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Abstract. The SYZ approach to mirror symmetry for log Calabi-Yau manifolds starts
from a Lagrangian torus fibration on the complement of an anticanonical divisor. A mirror
space is constructed by gluing local charts (moduli spaces of local systems on generic
torus fibers) via wall-crossing transformations which account for corrections to the analytic
structure of moduli spaces of objects of the Fukaya category induced by bubbling of Maslov
index 0 holomorphic discs, and made into a Landau-Ginzburg model by equipping it with a
regular function (the superpotential) which enumerates Maslov index 2 holomorphic discs.

When they occur, holomorphic discs of negative Maslov index deform this picture by
introducing inconsistencies in the wall-crossing transformations, so that the mirror is no
longer an analytic space; the geometric features of the corrected mirror can be understood
in the language of extended deformations of Landau-Ginzburg models. We illustrate this
phenomenon (and show that it actually occurs) by working through the construction for
an explicit example (a log Calabi-Yau 4-fold obtained by blowing up a toric variety), and
discuss a family Floer approach to the geometry of the corrected mirror in this setting.
Along the way, we introduce a Morse-theoretic model for family Floer theory which may
be of independent interest.

1. Introduction

1.1. SYZ mirror symmetry relative to a nef anticanonical divisor. The Strominger-
Yau-Zaslow (SYZ) approach to mirror symmetry gives a geometric construction of mirror
spaces from Lagrangian torus fibrations on Calabi-Yau manifolds: roughly speaking, a mir-
ror Calabi-Yau is obtained as a dual torus fibration, modified by “instanton corrections”
in the presence of singular fibers [SYZ96]. A more modern interpretation of the SYZ con-
jecture describes the mirror as a moduli space of objects of the Fukaya category of X
supported on the torus fibers; this viewpoint leads naturally to Fukaya’s family Floer pro-
gram [Fuk02, Abo14, Abo17, Tu14, Yuan20], which produces a rigid analytic mirror space
out of a fibration by unobstructed Lagrangian tori of vanishing Maslov class (as well as a
functor from the Fukaya category of X to coherent sheaves on the rigid analytic mirror,
which one may then try to use to prove homological mirror symmetry).

The SYZ approach was subsequently extended to the setting of log Calabi-Yau pairs
(X,D), where X is a smooth Kähler manifold and D is a (reduced, normal crossings)
complex hypersurface in X representing the anticanonical class −KX . Given a suitable
Lagrangian torus fibration on the complement of D, one first constructs an SYZ mirror to
the open Calabi-Yau X0 = X \ D, before analyzing the manner in which the divisor D
deforms the Lagrangian Floer theory of the torus fibers (and hence the geometry of the
mirror). This deformation is typically described by a regular function W ∈ O(X∨) called
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superpotential, so that the SYZ mirror of X (or more accurately, of the pair (X,D)) is a
Landau-Ginzburg model (X∨,W ). The superpotential W records the fact that the torus
fibers, while unobstructed in X \D, are only weakly unobstructed as objects of the Fukaya
category of X, i.e. the Floer-theoretic obstruction m0 ∈ CF (L,L) is a scalar multiple
W · 1L of the identity, where W is a weighted count of Maslov index 2 holomorphic discs
with boundary on L. See e.g. [Aur07] for an informal overview, and [AAK16, Yuan20] for
a more up-to-date perspective. (We briefly review the main ingredients in §2.4 below.)

The situation is simplest when the Lagrangian torus fibers do not bound any holomor-
phic discs in X \D, and D is numerically effective (nef). The fibers are assumed to have
vanishing Maslov class in X \ D, so the Maslov index of a disc is equal to twice its in-
tersection number with D, and the simplest holomorphic discs (intersecting D just once)
have Maslov index 2. The prototypical setting where these assumptions are satisfied is
when X is toric Fano and D is the toric anticanonical divisor. The mirror X∨ is then
an algebraic torus (parametrizing rank 1 local systems on the fibers of the toric moment
map), and it follows from an explicit classification of Maslov index 2 discs bounded by
the fibers that W ∈ O(X∨) is a Laurent polynomial determined combinatorially by the
moment polytope [CO06, Aur07, FOOO10]. The next simplest case is that of semi-Fano
toric varieties, when the toric anticanonical divisor D is nef but not necessarily ample. In
this case, the coefficients of the Laurent polynomial W are modified by the contributions
of nodal configurations consisting of a Maslov index 2 disc in X together with one or more
rational curves with c1(X) · C = 0 contained in the toric divisor D. The first example in
which these contributions were determined explicitly is the Hirzebruch surface F2, i.e. the
total space of the CP1-bundle P(OCP1 ⊕ OCP1(−2)) over CP1 [Aur09, FOOO12]. General
results were subsequently obtained by Chan et al. using comparisons between open and
closed Gromov-Witten invariants; see e.g. [Chan11, CLL12, CL14, CLLT17].

Outside of the toric setting, the Lagrangian torus fibration π : X0 → B typically has
singular fibers, and the geometric picture is complicated by the presence of holomorphic
discs of Maslov index 0. (Still assuming D to be nef, these are precisely the discs which
do not intersect D). The fibers of π which bound such discs typically lie along (a small
neighborhood of) a union of walls of codimension 1 in B. There is a discontinuity in the
Floer-theoretic behavior of the fibers of π on either side of a wall, due to bubbling of
Maslov index 0 discs; nonetheless, it follows from deep results of Fukaya et al. [FOOO09]
that, across each wall, the moduli spaces of local systems on the fibers can be glued together
via a suitable analytic coordinate change (the wall-crossing transformation) to construct a
moduli space of objects of the Fukaya category of X0 supported on the fibers of π, i.e. the
mirror X∨ [Aur07, AAK16, Tu14, Yuan20]. In general there may be an infinite collection
of walls, possibly covering a dense subset of B, so that X∨ cannot be described explicitly
but rather arises as the limit of an inductive construction [KS06, GS11].

While the positions of the walls in B depend on the choice of complex structure, near
the large complex structure limit (also known as tropical limit) the whole process can be
understood combinatorially in terms of tropical geometry: B carries an integral affine struc-
ture (outside of the locus Bsing of singular fibers of π), and the scattering diagram, i.e. the
set of walls and the corresponding wall-crossing transformations, can be determined via an
inductive process first proposed by Kontsevich and Soibelman [KS06], based on consistency
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of the scattering diagram, i.e. the requirement that the wall-crossing transformations must
satisfy the cocycle property around each codimension 2 locus where walls intersect. This
approach allows one to bypass symplectic geometry altogether: the Gross-Siebert approach
to mirror symmetry starts from a toric degeneration to construct a tropical manifold B, its
scattering diagram, and a mirror; see e.g. [GS11], [GHK15], etc.

Under the assumption that D is nef, discs (or stable discs, i.e. nodal unions of discs and
spheres) which intersect D have Maslov index at least two, so X and X0 have the same
scattering diagram, and the mirror of (X,D) is a Landau-Ginzburg model (X∨,W ) where
X∨ is entirely determined by the geometry of X0. The main point of this paper is to show
that this generally fails to hold when D is not nef, even in examples where the geometry of
SYZ fibrations is well understood. Namely, if D contains rational curves with c1(X) ·C < 0,
then:

(1) the scattering diagram for (X,D) may contain additional walls compared to that
for X0, or the wall-crossing transformations for (X,D) may differ from those of X0;

(2) in the presence of discs of negative Maslov index, the scattering diagram for (X,D)
may be inconsistent, so that the wall-crossing transformations defining X∨ no longer
satisfy the cocycle condition.

While the example we give below is mostly a proof of concept, this has significant implica-
tions. For instance, the construction of Landau-Ginzburg mirrors for general hypersurfaces
in toric varieties given in [AAK16] may require modifications when the stated assumptions
about Chern numbers of rational curves do not hold; more generally, it is not quite clear
which classes of varieties should be expected to admit genuine Landau-Ginzburg B-model
mirrors, rather than deformed LG models of the sort we discuss below. By contrast, this
issue does not seem to affect the other direction of homological mirror symmetry: forthcom-
ing work of the author with Abouzaid (the sequel to [AA24]) is expected to prove that the
(suitably defined) Fukaya categories of the Landau-Ginzburg A-models given by the con-
struction in [AAK16] are indeed equivalent to the derived categories of the corresponding
hypersurfaces, without Chern class restrictions.

Remark. Our results do not contradict in any way the recent work of Gross and Siebert
[GS22] (see also Keel and Yu [KY23]) constructing a canonical scattering diagram for log
Calabi-Yau pairs (X,D) and proving its consistency. Namely, Gross-Siebert’s scattering
diagram only includes Maslov index 0 discs which are contained in X \D, and determines
the SYZ mirror of X \ D; whereas we are studying SYZ mirror symmetry for X, whose
scattering diagram also involves Maslov index 0 configurations consisting of a disc in X
together with one or more rational curves in D.

1.2. A log Calabi-Yau 4-fold with an inconsistent scattering diagram. Our main
example is the following. Let KCP1 = OCP1(−2) be the total space of the canonical bundle
of CP1 = C ∪ {∞}. The toric mirror Landau-Ginzburg model of C2 ×KCP1 is (a domain
in) the algebraic torus (K∗)4 (where K is the nonarchimedean field over which we define the
Fukaya category, say the Novikov field over C for concreteness) with coordinates (z1, . . . , z4),
equipped with the superpotential

W = z1 + z2 + (1 + q2 + qz3 + qz−1
3 )z4,
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where q ∈ K∗ is a constant determined by the choice of Kähler form (namely, q2 is the
Novikov weight of the zero section C0 ⊂ KCP1).

Theorem 1.1. Let X be the blowup of C2 × KCP1 at H0 = C × {1} × L0 and H∞ =
{1} × C × L∞, where L0 and L∞ are the fibers of KCP1 over 0 and ∞ ∈ CP1 respectively,
and let D be the proper transform of the toric anticanonical divisor of C2×KCP1. Equip X
with a suitable Kähler form. Then X \D carries a fibration by Lagrangian tori of vanishing
Maslov class, whose SYZ mirror consists of four charts which are domains in (K∗)4, with
superpotentials

W−− = z1 + z2 + (1 + q2 + qz3 + qz−1
3 )z4,

W−+ = z1 + z2(1 + qq′z4 + q′z3z4) + (1 + q2 + qz3 + qz−1
3 )z4,

W+− = z1(1 + qq′′z4 + q′′z−1
3 z4) + z2 + (1 + q2 + qz3 + qz−1

3 )z4,(1.1)

W++ = z1(1 + qq′′z4 + q′′z−1
3 z4) + z2(1 + qq′z4 + q′z3z4) + q′q′′z1z2z4 +

+(1 + q2 + qz3 + qz−1
3 )z4,

where q′, q′′ ∈ K∗ are suitable constants. These charts are glued pairwise by coordinate
transformations which preserve z3, z4 and act on z1, z2 by

φ−0(z1, z2) = (z1, z2(1 + qq′z4 + q′z3z4)), φ∗
−0(W−−) =W−+,

φ+0(z1, z2) = (z1, z2(1 + qq′z4 + q′z3z4 + q′q′′z1z4)), φ∗
+0(W+−) =W++,

φ0−(z1, z2) = (z1(1 + qq′′z4 + q′′z−1
3 z4), z2), φ∗

0−(W−−) =W+−,(1.2)

φ0+(z1, z2) = (z1(1 + qq′′z4 + q′′z−1
3 z4 + q′q′′z2z4), z2), φ∗

0+(W−+) =W++.

The wall-crossing transformations (1.2) are inconsistent, in the sense that

φ−0 ◦ φ0+ ̸= φ0− ◦ φ+0.

This inconsistency arises from the presence of a codimension 2 locus in the base of the
SYZ fibration over which the fibers bound stable nodal discs of Maslov index −2. Indeed,
the cocycle property for wall-crossing transformations is equivalent to the statement that
Maslov index 0 discs can only break into unions of Maslov index 0 discs; whereas in our
example they can also degenerate to the union of discs of Maslov indices 2 and −2. We
expect this to be a general feature of mirror symmetry in settings where the non-negativity
of Maslov index cannot be guaranteed.

The proof of Theorem 1.1 is given in Section 2; the main new ingredient compared to
previous calculations on blowups of toric varieties (see in particular [AAK16]) is a study
of the contributions of stable nodal configurations consisting of a holomorphic disc in X
together with a rational curve in D.

Remark 1.2. By contrast, the construction of the SYZ mirror of X \D involves the same
four charts, but the wall-crossing transformations have simpler expressions:

φo
−0 = φo

+0 : (z1, z2) 7→ (z1, z2(1 + q′z3z4))(1.3)

φo
0− = φo

0+ : (z1, z2) 7→ (z1(1 + q′′z−1
3 z4), z2).

(These are determined by Maslov index 0 discs in X \ D, whereas the additional terms
in (1.2) correspond to Maslov index 0 configurations with sphere components in D.) The



DISCS OF NEGATIVE MASLOV INDEX AND EXTENDED DEFORMATIONS 5

formulas (1.3) match the consistent scattering diagram constructed by Gross-Siebert [GS22]
for the mirror of X \D.

We also give in §2.7 the analogous formulas for the mirror of a compact example, namely
the projective log Calabi-Yau (X̄, D̄) obtained from (X,D) by compactifying C to CP1

and KCP1 to the Hirzebruch surface F2: namely X̄ is the blowup of CP1 × CP1 × F2 at
H̄0 = CP1 × {1} × L̄0 and H̄∞ = {1} × CP1 × L̄∞, where L̄0 and L̄∞ are the fibers of
the projection from F2 to CP1 over 0 and ∞, and D̄ is the proper transform of the toric
anticanonical divisor of CP1 × CP1 × F2.

The mirror as a deformed Landau-Ginzburg model. Even though the mirror in The-
orem 1.1 is no longer a Landau-Ginzburg model, setting q′q′′ = 0 in the formulas (1.1)–(1.2)
(i.e., discarding the terms q′q′′z1z2z4 inW++, φ+0, and φ0+) cures the inconsistency in (1.2)
and gives a well-defined Landau-Ginzburg model (X∨,W ), of which the mirror in Theorem
1.1 can be viewed as a deformation. By a result of Lin and Pomerleano [LP13, Theo-
rem 3.1], the Hochschild cohomology of the category of matrix factorizations of (X∨,W ) is
the hypercohomology of the complex of sheaves (Λ∗TX∨ , ιdW ) on X∨. We claim that the
first-order deformation in Theorem 1.1 can be viewed as a class in

HH∗(MF (X∨,W )) = H∗(X∨, (Λ∗TX∨ , ιdW ))

determined by the contributions of holomorphic discs of Maslov index −2 in X.

The Maslov index −2 discs bounded by the Lagrangian torus fibers sweep a complex
codimension 2 locus in X, namely {1}×{1}×KCP1 , with a Floer-theoretic weight equal to
q′q′′z4 mod higher order terms (see §2). Thus, the first-order deformation induced by these
discs is a 2-cocycle on the base of the fibration with values in the second cohomology of the
fiber, hence dually in Λ2TX∨ , whose value on the relevant overlap of coordinate charts is

(1.4) q′q′′z4 ∂log z1 ∧ ∂log z2 .

This element w(2) ∈ H2(X∨,Λ2TX∨) is not closed under ιdW , but it can be completed to a

Hochschild cocycle in HHeven(MF (X∨,W )) by adding to it a 1-cochain w(1) with values

in TX∨ , whose Čech coboundary cancels out ιdW (w(2)); meaning that the value of δw(1) on
the overlap of coordinate charts is the vector field

ιdW (q′q′′z4 ∂log z1 ∧ ∂log z2) = q′q′′z4(z1∂log z2 − z2∂log z1),

which is exactly the inconsistency in (1.2). Specifically, we can match (1.2) by setting

w
(1)
−0 = w

(1)
0− = 0, w

(1)
+0 = q′q′′z1z4∂log z2 , and w

(1)
0+ = q′q′′z2z4∂log z1 .

Finally, cancelling out ιdW (w(1)) in turn forces one to also add a 0-cochain w(0) with values
in OX∨ , namely we take

w
(0)
−− = w

(0)
−+ = w

(0)
+− = 0 and w

(0)
++ = q′q′′z1z2z4.
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1.3. A family Floer perspective. The above example shows that the construction of SYZ
mirrors in the presence of discs of negative Maslov index requires a change of perspective
from the usual approach. In Section 3 we begin a general (but informal) exploration of the
geometry of SYZ mirror symmetry in the setting considered here from the perspective of
family Floer homology.

Consider as before a Lagrangian torus fibration π : X0 → B on X0 = X \D whose fibers
Fb = π−1(b) have vanishing Maslov class in X0 and are weakly unobstructed in X. Denote
by X∨0 the uncorrected SYZ mirror of the smooth locus, a rigid analytic space whose points
correspond to unitary rank 1 local systems on the smooth fibers of π. More precisely, we
restrict ourselves to a simply connected subset B0 of the smooth locus B \ critval(π), so as
to ignore the issues of compactification over the singular fibers of π and consistency around
the singular fibers, which are largely orthogonal to our discussion.

The pushforward of the sheaf of analytic functions on X∨0 under the rigid analytic torus
fibration π∨ : X∨0 → B0 defines a sheaf Oan over B0, which is a certain completion of a
local system over B0 whose fiber at b is K[H1(Fb)]. (This is just a fancy way of saying that
rigid analytic functions on affinoid domains in X∨0 are given by Laurent series which satisfy
appropriate convergence conditions.)

Moduli spaces of pseudo-holomorphic discs in X with boundary in the fibers Fb (where
b is allowed to vary over B0) determine A∞-operations {mk}k≥0 not just on Floer cochains
of a fixed fiber Fb with coefficients in K[H1(Fb)], but also on cochains on π−1(B0) ⊂ X0

with coefficients in the pullback of Oan, or equivalently, via Künneth decomposition, on

(1.5) C =
⊕
i,j

Ci,j :=
⊕
i,j

Ci(B0 ; Cj(Fb) ⊗̂Oan).

The precise nature of these cochains depends on the chosen model for Lagrangian Floer
theory. Under very strong transversality assumptions on evaluation maps, a convenient
model consists of an enlargement of differential forms to include currents of integration
along smooth submanifolds (cf. §3.1.1). While it is likely that these assumptions can be
lifted by working with Kuranishi structures, it seems technically easier to work with a
Morse-theoretic model, such as the one we describe in §§3.1.2–3.1.3 (see also Keeley Hoek’s
thesis [Hoek25] for a more detailed treatment).

Definition 1.3. The Floer complex C is weakly family unobstructed if m0 can be expressed
as a sum of degree i cochains with values in degree i cocycles,

(1.6) α(i) ∈ Ci(B0 ; Zi(Fb) ⊗̂Oan), i = 0, 1, . . .

This definition is quite restrictive (exactly how much depends on the precise model chosen
for cochains) and clearly not satisfied by all SYZ fibrations, but we conjecture that weak
family unobstructedness should arise in SYZ mirror symmetry from the existence of a
degeneration of the complex structure on X to the tropical limit, possibly after correction
by a suitably chosen weak family bounding cochain (see below). Indeed, in the tropical
limit one expects that the moduli spaces of holomorphic discs which sweep loci of real
codimension 2i inside X should concentrate along “walls” of codimension i inside B0.

