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Abstract

Multiple polylogarithms are periods of variations of mixed Tate motives. Conjecturally,
they deliver all such periods.
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We introduce deformations of multiple polylogarithms depending on a parameter ~ ∈ C.
We call them quantum polylogarithms. Their asymptotic expansion as ~ → 0 recovers mul-
tiple polylogarithms. The quantum dilogarithm was studied by Barnes in the XIX century.
Its exponent appears in many areas of Mathematics and Physics.

Quantum polylogarithms satisfy a holonomic systems of modular difference equations
with coefficients in variations of mixed Hodge-Tate structures of motivic origin.

If ~ ∈ Q, the quantum polylogarithms can be expressed via multiple polylogarithms.
However if ~ 6= Q, quantum polylogarithms are not periods of variations of mixed motives,

i.e. they can not be expressed by integrals of rational differential forms on algebraic varieties.
Instead, quantum polylogarithms are integrals of differential forms built from both rational
functions and exponentials of rational functions. We call them rational exponential integrals.

We suggest that quantum polylogarithms reflect a very general phenomenon:

Periods of variations of mixed motives should have quantum deformations.

1 Introduction

1.1 The dilogarithm and the quantum dilogarithm

The dilogarithm function is defined by the following power series:

Li2(z) :=
∑
k>0

zk

k2
.

It can be continued analytically to a function on a cover of CP1 − {0, 1,∞} via the integral

Li2(z) := −
∫ z

0
log(1− t)dt

t
.

One of the key features of the dilogarithm is that it satisfies Abel’s five term relation.

The dilogarithm power series admit a q−deformation:

Li1,1(z; q) :=

∞∑
k=1

zk

(qk − q−k)k
.

Its exponent is the inverse of the Pochhammer symbol. Precisely, set

Ψq(z) :=
1

(1 + qz)(1 + q3z)(1 + q5z) · . . .
.

Then one has
log Ψq(z) = −Li1,1(−z; q). (1)

Setting q = eπi~, and letting ~→ 0, we get the asymptotic expansion

log Ψq(z) ∼~→0 −
Li2(−z)

2πi~
. (2)

It satisfies the quantum pentagon relation, discovered by Faddeev and Kashaev [FK]. Namely,
consider variables X,Y satisfying the relation XY = q2Y X. Then we have the identity of
q−commutative power series in X,Y :

Ψq(X)Ψq(Y ) = Ψq(Y )Ψq(X + Y )Ψq(X),
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Its quasiclassical limit recovers Abel’s five term relation for the dilogarithm.

The power series Ψq(z) converge only if |q| < 1. Remarkably, the quotient

Φ~(ω) =
Ψq(e

ω)

Ψq∗(eω/~)
, q = eiπ~, q∗ = e−iπ/~, Im~ > 0 (3)

has excellent analytic properties. In particular, it is a meromorphic function in ω, depending on
a complex parameter ~. To see this, recall the integral introduced and studied by Barnes [Ba]:

F~(ω) :=

∫
R+i0

e−ipω

sh(πp)sh(π~p)
dp

p
, sh(p) = ep − e−p. (4)

The integration contour R+ i0 is the limit of the contour R+ iε, ε > 0 when ε→ 0. The integral
is well defined for any complex values of ~, convergent for Im(ω) < π(1 + |Re(~)|), and satisfies
difference relations under the shift of ω by 2πi and 2πi~

F~(ω + 2πi) = F~(ω)− log(1 + eiπ~eω)

F~(ω + 2πi~) = F~(ω)− log(1 + eiπ/~eω/~)
(5)

which allow to extend it to a multivalued analytic function in ω ∈ C. Finally, one has

Φ~(ω) = exp(−F~(ω)). (6)

We call the function F~(ω) the quantum dilogarithm, although this name is often used for
its exponent. The quantum dilogarithm and its relatives appear in Statistical Physics [Bax],
Liouville theory[DO], [ZZ], quantum groups [F], quantum higher Teichmuller theory [K], [CF],
[FKV], [FG1] - [FG2], [GS], quantization of cluster varieties [FG3], and many other areas [V].
The quantum dilogarithm satisfies the quantum pentagon relation, which plays an important
role in its applications. Namely, the function Φ~(ω) is well defined and unitary on the real line.
Consider the unitary operator K in L2(R) given by the multiplication by Φ~(w), followed by
the Fourier transform:

K : f(w) −→
∫
R
f(w)Φ~(w)e−

iωξ
2π~dt.

Then K5 = c · Id, where c is a constant, |c| = 1. Its quasiclassical limit delivers the five term
relation for the dilogarithm. The remarkable analytical properties of the function F~(ω) together
with the quantum deformation of the five term relation convince that it is the natural quantum
deformation of the dilogarithm. Let us now look at generalizations of the dilogarithm function.

1.2 Multiple polylogarithms

Recall the classical polylogarithm series:

Lin(z) :=
∑
k>0

zk

kn
.

They make sense for any integer n. For n ≤ 0 they are rational functions in z. For n > 0 they
are convergent for |z| < 1, and admit an analytic continuation to a cover of CP1 − {0, 1,∞}.
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Multiple polylogarithms are defined by the power series expansion [G94]:

Lin1,...,nm(z1, . . . , zm) :=
∑

0<k1<k2<...<km

zk11 zk22 . . . zkmm
kn1

1 kn2
2 . . . knmm

, (7)

which are convergent if |zi| < 1. Here m is the depth, and |n| := n1 + . . .+ nm is the weight.

Multiple polylogarithms admit an iterated integral presentation, which allows to continue
them analytically. Namely, given meromorphic 1−forms ωi(t) on C, and a path γ : [0, 1] −→ C
not intersecting their poles, recall the iterated integrals on the line:∫

γ
ω1(t) ◦ . . . ◦ ωm(t) :=

∫
0≤t1≤...≤tm≤1

γ∗ω1(t1) ∧ . . . ∧ γ∗ωm(tm).

To present multiple polylogarithms by iterated integrals on the line, set

In1,...,nm(0; z1, . . . , zm; zm+1) :=

∫ zm+1

0

dt

z1 − t
◦ dt
t
◦ . . . dt

t︸ ︷︷ ︸
n1 differentials

◦ . . . ◦ dt

zm − t
◦ dt
t
◦ . . . ◦ dt

t︸ ︷︷ ︸
nm differentials

.
(8)

Here the iterated integral is over a path from 0 to zm+1. It is a multivalued analytic function on
the space of collections of distinct points (0, z1, ..., zm+1) in C. Then by [G01, Theorem 2.2]:1

In1,...,nm(0; z1, . . . , zm; zm+1) = Lin1,...,nm

(z2

z1
,
z3

z2
, . . . ,

zm+1

zm

)
. (10)

In Section 2 we establish a new integral presentation for multiple polylogarithms:

Lin1,...,nm(eω1−ω2 , eω2−ω3 , . . . ,−eωm) =

i|n|−m
∫

(R+i0)m

e−ip1ω1

sh(πp1)

dp1

pn1
1

∧ . . . ∧ e
−ipmωm

sh(πpm)

dpm
(p1 + . . .+ pm)nm

.
(11)

So we have three different presentations of multiple polylogarithms: as power series (8), via
iterated integrals (10), and using integral presentation (11). We note that the two integrals (8)
and (11) are related via power series (7) rather than directly.

Iterated integral presentation (10) shows that multiple polylogarithms are periods of mixed
Tate motives. Conjecturally, they provide all such periods [G94, Conjecture 17].

We introduce a deformation of multiple polylogarithms, called quantum polylogarithms, de-
pending on a parameter ~ ∈ C. Their asymptotic expansion at ~→ 0 recovers multiple polylog-
arithms.

Quantum polylogarithms provide quantum deformation of all periods of mixed Tate motives.
I suggest that periods of any variations of mixed motives admit quantum deformation.

1The positive locus M+
0,n+3 of the moduli space M0,n+3 the set of ordered configurations of points on RP1

modulo the diagonal PGL2(R)-action, whose order is compatible with one of the circle orientations. We have

(∞, z1, ..., zm, 1, 0) ∈M+
0,n+3 if and only if z1 > . . . > zm > 1. (9)

Reversing the order preserves the positive locus. Iterated integral (8) has a natural branch on the positive locus,
provided by the path γ = [0, 1]. The positivity just means that arguments of multiple polylogarithm series (10)
are positive numbers smaller than 1, so the series are convergent.
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1.3 Quantum polylogarithms.

Let us introduce first the kernel function.

