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Abstract

We propose a point of view on resurgence theory based on the study of perverse sheaves
on the complex line carrying an algebraic structure with respect to additive convolution. In
particular, we lift the concept of alien derivatives introduced originally by J. Ecalle, to the
framework of perverse sheaves and study its behavior under sheaf-theoretic convolution.
The full fledged resurgence theory needs a (yet undeveloped) generalization of the concept
of perverse sheaves allowing infinite, possibly dense, sets of singularities. We discuss
possible approaches to defining such objects and some potential examples of them coming
from Cohomological Hall Algebras, wall-crossing structures and Chern-Simons theory.
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Le sommeil est plein de miracles!
Par un caprice singulier,

J’avais banni de ces spectacles
Le végétal irrégulier.

Ch. Baudelaire, Réve parisien

0 Introduction

The theory of resurgent functions pioneered by J. Ecalle [9] studies analytic functions “given by
divergent series” in terms of singularities of their Borel (formal Fourier-Laplace) transform (see
below for discussion). As with any kind of Fourier transform, this procedure takes multi-
plication into additive convolution. Resurgent analysis then proceeds by using equations that
involve convolution as well as the monodromy data (alien derivatives) for the Borel-transformed
functions.

The goal of this paper is to propose a more conceptual point of view on resurgence theory
by using the notion of perverse sheaf. It is known that operations such as convolution or
Fourier transform can be defined at the sheaf-theoretical level and match, to some extent, the
corresponding analytic operations for functions when such functions are realized as sections of
the sheaves in question. So, it is a natural idea to import the perverse sheaves language into
resurgent analysis, with the hope to achieve greater conceptual clarity.

In a few words, our proposal is to consider perverse sheaves on C carrying the structure of
an algebra with respect to convolution (see for more details). Using this structure one can
write resurgent equations whose unknowns will be sections of such “resurgent perverse sheaves”,
with classical examples appearing when sections are realized as actual analytic functions. But
one can also, in principle, construct resurgent perverse sheaves in a more abstract fashion, not
unlike the way one constructs field extensions not necessarily embedded in C by adjoining roots
of algebraic equations.

Already in 1985 B. Malgrange [26] gave an interpretation of the resurgent formalism in
terms of M. Sato’s theory of microfunctions. His main observation was that the concept of
a “singularity” (or “singular part”), ubiquitous in this formalism, is but a synonym for a
microfunction. Now, the space of vanishing cycles of a perverse sheaf on C is the same as
the space of microfunction solutions of the corresponding holonomic regular D-module [12].



Therefore, working with perverse sheaves and their vanishing cycles is a natural conceptual
framework for resurgence theory.

However, for true applications to resurgence the theory of perverse sheaves must be extended
to match the kind of multivaluedness that resurgent functions typically possess. These functions
typically have infinite or even dense sets of singular points. That is, on any “branch” the
singular points are of course discrete, but going around each one leads to a new branch with
new singularities etc. Such behavior is referred to as “‘analytic continuation without end”.

In this paper we do not attempt to generalize the theory of perverse sheaves in this di-
rection. Instead, we develop a resurgence-like formalism involving the standard concept of
perverse sheaves on C (i.e. with finitely many singularities). Already this allows us to highlight
many of the familiar features in the sheaf-theoretic context, for example the interpretation of
Stokes data via Picard-Lefschetz type formulas in the Borel plane. Further, some examples
of “resurgent perverse sheaves” may be already given in this restricted context, such as the
version of Cohomological Hall algebra in §3.2]

A special role in our considerations is played by the category Perv(C) obtained by localizing
Perv(C), the abelian category of all perverse sheaves on C, by the Serre subcategory of (shifted)
constant sheaves [13]. Objects of Perv(C) have well-defined “tunnelling data” consisting of the
spaces of vanishing cycles ®,, a € C and the transport maps mg(7y) : ®, — P, for various paths
v joining a and b.

It is known [20, 10] that Perv(C) can be embedded back into Perv(C) as the subcategory
Perv’(C) formed by perverse sheaves F with H*(C, F) = 0. The operation of additive convo-
lution F = G is most easily defined using this realization [I0]. Our “toy resurgent formalism”
can be seen as further study of the Tannakian Galois group of the tensor category (Perv(C), «),
as defined and already studied in [10]. So, our larger point is that the full fledged resurgent
formalism is just a similar study but for a more general concept of perverse sheaves, still to be
defined rigorously (see below). We plan to discuss this further in a future work.

The paper consists of three chapters. In Chapter [I] we recall the elementary theory of
perverse sheaves on C (with finitely many singularities) with emphasis on features that we need.
The motivational explains the general framework of Borel summation and the resulting
“doctrine of two planes”: the original one carrying functions given by divergent series and the
Borel one where things become more topological. In §1.2| we recall the basic definitions and
emphasize the Picard-Lefschetz formula (Proposition in the context of perverse sheaves.
In §1.3] we present the Gelfand-MacPherson-Vilonen classification of perverse sheaves and of
objects of the localized category Perv(C, A), where constant sheaves are factored out but the
vanishing cycles and transport maps remain. The Fourier transform for perverse sheaves is
explained in . There, we mostly follow [1I7]. In We discuss a particular class of examples
of perverse sheaves on C associated to a regular function S : X — C on a complex algebraic
variety. We call them Lefschetz perverse sheaves Lg. The Fourier transform of Lg can be seen
as a categorification of the exponential integral associated to S.



In Chapter [2| we build up features of perverse sheaves on C which are most remindful of
resurgence formalism. In this, we extend the analysis of rectilinear transports given in [17],
in the case when the set A of singularities is in linearly general position, to the arbitrary
case, when an interval [a,b],a,b € A can contain intermediate points. In §2.1| we discuss
additive convolution of perverse sheaves on C. Motivated by the classical resurgent formalism,
we consider, in §2.2] various ways of modifying the rectilinear transport so as to avoid the
intermediate points. The formulas for alien derivatives appear naturally in this context as
some linear combinations of such modified transports. In we study alien derivatives more
systematically; we also explain their relation with the Stokes automorphisms for the Fourier
transform.

In the final Chapter [3] we discuss how our approach can be applied to actual resurgence
problems. This chapter is more speculative. We start by sketching in the general program
of studying perverse sheaves which are algebras with respect to the convolution, highlighting
the difficulties that are present in the general case. Then, we discuss several classes of potential
examples: the example with the Cohomological Hall algebra (a.k.a COHA) of a quiver in ,
that of “cluster perverse sheaves” associated to wall-crossing structures in §3.3] and that of

Lefschetz perverse sheaves associated to the complex Chern-Simons functional in §3.4]
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Introduction.

1 Perverse sheaves and their Fourier transform

1.1 Motivation: Borel summation and the Borel plane

The famous Borel summation process for divergent series can be seen as an application of the
Fourier transform in the complex domain. It connects two copies of the complex plane C which
are loosely related “by the Fourier transform”:

e The original (“irregular”) plane C, with coordinate (“large parameter”) z in which we
study possibly divergent formal power series near oo:

(1.1.1) fy = fojl
n=0

Such series typically satisfy linear differential equations irregular at oo, are divergent
everywhere but serve as asymptotic expansions of interesting analytic solutions in various
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sectors. Quantum mechanical asymptotic series in powers of the Planck constant A are
realized here by putting z = 1/h.

e The dual (Borel or “regular”) plane C,, with coordinate w where we study (or obtain)
solutions of differential equations with regular singularities, given by convergent series
in w, which represent multivalued functions and so can be analyzed topologically. The
modern way of doing so is by using the language of perverse sheaves.

On the formal level, Borel summation of the series ((1.1.1]) (when it is possible) consists, first,
of taking the termwise Fourier transform of the series using the identity (particular case of the
general formula for the Fourier transform of z?)

1 w"
T(zn—H) = g

This gives the Borel-transformed series

e}
7B o % n
n=0
which has more chances to converge. In good cases it has nonzero radius of convergence
and extends to an analytic function fZ(w) “on the entire C,” but possibly multivalued, with

singularities etc. Then the prescription for the sum f(z) of the original series f(z) is obtained
by taking the invers Fourier (-Laplace) transform of fZ(w):

1= [ s e =aw

Because of singularities of fP(w) there can be several inequivalent allowable choices of the
integration contour leading to ambiguity of the Borel sum, which is not surprising if the series
is divergent.

lthe kind that sends w™/n! back into 1/z"*1



On the conceptual level, the Borel summation approach can be said to consist in representing
irregular dataﬂ as Fourier transforms of regular ones. The success of this approach comes from
the fact that such representation is possible in many cases of practical interest. Differential
equations which are Fourier transforms of regular ones form a rather special class.

2Here we understand the word “irregular” in the wider sense, including but not restricted to differential
equations and functions satisfying them.



1.2 Perverse sheaves on Riemann surfaces

A Generalities. We fix a base field k. Let X be a complex analytic manifold. We denote
by LS(X) the category of local systems of (not necessarily finite-dimensional) k-vector spaces
on X.

Let S a locally finite complex Whitney stratification of X. Thus each stratum S € S is
a complex submanifold; we denote ig : S — X the embedding. The closure S is, in general,
a singular complex space. We denote by D°(X,S) the triangulated category of bounded S-
constructible complexes of sheaves F on X. By definition, S-constructibility of F means that
each cohomology sheaf H'(F) is S-constructible. That is, each itHY(F) = HI(i%F) is an
object of LS(S).

We denote Perv(X,S) = DY(X,S) the abelian category of perverse sheaves of k-vector
spaces on X smooth with respect to §. Explicitly, Perv(X,S) consists of complexes F €
D*(X,S) with the following properties:

(1) For each stratum S € S4 we have H(itF) = 0 for ¢ > — dim¢ S.
(2) For each stratum S € Sy we have H9(isF) = 0 for ¢ < — dimc¢ S.

For example, if £ € LS(X) is a local system, then £[dim X], i.e., £ put in degree (— dim X), is
perverse and lies in Perv(X, ¢¥).

Remark 1.2.1. In [I7] we used a different normalization of the perversity conditions for which
a local system in degree 0 is considered to be perverse. In references to [I7] later in this paper,
this difference, being easy to account for, is not further highlighted.

B Nearby and vanishing cycles. From now on we assume dim¢ X = 1, so X is a complex
curve (Riemann surface, possibly non-compact). Then a stratification S of X is given by a
discrete subset A — X so the strata are elements of A and the complement X\ A. In this case we
use the notation Perv(X, A) for Perv(X,S). The definition implies that for any F € Perv(X, A)
the restriction F|cya is quasi-isomorphic to a local system (not necessarily of finite rank) in
degree —1 and that HY(F) = 0 for ¢ # —1,0.