There is a natural bracket of degree −1 on H∗(Fb)⊗K[H1(Fb)], defined by

(1.7) {zγ α, zγ′
α′} = zγ+γ′ (

α ∧ (ιγα
′) + (−1)|α|(ιγ′α) ∧ α′)
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for all α, α′ ∈ H∗(Fb) and γ, γ
′ ∈ H1(Fb). Extending to the completion H∗(Fb) ⊗̂Oan and

combining with the cup-product on B0, this determines a bracket on C∗(B0;H∗(Fb) ⊗̂Oan),
symmetric on even degree elements, which we again denote by {·, ·}.

Conjecture 1.4. For SYZ fibrations on log Calabi-Yau varieties near the tropical limit,
there exists a model of the family Floer complex C for which m0 can be expressed as an
element in

⊕
Ci(B0;H i(Fb) ⊗̂Oan) and satisfies, up to sign, the master equation

(1.8) δm0 =
1

2
{m0,m0},

where {·, ·} is the bracket defined by (1.7) and δ is the differential on cochains on B0.

Remark 1.5. We expect (1.8) to hold whenever the moduli spaces of holomorphic discs
underlying m0 behave like closed manifolds, as a consequence of (a family version of) the
master equation in Floer theory with free loop space coefficients [Fuk06, Irie20]; see Sec-
tion 3.2. So the expectation that this happens for SYZ fibrations near the tropical limit is
the geometric content of the conjecture. However, it is quite possible that the conjecture is
too strong as stated, and that the A∞-structure on C may need to be deformed by a suitable
“weak family bounding cochain” b ∈ C>0 ⊂ C (the subspace of elements whose components
have positive Novikov valuation everywhere), in order for the deformed m0 term

mb
0 := m0 +m1(b) +m2(b, b) + · · · ∈ C>0

to satisfy the requirements of the conjecture. We note that, even when mb
0 satisfies weak

family unobstructedness, there is no geometric reason for the master equation to hold;
rather, it needs to be imposed as an extra requirement on b. It also seems natural to
require b to vanish outside of a neighborhood of the walls in B0 (when there are infinitely
many walls, this statement should be understood order by order).

On the other hand, we sketch in Section 3.3 a possible approach to the master equation in
a Morse-theoretic setup, via a deformation of the moduli space of treed holomorphic discs.

Via the isomorphism H i(Fb,R) ≃ ΛiH1(Fb,R) ≃ ΛiTB, an element of H i(Fb) ⊗̂Oan

naturally determines a section of ΛiTX∨0 over (π∨)−1(b), where we again denote by X∨0

the uncorrected mirror, equipped with the rigid analytic torus fibration π∨ : X∨0 → B0

(locally modelled on the valuation map, and dual to π). Hence, under the assumption of

weak family unobstructedness, the components α(i) of m0 determine elements

(1.9) W (i) ∈ Ci(X∨0,ΛiTX∨0),

which encode the instanton corrections to the geometry of X∨0; see Section 3.4. We denote
by W =

∑
i≥0W

(i) ∈ C∗(X∨0,Λ∗TX∨0) the sum of these terms. The master equation for

m0 can be transcribed (by an easy argument, cf. §3.4) into an analogous identity for W:

Proposition 1.6. If m0 satisfies (1.8), then W = W (0) +W (1) + · · · ∈ C∗(X∨0,Λ∗TX∨0)
satisfies

(1.10) δW+
1

2
[W,W] = 0,

where δ is the differential on cochains and [·, ·] is the bracket induced by the cup-product
and the Schouten-Nijenhuis bracket.
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Equation (1.10) is equivalent to the property that the operator δ+[W, ·] squares to zero;
in particular, the components of W satisfy the equations

(δ + [W (1), ·])W (0) = 0,(1.11)

(δ + [W (1), ·])2 = [ιdW (0)(W (2)), ·],(1.12)

(δ + [W (1), ·])W (2) = ιdW (0)(W (3)),(1.13)

and so on. The geometric interpretation of these equations depends on the chosen model for
cochains in the above discussion, though in all cases W (1) can be viewed as a deformation
of the analytic structure of X∨0, and (1.11) states that W (0) is analytic with respect to the

deformed structure, even as (1.12) measures the failure of δ +W (1) to genuinely equip the
corrected mirror with an analytic structure.

If we view m0 as an element of the de Rham complex (Ω∗(B0, H∗(Fb) ⊗̂Oan), d) of dif-
ferential forms on B0 with coefficients in the sheaf H∗(Fb) ⊗̂Oan, then W ends up being an
element of (Ω0,∗(X∨0,Λ∗TX∨0), d′′), the tropical Dolbeault complex of differential forms on
X∨0 with coefficients in polyvector fields. (See [CLD12, Jell22] for a general construction;
the version we need here is significantly simpler because our forms are pulled back from the
fixed tropicalization π∨ : X∨0 → B0.)

Assuming convergence, we can view X∨0 as a family of complex manifolds over a punc-
tured disc, degenerating to the tropical limit. The tropical Dolbeault complex specializes
to the usual Dolbeault complex, and we can then view W (1) ∈ Ω0,1(X∨0, TX∨0) as a defor-

mation of the complex structure on X∨0 (deforming ∂̄ to ∂̄ +W (1)). The equation (1.11)

then states that the function W (0) : X∨0 → C is holomorphic with respect to this deformed
complex structure; and (1.12) states that the deformation in general fails to be integrable,

i.e. ∂̄ +W (1) is only an almost-complex structure, whose Nijenhuis tensor is required to be
equal to ιdW (0)(W (2)) ∈ Ω0,2(X∨0, TX∨0).

On the other hand, if we work with Čech cochains rather than differential forms, then
we end up with a picture similar to that discussed above for our main example: W (1)

can be viewed as a deformation of the gluing transformations used to assemble X∨ from
local affinoid charts, (1.11) states that the expressions for W (0) in these local charts match

under the deformed gluing transformations, and (1.12) states that ιdW (0)(W (2)) measures the
amount by which the deformed gluing transformations fail to satisfy the cocycle condition.

These two perspectives on deformed Landau-Ginzburg models ought to be equivalent; for
example it is readily apparent from both viewpoints that the critical locus of the superpo-
tential W (0) remains an honest analytic space (since the right-hand side of (1.12) vanishes
along it), even when the deformed total space fails to be one, so that it still makes sense

to try and relate the symplectic geometry of X to the algebraic geometry of crit(W (0)) in
order to establish homological mirror symmetry.

Remark 1.7. The A∞-structure on the family Floer complex C is a curved deformation
(induced by holomorphic discs) of the classical algebraic structure on C∗(B0;C∗(Fb)⊗̂Oan),
which we have just seen can be compared to the dg-algebra C∗(X∨0; Λ∗TX∨0) of cochains
with values in polyvector fields on the uncorrected mirror. Even though we expect that the
curvature m0 of the family Floer complex C determines the required instanton corrections to
the geometry of X∨0 (see also Remark 3.18), it is not true (even in the simplest examples)
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that C itself, as constructed in §3.1, describes cochains with values in polyvector fields on
the corrected mirror. Indeed, unlike the latter algebra, C has nonzero curvature; and its
differential m1 does not match with the desired expression δ + {m0, ·}. On the other hand,
work in progress of the author with Keeley Hoek suggests that a variant of the construction
in §3.3 can be used to define an uncurved algebraic structure on the family Floer complex
that appears to describe the geometry of the corrected mirror.

Acknowledgements. I am heavily indebted to Ludmil Katzarkov and Maxim Kontsevich
for many stimulating discussions about deformations of Landau-Ginzburg models, which
directly led to this investigation of their geometric origin in Lagrangian Floer theory. I am
also grateful for the hospitality of IHÉS, where most of this work was carried out. This
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2. A 4-dimensional example

This section is devoted to the geometric construction of our main example and proof of
Theorem 1.1. The geometric setup is similar to [Aur09, Section 3] and [AAK16, Sections
3-5], which also deal with SYZ mirror symmetry for blowups of toric varieties.

2.1. The geometric setup. Let KCP1 = OCP1(−2) be the total space of the canonical
bundle of CP1 = C ∪ {∞}, and denote by L0 and L∞ the fibers of KCP1 over 0 and ∞ in
CP1. We equip the product C2×KCP1 with coordinates (x1, x2, x3, x4), where x1, x2 are the
standard coordinates of C2, x3 ∈ C∪{∞} is a coordinate on CP1, and x4 is a coordinate in
the fibers of KCP1 in the trivialization given by the 1-form d log x3 over C∗. In other terms,

the affine chart {x3 ̸= ∞} ⊂ KCP1 is isomorphic to C2 with coordinates (x3, x
−1
3 x4), while

the affine chart {x3 ̸= 0} is isomorphic to C2 with coordinates (x−1
3 , x3x4).

We denote by X the blowup of C2 ×KCP1 along H0 = C×{1}×L0, i.e. the locus where
x2 = 1 and x3 = 0, and along H∞ = {1} × C × L∞, i.e. the locus where x1 = 1 and
x3 = ∞; we denote again by x1, . . . , x4 the pullbacks of the coordinates of C2×KCP1 under
the blowup map p : X → C2 ×KCP1 . The T 2-action on C2 ×KCP1 rotating the x3 and x4
coordinates leaves H0 and H∞ invariant, and hence lifts to X.

We equip X with a T 2-invariant Kähler form ω constructed as in [AAK16, Section 3.2],
symplectomorphic to a toric Kähler form on C2 ×KCP1 away from a neighborhood of the
exceptional divisors E0 = p−1(H0) and E∞ = p−1(H∞). For example, one can take

ω = p∗(ωC2 ⊕ ωKCP1
) +

iϵ′

2π
∂∂̄

(
χ log(|x2 − 1|2 + |x3|2)

)
+
iϵ′′

2π
∂∂̄

(
χ log(|x1 − 1|2 + |x−1

3 |2)
)
,

where ωC2 ⊕ ωKCP1
is a product toric Kähler form on C2 ×KCP1 (standard along the first

factor), ϵ′, ϵ′′ > 0 are the areas of the fibers of the exceptional divisors E0 and E∞, and
χ log : R+ → R is the product of the logarithm with a suitable cut-off function.

We denote by µ = (µ3, µ4) the moment map of the T 2-action on X rotating the x3 and
x4 coordinates; away from E0 ∪ E∞ it coincides with the pullback of the moment map of
the chosen toric Kähler form on KCP1 , and they have the same moment polytope ∆ ⊂ R2.
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We normalize the moment map so that

∆ = {(ξ3, ξ4) ∈ R2 | ξ4 ≥ max(0, |ξ3| − a)},
where a > 0 is half the symplectic area of the zero section of KCP1 .

For every (ξ3, ξ4) ∈ ∆, the reduced space µ−1(ξ3, ξ4)/T
2 is canonically identified with

C2 via projection to the x1 and x2 coordinates. The reduced Kähler form ωred,(ξ3,ξ4) is a

product form in the (x1, x2) coordinates, and coincides with the standard Kähler form of C2

whenever µ−1(ξ3, ξ4) lies sufficiently far away from E0 ∪ E∞. Near E0 (which maps to the
region of ∆ where ξ4 ≤ −ξ3 − a+ ϵ′), the x2-component of the reduced Kähler form differs
from the standard area form near x2 = 1, and similarly near E∞ (where ξ4 ≤ ξ3 − a+ ϵ′′),
the x1-component differs from the standard area form near x1 = 1. The reduced Kähler
form is singular along x2 = 1 for ξ4 = −ξ3 − a+ ϵ′ (this corresponds to a stratum of points
with S1 stabilizers where E0 meets the proper transform of C×{1}×KCP1), and similarly
along x1 = 1 for ξ4 = ξ3−a+ ϵ′′ (where E∞ meets the proper transform of {1}×C×KCP1).
(The arguments are similar to [AAK16, Section 4.1] and we omit the details.)

Since the reduced Kähler form on µ−1(ξ3, ξ4)/T
2 is a product form on C2, the product tori

{|x1| = r1, |x2| = r2} are Lagrangian in the reduced space, hence their lifts to µ−1(ξ3, ξ4) ⊂
X are T 2-invariant Lagrangian submanifolds ofX, singular when the lift contains degenerate
T 2-orbits and smooth otherwise. Hence, we have:

Definition-Proposition 2.1. For (r1, r2, ξ3, ξ4) ∈ B := R2
+×int(∆), denote by F(r1,r2,ξ3,ξ4)

the Lagrangian submanifold of X defined by the equations

|x1| = r1, |x2| = r2, µ3 = ξ3, µ4 = ξ4.

Denoting by D ⊂ X the proper transform of the union of the toric divisors of C2 ×KCP1,

π = (|x1|, |x2|, µ3, µ4) : X \D → B

defines a Lagrangian torus fibration on X \D, with singular fibers over

(2.1) Bsing = {r2 = 1, ξ4 = −ξ3 − a+ ϵ′} ∪ {r1 = 1, ξ4 = ξ3 − a+ ϵ′′} ⊂ B.

The fibers of π which lie sufficiently far from the exceptional divisors, i.e., away from

(2.2) Bexc = {r2 = 1, ξ4 ≤ −ξ3 − a+ ϵ′} ∪ {r1 = 1, ξ4 ≤ ξ3 − a+ ϵ′′} ⊂ B,

are lifts to X of product tori in C2 ×KCP1 , hence special Lagrangian with respect to the
holomorphic volume form p∗(

∏
d log xi) on X \D with simple poles along D. This implies

immediately:

Lemma 2.2. The fibers of π have vanishing Maslov class in X \D, and the Maslov index of
a disc in X with boundary on a fiber of π is twice its algebraic intersection number with D.

2.2. Discs and spheres. The next few sections are devoted to the enumerative geometry
of stable holomorphic discs in X with boundary on the fibers of π. We start with two
lemmas describing the relevant discs and spheres.

Lemma 2.3. Let F be a fiber of π which is the lift to X of a product torus {|xi| = ri} in
C2 ×KCP1, and let u : D2 → X be a holomorphic disc with boundary on F . Then:
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(1) The components of p ◦ u have Blaschke product expansions

x1(z) = eiθ1 r1

n1∏
i=1

z − αi,1

1− ᾱi,1z
, x2(z) = eiθ2 r2

n2∏
i=1

z − αi,2

1− ᾱi,2z
,(2.3)

x3(z) = eiθ3 r3

n3∏
i=1

(
z − αi,3

1− ᾱi,3z

)ϵi,3

, x4(z) = eiθ4 r4

n3∏
i=1

z − αi,3

1− ᾱi,3z

n4∏
i=1

z − αi,4

1− ᾱi,4z
,

where eiθk ∈ S1, αi,k ∈ D2, and ϵi,3 ∈ {±1}.
(2) u is regular, except possibly if x1(z) or x2(z) is constant and equal to 1 for all z.

(3) The Maslov index of u is

(2.4) µ(u) = 2(n1 + n2 + n3 + n4 − k0 − k∞),

where k0 and k∞ are the total contact orders of p ◦ u with H0 and H∞; in the absence of
multiple roots k0 is the number of i ∈ {1, . . . , n3} such that ϵi,3 = +1 and x2(αi,3) = 1, and
k∞ is the number of i such that ϵi,3 = −1 and x1(αi,3) = 1.

Proof. (1) The Blaschke product expansions follow from the general classification of holo-
morphic discs with boundary on Tn-orbits in toric manifolds, see e.g. [CO06, Theorem 5.3];
the only specific feature in our case is that, given our choice of coordinates on KCP1 , x3 is
allowed to have poles, and x4 must vanish at the zeroes and poles of x3.

(2) Via the projection p, moduli spaces of holomorphic discs in X with boundary on F
correspond to moduli spaces of holomorphic discs in C2 × KCP1 with prescribed contact
orders with H0 and H∞. For fixed x1(z) and x2(z), requiring x3(z) to vanish to given
order at a certain roots of x2(z)− 1, and/or to have poles of given order at certain roots of
x1(z)− 1, cuts out a smooth subvariety of the space of possible Blaschke products of given
degree for x3(z), of the expected codimension except when x2(z)− 1 or x1(z)− 1 vanishes
identically. (This is because the conditions amount to independent linear constraints on the
coefficients of the polynomials

∏
ϵi,3=+1(z − αi,3) and

∏
ϵi,3=−1(z − αi,3).) The regularity

of u then follows from a general regularity result for holomorphic discs in the toric setting
[CO06, Theorem 6.1] and from the fact that the prescribed incidence conditions with H0

and H∞ define a transversely cut out, smooth submanifold of the expected codimension.

(3) By Lemma 2.2, the Maslov index of u is twice its intersection number with the divisor
D; since D + E0 + E∞ is the pullback of the toric anticanonical divisor of C2 ×KCP1 , the
intersection number is given by counting the zeroes and poles of x1, . . . , x4, and excluding
intersections with the exceptional divisors E0 and E∞, which correspond to the intersections
of p ◦ u with H0 and H∞. □

Lemma 2.4. The only simple holomorphic spheres in X are (1) the spheres S(x1,x2) given

by the product of a point {(x1, x2)} ∈ C2 with the zero section of KCP1, or their proper
transforms when x1 = 1 and/or x2 = 1, and (2) the fibers of the projection p : X →
C2 ×KCP1 above the points of H0 ∪H∞.

Proof. By the maximum principle, x1, x2 and x4 are necessarily constant along any holo-
morphic map u : S2 → X, and x4 is necessarily zero since the nonzero levels of x4 are
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biholomorphic to C2 × C∗. If x3 is nonconstant then we end up with S(x1,x2) or a mul-
tiple cover; otherwise the image of u is contained in a fiber of p over the blown up locus
H0 ∪H∞. □

We note that S(x1,x2) has normal bundle O ⊕ O ⊕ O(−2) for x1, x2 ̸= 1, while S(x1,1)

has normal bundle O ⊕O(−1)⊕O(−2), similarly for S(1,x2), and S(1,1) has normal bundle

O(−1)⊕O(−1)⊕O(−2). Since the ∂̄ operator on O(−2) fails to be surjective, the curves
S(x1,x2) are not regular. However, we will see that the union of S(x1,x2) with a holomorphic
disc that meets the zero section of KCP1 transversely is regular as a stable disc.

2.3. Regularity of stable nodal discs. Let C be a nodal Rieman surface with boundary
(in our case, C will be a Riemann sphere glued to a disc at an interior point, e.g. the origin),
and let u : C → X be a holomorphic map with boundary on a Lagrangian submanifold
L (in our case a fiber of π). The first-order deformations of u and their obstructions can
be analyzed by methods of algebraic geometry, following Behrend-Fantechi [Beh97, BF97].
Recall that, when C is smooth and u is an immersion, the deformations and obstructions are
governed by H0 and H1 of the normal bundle Nu = u∗TX/TC, i.e. first-order deformations
correspond to holomorphic sections of Nu over C with real boundary conditions given by
N∂u = u∗TL/T∂C, while obstructions live in H1(C,Nu). In the presence of singularities,
the dual of the normal bundle is replaced by a complex of sheaves, and the deformations
and obstructions are given by

ExtiC({u∗Ω1
X

du∗
−→ Ω1

C},OC)

for i = 0 and i = 1; see [PT14, §11
2 ] and the discussion before Lemma 2.6 in [GHS03].