Definition 1.1. Let a, b be a pair of non-negative integers. The kernel function is defined by

K~
a,b(p;ω) :=

e−ipω

sha(πp)shb(π~p)
. (12)

The depth m quantum polylogarithms are functions F~
a,b,n(ω1, . . . , ωm) in m complex vari-

ables ωi which depend on a triple of m-tuples of integers

a = (a1, ..., am), b = (b1, ..., bm), n = (n1, ..., nm), ai, bi ∈ Z≥0, ni ∈ Z.

Definition 1.2. The depth m quantum polylogarithms are the integrals

F~
a,b,n(ω1, ..., ωm) :=i|n|−m

∫
(R+i0)m

m∧
k=1

K~
ak,bk

(pk;ωk)
dpk

(p1 + . . .+ pk)nk
. (13)

We define the weight of π and ωj to be 1, and the weight of the quantum polylogarithm to be

|n| := n1 + ...+ nm. (14)

The integral converges if |Im ωi| < π(ai + bi|Re(~)|). It extends to a multivalued analytic
function in (ω1, ..., ωm) ∈ Cm using the difference relations (35) for quantum polylogarithms.

As an analytic function of ~, the F~
a,b,n(ω1, ..., ωm) extends to the complex plane with the

negative real axis ~ < 0 removed. The integral converges for any ni ∈ R if one of the integers
ai, bi is positive. Here are two examples.

1. The depth one quantum polylogarithms are the following integrals

F~
a,b,n(ω) := in−1 ·

∫
R+i0

e−ipω

sha(πp)shb(π~p)
· dp
pn
, a, b ≥ 0.

2. The depth two quantum polylogarithms are given by

F~
a,b,n(ω1, ω2) :=

i|n|−2 ·
∫

(R+i0)2

e−ip1ω1

sha1(πp1)shb1(π~p1)

e−ip2ω2

sha2(πp2)shb2(π~p2)
· dp1

pn1
1

∧ dp2

(p1 + p2)n2
.

(15)

Theorem 1.3. Quantum polylogarithms at the rational ~ ∈ Q are periods of variations of mixed
Tate motives of the same weight.

See the precise statement in Theorem 1.7. In sharp contrast with this, quantum polyloga-
rithms for irrational ~ 6∈ Q are not periods of variations of mixed motives.

By Theorem 3.7, quantum polylogarithms satisfy shuffle product formulas, providing an
algebra structure.
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Specialising ω1 = ... = ωm = 0 and a = b = (1, ..., 1), we get an ~−deformation of the depth
m multiple ζ-function. For example, for the depth 2 we have

ζ~(s1, s2) :=

∫
(R+i0)2

dp1

sh(πp1)sh(π~p1)ps−1
1

dp2

sh(πp2)sh(π~p2)(p1 + p2)s2−1
. (16)

The analytic continuation of these functions is obtained the same way as in [G01, Theorem 2.25].
When si = ni are positive integers, we get an ~−deformation of Euler’s multiple ζ-values.

Interesting q−deformations of the multiple ζ−values were considered by Okounkov [O].

1.4 q−deformations of multiple polylogarithms

Convention. We denote by latin letters zi coordinates of the points on the projective line, and
by the greek letters ωi the relevant logarithmic coordinates: zi = eωi .

Multiple polylogarithm power series (7) have a q−deformation:

Definition 1.4. Let a,n ∈ Zm≥0. Multiple q−polylogarithms are power series in z1, ..., zm:

Lia,n(z1, ..., zm; q) :=
∞∑

k1,...,km>0

zk11 zk22 . . . zkmm
[k1]a1q [k2]a2q . . . [km]amq · kn1

1 (k1 + k2)n2 . . . (k1 + ...+ km)nm
, [n]q := qn − q−n. (17)

The weight of the multiple q−polylogarithm series (17) is defined to be n, just as in (14).
Example. The weights of the q−dilogarithm Li1,1(z; q) and the quantum dilogarithm F~(ω)

are 1. Since the weight of 2π~ is 1, the weight of the function in (2) is 1, consistently with (1).

Note that unlike in series (7), the summation in (17) is over the octant k1, ..., km > 0.
Therefore there are no shuffle product formulas for the series La,n(z1, ..., zm; q).

Power series (17) are not defined when q is a root of unity. In Section 4.2 we complement
them by companion series. Their appropriate sums coincide with the quantum polylogarithm
integrals, generalising the logarithm of relation (3), thus converging for any ~.

1.5 Connections between quantum and multiple polylogarithms

The weight is compatible with major operations with quantum polylogarithms:

• The partial derivatives decrease the weight by 1, see (51).

• The difference relations preserve the weight, see (35).

Passing from quantum polylogarithms to their exponents destroys the weights. In particular,
this is why we call the function F~(ω), rather than its exponent Φ~(ω), the quantum dilogarithm.

Quantum polylogarithms are related to multiple polylogarithms in several ways:

1. Via the asymptotic expansion as ~→ 0. The weight |n| quantum polylogarithms have an
asymptotic expansion as ~→ 0 of the following shape, see Theorem 3.1:∑

k

(2πi~)−k × sums of multiple polylogarithms of the weight |n|+ k.

All terms of the asymptotic expansion have the same weight |n|.
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2. Via the ~ = 1 specialization. We prove in Theorem 3.3:

Theorem 1.5. The F1
a,b,n(ω1, ..., ωm) is the product of the function Pa,b

(
ω1
2π ....,

ωm
2π

)
,

where Pa,b is a polynomial with coefficients in Q, and the multiple polylogarithm Lin1,...,nm:

F1
a,b,n(ω1, ..., ωm) = Pa,b

(ω1

2π
....,

ωm
2π

)
·Lin1,...,nm

(
(−1)a1+b1eω1 , ..., (−1)am+bmeωm

)
. (18)

Since the weight of ω
2π is zero, both parts of the equality have the same weight |n|.

The right hand side of (18) is a period of a variation of mixed Tate motives on (C×)m:

(18) = Pa,b

( log z1

2π
....,

log zm
2π

)
· Lin1,...,nm

(
(−1)a1+b1z1, ..., (−1)am+bmzm

)
.

3. Via distribution relations. Given a pair of coprime integers r, s, Theorem 3.2 relates quan-
tum polylogarithms at r

s~ to a sum of similar quantum polylogarithms at r~. Precisely:

Theorem 1.6. One has distribution relations:

r|n|−mF
r
s
~

a,b,n(rω1, ..., rωm) =

r−1
2∑

αj=
1−r
2

s−1
2∑

βj=
1−s
2

F~
a,b,n(. . . , ωk +

2πi

r

ak∑
i=1

αj +
2πi~
s

bk∑
j=1

βj , . . .).
(19)

Here the sum is over half-integers αj , βj if the summation limits are half-integers.

Combining Theorems 1.5 and 1.6, we express quantum polylogarithms at the rational
~ ∈ Q via sums of the multiple polylogarithms of the same weight:

Theorem 1.7. Quantum polylogarithm functions at ~ ∈ Q are periods of variations of
mixed Tate motives, provided by multiple polylogarithms. Precisely, set

ω′k = ωk +
2πi

r

ak∑
i=1

αj +
2πi~
s

bk∑
j=1

βj .

Then, using the notation of Theorem 1.5, we have

r|n|−mF
r
s
a,b,n(rω1, ..., rωm)

=

r−1
2∑

αj=
1−r
2

s−1
2∑

βj=
1−s
2

Pa,b

(ω′1
2π
....,

ω′m
2π

)
Lin1,...,nm(eω

′
1 , ..., eω

′
m).

(20)

4. Via companion q−polylogarithm series. Recall that we have

F~(ω)
(3)
= log Ψq(e

ω)− log Ψq∗(e
ω/~)

(1)
= − Li1,1(−eω; q) + Li1,1(−eω/~; q∗).

(21)

The depth m quantum polylogarithms are sums of 2m companion q−polylogarithm series
of the same weight, generalizing formula (21).
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So the weight of quantum polylogarithms is compatible, in several different ways, with the
weight of multiple polylogarithms. This is quite remarkable since the weight of multiple poly-
logarithms have a deep algebraic geometric origin, while quantum polylogarithms live outside
of the traditional Algebraic Geometry.

Acknowledgement. This work was supported by the NSF grant DMS-2153059. I am
grateful to IHES for hospitality and support in various stages of the preparation of the paper.