Ezample 1.2.2. Let X = D = {|z| < 1} be the unit disk in C and A = {0}. In this case it is
classical [12] that Perv(D,0) is equivalent to the category of diagrams

c1><—j_>\1/

of k-vector spaces are linear maps such that Ty := Idy —uv is an isomorphism (or, what is
equivalent, such that Ty = Ide —vu is an isomorphism).

More precisely, see [12] [I7, Prop. 1.1.6], the equivalence above depends on a choice of a
radial cut K < D, a simple curve starting at 0 and ending on the boundary ¢D. Given such
K, the sheaves of K-supported hypercohomology H% (F) are 0 for ¢ # 0, the sheaf H} (F) on



K is constructible with respect to the stratification of K into {0} and K — {0}, the spaces ®
and VU associated to F are found as its stalks:

® = (Hy(F)o, = (Hg(F)) Yee K\{0},

and the map u : ® — W is the generalization map of H%(F). See [12] and the discussion after
[17, Prop. 1.1.6] for the definition of v : ¥ — ®. The spaces ® and U are called the spaces
of vanishing cyclies and nearby cycles of F at 0 (in the direction of K). Note also that ¥ is
identified with the stalk of the local system (F[—1])|p\¢o; at any € € K — {0} (hence the name
“nearby cycles”).

More generally, for a Riemann surface X and a point a € X, we denote by S} = S}(X) the
circle of directions at a. If K is a smooth simple curve ending at a, we denote by dir,(K) € S}
the direction of K at a. If A < X is discrete and F € Perv(X, A), then in a small disk near any
a € A we have the situation of Example In particular, the vector spaces of vanishing and
nearby cycles of F at a, being dependent on the direction of a cut, are naturally local systems
on S} which we denote ®,,(F) and ¥,,(F). We thus have functors

(1.2.3) ®,, U, : Perv(X, A) — LS(S}).

C Transport maps. We now recall the construction of curvilinear transport maps from
[1T7, §1.1C] Let dim¢(X) = 1 and A = X be discrete. Let a be a simple, piecewise smooth arc
in X joining two distinct points a,b € A and not passing through any other elements of A see
Fig. [T} Let us equip o with the orientation going from a to b.

Considering « as a closed subset in X, we have the sheaf H° (F) on a which is constant on
the open arc a — {a, b}.

Figure 1: The transport map.



Its stalks at a and b are the vanishing cycle spaces ®, o, ®p o for F at a or b in the direction
of a, while its restriction to a\{a, b} is a local system on the open interval; in particular, all
the stalks of this local system are canonically identified; let us denote their common value by
V,. So we have the maps

Ua,a Up, o
(124) ®a7a _~ \Ija —_— (bbvo”
Va,a Vb, a

obtained from the description of F on small disks near a and b and using 7 as the choice for a
cut K. We define the transport map along o as

(1.2.5) Map(a) = ml(a) == vpq 0 Uga : Poa — Poa-

D Picard-Lefschetz identities for transports. The construction of the maps mg,(«a)
being purely topological, it is unchanged under isotopic deformations of o which do not pass
through other elements of A. More precisely [I'7, §1.1C], let (v )se0,1] be an admissible isotopy of
paths from a to b, i.e., a continuous 1-parameter family of simple arcs (ay)sefo,1], each o, joining
a with b and not passing through any other c € A. Then we have a commutative diagram

Mmap(0)
(126) (I)a,ozo b—g' q)bpco
tal ltb

mab(al)

(I)(LC” — > ¥hays

where t, is the monodromy of the local system ®, on dei from dir, () to dirg (e ), and similarly
for ty.

We now recall what happens when a path crosses a single point of A. That is, we consider
a situation as in Fig. 2| where a path 4/ from a to ¢ approaches the composite path formed by
B from a to b and « from b to c. After crossing b, the path + is changed to ~.

/

~

Figure 2: The Picard-Lefschetz situation.



In this case we have identifications
(1.2.7) Doy = Pop = Payy, Pey = Pea = Py Pog — oo,

given by clockwise monodromies of the local systems ® around the corresponding arcs in the
circles of directions. So after these identications we can assume that we deal with single vector
spaces denoted by @1, ®3 and P, respectively. Then we have [I5, Prop.1.8] [I7, Prop.1.1.12]:

Proposition 1.2.8 (Abstract Picard-Lefschetz identity). We have the equality of linear oper-
ators ®; — Py:
Mac(Y) = Mac(y) = Mipe(@)man(B).

1.3 (Localized) perverse sheaves on C

A The category Perv(X, A). We start with the case of an arbitrary Riemann surface, i.e.
let X, A be as before. Let LS(X) be the category of local systems of k-vector spaces on X. For
each £ € LS(X) the shifted sheaf £[1] is an object of Perv(X, A). It is straightforward that

this defines an embedding of the shifted category LS(X)[1] (identified with LS(X)) as a Serre
subcategory on Perv(X, A) and so we have the quotient abelian category

Perv(X, A) = Perv(X, A)/(LS(X)[1]).
Explicitly, Ob Perv(X, A) = Ob Perv(X, A) while
Hompgs x4y (F, G) = Hompery(x,4)(F, G)/I7 g,

where [z g is the subset (actually a k-vector subspace) formed by morphisms factoring as
F — L[1] — G for some £ € LS(X). Thus we have a functor Perv(X, A) — Perv(X, A)
bijective on objects and surjective on morphisms.

Note that the first (but not the second) functor in (|1.2.3]) vanishes on LS(X)[1] and so
descends to a functor which we denote by the same symbol:

(1.3.1) ®, : Perv(X, A) — LS(S}).

Further, let v be a simple path joining a,b € A as in The transport map mg,(a) from
descends to a natural transformations (also denoted mg,(«)) between functors (|1.3.1
evaluated on dir,(a) and diry(«). These transformation satisfy deformation invariance (1.2.6
and the Picard-Lefschetz identities (Proposition [I.2.§).

B The Gelfand-MacPherson-Vilonen description of Perv(C, A) and Perv(C, A) for
finite A. From now on we assume that our Riemann surface X is the complex line C with
coordinate w. We further assume that the set A is finite.
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Recall the descriptions given in [13]. From the topological point of view, we can replace
C by an open disk D which we view as the interior of a closed disk D, i.e., D = D\dD, so
A={ay. - ,an} < D.

Fix a point v € dD. Call a v-spider for (D, A) a system K = {v,--- ,yy} of simple closed
piecewise smoorth arcs in D so that 7; joins v with a; and different +; do not meet except at
v, see Fig. B

Figure 3: A spider defining the GMV-equivalence.

A v-spider for (D, A) defines a total order on A, by clockwise ordering of the slopes of the
v; at v (assumed distinct) and we choose the numbering A = {ay, -+ ,ay} in this order, as in

Fig. B

Denote by Qpn the category of diagrams of finite-dimensional k-vector spaces
N
unN
N\
: 1\
u1
A
P,

such that Ty, := Idg, —v;u; is invertible for each ¢. This implies that each T} ¢ = Idy —u,v; is
invertible as well.

Given a v-spider K for (D, A) and F € Perv(D, A), we consider, for each i = 1,--- | N,
the space ®; x(F) = Pq,,(F), i.e., the stalk of the local system ®,,(F) at the point in S}
represented by the direction of ;. Let us also identify the stalk U, (F) with the stalk F, using
the monodromy along ;. This gives a diagram

@K(‘F> = (\IJ(F)’(I)i,K(F)ﬂui,%‘>Ui,’Yi> € Qn.

Here ug, ,, and v,, ,, are the canonical maps along v; as in (|1.2.5)).

11



Proposition 1.3.2 ([13]). Let K be a v-spider for (D, A). The functor Ok : Perv(D, A) — Qn
1S an equivalence. O

Further, a spider K defines, for each ¢ # j, a path ozf](» joining a; and a; by first going from
a; to v and then from v to a;.
Let My be the category whose objects are diagrams consisting of:

(0) Vector spaces ®;,7=1,--- N.

(1) Linear operators m;; : ®; — ®; given for all 7, j (including ¢ = j) such that Ide, —m;; is
invertible.

Given an object F € Perv(D, A) and a spider K as above, we construct a diagram Zy (F) =
(®;,m;;) € My by putting ®; = ®,..(F) as before and

—— mij (o), if @ # j;
Y A-T(F), ifi=,

Proposition 1.3.3 ([13]). The functor Zk : Perv(D, A) — My is an equivalence. O

Remark 1.3.4. We can think of the point v € 0D as being far away at the infinity (“Vladivos-
tok”). This becomes even more natural if we use D as a model for the compelx plane C. For
this reason we will sometimes refer to the description of Perv(D, A) given by Proposition m
as the Viadivostok description and call the path mg- the Vladivostok path joining a; and a;.
From the naive “physical” point of view this is not the most natural way to connect a; and a;
by a path.

C Perv(C, A) inside Perv(C, A). For F € Perv(C, A) the hypercohomology H'(C, F) of C
with coefficients in F vanish fori # —1,0. Let Perv’(C, A) = Perv(C, A) be the full subcategory
formed by F such that H*(C,F) = 0 for all i. The following statement is a reformulation of
the results of [13], 20].

Proposition 1.3.5. (a) The localization functor Perv(C, A) — Perv(C, A) restricts to an equiv-
alence of categories Perv’(C, A) — Perv(C, A).

(b) Each object of Perv’(C, A) reduces to a single sheaf in degree (—1).

Proof: (a) In the proof of [13, Prop. 2.3] the authors construct a full embedding A : My — Qx,
where My is the category of diagrams describing Perv(C, A) by Proposition and Qy is
the category of diagrams describing Perv(C, A) by Proposition [1.3.2] The image Im(}) is a
subcategory in Q which maps equivalently to M under the localization functor Qn — My.
It is then verified directly from the definition of A | see the end of the proof of [20, Thm.2.29]
that Im()\) = Perv’(C, A).

(b) This is shown in the first part of the proof of [20, Thm.2.29] . O

12



Remark 1.3.6. Se we can write the lifting functor A in a geometric way, as
A : Perv(C, A) = Perv’(C, A) < Perv(C, A).

By Proposition an object of Perv(C, A) is determined by its vanishing cycles ®, and
transport maps between them, but does not have well defined stalks at points outside A, which
for an actual perverse sheaf form a (shifted) local system on C\A. The functor A provides a
preferred way to supply such local system. Interpreting the construction of A from [I3] in a
geometric fashion, we see that the typical stalk of this system is identified with @, P.