As noted in [GHS03], things are simpler if we assume that the two branches of u near
each node of C are immersed and their tangent lines at the node are distinct: then
HomOC

({u∗Ω1
X → Ω1

C},OC) is isomorphic to a coherent sheaf Nu, the normal sheaf of u,
whose global sections and first cohomology determine the deformations and obstructions.
The sheaf Nu has an explicit description if we assume moreover that the restriction of u to
each component of C is an immersion. In this case, the restriction of Nu to each component
of C is the sheaf of meromorphic sections of the normal bundle with at most a simple pole
at each node, whose normal direction must be the tangent space to the other branch of u
through the node; the meromorphic sections over the two branches must additionally satisfy
a matching condition at the node, which we state below.

Lemma 2.5. Let C = C ′∪pC
′′ be a curve with a single node p, and u : (C, ∂C) → (X,L) a

holomorphic map whose restrictions u′ = u|C′ and u′′|C′′ are immersions; assume moreover

that the tangent lines du′(TpC
′), du′′(TpC

′′) ⊂ Tu(p)X are distinct, and denote by Nu′ =
u′∗TX/TC ′ and Nu′′ = u′′∗TX/TC ′′ the normal bundles to the two components. Denote by
z′, z′′ local coordinates on C ′, C ′′ near p.

Then the first-order deformations of u (resp. the obstruction space) are the global sec-
tions over C (resp. the first cohomology group) of the normal sheaf Nu (with real boundary
conditions along ∂C), which are pairs of sections

(v′, v′′) ∈ H0(C ′, Nu′ ⊗OC′(p))⊕H0(C ′′, Nu′′ ⊗OC′′(p))
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(i.e., meromorphic sections of Nu′ and Nu′′ with at most simple poles at p) satisfying the
following matching conditions:

• there exists a constant λ ∈ C such that the polar parts of v′ and v′′ are respectively

(2.5) v′(z′) ∼ λ

z′
∂u′′

∂z′′
(p) and v′′(z′′) ∼ λ

z′′
∂u′

∂z′
(p);

• the projections of v′ and v′′ onto TpX/(du
′(TpC

′) + du′′(TpC
′′)) coincide at p.

Lemma 2.5 can also be understood from a differential geometric perspective, since a
node-smoothing deformation of u can be viewed as the restriction to the family of curves
Ct = {z′z′′ = γ(t)} of a family of maps ũt from C ′ ×C ′′ (in our case, CP1 ×D2) to X. We
then have, for z′, z′′ ̸= 0,

d

dt |t=0
(ũt(z

′, γ(t)/z′)) =
∂ũt
∂t |t=0

(z′, 0) +
γ′(0)

z′
∂ũ0
∂z′′

(z′, 0), and

d

dt |t=0
(ũt(γ(t)/z

′′, z′′)) =
∂ũt
∂t |t=0

(0, z′′) +
γ′(0)

z′′
∂ũ0
∂z′

(0, z′′).

The first term in these expressions, ∂ũt/∂t, is a genuine section of u∗TX over C (i.e., a
pair of sections of u′∗TX and u′′∗TX whose values at the node coincide); while the second
term has a first-order pole at the origin, where the leading order term is exactly as in
(2.5) with λ = γ′(0) (the rate at which the node is getting smoothed by the deformation).
Deformations of the map u are then governed by the kernel and cokernel of the ∂̄ operator
on sections of u∗TX with the appropriate behavior at the node; or, after quotienting out
by vector fields on C (reparametrizations by diffeomorphisms), the kernel and cokernel of
the ∂̄ operator on pairs of sections of the normal bundles Nu′ and Nu′′ (allowed to have a
simple pole at p and satisfying the matching conditions described in Lemma 2.5).

While the above suffices for our purposes, we also refer the reader to [SSZ25, Section 6]
for a related discussion in the framework of polyfolds.

We now use Lemma 2.5 to prove the regularity of certain nodal configurations in X with
boundary on the fibers of π.

Lemma 2.6. Given (x1, x2) ∈ (C∗)2, let u : C = CP1 ∪ D2 → X be a stable map with
boundary on F(|x1|,|x2|,ξ3,ξ4) whose restriction to CP1 parametrizes the sphere S(x1,x2), and

whose restriction to D2 parametrizes a disc of suitable radius in the x4 coordinate, with
constant values of x1, x2, x3.

(1) If x1, x2 ̸= 1, then u is regular as a stable disc in X with boundary in F(|x1|,|x2|,ξ3,ξ4).

(2) If x1 = 1 and x2 ̸= 1, then u is regular as a stable disc in X with boundary in the
family of fibers F(r1,|x2|,ξ3,ξ4) where r1 is allowed to vary.

(2′) If x1 ̸= 1 and x2 = 1, then u is regular as a stable disc in X with boundary in the
family of fibers F(|x1|,r2,ξ3,ξ4) where r2 is allowed to vary.

(3) If x1 = x2 = 1, then u is regular as a stable disc in X with boundary in the family of
fibers F(r1,r2,ξ3,ξ4) where r1 and r2 are allowed to vary.

Proof. The normal sheaf splits into a direct sumNu = Nu,1⊕Nu,2⊕Nu,34, where the first two
summands correspond to the x1 and x2 directions and Nu,34 corresponds to deformations
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inside {(x1, x2)}×KCP1 (or its proper transform if x1 or x2 is 1). To prove the vanishing of
H1(C,Nu) (or equivalently the surjectivity of the appropriate ∂̄ operator) we consider each
summand separately.

The first summand Nu,1 is a holomorphic line bundle over C, whose restriction to CP1

is O if x1 ̸= 1 and O(−1) if x1 = 1, and trivial over D2, with a trivial real line subbundle
as boundary condition. The ∂̄ operator on the disc component is surjective, with a real
1-dimensional kernel corresponding to constant sections; meanwhile, the ∂̄ operator on the
CP1 component is surjective, and for x1 ̸= 1 it remains surjective if we restrict the domain
to sections of O which have a prescribed value at the node. Thus, H1(C,Nu,1) = 0 when

x1 ̸= 1. However, for x1 = 1 the ∂̄ operator on the CP1 component is only surjective if we
consider all sections of O(−1), without imposing a value at the node; and the ∂̄ operator
on the disc component is no longer surjective if we restrict its domain to functions which
take a prescribed value at the node. Thus, regularity fails if we consider u as a disc with
boundary on a fixed fiber of π. Instead, we relax the boundary condition and consider
deformations of u among discs with boundary on fibers F(r1,|x2|,ξ3,ξ4) where r1 is allowed

to vary. Modifying the problem in this way enlarges the domain of the ∂̄ operator on the
disc component to the space of complex-valued functions whose imaginary part is constant
(rather than zero) at the boundary, so that surjectivity holds even if we restrict to functions
that take a prescribed value at the node.

The situation is identical for Nu,2: we find that H1(C,Nu,2) = 0 when x2 ̸= 1, and for
x2 = 1 we achieve regularity by relaxing the boundary condition and allowing r2 to vary.

Finally, Nu,34 is a sheaf of sections of the normal bundles to the components of u(C)
inside KCP1 with at most simple poles at the node and matching residues. The normal
bundle to the CP1 component is O(−2), so its ∂̄ operator has a one-dimensional cokernel;
however, the ∂̄ operator becomes surjective if we enlarge the domain to allow a simple pole
at the nodal point. Meanwhile, the normal bundle to the disc component is trivial, with
trivial real boundary condition, so the corresponding ∂̄ operator is surjective (on honest
sections, and hence also on sections with a fixed polar part). Thus H1(C,Nu,34) = 0. □

Lemma 2.7. Assume F(r1,r2,ξ3,ξ4) is the lift to X of a product torus in C2 ×KCP1.

(1) For r2 > 1, let u : C = CP1 ∪D2 → X be a stable map with boundary on F(r1,r2,ξ3,ξ4)

such that u|CP1 parametrizes the sphere S(x1,1) for some x1 such that |x1| = r1, and u|D2 is

as in (2.3) with n1 = n3 = 0 and n2 = n4 = 1 (i.e., x1 and x3 are constant while x2 and
x4 have degree one), with x2(z) = 1 at the unique point where x4(z) = 0. If x1 ̸= 1 then u
is regular as a stable disc with boundary on F(r1,r2,ξ3,ξ4). If x1 = 1 then u is regular as a
stable disc with boundary on a family of fibers where r1 is allowed to vary.

(1′) Similarly for a stable map with boundary on F(r1,r2,ξ3,ξ4) (r1 > 1) which is the union
of S(1,x2) with a disc on which x2 and x3 are constant, x1(z) and x4(z) have degree 1, and
x1(z) = 1 at the unique point where x4(z) = 0.

(2) For r1, r2 > 1, the union of S(1,1) with a disc on which x3 is constant while x1(z),
x2(z) and x4(z) have degree 1, and x1(z) = x2(z) = 1 at the unique point where x4(z) = 0,
is regular as a stable map with boundary on F(r1,r2,ξ3,ξ4).
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Proof. The normal sheaf Nu has a subsheaf Nu,1 ⊕ Nu,2 corresponding to deformations
which take place purely along the x1 and x2 directions. We establish vanishing of the first
cohomology separately for Nu,1, Nu,2, and the quotient Nu,34 := Nu/(Nu,1 ⊕Nu,2).

When x1 is constant along the map u, the situation for Nu,1 is exactly as in Lemma 2.6,
and the same argument proves the vanishing of H1(C,Nu,1) if x1 ̸= 1, and the regularity
once we allow r1 to vary if x1 = 1. When x1 has degree 1 on the disc component of u,
the restriction of Nu,1 to the disc component is still a trivial holomorphic line bundle, but
now the boundary condition is given by a family of real lines which rotates by one turn
in the positive direction along the unit circle, namely the line spanned by i x1(z) at every
z ∈ ∂D2. The ∂̄ operator on this space of sections is surjective, and remains surjective even
after we restrict the domain to sections which take a prescribed value at the node. (This
can be checked e.g. by comparing the index of the operator and the dimension of its kernel,
which consists of infinitesimal automorphisms of the disc). This implies the vanishing of
H1(C,Nu,1) even when x1 = 1. The argument for Nu,2 is identical.

Finally, Nu,34 can be identified (via projection to the (x3, x4) coordinates) with the normal
sheaf of the projection of u(C) to KCP1 , which is exactly as in Lemma 2.6 and whose first
cohomology vanishes by the same argument. □

Next, we give some constraints on nodal configurations which contribute to the enumer-
ative geometry of discs in X with boundary on fibers of π.

Consider a stable disc u : C → X with boundary on a fiber of π which does not meet
E0 ∪E∞, i.e., F = π−1(b) for b ∈ B \Bexc. Denote by N1(u) the total intersection number
of u(C) with p−1({0} × C × KCP1), i.e., the sum of the degrees n1 in (2.3) for the disc
components of u , and by N2(u) the intersection number with p−1(C × {0} × KCP1), i.e.
the sum of the values of n2 for the disc components. (Note that the x1 and x2 components
of p ◦ u always have Blaschke product expansions, without needing to assume that F is
the lift of a product torus in C2 ×KCP1 .) Let N34(u) be the total intersection number of
u(C) with the preimages of the toric divisors of KCP1 ; when F is the lift to X of a product
torus, N34(u) is the sum of the quantities n3 + n4 in (2.3) for the disc components of u.
Finally, denote by K0(u) and K∞(u) the intersection numbers of u(C) with E0 and E∞;
i.e., K0(u) is the sum of the quantities k0 in (2.4) for the disc components, plus the degrees
of the sphere components mapping to the curves Sx1,1, minus the degrees of the sphere
components mapping to fibers of the projection p contained in E0; and similarly for K∞(u).
The Maslov index of u is

(2.6) µ(u) = 2(N1(u) +N2(u) +N34(u)−K0(u)−K∞(u)).

Proposition 2.8. There exist arbitrarily small deformations J ′ of the complex structure
on X such that, given any holomorphic stable disc u : C → X with boundary on a fiber F
of π that does not meet E0 ∪ E∞, if u deforms to a J ′-holomorphic stable disc then:

(1) The sum of the multiplicities of the spheres Sx1,x2 in u(C) is at most N34(u);

(2) K0(u) ≤ N34(u) and K∞(u) ≤ N34(u);

(3) K0(u) ≤ N2(u), except possibly if x2 is constant and equal to 1 on a disc component
of u(C); and K∞(u) ≤ N1(u), except possibly if x1 is constant and equal to 1 everywhere
on a disc component of u(C).
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Proof. The x4 coordinate defines a Lefschetz fibration f = x4 : KCP1 → C, whose two
critical points both lie in the fiber x4 = 0 (which is the union of the zero section of KCP1

and the lines L0 and L∞). We deform this Lefschetz fibration slightly so that its two
critical values become distinct, and deform the complex structure to some J ′ so that the
deformed fibration f ′ : KCP1 → C remains J ′-holomorphic. (This deformation can be viewed
as an open subset of the deformation of the Hirzebruch surface F2 considered in [Aur09,
Section 3.2], so that the deformed total space can be identified with the complement of a
curve of bidegree (1, 1) inside CP1 × CP1.) The projection of F to KCP1 is disjoint from
f−1(0), and so by choosing the deformation to be sufficiently small we can ensure that it is
also disjoint from the preimage under f ′ of a small disc containing both critical values. We
may additionally assume that L0 and L∞ remain components of the singular fibers of f ′

(now living over the two distinct critical values), or denote by L′
0, L

′
∞ the J ′-holomorphic

deformations of L0, L∞ which arise in this manner.

We deform the complex structure on X to the blowup of (C2 × KCP1 , J0 ⊕ J ′) along
H ′

0 = C × {1} × L′
0 and H ′

∞ = {1} × C × L′
∞. By abuse of notation, we again denote by

J ′ the deformed complex structure on X, and by f ′ : X → C the pullback of f ′ under the
composition of the blowup map p′ : X → C2 ×KCP1 and projection to the second factor.

Now, assume that a holomorphic stable disc u : C → X with boundary on F deforms
to a J ′-holomorphic stable disc u′ : C ′ → X. The only rational curves in (X, J ′) lie inside
the fibers of p′ in the exceptional divisors E′

0 = p′−1(H ′
0) and E′

∞ = p′−1(H ′
∞), and have

nonpositive intersection numbers with E′
0 and E′

∞. Meanwhile, the disc components of
u′ have total intersection number N34(u) with the fibers of f ′ near the origin. Hence, by
positivity of intersections with the components of the singular fibers of f ′, the intersection
numbers of p′ ◦ u′ with C2 × L′

0 and C2 × L′
∞ are bounded by N34(u). This has two

consequences. First, the sum of the multiplicities of the spheres Sx1,x2 in u(C) (each of
which contributes 1 to the intersection numbers of p ◦ u with C2 × L0 and C2 × L∞)
is at most N34(u). Second, the total contact orders of p′ ◦ u′ with H ′

0 and H ′
∞ are at

most N34(u), so, after adding the non-positive contributions of any sphere components,
[u′(C ′)] · [E′

0] = K0(u) and [u′(C ′)] · [E′
∞] = K∞(u) are bounded by N34(u).

On the other hand, the disc components of u′ project to the x1 coordinate as a multisec-
tion of degree N1(u) over the disc of radius r1, which implies that the intersection number of
p′ ◦ u′ with {x1 = 1} is bounded by N1(u). Therefore, the total contact order of p′ ◦ u′ with
H ′

∞ is at most N1(u), unless x1 is constant and equal to 1 on a component of p′ ◦u′; this in
turn implies that [u′(C ′)] · [E′

∞] = K∞(u) is bounded by N1(u). The bound K0(u) ≤ N2(u)
(unless x2 is constant and equal to 1 on a component) is proved similarly by considering
the intersection number of p′ ◦ u′ with {x2 = 1}. □

Remark 2.9. Using basic methods of complex analysis to classify holomorphic discs in
conic bundles (arguing as in [Aur07, Aur15, AAK16]), the deformation considered in the
proof of Proposition 2.8 can also be used to give an alternative proof of Lemmas 2.6–2.7
by explicitly finding the discs that the various nodal configurations deform to, as well as
another derivation of the superpotential formulas given in Section 2.5.
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Corollary 2.10. For r1 ̸= 1 and r2 ̸= 1, an arbitrarily small perturbation of the complex
structure ensures that all holomorphic stable discs in X with boundary on F(r1,r2,ξ3,ξ4) have
Maslov index at least 2.

Proof. Let u : C → X be a non-constant holomorphic stable disc with boundary on F =
F(r1,r2,ξ3,ξ4). Since r1, r2 ̸= 1, F is disjoint from E0 ∪ E∞, and its projection to C2 ×KCP1

is disjoint from the toric divisors. Therefore, either one of x1, x2 is non-constant along u, in
which case N1(u) or N2(u) is positive, or p ◦ u is a non-constant disc in {(x1, x2)} ×KCP1

with boundary on a product torus, in which case N34(u) must be positive.

By Proposition 2.8 (3), the stable discs which survive the perturbation of the complex
structure to J ′ satisfy K0(u) ≤ N2(u) and K∞(u) ≤ N1(u). (The other possibility, that
x1 or x2 is constant and equal to 1 on a disc component, is excluded by the assumption
that r1, r2 ̸= 1.) Using (2.6), it follows that µ(u) ≥ 2N34(u). If N34(u) > 0 the conclusion
follows. Otherwise, if N34(u) = 0 then Proposition 2.8 (2) implies that K0(u) = K∞(u) = 0,
so µ(u) = 2(N1(u) +N2(u)) ≥ 2. □

2.4. A brief review of SYZ mirror symmetry. Before proceeding further, we recall the
construction of the SYZ mirror of X relative to the anticanonical divisor D; see [AAK16,
Section 2 and Appendix A] and [Yuan20] for details.

The construction of the mirror X∨ starts from a moduli space of objects of the Fukaya
category of X0 = X \D consisting of weakly unobstructed fibers of π : X0 → B equipped
with rank 1 unitary local systems. We work over the Novikov field over a field k, say k = C
for concreteness,

K = Λk =
{∑

aiT
λi | ai ∈ k, λi ∈ R, λi → +∞

}
,

and recall the unitary subgroup UK = val−1(0) ⊂ K∗, where the valuation map val : K∗ →
R is defined by val(

∑
aiT

λi) = min{λi | ai ̸= 0}. Unitary rank 1 local systems over a
Lagrangian torus Fb = π−1(b) are determined by their holonomy hol ∈ hom(π1(Fb), UK) =
H1(Fb, UK), which enters into the formulas for weighted counts of holomorphic discs in
Lagrangian Floer theory; specifically, a disc with boundary on Fb representing the class
β ∈ π2(X,Fb) is counted with a weight

zβ = Tω(β)hol(∂β) ∈ K∗.

