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Abstract. For n ∈ N, we define certain ring stacks sRn and sR⊕
n using the ring space of

sheared Witt vectors. We suggest several models for the ring stacks. Motivation: there is a
conjectural description of the stack of n-truncated Barsotti-Tate groups and its Shimurian
analogs in terms of sRn and sR⊕

n .
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7. sRn as a quotient of W 24
7.1. The model 24
7.2. More about Bn 25
7.3. A model for sR⊕n,Fp

26
8. sRn as a quotient of Wn 26
8.1. The goal 26
8.2. A variant of the model from §7.1 26
8.3. Economic models for sRn 27
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1. Introduction

Throughout this article, we fix a prime p.

1.1. Conventions. A ring R is said to be p-nilpotent if the element p ∈ R is nilpotent. Let
p-Nilp denote the category of p-nilpotent rings.

We equip p-Nilpop with the fpqc topology. The word “stack” will mean a stack on p-Nilpop.
The final object in the category of such stacks is denoted by Spf Zp; this is the functor that
takes each p-nilpotent ring to a one-element set.

Ind-schemes and schemes over Spf Zp are particular classes of stacks. The words “scheme
over Spf Zp” are understood in the relative sense (e.g., Spf Zp itself is a scheme over Spf Zp).
W will denote the functor R 7→ W (R), where R ∈ p-Nilp. So W is a ring scheme over

Spf Zp. Same for Wn.
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1.2. Subject of the paper.

1.2.1. The subject. We will define and discuss certain ring stacks sRn and sR⊕n , where n ∈ N
(more precisely, sRn is a (Z/pnZ)-algebra stack and sR⊕n is a stack of Z-graded (Z/pnZ)-
algebras). Our motivation for introducing these ring stacks is a conjectural relation between
them and the stacks BTG,µ

n from [GM].

1.2.2. The stacks BTG,µ
n . Let G be a smooth affine group scheme over Z/pnZ and

µ : Gm → G

a cocharacter satisfying the following 1-boundedness condition: all weights of the action of
Gm on Lie(G) are ≤ 1. Let BTG,µ

n be the stack defined in [GM, §9], so if R ∈ p-Nilp then
BTG,µ

n (R) is the groupoid of G-bundles on RSyn ⊗ (Z/pnZ) satisfying a certain condition,
which depends on µ. Here RSyn is the syntomification of R.

By Theorem D from [GM], BTG,µ
n is a smooth algebraic stack over Spf Zp; in other words,

for every m ∈ N the restriction of BTG,µ
n to the category of Z/pmZ-algebras is a smooth

algebraic stack over Z/pmZ. By Theorem A from [GM], if G = GL(d) then BTG,µ
n identifies

with the stack of n-truncated Barsotti-Tate groups of height d and dimension d′, where d′

depends on µ.

1.2.3. Relation between BTG,µ
n and the rings stacks sRn,

sR⊕n . Conjecture D.8.4 from [Dr25a]
expresses BTG,µ

n in terms of the ring stacks sRn and sR⊕n . This conjecture and some variants
of it were also discussed in [Dr25b] in a rather non-technical way.

The article [Dr25a] contains only a sketch of the definition of sRn and sR⊕n . In this paper
we give the actual definition of these ring stacks and describe several models for them.

1.3. Sketch of the definition of sRn and sR⊕n .

1.3.1. The ideal Ŵ ⊂ W . For R ∈ p-Nilp, let Ŵ (R) be the set of all x ∈ W (R) such that
all components of the Witt vector x are nilpotent and all but finitely many of them are zero.
Then Ŵ is an ind-subscheme of W ; moreover, Ŵ is an ideal in W preserved by the operators
F, V : W → W . For n ∈ N we set

Ŵ (Fn) := Ker(F n : Ŵ → Ŵ ), W (Fn) := Ker(F n : W → Ŵ ).

1.3.2. sRn via the ring space sW . Let W perf be the projective limit of the diagram

. . .
F−→ W

F−→ W.

Let

(1.1) sW = W perf/ lim
←−
n

Ŵ (Fn) = lim
←−
n

(W/Ŵ (Fn)),

where the transition maps in each of the limits equal F and the quotients are understood
in the sense of fpqc sheaves on p-Nilpop. Thus sW is a ring space (by which we mean
an fpqc sheaf of rings on p-Nilpop); it is called the ring of sheared Witt vectors1. Note

1The name is due to the relation between sW and the theory of sheared prismatization from [M1, M2]
and [BKMVZ]. On the other hand, sW can be regared as a “decompletion” of W , see §1.4.3(ii) and the end
of §3.6.1.
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that W is a quotient of sW : indeed, the map W perf → W is surjective, and its kernel is
lim
←−
n

W (Fn) ⊃ lim
←−
n

Ŵ (Fn).

Now define the ring stack sRn by

(1.2) sRn := Cone(sW
pn−→ sW ).

1.3.3. sW⊕ and sR⊕n . The homomorphism F : W → W induces a homomorphism

F : sW → sW.

One also has an important additive homomorphism Ṽ : sW → sW ; it is defined using the op-
erator V : W → W in a nontrivial way (see §3.2, in which we follow [M2, BMVZ]). Applying
to (sW,F, Ṽ ) a certain general algebraic construction (which we call the Lau equivalence),
one gets a Z-graded ring space sW⊕, see §4.2.1. Finally, one sets

(1.3) sR⊕n := Cone(sW⊕ pn−→ sW⊕).

1.4. Remarks on sW and Ṽ .

1.4.1. The definition of Ṽ : sW → sW is not obvious from (1.1) because in mixed character-
istic we have FV ̸= V F . On the other hand, in characteristic p one has FV = V F , so the
operator Ṽ : sW Fp → sW Fp is clear from (1.1) (here sW Fp :=

sW × SpecFp).

1.4.2. To define Ṽ : sW → sW , it is convenient to replace (1.1) by the equivalent for-
mula (3.1).

1.4.3. Some history. (i) I suggested the definition of sW while thinking about [Vo, BKMVZ]
and about the stacks BTG,µ

n . Simultaneously and independently, E. Lau introduced sW (R)
in the case where R is a semiperfect Fp-algebra; in this case he defined sW (R) to be the
right-hand side of formula (A.5) from our Appendix A.

(ii) In [L14] E. Lau defined a ring W(R) for a certain class of p-nilpotent rings R, which
he calls admissible (see §A.4.1 of our Appendix A); for a smaller class it had been defined
in 2001 by Th. Zink [Zi01]. If R is admissible then W(R) = sW (R) (see Proposition A.4.2
of Appendix A). For admissible R, the operator Ṽ : W(R) → W(R) was defined in [Zi01]
assuming that p > 2; this assumption was removed in [L14].

1.5. Models for sRn and sR⊕n . By a model for a ring stack we mean its realization as a
Cone of a quasi-ideal. The models for sRn and sR⊕n provided by (1.2) and (1.3) are far from
being economic. However, there are more economic models.

1.5.1. The situation over Fp. Let WFp := W × SpecFp, ŴFp := Ŵ × SpecFp, etc. It turns
out that

(1.4) sRn,Fp = Cone(Ŵ
(Fn)
Fp

→ Wn,Fp),

(1.5) sR⊕n,Fp
= Cone((Ŵ

(Fn)
Fp

)⊕ → W⊕
n,Fp

),

where (Ŵ
(Fn)
Fp

)⊕ is obtained by applying the Lau equivalence to the triple

(Ŵ
(Fn)
Fp

, F : Ŵ
(Fn)
Fp

→ Ŵ
(Fn)
Fp

, V : Ŵ
(Fn)
Fp

→ Ŵ
(Fn)
Fp

)
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and W⊕
n,Fp

is obtained similarly from the triple

(Wn,Fp , F : Wn,Fp → Wn,Fp , V : Wn,Fp → Wn,Fp).

The reason why V : Ŵ
(Fn)
Fp

→ Ŵ
(Fn)
Fp

and F : Wn,Fp → Wn,Fp are defined is that in charac-
teristic p one has FV = V F .

1.5.2. Mixed characteristic. In mixed characteristic the situation is more complicated. It
turns out that if p > 2 then similarly to (1.4), one has

(1.6) sRn = Cone(Ŵ (Fn) → Wn),

and if p = 2 then sRn has a slightly more complicated realization as a quotient of Wn.
However, even for p > 2 the model (1.6) does not exhibit the operator Ṽ : sRn → sRn.

Related fact: in mixed characteristic there is no direct analog of (1.5).

1.5.3. Other models. (i) sRn has some models which are more economic than (1.2) but less
economic than (1.6), see §5.3, §7, and §8.3.6. In §6 we describe a variant of the model for
sRn from §5.3, which is self-dual up to a cohomological shift, just as the model (1.6).

(ii) The models for sRn from §5.3 and §6 exhibit both F and Ṽ , so they can easily be
used to construct models for sR⊕n , see §5.4 and the end of §6.1. The economic models for
sRn from §8.3.6 do not exhibit F and Ṽ ; still, one can use them to construct models for
sR⊕n (see §9.2).

1.5.4. The limit n = ∞. One has

(1.7) lim
←−
n

sRn = sW.

So one could consider the ring stacks sRn as primary objects and then define sW by (1.7).

1.6. Digression on (sheared) n-prismatization.

1.6.1. The ring stacks Rn. Similarly to (1.2), let

(1.8) Rn := Cone(W
pn−→ W ).

One can also set R⊕n := Cone(W⊕ pn−→ W⊕), where W⊕ is as in §4.1.7(i).

1.6.2. Recollections on prismatization. If X is an Fp-scheme then its prismatization X∆ is
the functor

(1.9) p-Nilp → Groupoids, A 7→ X(R1(A)),

where as before, R1 := Cone(W
p−→ W ); the expression X(R1(A)) makes sense because

R1(A) is an animated Fp-algebra. In particular, (A1
Fp
)∆ = R1.

The definition of X∆ for any p-adic formal scheme X can be found in [Bh, Dr24]. The
idea is to deform the ring stack R1 = Cone(W

p−→ W ) by replacing p with ξ, where ξ is a
primitive Witt vector of degree 1, which matters only up to multiplication by W×.
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1.6.3. Sheared prismatization. The functor of sheared prismatization, denoted by X 7→ X
ˆ∆

is defined in [BKMVZ]; see also [M1, M2]. The idea is to use sR1 instead of R1 and to
require ξ to be a “strictly primitive” Witt vector of degree 1. One has (A1

Fp
)
ˆ∆ = sR1.

1.6.4. (Sheared) n-prismatization. For any n ∈ N, one could define the functor of n-prismati-
zation X 7→ X∆n and its sheared version X 7→ X

ˆ∆n so that for n = 1 one gets the functors
from §1.6.2-1.6.3. To do this, replace R1, sR1, Fp by Rn, sRn, Z/pnZ, and require ξ to be
(strictly) primitive of degree n.

To formulate Conjecture D.8.4 from [Dr25a], one only needs X
ˆ∆n in the case where X is a

scheme over Z/pnZ. In this case we usually write X(sRn) instead of X
ˆ∆n ; this is the functor

p-Nilp → Groupoids, A 7→ X(sRn(A)).

Let us note that if X is a scheme over Z/pn−1Z then X∆n = X
ˆ∆n = ∅ (it suffices to check

this if X = SpecZ/pn−1Z, which is easy).

1.7. Relation between this paper and [BKMVZ, BMVZ]. (i) Most of this paper2 is
either contained in [BKMVZ, BMVZ] or is a straightforward modification of the material
from [BKMVZ, BMVZ] obtained by replacing the Witt vector ξ from §1.6.3 by pn. But
unlike [BKMVZ, BMVZ], we define and discuss the graded ring space sW⊕ and the related
stacks sR⊕n .

(ii) The work [BMVZ] develops a detailed theory of sW . In this paper we give a relatively
self-contained exposition of the more elementary part of this theory (e.g., unlike [BMVZ],
we do not discuss cohomology with coefficients in sW ).

(iii) Let p-Nilpgood be the full subcategory of rings R ∈ p-Nilp such that the quotient of
R by its nilradical is perfect; it is known that p-Nilpop

good is a base for the fpqc topology on
p-Nilpop (see §2.1.4). According to [BMVZ], if R ∈ p-Nilpgood then H i(SpecR, sW ) = 0 for
i > 0.

Unlike this paper, the authors of [BMVZ] prefer to consider sW as a sheaf on p-Nilpop
good

rather than on p-Nilpop. Reason: from their point of view, if R /∈ p-Nilpgood then the natural
object is RΓ(SpecR, sW ) rather than sW (R) = H0(SpecR, sW ).

1.8. Organization. In §2-3 we recall the material from [BMVZ, M1, M2] about the ring
spaces Q := W/Ŵ and sW . We also formulate Conjecture 3.7.3.