Ezample 1.3.7. let a € A and F = k, € Perv(C, A) be the skyscraper sheaf at a. Denoting
F € Perv(C, A) the image of F, the lift A(F) € Perv’(C, A) is the sheaf j (ke\ap)[1], where
j : C\{a} — C is the embedding. It becomes isomorphic to F = k, in Perv(C, A) because of
the exact sequence of sheaves

0— Jjilkeypay) = ke = ke > 0
gives an exact sequence in Perv(C, A)
0 — ko = ji(keyoy)[1] = Ke[1] =0

with third term in LS(C)[1].

1.4 Fourier transform of perverse sheaves and their Stokes data

In this section we assume k = C.

A The formal Fourier transform. Let D,, = C{w, d,,) be the Weyl algebra of polynomial
differential operators on C and D,,- Mod® > D,- Mod"* be the categories of holonomic and
holonomic regular singular D,,-modules. It is well known that the solution functor (on all
holonomic modules, regular singular or not)

Sol : D,,- Mod" — Perv(C), M ~ Sol(M) = RHom, (M, Oc)[1]

takes values in Perv(C). Further, its restriction to D,- Mod"® is an equivalence (Riemann-
Hilbert correspondence). See, e.g., [27]. So we can realize any F € Perv(C) as Sol(M) for a
unique M = Mz € D,,- Mod™.

The formal Fourier transform is the isomorphism

D, =Clw,0py — D, = C{(z,0,), ww> —0,, Oy — 2,

matching the analytic Fourier transform of solutions. Given M € D,- Mod", its Fourier trans-
form M is the same M but considered as a D,.-module using the above isomorphism. We
refer to [27] for background on this construction. In particular, it is known that M is again
holonomic, so we have the perverse sheaf Sol(]\//T ) = RHom,, (M, O¢)[1].

13



If M is regular, then | M is typically not regular. In this case it is also known that the
perverse sheaf F = Sol(M) has 0 as the only possible singularity, so we get the functor (also
called the Fourier transform)

(1.4.1) FT : Perv(C) —> Perv(C,0), F r— F := SO].(M]:).

The restriction of FT(F) to C\{0} has thus the form FTg,(F)[1] for a local system FTge,(F)
on C*, so we have the functor

FTyey : Perv(C) — LS(C¥).

As C* is homotopy equivalent to the unit circle S' = C, for any local system £ on C* we
can speak about the stalk L. at ant ¢ € S*. Further, for any a € C, the circle S} of directions
at a is identified with this fixed S', so we can view any ®,(F) as a local system on this S*.
With this understanding, the following is true [27, Ch.XII] [5, Prop.6.1.4].

Proposition 1.4.2. Let F € Perv(C). We have a natural isomorphism

FTgen(F) = @ ®u(F)

aeC
of local systems on S?. O]

In particular, the functor FT,, factors through Perv(C), which is one of the reasons to
consider this localized category.

Proof: For future reference, we give a sketch of the construction of the identification of the
proposition for generic (. Let F € Perv(C, A). A general result [0, Th.3.1.1] expresses the stalk
of FT(F) at ¢ € S! (considered as the unit circle in C) as the cohomology with support,namely

(1.4.3) FT(F); = H?Re@>_R}(C,F), R >0,

with R large enough so that the shifted half-plane contains A. For a € A let K,(¢) =a+(-R,
be the half-line in the direction ¢ issuing from a, see Fig. [
The embedding of the complements

C\ {Re(¢w) = R} — C\ [ JKa(Q)

acA

is a homotopy equivalence and F is locally constant on both of them. So we can replace the
support in (1.4.3)) by the union | J,. 4 K4(¢). Further, if ¢ is generic enough, then the union is
disjoint and so we have

FT(F); ~ H&%AKG(O(C,]-") = P Hy,(C,F) = @P(F). O

acA acA
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Re(¢w) = —R

[ ]

Figure 4: The half-lines K,(¢). Here ¢ = 1.

B The Stokes filtration of F. As M is typically irregular, its solutions (i.e., sections of
FTyen(F)) can grow exponentially in sectors near oo. So the local system FT,,(F) carries the
additional Stokes structure given by the data of such exponential growth in various sectors. In
our case, the growth is at most of the form e* where X is a constant.

Thus each stalk FT(F).) carries the Stokes filtration (X))xec labelled by the set C with
partial order <. given by A <. p if Re(¢\) < Re(Cu), i.e., e’ is dominated by e#, as z — @
on the ray ¢ - Ry. The subspace X\FT(F), < FT(F), consists of solution of M which grow in

the direction ¢ at most as e**.

Proposition 1.4.4. For a generic ¢ we have

SFT(F)e = P @ul(F).
Re(Ca)>

-
Proof: This follows from representing solutions of M as actual Fourier integrals gic(p)(2)

corresponding to ¢ € @, (F) over the half-lines K;(¢) as in Fig. i See [27, Ch. XII] for more
details. The growth near (oo of g; ((¢)(2) is of the rate e=%*. O

1.5 The Lefschetz perverse sheaf and its Fourier transform

In this section we take k to be an arbitrary field.

A The exponential integral as Fourier transform. Let X be a smooth complex alge-
braic variety of dimension n and S : X — C be a regular function. Given a regular volume
form dx on X, we can consider exponential integrals

(15.1) 1(2) = I(h) Leésmdx, s~ 1h,
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where T is a locally finite n-cycle in X such that the integral converges. We can consider /(z)
as a multivalued function whose determinations are labelled by choices of T'.

It is classical that one can split the integration in I(z) into two stages. First, we have the
relative volume form dz/dS, a rational section of Q?{/é and form the multivalued function Lg

on C
dx

I — e
S(w) Lwcsl(w) dsS

where I, is an (n — 1)-cycle in the fiber varying with w via the Gauss-Manin connection. Then
formally (assuming that I" is formed out of the I'y,, w € 7 for a cycle 7 in C)

I(z) = LLS(w)eizwclw

is (a determination of) the Fourier transform of Lg. Note that Lg is a Nielsen type function,
satisfying a differential equation with regular singularities, so all transcendental nontriviality
of I(h) comes from the 1-dimensional Fourier transform.

B  The Lefschetz perverse sheaf. A sheaf-theoretic analog of the function Lg is given
by the collection of perverse sheaves

£?S' = ﬂ;erv(RS* (kX[d1m<X)])7 €L

on C. Here H,,, is the degree i perverse cohomology taken with respect to the perverse t-

structure. We will be particularly interested in the case i = 0 and write simply Lg = L2 while
using the notation L% for the graded perverse shead @, LY.

Proposition 1.5.2. Assume that the function S : X — C has only isolated singularities and
is proper as a morphism of algebraic varieties (so each S™'(a) is compact). Then:

(a) If a € C is a non-critical value for S, then Lg[—1] is a local system near w and its stalk
at a 1is identified with H"(S™'(a), k).

(b) If a is a critical value then

C.(Ls) = D Psky[dim(X)]),
(a)

zeS—1(a

is the direct sum of the classical (Lefschetz) spaces of vanishing cycles for S at the critical points
over a.

Thus, for k = C sections of the local system Lg[—1] over the open set of non-critical values of
S give determinations of Lg.

Proof: (a) follows since the perverse t-structure is centered around the middle dimension. Part
(b) follows from the definition of vanishing cycles. ]
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Remark 1.5.3. One can say that the first step towards categorification of the exponential integral
(1.5.1)) is given by FT(Lg), the Fourier transform of the perverse sheaf Lg. E]As we saw in ,

the structure of FT(Lg) near oo is entirely given by the image of Lg in Perv(C), i.e., by the
vanishing cycles of Lg and the transport maps mg,(y) between then. To find these data, we do
not need to compactify S to a proper morphism X — C. For example, if S is a Morse function,
then it suffices to have the part of X containing the critical points and the Lefschetz thimbles

emanating from critical points towards other critical points.

2  Alien derivatives for perverse sheaves: elementary
theory

2.1 Additive convolution of localized perverse sheaves and Fourier
transform

Convolution of étale perverse sheaves on commutative algebraic groups was studied by N. Katz
[19]. We will need a simplified version for analytic perverse sheaves on the additive group C,
see e.g. [10].

A Additive convolution. Let k be an aribtrary field. Let A, B < C be finite subsets
and let F € Perv(C, A), G € Perv(C, B). Then F X G is a constructible complex (in fact, a
perverse sheaf) on C x C. We have the addition map

+:CxC—C, (W uw")—uw+u"

Let A+ B = +(A x B) be the set of sums a + b, a € A, b€ B. The map + gives the additive
convolution

F G :=R(+).(FXG)

Note that F = G is a priori a constructible complex on C with singularities (points of local
non-constancy of cohomology) contained in A + B.

Proposition 2.1.1. [I0, Prop.2.4.3] If F € Perv(C, A) and G € Perv’(C, B), then F «G €
Perv’(C, A + B). O

Let Perv(C) = [J, Perv(C, A) be the category of all perverse sheaves on C with finitely
many singularities. In a similar way we define the quotient category Perv(C) and its lift
Perv’(C) < Perv(C). By the above, Perv(C) and Perv’(C) are equivalent.

Corollary 2.1.2. [10, Th.2.4.11] The operation + makes Perv(C) ~ Perv’(C) into a symmetric
monoidal category with unit object 1 being the class of k, in Perv(C) or, equivalently, its lift
JiKe oy € Perv'(C), see Example .

3For the next step one should replace cohomology groups by appropriate categories, cf. [17].
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B Comparison with the Hurwitz convolution for analytic functions. The opera-
tion = for perverse sheaves is a categorical analog of the additive (or Hurwitz) convolution of
holomorphic functions f, g € C{{w}} defined near 0:

(2,13 (o) = [t )i
If
fl) = Y gl = Y0
then o . o )
(f = g9)(w) = ;}(H;n az‘bj> %

(series without constant term, in fact we have 1+ 1 = w). The theorem of Hurwitz (additive
version of the Hadamard theorem of multiplication of singularities) says that if f,g extend
to possibly multivalued analytic functions in C with singularities in possible infinite sets A, B
respectively, then f = g similarly extends to a possibly multivalued analytic function in C with
singularities in A U B u (A + B). See [14] and later treatments in [29] and [28] §6.4. The
additional possible singularities at A = A + {0} and B = {0} + B in Hurwitz’s theorem as
compared to Proposition come from the fact that the integration path in (2.1.3), starting
from 0, is a chain but not a cycle with coefficients in the local system of determinations of the
integrand.