Over a simply connected subset P ⊂ B where the fibers of π are smooth and do not
bound any holomorphic discs of Maslov index less than 2, using isotopies between the fibers
to identify π2(X,Fb) ≃ π2(X,Fb′) for b, b

′ ∈ P , there is a natural analytic structure on

X∨
P :=

⊔
b∈P

H1(Fb, UK)

for which the functions zβ ∈ O(X∨
P ) are analytic. (Typically one might take P to be a

bounded rational convex polyhedral subset, so that X∨
P is an affinoid domain.) X∨

P can be

identified with a domain in (K∗)n by considering the coordinates zi = zβi for some choice
of classes β1, . . . , βn such that ∂β1, . . . , ∂βn are a basis of H1(Fb,Z); all other zβ are then
Laurent monomials in z1, . . . , zn. Moreover, the non-archimedean torus fibration defined by
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the natural projection X∨
P → P is modelled on the valuation map in these coordinates, in

the sense that the diagram

(2.7)

X∨
P (K∗)n

P Rn

(zi)1≤i≤n

val

(ω(βi))1≤i≤n

commutes.

The superpotential W ∈ O(X∨
P ) is the coefficient of identity in the Floer-theoretic ob-

struction m0 for fibers of π equipped with unitary rank 1 local system, i.e. a weighted count
of Maslov index 2 holomorphic discs with boundary on Fb passing through a generic point
of Fb. Namely,

(2.8) W =
∑

µ(β)=2

nβ z
β,

where nβ ∈ Z is the degree of the evaluation map ev : M1(Fb, β) → Fb from the moduli
space of holomorphic discs with boundary in Fb representing the class β and one boundary
marked point, M1(Fb, β), to the Lagrangian Fb (after fixing suitable orientations of both
spaces, and possibly a perturbation to achieve regularity of the moduli space).

The mirror X∨ is assembled from the subsets X∨
P via suitable gluing maps: the transition

functions between the affine coordinates in the bottom row of (2.7) are given by elements
of GL(n,Z) ⋉ Rn, and in the absence of discs of Maslov index less than two the local
analytic coordinates (zi) on the subsetsX∨

P ⊂ X∨ transform by the corresponding monomial
automorphisms of (K∗)n. However, walls over which the fibers of π bound Maslov index 0
discs induce a modification of the transition functions between between the portions of X∨

which correspond to subsets of B lying on either side of the wall. The existence of analytic
(valuation-preserving) coordinate changes which restore the analytic dependence of Floer
theory across the wall follows from the work of Fukaya-Oh-Ohta-Ono on the invariance
of Floer cohomology for Lagrangians with weak bounding cochains [FOOO09] (in their
language, the wall-crossing coordinate transformation arises as an induced map on the
moduli space of weak bounding cochains); the new phenomenon we will evidence below,
however, is that in the presence of discs of negative Maslov index these coordinate changes
need not be path-independent.

Remark 2.11. The above statements about gluing maps between local charts of X∨ which
lie over different subsets of B (and, a fortiori, the composition of such transformations along
paths in B) require further explanation, since the local charts corresponding to disjoint
subsets of B do not actually overlap in X∨. The key observation, known as Fukaya’s trick
[Fuk10], is that when two fibers F, F ′ of π are close enough to be mapped to each other by
an isotopy ψ such that the almost-complex structure J ′ = ψ∗J is ω-tame, the Floer theory
of F ′ with respect to J ′ is related to the Floer theory of F with respect to J by analytic
continuation. This implies that Floer-theoretic expressions calculated for fibers of π over a
given region of B (possibly just a single fiber) can be analytically continued over a slightly
larger region of B. We can then form a cover of B by rational convex polyhedral subsets
that overlap nontrivially, with the understanding that, on the overlaps, the gluing maps
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amount to a comparison of the Floer theory of given fibers of π with respect to almost-
complex structures that are pulled back along different isotopies. In practice, for sufficiently
simple examples, such as the one we consider here, it is often the case that the wall-crossing
transformations are given by birational maps, and can be composed freely without worrying
about convergence issues. For this reason we do not discuss the details further, and instead
refer the reader to [Abo14, Section 3] and [Yuan20, Section 4] for details.

A key property that can be used to determine the wall-crossing coordinate transforma-
tions between the coordinate charts X∨

P is that the local expressions (2.8) for the superpo-
tential must match and assemble to a global analytic function W ∈ O(X∨) (to the extent
that the corrected mirror X∨ is globally well-defined). More generally, the same property
holds for weighted counts of holomorphic discs in moduli spaces that match under wall-
crossing after accounting for disc bubbling. For example, expressions

∑
nβz

β where the
sum ranges over classes β with fixed intersection numbers with certain divisors Di ⊂ X are
also invariant under wall-crossing, as long as the intersection numbers with Di are zero for
all Maslov index 0 bubbles.

2.5. The superpotential: discs of Maslov index 2. We now return to our main ex-
ample, and prove the first part of Theorem 1.1, namely we determine the superpotential
on each chart of the mirror X∨. By Corollary 2.10, the Lagrangian tori F(r1,r2,ξ3,ξ4) only
bound discs of Maslov index at least 2 as soon as r1 ̸= 1 and r2 ̸= 1; hence we work sep-
arately over each of the four domains P−− = {r1 < 1, r2 < 1}, P−+ = {r1 < 1, r2 > 1},
P+− = {r1 > 1, r2 < 1} and P++ = {r1 > 1, r2 > 1}, calculating the superpotential on
each chart and showing that it is given by (1.1).

The very simplest holomorphic discs that we will encounter are the lifts to X of “stan-
dard” Maslov index 2 holomorphic discs bounded by product tori in C2 ×KCP1 . Using the
same notations as in Lemma 2.3, these are the discs for which n1+n2+n3+n4 = 1 (i.e., one
of the ni is equal to 1 and the others are zero). For i ∈ {1, 2, 4}, we denote by βi the class of
a disc of the appropriate radius along the xi coordinate axis, while the other coordinates xj
for j ̸= i are constant, and by zi = zβi the corresponding Floer-theoretic weight. For i = 3
there are two different classes of discs with n3 = 1 and n1 = n2 = n4 = 0, depending on
whether the x3 coordinate has a zero or a pole (i.e., whether the disc intersects C2 × L0 or
C2 × L∞). We denote by β3,± their homotopy classes, and define z3 = q−1z−1

4 zβ3,+ , where
q = T a. Since β3,+ + β3,− = 2β4 + [S(x1,x2)], and the Novikov weight of the zero section of

KCP1 is T 2a = q2, we find that zβ3,± = qz±1
3 z4.

We will use z1, z2, z3, z4 as coordinates on each of the four charts that make up X∨;
we observe that these are the weights of disc classes β1, . . . , β4 (up to a factor of q in the
case of z3) whose boundaries ∂βi correspond to the standard basis of the first homology of
product tori in C2×KCP1 . Moreover, using the fact that the symplectic area of a disc which
is invariant under a Hamiltonian S1-action is equal to the difference between the moment
map values at its boundary and at its center, one finds that val(z3) = ξ3 and val(z4) = ξ4.

We are now ready to determine the formulas for the superpotential on each of the four
charts. Since the counts nβ do not vary inside each of the four regions P±,±, it suffices to
carry out the calculation for fibers of π which are lifts of product tori in C2 ×KCP1 .
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Since we only consider fibers of π for which r1 ̸= 1 and r2 ̸= 1, Proposition 2.8 implies
that all the Maslov index 2 holomorphic stable discs u : C → X contributing to the sum
(2.8) satisfy K0(u) ≤ min(N2(u), N34(u)) and K∞(u) ≤ min(N1(u), N34(u)). As noted in
the proof of Corollary 2.10, plugging these bounds into (2.6) it follows that

(2.9) µ(u) ≥ 2max(N1(u), N2(u), N34(u)).

Hence, we only need to consider stable discs for which each of N1(u), N2(u), N34(u) is either
0 or 1. Moreover, since equality must hold in (2.9), necessarily K0(u) = min(N2(u), N34(u))
and K∞(u) = min(N1(u), N34(u)). It is apparent from the proof of Proposition 2.8 that for
these equalities to hold, u cannot have any sphere components contained in the fibers of π;
whereas by Proposition 2.8(1) the total multiplicities of the spheres S(x1,x2) add up to at
most N34(u) ≤ 1, i.e. C contains at most one sphere component, and any such component
must map to some S(x1,x2) with degree one. Furthermore, since each disc component of u
must separately satisfy the constraints of Proposition 2.8, the Maslov index 2 configurations
we consider have only one disc component.

With these constraints in hand, we can list all the possible homotopy classes which may
contribute to the superpotential.

Case 1: N34(u) = 0. Then there are no sphere components, K0(u) = K∞(u) = 0, and
N1(u) +N2(u) = 1. Hence x3, x4 are constant along u, while one of x1, x2 is constant and
the other parametrizes a disc of radius ri parallel to the xi coordinate axis. Thus [u] is
either β1 or β2, and its weight is either z1 or z2. Both of these families of discs are regular
and contain exactly one disc through each point of F = F(r1,r2,ξ3,ξ4). The orientation of the
moduli space works out as in the classical toric case, and nβ1 = nβ2 = 1. Summarizing, the
contributions of the discs with N34(u) = 0 add up to

(2.10) z1 + z2.

Case 2: N34(u) = 1, n3 = 0, n4 = 1. (Recall that N34(u) is the sum of the n3 and n4
degrees appearing in (2.3).) Then x3 is constant along the disc component of u, while x4
parametrizes a disc of the appropriate radius.

When N1(u) = N2(u) = 0 (i.e., the disc component of u is parallel to the x4 coordinate
axis and represents the class β4), we can either have just the disc component, or consider its
union with the sphere S = S(x1,x2) (for the same constant values taken by x1, x2 along the
disc); the latter nodal configuration is regular by Lemma 2.6(1). In both cases there is one
such configuration through each point of F , and the orientations work out as in the toric
case (the contributions of the sphere component to the linearized Cauchy-Riemann problem
amount to complex linear operators and do not affect signs). Hence nβ4 = nβ4+[S] = 1,

contributing (1+ q2)z4 to the superpotential. We will now see that in all other cases (when
either N1(u) or N2(u) is non-zero) a sphere component must be present.

N1(u) is either zero or one. If it is zero then x1 is constant along u. If N1(u) = 1, then
we must have K∞(u) = 1 as well; and since the disc component does not meet E∞ (x3 has
no pole), this forces the presence of a sphere component mapping to S(1,x2) for some value
of x2. This in turn implies that x1 must equal 1 at the point of the disc component where
x4 vanishes. Since x1 takes values in the disc of radius r1, this is only possible if r1 > 1.
After a suitable reparametrization, the x1 and x4 coordinates along the disc component of
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u can be put in the form

x1(z) = r1z, x4(z) = eiθr4
r1z − 1

r1 − z

for some eiθ ∈ S1, and the sphere S(1,x2) is attached to the disc at z = 1/r1.

Similarly, N2(u) is either zero or one; if it is zero then x2 is constant; if N2(u) = 1 then
necessarily r2 > 1, the x2 component takes the value 1 at the point of the disc where x4
vanishes, and a sphere component S(x1,1) is attached to the disc at that point.

The case where N1(u) and N2(u) are both equal to 1 does occur; this requires the sphere
component to map to S(1,1). Hence we must have (x1, x2) = (1, 1) at the point of the disc
where x4 vanishes (and necessarily r1, r2 are both greater than 1).

The various configurations we have found are precisely those covered by Lemma 2.7; hence
they are regular, and one easily checks that there is one disc in each family through each
point of F . As before, the incidence constraints and contributions from sphere components
modify the linearized Cauchy-Riemann problem by complex linear operators, so that the
evaluation maps again have degree 1. Thus,

nβ1+β4+[S(1,x2)
] = 1 for r1 > 1 (and 0 otherwise),

nβ2+β4+[S(x1,1)
] = 1 for r2 > 1 (and 0 otherwise),

nβ1+β2+β4+[S(1,1)] = 1 for r1, r2 > 1 (and 0 otherwise).

Setting q′ = T a−ϵ′ and q′′ = T a−ϵ′′ , the Floer weights of S(1,x2), S(x1,1), S(1,1) are respectively

T 2a−ϵ′′ = qq′′, T 2a−ϵ′ = qq′, and T 2a−ϵ′−ϵ′′ = q′q′′. Hence, the contributions of discs with
n3 = 0 and n4 = 1 add up to

(2.11)


(1 + q2)z4 if r1 < 1 and r2 < 1

(1 + q2)z4 + qq′z2z4 if r1 < 1 and r2 > 1

(1 + q2)z4 + qq′′z1z4 if r1 > 1 and r2 < 1

(1 + q2)z4 + qq′′z1z4 + qq′z2z4 + q′q′′z1z2z4 if r1 > 1 and r2 > 1

Case 3: N34(u) = 1, n3 = 1, n4 = 0. Because the disc component of u does not meet the
preimage of the zero section of KCP1 , there cannot be any sphere component, and u is as in
(2.3). Moreover, x3 has either a zero or a pole along u, but not both, so u meets at most
one of E0 or E∞. However, for this to happen, x1 or x2 needs to be non-constant and take
the value 1 at the point where x3 has its pole or zero. There are therefore three subcases.

If N1(u) = N2(u) = 0, then x1 and x2 are constant along u, and u represents one of the
classes β3,± discussed above; arguing as in the toric case, nβ3,+ = nβ3,− = 1.

If N1(u) = 1, then K∞(u) = 1, forcing x3 to have a pole and not a zero; this in turn
forces K0(u) = 0 and N2(u) = 0, i.e. x2 is constant along u. Moreover, x1 needs to take the
value 1 at the pole of x3, which can only happen if r1 > 1. Assuming this is the case, after
a suitable reparametrization we can write

x1(z) = r1z, x3(z) = eiθ3r3
r1 − z

r1z − 1
, x4(z) = eiθ4r4

r1z − 1

r1 − z

for some eiθ3 , eiθ4 ∈ S1. There is one such disc through every point of F .
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If N2(u) = 1, then K0(u) = 1, forcing x3 to have a zero and not a pole; hence K∞(u) = 0,
N1(u) = 0, and x1 is constant along u. Moreover x2 takes the value 1 at the zero of x3.
Such discs can only exist if r2 > 1; after a suitable reparametrization they are of the form

x2(z) = r2z, x3(z) = eiθ3r3
r2z − 1

r2 − z
, x4(z) = eiθ4r4

r2z − 1

r2 − z
,

and there is one such disc through each point of F .

Summarizing, the contributions of discs with n3 = 1 and n4 = 0 add up to

(2.12)


qz3z4 + qz−1

3 z4 if r1 < 1 and r2 < 1

qz3z4 + qz−1
3 z4 + q′z2z3z4 if r1 < 1 and r2 > 1

qz3z4 + qz−1
3 z4 + q′′z1z

−1
3 z4 if r1 > 1 and r2 < 1

qz3z4 + qz−1
3 z4 + q′′z1z

−1
3 z4 + q′z2z3z4 if r1 > 1 and r2 > 1.

Adding (2.10), (2.11) and (2.12), we arrive at the expressions (1.1) for the superpotential
on the various charts of X∨.

2.6. Wall-crossing: discs of Maslov index 0 and −2. In this section we study the
wall-crossing transformations along which the coordinate charts X∨

±,± corresponding to the
domains P±,± ⊂ B are glued to each other. Our first observation is that, after a small
perturbation of the complex structure as in Proposition 2.8, Maslov index 0 discs only exist
along the walls r1 = 1 and r2 = 1, and are entirely contained in the divisors {x1 = 1} and
{x2 = 1}, while negative Maslov index discs can only exist at r1 = r2 = 1.

Proposition 2.12. Every holomorphic stable disc u : C → X with boundary on a smooth
fiber F = F(r1,r2,ξ3,ξ4) of π which deforms to a stable disc for arbitrarily small perturbations
of the complex structure on X chosen as in Proposition 2.8 satisfies the following:

(1) if u has negative Maslov index, then r1 = r2 = 1;

(2) if (r1, r2) ̸= (1, 1) and u has Maslov index zero, then either r1 = 1, in which case
x1 = 1 at every point of u(C), or r2 = 1, in which case x2 = 1 at every point of u(C).

Proof. We prove, equivalently, that if r1 and r2 are not both equal to 1 then µ(u) ≥ 0, and
if µ(u) = 0 then the conclusion of (2) holds. There are two cases: either r1 ̸= 1 or r2 ̸= 1.
The argument is the same for both; we give the proof for r2 ̸= 1.

As in Proposition 2.8, we deform slightly the Lefschetz fibration f = x4 : KCP1 → C to
f ′ : KCP1 → C with two distinct singular fibers. Denote by ∆ = f−1(0) the singular fiber of
f , which is the union of the toric divisors of KCP1 , and by ∆′

0,∆
′
∞ ⊂ KCP1 the two singular

fibers of f ′, labelled so that L′
0 (i.e., L0 or a small deformation thereof) is a component of

∆′
0 and L′

∞ (L∞ or a small deformation) is a component of ∆′
∞. Recall that we deform X

to the blowup of (C2 ×KCP1 , J0 ⊕ J ′) along H ′
0 = C× {1} × L′

0 and H ′
∞ = {1} × C× L′

∞.

Because r2 ̸= 1, the fiber F is disjoint not only from the anticanonical divisor D ⊂ X but
also from the exceptional divisor E0. This implies that, for a small enough deformation,
it is also disjoint from the proper transform Z ′

∞ of C2 × ∆′
∞ under the blowup at H ′

∞.
(Indeed, Z ′

∞ is a small deformation of the union Z∞ of the proper transform of C2×∆ and
the exceptional divisor E0.)
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Furthermore, the anticanonical divisor D ⊂ X is homologous in the complement of F to
the (non-effective) divisor D′

− = ({0} × C ×KCP1) + (C × {0} ×KCP1) + Z ′
∞ − E′

0 (since
the proper transform of C2 ×∆ is homologous in X \ F to Z ′

∞ − E′
0). Hence, the Maslov

index of the J ′-holomorphic deformation u′ : C ′ → X of the holomorphic disc u is equal to
twice its intersection number with D′

−.

If r2 < 1, then the maximum principle for |x2| implies that the image of u′ is disjoint
from E′

0. It then follows from positivity of intersections between the J ′-holomorphic curve
u′(C ′) and the other components of D′

− (and the absence of any rational curves intersecting
those components negatively) that µ(u′) = 2[u′(C ′)] · [D′

−] ≥ 0, and if µ(u′) = 0 then u′(C ′)
is disjoint from every component of D′

−.

If r2 > 1, then we can deform D′
− inside the complement of F to an effective divisor D′

+

which is the sum of three components: {0}×C×KCP1 , the proper transform of C×{1}×KCP1

under the blowup at H ′
0, and Z

′
∞. It then follows from positivity of intersections (and the

lack of rational curves intersecting D′
+ negatively) that µ(u′) = 2[u′(C ′)] · [D′

+] ≥ 0, and if
µ(u′) = 0 then u′(C ′) is disjoint from every component of D′

+.

Since µ(u′) = µ(u), we have proved that µ(u) is non-negative, and if it is zero then the
image of u′ is disjoint from the components of D′

+ or D′
− depending on the value of r2.

From now on we assume that µ(u) = µ(u′) = 0. Since u′(C ′) ∩D′
± = ∅, the image of u′

is disjoint from {0} × C×KCP1 and from Z ′
∞; since the deformation from Z∞ to Z ′

∞ does
not cross F , the intersection numbers of u(C) with {0} ×C×KCP1 and Z∞ also vanish. A
first consequence is that x1 ◦ u and x1 ◦ u′ are nowhere vanishing holomorphic functions on
C and C ′, taking values in the circle of radius r1 at the boundary; this implies that x1 is
constant along u(C) and u′(C ′).