2 A new integral presentation for multiple polylogarithms

Theorem 2.1. Assume that |Im wi| < π and Re wi < 0. Then one has

Lin1,...,nm(ew1 , . . . , ewm−1 ,−ewm) =

i|n|−m
∫

(R+i0)m

e−ip1w1

sh(πp1)

dp1

pn1
1

∧ . . . ∧ e
−i(p1+...+pm)wm

sh(πpm)

dpm
(p1 + . . .+ pm)nm

.
(22)

Proof. Consider the integral over (ΩN + iε)m, where N > 0 is an integer, ΩN is the square in
the upper half plane with the base [−N,N ], and (ΩN + iε) its shift by a small ε > 0.

We claim that this integral is convergent, and the integrals over any but the bottom side
decay exponentially as N →∞. Indeed, we have

|e−ipw| = eIm(p)Re(w)+Re(p)Im(w),

|e−ipw/sh(πp)| ∼p→±∞ eIm(p)Re(w)+Re(p)(Im(w)∓π).
(23)

So e−ipw/sh(πp) decays exponentially on the left and right sides as N →∞ since Re w < 0. The
integral over the top side of (ΩN + iε)m decays exponentially since |Im w| < π, and therefore

Re(p)(Im(w)∓ π) −→ −∞ if p −→ ±∞.

Indeed, we have either Re(p)→∞ & Im(w)−π < 0, or Re(p)→ −∞ & Im(w)+π > 0. Finally,
on our contour |p| > ε, so the integral over the bottom side converges.

Therefore we can calculate the integral using the residue theorem. The residues are at the
points (p1, ..., pm) = (ik1, ..., ikm), where k1, ..., km > 0 are integers.2 For example, in the depth
2 case the contribution of the residue at the point (p1, p2) = (ik1, ik2) is equal to3

(2πi)2 · i−2

(2π)2

(−1)k1+k2ek1w1ew2(k1+k2)

kn1
1 (k1 + k2)n2

=
ek1w1(−ew2)k1+k2

kn1
1 (k1 + k2)n2

. (24)

The (−1)k1+k2 amounts to the fact that sh(πpj) is multiplied by (−1)k after the shift by iπk.
Then the sum

∑
k1>0,k2>0 delivers Lin1,n2(ew1 ,−ew2). The series are convergent since Re(wi) < 0.

2See also the proof of Theorem 3.3 where we explain how the calculation of residues in the more general set
up at p1 = ik1, ..., pm = ikm where k1, ..., km > 0 reduces to the calculation of the residues at p1 = ... = pm = 0.

3The factor i|n| in (22) cancells with the factor i|n| from the denominator. This is how the factor i|n| in (22),
as well as in Definition 1.2 of quantum polylogarithms, helps. Next, the factor (2πi)m from the Cauchy theorem
cancell the factor i−m in (22) and Definition 1.2.
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The argument in the depth m case is the similar: the residue at (ik1, ..., ikm) is

(2πi)m · i−m

(2π)m
(−1)k1+...+kmek1w1 . . . e(k1+...+km)wm

kn1
1 . . . (k1 + ...+ km)nm

=
ek1w1e(k1+k2)w2 . . . (−ewm)k1+...+km

kn1
1 (k1 + k2)n2 . . . (k1 + ...+ km)nm

.

(25)

Theorem is proved.

Let γ = [0, 1]. Denote by I
(γ)
n1,...,nm(z1, . . . , zm) the iterated integral defined using this path.

Corollary 2.2. Assume that |Im ωi| < π and

Re ω1 < Re ω2 < . . . < Re ωm < 0. (26)

Then one has

I(γ)
n1,...,nm(0; e−ω1 , . . . , e−ωm ;−1)

(10)
=

Lin1,...,nm(eω1−ω2 , eω2−ω3 , . . . ,−eωm) =

i|n|−m
∫

(R+i0)m

e−ip1ω1

sh(πp1)

dp1

pn1
1

∧ . . . ∧ e
−ipmωm

sh(πpm)

dpm
(p1 + . . .+ pm)nm

.

(27)

Proof. The first equality is the basic equality (10). The second gives the new integral presenta-
tion (11) for multiple polylogarithms, and follows immediately from (22). Indeed, the integrands
in (22) and (27) differ only by the exponentials, which match thanks to the identity

e−ip1ω1e−ip2ω2 . . . e−ipmωm = e−ip1(ω1−ω2)e−i(p1+p2)(ω2−ω3) . . . e−i(p1+...+pm)ωm . (28)

Note that the latter is equivalent to the identity

p1ω1 + p2ω2 + . . .+ pmωm = p1(ω1 − ω2) + (p1 + p2)(ω2 − ω3) + ...+ (p1 + ...+ pm)ωm. (29)

Note that the condition on the ωi in Corollary 2.2 is equivalent to the one in Theorem 2.1.

So we get new integral presentations for both multiple polylogarithms and iterated integrals.
For example, for the depth m = 2 they look as follows:

Lin1,n2(ew1 ,−ew2) = i|n|−2

∫
(R+i0)2

e−ip1w1

sh(πp1)

e−i(p1+p2)w2

sh(πp2)

dp1

pn1
1

∧ dp2

(p1 + p2)n2
.

In1,n2(0; e−ω1 , e−ω2 ;−1) = i|n|−2

∫
(R+i0)2

e−ip1ω1

sh(πp1)

e−ip2ω2

sh(πp2)

dp1

pn1
1

∧ dp2

(p1 + p2)n2
.

(30)

Remark. Condition (26) for real ωi just means that e−ω1 > . . . > e−ωm > 1. So the arguments
of the iterated integral in (27) form a positive configuration of m+ 3 points.
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3 Properties of quantum polylogarithms

3.0.1 Difference relations

Recall the kernel function

K~
a,b(p;ω) :=

e−ipω

sha(πp)shb(π~p)
. (31)

Let ∆
(ω)
a be difference operators in the variable ω:

∆(ω)
a f(ω) := f(ω + a)− f(ω − a), (32)

The kernel function satisfies two difference equations in ω:

∆
(ω)
iπ K

~
a,b(p;ω) = K~

a−1,b(p;ω),

∆
(ω)
iπ~K

~
a,b(p;ω) = K~

a,b−1(p;ω).
(33)

Indeed, one has

∆
(ω)
iπ~e

−ipω = sh(π~p) · e−ipω,

∆
(ω)
iπ e

−ipω = sh(πp) · e−ipω.
(34)

Set 1k := (0, ..., 0, 1, 0, ..., 0), where 1 is on the k-th place. Then difference relations (33) for the
kernel function imply difference relations for quantum polylogarithms:4

∆
(ωk)
iπ F

~
a,b,n(ω1, ..., ωm) = F~

a−1k,b,n(ω1, ..., ωm),

∆
(ωk)
iπ~ F

~
a,b,n(ω1, ..., ωm) = F~

a,b−1k,n(ω1, ..., ωm).
(35)

3.0.2 The asymptotic expansion when ~→ 0

Theorem 3.1. When ~ → 0, the function F~
a,b,n(ω1, ..., ωm) has an asymptotic Laurent series

expansion in 2π~, whose coefficients are sums of quantum polylogarithms:

F~
a,b,n(ω1, ..., ωm) ∼~→0 (2π~)−|b|F~

a,0,b+n(ω1, ..., ωm) + . . . (36)

All terms of the asymptotic expansion have the same weight.

Proof. The leading term of the ~→ 0 asymptotic expansion of the kernel function (31) is

e−ipω

sha(πp)shb(π~p)
∼~→0

1

(2π~)b
· e−ipω

sha(πp)

1

pb
. (37)

This implies the claim about the leading term of the asymptotic expansion. For example, in the
depth two case the leading term of the expansion is

i|n|−2

(2π~)|b|

∫
(R+i0)2

e−ip1ω1

sha1(πp1)

e−ip2ω2

sha2(πp2)

dp1

pb1+n1
1

dp2

pb22 (p1 + p2)n2
.

4We assume that a− 1k and b− 1k are still non-negative integers, to avoid convergence issues.
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To get all terms of the asymptotic expansion, we write the Laurent series expanding sh(π~pk)
in π~pk. Since the weight of π~pk is zero, the weight conservation is clear.

To get the rest of the terms of the asymptotic expansion, we use identity

1

p2(p1 + p2)
=

1

p1

( 1

p2
− 1

p1 + p2

)
. (38)

and proceed by the induction on b2 + n2, till either b2 = 0 or n2 = 0. If b2 = 0, we get the
double polylogarithm. If n2 = 0, we get a product of two depth one polylogarithms.

The case m > 2 is similar.