In §4 we discuss the Lau equivalence and use it to define the ring space sW⊕.
In §5 we define the ring stacks sRn and sR⊕n . Following [BKMVZ, M2], we construct a

model for each of them, which is more economic than (1.2) and (1.3).
In §6 we slightly modify the models from §5. The new model for sRn is self-dual up to a

cohomological shift, just as the model (1.6).
Following [BKMVZ, M2], we describe in §7 a model for sRn, which represents sRn as a

quotient of W .
In §8 we represent sRn as a quotient of Wn; here we follow [BKMVZ, Vo].
In §9 we discuss a class of models for sR⊕n .

2Possible exceptions: §3.6-3.7, §4, §6, §9, a part of Appendix §A.
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In Appendix A we describe sW (R) assuming that the Fp-alegbra A := R/pR is weakly
semiperfect, i.e., Frn(A) = Frn+1(A) for some n ≥ 0.

In Appendix B we recall the notion of derived p-completeness.

1.9. Acknowledgements. I thank B. Bhatt, E. Lau, A. Mathew, V. Vologodsky, and
M. Zhang for explaining their works, sharing their drafts, and numerous discussions.

The author’s work on this project was partially supported by NSF grant DMS-2001425.

2. The ring space Q

In this section we recall some material from [BMVZ, M1]. As before, we use the notation
and conventions of §1.1.

2.1. The ideal Ŵ ⊂ W .

2.1.1. Definition of Ŵ . For R ∈ p-Nilp, let Ŵ (R) be the set of all x ∈ W (R) such that all
components of the Witt vector x are nilpotent and all but finitely many of them are zero.
Then Ŵ (R) is an ideal in W (R) preserved by F and V . Moreover, the preimage of Ŵ (R)

with respect to V : W (R) → W (R) is equal to Ŵ (R), so

(2.1) Ker(V : W (R)/Ŵ (R) → W (R)/Ŵ (R)) = 0

Recall that W is an affine scheme over Spf Zp. Clearly, Ŵ is an ind-subscheme of W which
is ind-finite over Spf Zp.

2.1.2. Surjectivity of F . It is known that F : W → W is surjective as a morphism of fpqc
sheaves (e.g., see [Dr24, §3.4]). The same is true for F : Ŵ → Ŵ ; moreover, F : Ŵ → Ŵ is
surjective in the fppf sense, see [BMVZ].

2.1.3. Ŵ -torsors and seminormality. According to [Sw], a ring A is said to be seminormal
if it is reduced3 and every homomorphism f : Z[x2, x3] → A extends to a homomorphism
f̃ : Z[x] → A. Any perfect Fp-algebra is seminormal: in this case f̃ can be defined by setting
f̃(x) = f(xp)1/p.

The quotient of R ∈ p-Nilp by its nilradical is denoted by Rred; note that Rred is an
Fp-algebra. It is proved in [BMVZ] that

(i) if R ∈ p-Nilp is such that Rred is seminormal then every Ŵ -torsor on the fpqc site of
SpecR is trivial (in particular, this is true if Rred is perfect);

(ii) for any R ∈ p-Nilp, every Ŵ -torsor on the fpqc site of SpecR is fppf-locally trivial.

2.1.4. Remark. The class of p-nilpotent rings R such that Rred is perfect plays a central role
in [BMVZ]. Such rings form a base of the fpqc topology on p-Nilpop; in other words, for every
R ∈ p-Nilp there exists a faithfully flat R-algebra R′ such that R′red is perfect. Moreover,
there exists a faithfully flat R-algebra R′ such that R′/pR′ is semiperfect (this is stronger
than perfectness of Rred). The proof is reduced to the case where R is the ring of polynomials
over Z/pnZ in the variables xi, i ∈ I; in this case take R′ to be the inductive limit of the
rings R′m, where R′m is the ring of polynomials over Z/pnZ in the variables xp−m

i .

3In fact, reduceness follows from the other condition, see [Sta, Tag 0EUK].
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2.1.5. Ŵ (R), where R is p-complete. An abelian group is said to be p-complete if it is
complete and separated with respect to the p-adic topology. For a p-complete ring R, we
define4 Ŵ (R) to be the projective limit of Ŵ (R/pnR). If R is p-complete then the projective
limit of W (R/pnR) equals W (R), so Ŵ (R) ⊂ W (R).

2.2. The ring space Q. By a ring space we mean an fpqc sheaf of rings on p-Nilpop.

2.2.1. Definition. Following [BMVZ], we set Q := W/Ŵ (quotient in the sense of fpqc
sheaves or equivalently, in the sense of fppf sheaves; the equivalence follows from §2.1.3(ii)).

If R ∈ p-Nilp is such that Rred is seminormal (e.g., perfect) then Q(R) = W (R)/Ŵ (R)
by §2.1.3.

2.2.2. Pieces of structure on Q. It is clear that Q is a ring space5. Moreover, the maps
F, V : W → W induce maps F, V : Q → Q. By (2.1) and §2.1.2, one has

(2.2) Ker(Q
V−→ Q) = 0,

(2.3) Coker(Q
F−→ Q) = 0

2.3. The operator Ṽ : Q → Q.

2.3.1. The story in a few words. It turns out that if p > 2 then the maps F, V : Q → Q
satisfy the relation FV = V F = p. If p = 2 this is false, but there is a better map6

Ṽ : Q → Q such that FṼ = Ṽ F = p. The reader may prefer to disregard the case p = 2
and assume that Ṽ = V .

2.3.2. The element ū. It is easy to see that there is a unique ū ∈ W (Zp)/Ŵ (Zp) such that

(2.4) V (ū) = p;

moreover, ū is invertible. According to [BMVZ],

(2.5) ū = 1 ⇔ p > 2.

Applying F to (2.4), we get

(2.6) pū = p.

2.3.3. The operator Ṽ : Q → Q. Define Ṽ : Q → Q by Ṽ := V ◦ ū; in other words, for
R ∈ p-Nilp and x ∈ Q(R), we have Ṽ (x) := V (ux). By (2.4)-(2.6), we have

(2.7) FṼ = Ṽ F = p.

Of course, Ṽ is additive and satisfies the usual identity

(2.8) Ṽ (x)y = Ṽ (xF (y)).

By (2.2), we have

(2.9) Ker(Q
Ṽ−→ Q) = 0.

4In practice, we will apply this definition to p-complete rings with bounded p∞-torsion.
5Moreover, as explained in [BMVZ], Q is a δ-ring space, and there is a certain compatibility between δ
and V .
6In a slightly different context, this map was introduced by E. Lau [L14]; then it was rediscovered in [BMVZ].
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Proposition 2.3.4. (i) The map

(2.10) F : Q/Ṽ (Q) → Q/Ṽ (Q)

is an isomorphism.
(ii) Moreover, Q/Ṽ (Q) is a sheaf of perfect Fp-algebras, and (2.10) is its Frobenius endo-

morphism.

The proof given below is taken from [M1] and [BMVZ]. Moreover, it is proved in [M1]
that for any R ∈ p-Nilp the ring (Q/Ṽ (Q))(R) is the colimit perfection of Rred (i.e., the
colimit of the diagram Rred

F−→ Rred
F−→ . . .).

Proof of Proposition 2.3.4. Q := W/Ŵ , so Q/Ṽ (Q) = W/(V (W ) + Ŵ ). Therefore Q/Ṽ (Q)
is the fpqc-sheafification of the presheaf

R 7→ Rred, R ∈ p-Nilp .

Moreover, the map (2.10) comes from Fr : Rred → Rred. This proves (ii) and injectivity
of (2.10). Surjectivity of (2.10) follows from (2.3). □

Corollary 2.3.5. The complex corresponding to the bicomplex

Q
Ṽ //

F
��

Q

F
��

Q
Ṽ // Q

is acyclic.

Proof. Follows from Proposition 2.3.4(i) and formula (2.9). □

For i ∈ N let Q(F i) := Ker(Q
F i

−→ Q).

Corollary 2.3.6. For every i ∈ N the map Ṽ : Q(F i) → Q(F i) is an isomorphism.

Proof. Follows from Corollary 2.3.5 and formula (2.3). □

3. The ring space sW

In this section we recall some material from [BMVZ, M2] and formulate Conjecture 3.7.3.

3.1. Definition of sW .

3.1.1. Definition. Just as in §2, let Q := W/Ŵ . Let

(3.1) sW := W ×Q Qperf ,

where Qperf is the projective limit of the diagram

(3.2) . . .
F−→ Q

F−→ Q.

The ring space sW is called the ring of sheared Witt vectors.
If R ∈ p-Nilp is such that Rred is perfect then Q(R) = W (R)/Ŵ (R) by §2.2.1, so sW (R)

is rather explicit. In Appendix A we give an even more explicit description of sW (R) if R
satisfies a certain condition which is stronger than perfectness of Rred.

9



3.1.2. Reformulation. Let W perf be the projective limit of the diagram

. . .
F−→ W

F−→ W.

The canonical homomorphisms W perf → W and W perf → Qperf define a homomorphism

(3.3) W perf → sW.

Surjectivity of F : Ŵ → Ŵ (see §2.1.2) implies that (3.3) is surjective as a map of fpqc
sheaves, so

(3.4) sW = W perf/ lim
←−
n

Ŵ (Fn) = lim
←−
n

(W/Ŵ (Fn)),

where Ŵ (Fn) := Ker(F n : Ŵ → Ŵ ), the transition maps in each of the limits equal F , and
the quotients are understood in the fpqc sense. Note that W perf is an affine scheme over
Spf Zp and lim

←−
n

Ŵ (Fn) is an ind-subscheme of W perf which is also an ideal.

3.1.3. Pieces of structure on sW . Recall that a ring space is an fpqc sheaf of rings on p-Nilpop.
Both (3.1) and (3.4) exhibit sW as a ring space equipped with an endomorphism F . There
is also an important additive map Ṽ : sW → sW , see §3.2 below. Moreover, sW as a δ-ring
space, see §3.4 for more details.

3.1.4. Some exact sequences. The map W → Q is clearly surjective. The map Qperf → Q is
surjective by (2.3). So we get exact sequences of fpqc sheaves

(3.5) 0 → Ŵ → sW → Qperf → 0,

(3.6) 0 → TF (Q) → sW → W → 0.

Here TF (Q) is the “F -adic Tate module” of Q, i.e.,

(3.7) TF (Q) := lim
←−

(. . .
F−→ Q(F 2) F−→ Q(F )), where Q(Fn) := Ker(F n : Q → Q).

We also have a rather tautological exact sequence

(3.8) 0 → Ŵ perf → W ×Q W perf → sW → 0, Ŵ perf := lim
←−

(. . .
F−→ Ŵ

F−→ Ŵ ),

where the map Ŵ perf → W ×Q W perf is given by x 7→ (0, x) and the map

W ×Q W perf → W ×Q Qperf =: sW

comes from the canonical map W perf → Qperf . In Appendix A we will use (3.8) to give an
explicit description of sW (R) for a certain class of rings R ∈ p-Nilp.

Note that the epimorphism W ×Q W perf ↠ W perf has a canonical splitting

W perf ↪→ W ×Q W perf , x 7→ (π(x), x),

where π : W perf → W is the canonical map. So W ×Q W perf identifies with the semidirect
product W perf ⋉ Ŵ , where W perf acts on Ŵ via π. After this identification, (3.8) becomes
the exact sequence

0 → Ŵ perf (1,−1)−→ W perf ⋉ Ŵ → sW → 0,
10



where the restriction of the map W perf ⋉ Ŵ → sW to W perf is the epimorphism (3.3) and
the restriction to Ŵ is the embedding Ŵ ↪→ sW from (3.5).

3.1.5. The ring sW (Zp). Similarly to §2.1.5, we define sW (Zp) to be the projective limit of
the rings sW (Z/pnZ). The ring homomorphism Zp → W (Zp) induces ring homomorphisms
Zp → Q(Zp), Zp → Qperf(Zp), and finally, Zp → sW (Zp). Combining the latter with the
map Ŵ ↪→ sW from (3.5), we get a ring homomorphism Zp ⊕ Ŵ (Zp) → sW (Zp).

Proposition 3.1.6. This map Zp ⊕ Ŵ (Zp) → sW (Zp) is an isomorphism.

Proof. Apply Proposition A.4.2 of Appendix A to the ring Z/pnZ. □

3.2. The map Ṽ : sW → sW .

3.2.1. The Witt vector u. In §2.3.2 we defined an invertible element ū ∈ W (Zp)/Ŵ (Zp).
Once and for all, we fix an element u ∈ W (Zp) such that u 7→ ū; then u is automatically
invertible. The element u is unique up to multiplication by an element of 1+Ŵ (Zp) ⊂ W (Zp).