Now assume, in addition to µ(u) = 0, that the constant value of x1 along u(C) is
not equal to 1. Thus, u(C) is disjoint from E∞, and its total intersection number with
Z∞ ∪ E∞ (the total transform of C2 × ∆) is zero. Since the boundary of u(C) lies away
from Z∞ ∪E∞ = {x4 = 0}, the intersection number of u(C) with the levels of x4 near zero
is also zero. The nonzero levels of x4 do not contain any rational curves, so positivity of
intersection implies that u(C) is disjoint from those levels of x4, and hence also from x4 = 0.
This in turn implies that u(C) is disjoint from Z∞, hence from the proper transform of
C2 ×∆ and from the exceptional divisor E0.

We have now shown that u(C) is disjoint from all components of the anticanonical divisor
D ⊂ X, except possibly p−1(C×{0}×KCP1). The vanishing of µ(u) then implies that u(C)
is also disjoint from that divisor. (Or, slightly abusing the notation introduced before
Proposition 2.8: having shown that N1(u) = N34(u) = K0(u) = K∞(u) = 0, we deduce
from µ(u) = 0 that N2(u) = 0 as well.) The non-vanishing of x2 in turn implies that x2 is
constant on u(C). Arguing as in the proof of Corollary 2.10, we now have that u is a stable
disc in {(x1, x2)} ×KCP1 ⊂ X with boundary on a product torus (since F is T 2-invariant),
and disjoint from all the toric divisors of KCP1 . Such a disc is necessarily constant.

Summarizing: if µ(u) = 0 and r2 ̸= 1 then x1 is constant along u, and if moreover u is
not a constant disc then the value of x1 along u(C) is necessarily equal to 1 (which also
implies that r1 = 1). This completes the proof in the case where r2 ̸= 1. The argument for
the case r1 ̸= 1 is identical (up to exchanging the roles of x1 and x2, E0 and E∞, etc.). □
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Corollary 2.13. The wall-crossing coordinate transformations φ0− : X∨
+− → X∨

−− and
φ0+ : X∨

++ → X∨
−+ across the walls at r1 = 1 preserve the coordinates z2, z3, z4. The wall-

crossing coordinate transformations φ−0 : X∨
−+ → X∨

−− and φ+0 : X∨
++ → X∨

+− across the
walls at r2 = 1 preserve the coordinates z1, z3, z4.

Proof. The wall-crossing transformations φ0− and φ0+ are determined by the bubbling
phenomena that occur in moduli spaces of holomorphic discs with boundary on fibers
F(r1,r2,ξ3,ξ4) of π as the value of r1 passes through 1 (after regularization by a small pertur-
bation of the complex structure as in Proposition 2.8). We focus our attention on Maslov
index 2 discs representing the classes β2, β3,± and β4, whose boundary passes through a
generic point of F(r1,r2,ξ3,ξ4). The value of x1 along each of these discs is constant, and equal
to the value of the x1 coordinate at the chosen boundary point constraint. Thus, as long
as the family of point constraints we choose for varying r1 avoids x1 = 1 as the value of r1
crosses 1, it follows from Proposition 2.12 that none of these discs can participate in any disc
bubbling phenomena. (Indeed, given that all Maslov indices are non-negative, wall-crossing
for Maslov index 2 discs only involves Maslov index 0 bubbles, but by Proposition 2.12
those all live inside the divisor {x1 = 1}.) It follows that the portions of the superpotential
which count those discs must match under the wall-crossing transformations. As noted in
Section 2.5, nβ2 = nβ3,± = nβ4 = 1 in all four coordinate charts. Hence, the terms z2,

qz±1
3 z4, and z4 in the expressions for W±,± must match under φ0±; it follows that φ0− and

φ0+ preserve each of the coordinates z2, z3, z4.

The argument for φ−0 and φ+0 is identical: we consider the contributions to the super-
potential from Maslov index 2 discs representing the classes β1, β3,± and β4, along which
x2 is constant, so that disc bubbling across r2 = 1 can be excluded by considering a family
of point constraints that avoid x2 = 1; this implies the invariance of z1, z3, z4 under the
wall-crossing transformations. □

Theorem 1.1 now follows directly from the calculations of the superpotentials W±,± car-
ried out in Section 2.5, the fact that the expressions (1.1) must match under the wall-crossing
coordinate transformations, and Corollary 2.13.

To be more explicit, the “basic” stable discs of Maslov index 0 that arise along the
walls at r2 = 1 for ξ4 > −ξ3 − a+ ϵ′ (i.e., away from the exceptional divisor E0) belong to
three families, one of which only exists for r1 > 1:

(1) The proper transform of a “standard” disc in C2×KCP1 with n3 = 1 and n1 = n2 =
n4 = 0, with x2 = 1, and where x3 has a zero rather than a pole. These discs have
Maslov index 2 in C2 ×KCP1 , but intersect the toric divisor C2 × L0 at a point of
H0, so that their lift to X is disjoint from the divisor D and has Maslov index zero.
(These are the “typical” Maslov index 0 discs that arise in blowups of toric varieties
along codimension 2 subvarieties contained in a toric divisor; compare [AAK16].)
These discs represent the class β3,+ − [ℓ0], where [ℓ0] is the class of the fiber of p
above a point of E0, and their Floer-theoretic weight is q′z3z4.

(2) The union of a standard disc along the x4 coordinate axis (representing the class
β4) at x2 = 1 and a rational curve S(x1,1). These stable discs are regular by Lemma
2.6(2’), and their weight is qq′z4.
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(3) For r1 > 1: the union of S(1,1) with a disc on which x2 and x3 are constant,
with x2 = 1, while x1 and x4 have degree 1, and x1 = 1 at the unique point
where x4 vanishes. The disc component can be parametrized by x1(z) = r1 z,
x4(z) = eiθr4(r1z− 1)/(r1 − z), and represents the class β1 + β4. These stable discs
are regular by Lemma 2.7(1’), and their weight is q′q′′z1z4.

There are of course other Maslov index 0 discs, representing classes which are linear com-
binations (with non-negative integer coefficients) of these three, including multiple covers
as well as discs built from unions of the above configurations. The proof of Theorem 1.1
shows that the various Maslov index 0 discs present along the walls at r2 = 1 altogether
amount to the wall-crossing transformations φ−0 and φ+0 described by (1.2). A similar
analysis can be carried out for the walls at r1 = 1.

To complete our discussion, we briefly consider the stable discs of negative Maslov
index which occur at r1 = r2 = 1; for simplicity we only consider the fibers of π which
lie away from the exceptional divisors E0 and E∞, and only aim to identify the “basic”
negative Maslov index discs from which all others may be constructed.

Assume that a stable disc u : C → X of negative Maslov index deforms to a J ′-
holomorphic stable disc u′ : C ′ → X under arbitrarily small deformations of the complex
structure as in Proposition 2.8. Restricting to a subset of the components of u, we may
assume that C ′ has only one disc component. (When decomposing u according to the com-
ponents of C ′, at least one of the resulting pieces must still have negative Maslov index.) It
then follows from Proposition 2.8 that x1 and x2 are constant and equal to 1 along u(C).
Indeed, if x1 ̸≡ 1 then Proposition 2.8 gives K0(u) ≤ N34(u) and K∞(u) ≤ N1(u), so using
(2.6) we conclude that µ(u) ≥ 2N2(u) ≥ 0; and similarly if x2 ̸≡ 1 then K0(u) ≤ N2(u) and
K∞(u) ≤ N34(u) so that µ(u) ≥ 2N1(u) ≥ 0. This in turn implies that u(C) is a stable disc
with boundary on a product torus in p−1({(1, 1)} × KCP1); we can restrict our attention
to the proper transform of {(1, 1)} ×KCP1 , since sphere components inside E0 or E∞ have
positive Chern number. We are thus left with a disc in KCP1 , whose x3 and x4 components
admit Blaschke product expressions with n3 and n3 + n4 factors as in (2.3), together with
one or more sphere components mapping to S(1,1) with total multiplicity m.

The Maslov index in X of such a stable disc is µ(u) = 2n4 − 4m. Moreover, positivity
of intersection of u′(C ′) with the divisors Z ′

0 and Z ′
∞ (and careful consideration of the

local contributions to these intersections) implies that m ≤ n4.
1 Hence, the very simplest

configuration with µ(u) = −2 corresponds to the case where n3 = 0 and n4 = m = 1, i.e.
the union of a standard disc along the x4 coordinate axis (representing the class β4) and the
rational curve S(1,1). This configuration is regular by Lemma 2.6 (3) (in the sense described
there), and its Floer-theoretic weight is q′q′′z4.

1The intersection number of u′(C′) with Z′
0 (resp. Z′

∞) is the number of poles (resp. zeroes) of x3 plus
n4 minus m. Considering the local contributions to these intersection numbers over the regions of C′ which
correspond to clusters of sphere components of C, non-negativity of the local intersection numbers implies
that the total multiplicity of the sphere components attached at any point of a disc component of u(C) is
at most the order of contact of the disc component with the zero section of KCP1 . Thus, near every point of
the domain the local contribution to m is bounded by the local contribution to n4.
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The next case to consider is when n3 > 0 and n4 = m = 1. These configurations
arise in families that have excess dimension along the x3, x4 factors (as the disc component
is the proper transform of a disc of higher Maslov index in KCP1), but carry nontrivial
obstruction bundles along the x1 and/or x2 coordinate axes (Nu,1 or Nu,2 in the terminology
of Lemma 2.6) depending on whether x3 has poles and/or zeroes. We conjecture that these
discs do not contribute to the enumerative geometry of X. Specifically, it seems that a
suitable deformation of the complex structure on X would ensure that the walls of Maslov
index 0 discs with n3 = 1 propagating from the exceptional divisors E0 and E∞ live at
slightly different values of x1 and x2 than the Maslov index −2 discs with n4 = 1 which
propagate from S(1,1), preventing the occurrence of configurations representing a linear
combination of these classes. More generally, we conjecture that the only stable discs
of negative Maslov index relevant to the enumerative geometry of X are those we have
discussed above, representing the class β4 + [S(1,1)].

2.7. A compact example. Our main example is not very interesting from the perspective
of homological mirror symmetry, as the mirror superpotential does not have any critical
points in the geometrically relevant range of values of the coordinates zi (val(zi) ∈ R2

≥0×∆),
and the wrapped Fukaya category of X is expected to be trivial. In this section we briefly
describe the analogous result for a compactified example.

Let X̄ be the blowup of CP1×CP1×F2 at H̄0 = CP1×{1}×L̄0 and H̄∞ = {1}×CP1×L̄∞,
equipped with a suitable T 2-invariant Kähler form; here F2 = P(OCP1 ⊕ OCP1(−2)) is the
second Hirzebruch surface, and L̄0 and L̄∞ are the fibers of the projection from F2 to CP1

over 0 and ∞. The proper transform D̄ of the toric anticanonical divisor of CP1×CP1×F2

is an anticanonical divisor in X̄. We construct a Lagrangian torus fibration on X̄ \ D̄ with
fibers

F(r1,r2,ξ3,ξ4) = {|x1| = r1, |x2| = r2, µ3 = ξ3, µ4 = ξ4}
exactly as in Definition-Proposition 2.1, with the only difference that (ξ3, ξ4) now take values
in the interior of the moment polytope of F2, i.e.

∆̄ = {(ξ3, ξ4) ∈ R2 | max(0, |ξ3| − a) ≤ ξ4 ≤ b}.
Here a is again half the symplectic area of the exceptional section of F2, and b is the
symplectic area of the fibers of the projection to CP1. Let A1, A2 be the symplectic areas
of the two CP1 factors, and denote by ϵ′ and ϵ′′ the sizes of the blowups as previously.

The derivation of the SYZ mirror of the log Calabi-Yau pair (X̄, D̄) equipped with this
Lagrangian torus fibration runs along the same lines as the argument presented above for
(X,D); in particular, it is again the case that Maslov index zero discs only arise along walls
at r1 = 1 and r2 = 1, and negative Maslov index discs only arise at r1 = r2 = 1.
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Proposition 2.14. The SYZ mirror of (X̄, D̄) is built out of four charts which are domains
in (K∗)4, with superpotentials

W−− = z1 + q1z
−1
1 (1 + qq′′z4 + q′′z−1

3 z4) + z2 + q2z
−1
2 (1 + qq′z4 + q′z3z4)

+ q1q2q
′q′′z−1

1 z−1
2 z4 + (1 + q2 + qz3 + qz−1

3 )z4 + q4z
−1
4 ,

W−+ = z1 + q1z
−1
1 (1 + qq′′z4 + q′′z−1

3 z4) + z2(1 + qq′z4 + q′z3z4) + q2z
−1
2

+ q1q
′q′′z−1

1 z2z4 + (1 + q2 + qz3 + qz−1
3 )z4 + q4z

−1
4 ,

W+− = z1(1 + qq′′z4 + q′′z−1
3 z4) + q1z

−1
1 + z2 + q2z

−1
2 (1 + qq′z4 + q′z3z4)(2.13)

+ q2q
′q′′z1z

−1
2 z4 + (1 + q2 + qz3 + qz−1

3 )z4 + q4z
−1
4 ,

W++ = z1(1 + qq′′z4 + q′′z−1
3 z4) + q1z

−1
1 + z2(1 + qq′z4 + q′z3z4) + q2z

−1
2

+ q′q′′z1z2z4 + (1 + q2 + qz3 + qz−1
3 )z4 + q4z

−1
4 ,

where q = T a, q′ = T a−ϵ′, q′′ = T a−ϵ′′, q1 = TA1, q2 = TA2, and q4 = T b. These charts are
glued pairwise by coordinate transformations which preserve z3, z4 and act on z1, z2 by

φ−0(z1, z2) = (z1, z2(1 + qq′z4 + q′z3z4 + q1q
′q′′z−1

1 z4)), φ∗
−0(W−−) =W−+,

φ+0(z1, z2) = (z1, z2(1 + qq′z4 + q′z3z4 + q′q′′z1z4)), φ∗
+0(W+−) =W++,

φ0−(z1, z2) = (z1(1 + qq′′z4 + q′′z−1
3 z4 + q2q

′q′′z−1
2 z4), z2), φ∗

0−(W−−) =W+−,(2.14)

φ0+(z1, z2) = (z1(1 + qq′′z4 + q′′z−1
3 z4 + q′q′′z2z4), z2), φ∗

0+(W−+) =W++.

The proof is essentially identical to that of Theorem 1.1, except the case analysis is more
tedious as the x1 and x2 coordinates can now have poles as well as zeroes (as does x4, though
this doesn’t matter nearly as much, as the standard discs hitting the section at infinity of
F2, with weight q4z

−1
4 , do not participate in any of the wall-crossing). It is helpful to note,

as a consistency check, that the symmetry x1 ↔ x−1
1 of X̄ induces a symmetry of the mirror,

which exchanges z1 and q1z
−1
1 while swapping the chambers with r1 < 1 and those with

r1 > 1. Similarly, x2 ↔ x−1
2 induces a symmetry of the mirror which exchanges z2 and

q2z
−1
2 while swapping the chambers with r2 < 1 and those with r2 > 1.

3. Deformed Landau-Ginzburg models from family Floer theory

3.1. Family Floer theory. As before, we consider a Lagrangian torus fibration π : X0 →
B on the complement X0 = X \D of an anticanonical divisor D in a Kähler manifold X,
whose fibers Fb = π−1(b) have vanishing Maslov class in X0. Let B0 be a simply connected
open subset of B which is disjoint from the critical values of π. We consider the uncorrected
mirror

X∨0 = X∨
B0 :=

⊔
b∈B0

H1(Fb, UK),

with its natural analytic structure for which the Floer-theoretic weights of disc classes
β ∈ π2(X,Fb) define analytic functions zβ ∈ O(X∨0); we denote by π∨ : X∨0 → B0 the
natural projection map.

Fixing a base point b0 ∈ B0 and a basis γ1, . . . , γn of H1(Fb0 ,Z) (hence of the first
homology of every fiber over B0), we can consider the Floer-theoretic weights zi (1 ≤ i ≤ n)
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of cylinders with boundary on Fb0 ∪ Fb, obtained by transporting a loop in the class γi in
the fibers of π over a path connecting b0 to b inside B0. The coordinates (z1, . . . , zn) allow
us to identify X∨0 with a domain in (K∗)n. The functions zβ are then Laurent monomials
in z1, . . . , zn (with exponents determined by the coefficients of ∂β in the basis (γ1, . . . , γn)).

Given a subset P of B0, analytic functions on X∨
P = (π∨)−1(P ) are Laurent series in

z1, . . . , zn which converge adically at all points of P ; these are a certain completion of
the ring of Laurent polynomials K[z±1

1 , . . . , z±1
n ] = K[H1(Fb)]. The collection of these

completions as P ranges over suitable subsets of B0 (e.g. polyhedral subsets whose faces
have rational slopes with respect to the natural affine structure of B0, whose inverse images
are affinoid domains in (K∗)n) then determines a sheaf Oan = π∨∗ (OX∨0) on B0.

Remark 3.1. The main reason why we restrict ourselves to a simply connected subset
of B is to be able to treat the uncorrected mirror X∨0 as a single space, rather than as a
collection of local charts to be assembled in a manner that is inconsistent (until appropriately
corrected) around the singular fibers due to the monodromy of the affine structure on B.
This allows us to view Floer-theoretic corrections as geometric deformations of a single
space. Another convenient feature is that, since the abelian groups π2(X,Fb) form a local
system over B\critval(π), they can be transported over paths in B0 to provide distinguished
isomorphisms between the groups π2(X,Fb) for all b ∈ B0; we use this repeatedly in the
discussion below in order to treat the classes of discs with boundary in arbitrary fibers of
π over B0 as elements of a single relative homotopy group.

However, by essence our constructions are local over (the smooth part of) B, and the
Floer-theoretic structures on cochains with coefficients in Oan we introduce below can be
defined over all of B \ critval(π). If one works with the Morse-theoretic model of family
Floer theory we describe below, the corrections to the mirror geometry naturally come out
to be Čech cochains, and it is not particularly difficult to upgrade the construction to work
over all of B \ critval(π) by reformulating the output in a way that only refers to the local
pieces X∨

P rather than to the whole of X∨0.

We consider Floer-theoretic operations induced by moduli spaces of holomorphic discs
with boundary on the fibers of π on cochains on X00 = π−1(B0) with coefficients in the
pullback of Oan, giving an A∞-deformation of the classical differential and cup-product.
There are various possible models; we describe two, of which the first one is more intuitive
but unlikely to be well-defined without further foundational work, while the second one
should be viewed as a more realistic setup to develop the theory. (Note in any case that
our main discussion only focuses on m0 and its properties.)