C Additive convolution and Fourier transform. Let k = C. The classical principle
that “Fourier transform takes convolution into product” has in our case the following form.

Proposition 2.1.4. For F,G € Perv’(C) we have a natural isomorphism of local systems on
Sl
FTgen(F #G) =~ FTgen(F) @ FTgen(G).

Proof: By the Riemann-Hilbert correspondence, the direct image R+, in the definition of F G
can be calculated at the level of D-modules. That is, let M, N € D,-Mod"*. We define the
D-module additive convolution to be the complex of D,-modules

M+«P N =R+2 (M®N),
where:

(1) MXIN = M®cN considered as a module over D,,®&c D, = C{w',w”", Oy, Oy (polynomial
differential operators on C x C);

(2) R+7P is the derived D-module direct image, i.e., the de Rham complex along the fibers
of +:CxC—C.
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So defined, M +P N is a complex with holonomic regular singular cohomology and Sol(M =P
N) ~ Sol(M) * Sol(N) in the derived category of constructible complexes.

Further, the tensor product of local systems in the claim of the proposition corresponds to
the tensor product of D,-modules over C[z]. So our claim is a consequence of the following
one.

Lemma 2.1.5. Let M,N € D,-Mod"*. Then we have a natural isomorphism in derived
category

Proof of lemma: The fibers of the map + are 1-dimensional with the relative tangent bundle
generated by the vector field 0,y — 0. So M +P N is the complex

M®cN =% M®cN

with the differential 0y — Opr = 00 ® 1 — 1 ® J,,. Now, M ®é[z] N is the complex
M®c N 2% M @c N.

But M is M in which z acts as 0w and 0, as —w, and similarly for N , so the second complex
is identified with the first after the Fourier transform. This proves the lemma and Proposition

214 O

D The Thom-Sebastiani theorem. Propositions|l.4.2land|2.1.4]lead to a multiplicativity
property (a version of the Thom-Sebastiani theorem) which does not involve Fourier transform
and can be proved directly at the level of perverse sheaves. We take k to be an arbitrary field.

Let LS(S')C be the category of C-graded local systems on S', i.e. of collections £ = (L,)ec
of local systems on S! such that £, = 0 for almost all a. This category has a symmetric
monoidal structure given by

(£®M)C = @ Ea@Mb'

a+b=c

We have the total vanishing cycle functor
® : Perv(C) — LS®(SY), F > ®(F) := (®(F))cec.

Theorem 2.1.6. [10, Th.2.8.3] The functor ® is symmetric monoidal. In other words, for
any F,G € Perv’(C) and any c € C we have a natural isomorphism of local systems on S*

O (FG) = @D Pu(F)Qy(G).

a+b=c

For convenience of the reader and future reference we give a direct proof. It is enough
to consider the case ¢ = 0, the case of arbitrary c is similar. We further identify the stalks
of the local systems of vanishing cycles at the point 1 € S', i.e., in the direction of R, the
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identification of monodromy following by the same arguments as below. We will use the letter
® to mean such stalks.
For a perverse sheaf £ € Perv(C) we have a canonical identification

() = RI'Rew)=0y({|lw| <71},&),

where r > 0 is small enough. Indeed, the discussion in gives ®o(E) as RI'g, ({|w] <1}, &)
but the half-plane Re(w) = 0 (the part of it lying in the disk |w| < r) is stratified homotopy
equivalent (w.r.t. to the stratification of |w| < r by 0 and everything else) to the real half-line.
Therefore, using w’, w” as coordinates in C x C, we have

(2.1.7) Oo(F+G) = RUZz({|w' +u"| <71}, FKG), Z:={Re(w' +w") >0},
see Fig. [fl Now consider the subset
W = U {Re(w' —a) =0, Re(w” —b) =0} < Z.
a,be A,a+b=0
{Jw" + w”| <V w”
w
| v
W
A

Figure 5: The two sets of supports in the Thom-Sebastiani theorem.

If r is small enough, then the union in the definition of W is disjoint and

(2.1.8) RTyw({jw +w"| <1}, FKG) = (—D D, (F) ® Dy(9)

abeA,a+b=0
by the Kiinneth theorem. It remains to notice that the complements of the two supports, i.e.,
the open subsets

U={lw+uw<r}\Z and V = {u +u"| <r}\W

are stratified homotopy equivalent (with respect to the stratification given by the singularities
of FIXIG). More precisely, U can be obtained as a deformation retract of V' with deformations
affecting only the area where F [x] G is locally constant, so R'; = RI'y and therefore (2.1.7))

and ([2.1.8) give the same answer. O
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2.2 Rectilinear transports with avoidances and alien transports

A Rectilinear transports. We start by taking k to be an arbitrary field. Let a,b € A be
two distinct points. The most natural path joining a and b is the straight line interval [a, b].
We denote by

b—a

mesl ={CeC:|(|=1}

(2.2.1) Cab =
the slope of [a, b] in the direction from a to b.

If [a, b] does not contain any other elements of A, then for any F € Perv(C, A) we can use
[a, b] to define the rectilinear transport

(2.2.2) My = mafb = mﬂ)([a, b]) : @ fap)(F) — P fap(F).

We say that A is in linearly general position including oo, if no three points of A lie on a real
line in C and no (4 belongs to R.

Suppose A is in linearly general position including co. Then all rectilinear transports
mav([a,b]), a,b e A, are defined. Let My be the category of diagrams (®;, m;;) as in Proposi-
tion|1.3.3] Let us number A = {a1,.--- ,ax} in an arbitrary way, and denote (;; = (4;.a,, 1 # J
and ®;(F) = ®,,(F) (a local system on S'). In this notation, we define a functor

Erect : Perv(C, A) — My, F — (®;,my;),

as follows. We put
D = Py, 04r(F) = Bi(F )
(the stalk of the local system ®;(F) at 1 € S'). Further, my; is defined as Id —T;(F) where

Ti(F) : ®;(F)1 — ®;(F); is the counterclockwise monodromy. For i # j we define m;; as the
composition

i 1
e g 4

my. .

(2'2'3) (I)Z(F)l — (I)Z(*F)Cz; = (I)ai,[ai,aj](f) — (I)aj,[aj,ai](f) = (I)j(f)Cji - j(F)lv

where Tf” (resp. Téj) is the monodromy of the local system ®;(F) from 1 to (;; (resp. from (j;
to 1) taken in the counterclockwise direction, if Im(w;) < Im(w;) and in the clockwise direction,
if Im(w;) > Im(w,).

Proposition 2.2.4. If A is in linearly general position including oo, then the functor =,ec s
an equivalence of categories.

Proof: This statement, which is [17, Prop.2.1.7], is deduced from Proposition by deforming
the set A to the convex position. O]
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B Rectilinear transport with avoidances. Let us now allow [a, b] to contain other ele-
ments of A, say [a,b] n A = {ag =a,ay, - ,a,a,4+1 = b}, numbered in the direction from a to
b, withr > 0. Let ¢ = (g1, ,&,), & € {+,—} be a sequence formed by + and — signs. We
define the rectilinear transport with avoidances given by ¢ to be the map

(225) mZb = mZ’b}— . (I)a,[a,b] (f) - CI)b,[a,b] (‘F)7 mZb = mab<7€)7

where 7. is the perturbation of the path [a, b] obtaining by avoiding a; on the left, if ¢, = —,
and on the right, if ¢; = +, see Fig. [0

ay

R\ a WL

+( 8

Figure 6: Transport with avoidances.

+ . +,0 s+ - . Ty T M M
We define m, := m_; ", resp. m_, 1= m, to be the transport with all avoidances on

the right, resp. on the left (both understood as mg[a, b] for r = 0). Let us note the following
consequences of the Picard-Lefschetz identities (Proposition . Here and later in the paper
the identification of the stalks of the local ®-systems at the intermediate points is done by
clockwise rotation as in the Picard-Lefschetz formula, see (1.2.7)).

Proposition 2.2.6. (a) We have
T
- + + +
mab = Z Z mais 7bmai571,(l57‘ e ma,ail .
s=0 1<ij<---<ig<r
(b) Equivalently, we have
'
My, = My + Zm;,bm;ai'
i=1
(¢) For the composition of rectilinear transports we have the identity

+(e 5
Ma, bMa,_1,a, " Maay = Z (_1>| ( )lmab7

where | + (¢)| is the number of + signs in €.

Proof: All three statements follow easily by iterated application of Proposition [1.2.8] Part
(b) is reduced to (a) by expanding each m; , according to (a). Part (c) is an instance of [17,
Cor.1.1.19] for the case of the composition of paths which are rectilinear. n
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C The alien derivative transport. Assume now that char(k) = 0. Adapting the
approach of Ecalle, we give the following

Definition 2.2.7. The alien derivative transport from a to b for F € Perv(C) is the map

r s+1
A AF (_1) .
Map = My = Z s+ 1 Z mtzs,bmc—;sil,ah T mc—:ail . (I)a,[a,b] (‘F) - (I)b,[a,b] (]:)

s=0 I<ig<-—<ig<r
Here the superscript A is just a symbol chosen to invoke the standard notation for alien deriva-
tives [9, 2§]. Further, the formulas of Ecalle extend to the context of perverse sheaves in the

form:

Proposition 2.2.8. We have

3= Y (+EN- (=6 .

(r+1)! Mab:

where | + ()| and | — ()| are the numbers of + and — signs in ¢

Ezample 2.2.9. For r = 0: @ e—————« 0 we have m%, = mgy[a, b].
a1
Forr=1: Ge—e—2e0b wehave m% = imf, + imy,.

a ar a2 b
For r = 2: oo o oV we have

1 1 1 1
A _ _ __
Mgy = gmibJr + gmib + gma; +3Map -
Remarks 2.2.10. (a) Proposition represents m4, as a linear combination of the mg, with

positive coefficients summing to 1.

(b) It also shows that m2 is stable under introducing dummy singularities and depends
only on [a,b] and not on A. That is, if F does not really have a singularity at some a;, i.e.,
F € Perv(C, A\ {a;}) = Perv(C, A), then calculating m2, while taking a; into account and while
not taking it into account gives the same answer.