A particular choice of u does not really matter for us: it is straightforward to pass from
one choice to another, see §4.2.2. For any p, one can set u := V −1(p−[p]), where [p] ∈ W (Zp)
is the Teichmüller element. If p > 2 then ū = 1, so one can set u = 1. According to [BMVZ],
in the case p = 2 one can take u to be the Teichmüller element [−1].

For any choice of u, one has

(3.9) u ∈ Ker(W (Zp)
× → W (Fp)

×)

because V u− p ∈ Ŵ (Zp) by the definition of u.

3.2.2. The map Ṽ : W → W . Similarly to §2.3.3, define an additive map Ṽ : W → W by

(3.10) Ṽ := V ◦ u;

in other words, Ṽ (x) := V (ux). Then

(3.11) Ṽ F = V (u) = Ṽ (1), F Ṽ = p, where p := pu.

By (2.4) and (2.6), we have

(3.12) V (u) ∈ p+ Ŵ (Zp), p ∈ p+ Ŵ (Zp).

3.2.3. The map Ṽ : Qperf → Qperf . The map Ṽ : Q → Q from §2.3.3 commutes with
F : Q → Q. So Ṽ acts on the projective system (3.2). Therefore we get an additive map
Ṽ : Qperf → Qperf .

3.2.4. The map Ṽ : sW → sW . Recall that sW := W ×Q Qperf . So combining the maps
Ṽ : W → W and Ṽ : Qperf → Qperf from §3.2.2-3.2.3, we get an additive map Ṽ : sW → sW .
The equalities (3.11) still hold; note that V (u),p ∈ sW (Zp) by (3.12) and §3.1.5, so V (u)
and p make sense as additive endomorphisms of sW .

The maps Ṽ , F : sW → sW satisfy the usual identity (2.8). This is also true for the maps
Ṽ , F : W → W and Ṽ , F : Qperf → Qperf .

11



Lemma 3.2.5. For every n ∈ N one has exact sequences

(3.13) 0 → sW
Ṽ n

−→ sW → Wn → 0,

(3.14) 0 → Ŵ (Fn) → sW
Fn

−→ sW → 0,

in which the maps sW → Wn and Ŵ (Fn) → sW come from the canonical maps sW ↠ W
and Ŵ ↪→ sW from (3.5)-(3.6).

Proof. Exactness of (3.13) follows from (3.6) and the fact that Ṽ : TF (Q) → TF (Q) is an
isomorphism by Corollary 2.3.6. Exactness of (3.14) follows from (3.5) and the fact that
F : Qperf → Qperf is an isomorphism (by the definition of Qperf); it also follows directly
from (3.4). □

3.2.6. Remarks. (i) By (3.11), for every n ∈ N one has

F nṼ n = pnun, where un :=
n−1∏
i=0

F i(u).

(ii) As said in §3.2.1, one can set u to be 1 if p > 2 and [−1] if p = 2. For this choice of u
one has F (u) = 1 and un = u. So for any choice of u one has un/u ∈ 1 + Ŵ (Zp).

3.3. The operators F, Ṽ on W ×QW perf . In this subsection (which can be skipped by the
reader) we explain a way to think about Ṽ : sW → sW (see §3.3.4).

3.3.1. The map F : W perf → W perf is clear; it is invertible. We define Ṽ : W perf → W perf by
Ṽ := pF−1. So the map W perf → W is not Ṽ -equivariant.

On the other hand, the map W perf → Qperf is Ṽ -equivariant: indeed, the map

Ṽ : Qperf → Qperf

equals pF−1 by (2.7). So the composite map W perf → Qperf → Q is Ṽ -equivariant.

3.3.2. Combining the operators F, Ṽ from §3.3.1 with the operators F, Ṽ on W , we get a
ring homomorphism

F : W ×Q W perf → W ×Q W perf

and an additive homomorphism

Ṽ : W ×Q W perf → W ×Q W perf ;

these operators satisfy the usual relation (2.8). Moreover, FṼ = p′, where

p′ := (p, p) ∈ (W ×Q W perf)(Zp).

The map W ×Q W perf → W ×Q Qperf = sW commutes with F and Ṽ .

3.3.3. Remark. Using the isomorphism W perf ⋉ Ŵ
∼−→ W ×Q W perf defined at the end of

§3.1.4, one can rewrite the maps F, Ṽ from §3.3.2 as operators acting on W perf ⋉ Ŵ , but the
formula for the operator Ṽ on W perf ⋉ Ŵ is a bit ugly.
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3.3.4. A way to avoid Q. Possibly some readers would like to have a definition of sW and
the operators F, Ṽ on sW which does not use the space Q := W/Ŵ . Formula (3.4) for sW
does not involve Q, but it is inconvenient for defining Ṽ : sW → sW . However, one can
define sW by the exact sequence

0 → Ŵ perf → W ×Q W perf → sW → 0

(which already appeared in §3.1.4, see (3.8)) and think of W ×Q W perf as the ind-scheme

{(x, y) ∈ W ×W perf | π(y)− x ∈ Ŵ},
where π : W perf → W is the canonical map. Then the operator Ṽ : sW → sW comes from
the operator Ṽ on W ×Q W perf , and the latter is very explicit: it takes (x, y) ∈ W ×Q W perf

to (Ṽ (x), pF−1(y)).

3.4. sW as a δ-ring space. Recall that sW := W ×Q Qperf . Each of the spaces W,Q,Qperf

is a δ-ring space (this is stronger than being a ring space with a ring endomorphism F ). So
sW is a δ-ring space. The operators δ and Ṽ acting on sW (or on W , Q, Qperf) satisfy the
identity

δ(Ṽ (x)) = Ṽ (1)p−1 · Ṽ (δ(x)) + x · δ(Ṽ (1)).

More details can be found in [BMVZ], where it is assumed that the element u ∈ W (Zp) from
§3.2.1 is chosen in a particular way (namely, u = 1 if p > 2, u = [−1] if p = 2).

3.5. Derived p-completeness of sW . The general notion of derived p-completeness is
recalled in Appendix B.

Lemma 3.5.1. sW is derived p-complete.

Before giving the proof from [BMVZ], let us make the following remark.

Remark 3.5.2. sW is a sheaf on p-Nilpop equipped with the fpqc topology. A product of
exact sequences of fpqc sheaves is exact, so by Lemma B.2.2 from Appendix B, derived p-
completeness of a sheaf F on p-Nilpop just means that F(R) is derived p-complete for each
R ∈ p-Nilp.

3.5.3. Proof of Lemma 3.5.1. We follow [BMVZ]. The exact sequence (3.6) shows that it
suffices to prove derived p-completeness of W and TF (Q). By Remark 3.5.2, this amounts to
proving derived p-completeness of W (R) and (TF (Q))(R) for each R ∈ p-Nilpop. For W (R),
this follows from §B.1.2(iii). By definition, TF (Q) is the projective limit of the sheaves Q(Fn).
By (2.7), pnQ(Fn) = 0. So (TF (Q))(R) is derived p-complete by §B.1.2(i-ii). □

3.6. The operator 1 − Ṽ : sW → sW . The remaining part of §3 can be skipped by the
reader.

3.6.1. The goal. As before, W and sW are considered as sheaves on p-Nilpop. The map

1− Ṽ : W → W is invertible: its inverse is
∞∑
n=0

Ṽ n. So

(3.15) Ker(W
1−Ṽ−→ W ) = Coker(W

1−Ṽ−→ W ) = 0.

On the other hand, in §3.6.4 we will show that

(3.16) Ker(sW
1−Ṽ−→ sW ) = Zp(1),
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(3.17) Coker(sW
1−Ṽ−→ sW ) = 0.

Let us note that Ker(sW
1−F−→ sW ) = Zp, see §3.6.5 below.

Formula (3.16) shows that sW is not Ṽ -complete (unlike W ). This is good : the kernel of
1− Ṽ : sW → sW is quite meaningful.

Lemma 3.6.2. One has a canonical isomorphism

(3.18) Cone(Ŵ
1−Ṽ−→ Ŵ )

∼−→ Ĝm,

where Ĝm is the formal multiplicative group.

Proof. Recall that Ṽ := V ◦ u, where u ∈ Ker(W (Zp)
× → W (Fp)

×), see (3.9). There is a
unique β ∈ Ker(W (Zp)

× → W (Fp)
×) such that β/F (β) = u: namely,

(3.19) β =
∞∏
i=0

F i(u)

(the infinite product converges). The commutative diagram

Ŵ
1−Ṽ //

β
��

Ŵ

β
��

Ŵ
1−V // Ŵ

defines an isomorphism between Cone(Ŵ
1−Ṽ−→ Ŵ ) and the complex Cone(Ŵ

1−V−→ Ŵ ). It is
clear that Ker(Ŵ

1−V−→ Ŵ ) = 0. It is well known that the map

(3.20) λ : Ŵ → Ĝm, λ(
∞∑
i=0

V i[xi]) :=
∞∏
i=0

exp(xi +
xp
i

p
+

xp2

i

p2
+ . . .)

induces an isomorphism Coker(Ŵ
1−V−→ Ŵ )

∼−→ Ĝm. □

Let us note that the isomorphism (3.18) constructed in the proof of Lemma 3.6.2 comes
from the map

(3.21) λ̃ : Ŵ → Ĝm, λ̃(x) := λ(βx),

where λ is given by (3.20) and β ∈ W (Zp)
× is given by (3.19).

Lemma 3.6.3. One has canonical exact sequences

(3.22) 0 → Ĝm → Q
1−Ṽ−→ Q → 0,

(3.23) 0 → µpn → Q(Fn) 1−Ṽ−→ Q(Fn) → 0,

(3.24) 0 → Zp(1) → TF (Q)
1−Ṽ−→ TF (Q) → 0.

Proof. Q = W/Ŵ , so (3.22) follows from Lemma 3.6.2 and formula (3.15). The morphism

F : Q → Q is surjective, and its restriction to Ker(Q
1−Ṽ−→ Q) equals FṼ = p. So (3.23) and

(3.24) follow from (3.22). □
14



3.6.4. Proof of (3.16)-(3.17). sW is an extension of W by TF (Q), so (3.16) and (3.17) follow
from (3.15) and the exact sequence (3.24). □

3.6.5. Remark. The map 1−F : TF (Q) → TF (Q) is invertible because F : Q(Fn) → Q(Fn) is
nilpotent. So

(3.25) Cone(sW
1−F−→ sW ) = Cone(W

1−F−→ W ) = Zp[1].

3.7. An autoduality conjecture.

3.7.1. Let α ∈ Ext(sW,Zp(1)) be the class of the extension

(3.26) 0 → Zp(1) → sW
1−Ṽ−→ sW → 0

provided by formulas (3.16)-(3.17). Clearly

(3.27) (1− Ṽ ∗)(α) = 0,

where Ṽ ∗ : Ext(sW,Zp(1)) → Ext(sW,Zp(1)) is induced by Ṽ : sW → sW .

3.7.2. Let R ∈ p-Nilp. Let sWR := sW × SpecR (i.e., sWR is the base change of sW to R).
Let αR ∈ Ext(sWR,Zp(1)R) be the image of α ∈ Ext(sW,Zp(1)). Let
(3.28) fR : sW (R) → Ext(sWR,Zp(1)R)

be the unique W (R)-linear map such that fR(1) = αR.

Conjecture 3.7.3. The map (3.28) is an isomorphsim.

3.7.4. Motivation of the conjecture. In §8 we will show that if p > 2 then

(3.29) Cone(sW
pn−→ sW ) ≃ Cone(Ŵ (Fn) −→ Wn),

see §8.3.7(i). Conjecture 3.7.3 is motivated by this formula and by Cartier duality between
Ŵ (Fn) and Wn.

If p is any prime then Cone(sW
pn−→ sW ) has a description (see §6), which is more

complicated then (3.29) but still self-dual in some sense.

3.7.5. Remarks. (i) By Proposition 3.7.7 below, Hom(sWR,Zp(1)R) = 0.
(ii) The following lemma shows that the map (3.28) interchanges F and Ṽ .

Lemma 3.7.6. fR ◦ F = Ṽ ∗ ◦ fR, and fR ◦ Ṽ = F ∗ ◦ fR.

The proof is based on (3.27).

Proof. (i) If a ∈ sW (R) then fR(F (a)) = F (a)∗αR = F (a)∗Ṽ ∗αR = Ṽ ∗(a∗αR) = Ṽ ∗(fR(a)).
(ii) fR(Ṽ (a)) = Ṽ (a)∗αR = (Ṽ aF )∗αR = F ∗a∗Ṽ ∗αR = F ∗(a∗αR) = F ∗(fR(a)). □

Proposition 3.7.7. Hom(sW,Zp(1)) = 0, where Hom stands for the sheaf of Hom’s on p-Nilpop.

Proof. We will use well known facts about Cartier duality between W and Ŵ (e.g., see
[Dr25a, Appendix A] and references therein).