3.1.1. Singular differential forms. We denote by Ck(X00, π∗Oan) the space of linear combi-
nations of differential forms of degree j with coefficients in π∗Oan on smooth codimension
ℓ submanifolds of X00, for all 0 ≤ j, ℓ ≤ k such that j + ℓ = k, i.e., the completion of⊕

j+ℓ=k

⊕
codimY= ℓΩ

j(Y )⊗π∗Oan with respect to the Novikov valuation. We regard these

cochains as an enlargement of differential forms of degree k on X00 which includes currents
of integration along smooth submanifolds.
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Given a nonzero class β ∈ π2(X,Fb) and d ≥ 0, we denote by

Md+1(X
00, β, J) =

⋃
b∈B0

Md+1(π
−1(b), β, J)

the moduli space of J-holomorphic stable maps from nodal discs with d+1 boundary marked
points z0, . . . , zd (in order along the boundary) to X, with boundary contained in some fiber
of π over a point of B0, possibly regularized by some perturbation. (As noted above, we use
parallel transport over B0 to identify the groups π2(X,Fb) with each other for all b ∈ B0.)
This moduli space carries d + 1 evaluation maps evβ,0, . . . , evβ,d : Md+1(X

00, β, J) → X00

(all mapping to the same fiber of π by construction). Assume (rather optimistically) that
Md+1(X

00, β, J) is a smooth manifold with corners of dimension 2n+ d− 2 + µ(β), with

(3.1) ∂Md+1(X
00, β, J) =

⋃
β1+β2=β

d1+d2=d+1
1≤i≤d1

Md1+1(X
00, β1, J) evβ1,i

×evβ2,0
Md2+1(X

00, β2, J).

Assume moreover that, for given α1, . . . , αd ∈ C∗(X00, π∗Oan) supported on submanifolds
Y1, . . . , Yd ⊂ X00, the evaluation map evβ,i is transverse to Yi for i = 1, . . . , d, the sub-

manifolds ev−1
β,i (Yi) ⊂ Md+1(X

00, β, J) intersect transversely, and the restriction of the

evaluation map evβ,0 to their intersection is a submersion onto a smooth submanifold of
X00 (or that a consistent perturbation scheme can be used to achieve these properties).
Then we define

md,β(α1, . . . , αd) = (evβ,0)∗(ev
∗
β,1α1 ∧ · · · ∧ ev∗β,dαd).

For β = 0 we set m1,0(α) = δα, the natural extension to Ck(X00, π∗Oan) of the de Rham
differential (if α is supported on Y ⊂ X00 then δα = dα+α|∂Y ), and m2,0(α1, α2) = α1∧α2

(as a form supported on the intersection of the supporting submanifolds of α1 and α2, which
are assumed to be transverse); md,0 is zero for d ̸= 1, 2.

Finally, we set

(3.2) md(α1, . . . , αd) =
∑
β

zβ md,β(α1, . . . , αd).

In particular,

m0 =
∑
β ̸=0

zβ (evβ,0)∗1M1(X00,β,J),

where given our assumptions the nonzero terms correspond to currents of integration along
evβ,0(M1(X

00, β, J)) when these are embedded submanifolds of X00 (obviously an ex-
tremely restrictive setting). Assuming the restriction of π to each of these submanifolds
is a submersion onto a smooth submanifold of B0, we can further rewrite m0 as a sum of
cochains on B0 with coefficients in Oan-valued cochains on the fiber tori, i.e. elements of
the bigraded complex C defined in (1.5).

It seems likely that deformation by a suitable bounding cochain b ∈ C>0 can be used to
“smudge” the support of m0 and turn it into a smooth differential form, avoiding many of
the pitfalls of working with currents. We will not consider this further, and instead turn
our attention to a Morse-theoretic model whose technical foundations are easier to set up.
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3.1.2. Morse cochains and perturbed holomorphic treed discs. We fix a Morse function f
and a Morse-Smale metric on X00, and assume that ∇f is transverse to the boundary of
X00 over ∂B0. (See the next section for a particularly convenient class of Morse functions
for our purposes.) We now denote by Ck(X00, π∗Oan) the space of linear combinations of
index k critical points of f , with coefficients in Oan; the coefficient of p ∈ crit(f) is typically
expressed as a sum of monomials zβ, β ∈ π2(X,Fπ(p)), and lies in a suitable completion of
K[H1(Fπ(p))] (more on this below). We use a family version of the construction described in
[CW22, Chapter 4] for a single Lagrangian (itself an elaboration on the work of Cornea and
Lalonde [CL06]), and define Floer operations in terms of counts of perturbed J-holomorphic
treed discs. (See [Hoek25] for details.)

Given β ∈ π2(X,Fb), d ≥ 0, and p0, . . . , pd ∈ crit(f), we denote by

Md+1(p0, p1, . . . , pd;β, J)

the moduli space of perturbed J-holomorphic treed discs with inputs at p1, . . . , pd and output
at p0, representing the class β. These consist of:

• an oriented metric ribbon tree T with d + 1 semi-infinite edges (d inputs and one
output);

• for each dv + 1-valent vertex v of T , a stable (perturbed) pseudo-holomorphic map
uv from a (nodal) disc Dv with dv + 1 boundary marked points zv,0, . . . , zv,dv (and
possibly also some interior marked points) to X, with boundary in the fiber of π
over some point bv ∈ B0;

• for a finite edge e of T connecting the output of a vertex v to the i-th input of
a vertex v′, a gradient flow line ue of (a perturbation of) f connecting uv(zv,0) to
uv′(zv′,i);

• for a semi-infinite edge of T connecting the i-th input of the tree to the j-th input
of a vertex v (resp. the output of a vertex v to the output of the tree), a gradient
flow line connecting the critical point pi to uv(zv,j) (resp. uv(zv,0) to p0).

(As a degenerate case, for d = 1 and β = 0 the moduli space consists of gradient flow lines
of f connecting two critical points p1 and p0.)

Recalling that the abelian groups π2(X,Fb) form a local system over B \ critval(π), we
use the identifications given by parallel transport along the images under π of the gradient
flow lines ue and define the total class of a treed disc to be the sum of the classes of its
components, β =

∑
v βv, where βv = [uv] ∈ π2(X,Fbv).

Transversality can be achieved as in [CW22] by considering domain-dependent pertur-
bations of the complex structure and of the Morse function, using interior intersections
with Donaldson hypersurfaces to stabilize the domain discs. The latter point requires some
adjustment compared to the case of a single Lagrangian, as we cannot arrange for a single
stabilizing divisor to be disjoint from all the fibers of π simultaneously. However, for each
rational point b ∈ B0 we can find a stabilizing divisor Db which is disjoint from π−1(b), and
hence from π−1(Ub) for some neighborhood Ub of b. A finite number of these neighborhoods
Ubi , i = 1, . . . , N suffice to cover an arbitrarily large compact subset of B0 (containing
the projections of all the critical points of f and connecting Morse flow trees). Discs with
boundary in π−1(b) can thus be equipped with several collections of marked points, coming
from the intersections with the stabilizing divisors Dbi for all i such that b ∈ Ubi . One then



DISCS OF NEGATIVE MASLOV INDEX AND EXTENDED DEFORMATIONS 31

needs to choose consistent domain-dependent perturbation data for discs equipped with
several collections of interior marked points, in a manner which depends continuously on
b and moreover factors through the forgetful map which erases the marked points coming
from intersections with Dbi whenever b gets sufficiently close to ∂Ubi .

With this understood, we define

(3.3) md(p1, . . . , pd) =
∑
p0,β

(
#Md+1(p0, p1, . . . , pd;β, J)

)
zβ p0

for generators of the Morse complex, where the sum ranges over critical points p0 and
classes β such that the expected dimension of Md+1(p0, p1, . . . , pd;β, J) is zero. We then
extend the definition of md to general inputs in C∗(X00, π∗Oan) in an Oan-linear manner;
in particular,

md(z
α1p1, . . . , z

αdpd) := zα1+···+αd md(p1, . . . , pd),

where as before we implicitly use parallel transport in the local system {π2(X,Fb)}b∈B0 to
make sense of the sum α1 + · · ·+ αd.

As in the case of a single Lagrangian, the A∞-relations follow from the fact that the
boundary of Md+1(p0, p1, . . . , pd;β, J) consists of configurations in which a gradient flow
lines breaks through a critical point of f , i.e. pairs of perturbed J-holomorphic treed disks.

Because of the manner in which the Floer-theoretic weights of holomorphic discs are
transported along Morse gradient flow lines to different fibers of π, the total symplectic
areas of the J-holomorphic treed discs in the moduli space Md+1(p0, . . . , pd;β, J) do not
coincide with the symplectic area of the class β ∈ π2(X,Fπ(p0)), which determines the
valuation of each term in (3.3); in fact the latter quantity does not even need to be positive
in general. The convergence of the sum (3.3) is therefore not automatic. One possible
solution is to choose the Morse function f so that its gradient flow trees are guaranteed to
remain within subsets of B0 that are sufficiently small for Fukaya’s trick to apply.

Specifically, every point b ∈ B0 admits a neighborhood Vb such that the fibers of π over
points of Vb can be mapped to Fb by diffeomorphisms ϕb′→b which are C1-close to identity,
ensuring that ϕ∗b′→bω tames J and that the symplectic areas of a J-holomorphic disc with
boundary on Fb′ with respect to ω and ϕ∗b′→bω differ by at most a bounded multiplicative
factor. Thus, given critical points p1, . . . , pd ∈ π−1(Vb), and assuming that the gradient flow
lines appearing in any treed disc with inputs p1, . . . , pd are guaranteed to remain within
π−1(Vb), the symplectic area of such a treed disc and the valuation of its contribution to
md(p1, . . . , pd) differ by at most a bounded factor; hence the sum (3.3) converges by the
same Gromov compactness argument as in the case of a single Lagrangian. Moreover,
convergence also holds for linear combinations of critical points in π−1(Vb) with coefficients
given by Laurent series which converge adically at every point of Vb. With this understood,
we cover an arbitrarily large compact subset of B0 by finitely many of the neighborhoods
Vbi , i = 1 . . . ,M , and choose the Morse function f in such a way that the gradient flow
lines appearing in any treed disc are guaranteed to be entirely contained within a single Vbi .

3.1.3. Adapted Morse functions. While the above construction can be carried out for fairly
general Morse functions (with the restrictions noted), the connection to family Floer theory
becomes clearer for specific classes of Morse functions, constructed as follows.
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Start from a simplicial decomposition P of a large compact subset onto which B0 retracts,
with every cell of P contained in a single open subset Vbi . Pick a Morse function h : B0 → R
and a Morse-Smale metric on B0, such that for every k-cell σ ∈ P [k] the function h has
a unique critical point bσ in the interior of σ, of index k, whose descending manifold is σ
itself. (Such a function and metric can be constructed e.g. from a barycentric subdivision
of P.) Then construct the Morse function f : X00 → R by combining the pullback of h
under the projection π with Morse functions on the fibers of π, as well as a Morse-Smale
metric on X00, in such a way that:

• all the critical points of f project to critical points of h;
• for each cell σ ∈ P [k], the restriction of f to π−1(bσ) is a standard Morse function on
the n-torus (i.e., it has 2n critical points, whose ascending and descending subman-
ifolds represent dual standard bases of H∗(T

n)), and every index j critical point of
f|π−1(bσ) is also a critical point of f , of index k + j;

• for each cell σ, the gradient flow of f is tangent to π−1(bσ), and the union of the
descending submanifolds of the critical points of f which lie in π−1(bσ) is π

−1(σ).

Definition 3.2. We call a Morse function f : X00 → R with these properties adapted to
the simplicial decomposition P.

(The assumption that f|π−1(bσ) has only 2n critical points and vanishing Morse differential
is extraneous and might be best left out of the definition, but it is convenient for the rest
of our discussion.)

The main advantage of adapted Morse functions for our purposes is that Morse cochains
can be expressed as Morse cochains for the function h on B0 with coefficients in the Morse
complexes of the functions f|π−1(bσ). In this sense, for adapted f we have

C∗(X00, π∗Oan) = C∗(B0;C∗(Fb) ⊗̂Oan);

denoting Ci,j = Ci(B0;Cj(Fb) ⊗̂Oan), this recovers the setting considered in (1.5). More-
over, the assumption made on the restrictions of f to the critical fibers implies that the
fiberwise Morse differential vanishes, so in fact we have

Ci,j = Ci(B0;Hj(Fb) ⊗̂Oan).

By construction the Morse differential δ and the Floer differential m1 on this complex
are filtered, in the sense that the Morse index i on B0 is non-decreasing; and the only
terms which preserve i are the (trivial) Morse differential and the Floer differential on
C∗(Fbσ) = H∗(Fbσ) for each σ. Meanwhile, the terms which increase i by one correspond
to Morse, resp. Floer-theoretic continuation maps from C∗(Fbσ) to C

∗(Fbσ′ ) over a gradient
flow line of h from bσ to bσ′ ; and those which increase i by more than one correspond to
homotopies between different compositions of such continuation maps.

Remark 3.3. It is typically possible to arrange for the latter homotopies to vanish in Morse
theory (e.g., since we have assumed B0 to be simply connected and one also typically has
π2(B

0) = 0, by trivializing π over B0 and taking f to be the sum of the pullback of h and
a fixed Morse function on Tn). The Morse complex (C, δ) is then identified with the Čech
complex Č∗(B0;H∗(Fb) ⊗̂Oan) for the polyhedral cover of (a retract of) B0 given by the
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stars of the vertices of P. We will use this fact below to recast m0 as a Čech cochain (with
values in polyvector fields) on the uncorrected mirror X∨0.

We finish this section by noting the manner in which the Floer-theoretic obstruction
m0 ∈ C encodes information not only about the holomorphic discs bounded by individual
fibers of π but also about those bounded by families of fibers over the simplices of P.
Namely, the part of m0 which lies over an index 0 critical point of h at a vertex of P
counts (treed) holomorphic discs bounded by the fibers of π over that point, in the sense of
Floer theory for a single Lagrangian; whereas the portion of m0 which lives over an index i
critical point bσ of h corresponds to (treed) family counts of holomorphic discs bounded by
the fibers of π over the i-dimensional cell σ ⊂ B0.

In this sense, the component of m0 in ⊕jC
i,j counts families of holomorphic discs that

occur along (possibly thickened) codimension i walls in B0, i.e. those which can be mean-
ingfully counted along i-dimensional families of fibers of π. The notion of weak family
unobstructedness (Definition 1.3) expresses the requirement that all non-zero counts should
live in fiberwise cohomological degree j = i, i.e. correspond to discs of Maslov index 2− 2i.

Remark 3.4. Besides fleshing out the details of the construction of the curved A∞-algebra
C via perturbed J-holomorphic treed discs, Hoek’s thesis [Hoek25] also implements a key
step of the family Floer program in this setting by constructing a functor from the Fukaya
category of Lagrangian sections of the fibration π to the category of A∞-modules over C.

3.2. A heuristic derivation of the master equation. The algebraic properties of m0

generally follow from the fact that the boundary strata of moduli spaces of holomorphic
discs are fibered products of moduli spaces of discs, as expressed in (3.1). Most immediately,
this yields the identity m1(m0) = 0, which is part of the A∞-equations. Our goal, however,
is to find (when possible) a constraint involving only m0: the master equation (1.8).

In this section we give a heuristic derivation of this equation under the assumption that
the moduli spaces of holomorphic discs entering into the definition of m0 are fiberwise closed,
in order to provide motivation for Conjecture 1.4. (It seems difficult, or in any case well
beyond the scope of this paper, to make the argument rigorous under realistic assumptions.)

One particularly convenient way to understand the origin of the master equation in La-
grangian Floer theory is at the level of loop spaces, as first proposed by Fukaya [Fuk06], and
further studied by Irie [Irie20], even though the technical details are daunting. (Working
in families however does not bring much additional complexity.) A very informal account
is as follows. The moduli space M1(X

00, β, J) carries an evaluation map not only to X00,
but also to its free loop space LX00 (in fact, to free loops contained in the fibers of π).
(This requires preferred parametrizations of the boundary loops, which can be done e.g. by
stabilizing the domains or by using arc length in X00). Denote by mL

0,β ∈ C2n−2+µ(β)(LX00)

the evaluation pushforward of the fundamental chain of M1(X
00, β, J) (after a suitable reg-

ularization). Summing over relative classes, we set mL
0 =

∑
β m

L
0,β z

β ∈ C∗(LX00;π∗Oan).

By analogy with [Fuk06, Irie20], one expects that (up to sign)

(3.4) ∂mL
0 =

1

2
{mL

0 ,m
L
0 },
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where {·, ·} denotes a chain-level refinement of the Chas-Sullivan bracket on H∗(LX00); or
rather, as shown by Irie, the chain-level master equation also involves higher order terms due
to the chain-level loop bracket actually being only part of a homotopy Lie (L∞) structure
on chains on the loop space [Irie20]. To avoid the inherent difficulties of chain-level string
topology, we focus on the main case of interest to us, and assume that the moduli spaces
of holomorphic discs under consideration are fiberwise closed manifolds. To further avoid
the need to regularize the moduli spaces, we make the following (unrealistic) assumptions
about M1(X

00, β, J):

• (regularity) M1(X
00, β, J) is a smooth manifold with corners, of the expected di-

mension, whose boundary is as in (3.1);
• (transversality) the projections π∗ : M1(X

00, β, J) → B0 induced by π are sub-
mersions onto smooth submanifolds of B0 with boundary and corners which meet
transversely;

• (fiberwise closed) the fibers of π∗ : M1(X
00, β, J) → B0 are closed manifolds, i.e.

(3.5) π∗(∂M1(X
00, β, J)) ⊂ ∂(π∗(M1(X

00, β, J)).

Then we can view mL
0 as a chain on B0 with coefficients in H∗(LFb) ⊗̂Oan, and the master

equation (3.4) expresses the boundary of mL
0 (as a chain on B0) in terms of the bracket

induced by the classical cup-product on B0 and the Chas-Sullivan loop bracket [CS99,
Definition 4.1] on H∗(LFb).

Lemma 3.5. Under these assumptions, (3.1) implies that mL
0 ∈ C∗(B

0;H∗(LFb) ⊗̂Oan)
satisfies the master equation (3.4).

Sketch of proof. On one hand, ∂mL
0,β is the image of the boundary of M1(X

00, β, J) un-
der the loop space-valued evaluation map. On the other hand, the evaluation image of
M2(X

00, β1, J) evβ1,1
×evβ2,0

M1(X
00, β2, J) is the chain formed by inserting the loops that

appear in mL
0,β2

into the loops that make up mL
0,β1

whenever the latter pass through the

base points of the former, i.e. mL
0,β2

∗mL
0,β1

in the notation of [CS99, §3]. Summing over all
β1, β2 such that β1 + β2 = β, we find that the evaluation image of the right-hand side of
(3.1) is equal to the coefficient of zβ in mL

0 ∗mL
0 = 1

2{m
L
0 ,m

L
0 }. □

Now we observe that each term mL
0,β consists of loops representing the class ∂β ∈ H1(Fb),

and recall that each component of LFb is homotopy equivalent to Fb itself, via evaluation
at the base point. A simple calculation shows:

Lemma 3.6. Denoting by LγT
n the component of LTn which consists of loops in the

class γ ∈ H1(T
n), and using evaluation at the base point and Poincaré duality to identify

H∗(LγT
n) with H∗(T

n) ≃ Hn−∗(Tn) ≃
∧n−∗H1(Tn), up to sign the Chas-Sullivan bracket

{·, ·} : H∗(LγT
n)⊗H∗(Lγ′Tn) → H∗(Lγ+γ′Tn) is given by

{α, α′} = α ∧ (ιγα
′) + (−1)|α|(ιγ′α) ∧ α′.