3.0.3 Distribution relations

Theorem 3.2. One has distribution relations:

r|n|−mF
r
s
~

a,b,n(rω1, ..., rωm) =

r−1
2∑

αj=
1−r
2

s−1
2∑

βj=
1−s
2

F~
a,b,n(. . . , ωk +

2πi

r

ak∑
i=1

αj +
2πi~
s

bk∑
j=1

βj , . . .).
(39)

Equivalently, the functions F~
a,b,n(ζ1, ..., ζm) in the bottom line have the arguments

ζk := ωk +
2πi

r

ak∑
i=1

αj +
2πi~
s

bk∑
j=1

βj , k = 1, ...,m.

Here the sum is over half-integers αj , βj if the summation limits are half-integers.

Proof. Write the identity sh(rx) = sh(x)(e(r−1)x + e(r−3)x + . . .+ e(1−r)x) as

1

sh(x)
=
e(r−1)x + e(r−3)x + . . .+ e(1−r)x

sh(rx)
. (40)

Set q = pr in the kernel function:

K
r/s
a,b (p; rω) :=

e−iprω

sha(πp)shb(π~p)
=

e−iqω

sha(πq/r)shb(πq/s)
.

Then using (40) we write this as

e−iqω
(
e
r−1
r
πq + e

r−3
r
πq + . . .+ e

1−r
r
πq
)a(

e
s−1
s
πq + e

s−3
s
πq + . . .+ e

1−s
s
πq
)b

sha(πq)shb(πq)
(41)

The claim follows immediately from this by expanding the products.
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3.0.4 The value at ~ = 1

Recall the basic quantum polylogarithm functions F~
n1,...,nm(ω1, ..., ωm), see (58).

Theorem 3.3. The function F1
a,b,n(ω1, ..., ωm) is the product of a polynomial Pa,b

(
ω1
2π ....,

ωm
2π

)
with rational coefficients, and a multiple polylogarithm of the same depth & weight:

F1
a,b,n(ω1, ..., ωm) = Pa,b

(ω1

2π
....,

ωm
2π

)
· Lin1,...,nm

(
(−1)a1+b1eω1 , ..., (−1)am+bmeωm

)
(42)

Proof. One has

F1
a,b,n(ω1, ..., ωm) = i|n|−m

∫
(R+i0)m

m∏
j=1

e−ipjωj

shaj+bj (πpj)

dpj
(p1 + . . .+ pj)nj

. (43)

Let us assume that Re(ωj) < 0. Then if Im(pj) → +∞, the exponential e−ipjωj decays fast.
Next, when |Re(ωj)| < π(aj + bj), the integrand decays exponentially at |p| → ∞. So assuming
−π(aj + bj) < Re(ωj) < 0 we evaluate the integral as (2πi)m× the sum over k1, ..., km > 0 of
the residues at p1 = ik1, ..., pm = ikm.

Lemma 3.4. Such a residue at p1 = ik1, ..., pm = ikm is equal to

i−m(−1)(a1+b1)k1+...+(am+bm)km Resp1=...=pm=0

( m∏
j=1

e−ipjωjdp

shaj+bj (πpj)

)
· e

k1ω1 . . . ekmωm

kn1
1 . . . knmm

. (44)

Proof. Calculating the residue at p1 = ik1, ..., pm = ikm we use the following:

1. The shift by pj → pj + iπ for j = 1, ...,m results in the multiplication of the denominator∏m
j=1 sh

aj+bj (πpj) by (−1)|a|+|b|.

2. We expand the exponential at pj = ikj + p′j as

m∏
j=1

e−ipjωj =
m∏
j=1

e−ip
′
jωj · ek1ω1 . . . ekmωm .

3. As pj → ikj , we have

p−n1
1 · . . . · (p1 + ...+ pm)−nm −→ i−|n|k−n1

1 · . . . · (k1 + ...+ km)−nm .

In particular we observe that the factor i|n| in (43) is cancelled with the one i−|n| from (3).

The left factor in (44) does not depend on kj . So taking the sum over all k1, . . . , km we get

(2π)mResp1=...=pm=0

( m∏
j=1

e−ipjωj

shaj+bj (πpj)

)
· Lin1,...,nm

(
(−1)a1+b1eω1 , . . . , (−1)ak+bkeωm

)
. (45)

The residue on the left factorises into the product of the one variable residues:

2π Respj=0

( e−ipjωjdpj

shaj+bj (πpj)

)
= 2π Respj=0

(1 + (−ipjωj) + (−ipjωj)2/2! + ...

(πpj)aj+bj
(1 + ...)

)
.
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The latter is equal to a sum of rational constants times

2π Respj=0

((−ipjωj)m(πpj)
ndpk

(πpj)aj+bj

)
, m+ n = aj + bj − 1.

Its weight is equal to zero since the weights of π and ωj are equal to 1.
Note also that zj = eωj has zero weight: indeed, we have wj = log(zj), so in the final answer

we have polynomials in zj , log(zj).

3.0.5 The I−variant of quantum polylogarithms.

We will need the I−variant of quantum polylogarithms:

I~a,b,n(w1, ..., wm) := i|n|−m
∫

(R+i0)m

m∏
k=1

e−i(p1+...+pk)wk

shak(πp2) · shbk(π~p2)

dpk
(p1 + . . .+ pk)nk

. (46)

For example, in the depth two we get

i|n|−2

∫
(R+i0)2

e−ip1w1

sha1(πp1) · shb1(π~p1)

e−i(p1+p2)w2

sha2(πp2) · shb2(π~p2)

dp1

pn1
1

dp2

(p1 + p2)n2
.

The functions F and I are related by

F~
a,b,n(ω1, ω2, . . . , ωm) = I~a,b,n(ω1 − ω2, ω2 − ω3, . . . , ωm). (47)

Indeed, their integrands differ only by the exponentials, related by (28). Equivalently, we have

F~
a,b,n(ζ1, . . . , ζm) = I~a,b,n(ζ1 + . . . ζm, ζ2 + . . .+ ζm, . . . , ζm). (48)

3.0.6 Differential equations

Proposition 3.5. The quantum polylogarithms satisfy the differential equation

dF~
a,b,n(ω1, ..., ωm) =

m∑
k=1

F~
a,b,n−1k

(ω1, ..., ωm)d(ωk − ωk+1). (49)

Proof. The introduced in Section 3.0.5 function

I~a,b,n(ξ1, ..., ξm) =

i|n|−m
∫

(R+i0)m
K~

a,b(p1, ..., pm)
e−ip1ξ1e−i(p1+p2)ξ2 . . . e−i(p1+...+pm)ξmdp1dp2 . . . dpm

pn1
1 (p1 + p2)n2 . . . (p1 + ...+ pm)nm

.
(50)

evidently5 satisfies the differential equations:

dI~a,b,c(ξ1, ..., ξm) =

m∑
k=1

I~a,b,n−1k
(ξ1, ..., ξm)dξk. (51)

Therefore the claim follows from (47).
5since the variable ξk appears only in the exponential e−ipkξk
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3.0.7 Complex conjugation

We claim that one has

F~
a,b,n(ω1, . . . , ωm) = (−1)|a|+|b|−mF~

a,b,n(ω1, . . . , ωm).

Done by a change of variables q = −p, altering the orientation of R + i0. Here is how it works
in the depth one case.

F~
a,b,n(ω) = (−i)n−1

∫
R+i0

eipω

sha(πp)shb(π~p)
dp

pn
q=−p

=

− (−1)a+bin−1

∫
R+i0

e−ipω

sha(πp)shb(π~p)
dp

pn
= (−1)a+b+1F~

a,b,n(ω).

(52)

3.0.8 Shuffle relations

Quantum polylogarithms satisfy shuffle relations, similar to the ones for the iterated integrals
representing the multiple polylogarithms.6 Namely, let us set

w = (ω1, ..., ωm), u = (u1, ..., um), t = (t1, ..., tm). (53)

Consider the generating series in u whose coefficients are quantum polylogs with indices n:

F~
a,b(w|u) :=

∑
n1,...,nm≥1

F~
a,b,n(w)u1

n1−1 . . . um
nm−1. (54)

For example,

F~
a,b[w|u] = in−1

∫
R+i0

e−ipω

sha(πp)shb(π~p)
dp

p− iu
.

Then make a substitution uk := t1 + ...+ tk for k = 1, ...,m:

F~
a,b[w|t∗] := F~

a,b(w|t1, t1 + t2, . . . , t1 + . . .+ tm).

Lemma 3.6. There is an integral presentation:

F~
a;b[w|t∗] = i|n|−m ·

∫
(R+i0)m

m∏
k=1

K~
ak,bk

(pk;ωk)
dpk

(p1 + . . .+ pk)− i(t1 + . . .+ tk)
.