The exact sequence (3.6) shows that it suffices to prove that
(3.30) Hom(TF (Q),Zp(1)) = 0,

(3.31) Hom(W,Zp(1)) = 0.
15



Since F : Ŵ → Ŵ is surjective, Q(Fn) = W (Fn)/Ŵ (Fn). Since Hom(Ŵ (Fn),Gm) = Wn

and Hom(W (Fn),Gm) = Ŵn, we get Hom(Q(Fn),Gm) = Ker(Ŵn → Wn) = 0, which im-
plies (3.30).

Let us prove (3.31). By Cartier duality between W and Ŵ , we have

Hom(W,Zp(1)) = Hom(Qp/Zp, Ŵ ).

But Hom(Qp/Zp, Ŵ ) = 0 because if pn = 0 in R then pnŴR ⊂ V (ŴR). □

4. The Z-graded ring space sW⊕

In §3 we defined a ring space sW and maps F, Ṽ : sW → sW . The graded ring space
sW⊕ will be obtained from the triple (sW,F, Ṽ ) by applying a general algebraic construction
descirbed in the next subsection.

4.1. The Lau equivalence. In this subsection we retell a part of E. Lau’s paper [L21] (but
not quite literally).

4.1.1. The category C. Let C be the category of triples (A, t, u), where A =
⊕
i∈Z

Ai is a Z-

graded ring and t ∈ A−1, u ∈ A1 are such that
(i) multiplication by u induces an isomorphism Ai

∼−→ Ai+1 for i ≥ 1;
(ii) multiplication by t induces an isomorphism Ai

∼−→ Ai−1 for i ≤ 0.
Because of (i) and (ii), C has an “economic” description. To formulate it, we will define a

category Cec (where “ec” stands for “economic”) and construct an equivalence C ∼−→ Cec.

4.1.2. The category Cec. Let Cec be the category of diagrams

(4.1) A0

F

⇄
V

A1,

where A0 and A1 are rings, F is a ring homomorphism, and V is an additive map such that

(4.2) a · V (a′) = V (F (a)a′) for a ∈ A0, a
′ ∈ A1

and for a′ ∈ A1 we have

(4.3) F (V (a′)) = pa′, where p := F (V (1)) ∈ A1.

Note that by (4.2) we have V F = V (1), which implies (4.3) if a′ ∈ F (A0) (but not in
general).

4.1.3. The functor C → Cec. Given a triple (A, t, u) ∈ C, we construct a diagram (4.1) as
follows:

(i) A0 is the 0-th graded component of A;
(ii) A1 is the first graded component of A, and the product of x, y ∈ A1 is as follows: first

multiply x by y in A, then apply the isomorphism A2
∼−→ A1 inverse to u : A1

∼−→ A2;
equivalently, the product in A1 comes from the product in A/(u− 1)A and the natural map
A1 → A/(u− 1)A, which is an isomorphism by virtue of §4.1.1(i);

(iii) F : A0 → A1 is multiplication by u, and V : A1 → A0 is multiplication by t.
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Proposition 4.1.4. The above functor C → Cec is an equivalence. The inverse functor

L : Cec → C takes a diagram A0

F

⇄
V

A1 to a certain graded subring of the graded ring

A0[t, t
−1]× A1[u, u

−1], deg t := −1, deg u = 1;

namely, the i-th graded component of the subring is the set of pairs (at−i, a′ui), where a ∈ A0

and a′ ∈ A1 satisfy the relation

(4.4) a′ = p−iF (a) if i ≤ 0, a = V (pi−1a′) if i > 0.

(As before, p := F (V (1)) ∈ A1.) □

The functor L : Cec → C will be called the Lau equivalence.
The proof of the proposition is left to the reader. However, let us make some remarks.

4.1.5. Remarks. (i) The description of L from Proposition 4.1.4 is motivated by the following
observation: if (A, t, u) ∈ C then the natural map A → A[1/t]×A[1/u] is injective, A[1/t] =
A0[t, t

−1], and A[1/u] = A1[u, u
−1], where the ring structure on A1 is as in §4.1.3(ii).

(ii) If (A, t, u) ∈ C then the nonpositively graded part of A identifies with A0[t] and the
positively graded one identifies with uA1[u], where the ring structure on A1 is as in §4.1.3(ii).
So instead of describing A as a subring of A0[t, t

−1]×A1[u, u
−1], one could describe A as the

group A[t]⊕ uA1[u] equipped with a “tricky” multiplication operation.

4.1.6. Remarks (to be used in §4.2.2). (i) The functor C → Cec from §4.1.3 can also be

described as follows: it takes (A, t, u) ∈ C to A0

F

⇄
V

R, where R is the 0-th graded component

of the localization A[u−1], the map F : A0 → R comes from the map A → A[u−1], and
V : R → A0 is the composition of u : A0

∼−→ R1 and t : R → A0.

(ii) Let A0

F

⇄
V

R be an object of Cec, and let (A, t, u) ∈ C be its image under L. Let

α ∈ R× and V ′ = V ◦ α, i.e., V ′(a′) = V (αa′) for all a′ ∈ R. Then A0

F

⇄
V ′

R is an object of

Cec, and its image under L is canonically isomorphic to (A, t, αu). The latter follows from
the description of the functor C → Cec given in (i).

4.1.7. Some examples from [L21]. (i) For any ring R the maps F, V : W (R) → W (R) satisfy
the properties from §4.1.2 (with p = p). Applying the Lau equivalence to the diagram

W (R)
F

⇄
V

W (R), one gets an object of C. Following [L21], we call it the Witt frame. Following

[D21], we denote it by W (R)⊕ (in [L21, Example 2.1.3] it is denoted by W (R)).
(ii) Let n ∈ N and let R be an Fp-algebra. Then we have a map F : Wn(R) → Wn(R)

(in addition to V : Wn(R) → Wn(R)). Applying the Lau equivalence to the diagram

Wn(R)
F

⇄
V

Wn(R), one gets an object of C. Following [L21], we call it the n-truncated Witt

frame. Following [D21], we denote it by Wn(R)⊕ (in Example 2.1.6 of [L21] it is denoted by
Wn(R)).

Let us note that W (R)⊕ and Wn(R)⊕ are particular examples of “higher frames” in the
sense of [L21, §2].
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4.2. Definition of sW⊕.

4.2.1. Definition. For any R ∈ p-Nilp, we defined in §3 a diagram sW (R)
F

⇄
Ṽ

sW (R), which

is an object of Cec. The image of this diagram under the functor L : Cec → C from Propo-
sition 4.1.4 is denoted by sW⊕(R). Thus sW⊕(R) is a Z-graded algebra over the Z-graded
ring Zp[t, u], where deg t = −1, deg u = 1. The description of L given in Proposition 4.1.4
yields a canonical monomorphism of Z-graded rings
(4.5) sW⊕ ↪→ sW [u, u−1]× sW [t, t−1]

such that the map sW⊕ → sW [u, u−1] induced by (4.5) is an isomorphism in positive degrees
and the map sW⊕ → sW [t, t−1] is an isomorphism in non-positive degrees. In particular,
each graded component of sW⊕ is isomorphic to sW as a sheaf of abelian groups.

4.2.2. Independence of the choice of u. Recall that the operator Ṽ from §3.2 depends on the
choice of u ∈ W (Zp). By §4.1.6(ii), sW⊕(R) does not depend on this choice up to canonical
isomorphism of Z-graded Zp[t]-algebras (rather than of Zp[t, u]-algebras).

5. The ring stacks sRn and sR⊕n

5.1. Ring groupoid generalities. The goal of this subsection is to give references to the
basic definitions from the elementary survey [Dr21] and to introduce the somewhat nonstan-
dard notation related to cones (see §5.1.2 below).

5.1.1. Ring groupoids. A definition of the (2, 1)-category RGrpds of ring groupoids can be
found in [Dr21, §2.2.2]. Section 3 of [Dr21] contains several equivalent definitions (or in-
carnations) of the 1-category of ring groupoids and the definition of the functor from it to
the (2, 1)-category RGrpds. Here are some of the incarnations7 of the 1-category of ring
groupoids discussed in [Dr21]:

(i) groupoids internal to the category of rings (see [Dr21, §3.2.2]);
(ii) DG rings A· with Ai = 0 for i ̸= 0,−1 (see [Dr21, §3.3.3]);
(iii) quasi-ideal pairs (see [Dr21, §3.3.1]), i.e., diagrams I

d−→ A, where A is a ring, I is
an A-module, and d : I → A is an A-linear map such that d(x) · y = d(y) · x for all x, y ∈ I
(in this situation one says that (I, d) is a quasi-ideal in A).

5.1.2. Notation: Cone and cone. The object of the (2, 1)-category of ring groupoids cor-
responding to a quasi-ideal I d−→ A is denoted by Cone(I

d−→ A). On the other hand,
cone(I

d−→ A) will denote a certain object of the 1-category of DG rings from §5.1.1(ii);
namely, the DG ring is the ring A ⊕ I, where A is in degree 0, I is in degree −1, the
diffferential is d : I → A, and the multiplication operation is the obvious one.

5.1.3. Ring stacks. Let S be a site (usually, S = p-Nilpop). A ring stack on S is a prestack
on S with values in RGrpds which happens to be a stack; equivalently, a ring stack on S is
a ring object in the (2, 1)-category of stacks of groupoids on S (the meaning of these words
is explained in [Dr21, §2.4.1]).

If A is a sheaf of rings on S and (I, d) is a quasi-ideal in A then the meaning of the notation
Cone(I

d−→ A) and cone(I
d−→ A) is similar to §5.1.2, in which S was a point.

7In each case we describe the objects. Morphisms are defined in the most naive way.
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5.2. Defining sRn and sR⊕n . Let n ∈ N. We set

(5.1) sRn := Cone(sW
pn−→ sW ),

(5.2) sR⊕n := Cone(sW⊕ pn−→ sW⊕),

where sW is as in §3.1 and sW⊕ is as in §4.2.1. Thus sRn is a Z/pnZ-algebra stack, and
sR⊕n is a stack of Z-graded Z/pnZ-algebras and even a stack of Z-graded algebras over the
Z-graded ring (Z/pnZ)[t, u], where deg t = −1 and deg u = 1. The map (4.5) induces a
canonical homomorphism of Z-graded Z/pnZ-algebras

(5.3) sR⊕n → sRn[u, u
−1]× sRn[t, t

−1].

In the following proposition the word “degree” refers to the graded ring structure (we are
not talking about cohomological degrees).

Proposition 5.2.1. The map sR⊕n → sRn[u, u
−1] induced by (5.3) is an isomorphism in

positive degrees. The map sR⊕n → sRn[t, t
−1] induced by (5.3) is an isomorphism in non-

positive degrees.

Proof. Follows from similar properties of the homomorphism (4.5). □

Proposition 5.2.2. (i) The functor

R 7→ sRn(R), R ∈ p-Nilp

commutes with filtered colimits.
(ii) The same is true for the functor R 7→ sR⊕n (R), R ∈ p-Nilp.

Proof. Statement (i) is proved in [BMVZ]. On the other hand, in §8 we will give a description
of sRn which makes statement (i) obvious: namely, we will represent sRn as Cone(H →
Wn), where H is a group ind-scheme which is ind-finite over Spf Zp, see formula (8.10) and
Lemma 8.3.4.

Statement (ii) follows from (i) and Proposition 5.2.1. □

The ring stacks sRn form a projective system. The same is true for sR⊕n .

Proposition 5.2.3. The projective limit of the ring stacks sRn equals sW .

Proof. Combine Lemma 3.5.1 with Lemma B.2.4 from Appendix B. □

5.2.4. Remark. The projective limit of the stacks sR⊕n is a sheaf, which strictly contains sW⊕.
This easily follows from derived p-completeness of sW and the fact that as a sheaf of abelian
groups, sW⊕ is isomorphic to the direct sum of countably many copies of sW (see the end
of §4.2.1).

5.3. A more economic model for sRn. By a model for a ring stack we mean its realization
as a Cone of a quasi-ideal. In this subsection we discuss a model for sRn, which is more
economic than the one provided by (1.2). We follow [BKMVZ, M2], where the case n = 1 is
considered.
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5.3.1. The ring space W ×Q,Fn Q. Let W ×Q,Fn Q denote the fiber product in the Cartesian
square

(5.4) W ×Q,Fn Q //

��

Q

Fn

��
W // Q

(the lower horizontal arrow is the projection W ↠ W/Ŵ = Q). We have a canonical

homomorphism W ×Q,Fn+1 Q
(id,F )−→ W ×Q,Fn Q, and

(5.5) lim
←−
n

(W ×Q,Fn Q) = sW.