Proof. We can represent the classes α, α′ by cycles consisting of straight line loops on a
flat torus, with tangent vectors given by γ and γ′ respectively (under the identification of
the first homology of a flat torus with the lattice of integer tangent vectors). The element
ιγα

′ is (Poincaré dual to) the cycle on Tn obtained by spreading the evaluation image of
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α′ by translation along γ, i.e. the set of points p ∈ Tn such that the straight loop in the
direction of γ based at p hits the base point of one of the loops in the cycle α′. Thus,
α∧ (ιγα

′) corresponds to the cycle formed by the base points of loops in the chain α which
hit the base points of the loops in the chain α′. This is, up to sign, the operation denoted
α′ ∗α in [CS99, Section 3], whose skew-symmetrization is the Chas-Sullivan bracket [CS99,
Definition 4.1]. □

Using Lemma 3.6 to rewrite the Chas-Sullivan bracket {mL
0 ,m

L
0 } in terms of the bracket

defined by (1.7) on H∗(Tn)⊗K[H1(T
n)], we arrive at:

Corollary 3.7. Still assuming regularity of moduli spaces and transversality of evaluation
maps, if mL

0 ∈ C∗(B
0;H∗(LFb) ⊗̂Oan) satisfies (3.4) then m0 ∈ C∗(B0;H∗(Fb) ⊗̂Oan)

satisfies (1.8).

We can in fact give a more direct derivation of (1.8) without involving loop spaces:

Proposition 3.8. Assuming that family Floer theory can be set up using the singular dif-
ferential forms model of Section 3.1.1 and that the moduli spaces of holomorphic discs are
fiberwise closed in the sense of (3.5), the cochain m0 ∈ C∗(B0;H∗(Fb) ⊗̂Oan) satisfies (1.8)
up to sign.

Proof. Fixing a family of flat metrics on the fibers of π over B0, we can deform by si-
multaneous homotopies the boundary loops of all holomorphic stable discs in M1(Fb, β, J)
(parametrized e.g. by arc length) into straight line geodesics representing the class [∂β] ∈
H1(Fb), for all b ∈ B0. This produces a homotopy between the chains represented by the
evaluation map

(evβ,0, evβ,1) : M2(X
00, β, J) → X00 ×X00

and by
(evβ,0, t[∂β] ◦ evβ,0) : M1(X

00, β, J)× S1 → X00 ×X00,

where t[∂β] : X
00 × S1 → X00 denotes translation along the straight line geodesics in the

class [∂β] inside the fibers of π. This implies that

(evβ1,0)∗

[
M2(X

00, β1, J) evβ1,1
×evβ2,0

M1(X
00, β2, J)

]
and

(evβ1,0)∗

[
M1(X

00, β1, J)× S1
t[∂β1]◦evβ1,0×evβ2,0

M1(X
00, β2, J)

]
are equal as cochains on B0 with coefficients in H∗(Fb). Since the fiber product expresses
the condition that the output marked points of the two discs line up along a straight line
geodesic in the class [∂β1], the latter cochain can be expressed as

(evβ1,0)∗

[
M1(X

00, β1, J) evβ1,0
×t[∂β1]◦evβ2,0 (M1(X

00, β2, J)× S1)
]

= (evβ1,0)∗
[
M1(X

00, β1, J)
]
∩ t[∂β1]

(
(evβ2,0)∗[M1(X

00, β2, J)]× S1
)
.

Since spreading a homology class along [∂β1] corresponds under Poincaré duality to interior
product with [∂β1], this expression can be rewritten more concisely as

m0,β1 ∧ ι[∂β1](m0,β2).



36 DENIS AUROUX

It then follows from (3.1) that zβ δm0,β is, up to sign, equal to∑
β1+β2=β

zβ1+β2 m0,β1 ∧ ι[∂β1]m0,β2 =
1

2

∑
β1+β2=β

{zβ1m0,β1 , z
β2m0,β2}.

Summing over β then gives (1.8). □

3.3. Spliced treed J-holomorphic discs and the master equation. With some care,
it seems likely that the argument of Proposition 3.8 can be transcribed into the language of
Morse cochains and perturbed holomorphic treed discs, to arrive at a similar result in that
setup, still subject to very strong assumptions about moduli spaces of discs. However, it is
more appealing to try to modify the model of Section 3.1.2 to arrive at a setup where the
master equation holds in full generality. In this section, we sketch such an approach.

Despite the fairly detailed outline, the description we give here is by no means complete:
we skip over various limiting cases, and do not attempt to check consistency, discuss orien-
tations, or prove the existence of suitable perturbation data. The details of the construction
will appear elsewhere.

Remark 3.9. The approach we describe here using “standard loops” has some advantages
but also some notable drawbacks, chief among them the need to choose and keep track
of a number of homotopies between various types of loops. As of this writing it is likely
that the construction will eventually be modified to rely on a suitable geometric flow and
evolve families of fiberwise loops along the tree portions of spliced treed discs, rather than
homotoping them to standard loops.

The boundary of the usual moduli space of treed holomorphic discs M1(p0;β, J) consists
of configurations where the length of an internal edge becomes infinite; these can be viewed
as pairs of treed discs where the output of one treed disc serves as an input for the other,
giving rise to the identity m1(m0) = 0. Our aim is to modify the moduli space so that its
boundary consists of pairs of configurations whose outputs are matched to each other via
the bracket {·, ·} defined in (1.7). We do this by allowing the matching condition at the
ends of broken (infinite length) gradient flow lines to deform towards the output p0. More
precisely, once the length of a gradient flow line in a treed disc becomes infinite (i.e., the
flow line breaks through a Morse critical point), we first allow the incidence condition for
the end point of the flow line to deform along a homotopy from the boundary loop of the
appropriate disc component to a “standard” loop in the same homotopy class, and then
we allow the standard loop to slide along the gradient flow tree towards the output of the
treed disc. (Standard loops, defined below, are a class of loops which are well-behaved with
respect to the action of H1(Fb) on the Morse cohomology of f by interior product.) For
simplicity, we assume that we work with an adapted Morse function for some simplicial
decomposition P of B0 in the sense of Definition 3.2.

3.3.1. Standard loops. By Definition 3.2, the critical points of an adapted Morse function
f : X00 → R lie in fibers Fbσ = π−1(bσ) indexed by the cells σ ∈ P [k] of P, and the
restriction of f to Fbσ is a standard Morse function on Tn, i.e. there is a basis eσ,1, . . . , eσ,n
of H1(Fbσ) such that the ascending and descending submanifolds of the critical points of
f|Fbσ

represent exterior products of elements of the basis. For I ⊆ {1, . . . , n} we denote by
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pσ,I the critical point of index |I| whose descending (resp. ascending) submanifold within

Fbσ represents the homology class eσ,I =
∧

i∈I eσ,i (resp. eσ,I , where I = {1, . . . , n} − I).

Given a homology class [γ] =
∑
nieσ,i ∈ H1(Fbσ ,Z), interior product with [γ] defines an

operator of degree −1 on H∗(Fb,σ,Z) ≃ CM∗(f|Fbσ
,Z),

ι[γ] : CM
∗(f|Fbσ

) → CM∗−1(f|Fbσ
),

which maps pσ,I to ι[γ](pσ,I) =
∑

i∈I(−1)|I∩{1,...,i−1}| ni pσ,I−{i}. For pσ,I ∈ crit(f), we

denote by [W
+
(pσ,I)] the fundamental chain of the (closure of the) ascending manifold of

pσ,I inside X
00, and for [γ] ∈ H1(Fbσ) we define [W

+
(ι[γ](pσ,I))] to be the appropriate linear

combination of the ascending manifolds W
+
(pσ,I−{i}), i ∈ I.

Definition 3.10. Let X̃00 be the space of pairs ([γ], x) where x ∈ X00 and [γ] ∈ H1(Fπ(x),Z).
A system of standard loops for f is a smooth submersive map from X̃00 × S1 to X00,
([γ], x, t) 7→ s[γ](x, t) = s[γ],x(t), such that:

(1) for all [γ] and x, s[γ],x : S1 → X00 is a loop in Fπ(x) based at x, representing the
homology class [γ];

(2) for every critical point pσ,I of f , and for every [γ] ∈ H1(Fbσ),

(3.6) p∗s
−1
[γ] ([W

+
(pσ,I)]) = [W

+
(ι[γ](pσ,I))]

as chains in X00 modulo degenerate chains supported on the lower-dimensional

submanifold W
+
(pσ,I); here p : X

00×S1 → X00 is the projection to the first factor,
and we implicitly identify H1(Fb) ≃ H1(Fbσ) for b near bσ.

For [γ] = eσ,i, i ∈ I, condition (2) states that the loop s[γ],x passes through the ascending
manifold of pσ,I if and only if x lies in the ascending manifold of pσ,I−{i}, and in that case
it does so just once (counting with appropriate signs). Likewise for general [γ] and linear
combinations of ascending manifolds of the critical points appearing in ι[γ](pσ,I).

As will be clear from the arguments below, it would in fact suffice for the two sides of
(3.6) to be equivalent from the perspective of Morse theory, i.e. that they intersect in the
same manner with the ascending and descending submanifolds of other critical points of f .

Lemma 3.11. When B0 is simply connected, there exists an adapted Morse function f
which admits a system of standard loops.

Proof. Since π1(B
0) = 1, the structure group of the fibration π : X00 → B0 reduces to

translations of the n-torus Tn = (S1)n, i.e. we have well-defined fiberwise coordinates up to
translation on the fibers of π. We can then choose the admissible Morse function f so that
its restriction to each fiber of π is the sum of standard Morse functions on the S1 factors
and a Morse function on the base B0, and choose the metric in a suitable manner, so that

the ascending manifold W
+
(pσ,I) is invariant under translation along the i-th S1 factor in

the fibers of π whenever i ̸∈ I, and translating it along the i-th S1 factor for i ∈ I yields

exactly W
+
(pσ,I−{i}).
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Denoting by ei the homology class of the i-th S1 factor, and given a class [γ] =
∑
niei

and a point x ∈ X00, we define the loop s[γ],x to be the concatenation of loops based at x

which run successively ni times along each S1 factor of Fπ(x) (with vanishing derivatives at
the end points so that the concatenation is a smooth loop). The identity (3.6) then follows
from the observation that a loop based at x and running along the i-th S1 factor intersects

W
+
(pσ,I) if and only if x lies in the image of W

+
(pσ,I) under translation along the i-th S1

factor, i.e. W
+
(pσ,I−{i}) if i ∈ I and W

+
(pσ,I) itself otherwise. □

3.3.2. Spliced treed discs. A spliced treed disc consists of a collection of k+1 treed discs Tα =
(Tα, {Dv}v∈Vert(Tα)), α ∈ {0, . . . , k}, inductively attached onto each other by k semi-infinite

edges esplα , α ∈ {1, . . . , k} (the splicings). Each splicing esplα connects the output of the treed

disc Tα to some point tsplα (the target of the splicing) in T+
<α :=

⋃
α′<α Tα′ ∪

⋃
α′<α e

spl
α′ , the

underlying tree of the configuration obtained by splicing the treed discs Tα′ for α′ < α.

The end result of this process differs from a stable treed disc in that there are some
broken (infinite length) internal edges, formed by the output edges of the tree discs Tα

together with the splicing edges esplα , and these broken edges do not attach to the boundary
of a disc, but rather onto the underlying tree

T+ =
⋃
α

Tα ∪
⋃
α

esplα

of the spliced treed disc; the manner in which this translates into an incidence condition for
the end point of a gradient flow line is governed by splicing data which we describe below.
(Note that T+ is not a ribbon tree, as the splicing data does not specify how the splicing
edge fits into a cyclic ordering at its target.)

The splicing data for a given splicing depends on whether its target lies on an edge of T+

or at a vertex, and on the number of splicings which share the same target t = tsplα . The set
of incidence conditions we impose on the ends of the splicings with target t is parametrized
by a manifold with corners Sspl(t); when all the splicings have distinct targets, Sspl(t) is S1 if
t lies on an edge of T+, or [0, 1]×S1 if it lies at a vertex. The incidence conditions we impose
on the ends of the splicing edges with target t are described by maps σα : Sspl(t) → X00

for all α such that tsplα = t, defined below.

Definition 3.12. A spliced treed J-holomorphic disc u : T+ → X with domain T+ =⋃
Tα ∪

⋃
esplα consists of:

• for each α, a (perturbed) treed J-holomorphic disc uα : Tα → X, i.e., (perturbed)
stable J-holomorphic discs uv : Dv → X with boundary in some fiber Fbv of π
for every vertex v of Tα, connected to each other and to the output critical point
p0,α ∈ crit(f) by (perturbed) gradient flow lines ue of f for every edge e of Tα;

• for each point t of T+ which is the target of one or more splicings, a choice of splicing
data θt ∈ Sspl(t);

• for each splicing edge esplα , a semi-infinite (perturbed) gradient flow line of f whose
negative end converges to the critical point p0,α, and whose positive end maps to
the point σα(θtsplα

) ∈ X00.
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The description of the maps σα : Sspl(t) → X00 involves the standard loops introduced
in the previous section, as well as the following definition:

Definition 3.13. The weight βt∈e of an edge e of the tree T+ underlying a spliced treed
holomorphic disc u : T+ → X at a point t ∈ e is the sum of the homotopy classes βv = [uv]
of all the disc components of u which correspond to vertices v ∈

⋃
Vert(Tα) such that the

path in T+ from v to the output of T+ passes through t, and reaches t via the edge e.

As in §3.1.2, we use the identifications between the abelian groups π2(X,Fb), b ∈ B0

along the images under π of the gradient flow lines ue to define the sum of the homotopy
classes βv and view the weight βt∈e as an element of π2(X,Fb) for b = π(ue(t)). We also
introduce the homology class

(3.7) [γt∈e] = ∂βt∈e ∈ H1(Fb).

With this understood, let esplα be a splicing edge, with target t = tsplα ∈ T+.

Case 1. Assume t is an interior point of an edge e of T+, mapping to x = ue(t) ∈ X00,
and no other splicing has the same target t. Then we require the end point of the splicing
to lie on s[γt∈e],x, the standard loop at x in the homology class [γt∈e] = ∂βt∈e. Namely, we

set Sspl(t) = S1, and require the end point of esplα to map to σα(θt) := s[γt∈e],x(θt).

Case 2. Assume t is a vertex v of one of the trees Tα, corresponding to a stable J-
holomorphic disc uv : Dv → X with boundary in Fbv , and no other splicing has the same
target. Denote by ei the edges of Tα that attach to the input boundary marked points
zv,i ∈ ∂Dv, by βv,i = βv∈ei the weights of these edges at their end points, and by xi = uv(zv,i)
the end points of the gradient flow lines u(ei). Finally, let βv,tot = βv +

∑
βv,i ∈ π2(X,Fbv),

where βv = [uv(Dv)] is the class of the stable disc uv : Dv → X.

We use this data to define two loops in Fbv , both based at the image of the output marked
point of Dv, x = uv(zv,0). On one hand, let σ1 = s[∂βv,tot],x be the standard loop at x in
the homology class ∂βv,tot. On the other hand, let σ0 be the loop obtained by inserting the
standard loop s[∂βv,i],xi

at each input marked point zv,i into the boundary loop uv|∂Dv
of the

disc uv. This loop does not have a canonical parametrization by S1, but we can choose one
in a consistent manner, using the fact that the domain Dv is stable (possibly after adding
interior marked points corresponding to intersections with stabilizing divisors).

Denote by σ : [0, 1] × S1 → Fbv a homotopy between σ0 and σ1 produced by some
consistent method of interpolation between based loops in the fibers of π; for example, after
identifying all the fibers with flat tori we can just use straight line interpolation. We set

Sspl(t) = [0, 1]× S1, σα = σ, and require the end point of esplα to map to σ(θt).

This choice is motivated by the observation that the boundary of the homotopy σ precisely
accounts for the various ways in which a splicing with target v can deform: the target can
move into the output edge, whence the required incidence condition becomes a standard
loop in the class ∂βv,tot (cf. Case 1 above), or it can move into one of the input edges ei,
and the incidence condition becomes a standard loop in the class ∂βv,i; or the splicing can
disappear altogether by deforming to an honest gradient flow line attached to uv(∂Dv).
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Things become more complicated when two or more splicings share the same target. We
describe the splicing data and incidence condition in the next simplest case, to illustrate
the general construction, which will appear elsewhere.

Case 3. An interior point t of an edge e of T+ is the target of exactly two splicings esplα1

and esplα2 . Denote by β = βt∈e, β1 = β
t∈esplα1

and β2 = β
t∈esplα2

the weights of the different

edges which attach together at t, and let x = ue(t).

As in Case 2 above, the space Sspl(t) and the maps σα1 , σα2 : Sspl(t) → X00 should
describe a homotopy between the incidence conditions imposed on the ends of the splicing

edges esplα1 and esplα2 after small deformations which make their targets t1 and t2 distinct.
There are four manners in which such a configuration can deform to one where the two
splicings have distinct targets t1 and t2:

• Type I: t1 lies before t2 along e (farther from the output),
• Type I’: t1 lies after t2 along e (closer to the output),

• Type II: t1 can move to the edge esplα2 ,

• Type II’: t2 can move to esplα1 .

When t1 lies before t2 along e (Type I), the incidence condition at t1 is given by a standard
loop in the class ∂β, while at t2 it is a standard loop in the class ∂(β + β1) (both based

at points close to x). When t1 lies on esplα2 instead (Type II), the incidence condition at t2
is a standard loop in the class ∂β (based near x), while at t1 it is a standard loop in the
class ∂β2 (now based near the end point of the second splicing, rather than x). Similarly
for Types I’ and II’, exchanging the indices 1 and 2.

We set Sspl(t) to be the disjoint union of two copies of [0, 1]× S1 × S1. On the first one,

we define σα1(τ, θ1, θ2) = s[∂β],x(θ1), i.e. the incidence condition for esplα1 is independent of
τ ∈ [0, 1] and lies along the standard loop at x in the class ∂β. Meanwhile, we pick for each
value of θ1 a homotopy (chosen by some consistent process, e.g. straight line interpolation
after identifying Fπ(x) with a flat torus)

ς[∂β],[∂β1],x,θ1 : [0, 1]× S1 → Fπ(x)

between the standard loop s[∂β]+[∂β1],x (for τ = 0) and the loop obtained by inserting s[∂β1],y

into s[∂β],x at the point y = s[∂β],x(θ1) (for τ = 1); and we set

σα2(τ, θ1, θ2) = ς[∂β],[∂β1],x,θ1(τ, θ2).

This parametrizes a homotopy between the incidence conditions associated to Type I de-
formations (for τ = 0) and the union of the incidence conditions for Type II’ deformations
together with the “symmetric” incidence condition where both splicings map to the standard
loop s[∂β],x. On the second copy of [0, 1]× S1 × S1, we set instead

σα1(τ, θ1, θ2) = ς[∂β],[∂β2],x,θ2(τ, θ1) and σα2(τ, θ1, θ2) = s[∂β],x(θ2).