Proof. Follows by applying the substitution uk := t1 + ...+ tk to the following identity:

∞∑
n=1

dpk
(p1 + . . .+ pk)n

(iuk)
n−1 =

dpk
(p1 + . . .+ pk)− iuk

. (55)

6It is interesting that although quantum polylogarithms do not seem to have an iterated integral presentation,
they do satisfy the same shuffle relations as the iterated integrals.
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Note that integrals (13) converge for any integers ni, while the generating series use ni ≥ 1.

Given a := (a1, ..., ak) and a′ := (ak+1, ..., ak+l) and a permutation σ of the set {1, ..., k+ l},
set σ(aa′) := (aσ(1), ..., aσ(k+l)).

Theorem 3.7. One has

F~
a,b[w|t∗] · F~

a′,b′ [w
′|t′∗] =

∑
σ∈Σk,l

F~
σ(aa′),σ(bb′)[σ(ww′)|σ(tt′)∗]. (56)

The sum is over the set of all permutations shuffling {1, ..., k} and {k + 1, ..., k + l}.

Proof. Follows immediately from the following identity [G01, Lemma 2.12]:

1

p1(p1 + p2)...(p1 + ...+ pk)
· 1

pk+1(pk+1 + pk+2)...(pk+1 + ...+ pk+l)
=∑

σ∈Σk,l

1

pσ(1)(pσ(1) + pσ(2))...(pσ(1) + ...+ pσ(k+l))
.

(57)

For example, using the identity

1

p1p2
=

1

p1(p1 + p2)
+

1

p2(p1 + p2)

we have

F~
a1,b1,1(ω1) · F~

a2,b2,1(ω2) = F~
(a1,a2),(b1,b2),(1,1)(ω1, ω2) + F~

(a2,a1),(b2,b1),(1,1)(ω2, ω1).

Shuffle relations for the generating functions. In addition to (53), let us set

r = (r1, ..., rm), s = (s1, ..., sm).

Generalizing (54), we introduce the quantum polylogarithm generating series:

F~(w|r, s,u) :=
∑

ai,bi,ni>0

F~
a,b,n(w)

m∏
k=1

rak−1
k sk

bk−1uk
nk−1.

One can rewrite this using the kernel generating series.

Lemma 3.8. The kernel generating function is given by

K~(p; z|r, s) :=

∞∑
a,b=1

K~
a,br

a−1sb−1 =
e−ipz

(sh(πp)− r)(sh(π~p)− s)
.

Lemma 3.9. The quantum polylogarithm generating series are given by the integrals

F~(w|r, s,u) :=

∫
(R+i0)m

m∏
k=1

K~(pk;ωk|rk, sk)
dpk

(p1 + . . .+ pk)− iuk
.
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Proof. Follows immediately using (55).

For example, the depth one quantum polylogarithm generating series are

F~(ω|r, s, u) :=

∫
R+i0

e−ipω

(sh(πp)− r)(sh(π~p)− s)
dp

p− iu
.

Theorem 3.7 immediately implies the following

Theorem 3.10. One has

F~[w|r, s, t∗] · F~[w′|r′, s′, t′∗] =
∑
σ∈Σk,l

F~[σ(ww′)|σ(rr′), σ(ss′), σ(tt′)∗].

3.0.9 Analytic continuation.

Quantum polylogarithms have an analytic continuation to a cover of M0,m+3(C) given by

(w1, ..., wm) −→ (∞,−1, 0, ew1 , ..., ewm) ∈M0,m+3(C).

The integral representation (27) is convergent at the strip

|Im ωi| < πai + π~bi.

We use difference relations (35) to extend it from that strip to Cm, and argue by the induction
on |a|+ |b|. First, one checks formally by induction that

∆
(ωl)
iπ~ ∆

(ωk)
iπ I

~
a,b,n(w) = ∆

(ωk)
iπ ∆

(ωl)
iπ~ I

~
a,b,n(w).

where each of the sides is defined by applying twice difference relations (35).

3.0.10 An example: basic quantum polylogarithms

We define the basic quantum polylogarithms by setting aj = bj = 1. So in the depth m case

F~
n1,...,nm(ω1, ..., ωm) :=

i|n|−m
∫

(R+i0)m

e−ip1ω1

sh(πp1)sh(π~pm)

dp1

pn1
1

∧ . . . ∧ e−ip1ω1

sh(πpm)sh(π~pm)

dpm
(p1 + . . .+ pm)nm

.
(58)

Theorem 3.11. The function F~
n1,...,nm(ω1, ..., nm) enjoys the following properties:

1. Asymptotic expansion as ~→ 0:

F~
n1,...,nm(ω1, ..., ωm) ∼ 1

(2πi~)m
· Lin1+1,...,nm+1(eω1−ω2 , eω2−ω3 , . . . ,−eωm) + . . .

2. Difference relations, connecting them with multiple polylogarithms:

∆
(ω1)
iπ~ . . .∆

(ωm)
iπ~ F

~
n1,...,nm(ω1, ..., ωm) = Lin1,...,nm(eω1−ω2 , eω2−ω3 , . . . ,−eωm).

∆
(ω1)
iπ . . .∆

(ωm)
iπ F~

n1,...,nm(ω1, ..., ωm) = ~|n|−mLin1,...,nm(e
ω1−ω2

~ , e
ω2−ω3

~ , . . . ,−e
ωm
~ ).

(59)
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3. The value at ~ = 1:

F1
n1,...,nm(ω1, ..., ωm) = P1,1

(ω1

2π
....,

ωm
2π

)
· Lin1,...,nm

(
eω1 , ..., eωm

)
.

4. Distribution relations:

r|n|−mF
r
s
~

n1,...,nm(rω1, ..., rωm) =
r−1
2∑

αk= 1−r
2

s−1
2∑

βk= 1−s
2

F~
n1,...,nm(ω1 +

2πi

r
α1 +

2πi~
s

β1, . . . , ωk +
2πi

r
αk +

2πi~
s

βk).
(60)

5. The differential:

dF~
n1,...,nm(ω1, ..., ωm) =

m∑
j=1

F~
n1,...,nk−1,...,nm(ω1, ..., ωm)d(ωk − ωk+1).

6. ~←→ 1/~ symmetry:

F~
n1,...,nm(ω1, ..., ωm) = ~|n|−mF

1
~
n1,...,nm

(ω1

~
, ...,

ωm
~

)
.

Proof. 1) Using (36) and (22), we get the leading term of the ~→ 0 asymptotic expansion:

F~
n1,...,nm(ω1, ..., ωm) ∼~→0

i|n|

(2πi~)m

∫
(R+i0)m

e−ip1ω1

sh(πp1)

dp1

p1p
n1
1

∧ . . . ∧ e
−ipmωm

sh(πpm)

dpm
pm(p1 + . . .+ pm)nm

(22)∼ ~→0
1

(2πi~)m
Lin1,...,nm(eω1−ω2 , eω2−ω3 , . . . ,−eωm) + . . . .

(61)

2) For the second identity, set qi = pi~, and use integral (11). The rest is straightforward.

4 Quantum polylogarithms and multiple q−polylogarithms

Recall Definition 1.4 of the multiple q−polylogarithms:

Lia,n(x1, ..., xm; q) :=
∞∑

k1,...,km>0

xk11 x
k2
2 . . . xkmm

[k1]a1q [k2]a2q . . . [km]amq · kn1
1 (k1 + k2)n2 . . . (k1 + ...+ km)nm

.
(62)

If a = 0, we get the multiple polylogarithms Lin(z1, . . . , zm) = Lin1,...,nm(z1, . . . , zm).
Multiple q−polylogarithms satisfy both the differential and difference equations:

The differential. Given an x = (x1, . . . , xm), we set x∗ := (x1...xm, x2...xm, . . . xm). Then

dLia,n(x∗; q) =

m∑
k=1

Lia,n−1k(x∗; q)d log xk.

17



The difference relation. The q−difference operator defined by setting

∆x,qf(x) := f(qx)− f(q−1x).

We have the difference relations

∆xk,qLa,n(x; q) = La−1k,n(x; q). (63)

4.1 Multiple q−polylogarithms by the q−integration

Definition 4.1. Given a power series f(x) and an integer a ≥ 0, the q−integral Iaxf(x) is:

(Iaxf)(x) := (−1)a−1
∑
k≥0

(
k + a− 1

a− 1

)
f(q2k+ax).

The name q−integral is justified by the following Lemma.

Lemma 4.2. Let a > 0. Then one has:

∆x,q ◦ Iaxf(x) = Ia−1
x f(x).