5.3.2. Remark. Surjectivity of F : Ŵ → Ŵ implies that the map

(5.6) W → W ×Q,Fn Q, w 7→ (F nw, w̄)

is surjective. It induces an isomorphism W/Ŵ (Fn) ∼−→ W×Q,FnQ, so (5.5) is a reformulation
of (3.4)

5.3.3. A model for sRn. The map W ×Q,Fn Q
pn−→ W ×Q,Fn Q factors as

W ×Q,Fn Q
π
↠ W → W ×Q,Fn Q,

where π is the projection and the second map is

(5.7) W
(pn,Ṽ n)−→ W ×Q,Fn Q.

Consider W as a module over W×Q,FnQ via π : W×Q,FnQ ↠ W , then (5.7) is a quasi-ideal.
Let

An := cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q).

Let us show that the DG ring An is a model for sRn. By construction, An is a quotient of
the DG ring cone(W ×Q,Fn Q

pn−→ W ×Q,Fn Q); the latter is a quotient of cone(sW pn−→ sW )

by (5.5). Thus the DG ring cone(sW
pn−→ sW ) maps onto An.

Proposition 5.3.4. This map is a quasi-isomorphism, so it induces an isomorphism

(5.8) sRn := Cone(sW
pn−→ sW )

∼−→ Cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q)

Proof. The kernel of the map from cone(sW
pn−→ sW ) to An equals

(5.9) cone(TF (Q)
pn−→ B),

where TF (Q) is given by (3.7) and B ⊂ TF (Q) is as follows. A section of TF (Q) over
R ∈ p-Nilp is a collection of elements qi ∈ Q(R), i ∈ Z, such that q0 = 0 and F (qi) = qi−1
for all i; in these terms, B ⊂ TF (Q) is defined by the condition qn = 0.

The complex (5.9) is isomorphic to cone(TF (Q)
Ṽ n

−→ TF (Q)); the latter complex is acyclic
because the map Ṽ : TF (Q) → TF (Q) is an isomorphism by Corollary 2.3.6. □
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5.3.5. Remarks. (i) Recall that An := cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q). As n varies, the DG rings

An and cone(sW
pn−→ sW ) form projective systems: the transition maps are given by the

commutative diagrams

W
(pn+1,Ṽ n+1)

//

p

��

W ×Q,Fn+1 Q

(id,F )

��

sW
pn+1

//

p

��

sW

id
��

W
(pn,Ṽ n)

// W ×Q,Fn Q sW
pn // sW

The map from cone(sW
pn−→ sW ) to An defined at the end of §5.3.3 is a homomorphism of

projective systems of DG rings.

(ii) The naive projective limit of the DG rings An := cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q) equals

sW by (5.5). By Lemma 3.5.1 (or by a direct argument), the same is true for the derived
projective limit.

5.4. A more economic model for sR⊕n . The DG ring An from §5.3.3 is equipped with
an endomorphism F and an operator Ṽ satisfying the identities from §3.2 (these maps come
from the maps F, Ṽ : W → W and F, Ṽ : Q → Q). Applying to (An, F, Ṽ ) a DG version
of the Lau equivalence L from Proposition 4.1.4, one gets a DG ring A⊕n equipped with
an additional Z-grading. The corresponding Z-graded ring stack identifies with sR⊕n by
Proposition 5.3.4.

6. A self-dual model for sRn

6.1. Subject of this section. In §5.3.3 we constructed a model for sRn, which was denoted
by An. In this section (which can be skipped by the reader) we define a DG ring ind-scheme
Ãn equipped with a surjective quasi-isomorphism Ãn → An. Thus Ãn is another model
for sRn. It turns out that Ãn is self-dual up to cohomological shift, see §6.4 below.
Ãn is equipped with operators F and Ṽ (so one can use Ãn to construct a model Ã⊕n for

sR⊕n similarly to §5.4). In §6.5 we describe Coker(1 − Ṽ : Ãn → Ãn); this is related to the
description of Ker(1− Ṽ : sW → sW ) given in §3.6.

6.2. The DG ring Ãn.

6.2.1. Definition. We define Ãn by the following diagram whose squares are Cartesian:

(6.1) Ã−1n
d //

��

Ã0
n

��

// W

��
W

(pn,Ṽ n)
// W ×Q,Fn Q

pr // Q

(here the map W → W/Ŵ = Q is the canonical homomorphism). Diagram (6.1) gives a

map from Ãn to An := cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q); it is a surjective quasi-isomorphism.
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6.2.2. Explicit description. We have the ring scheme W 2 = W × W over Spf Zp and the
quasi-ideal

(6.2) W 2 d−→ W 2, where d(y1, y2) := (pny1, y2).

Ãn is a DG subring of cone(W 2 d−→ W 2), namely

(6.3) Ã0
n = {(x1, x2) ∈ W 2 |x1 ≡ F nx2},

(6.4) Ã−1n = {(y1, y2) ∈ W 2 | y2 ≡ Ṽ ny1}.

Let us explain that (6.3) is just a short way of saying that for every R ∈ p-Nilp one has

Ã0
n(R) := {(x1, x2) ∈ W 2(R) |x1 − F nx2 ∈ Ŵ (R)}.

By (6.3)-(6.4), Ã0
n and Ã−1n are additively isomorphic to W ⊕ Ŵ ; in particular, Ã0

n and Ã−1n

are ind-schemes (not merely fpqc sheaves).

6.2.3. The maps F, Ṽ : Ãn → Ãn. The DG ring Ãn is equipped with an endomorphism F
and an operator Ṽ satisfying the identities from §3.2 (these maps come from F, Ṽ : W → W ).
The maps F, Ṽ : Ãn → Ãn agree with F, Ṽ : An → An. Similarly to §5.4, one gets a model
Ã⊕n for sR⊕n by applying the Lau equivalence to the triple (Ãn, F, Ṽ ).

6.2.4. The element γ := (1, pn) ∈ W (Zp)
2 belongs to Ã−1n (Zp) and satisfies the relations

d(γ) = (pn, pn) = pn, F (γ) = γ.

These relations mean that γ defines an F -equivariant8 homomorphism from cone(Z pn−→ Z)
to Ãn. The corresponding homomorphism from cone(Z pn−→ Z) to An is equal to the one
coming from An being a quotient of cone(W ×Q,Fn Q

pn−→ W ×Q,Fn Q), see the end of §5.3.3.

6.3. The projective system {Ãn}.

6.3.1. The transition maps. We have maps

(6.5) Ã0
n+1 → Ã0

n, (x1, x2) 7→ (x1, Fx2),

(6.6) Ã−1n+1 → Ã−1n , (y1, y2) 7→ (py1, Fy2).

These maps define a homomorphism of DG rings

(6.7) Ãn+1 → Ãn,

which commutes with F and agrees with the homomorphism An+1 → An from §5.3.5(i).
However, (6.7) does not commute with Ṽ on the nose.

8We are assuming that F acts on cone(Z pn

−→ Z) as the identity.
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6.3.2. The limit. Let Ãi
∞ (resp. Ai

∞) be the projective limit of Ãi
n (resp. Ai

n). By §5.3.5(ii),
A0
∞ = sW , A−1∞ = 0. Let us describe Ãi

∞.
We have Ã0

∞ = W ×Q W perf , and the homomorphism Ã0
∞ → A0

∞ = sW is the canonical
map W ×Q W perf → W ×Q Qperf = sW . It is easy to show that Ã−1∞ identifies with Ŵ perf so
that d : Ã−1∞ → Ã0

∞ becomes the map Ŵ perf ↪→ W ×Q W perf given by x 7→ (0, x); this map
already appeared in (3.8).

This description of Ã∞ shows that Ã∞ is equipped with operators F and Ṽ (they were
defined in §3.3.2). The homomorphism of DG rings Ã∞ → Ãn commutes with F ; however,
it does not commute with Ṽ on the nose.

6.3.3. Remarks. (i) the maps (6.5) are surjective;
(ii) the maps (6.6) are not surjective, but R1 lim

←−
n

Ã−1n = 0.

6.4. Autoduality of Ãn. The group ind-schemes Ã0
n and Ã−1n defined by (6.3)-(6.4) are

Cartier-dual to each other because they are both isomorphic to W ⊕ Ŵ . Here is a more
precise statement.

Proposition 6.4.1. Define a group homomorphism ξ : Ã−1n → Ĝm by

(6.8) ξ(y1, y2) := λ̃(y2 − Ṽ ny1),

where λ̃ : Ŵ → Ĝm is given by (3.21). Then
(i) the pairing

(6.9) Ã0
n × Ã−1n → Gm, (x, y) 7→ ⟨x, y⟩ := ξ(xy)

identifies Ã−1n with the Cartier dual of Ã0
n;

(ii) for x ∈ Ã0
n and y ∈ Ã−1n one has ⟨Fx, y⟩ = ⟨x, Ṽ y⟩ and ⟨Ṽ x, y⟩ = ⟨x, Fy⟩.

Proof. We have

(6.10) λ̃ ◦ Ṽ = λ̃

(see the proof of Lemma 3.6.2). So ξ ◦ Ṽ = ξ. This implies (ii).
To prove (i), let us rewrite (6.9) as a pairing

(W ⊕ Ŵ )× (W ⊕ Ŵ ) → Gm.

Let x = (x1, x2) ∈ Ã0
n, y = (y1, y2) ∈ Ã−1n . Then x1 = F nx2 + α, y2 = Ṽ ny1 + β, where

α, β ∈ Ŵ . We have

⟨x, y⟩ = λ̃(x2y2 − Ṽ n(x1y1)), x2y2 − Ṽ n(x1y1) = x2β − Ṽ n(αy1).

So using (6.10), we get ⟨x, y⟩ = λ̃(x2β) · λ̃(αy1)−1. It remains to show that the pairing

W × Ŵ → Gm, (u, v) 7→ λ̃(uv)

identifies Ŵ with the Cartier dual of W . This follows from a similar property of the pairing
(u, v) 7→ λ(uv), which is well known (see [Dr25a, Appendix A] and references therein). □
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6.5. The operator 1− Ṽ : Ãn → Ãn. As before, let λ̃ : Ŵ → Ĝm be given by (3.21).

Proposition 6.5.1. There is a commutative diagram with exact rows

(6.11) 0 // Ã−1n

1−Ṽ //

d
��

Ã−1n

ξ //

d
��

Ĝm
//

p
��

0

0 // Ã0
n

1−Ṽ // Ã0
n

ν // Ĝm
// 0

where ξ is defined by (6.8) and

(6.12) ν(x1, x2) := λ̃(pnx2 − Ṽ nx1).

6.5.2. Remarks. (i) Formula (6.12) makes sense because pnx2− Ṽ nx1 ∈ Ŵ : this follows from
the fact that F nx2 − x1 ∈ Ŵ by (6.3).

(ii) One can rewrite (6.12) as ν(a) = ξ(aγ), where γ ∈ Ã−1n (Zp) is as in §6.2.4.

6.5.3. Proof of Proposition 6.5.1. Commutativity of the right square of (6.11) is checked
straightforwardly using (6.2). The lower row of (6.11) is a complex because λ̃ ◦ (1− Ṽ ) = 0.
To prove its exactness, use the Ṽ -equivariant exact sequence

0 → Ŵ → Ã0
n

π2−→ W → 0,

where π2(x1, x2) := x2; one also uses Lemma 3.6.2 and the fact that the map 1− Ṽ : W → W
is an isomorphism. □

Corollary 6.5.4. The map 1− Ṽ : sRn → sRn is surjective, and its fiber over 0 identifies
with µpn.

Proof. Follows either from Proposition 6.5.1 or from the exact sequence (3.26). □

7. sRn as a quotient of W

In this section we describe a model for sRn, which represents sRn as a quotient of W .
This model goes back to [BKMVZ, M2].

7.1. The model.

7.1.1. Define a quasi-ideal In
d−→ W by the Cartesian square

(7.1) In
d //

��

W

x7→(Fnx,x̄)

��
W

(pn,Ṽ n)
// W ×Q,Fn Q

whose lower row is (5.7). Let
Bn := cone(In

d−→ W ).

Recall that An := cone(W
(pn,Ṽ n)−→ W ×Q,Fn Q).

Proposition 7.1.2. The map Bn → An corresponding to diagram (7.1) is a quasi-isomorphism.

Proof. Follows from surjectivity of the right vertical arrow of (7.1), see §5.3.2. □
24



Combining Propositions 5.3.4 and 7.1.2, we get the following

Corollary 7.1.3. Bn is a model for sRn. □

7.1.4. Explicit description of Bn. By §7.1.1, we have

(7.2) In = {(x, y) ∈ W 2 |F nx = pny, x− Ṽ ny ∈ Ŵ},
d : In → W is given by d(x, y) = x, and the W -module structure on In is given by

a · (x, y) = (ax, F n(a)y), where a ∈ W, (x, y) ∈ In.