This yields a homotopy between the incidence conditions for the remaining types of defor-
mation (Types I’ and II) and the symmetric incidence condition s[∂β],x× s[∂β],x, so that the

two components of Sspl(t) taken together provide the desired homotopy between incidence
conditions.
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We expect that a similar construction of homotopies between different incidence con-
ditions can be used to deal with the remaining cases (when two splicings have a vertex
as common target, or when more than two splicings have the same target). A detailed
treatment will appear elsewhere.

3.3.3. The master equation. Returning to the notation of §§3.1.2–3.1.3, we define

mspl
0 ∈ C∗(X00, π∗Oan) = C∗(B0;H∗(Fb) ⊗̂Oan)

to be the same weighted sum as in (3.3) (with d = 0), except we use moduli spaces of spliced

treed holomorphic discs instead of their ordinary counterparts. (As usual, mspl
0 is a weighted

count of rigid spliced treed holomorphic discs, i.e. those which arise in zero-dimensional
moduli spaces, while the master equation comes from considering the boundaries of one-
dimensional moduli spaces.) The master equation is now expected to arise from the behavior
of spliced treed holomorphic discs at the boundary of the moduli space.

Boundary configurations where the output edge of the tree breaks through a critical point

of the Morse function f contribute δmspl
0 , where δ is the Morse differential.

Otherwise, once the length of an internal edge e of a treed holomorphic disc becomes
infinite, it turns into a splicing edge, whose target can move up along the remaining part
of the tree, all the way to the output edge eout. The boundary of the moduli space of
spliced discs is reached once the target of the splicing has moved “to infinity” along eout, at
which point the gradient flow line corresponding to eout must also break through a critical
point of f below the target of the splicing. Thus, in the limit we have a pair of rigid treed
holomorphic discs u± : T± → X with outputs p± ∈ crit(f), together with gradient flow
lines of f from p± to a pair of points x± with the property that x− lies on the standard
loop s[γ+],x+

through x+ representing the homology class [γ+] = [∂β+] of the boundary of
the treed disc u+ (and then upward from x+ to a critical point of f which is the overall
output of the limit configuration). The conditions involving p± and x± can be rewritten as:

x+ ∈ [W
+
(p+)] ∩ p∗s−1

[γ+]([W
+
(p−)]),

which by (3.6) is the same as [W
+
(p+)] ∩

[
W

+
(ι[γ+](p−))

]
. In other terms, the gradient

flow line from p− to x− can be replaced by a gradient flow line from one of the critical
points appearing in the linear combination ι[γ+](p−) to x+, and after this modification the
top-most portion of the limiting configuration amounts to a gradient flow tree computing
the cup-product p+ ∧ ι[γ+](p−).

Summing over all such configurations, with appropriate weights, we therefore arrive at

mspl
0 ∗mspl

0 =
1

2
{mspl

0 ,mspl
0 },

where ∗ denotes the operation of degree −1 on C∗(X00, π∗Oan) = C∗(B0;H∗(Fb) ⊗̂Oan)
defined by

(3.8) (zγ+p+) ∗ (zγ−p−) = zγ++γ− p+ ∧ ιγ+(p−),
whose skew-symmetrization is the bracket (1.7).
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Unlike the case of ordinary treed holomorphic discs, configurations where the targets of
several spliced edges simultaneously escape to infinity can also contribute to the codimension
1 boundary of the moduli space of spliced treed discs.

When the targets of two different splicings e1 and e2 both escape towards the output
of the spliced treed disc in such a way that the distance between the two targets also
goes to infinity, we arrive at codimension 2 strata consisting of three treed discs u1, u2, u+
with outputs p1, p2, p+, together with gradient flow lines of f which attach onto each other
via standard loops. Using (3.6), these can be recast by the same trick as above as a
broken gradient flow tree computing one of p+∧ ι[γ+](p1∧ ι[γ1](p2)), p+∧ ι[γ+](p2∧ ι[γ2](p1)),
(p+ ∧ ι[γ+](p1)) ∧ ι[γ++γ1](p2), or (p+ ∧ ι[γ+](p2)) ∧ ι[γ++γ2](p1). (Here [γ1], [γ2], [γ+] are the
homology classes associated to the boundary loops of the treed discs u1, u2, u+.)

However, when the targets of e1 and e2 remain a finite distance apart, the configuration
of gradient flow lines gets recast as a gradient flow tree of the sort used to define higher A∞-
operations in Morse theory, and/or the incidence conditions we impose on the end points of
the gradient flow lines involve homotopies between the various products of standard loops
appearing in the above expressions (see the discussion of Case 3 in §3.3.2 above). Due to the
extra degree of freedom afforded by the various homotopies, these strata have codimension
1 rather than 2.

Algebraically, these homotopies define an operation of degree −3 on C∗(X00, π∗Oan)
⊗3,

whose skew-symmetrization ℓ3 is the next term in a shifted L∞-structure whose first two
operations are the Morse differential δ and (up to sign) the bracket {·, ·}. Configura-
tions in which two splicing targets escape to infinity then contribute an additional term
1
6ℓ3(m

spl
0 ,mspl

0 ,mspl
0 ) to the master equation; and so on with higher homotopies when more

than two edge lengths simultaneously become infinite. To summarize:

Conjecture 3.14. (1) The Morse complex C∗(X00, π∗Oan) carries operations

ℓm : C∗(X00, π∗Oan)
⊗m → C∗(X00, π∗Oan)[3− 2m], m ≥ 1,

defined in terms of counts of spliced configurations consisting of m − 1 splicing edges and
one infinite gradient flow line, without any disc components; in particular ℓ1 is the Morse
differential and ℓ2 is (up to sign) the bracket {·, ·}. These operations define a shifted L∞-
structure on C∗(X00, π∗Oan).

(2) Weighted counts of rigid spliced treed holomorphic discs define an element mspl
0 ∈

C∗(X00, π∗Oan) which satisfies the L∞ master equation

(3.9)
∑
m≥1

1

m!
ℓm((mspl

0 )⊗m) = δmspl
0 ± 1

2
{mspl

0 ,mspl
0 }+ 1

6
ℓ3(m

spl
0 ,mspl

0 ,mspl
0 ) + · · · = 0.

Remark 3.15. Since the product on the Morse complex is only homotopy associative, it
shouldn’t be surprising that in general the bracket {·, ·} should only be the leading term
of an L∞ structure, and hence that the master equation should also involve higher order
terms. As noted in §3.2 above, Irie’s result on the chain-level master equation with loop
space coefficients [Irie20] also involves higher terms, due to the chain-level string bracket
being part of an L∞ structure on the space of chains on the free loop space.
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However, we expect that, for suitable choices of the adapted Morse function f and of
the system of standard loops (s[γ],x), one can arrange for the higher terms of the L∞-
structure to vanish, reducing (3.9) to the ordinary master equation (1.8). The reason for
this expectation is that, choosing f as in Remark 3.3, the Morse complex we consider can
be recast as the Čech complex of a suitable cover of B0 with coefficients in H∗(Fb) ⊗̂Oan,
which is a dg-algebra; and, as we shall see below, the bracket {·, ·} corresponds under mirror
symmetry to the Schouten-Nijenhuis bracket for Čech cochains on the uncorrected mirror
X∨0 with coefficients in polyvector fields, which satisfies the Jacobi identity at chain level.

Remark 3.16. Spliced treed discs can be used to produce not only the element mspl
0 but

also a wealth of algebraic operations on C∗(X00, π∗Oan). Work in progress of the author
with Keeley Hoek suggests that, by counting spliced treed holomorphic discs whose inputs
all lie on the tree that contains the output (i.e., the treed discs that feed into splicings do

not carry any inputs), one can define operations m̃spl
k for k ≥ 1 which make C∗(X00, π∗Oan)

into an uncurved A∞-algebra. The details will appear elsewhere. Beyond this, one might
hope that more general moduli spaces of spliced treed discs also endow C∗(X00, π∗Oan) with
the structure of a framed E2-algebra (or homotopy BV algebra); compare with [AGV24].

3.4. From m0 to the geometry of the corrected mirror. We finally turn our attention
to the passage from family Floer theory to the geometry of instanton corrections on the
mirror. As explained at the beginning of §3.1, the uncorrected mirror X∨0 comes equipped
with a rigid analytic torus fibration π∨ : X∨0 → B0, locally modelled on the valuation map
H1(Fb,K∗) → H1(Fb,R), or more explicitly after choosing a basis (γ1, . . . , γn) of H1(Fb,Z),
the valuation map (K∗)n → Rn.

Under the assumption of weak family unobstructedness (Definition 1.3), family Floer the-
ory as described in the preceding sections determines an elementm0 ∈ C∗(B0, H∗(Fb) ⊗̂Oan),
where Oan = π∨∗ (OX∨0) is a completion of the ring K[H1(Fb)] of Laurent polynomials in the
local coordinates of X∨0. Moreover, m0 can be expressed as a sum of elements

α(i) ∈ Ci(B0, H i(Fb) ⊗̂Oan)

which encode counts of holomorphic discs of Maslov index 2 − 2i in X bounded by i-
dimensional families of fibers of the Lagrangian torus fibration π : X00 → B0.

The natural isomorphism H1(Fb,R) ≃ TbB allows us to map elements of H1(Fb) (resp.
H∗(Fb) = Λ∗H1(Fb)) to vector fields (resp. poly vector fields) on X∨0. Namely, denoting
by (z1, . . . , zn) the local coordinates on X∨0 induced by a choice of basis (γ1, . . . , γn) of
H1(Fb), and by (γ∗1 , . . . , γ

∗
n) the dual basis of H1(Fb), we map each basis element γ∗j to the

vector field ∂log zj = zj∂zj , and extend this map to H∗(Fb) ⊗̂Oan by setting

(3.10) zγ γ∗j1 ∧ · · · ∧ γ∗jk 7→ zγ ∂log zj1 ∧ · · · ∧ ∂log zjk .

Combining this with pullback of cochains under the projection π∨ : X∨0 → B0, we obtain
a (bigraded) map

(3.11) C∗(B0, H∗(Fb) ⊗̂Oan) → C∗(X∨0,Λ∗TX∨0).

If we use the Morse-theoretic model of §3.1.2 for an adapted Morse function in the sense
of §3.1.3, then by Remark 3.3 the Morse cochains on the left-hand side of (3.11) can be
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recast as Čech cochains for a certain polyhedral cover of B0 (by the stars Uv of the vertices of
the simplicial decomposition P). The right-hand side of (3.11) should then be interpreted
as Čech cochains for a cover of X∨0 by affinoid domains approximating the preimages
(π∨)−1(Uv), v ∈ vert(P).

On the other hand, if we assume the existence of a model for family Floer theory in
which m0 is expressed as a differential form on B0 with values in H∗(Fb) ⊗̂Oan, then the
right-hand side of (3.11) should be interpreted in terms of tropical differential forms (also
known as superforms) on X∨0 (see e.g. [CLD12, Jell22]). Choosing a basis of H1(Fb) as
above, and denoting by (x1, . . . , xn) and (z1, . . . , zn) the corresponding local coordinates on
B0 and on X∨0 (with val(zj) = xj), we define

(π∨)∗(dxj) = d′′ log |zj |,
a superform of type (0, 1); and similarly for exterior products. By definition, the pullback
of differential forms intertwines the de Rham differential d on Ω∗(B0) and the tropical
Dolbeault differential d′′ on Ω0,∗(X∨0). Consequently, the map (3.11) also intertwines the
de Rham differential d on Ω∗(B0, H∗(Fb) ⊗̂Oan) and the tropical Dolbeault differential d′′

on Ω0,∗(X∨0,Λ∗TX∨0).

The key to the proof of Proposition 1.6 is the following lemma:

Lemma 3.17. The map (3.11) intertwines the bracket {·, ·} on C∗(B0;H∗(Fb) ⊗̂Oan) de-
fined by (1.7) and the negative of the Schouten-Nijenhuis bracket −[·, ·] on C∗(X∨0,Λ∗TX∨0).

Proof. Since the map (3.11) is compatible with the cup-product of cochains, it suffices to
compare the brackets on H∗(Fb) ⊗̂Oan and on Λ∗TX∨0 .

Recall that the Schouten-Nijenhuis bracket is a bracket of degree −1 on polyvector fields,
characterized by the following properties [Mar97]: given a smooth function f , vector fields
X,Y , and polyvector fields P,Q,R of degrees p, q, r,

(1) [X, f ] = LXf = ιdf (X);
(2) [X,Y ] = LXY ;

(3) [P,Q] = −(−1)(p−1)(q−1)[Q,P ];

(4) [P,Q ∧R] = [P,Q] ∧R+ (−1)(p−1)qQ ∧ [P,R];

(5) [P ∧R,Q] = P ∧ [R,Q] + (−1)(q−1)r[P,Q] ∧R.
Assume now that the polyvector fields P and Q have constant components in some local
coordinate system, and let f, g be two smooth functions. Then properties (2), (4) and (5)
imply that [P,Q] = 0, whereas (1) and (5) imply that [P, g] = (−1)p−1ιdg(P ). Hence, by
(4) we have [P, gQ] = (−1)p−1ιdg(P ) ∧ Q. Meanwhile, (3) and (4) imply that [f, gQ] =
g[f,Q] = −gιdf (Q). Finally, using (5) once more we arrive at

[fP, gQ] = (−1)p−1fιdg(P ) ∧Q− (−1)(q−1)pgιdf (Q) ∧ P
= (−1)p−1f ιdg(P ) ∧Q− g P ∧ ιdf (Q).(3.12)

Recall that, for γ ∈ H1(Fb), α, α
′ ∈ H∗(Fb), we define

(3.13) {zγ α, zγ′
α′} = zγ+γ′ (

α ∧ (ιγα
′) + (−1)|α|(ιγ′α) ∧ α′).
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Denote by V, V ′ ∈ Λ∗TX∨0 the images of α, α′ under (3.10), which are polyvector fields with
constant coefficients in terms of the basis formed by exterior products of ∂log zi . By (3.12),

(3.14) −[zγ V, zγ
′
V ′] = zγ

′
V ∧ ιd(zγ)(V ′) + (−1)|α|zγ ιd(zγ′ )(V ) ∧ V ′.

Thus, in order to complete our comparison of the two brackets it suffices to show that (3.10)
maps zγ ιγα

′ to ιd(zγ)(V
′), and similarly for the other interior product appearing in (3.13).

Distributing the interior products into the expressions of α′ and V ′ in the chosen bases,
it is in fact sufficient to compare zγ ιγα

′ to ιd(zγ)(V
′) in the specific case where α′ = γ∗j is

an element of the chosen basis of H1(Fb), and V
′ = ∂log zj . Expressing γ in the chosen basis

of H1(Fb) as γ = a1γ1 + · · ·+ anγn, we find that

zγ ιγ(γ
∗
j ) = ajz

γ = ∂log zj (z
γ) = ιd(zγ)(∂log zj ),

which completes the proof. □

Proof of Proposition 1.6. Recall that W (resp. W (i)) is by definition the image of m0 (resp.

its components α(i)) under the map (3.11). The compatibility of (3.11) with the differentials
implies that it maps δm0 to δW; while Lemma 3.17 implies that it maps {m0,m0} to
−[W,W]. The master equation (1.8) for m0 thus maps to the equation (1.10) for W. □

We also give a derivation of equations (1.11)–(1.13) for completeness. Recall that the
Schouten-Nijenhuis bracket satisfies the Jacobi identity

[[P,Q], R] = [P, [Q,R]]− (−1)(p−1)(q−1)[Q, [P,R]]

(where p = degP , q = degQ). Since W is even, this yields

[[W,W], ·] = 2[W, [W, ·]].
Moreover, the differential δ on cochains does not interact with the Schouten-Nijenhuis
bracket (this is manifest in the case of Čech cochains, and for tropical differential forms
it follows from the fact that δ is the Dolbeault differential d′′ on (0, ∗)-forms while the
Schouten-Nijenhuis bracket involves differentiation along analytic vector fields). Hence,

δ([W, ·]) = [δW, ·]− [W, δ(·)].
Thus, assuming (1.10), we have

(3.15) (δ + [W, ·])2 = δ[W, ·] + [W, δ(·)] + [W, [W, ·]] = [δW, ·] + 1

2
[[W,W], ·] = 0.

Writing W =W (0) +W (1) + . . . with W (i) ∈ Ci(X∨0,ΛiTX∨0), the component of (1.10) in
bidegree (1, 0) (i.e., in C1(X∨0,OX∨0)) is

δW (0) + [W (1),W (0)] = 0,

which gives (1.11). The component of (3.15) in bidegree (2, 1) is

(δ + [W (1), ·])2 + [W (2), [W (0), ·]] + [W (0), [W (2), ·]] = 0,

which can be rewritten using the Jacobi identity as

(δ + [W (1), ·])2 + [[W (2),W (0)], ·] = 0.
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Since [W (2),W (0)] = −ιdW (0)(W (2)), this yields (1.12). Next, the component of (1.10) in
bidegree (3, 2) is

δW (2) + [W (1),W (2)] + [W (0),W (3)] = 0,

which yields (1.13); and so on.

Remark 3.18. The components of the Čech cochain groups C∗(B0;H∗(Fb)⊗̂Oan) obtained
from a simplicial decomposition of B0 are certain completions of H∗(Fb)⊗K[H1(Fb)], which
can be viewed as the symplectic cohomologies (in the classical limit, before any instanton
corrections) of the local pieces of the corresponding decomposition ofX00. (See also Groman
and Varolgunes’ work introducing the relative symplectic cohomology sheaf of an SYZ
fibration [GV22].) In this sense, the map (3.11) can be viewed as a local version of the
expected isomorphism between the Hochschild cohomologies of the Fukaya category of X00

(without instanton corrections) and the derived category of the uncorrected mirror X∨0,
with the latter recast in terms of polyvector fields via the Hochschild-Kostant-Rosenberg
isomorphism. In this language, Lemma 3.17 expresses the fact that homological mirror
symmetry intertwines the BV-structures on these local Hochschild cohomologies.

The claim that the element W ∈ C∗(X∨0,Λ∗TX∨0) obtained by applying (3.11) to m0

represents the instanton corrections to be applied to the geometry of the uncorrected mirror
X∨0 also follows naturally from this perspective. Namely, we expect that the Fukaya cate-
gory of X can be recovered from the local relative wrapped Fukaya categories of the pieces of
X00 by a pullback diagram. Prior to any instanton corrections, the “classical limit” of this
pullback diagram (using the “classical” local wrapped categories rather than their relative
deformations inside X) matches the description of the derived category of the uncorrected
mirror X∨0 in terms of local pieces. The components of the Floer-theoretic obstruction
m0 ∈ C∗(B0;H∗(Fb)⊗̂Oan) describe the deformations of the classical local wrapped cate-
gories and of their gluing data needed to account for holomorphic discs in X and arrive at
the relative wrapped Fukaya categories and the diagram via which they recover the Fukaya
category of X. Thus, the corresponding element W ∈ C∗(X∨0,Λ∗TX∨0) should similarly
be used to deform the local pieces of the uncorrected mirror X∨0 and their gluing data in
order to arrive at the correct mirror.

(In the Calabi-Yau setting, the above ideas are also likely related to Chan, Leung and
Ma’s work on the construction of mirror spaces by using Maurer-Cartan elements to deform
gluings of BV algebras [CLM25].)
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