Proof. Follows by a pretty standard calculation:

Iaxf(qx)− Iaxf(q−1x) =

(−1)a−1
∑
k≥0

(
k + a− 1

a− 1

)(
f(q2k+a+1x)− f(q2k+a−1x)

)
=

(−1)a−1
∑
k≥0

(((k + 1) + a− 2

a− 1

)
f(q2(k+1)+a−1x)−

(
k + a− 1

a− 1

)
f(q2k+a−1x)

)
=

(−1)a−1
∑
k>0

((k + a− 2

a− 1

)
−
(
k + a− 1

a− 1

))
(q2k+a−1x)− (−1)a−1f(qa−1x) =

(−1)a−2
∑
k≥0

(
k + a− 2

a− 2

)
f(q2k+a−1x) =

Ia−1
x f(x).

(64)

Proposition 4.3. There is an equality of power series:

Lia,n(x1, ..., xm; q) = (Ia1x1 . . . I
am
xmLin)(x1, . . . , xm) =∑

k1,...,km≥0

(−1)|a|−m
(
k1 + a1 − 1

a1 − 1

)
. . .

(
km + am − 1

am − 1

)
Lin(q2k1+a1x1, . . . , q

2km+amxm).
(65)

Proof. By Lemma 4.2 and (63) we have

∆a1
x1,q ◦ . . . ◦∆a1

x1,q

(
Lia,n(x1, ..., xm; q)− (Ia1x1 . . . I

am
xmLin)(x1, . . . , xm)

)
= 0.

Both series vanish at x1 = ... = xm = 0.
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Examples

1. The q-polylogarithms are power series in x:

Lia,n(x; q) :=

∞∑
k=1

xk

(qk − q−k)a kn
, a, n ∈ Z.

They satisfy both the differential and difference equations:

dLia,n(x; q) = Lia,n−1(x; q)d log x.

∆Lia,n(qx; q) = Lia−1,n(x; q).
(66)

2. Higher Pochhammer symbols Ψa+1(x; q) are the power series given by the infinite products

Ψa+1(x; q) :=
∏
n≥0

(1 + q2n+1x)(−1)a+1(n+aa ).

For example,

Ψ1(x; q) =
1

(1 + qx)(1 + q3x)(1 + q5x)(1 + q7x) · . . .
,

Ψ2(x; q) = (1 + qx)(1 + q3x)2(1 + q5x)3(1 + q7x)4 · . . . .
(67)

They are the unique power series in x, q which satisfies the recursion

Ψa(qx; q)

Ψa(q−1x; q)
= Ψa−1(x; q), Ψ0(x; q) := 1 + x.

Proposition 4.4. One has

log Ψa(x; q) = −Lia−1,1(−x; q) = −
∞∑
k=1

(−x)k

(qk − q−k)a−1k
. (68)

Proof. Both power series satisfy the same difference equation, and equal to 0 at x = 0.

Alternatively, here is a direct calculation for the classical case of Ψ1(x; q). Formula (68)
in this case is the following identity:

Li1,1(−x; q) =
∑
n≥0

log(1 + q2n+1x).

To prove it, we use the expansion log(1 + x) = −
∑

k>0
(−x)k

k :

∑
n≥0

log(1 + q2n+1x) = −
∑
n≥0

∑
k>0

(−q2n+1x)k

k
=

−
∑
k>0

∑
n≥0

q2nkqk(−x)k

k
= −

∑
k>0

qk(−x)k

(1− q2k) · k
= Li1,1(−x; q).

(69)
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3. Consider a slight modification of the classical polylogarithm power series:

Ln(z) := −Lin(−z) = −
∑
k>0

(−z)k

kn
, |z| < 1.

So L1(z) = log(1 + z) and L0(z) = z
1+z . By Proposition 4.3,

Lia,n(−x; q) = (−1)a
∑
k≥0

(
k + a− 1

a− 1

)
Ln(q2k+ax).

4. It is interesting to compare q-polylogarithms with the elliptic polylogarithms [BL]. The
latter are obtained by the regularized weighted averaging over Z of the classical poly-
logarithms, while the former are obtained by a similar weighted averaging but over the
non-negative integers. For example, starting with log(1 + x), the regularized averaging
over Z delivers the logarithm of a theta function, while averaging over Z≥0 we get the
negative of the logarithm of the q-exponential.

4.2 Quantum polylogarithms as sums of 2m companion q−polylogarithms

Recall that the quantum dilogarithm function can be written as a difference of two series:

F~
1 (w) = −Li1,1(−ew; q) + Li1,1(−ew/~; q∨). (70)

In Section 4.2 we show that quantum polylogarithms have similar presentation. We elaborate
in detail the case of depth m basic quantum polylogarithms. We prove that they are sums of
2m companion polylogarithm series. One of them is a quantum q−polylogarithm series, another
one is a quantum q∨−polylogarithm series, and the other 2m − 2 companion series are given by
more general series.

Recall the depth m basic quantum polylogarithm:

F~
n1,...,nm(ω1, ..., ωm) := i|n|−m

∫
(R+i0)m

m∏
k=1

e−ipiωk

sh(πpk)sh(π~pk)
dpk

(p1 + . . .+ pk)nk
.

Recall also the I−variant (46) of the basic quantum polylogarithms:

I~n1,...,nm(w1, ..., wm) := i|n|−m
∫

(R+i0)m

m∏
k=1

e−i(p1+...+pk)wk

sh(πpk)sh(π~pk)
dpk

(p1 + . . .+ pk)nk

= F~
n1,...,nm(w1 − w2, w2 − w3, ..., wm).

(71)

We calculate integral (71) as a sum over the residues. The sum splits into a sum of 2m series
over the cones given by the direct sum of m copies of the cones Z>0 or ~−1Z>0. We call the
resulting series companion polylogarithm series. They are paramatrised by the sequences

ε := (ε1, ..., εm), εj ∈ {1, ~−1}.

For each such ε we assign the companion cone:

Cε := Z>0ε1 ⊕ . . .⊕ Z>0εm ∈ Cm.
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Recall q = eiπ~ and q∨ = eiπ/~. We also use a notation

[k]qε :=

{
qk − q−k ε = 1

(q∨)k − (q∨)−k ε = ~−1.
. (72)

Definition 4.5. The ε−companion polylogarithm series are given by

Li~a,n(ε;w1, ..., wm) :=

ε1 . . . εm
∑

k1,...,km>0

ek1ω1ε1 . . . e(k1+...+km)ωmεm

[k1]a1qε1 . . . [km]amqεm · (ε1k1)n1 . . . (ε1k1 + ...+ εmkm)nm
.

(73)

The ε−companion polylogarithm series (73) generalize q−polylogarithm series (62). Indeed:

Li~a,n(ε;ω1, ..., ωm) =

{
Lia,n(eω1 , ..., eωm ; q) if ε = (1, . . . , 1),

~|n|−mLia,n(eω1/~, ..., eωm/~; q∨) if ε = (~−1, . . . , ~−1).
. (74)

Theorem 4.6. Assume ~ > 0. Assume that Re(ωi) < 0 and |Im(ωi)| < π. Then we have

I~n(w1, . . . , wm) =
∑
ε

Li~1,n(ε;w1, w2, . . . , wm). (75)

Before we proceed with the proof, let us elaborate two examples.

1. m = 1. We get two companion cones: Z>0 and ~−1Z>0. The related companion series are

Z>0 :
∑
k>0

(−1)kekw

[k]q kn
= Li1,n(−ew; q).

~−1Z>0 : ~n−1
∑
k>0

(−1)kekw/~

[k]q∨ kn
= ~n−1Li1,n(−ew/~; q∨).

(76)

So I~n(w) is a sum of the two companion series (76):

I~n(w) = Li1,n(−ew; q) + ~n−1Li1,n(−ew/~; q∨). (77)

When n = 1 we recover formula (70).

2. m = 2. We get four companion cones:

Z>0 ⊕ Z>0, ~−1Z>0 ⊕ Z>0, Z>0 ⊕ ~−1Z>0, ~−1Z>0 ⊕ ~−1Z>0.

The related companion series are:

Z>0 ⊕ Z>0 :
∑

k1,k2>0

e−k1w1e−k2w2

[k1]q[k2]q

1

kn1
1 (k1 + k2)n2

.

~−1Z>0 ⊕ Z>0 : ~−1
∑

k1,k2>0

e−k1w1/~e−k2w2

[k1]q∨ [k2]q

1

(~−1k1)n1(~−1k1 + k2)n2
.

Z>0 ⊕ ~−1Z>0 : ~−1
∑

k1,k2>0

e−k1w1e−k2w2/~

[k1]q[k2]q∨

1

kn1
1 (k1 + ~−1k2)n2

.