Proof of Proposition [2.2.8: This is a formal consequence of the Picard-Lefschetz identities
(Proposition [1.2.8). To organize the calculations, let us extend the notation mg, to the case
when a = ag, a1, ,a,,a,41 = b lie, in this order, on a possibly curvilinear simple path ~ from
a to b which contains no other elements of A. That is, we define the path 7. as in but
as the perturbation of v, not [a, b], according to €. To indicate the dependence on 7, we write
ms, (7). A curvilinear version of Proposition m(c), i.e., [I7, Cor.1.1.19] gives:

Proposition 2.2.11. Let ~; denote the part of v between a; and a;,,. Then

May1a, (V) Mapapy (Vr—1) =+ Mag,ay (Vo) = Z (—1)|+(5)|m2b(’y). u
de{+,—}"
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Now, to prove Proposition [2.2.8] we apply Proposition to each composition in the
RHS of Definition [2.2.7 That is, we take as vy the path which goes from ag = a to a;, avoiding
the intermediate a; on the left, then from a;, to a;, with similar avoidances and continues
like this, ending in the curved segment from a,, to a;,, = b with similar avoidances. The
intermediate points are a;,,---,a;,. Then the LHS of the formula of Proposition [2.2.11] m 1] for
such v and such choice of the intermetiate points is the composition in Proposition [2 So
we get

+17L 6 2L Gy e 5,47l
+ mt ot Z (_1)|+(6)\m( 1 2 )

QigsQigyq " Aig_q,0sy Qg0 ab )

oe{+,—}°

where +" stands for the sequence of m plus signs.

Now we need to find the coefﬁcient at each mg,, € € {+, —}" after we sum these expansions
over all s and all 1 < iy < ---i, <7 with coefficients (—1)**1/(s + 1). For this, let us encode ¢
by the subset [ = +(¢) = {@|a€Z = +} c {1,--- ,r}. The coefficient is then

1)1\ 1 r— ||
Z |J|+1 Z|I|+k+1( k >

So Proposition [2.2.§ reduces to the following.

Lemma 2.2.12. For any integer a, m > 0 we have

— m!a!
Zzl +k+1( ) C (mAa+ 1)

Proof of Lemma: For any function f = f(a) of an integer variable a let Af be its difference
derivative: (Af)(a) = f(a) — f(a + 1). The mth iteration of A has the form

Amfa:m—lk’mfa k).
7@ = B0y e

Let fm(a) = mlal/(m +a + 1)!, m = 0. The lemma means that f,, = A™f;. To see this, it is
enough to show that Af,, = f,.41, which is straightforward:

B mla! mla+1)!  allm+a+2)!—(a+1)
(Afm)(a)_(m+a+1)!_(m+a+2)!_m! (m+a+2)! B
_ ol al(m+ 1) _ al(m+ 1)! ~ foa(a). D

(m+a+2) (m+a+2)
D Description of Perv(C, A) via alien transports. We now generalize Propositionm
to the case when A = {ay,--- ,ay} < C is an arbitrary finite subset. We keep the notation of

above and assume only that no [a;, ;] is horizontal, i.e, all (;; ¢ R, i # j.
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Define the functor
Ea : Perv(C,A) — My, F — (0;,my),

where, as before,
Q; = (I)ai,ai-&-R(JT_-) = ®;(F)1, myu=1d —Tz’(]:)

and for ¢ # j the map m;; is the composition

- AF 1
TCz] maz o Tng

(I)%(Jr)l — (I)%(‘F)CU = Qaiy[ai,aj](f) - ‘I)aj,[aj,al](}—) = (I)j(}_)Cji - j(f)l'

That is, we replace the rectilinear transform in 2 2.3)) (which may no longer make sense because

of the presence of intermediate points) by ma a , the alien transform from a; to a; for F.

Proposition 2.2.13. The functor Za is an equivalence of categories.

Proof: Let us make a small deformation of the set A, replacing it with A" = {a}, -, d/y} with
la; — a,] « 1 such that A’ is now in linearly general position including c0. Since perverse sheaves
are topological objects, the continuous deformation a;(t) = (1 — t)a; + ta;, t € [0,1] of the
sets of singularities gives rise to an equivalence u : Perv(C, A) — Perv(C, A’) (“isomonodromic
deformation of perverse sheaves”, see, e.g., [17]). For any F € Perv(C, A) we denote F' the
corresponding object of Perv(C, A'), so that ®;(F) is identified with ®, (F) as a local system
on St

Applying Proposition 4/ to A’, we see that any F € Perv(C, A) is uniquely determined
by the data of:

(1) The monodromies of @, (F’) which are identified with the monodromies of ®;(F).

(2) The rectilinear transports for F.

Now, each rectilinear transport m,; for ]—"’ corresponds, under the equivalence u, to the rec-

tilinear transport with avoidances m ) for some e(i,j) describing to which side of [aj, a/]
the (formerly) intermediate points aj, now lie. Let 5 = |A N (a;,a;)| be the number of the
intermediate points on [a;, a;], so €(i, j) is a sequence of length 7.

The alien derivative transport m4 ., 18 a linear combination of all 2" transports mg_, With
strictly positive (in particular, nonzero) coefficients. Knowing any one mg, ;0 ANy other m
is expressed, in virtue of the Picard-Lefschetz formulas, by adding or subtractlng composmons
of transports with avoidances for smaller subintervals of [a;, a;]. Hence the data of all {m{_, }

for all distinct 1 < 4,5 < N and all € € {+, —}"3 . is uniquely recovered (by triangular-type
formulas) from the data of {m%zf )} 1< < N, where we choose one representative (i, j)

for each ordered pair (i, 7). Therefore the data of such {ma“;f )} are in bijection with the data
of {mfi’aj}, and the proposition is proved. O
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2.3 Alien derivatives and Stokes automorphisms for perverse sheaves

A Multiplicative properties of one-sided avoidances. Again, we start by taking k
to be an arbitrary field. For a,b € C and a perverse sheaf F € Perv(C) we use notation
m;—rb = mfb’f to mean either m:{b’f = m:l;""J“]:

consistently in any formula.

Let F € Perv’(C, A"), G € Perv’(C,A”) and A = A’ + A”. By Theorem [2.1.6 for any
direction # € S! and any a,b € A we have

_?-F _ 7""_)-F 3 1
or my~ = my , this meaning to be used

(2.3.1)
B (FGlo~ P Bu(Fo@Pur(G)y, Po(FxG)og~ B Pu(F)o® Py (G)-s.
a’e Al o' e A beAl b e Al
a/+a’/:a b’+b”:b

Let a = a +ad”’,b =V + V" € A be distinct, with ’,0’ € A’ and a”,0” € A”. Note that it is
possible that o' = a” or ¥ = b” (but not both). Take § = (, to be the direction from a to b.
Let us view the rectilinear transport with one-sided avoidances as a linear map

mETH B (F+Glg — ®y(F+G) .

With respect to the decompositions ([2.3.1)), we then have the matrix element

(m;jl;f*g)b/7b// : (I)a/ (f)@ ® @a// (g)g — @b/ (]:)_0 ® @bu(g)_a'

a/ ,a//

Theorem 2.3.2. (a) Unless the intervals [a', V'], [a”,V"] and [a,b] are parallel with the same
direction, (m;ﬂ)’f *Q)Z,’Z” -

(with the same direction) to any other interval.

(b) If the intervals [a’, U], [a",b"] and [a,b] are parallel with the same direction, then

0. Here a degenerate interval [a',a’] or [V',V] is considered parallel

£, FxG) Vb £ F oyt
(mab )a/’a// == ma/’b/ ® ma//7b//.
+,F +, . .
Here we understand m>7, or m=9, as the identity map.

a’,a a’,a

Let us express the above condition of three intervals being parallel with the same direction by
[a, V] || [a",0"] || [a,b]. Then we can reformulate Theorem as follows:

Reformulation 2.3.3. In the above notation, we have

+ +,F +,G
m(lb = Z ma’,b’ ® ma”,b”' D

a’+a"=a, b/ +b"=b
[a’,6']lI[a” ;6" ]| [a,b]]

Theorem and Reformulation as well as the proof below are inspired by Theorem 6.83
of [28] and its purely analytic proof.
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B  Proof of Theorem [2.3.2 Let us treat the case of m~ (avoidances on the left), the
case of m™ being similar. Fix ' € A, a" € A”. Let a =d' +a” € A and

K'=d +R0=1{d +1'6] >0}, K'=da"+R.0={a"+¢"0t">0)},

2.34
( ) K=a+R.0={a+1t0t =0}

be the straight half-lines issuing from a’, @” and a in the direction 6, see Fig. [7[(b). We use ¢/,
t” and t as coordinates on these half-lines.
By Example [1.2.2}

S, (Flg = HYr(F)a, ®ur(G)g = HY%u(F)ar and therefore

(2.3.5) o
@a/(F)g &® (I)a//(g)g = H(a/,au), where H := ﬂ ’xK”(F g)

The stalk H s ) can be seen as the Oth cohomology of F[X]G with support in the dark shaded
area near the left of (a’,a”) in Fig. [7(a). Denote

A=A K = {d=b,b,b,--}, A=A K" ={d" =00, -}

in order given by the direction of K’, K”, see Fig. [7|b).

K//
Fig.(a)

(@', b3) 1

(d, b;,;)
(a', bl)
LLT “

/
@.a’) g gy@ha) K

Figure 7: The area T' < K’ x K” and the transport with avoidances for F = G .

The sheaf H on K’ x K" is constructible with respect to the stratification cut out by A'x K"
K’ x A" and their intersection A’ x A", see Fig. B(a). This is because F [x] G is constructible
w.r.t. a similar stratification of C x C. In particular, H is locally constant on the interior of
K' x K" near (a’,a").

Let [N(’, K" be small perturbations of K’, K" obtained by avoiding the b,5/,7 > 0, on the
left. Then K’ x K" coincides with K’ x K” near (a’,a”). By construction,

H=H . (FRQ)
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is locally constant on the entire interior of K’ x K” and coincides with H near (a’,a"). Let also

K be a similar perturbation of [a,b] = K avoiding all the elements of A other than a and b on
the left.

Now look at the composite map

Eal ol m;’f*g
(2.3.6) o (Fo@Puw(G)g —> Bu(FxG)g > ®y(FxG)g = P ®y(F)-o@By(G).
b +b"=b
Here €, 47 is an embedding given by the Thom-Sebastiani theorem which is also indicated
in the equality on the right. The transport m;b’f*g is defined using K. As explained in

~

(applied to a = K) it is composed of three maps:

(1) The generalization map U, g = uaf}g (in the notation of (1.2.4])) from ®,(F = G)y =

H%(F + G), to the stalk at a nearby point ¢ € K which is HY%(F+G)e = (F+G)[-1],
the same as the stalk at ¢ of the local system F = G[—1].