7.2. More about Bn.

7.2.1. The homomorphism F : Bn → Bn. Define a DG ring homomorphism F : Bn → Bn

as follows:
(i) the map B0

n → B0
n is F : W → W ;

(ii) in terms of (7.2), the endomorphism of In = B−1n is given by (x, y) 7→ (Fx, Fy).
Then the homomorphism Bn → An commutes with F .

7.2.2. A drawback of Bn. The advantage of the model Bn is that one can use it to construct
economic models for sRn, see §8 below. But Bn has the following drawback: the map
Ṽ : An → An does not lift to an additive endomorphism of Bn. Moreover, since there is no
operator Ṽ acting on Bn, it is hard to use Bn to construct a model for sR⊕n .

7.2.3. The operators V : Bn,Fp → Bn,Fp and V : An,Fp → An,Fp. The drawback of Bn

mentioned in §7.2.2 disappears after base change to Fp (because in characteristic p one
has FV = V F ). Here are more details.

Let Bn,Fp := Bn × SpecFp. Define an additive map V : Bn,Fp → Bn,Fp as follows:
(i) the map B0

n → B0
n is V : W → W ;

(ii) in terms of (7.2), the endomorphism of In = B−1n is given by (x, y) 7→ (V x, V y).

Let An,Fp := An × SpecFp. Let V : An,Fp → An,Fp be induced by Ṽ : An → An. Unlike Ṽ ,
the operator V : An,Fp → An,Fp does not depend on the choice of the Witt vector u ∈ W (Zp)
from §3.2.1; this follows from (3.9). Moreover, V : An,Fp → An,Fp is described by the most
naive formulas similar to those from the definition of V : Bn,Fp → Bn,Fp .

The homomorphism Bn,Fp → An,Fp commutes with V .

7.2.4. The map Bn+1 → Bn. Define a DG ring homomorphism F : Bn+1 → Bn as follows:
(i) the map B0

n+1 → B0
n is F : W → W ;

(ii) in terms of (7.2), the map from In+1 = B−1n+1 to In = B−1n is given by (x, y) 7→ (Fx, py).
Then the diagram

Bn+1
//

��

Bn

��
An+1

// An

commutes. Recall that the vertical arrows of this diagram are surjective quasi-isomorphisms.
Let Bi

∞ be the projective limit of Bi
n. One checks that d : B−1∞ → B0

∞ = W perf is injective
and d(B−1∞ ) = lim

←−
n

Ŵ (Fn). This projective limit already appeared in formula (3.4).
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7.3. A model for sR⊕n,Fp
. By §7.2.1 and §7.2.3, the DG ring Bn,Fp is equipped with operators

F, V satisfying the usual identities. So we can apply to Bn,Fp the Lau equivalence L (see
Proposition 4.1.4) and get a Z-graded9 DG ring ind-scheme, which we denote by B⊕n,Fp

.
We have a canonical surjective quasi-isomorphism B⊕n,Fp

↠ A⊕n,Fp
, where

A⊕n,Fp
:= A⊕n × SpecFp

and A⊕n is the model for sR⊕n constructed in §5.4. So B⊕n,Fp
is a model for sR⊕n,Fp

.

8. sRn as a quotient of Wn

In this section we follow [BKMVZ, Vo].

8.1. The goal. One has V n(Ŵ (Fm)) ⊂ W (Fm+n). We will show that Ŵ (Fm+n)/V n(Ŵ (Fm))

is an ind-scheme, see Lemma 8.3.4 and §8.4. Note that if m = 0 then Ŵ (Fm) = 0, so
Ŵ (Fm+n)/V n(Ŵ (Fm)) = Ŵ (Fn).

Define a number δp by

(8.1) δp := 0 for p > 2, δ2 := 1.

In §8.3.6 we will show that for any integer m ≥ δp, the ring stack sRn is canonically isomor-
phic to

Cone(Ŵ (Fm+n)/V n(Ŵ (Fm)) → Wn).

Moreover, we will see there that sRn × SpecFp canonically identifies with

Cone(Ŵ
(Fm+n)
Fp

/V n(Ŵ
(Fm)
Fp

) → Wn,Fp)

for any integer m ≥ 0.
The reader may prefer to disregard the case of mixed characteristic 2 and assume that

m = 0.
In addition to the above-mentioned models for sRn, in §8.5 we will construct an economic

model for sR⊕n,Fp
(this is straightforward because the models for sRn,Fp are equipped with

operators F and V ).

8.2. A variant of the model from §7.1. Let d : In → W be the quasi-ideal from §7.1.
For each non-negative m ∈ Z define In,m and d : In,m → W by the pullback square

In,m
d //

��

W

Fm

��
In

d // W

Since F : W → W is surjective, Corollary 7.1.3 implies that for each m one has

(8.2) sRn = Cone(In,m
d−→ W ).

By (7.2), we have

(8.3) In,m = {(x, y) ∈ W 2 |Fm+nx = pny, Fmx− Ṽ ny ∈ Ŵ},

9By a Z-graded DG ring we mean a DG ring equipped with an additional Z-grading.
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d : In,m → W is given by d(x, y) = x, and the W -module structure on In,m is given by

a · (x, y) = (Fm+n(a)x, y), where a ∈ W, (x, y) ∈ In,m.

8.3. Economic models for sRn.

8.3.1. We keep the notation of §8.2. Let

(8.4) I ′n,m := {(x, y) ∈ W 2 |x ∈ V n(W ), y = FmV −nx}.

Lemma 8.3.2. (i) Let m ≥ δp, where δp is as in (8.1). Then I ′n,m ⊂ In,m, where In,m and
I ′n,m are given by formulas (8.3)-(8.4).

(ii) I ′n,m,Fp
⊂ In,m,Fp for all m. Here In,m,Fp is the base change of In,m to SpecFp.

Proof. To prove (ii), it suffices to note that by (8.3) and (3.9), one has the formula

(8.5) In,m,Fp = {(x, y) ∈ W 2
Fp
|Fm+nx = pny, Fmx− V ny ∈ ŴFp},

in which Ṽ does not appear.
To prove (i), one has to check that (FmV n− Ṽ nFm)(W ) ⊂ Ŵ . Equivalently, the problem

is to show that FmV n = Ṽ nFm if F, V, Ṽ are considered as operators in Q = W/Ŵ . By
formula (2.7), Ṽ nFm = FmṼ n. Recall that Ṽ := V ū, so FmṼ n = FmV n ·ūF (ū) . . . F n−1(ū).
To show that this equals FmV n, use (2.5) if p > 2 and (2.6) if m ≥ 1. □

The next two lemmas describe In,m/I
′
n,m if m ≥ δp. Let

În,m := {(x, y) ∈ Ŵ 2 |Fm+nx = pny},

Î ′n,m := I ′n,m ∩ În,m = {(x, y) ∈ Ŵ 2 |x ∈ V n(Ŵ ), y = FmV −nx}.

Lemma 8.3.3. (i) If m ≥ δp then the canonical map În,m/Î
′
n,m → In,m/I

′
n,m is an isomor-

phism.
(ii) For any m ≥ 0 the canonical map În,m,Fp/Î

′
n,m,Fp

→ In,m,Fp/I
′
n,m,Fp

is an isomorphism.

Proof. We will only prove (i); the proof of (ii) is similar. Let

(8.6) Yn,m := {(x, y) ∈ W 2 |Fm+nx = pny, xi = 0 for i > n},
where xi’s are the components of the Witt vector x. Let

(8.7) Ŷn,m := Yn,m ∩ Ŵ 2 = {(x, y) ∈ Ŵ 2 |Fm+nx = pny, xi = 0 for i > n}.
If m ≥ δp then the map Yn,m∩In,m → In,m/I

′
n,m is an isomorphism. So to prove (i), it suffices

to show that the inclusion Ŷn,m ⊂ Yn,m ∩ In,m is an equality.
Indeed, let (x, y) ∈ Yn,m(R)∩ In,m(R), where R is a p-nilpotent ring. Since Fm+nx = pny,

we see that xi is nilpotent for each i < n; on the other hand, xi = 0 for i ≥ n. So
x ∈ Ŵ (R). Since Fmx − Ṽ ny ∈ Ŵ (R), we see that Ṽ ny ∈ Ŵ (R). So y ∈ Ŵ (R). Thus
(x, y) ∈ Ŷn,m(R). □

Lemma 8.3.4. (i) The map

(8.8) Ŵ (Fm+n) → În,m ⊂ Ŵ 2, x 7→ (x, 0)

induces an isomorphism

(8.9) Ŵ (Fm+n)/V n(Ŵ (Fm))
∼−→ În,m/Î

′
n,m.
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(ii) W (Fm+n)/V n(Ŵ (Fm)) is an ind-finite ind-scheme over Spf Zp whose group of F̄p-points
is zero. This ind-scheme is isomorphic to the ind-scheme Ŷn,m from formula (8.7).

Additional information about the group ind-scheme Ŵ (Fm+n)/V n(Ŵ (Fm)) can be found
in §8.4.

Proof. Statement (i) follows from surjectivity of F : Ŵ → Ŵ . Statement (ii) follows from (i)
and the fact that the map Ŷn,m → În,m/Î

′
n,m is an isomorphism, where Ŷn,m is defined

by (8.7). □

8.3.5. Remark. The composition Ŷn,m
∼−→ În,m/Î

′
n,m

∼−→ Ŵ (Fm+n)/V n(Ŵ (Fm)) takes (x, y)

to x−V nF−m(y), where F−m(y) is a point of Ŵ/Ŵ (Fm); note that Fm+n(x−V nF−m(y)) =
Fm+nx− pny = 0.

8.3.6. The economic models. Let m ≥ δp, where δp is as in (8.1). Then I ′n,m ⊂ In,m by
Lemma 8.3.2(i). The map d : In,m → W from §8.2 induces an isomorphism

I ′n,m
∼−→ V n(W ) = Ker(W ↠ Wn).

So for each m ≥ δp we have sRn = Cone(In,m/I
′
n,m

d−→ Wn). By Lemmas 8.3.3(i) and 8.3.4,
this can be rewritten as

(8.10) sRn = Cone(Ŵ (Fm+n)/V n(Ŵ (Fm)) → Wn),

where the map from Ŵ (Fm+n)/V n(Ŵ (Fm)) to Wn is the tautological one and the action of Wn

on Ŵ (Fm+n)/V n(Ŵ (Fm)) comes from the obvious action of W on Ŵ (Fm+n). Similarly, using
Lemma 8.3.2(ii) and Lemma 8.3.3(ii), we see that for all m one has

(8.11) sRn,Fp = Cone(Ŵ
(Fm+n)
Fp

/V n(Ŵ
(Fm)
Fp

) → Wn,Fp).

8.3.7. Examples. (i) Let p > 2. Then one can set m = 0 in (8.10). So

(8.12) sRn = Cone(Ŵ (Fn) d−→ Wn),

where d is the tautological map. Note that in the case p = 2 the r.h.s. of (8.12) is not a
Z/2nZ-algebra (unlike sRn); this follows from Lemma 8.6.1 below.

(ii) Setting m = 0 in (8.11), we see that for all p (including p = 2) one has

(8.13) sRn,Fp = Cone(Ŵ
(Fn)
Fp

d−→ Wn,Fp).

(iii) Let n = 1. As noted in [Vo], Ŵ (Fm+1)/V (Ŵ (Fm)) has a description in the spirit of
P. Berthelot [Ber]: namely, the quasi-ideal Ŵ (Fm+1)/V (Ŵ (Fm)) in W1 = Ga identifies with
the nilpotent PD neighborhood of Z ⊂ Ga, where Z is the kernel of Frm acting on Ga⊗Fp. In
the case m = 0 this is well known. In the case m ≥ 1 (or more generally, m ≥ δp) this can be
deduced from the isomorphism Ŵ (Fm+1)/V (Ŵ (Fm))

∼−→ Ŷ1,m from the proof of Lemma 8.3.4.
Note that Ŷ1,m = {(x0, y) ∈ Ga × Ŵ | [xpm

0 ]− V y ∈ Ŵ (F )}, and the map Ŷ1,m → Ga is given
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by x0, so we have a pullback square of ind-schemes

Ŷ1,m
// //

��

Ga

z 7→zp
m

��
Ŵ (F ) // // Ga

8.4. More on Ŵ (Fm+n)/V n(Ŵ (Fm)). By Lemma 8.3.4, Ŵ (Fm+n)/V n(Ŵ (Fm)) is an ind-scheme.

Proposition 8.4.1. (i) The ind-scheme Ŵ (Fm+n)/V n(Ŵ (Fm)) can be represented as an in-
ductive limit of a diagram

(8.14) Spf C1 ↪→ Spf C2 ↪→ . . . ,

where each Ci is a finite flat Zp-algebra.
(ii) The canonical nondegenerate pairing10 Ŵ ×W → Gm induces isomorphisms

(8.15) Gn,m
∼−→ Hom(Ŵ (Fm+n)/V n(Ŵ (Fm)),Gm),

(8.16) Ŵ (Fm+n)/V n(Ŵ (Fm))
∼−→ Hom(Gn,m,Gm),

where Gn,m := Ker(Wm+n

Fn

↠ Wm).