~−1Z>0 ⊕ ~−1Z>0 : ~−2
∑

k1,k2>0

e−k1w1/~e−k2w2/~

[k1]q∨ [k2]q∨

1

(~−1k1)n1(~−1k1 + ~−1k2)n2
.

(78)

So I~n1,n2
(w1, w2) is a sum of the four companion polylogarithm series (78).
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Proof. We elaborate the case of the companion cone ~−1Z>0⊕~−1Z>0. Let n := (n1, n2). Then

I~n(w1, w2) :=

∫
(R+i0)2

e−ip1w1

sh(πp1)sh(π~p1)

e−i(p1+p2)w2

sh(πp2)sh(π~p2)

dp1

pn1
1

dp2

(p1 + p2)n2
.

The contribution of the residues at p1 = ik1/~, p2 = ik2/~ where k1, k2 > 0 gives

~−2
∑

k1,k2>0

(ew1/~)k1

[k1]q∨

(−ew2/~)k1+k2

[k2]q∨

1

(~−1k1)n1 (~−1(k1 + k2))n2

= ~|n|−2Li1,n(ew1/~,−ew2/~; q∨).

(79)

The analog of Theorem 4.6 for arbitrary quantum polylogarithms is obtained by a simi-
lar residue calculation. Since the function 1

shas (πps)sh
bs (π~ps)

has zeros of higher order at ps =

iks, iks/~ where ks > 0, we get sums of companion series multiplied by powers of ωs. Calculating
the residues at ps = iks/~ we encounter the following derivatives, evaluated then at ps = iks/~:(

d

dps

)bs−1 1

shas(πps)

m∏
j=s

e−i(p1+...+pj)zj

(p1 + ...+ pj)nj
. (80)

For the residues at ps = iks we get similar derivatives, with as switched with bs, at ps = iks:

5 Depth one examples

We consider integrals the depth one integrals for different countours α:

in−1 ·
∫
α

e−ipz

sha(πp)shb(π~p)
dp

pn
.

If α := α0 is a small counterclockwise oriented loop around zero, we get polynomials in z,
generalizing Bernoulli polynomials. If α := R+i0, we get the depth one quantum polylogarithms.

5.1 Quantum Bernoulli polynomials

Recall the Bernoulli polynomials Bn(x):

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

Definition 5.1. Quantum Bernoulli polynomials are polynomials in ω and ~±1 given by

B~
a,b,n(ω) := in−1

∫
α0

e−ipω

sha(πp)shb(π~p)
dp

pn
.

To state the properties of the polynomials B~
a,b,n(ω) we need a polynomial

Qm(ω) =

(
ω − πi(m− 1)

)(
ω − πi(m− 3)

)
· . . . ·

(
ω − πi(1−m)

)
(2πi)mm!

.

It is the unique degree m polynomial with the following two properties:

22



• It satisfies difference relations

∆iπQm(ω) = Qm−1(ω), Q0(ω) = 1. (81)

• The roots of Qm(ω) form an arithmetic progression with the step 2πi, centered at 0.

The weight of Qm(ω) is 0. For example

Q0(ω) = 1, Q1(ω) =
ω

2πi
, Q2(ω) =

(ω − iπ)(ω + iπ)

2! · (2πi)2
. (82)

Theorem 5.2. The quantum Bernoulli polynomials B~
a,b,n(ω) have the following properties.

1. B~
a,b,n(ω) is a polynomial in ω of the degree a+ b+ n− 1.

2. Differential and difference equations:

dB~
a,b,n(ω) = B~

a,b,n−1(z)dω.

∆iπ~B
~
a,b,n(ω) = B~

a,b−1,n(ω),

∆iπB
~
a,b,n(ω) = B~

a−1,b,n(ω).

(83)

3. Asymptotic expansion when ~→ 0:

B~
a,b,n(ω) ∼~→0

1

(2πi~)b
Ba,0,b+n(ω) + . . . .

4. The value at ~ = 1:
B1
a,b,n(ω) = Ba+b,0,n(ω).

5. Relation with Bernoulli polynomials Bn(ω) and polynomials Qn(ω):

B~
1,0,n(ω) =

(2πi)n−1

(n− 1)!
Bn−1

(
ω

2πi
+

1

2

)
,

B~
a,0,1(ω) = Qa−1(ω).

(84)

6. Modular property, or ~↔ 1/~ symmetry: for any ~ ∈ C× one has:

B~
a,b,n(ω) = ~n−1B

1/~
b,a,n(ω/~).

7. Complex conjugation:

B~
a,b,n(ω) = (−1)a+b+1B~

a,b,n(ω).

8. The ω ←→ −ω symmetry:

B~
a,b,n(ω) = (−1)a+b+nB~

a,b,n(−ω).

9. The generating function

B~(ω|r, s, u) :=

∫
α0

e−ipω

(sh(πp)− r)(sh(π~p)− s)
dp

p− iu
.
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Proof. We present an argument only if it is not totally straightforward.
1) A residue calculation.
5) The first claim is an easy calculation. The second is proved in the following Lemma.

Lemma 5.3. One has for m ≥ 07

− i
∫
α0

e−ipω

shm(πp)
dp = Qm−1(ω). (85)

For example,

−i
∫
α0

e−ipω

sh(πp)
dp = 1, −i

∫
α0

e−ipω

sh2(πp)
dp =

ω

2πi
.

Proof. Integral (85) satisfies recursion (81), which determines each next one uniquely up to a
constant. Furthermore, Qm(ω) = (−1)mQm(−ω), which tells that Q2k+1(ω) is divisible by ω.
This, however, does not complete the proof, so we give a proof based on a different idea. Set

Im(ω) := −i
∫
α0

e−ipω

shm(πp)
dp.

Then one has a recursion

Im+1(ω) =
ω − iπ(m− 1)

2πim
Im(ω + iπ). (86)

Indeed, integrating by parts we get∫
α0

e−ipω
d

dp
sh−m(πp)dp = ωIm(z).

Since

− d

dp
sh−m(πp) =

πm · (eπp + e−πp)

shm+1(πp)
=

πm

shm(πp)
+

2πm · e−πp

shm+1(πp)
,

we get (ω − iπm) · Im(ω) = 2πim · Im+1(ω − iπ). This is equivalent to (86). Therefore

Im+1(ω) = Qm(z)I1(ω + iπm) = Qm(ω).

6) Done by a change of variables q = p/~, preserving the isotopy class of the contour α0.

7) Done by a change of variables q = −p, altering the orientation of α0:

B~
a,b,n(ω) = (−i)n−1

∫
α0

eipω

sha(πp)shb(π~p)
dp

pn
q=−p

=

(−1)a+b+1in−1

∫
α0

e−ipω

sha(πp)shb(π~p)
dp

pn
= (−1)a+b+1B~

a,b,n(ω).

(87)

The extra − sign amounts to the change of the contour orientation.
8) It is obtained by a change of variables q = −p. It does not change the contour α0.

7The −i factor is just the factor in−1 in the case n = 0.
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5.2 Depth one quantum polylogarithms

They are the following integrals:

F~
a,b,n(ω) := in−1

∫
R+i0

e−ipω

sh(πp)ash(π~p)b
dp

pn
, a, b ∈ Z≥0, n ∈ Z.

The next Lemma tells that they reduce to the classical polylogarithms when b = 0.

Lemma 5.4. i) One has for a > 0, m ≥ 0:

i−m−1

∫
R+i0

e−ipω

sha(πp)
pmdp =

(
d

dω

)m (
Qa−1(ω)Li0(eω+πia)

)
. (88)

In particular, it is a single-valued meromorphic function in z
ii) One has for a > 0, n > 0:

in−1

∫
R+i0

e−ipω

sha(πp)

dp

pn
= in

∑
k≥0

(
n+ k

k

)(
− d

dω

)k
Qa−1(ω) · Lin+k

(
eω+πia

)
. (89)

Formulas (89) look simpler for the generating series Li(x; t) :=
∑

n>0 Lin(x)tn−1

∑
n>0

tn−1

∫
R+i0

e−ipω

sha(πp)

dp

pn
· tn−1 = in

(
1 + t−1 d

dw

)−1

Qa−1(ω) · Li
(
eω+πia; t

)
. (90)

Examples. 1. Note that Li0(eω) = d
dωLi1(eω) = eω

1−eω . Then one has

i−1

∫
R+i0

e−ipω

sha(πp)
dp = Qa−1(ω)L0(eω+πia) = Qa−1(ω)

eω+πia

1− eω+πia
. (91)

For example,

i−1

∫
R+i0

e−ipω

sh(πp)
dp =

−eω

1 + eω
,

i−1

∫
R+i0

e−ipω

sh2(πp)
dp =

ω

2πi

eω

1− eω
,

i−1

∫
R+i0

e−ipω

sh3(πp)
dp =

ω2 + π2

2!(2πi)2

−eω

1 + eω
.