(2) The parallel transport of the result of (1) along K in the local system F = G[—1] until we
almost reach b.

b
notation of ((1.2.4))) at b which is the dual of the generalization map u*9" for the Verdier

bK
dual perverse sheaf (F «G)Y ~FY = G".

(3) After approaching close to b using (2), applying the variation map v, p = v ;:(g (in the

Let 7 € K’ x K" be an interior point close to the point (a’,a”). It also lies in K’ x K” and

’ya’,a” . H(a/,a”) = H(alya//) —> HT = HT

be the generalization map of the constructible sheaves H, H which coincide in the area contain-
ing (a’,a”) and 7.

Let ¢ € ®y(F)g Q@ Pur(G)o = H(a,ar)- As follows from the construction of the identification
in the Thom-Sebastiani theorem (proof of Theorem [2.1.6), the composition u, z€q . can be
seen as the composition of v, o followed by the “forgetting of support” morphism

R(+)s Hyri o (FRG) — R(+):(FRG) = F G

evaluated in the stalks over c. Therefore we can replace parallel transport of u, z€q .7 (¢) along
K by parallel transport of 7, .»(¢) in the local system given by H on the interior of K’ x K”.

As this interior is contractible, we have a well defined section ¢ of H on it, extending vu/ o» ().

The map + : C x C — C restricts to +x : K’ x K” — K which in coordinates t’,t” from
(2:34) has the form t = ¢ +¢". Let T = +4'([a,b)) = K’ x K" be the preimage of the
half-open interval [a,b), depicted as the large shaded area on Fig. (a), and T < K’ x K" be
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corresponding perturbation of 7. On the edge F = {t' +t" = |b — a|} of T" we have the points
(b}, 0%) with b + b7 = b, i.e. precisely the points (V,b") such that [a',V], [a’,b"] and [a,b] are
parallel in the same direction, as in the statement of Theorem [2.3.2]

J-'Q FYxGY

Since the variation map v, n (3) above is dual to u, which has been just described

)

above, we see that only (b} b” ) on E will receive a component of m_,” (4.0 ()): the other

i Vg
(b, 0] ) will map far from b. This is precisely part (a) of the theorem.
Let us now prove (b). Let &' = b},b" = b} be such that b’ +b" = b and ¢ € ®y(F¥) 9 ®
®,/(GY)_p. As before, we use the duality between vf I*(g and uf K*g and interpret the latter

in terms of the generalization map vy : Hw )y — Ho where o is a point of T in the area
near (V',0"), depicted as the darker shaded area near the edge E on Fig. [f[b). So we have the
equality of the pairings

(Mo”9 (carar(9)), 1) = (B(0), vy (1))

where on the right the sections of the two dual local systems are evaluated at a nearby points
so the pairing is well defined. But since ¢ is a section of the local system F [x] G[—2], pairing
on the right is precisely ((m;j ® m;,;?b,,)(w), ). This proves the theorem.

C Example: an elementary parallelogram. As an illustration of Theorem consider
the following particular case. Let A" = {a’,b"} and A" = {a”,V"} each consist of two elements
such that the intervals [d/, '] and [a”, V"] are not parallel, so

A=A+A ={a:=d+d, V+d, o+ V+b =b}

is the set of vertices of a nondegenerate parallelogram, see Fig. [§| Then by Theorem the
vanishing cycle spaces of F =G at these vertices are the tensor products, as indicated in Fig. [§
As there are no intermediate points, the rectilinear transports for F =G between these vertices do
not need avoidances: m* = m~ = m. In this situation, Theorem says that the transports
along the faces of the parallelogram are tensor products of mgb, or mag//7b,, with Id, so these
maps look (up to isomorphisms of the stalks of the local systems ®) as forming a commutative
square.

But the diagonal transport m’T *9 is equal to 0. This last statement can be seen directly by

noticing that the rays K’, K” coming from a' and a” in the direction 6 = (4 will contain no
other elements of A’ or A” So K’ = K', K" = K" and the sheaf H = H will be locally constant
everywhere inside K’ x K”. This means that for ¢ € ®,(F) ® ®,»(G) the image u, x(¢) of
¢ under the generalization map, can be continued along K all the way through b and so its
variation at b (image under v, ) is zero.
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Figure 8: An elementary parallelogram: the diagonal transport is 0.

D Matrix formulation. The Stokes operator.  As before, let S' = {( e C: [(| = 1}
be the circle of directions. Let w € C be a nonzero number. For any F € Perv(C) we write
@, (F), for the stalk of ®,(F) at w/|w| € S* and put ®(F), = P,cc Pa(F)w-

Define the operator CE7 : ®(F), — ®(F), by defining its matrix elements (CE7)" -
D, (F), — Op(F), as follows:

Id, if a = b;
(CEFVY =12 omZ", ifb=a+uw;
0, b otherwise.

Here 7% is the clockwise half-monodromy of ®,(F) from the direction —w/|w| to +w/|w| (same
identification as used in composing rectilinear transports).
Reformulation 2.3.3] can be further reformulated as follows.

Corollary 2.3.7. For F,G € Perv’(C) we have

e SR Ye, ]

w'tw’=w
w’,w'"e[0,w]

Here for w' =0 or w” =0 (only one case can occur, as w # 0) we understand Cy to be Id. [

Definition 2.3.8. Let ¢ € S and F € Perv(C). We define the Stokes operator associated to ¢
and F as
Ste =Stf =Id+ ). C;: ®(F)c — ®(F)c.

UJER>0<
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The operator St¢ is invertible because it is represented by a block-upper triangular matrix
with respect to the order <, on A. It has Id on the diagonals since it gives identity on the
associated graded space. Proposition [2.3.7 can be reformulated even more concisely.

Proposition 2.3.9. Let F,G € Perv’(C). For any ¢ € S*.
FxG _ F g
St7¢ — StZ @Std. [

In other words, St is an automorphism of the tensor functor ®(—)..

E Alien derivatives via matrix elements. Assume now that char(k) = 0. For F €
Perv(C) and a nonzero w € C we call the alien derivative for F in the direction w the operator
A, = A7 ®(F), - ®(F), whose matrix elements (A,)% : ®,(F), — ®p(F),, are defined as
follows:

a

(A {wa omA, ifb=a+w;

0, otherwise.

Thus A, = 0 for almost all w.

F Alien derivatives as functor derivations. As S’céT is given by a block-upper triangular
matrix with Id on the diagonal, its logarithm is a well defined operator.

Theorem 2.3.10. (a) We have
log Stcf = Z A7
weR= ¢
(b) Let F,G € Perv’(C). With respect to the identification ®(F +G),, ~ ®(F),@®(G)., we have
the Leibniz rule
AT = AT ®1d + Id®AY.

In other words, the alien derivative is a derivation of the tensor functor ®(—),.

Proof: (a) follows by comparison of Definition of the m%, with the logarithmic series
log(1+ ) = 275(=1)"2""/(s + 1).

(b) Since St, is an automorphism of the tensor functor ®(—)c, its logarithm Ag_ . = log St
is a derivation by formal reasons. Now, ®(—). takes values in the tensor category of C-graded
vector spaces (with the graded tensor product). Any endomorphism D of this functor can be
split into homogeneous components D = >, _ D,,, where D, raises the degree by w. Clearly,
D is a derivation if and only if each D, is a derivation. It remains to notice that the A,
w € R.(( are precisely the homogeneous components of Ag_¢, in virtue of (a). ]
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G Stokes automorphisms in terms of the Fourier transform. Let k = C and F €
Perv(C, A). The directions (,, for all distinct a,b € A, see , will be called Stokes
directions for A.

As in , Fourier transform gives a local system FTge,(F) on C* or, equivalently, on S*.
In the proof of Proposition we constructed an identification of FT e, (F) with ®(F) =
@D s Pa(F) outsides of the Stokes directions. Indeed, ¢ € S! is non-Stokes if and only if all
the half-rays K,(¢) = a + (R, are disjoint.
Let us now complete that construction by describing how these identifications glue together
at a given Stokes direction (. Let (T and (= be nearby non-Stokes directions clockwise and
anti-clockwise from (. The gluing along ¢ for the local system FT,e,(F)). with respect to our
prior identifications is given by the map S¢ defined as the composition

7" (@) T¢, (FT) 13 e (@)

&(F) — ®F)c BP0 (F)ee o PP B er).  aF)

Here, say, TCCJr (®) is the monodromy from ¢ to ¢* (along the shortest path) for the local system

®(F), and Tg (FT) is the monodromy from ¢* to ¢~ for FT e, (F). The following result up to
notation coincides with [5, Th.5.2.2].

Theorem 2.3.11. S¢ coincides with the Stokes automorphism Ste. ]

Remark 2.3.12. Because of the triangular nature of St¢, it preserves the Stokes filtration which
was described in Proposition for generic (non-Stokes) directions #: the terms that are
added after crossing (, have lower rate of exponential growth. So we obtain a well defined
filtration on the local system FTge,(F) on S* labelled by the sheaf of posets (A, <g)gesr on S*.
This means that the sheaf of sets A is constant, but the order <y varies with 6, see [8, [7] and

[17, §2.4].

H Meaning and reformulation of Theorem For the convenience of the reader
let us discuss the meaning of Theorem in more detail. Let V' = FTge,(F)¢, identified
with FTge,(F)¢+ by monodromy (along the shortest path). Choose R » 0 and let § be the
half-plane {Re(¢w) = —R} as in the proof of Proposition [1.4.2] so that

V = Hg(C,F).

For any closed subset Z < § let 75 : HY(C, F) — V be the morphism induced by the inclusion
of supports.

As before, for any a € C and 0 € S* denote K,(f) = a + R, 0 the ray in the direction 6
issuing from a. We denote

K =K,(¢%), Ko=FK,(), K*=||Kf K=|]K,
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a

Figure 9: Crossing a Stokes direction ¢ = (g.

see Fig. @ As (* is non-Stokes, the rays K*, a € A, are all distinct, but not so for the
K,. Let us write ®, for the stalk ®,(F)q for any 6 € [(*, (], these stalks being identified by
monodromy and put ® = @,_, .. Then we have identifications

P ~ @HO+ (C,F) = Hy.(C,F).