Note that Gn,m is a flat affine group scheme of finite type over Spf Zp; it is smooth if and
only if m = 0.

Proof. We will use the ind-scheme Ŷn,m defined by (8.7). (If m = 0 this is not necessary.)
(i) As explained in the proof of Lemma 8.3.4, there is an isomorphism of ind-schemes

Ŵ (Fm+n)/V n(Ŵ (Fm))
∼−→ Ŷn,m. We also have the affine scheme Yn,m over Spf Zp defined

by (8.6). The group Gm acts on Yn,m and Ŷn,m: namely, λ ∈ Gm acts by

(x, y) 7→ ([λpm+n

]x, [λ]y).

The relation between Yn,m and Ŷn,m is as follows. Let A be the coordinate ring of Yn,m.
The group Gm acts on Yn,m: namely, λ ∈ Gm acts by (x, y) 7→ ([λpm+n

]x, [λ]y)). This action
defines a Z-grading11 on A. This grading is non-negative, and each graded component Ai is
a finitely generated Zp-module. Then Ŷn,m is the inductive limit of the closed subschemes
Y <r
n,m ⊂ Yn,m, where Y <r

n,m corresponds to the ideal
⊕
i≥r

Ai ⊂ A (here
⊕

stands for the p-

completed direct sum).
So it remains to show that each Ai is flat over Zp. Indeed, Yn,m is the kernel of the

homomorphism W 2 → W given by (x, y) 7→ Fm+nx − pny. This homomorphism is flat
because it becomes flat after base change to SpecFp.

(ii) The isomorphism (8.15) is straightforward. Statement (i) ensures that the map from
Ŵ (Fm+n)/V n(Ŵ (Fm)) to its double Cartier dual12 is an isomorphism. So (8.16) follows
from (8.15). □
10E.g., see [Dr25a, Appendix A] and references therein.
11A is p-complete, and the word “grading” is understood in the p-complete sense.
12Cartier duality between commutative affine group schemes and commutative ind-affine group ind-schemes
over arbitrary bases is discussed in the lecture [M3] at 46:00. The material from [M3] is closely related to
the Appendices of [Bou].
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8.5. An economic model for sR⊕n,Fp
. As before, we use the subscript Fp to denote base

change to SpecFp.

8.5.1. The model. By §8.3.7(ii), the DG ring ind-scheme

(8.17) Cn,Fp := cone(Ŵ
(Fn)
Fp

d−→ Wn,Fp)

is a model for sRn,Fp . The DG ring (8.17) is equipped with operators F, V satisfying the
usual identities; they come from the maps F, V : WFp → WFp . So we can apply to (8.17)
the Lau equivalence L (see Proposition 4.1.4) and get a Z-graded DG ring ind-scheme C⊕n,Fp

,
where

(8.18) C⊕n,Fp
:= cone((Ŵ

(Fn)
Fp

)⊕
d−→ W⊕

n,Fp
).

We claim that C⊕n,Fp
is a model for sR⊕n,Fp

. To justify this claim, we will construct13 a
quasi-isomorphism

(8.19) B⊕n,Fp
↠ C⊕n,Fp

,

where B⊕n,Fp
is the model from §7.3.

8.5.2. Constructing (8.19). Cn,Fp is the quotient of the DG ring Bn,Fp from §7.2.3 by the
acyclic ideal cone(I ′n,Fp

→ V n(WFp)), where

I ′n,Fp
= {(x, y) ∈ W 2

Fp
|x = V ny};

note that I ′n,Fp
⊂ In,Fp , where In is given by (7.2). The map Bn,Fp ↠ Cn,Fp commutes with

F and V . So we get (8.19)

8.6. The ring stack Cone(Ŵ (Fn) −→ Wn) for arbitrary p.

Lemma 8.6.1. For any prime p and any n ∈ N, the ring stack Cone(Ŵ (Fn) −→ Wn) is
canonically isomorphic to Cone(sW

pnu−→ sW ), where u ∈ W (Zp)
× is as in §3.2.1.

Note that pnu ∈ sW (Zp) because pu = p ∈ sW (Zp).

Proof. Using Lemma 3.2.5 and mimicking the proof of [Dr24, Prop. 3.5.1], one gets a canon-

ical isomorphism Cone(Ŵ (Fn) → Wn)
∼−→ Cone(sW

FnṼ n

−→ sW ). It remains to use §3.2.6. □

9. A class of models for sR⊕n

9.1. Ind-affineness of certain morphisms. A morphism of stacks X → Y is said to
be ind-affine if for any p-nilpotent affine scheme S and any morphism S → Y the stack
X ×Y S is an ind-affine ind-scheme (i.e., it can be represented as an inductive limit of a
directed family of affine schemes with respect to closed immersions).

Proposition 9.1.1. The diagonal morphism sRn → sRn × sRn is ind-affine.

The proof will be given in §9.1.5.

Corollary 9.1.2. The morphism of stacks sR⊕n → sRn[u, u
−1] × sRn[t, t

−1] from §5.2 is
ind-affine.
13The construction is the m = 0 case of §8.3.6.
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Proof. Combine Propositions 5.2.1 and 9.1.1. □

To prove Proposition 9.1.1, we need the following lemma.

Lemma 9.1.3. Let R be a ring. Let H be a commutative affine group R-scheme such that
the R-module H0(H,OH) is projective. Let F be an H∗-torsor14, where H∗ is the Cartier
dual. Then F is representable by an ind-affine ind-scheme over R.

Remark 9.1.4. H-torsors are representable by affine schemes: this is a well known conse-
quence of the theory of flat descent.

Proof of Lemma 9.1.3. Interpreting H∗ as the automorphism group of the trivial extension

0 → Gm → H ⊕Gm → H → 0

and using the theory of flat descent, we see that F defines an extension

(9.1) 0 → Gm → H̃ → H → 0,

where H̃ is an affine R-scheme. Then F is the sheaf of splittings of (9.1).
Let M+ := H0(H,L), M− := H0(H,L−1), where L is the line bundle on H corresponding

to the Gm-torsor H̃ → H. A splitting of (9.1) can be viewed as a pair

(s+, s−), s+ ∈ M+, s− ∈ M−

satisfying certain equations (one of them is s+s− = 1). So it remains to show that the
functor

{R-algebras} → {Sets}, R̃ 7→ R̃⊗R (M+ ⊕M−)

is an ind-affine ind-scheme over R. To see this, represent M+ ⊕ M− as a direct summand
of a free R-module; this is possible because the R-module H0(H,OH) is assumed to be
projective. □

9.1.5. Proof of Proposition 9.1.1. Let S be a p-nilpotent affine scheme equipped with a
morphism f : S → sRn× sRn. Let X := S×sRn×sRn

sRn, where the map sRn → sRn× sRn

is the diagonal. Then X can be described as follows.
Let g := f1 − f2, where f1, f2 : S → sRn are the components of f . By §6,

sRn = Cone(Ã−1n → Ã0
n),

where A−1n and A0
n are additively isomorphic to W ⊕ Ŵ . So g : S → sRn is given given by

a Ã−1n -torsor T → S and a Ã−1n -equivariant map h : T → Bn. In these terms, X = h−1(0).
A priori, T and X are fpqc sheaves. We have to prove that X is an ind-affine ind-scheme.

It suffices to show that T is an ind-affine ind-scheme. This follows from Lemma 9.1.3 and
Remark 9.1.4 because the group ind-scheme Ã−1n is isomorphic to W ⊕ Ŵ , and Ŵ is Cartier
dual to W . □

9.2. A class of models for sR⊕n and sR⊕n,Fp
.

14In other words, F is an fpqc sheaf on the category of R-schemes which is a torsor over the sheaf of sections
of H∗.
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9.2.1. Suppose we have a quasi-ideal pair

(9.2) I
d−→ C

with Cone(I
d−→ C) = sRn such that C and I are ind-schemes over Spf Zp. (E.g., for-

mula (8.10) provides such a pair by Lemma 8.3.3; this pair depends on the choice of a
number m ≥ δp.) Using (9.2) as an input datum, we are going to construct a model for sR⊕n
in a rather tautological way.

Let C̃ be the fpqc sheaf of graded rings defined by the pullback diagram

(9.3) C̃ // //

��

sR⊕n

��
C[u, u−1]× C[t, t−1] // // sRn[u, u

−1]× sRn[t, t
−1]

in which the lower horizontal arrow comes from the epimorphism C ↠ sRn and the right
vertical arrow was constructed in §5.2. By Corollary 9.1.2, C̃ is an ind-scheme. The two
horizontal arrows of (9.3) have the same fibers over 0, namely I[u, u−1]× I[t, t−1]. Thus we
have constructed a quasi-ideal pair

(9.4) I[u, u−1]× I[t, t−1]
d−→ C̃

whose Cone equals sR⊕n . Moreover, C̃ is a Z-graded ring ind-scheme, and the map d from
(9.4) is compatible with the gradings (assuming that deg t = −1, deg u = 1).

By construction, we get a homomorphism of quasi-ideal pairs

(9.5) I[u, u−1]× I[t, t−1] //

id
��

C̃

��
I[u, u−1]× I[t, t−1] // C[u, u−1]× C[t, t−1]

such that the corresponding morphism of Cones is the right vertical arrow of (9.3).
From diagram (9.5) one gets the following two complexes of Z-graded commutative group

ind-schemes

(9.6) 0 → I[t, t−1] → C̃ → C[u, u−1] → 0,

(9.7) 0 → I[u, u−1] → C̃ → C[t, t−1] → 0.

Proposition 9.2.2. The complex (9.6) is exact in positive degrees, and (9.7) is exact in
non-positive degrees. Thus we have exact sequences

(9.8) 0 → I[t−1] → C̃>0 → uC[u] → 0,

(9.9) 0 → I[u−1] → C̃≤0 → C[t] → 0.

where C̃>0 (resp. C̃≤0) is the positively (resp. non-positively) graded part of C̃.
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Proof. Consider the diagram

(9.10) I[u, u−1]× I[t, t−1] //

��

C̃

��
I[u, u−1] // C[u, u−1]

coming from (9.5). The Cone of the upper row of (9.10) is sR⊕n , and the Cone of the lower
row is sRn[u, u

−1]. By Proposition 5.2.1, the map sR⊕n → sRn[u, u
−1] is an isomorphism in

positive degrees. So the complex corresponding to the bicomplex (9.10) is acyclic in positive
degrees. This means that (9.6) is acyclic in positive degrees. The statement about (9.7) is
proved similarly. □

9.2.3. A model for sR⊕n,Fp
. Of course, the statements from §9.2.1 and Proposition 9.2.2 re-

main valid if one works over SpecFp (instead of Spf Zp), i.e., if the input datum is a model
for sRn,Fp ; then the output is a model for sR⊕n,Fp

.
Suppose that the input datum is the quasi-ideal pair

Ŵ
(Fn)
Fp

→ Wn,Fp

from §8.3.7(ii). Define C̃ by the pullback diagram

(9.11) C̃ // //

��

sR⊕n,Fp

��
Wn,Fp [u, u

−1]×Wn,Fp [t, t
−1] // // sRn,Fp [u, u

−1]× sRn,Fp [t, t
−1]

similar to (9.3). Our next goal is to give an explicit description of C̃ (see §9.2.4 below).
Note that F, V act on cone(Ŵ

(Fn)
Fp

→ Wn,Fp) on the nose. So we get the model

cone((Ŵ
(Fn)
Fp

)⊕ → W⊕
n,Fp

)

for sR⊕n,Fp
. Moreover, we have a commutative diagram

(9.12)

(Ŵ
(Fn)
Fp

)⊕

��

// W⊕
n,Fp

// //

��

sR⊕n,Fp

��
Ŵ

(Fn)
Fp

[u±1]× Ŵ
(Fn)
Fp

[t±1] // Wn,Fp [u
±1]×Wn,Fp [t

±1] // // sRn,Fp [u
±1]× sRn,Fp [t

±1]

whose rows are fiber sequences. Using the right square of (9.12) and the pullback diagram
(9.11), we get a homomorphism W⊕

n,Fp
→ C̃. Thus we get a commutative diagram

(9.13) (Ŵ
(Fn)
Fp

)⊕ //

��

W⊕
n,Fp

// //

��

sR⊕n,Fp

id

��
Ŵ

(Fn)
Fp

[u, u−1]× Ŵ
(Fn)
Fp

[t, t−1] // C̃ // // sR⊕n,Fp
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whose rows are fiber sequences. From this diagram we get the following description of C̃.