(92)

2. Formula (88) for m = 0 is

i−1

∫
R+i0

e−ipω

sha(πp)

dp

p
=
∑
k≥0

(
− d

dω

)k
Qa−1(ω) · Lik

(
eω+πia

)
. (93)

Proof. i) We start with the m = 0 case. Let us calculate integral (91) using the residue theorem,
assuming that Re(ω) < 0, using the rectangular contour ΩN a bit over the real axis. The residues
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are at the points ik, k > 0. The residue at p = ik equals to the residue at p = 0 multiplied by
(−1)kaekω. Lemma 5.3 calculaties the integral around p = 0. So we get

Qa−1(ω) ·
∑
k>0

(−1)kaekω = Qa−1(ω) ·
∑
k>0

ek(ω+iπa) = Qa−1(ω)
e(ω+iπa)

1− e(ω+iπa)
.

Formula (88) follows from this by differentiating by ω.
ii) We prove (90) applying 1 + t−1 d

dω to the left hand side, using the fact that

in
d

dω

∫
R+i0

e−ipω

sha(πp)

dp

pn
= in−1

∫
R+i0

e−ipω

sha(πp)

dp

pn−1
.

Theorem 5.5. The depth one quantum polylogarithm F~
a,b,n(ω) has the following features:

1. Differential and difference equations:

dF~
a,b,n(ω) = F~

a,b,n−1(ω)dω,

∆iπ~F~
a,b,n(ω) = F~

a,b−1,c(ω),

∆iπF~
a,b,n(ω) = F~

a−1,b,n(ω).

(94)

2. The limit when <z → −∞, taken along a line parallel to the real axis:

lim
<z→−∞

F~
a,b,n(z) = 0.

3. Let a, b ≥ 0 and n ≥ 1. Then F~
a,b,n(ω) is a multivalued analytic function with the singu-

larities at the two integral positive cones:{
±πi

(
(2m+ a) + (2n+ b)~)

)
| m,n ∈ Z≥0

}
.

4. Asymptotic expansion when ~→ 0:

F~
a,b,n(ω) ∼~→0

in

(2π~)b

∑
k≥0

(
n+ k

k

)(
− d

dω

)k
Qa−1(ω) · Lib+n+k

(
eω+πia

)
+ . . . . (95)

5. The value at ~ = 1:

F1
a,b,n(ω) = in+b

∑
k≥0

(
n+ k

k

)(
− d

dω

)k
Qa+b−1(ω)Ln+k+b

(
eω+πi(a+b)

)
. (96)

6. Complex conjugation:

F~
a,b,n(ω) = (−1)a+b−1F~

a,b,n(ω).

7. The ω ←→ −ω symmetry:

F~
a,b,n(ω) + (−1)a+b+n−1F~

a,b,n(−ω) = Ba,b,n(ω; ~).
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8. The ~←→ 1/~ symmetry:

F~
a,b,n(ω) = ~n−1F1/~

b,a,n(ω~). (97)

9. Distribution relations:

rn−1F
r
s
~(rω) =

r−1
2∏

α= 1−r
2

s−1
2∏

β= 1−s
2

F~(ω +
2πi

r
α+

2πi~
s

β).

Proof. We provide the arguments only when they are not evident.
3) If ~ ∈ R>0 the integral converges when |Imz| < 1 + ~. The claim follows from recursions

(94), and uses Property 2) for the normalization. Precisely, let n = 1. Then by Lemma 5.4
1) The function F~

a,0,1(z) has simple poles at the rays ±πi(2Z≥0 + a).

2) The function F~
0,b,1(z) has simple poles at the rays ±πi~(2Z≥0 + b).

Note that the roots of polynomials Qa−1(z) and Qb−1(z/~) kill the poles at the centered at
0 segments of lengths a− 2 and respectively b− 2, with the steps 2πi and 2πi~.

The case n > 1 is obtained by the integration in z, and thus follows from the n = 1 case.
The case when ~ ∈ C− (−∞, 0] follows by an analytic continuation.

4) Follows by (89) from

F~
a,b,n(ω) ∼~→0

in−1

(2π~)b

∫
R+i0

e−ipω

sh(πp)a
dp

pb+n
+ . . . (98)

5) Follows from (89).
7) Change the variables q = −p. It changes the integration contour γ to −γ. Their sum is

a clockwise contour around 0.

Example: Basic depth one quantum polylogarithms. They are given by the integrals

F~
n(ω) := in−1

∫
R+i0

e−ipω

sh(πp)sh(π~p)
dp

pn
, n ∈ Z,

and have the following properties:

1. Asymptotic relation to the n-logarithm

F~
n(ω) ∼~→0

Ln+1(−eω)

2π~
.

2. The differential and difference relations:

dF~
n(ω) = F~

n−1(ω)dω

∆iπ~F~
n(ω) = Ln(−eω),

∆iπF~
n(ω) = ~n−1Ln(−eω/~).

(99)

3. Modular property:
F~
n(ω) + ~1−nF−1/~

n (ω/~) = 0.

Equivalently, the generating series F(ω; ~; t) :=
∑∞

m=1F~
m(ω)tm−1 satisfy

F(ω; ~; t) + F(ω/~;−1/~; t/~) = 0.
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4. Relation with q-polylogarithms:

F~
n(ω) = L1,n(e−ω; eiπ~)− ~n−1L1,n(e−ω/~; eiπ/~). (100)

Equivalently, the generating series L(ez; eiπ~; t) :=
∑∞

m=1 L1,m(ez; eiπ~)tm−1 satisfy

F(ω; ~; t) = L(eω; eiπ~; t)− L(eω/~; e−iπ/~; ~t).

5. Distribution relations:
r−1
2∑

α= 1−r
2

s−1
2∑

β= 1−s
2

F~
n(ω +

2πi

r
α+

2πi~
s

β) = rn−2F
r
s
~

n (rω).

6 Concluding remarks

Scattering amplitudes in the N = 4 SUYM theory can be expressed via polylogarithms and their
generalizations. For example, the MHV n particles L−loop scattering amplitudes are weight 2L
functions on the configuration space Confn(CP3) of collections of n points in CP3, considered
modulo the diagonal action of the group PGL4. It is invariant under the cyclic shift of the
points. The space Confn(P3) carries canonical cluster Poisson structure, invariant under the
cyclic shift, and the related space Confn(C4) carries a cluster K2−variety structure.

What is role the cluster Poisson structure on Confn(P3) for the scattering amplitudes?

Any cluster Poisson variety X admits cluster quantization [FG3], where the quantised al-
gebra of functions Oq(X ) acts by unbounded operators in a cluster Hilbert space HX . The
Hilbert space HX ⊗HX for a given cluster coordinate system c is realised as the Hilbert space
L2(A (R>0)) of functions on the space of real positive points of the cluster K2−variety A (R>0).
These Hilbert spaces for different cluster coordinate systems are related by the quantum dilog-
arithm intertwiners.

Suppose that the asymptotic expansion as ~ → 0 of a vector ϕc
~ in the Hilbert space for a

single cluster coordinate system c is written as

ϕc
~ ∼ eFc(a,~)/~, where Fc(a, ~) is a function on A (R>0) depending on ~. (101)

The vectors ϕc
~ and ϕc′

~ for two different clusters c and c′ are related by the quantum dilogarithm
intertwiners. Therefore the stationary phase method shows that the ~ → 0 asymptotics of the
vectors ϕc

~ in any cluster coordinate system c can be written in the form (101). Moreover the
functions Fc(a, ~)|~=0 and Fc′(a, ~)|~=0 for any two clusters c and c′ are the same functions on
A (R>0), expressed in the cluster coordinates for the clusters c and c′.

I suggest that the scattering amplitudes should have an ~−deformation, becoming vectors
A~
n,L in the space of cluster distributions. These vectors should be expressed via quantum

polylogarithms and their generalizations. In a given cluster coordinate system c, the asymptotic
expansion of the vectors A~

n,L should have the form

A~
n,L ∼ eαc,L(a,~)/~, where αc,L(a, ~) is a function on Confn(R4

>0). (102)

One should have
αn,L(a, ~)|~=0 = the L−loop scatterring amplitude.

Similar conjectural cluster description of the correlation functions in the Liouville and Toda
theories is discussed in [GS, Section 6].
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