Note that the morphisms
T ® = HY.(C,F) —» V as well as 75 : HY(C,F) -V

are isomorphisms, since the complements C\K* and C\K are homotopy equivalent to C\$ and
F is locally constant on these complements. It follows from the identifications constructed in
Proposition m that S, = TIQETK+, i.e., it is equal to the composition

-1

¢ = Hy.(C,F) ™S H)(C,F) “5 Hy-(C.F) = @
Denote for short the inclusion of support maps for individual rays by

7'ai = TK*(a) H?(ai((C,]-') -V, 1,= TK(a) - H?((a)((c7j"> -V,

so that
TKi:ZTf:ézg‘)q)a—)V
acA acA
Fix now a € A and let ay = a,ay,--- ,a, = b be all elements of A on K,, see Fig. [0] Recalling

Definition of St¢, we can reformulate Theorem [2.3.11] as follows.

Reformulation 2.3.13. For any choice of a as above and any ¢ € ®, we have
7, (¢) ) + Z My, (9). O
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Remarks 2.3.14. (a) Note the similarity of the above formula with Proposition [2.2.6(b). Here,
instead of the final transport m;’b to @, we have the map 7,7 to V' which corresponds, infor-
mally, to putting b at oo.

(b) Reformulation [2.3.13| matches rather directly the identities among exponential integrals
of multivalued functions along various paths, traditionally used in resurgence theory.

3 Resurgence theory: convolution algebras in Perv(C)

3.1 The general program

We now outline an approach to resurgence as a program of extending and applying the above
elementary theory to a more general concept of perverse sheaves.

A Resurgent perverse sheaves: algebras in the convolution category. We propose
to consider perverse sheaves on C,, (the Borel plane) carrying some algebraic structures with
respect to the convolution operation . For example, associative (commutative or not) algebras,
i.e., perverse sheaves A with an operation (i.e., morphism) A=A — A satisfying the associativity
and possibly commutativity condition. Or, given such algebra A, we can consider A-modules,
i.e., perverse sheaves M with an operation A * M — M. Other algebraic structures can be
considered (e.g., Lie algebras).

An algebraic structure with respect to convolution defined on a perverse sheaf A would
give a formal convolution operation on its sections over various domains or on the spaces
of vanishing cycles (whose intuitive meaning is to describe singularity data of sections). So
various formulas of resurgent analysis involving convolutions, alien derivatives and such could
be written intrinsically inside the data associated to .A. Therefore we propose to call perverse
sheaves equipped with such algebra structures resurgent perverse sheavesE] In various concrete
examples sections of resurgent perverse sheaves will be represented by actual resurgent functions
in the classical sense.

As Fourier transform takes convolution to fiberwise multiplication, applying it to a resurgent
perverse sheaf A would give a local system on C¥ the punctured z-plane with an algebra
structure (of the corresponding type) in the fibers and with a Stokes structure such that the
Stokes matrices are isomorphisms of algebras. For example, if A is a commutative algebra, the
Stokes matrices, being isomorphisms of commutative algebras, can be thought of as coordinate
changes. This would fit, e.g., into the interpretation of cluster transformations as Stokes data
for appropriate differential (or rather integral) equations, see [I1} §7] and below.

B Generalized perverse sheaves and their convolution. In order to realize the above
program, we need to generalize the concept of perverse sheaves.

4To be more precise, we suggest to use this term for a generalization of the notion of perverse sheaf discussed
in the next subsection.
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First of all, we need perverse sheaves on C whose set of singularities A is an arbitrary
countable (for example, everywhere dense) subset in C. A typical example of such A is a (free)
abelian subgroup in C of finite rank r; it cannot be discrete, if r > 3. Examples like this are
inevitable since in the classical case (Proposition the singularities of F =G are typically all
the sums of a singularity of F and a singularity of G. So to have an interesting map A=A — A,
the set of singularities of A needs to be closed under addition.

The fundamental object of study should be the localized category Perv(C, A). Its objects
should have well-defined spaces (more precisey, local systems on S') of vanishing cycles ®,,
a € A and the transport maps mg(7y) : ¢, — Pp, for some class of paths v joining a and b.

Note that case of a discrete A — C may seen to be covered by the theory of D-modules and
perverse sheaves in the analytic context. However, already the lifting of Perv(C, A) back into
Perv(C, A) in this context is not obvious, since in the classical case |A| < oo the generic stalk of
the lifted sheaf is the direct sum of all the @, (see [I3] 20, [10]) which can be infinite-dimensional
for |[A| = oo and so falls outside of the theory of analytic D-modules.

For this and other reasons we need perverse sheaves with possibly infinite-dimensional stalks
or, more generally, perverse sheaves with values in a more or less arbitrary abelian category
C. For example, when C is the category of pro-finite-dimensional (= locally linearly compact
linearly topological) vector spaces, the dual to the category of all vector spaces, this approach
would give (perverse) cosheaves of [25]. Also, one needs to consider various analytic completions
(e.g. of the infinite direct sum of the vanishing cycles above), intermediate between direct sums
and direct products and involving convergence conditions.

C Lefschetz perverse sheaves in infinite dimensions. It is a very appealing idea to
generalize the construction of the Lefschetz perverse sheaves L% from to the case when X
is some complex function space of “fields” and S is the classical action functional corresponding
to some physical theory.

Indeed, Crit(.5), the critical locus of S, is the space of solutions of the classical equations
of motion; if the problem is set up appropriately, connected components of Crit(S) are finite-
dimensional. The behavior of S in the directions “transverse” to Crit(S) typically has the
form

o0
S(@) = f(xr, - am) + Y, @,
i=m+1
the direct sum of a function of finitely many variables and an infinite sum of independent
squares. This means that perverse sheaf ® = “@g(ky[dim X])” on Crit(S) , or at least, on
some patches of Crit(S), can be deﬁnedﬂ “by hand” starting from the ®;. As adding an extra
independent square transforms vanishing cycles in a known way (Knorrer periodicity), we are
lead to a natural gerbe (of orientation data) whose trivialization defines ® completely. This by

5Strictly speaking, on a compoment C' = Crit(X) with S(C) = a € C we should define ®5_,, not ®g.
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now well known procedure is axiomatized using the framework of (—1)-shifted symplectic struc-
tures [2]. The hypercohomology groups of connected components C' = Crit(S) with coefficients
in ® appear in the framework of motivic Donaldson-Thomas (DT for short) theory.

However, such a procedure treats different components independently, as the actual values
of S on the components are ignored or lost. A natural refinement of the above data would be
perverse sheavesl| £ on C whose stalks at a € C would be H'(C,, ®), where C, is the union
of components C' < Crit(S) with S(C) = a. This additional structure would also provide the
transport maps mg(7y) between motivic DT-invariants for a certain class of paths 7 as long as
stability structures are incorporated in our framework (e.g. in the case when X is the stack of
objects of a 3-dimensional Calabi-Yau category of “geometric origin”).

D Unlimited analytic continuation: the analytic pro-étale site. Multivalued ana-
lytic functions f(w) on the Borel plane appearing in resurgence theory, have the remarkable
property of unlimited analytic continuation which has been made precise using slightly different
concepts of continuation “without cut” (sans coupure) in [9] or “without end” (sans fin) in [4].
Intuitively, such a formalization needs to accomodate two features of the functions in question:

(1) They possess no natural boundaries, beyond which analytic continuation is not possible
(such as the unit circle being the natural boundary for the function ), w™).

(2) But they can have isolated singularities including ramification points that can accumulate
on further and further sheets of the Riemann surface.

To explain (2), any “branch” of f(w) is defined over a “sheet” obtained by removing from C a
discrete set of cuts emanating from a discrete set of ramification points “visible on this sheet”.
But after crossing a cut we arrive on a new sheet where f(w) has a new, still discrete but
possibly larger set of ramification points etc. At the end one can have a seemingly paradoxical
outcome that f has a non-discrete, e.g., everywhere dense set of singularities (understood as
points in C).

The features (1) and (2) make one think about the Bhatt-Scholze theory of the pro-étale
site [I]. Indeed, (1) suggests some étale property while going to further and further sheets in
(2) resembles some projective limit procedure. So let us sketch a version of this theory in the
analytic situation. We plan to discuss it in detail in the future.

Let X be a complex manifold of dimension d. We can consider on X the analytic Zariski (or
ana-Zariski for short) topology, in which the closed sets are analytic subsets S < X. Then the
open sets are complements X\S of such S. For example, if d = 1, then an analytic subset in
X is just a discrete subset, possibly infinite. Thus an ana-Zariski open subset is a complement
of a discrete subset.

Let now X and Y be complex manifolds of the same dimension d.

Sor objects of the localized category Perv.
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Definition 3.1.1. A holomorphic map f : Y — X is called an analytic étale (ana-étale for
short), if:

e f is a local biholomorphism, i.e., the differential df is invertible everywhere.

e There is an ana-Zariski open sets Y/ c Y, X’ < X such that f(Y’) = X’ and moreover,
f Y’ — X’ is an unramified covering (with possibly infinite fibers).

An example is given by the exponential map exp : C — C, with § = {0} ¢ X = C.
Definition 3.1.2. A holomorphic map f : Y — X is called a pro-ana-étale, if there exist:

e A projective system
Vo= X Vi Yy oo

with each arrow being ana-étale;

e An injective morphism f: Y — limY; whose composition with the projection limY; —
Yy = X coincides with f.

Thus Definition accounts for the desired feature (1), while Definition accounts for
(2).

Ezxamples 3.1.3. (a) The embedding map Y = {|Jw| < 1} — X = C,, is a local biholomorphism
but not pro-ana-étale. Such Y can be seen as the Riemann surface of a function with natural
boundary.

(b) It seems plausible that the classical example of the Riemann surface of the inverse of the
hyperelliptic integral discussed in [4, §3] can be included into the framework of pro-ana-étale
theory outlined above. We plan to discuss this as well as more general examples in the future.

To define constructible and then perverse sheaves with possible non-discrete sets of singu-
larities, one can follow one of the two paths. N

First, each sheaf 7 on X in the analytic topology has the étale space X — X obtained by
topologizing the union of all the stalks F,,x € X. One can consider sheaves whose étale spaces
have maximal Hausdorff parts of their connected components satisfying the property of being
pro-ana-étale in the above sense, with some constructibility conditions imposed on the sheaves.

Alternatively, one can consider directly some version of pro-ana-étale Grothendieck site on
X and work with sheaves on this site.