9.2.4. Description of C̃. The left square of (9.13) is a pushout diagram. The middle vertical
arrow of (9.13) is injective (because the left vertical arrow is). The ring structure on C̃ is
such that the action of W⊕

n,Fp
on Ŵ

(Fn)
Fp

[u, u−1]× Ŵ
(Fn)
Fp

[t, t−1] via the homomorphism

W⊕
n,Fp

↪→ C̃

is equal to the action via the homomorphism W⊕
n,Fp

→ Wn,Fp [u, u
−1]×Wn,Fp [t, t

−1].

9.2.5. Remark. The lower row of (9.13) provides a model

cone(Ŵ
(Fn)
Fp

[u, u−1]× Ŵ
(Fn)
Fp

[t, t−1] → C̃)

for sR⊕n,Fp
; this model is rather non-economic, but it has the following advantage: in the case

p > 2 it lifts to a model for sR⊕n . This follows from §8.3.7(i) combined with §9.2.1.

Appendix A. A description of sW (R) for a class of p-nilpotent rings R

Recall that sW := W ×Q Qperf , where Q := W/Ŵ . If R ∈ p-Nilp is such that Rred is
perfect then Q(R) = W (R)/Ŵ (R) by §2.2.1, so sW (R) is rather explicit. We will give an
even more explicit description of sW (R) if R ∈ p-Nilp is weakly semiperfect in the sense
of §A.1 below (this condition is stronger than perfectness of Rred); see Corollary A.3.2 and
§A.3.3.

A.1. Weakly semiperfect Fp-algebras. Recall that an Fp-algebra A is said to be semiper-
fect if the Frobenius homomorphism FrA : A → A is surjective. We say that an Fp-algebra
is weakly semiperfect if it has the equivalent properties from the following lemma.

Lemma A.1.1. The following properties of an Fp-algebra A are equivalent:
(i) there exists n ∈ N such that ImFrnA = ImFrn+1

A ;
(ii) there exists n ∈ N such that A/(Ker FrnA) is semiperfect;
(iii) there exists an ideal I ⊂ A such that A/I is semiperfect and I ⊂ KerFrnA for some n.

Proof. Both (i) and (ii) are equivalent to the following property:

∃n∀a ∃a′ such that FrnA(a− FrA(a
′)) = 0.

It is clear that (ii)⇔(iii). □

A.2. Some lemmas.

Lemma A.2.1. Let R ∈ p-Nilp. Let I ⊂ R be an ideal whose image in R/pR is killed by a
power of Frobenius. Then W (I) is killed by a power of F .

Proof. The lemma clearly holds if R is an Fp-algebra. So it remains to prove the lemma if
I ⊂ pR and pI = 0. In this case W (I) is killed by F (e.g., because I is an Fp-algebra with
zero Frobenius endomorphism). □
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Corollary A.2.2. Let R and I be as in Lemma A.2.1. Then the pro-objects corresponding
to the projective systems

. . .
F−→ W (R)

F−→ W (R),

. . .
F−→ Ŵ (R)

F−→ Ŵ (R)

do not change (up to canonical isomorphism) if R is replaced by R/I. □

Applying Corollary A.2.2 for I = pR, one gets the following statement.

Corollary A.2.3. For any R ∈ p-Nilp, one has canonical isomorphisms

Ŵ perf(R)
∼−→ Ŵ perf(R/pR), W perf(R)

∼−→ W perf(R/pR) = W (R♭),

where R♭ := (R/pR)perf . □

A.3. The case where R/pR is weakly semiperfect. By §2.2.1, for any R ∈ p-Nilp such
that Rred is perfect, one has an exact sequence

(A.1) 0 → Ŵ (R) → W (R) → Q(R) → 0.

Lemma A.3.1. If R/pR is weakly semiperfect then (A.1) induces an exact sequence

(A.2) 0 → Ŵ perf(R) → W perf(R) → Qperf(R) → 0.

Proof. The problem is to check surjectivity of the map W perf(R) → Qperf(R). It suffices to
show that the projective system

. . .
F−→ Ŵ (R)

F−→ Ŵ (R)

satisfies the Mittag-Leffler condition. Weak semiperfectness of A := R/pR means that
ImFrnA = ImFrn+1

A for some n, so the projective system

. . .
F−→ Ŵ (A)

F−→ Ŵ (A)

satisfies the Mittag-Leffler condition. It remains to use Corollary A.2.2. □

Corollary A.3.2. If R/pR is weakly semiperfect then the map

(W ×Q W perf)(R) → (W ×Q Qperf)(R) = sW (R)

is surjective. So the sequence

(A.3) 0 → Ŵ perf(R) → (W ×Q W perf)(R) → sW (R) → 0.

induced by (3.8) is exact. □

A.3.3. Remarks. (i) As explained at the end of §3.1.4, W ×Q W perf canonically identifies
with the semidirect product W perf ⋉ Ŵ . By Corollary A.2.3, W perf(R) ≃ W (R♭). So the
description of sW (R) by the exact sequence (A.3) is quite explicit.

(ii) Recall that the map W ×Q W perf → sW commutes with F and Ṽ if the operators F

and Ṽ on W ×Q W perf are defined as in §3.3.2. So the description of F, Ṽ : sW → sW in
terms of (A.3) is also quite explicit.

A.3.4. In §A.4-A.5 we apply Corollary A.3.2 to two classes of p-nilpotent rings.

A.4. sW (R) if R is admissible in the sense of [L14].
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A.4.1. Admissible rings. Let R ∈ p-Nilp be admissible in the sense of [L14]; by definition,
this means that Rred is perfect and the nilpotent radical of R/pR is killed by a power of
Frobenius. Let I be the nilradical of R. Applying Corollary A.2.2 to I, we get an isomorphism
W perf(R)

∼−→ W perf(Rred) = W ((Rred)
perf) = W (Rred). Let s : W (Rred) → W (R) be the

composition W (Rred)
∼−→ W perf(R) → W (R); then s is a splitting15 for the epimorphism

W (R) ↠ W (Rred). So one has W (R) = s(W (Rred))⊕W (I).
We have Ŵ (R) = Ŵ (I) ⊂ W (I). Following [L14], set W(R) := s(W (Rred))⊕W (I); this

is a subring of W (R).

Proposition A.4.2. If R ∈ p-Nilp is admissible then the canonical map sW (R) → W (R)
is injective, and its image equals W(R).

Proof. Admissibility implies that R/pR is weakly semiperfect, so we can apply Corollary A.3.2.
Since W perf(R) = W (Rred), we have (W ×Q W perf)(R) = W(R). By Corollary A.2.2,
Ŵ perf(R) = Ŵ perf(Rred) = 0. □

A.5. sW (R) if R is a semiperfect Fp-algebra.

A.5.1. Notation. Let R be a semiperfect Fp-algebra. Then W (R) = W (Rperf)/W (J), where
J := Ker(Rperf ↠ R). The ideal W (J) ⊂ W (Rperf) is the projective limit of the diagram

. . .
F−→ W (F 2)(R)

F−→ W (F )(R).

Define Ŵtop(J) ⊂ W (J) to be the projective limit of the diagram

(A.4) . . .
F−→ Ŵ (F 2)(R)

F−→ Ŵ (F )(R).

Then Ŵtop(J) is an ideal in W (Rperf).
One can also describe Ŵtop(J) as the set of those Witt vectors over J whose components

converge to 0 with respect to the natural topology of Rperf (i.e., the projective limit topology).

A.5.2. The formula for sW (R). The exact sequence (A.3) implies that

(A.5) sW (R) = W (Rperf)/Ŵtop(J).

One can also deduce (A.5) directly from the formulas
sW := W ×Q Qperf and Q(R) = W (R)/Ŵ (R).

In [BMVZ] one can find more material about sW (R), where R is a semiperfect Fp-algebra;
e.g., there is a very explicit description if R = Fp[x

1
p∞ ]/(x).

A.5.3. Derived p-completeness of sW (R). By Lemma 3.5.1 and Remark 3.5.2, sW (R) is
derived p-complete for all R ∈ p-Nilp. If R is a semiperfect Fp-algebra then derived p-
completeness of sW (R) can also be proved as follows. W (Rperf) is clearly p-complete (in the
sense of §2.1.5). Each term of (A.4) is killed by a power of p and therefore p-complete. So
Ŵtop(J) is p-complete. Since W (Rperf) and Ŵtop(J) are p-complete, the r.h.s. of (A.5) is
derived p-complete.

15In fact, s is the unique splitting, see [L14, §1B].
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A.5.4. Remark (E. Lau). If R is semiperfect but not perfect then sW (R) is not p-complete.
Indeed, (A.5) implies that sW (R)/(pn) = Wn(R), so the projective limit of the rings
sW (R)/(pn) equals W (R) = W (R)perf/W (J). But Ŵtop(J) ̸= W (J) unless J = 0, i.e.,
unless R is perfect.

Appendix B. The notion of derived p-completeness

In §B.1 we recall the notion of derived p-completeness for Z-modules. In §B.2 we recall
the notion of derived p-completeness for sheaves of Z-modules.

B.1. Derived p-completeness for Z-modules.

B.1.1. Given a ring R and an ideal I ⊂ R, there is a notion of derived completeness (with
respect to I) for R-modules, see [Sta, Tag 091S]. If R = Z and I = pZ one gets the notion
of derived p-complete Z-module. The class of derived p-complete Z-modules is larger and
“better” than the class of p-complete ones in the sense of §2.1.5. E.g., if f : A → A′ is a
homomorphism of Z-modules and A,A′ are derived p-complete then so are Ker f and Coker f
(see [Sta, Tag 091U]); on the other hand, if A,A′ are p-complete then Coker f is p-complete
if and only if f(A) is closed for the p-adic topology of A′. For more details, see [Sta] (starting
with [Sta, Tag 091N]) and references therein.

Recall that derived p-completeness of a Z-module A is equivalent to each of the following
conditions:

(i) the map A → lim
←−
n

(A
L
⊗ (Z/pnZ)) is an isomorphism;

(ii) the derived projective limit of the diagram

. . .
p−→ A

p−→ A.

is zero.
The above derived projective limit equals RHom(Z[p−1], A). So (ii) can be rewritten as

(B.1) RHom(Z[p−1], A) = 0.

Once we choose an exact sequence

0 → Z(N) f−→ Z(N) → Z[p−1] → 0,

where Z(N) := Z⊕ Z⊕ . . ., we can rewrite condition (B.1) as follows:

(iii) the map AN f∗
−→ AN induced by f is an isomorphism (here AN := A× A× . . .).

B.1.2. Remarks. (i) A Z-module killed by a power of p is derived p-complete: indeed, derived
p-completeness is equivalent to (B.1).

(ii) A projective limit of derived p-complete Z-modules is derived p-complete: this is clear
from §B.1.1(iii).

(iii) A is p-complete in the sense of §2.1.5 if and only if the map from A to the projective
limit of A/pnA is an isomorphism. So p-completeness implies derived p-completeness by the
above Remarks (i)-(ii).

B.2. Derived p-completeness for sheaves of Z-modules. Now let A be a sheaf of Z-
modules on a site C.
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B.2.1. According to [Sta, Tag 0995], A is said to be derived p-complete if it satisfies the
condition from §B.1.1(i), which is equivalent to the one from §B.1.1(ii). The latter can be
rewritten as

(B.2) RHom(Z[p−1], A) = 0,

where Z[p−1] is the constant sheaf with fiber Z[p−1] and Hom denotes the sheaf of homomor-
phisms.

It is clear that if two terms of an exact sequence of sheaves of Z-modules are derived
p-complete then so is the third one.

Lemma B.2.2. Assume that the site C satisfies the following condition: a countable product
of exact sequences of sheaves of Z-modules on C is exact. Then

(a) derived p-completeness of A is equivalent to the condition from §B.1.1(iii);
(b) A is derived p-complete if and only if the Z-module A(c) = H0(c, A) is derived p-

complete for each c ∈ C.

Proof. By assumption, Exti(Z(N), A) = 0 for i > 0. So (B.2) is equivalent to the condition
from §B.1.1(iii). This proves statement (a). It implies (b) because a Cartesian product of
sheaves is just their product in the sense of presheaves. □

B.2.3. Remark. By [BS, Prop. 3.1.9]), the condition from Lemma B.2.2 holds if C is replete
in the sense of [BS, Def. 3.1.1].

Lemma B.2.4. Let A be a sheaf of Z-modules. Let Sn denote Cone(A
pn−→ A) viewed as a

Picard stack. If A is derived p-complete then the map A → lim
←−
n

Sn is an isomorphism.

Proof. Sn is the stack of extensions of p−nZ/Z by A. So lim
←−
n

Sn is the stack of extensions of

Z[p−1]/Z by A. It remains to use (B.2). □
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