 2315-2355.

E. Lau, The Shimurian BT stack is a gerbe over truncated displays, arXiv:2510.23207, version 1.

E. Lau and Th. Zink, Truncated Barsotti- Tate groups and displays, J. Inst. Math. Jussieu 17 ( 2018),
no.3, 541-581.

L. Hlusie, Déformations de groupes de Barsotti-Tate (d’aprés A. Grothendieck), In: Seminar on
arithmetic bundles: the Mordell conjecture (Paris, 1983/84), Astérisque 127 (1985), 151-198.

A. J. de Jong, Finite locally free group schemes in characteristic p and Dieudonné modules, Invent.
Math. 114 (1993), no. 1, 89-137.

W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes,
Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972.

P. Norman, An algorithm for computing local moduli of abelian varieties, Ann. of Math. (2), 101
(1975), 499-509.

[SGA3] Schémas en groupes, I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Al-

gébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture
Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York 1970. Reedited by P. Gille and
P. Polo, Documents Mathématiques (Paris), 7, Société Mathématique de France, Paris, 2011.

54



(W] T. Wedhorn, The dimension of QOort strata of Shimura varieties of PEL-type. In: Moduli of Abelian
Varieties, Progress in Mathematics 195, 441-471, Birkh&user, Basel, 2001.

[Zi01] Th. Zink, A Dieudonné theory for p-divisible groups. In: Class field theory — its centenary and
prospect (Tokyo, 1998), Adv. Stud. Pure Math. 30, 139-160, Mathematical Society of Japan, Tokyo,
2001.

[Zi02] Th. Zink, The display of a formal p-divisible group. In: Cohomologies p-adiques et applications
arithmétiques, I, Astérisque 278 (2002), 127-248.

UNIVERSITY OF CHICAGO, DEPARTMENT OF MATHEMATICS, CHICAGO, IL 60637

55