3.2 A finitistic example: COHA of a quiver with potential

Let Q = (I, E) be a finite quiver, with I being the set of vertices and E — I x I being the
set of oriented edges. For any dimension vector d = (d;)ss, d; € Z, we denote Rep,(Q) the
stack of complex d-dimensional representations V' of (). By definition, such a representation
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associates to each ¢ € I a d;-dimensional C-vector space V; and to each arrow e € E between i
and j a linear operator p. : V; — V; with no further relations.

We denote by C{Q) the path algebra of @), so representations of () are the same as left C{Q)-
modules. Fix a potential, or a cyclic word in C{Q), i.e., an element s € C<Q>/[C<Q>, (C<Q>],
the quotient by the commutator subspace (not the ideal generated by commutators). More
explicitly, s is represented as a linear combination of closed edge paths in (). A choice of s gives
for any d a regular function

Su:Repy(Q) — C, Vo try(s)

given by taking the trace. Such functions are additive in the following sense: in the induction
diagram of stacks

dim(E') = d’, dim(E") = d",

— F - — B -
{0— L& =5 —E" -0} dim(E) =d = d + d"

/\

Repy x Repgn Rep,

the pullback of Sy + Sy from the left is equal to the pullback of Sy from the right.
The Cohomological Hall Algebra (COHA) associated to (@, s) is [22]

A= @ As, Ag= H*(Repy(Q), s, (k[dim Rep,(Q)])).

deZl.

Here dim Rep,(@Q) is the dimension in the sense of stacks. The multiplication Ay®Ag — Agvar
is given by the pullback and pushforward in the induction diagram above.
Now consider the (bi)graded perverse sheaf

A=P A, Ai=L3,
d

where L% is the graded Lefschetz perverse sheaf (see on C associated to Sy3. Each
Ay is a graded perverse sheaf with finitely many singularities only. We will consider Ay as
an object of the localized category Perv(C). It seems plausible that the induction diagram
defines morphisms of graded perverse sheaves Ay * Ag — Agr in Perv(C), i.e., makes A into
an associative convolution algebra refining A, cf. [22], §4].

Remark 3.2.1. The above definition of COHA depends only on the quiver with potential. One
can make an additional choice consisting of the central charge Z : Z! — C. This choice gives rise
to the wall-crossing structure in the sense of [23], 24]. If the wall-crossing structure is analytic in
the sense of [24] then it was conjectured in the loc.cit. that germs of sections of the associated
non-linear fiber bundle over C are resurgent. Assuming the conjecture we obtain a perverse
sheaf on the Borel plane with singularities belonging to the image Z(Z!). This perverse sheaf
seems quite different from the L% .
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3.3 Cluster perverse sheaves and wall-crossing structures

A Two types of examples: Lefschetz type and cluster type. Two main classes of
perverse sheaves on C of infinite rank with possibly infinite set of singularities appear naturally
in resurgence theory:

e Those which comes from holomorphic functions on infinite-dimensional manifolds (natural
generalization of Lefschetz sheaves)

e Those which come from wall-crossing structures [24]. In this section we consider this
class. They can be called cluster perverse sheaves” or wall-crossing perverse sheaves. We
will use the former term, since cluster transformations play the key role in the story.

These classes have nonempty intersection.

B Reminder on stability data on graded Lie algebras. Let us recall the relevant
structures following [21], 23], 24].

Let T be a free abelian group of finite rank n endowed with a skew-symmetric integer-valued
bilinear form (—, —) : I' x I' — Z. Consider the vector space g = gr = ®,erQ - e,. This space
is made into a Poisson algebra with the commutative (associative) product and the Poisson
bracket given by

— (_1)<71,’Y2>

€416z Ey1+72

{67176’}’2} = (_1><71772><71772>6’Yl+72 :
Let T = Tr := Spec(g) be the algebraic Poisson manifold obtained as the spectrum of the

commutative algebra g. It is a torsor over the algebraic torus Hom(I', G,,) and the Poisson
structure on T is invariant with respect to the torus action.

(3.3.1)

Let I'r = I'® R. For any strictly convex cone C' < I'g we denote
ﬁC = 1_[ Q =
yel'nC—{0}
the completion of g associated to C. It inherits the Poisson algebra structure.

Recall [21] that stability data on g consist of a pair (Z,a), where Z : I' — C is a homomor-
phism of abelian groups (“central charge”) and a is a collection of elements a, € Q- e, < g
given for each v € I'\{0}. These data satisfy the so-called support condition which means that
there exists a non-zero quadratic form on I'® R which is non-negative on those v € I" for which
a, # 0 and which is negative on Ker(Z ® R), see [21, §2] for details.

It is convenient to transform the collection a = (a,) into a collection of numbers 2 = (2() €
Q)~er\foy defined uniquely by the identities

Q(v/n
3 (v/n)

a(y) = -
n>1,L~er\{0}

39



Then for any cone C' as above containing v we have a formal identity in g¢:

exp (Z a(nvy) ) = exp ( Z Q(ny Z ek”“Y) = exp (— 2 Q(nfy)Liz(em)> :

n>=1 nx=1 k=1 n=1

where Lis(t) = ), t"/k? is the dilogarithm series.

As for any Poisson manifold, the Lie algebra g = (O(T), {—, —}) acts on T by Hamiltonian
vector fields (derivations of the coordinate ring (g = O(T), e)) which have the form {f, —} for
f € g. For any v € I'\{0} denote by S, the formal Poisson automorphism defined by

S, = exp({~Liz(ey), = 1), Sy(e) = (1 —ey) 7",

Here the second equality exhibits S as a birational automorphism of T, i.e., an automorphism of
the field of fractions of g. The first equality shows its formal series expansion in g¢ for any C' 3 v
as above. It is explained in [2I] how the Q(y) are related to enumerative Donaldson-Thomas
invariants of 3-dimensional Calabi-Yau categories.

Further, if the above data satisfy a certain analyticity assumption, then they give rise to an
analytic fiber bundle E over C with fibers isomorphic to T. The gluing functions of F come
from transformations

(3.3.2) H SQ (product in the order given by )

Z(v)el

associated to various rays [ < C. In this case, the resurgence conjecture of [24] says that with
any analytic section of E and each v € I' one can naturally associate a resurgent series in the
standard coordinate z on C.

The notions of wall-crossing structure and analytic wall-crossing structure (see [24]) gener-
alizes the notion of stability data on a graded Lie algebra roughly by considering sheaves of
stability data and analytic stability data.

C A perverse sheaf interpretation. From the point of view of the present paper, it
is natural to think of the target of the central charge map Z : I' — C as the Borel plane.
Let us assume for simplicity that Z is a set-theoreical embedding. The transformations 5; are
suggestive of Stokes multiplies and are in fact interpreted as such (in the more general context
of integral equations) in [I1], cf. also [3].

So it is natural to look for a perverse sheaf] 7 on C in some generalized sense as above (in
fact, an object of an apprioriate localized category Perv) with the properties:

(0) F is a Poisson algebra with respect to convolution.

(1) The set A of singularities of F is a subgroup of Z(I'). So it can be discrete (though still
infinite), if rk(T") < 2

Twith k = Q.
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(2) For a = Z(7) the space ®,(F) is 1-dimensional, identified with Q - e.,.
(3) For ¢ € S* the Stokes operator St for F is given by Sg, ¢ from (3.3.2)).

Then g would be realized as @, , Po(F) with the operations coming from those on F.

The Fourier transform F would then be a generalized perverse sheaf of infinite rank (the latter
needs a rigorous definition), and the stalks of the local system FT(F)ge, on C* would involve
some analytic completions of g = @7er@ -ey. For aray [ < C the transformation S; need
not preserve g which is an algebraic direct sum: it maps g into the direct product. But as
such it has a well defined matrix element between any two summands which we can write as
(SDap : Pu(F) — Dy(F). Note that (S))e = 0 unless (b — a) € [. Therefore it is indeed
meaningful to interpret each S; as the Stokes operator of some would-be generalized perverse
sheaf F. If we do so, the finite case analysis of provides an answer for what should be
the (say, left-)avoiding transport m_;” or the alien transport mS” for any a,b e A = Z(I).
Proposition suggests that his should be sufficient information to recover F as an object

of the localized category.

This picture is expecially compelling when rk(I") = 2 and A is a discrete lattice in C. Then
one can look for F as a perverse sheaf in the classical sense but with possibly infinite-dimensional
stalks.

3.4 Perverse sheaves in Chern-Simons theory

An example of a holomorphic function on an infinite-dimensional complex manifold (or stack) is
provided by the complexified Chern-Simons functional (CS functional for short) associated to a
compact oriented 3-manifold M and a complex semisimple Lie group G. Let e.g. G = SL,(C).
We take X to be the moduli stack of C'°-connections on the trivial SL,-bundle on M, so X is
the quotient of the vector space Q'(M) ® sl,, by the gauge group C*(M, SL,(C)), and the CS
functional is

(34.1)  CS: X — C/4n’Z, CS(A) = f

tr (114 A dA + %A ANAA A) mod 4727,
M3

2

In fact, quotienting by the subgroup of gauge transformations equal to 1 over a fixed point
mg € M, gives an infinite-dimensional manifold X}, (framed connections) with X = A%, /S L, (C)
and we can consider CS on this manifold.

In order to get rid of the multivaluedness we pass to the maximal abelian covering /'Ffr Z P2
so we get a well defined holomorphic function

(3.4.2) CS: X — C.

One can then attempt to define and study the corresponding Lefschetz perverse sheaf Lcg
along the lines discussed in @ Such a study was in fact initiated in [25] although very little
is known about Lgg. Some known facts and some expectations can be summarized as follows.
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(1) The functional CS in (3.4.1)) has finitely many critical values, which are known to be the
regulators of some elements in algebraic K-group K3(C). Accordingly, the critical values
of CS fall into finitely many arithmetic progressions with step 472Z.

(2) The generic stalks of the expected perverse sheaf L (i.e., intuitively, the middle-dimensional

cohomology of the generic fiber of GS) are infinite-dimensional. In fact, it is easier to first
define the Verdier dual cosheaf, as done in [25]. But the spaces of vanishing cycles are
finite-dimensional.

(3) Lag can be defined as the perverse extension of the local system formed by the middle
cohomology of the fibers on the complement to the set of critical values, see [25] §8.3].

(4) In addition, RT'(C,Lgg) = 0, so Lgg is, formally, an object of the category Perv’(C)
(although with infinitely many singularities and with infinite-dimensional stalks).

Some further conjectures can be found in [25, §8.3]. It was also explained in loc.cit. how the

wall-crossing structure and resurgence properties of the perturbative expansions of the Chern-
Simons functional integral are related to the perverse sheaf L.
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