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Abstract

We propose a point of view on resurgence theory based on the study of perverse sheaves
on the complex line carrying an algebraic structure with respect to additive convolution. In
particular, we lift the concept of alien derivatives introduced originally by J. Écalle, to the
framework of perverse sheaves and study its behavior under sheaf-theoretic convolution.
The full fledged resurgence theory needs a (yet undeveloped) generalization of the concept
of perverse sheaves allowing infinite, possibly dense, sets of singularities. We discuss
possible approaches to defining such objects and some potential examples of them coming
from Cohomological Hall Algebras, wall-crossing structures and Chern-Simons theory.
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Le sommeil est plein de miracles!
Par un caprice singulier,
J’avais banni de ces spectacles
Le végétal irrégulier.

Ch. Baudelaire, Rêve parisien

0 Introduction

The theory of resurgent functions pioneered by J. Écalle [9] studies analytic functions “given by
divergent series” in terms of singularities of their Borel (formal Fourier-Laplace) transform (see
§1.1 below for discussion). As with any kind of Fourier transform, this procedure takes multi-
plication into additive convolution. Resurgent analysis then proceeds by using equations that
involve convolution as well as the monodromy data (alien derivatives) for the Borel-transformed
functions.

The goal of this paper is to propose a more conceptual point of view on resurgence theory
by using the notion of perverse sheaf. It is known that operations such as convolution or
Fourier transform can be defined at the sheaf-theoretical level and match, to some extent, the
corresponding analytic operations for functions when such functions are realized as sections of
the sheaves in question. So, it is a natural idea to import the perverse sheaves language into
resurgent analysis, with the hope to achieve greater conceptual clarity.

In a few words, our proposal is to consider perverse sheaves on C carrying the structure of
an algebra with respect to convolution (see §3.1 for more details). Using this structure one can
write resurgent equations whose unknowns will be sections of such “resurgent perverse sheaves”,
with classical examples appearing when sections are realized as actual analytic functions. But
one can also, in principle, construct resurgent perverse sheaves in a more abstract fashion, not
unlike the way one constructs field extensions not necessarily embedded in C by adjoining roots
of algebraic equations.

Already in 1985 B. Malgrange [26] gave an interpretation of the resurgent formalism in
terms of M. Sato’s theory of microfunctions. His main observation was that the concept of
a “singularity” (or “singular part”), ubiquitous in this formalism, is but a synonym for a
microfunction. Now, the space of vanishing cycles of a perverse sheaf on C is the same as
the space of microfunction solutions of the corresponding holonomic regular D-module [12].
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Therefore, working with perverse sheaves and their vanishing cycles is a natural conceptual
framework for resurgence theory.

However, for true applications to resurgence the theory of perverse sheaves must be extended
to match the kind of multivaluedness that resurgent functions typically possess. These functions
typically have infinite or even dense sets of singular points. That is, on any “branch” the
singular points are of course discrete, but going around each one leads to a new branch with
new singularities etc. Such behavior is referred to as “‘analytic continuation without end”.

In this paper we do not attempt to generalize the theory of perverse sheaves in this di-
rection. Instead, we develop a resurgence-like formalism involving the standard concept of
perverse sheaves on C (i.e. with finitely many singularities). Already this allows us to highlight
many of the familiar features in the sheaf-theoretic context, for example the interpretation of
Stokes data via Picard-Lefschetz type formulas in the Borel plane. Further, some examples
of “resurgent perverse sheaves” may be already given in this restricted context, such as the
version of Cohomological Hall algebra in §3.2.

A special role in our considerations is played by the category PervpCq obtained by localizing
PervpCq, the abelian category of all perverse sheaves on C, by the Serre subcategory of (shifted)
constant sheaves [13]. Objects of PervpCq have well-defined “tunnelling data” consisting of the
spaces of vanishing cycles Φa, a P C and the transport maps mabpγq : Φa Ñ Φb for various paths
γ joining a and b.

It is known [20, 10] that PervpCq can be embedded back into PervpCq as the subcategory
Perv0pCq formed by perverse sheaves F with H‚pC,Fq “ 0. The operation of additive convo-
lution F ˚ G is most easily defined using this realization [10]. Our “toy resurgent formalism”
can be seen as further study of the Tannakian Galois group of the tensor category pPervpCq, ˚q,
as defined and already studied in [10]. So, our larger point is that the full fledged resurgent
formalism is just a similar study but for a more general concept of perverse sheaves, still to be
defined rigorously (see §3.1 below). We plan to discuss this further in a future work.

The paper consists of three chapters. In Chapter 1 we recall the elementary theory of
perverse sheaves on C (with finitely many singularities) with emphasis on features that we need.
The motivational §1.1 explains the general framework of Borel summation and the resulting
“doctrine of two planes”: the original one carrying functions given by divergent series and the
Borel one where things become more topological. In §1.2 we recall the basic definitions and
emphasize the Picard-Lefschetz formula (Proposition 1.2.8) in the context of perverse sheaves.
In §1.3 we present the Gelfand-MacPherson-Vilonen classification of perverse sheaves and of
objects of the localized category PervpC, Aq, where constant sheaves are factored out but the
vanishing cycles and transport maps remain. The Fourier transform for perverse sheaves is
explained in §1.4. There, we mostly follow [17]. In §1.5 we discuss a particular class of examples
of perverse sheaves on C associated to a regular function S : X Ñ C on a complex algebraic
variety. We call them Lefschetz perverse sheaves LS. The Fourier transform of LS can be seen
as a categorification of the exponential integral associated to S.
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In Chapter 2 we build up features of perverse sheaves on C which are most remindful of
resurgence formalism. In this, we extend the analysis of rectilinear transports given in [17],
in the case when the set A of singularities is in linearly general position, to the arbitrary
case, when an interval ra, bs, a, b P A can contain intermediate points. In §2.1 we discuss
additive convolution of perverse sheaves on C. Motivated by the classical resurgent formalism,
we consider, in §2.2, various ways of modifying the rectilinear transport so as to avoid the
intermediate points. The formulas for alien derivatives appear naturally in this context as
some linear combinations of such modified transports. In §2.3 we study alien derivatives more
systematically; we also explain their relation with the Stokes automorphisms for the Fourier
transform.

In the final Chapter 3 we discuss how our approach can be applied to actual resurgence
problems. This chapter is more speculative. We start by sketching in §3.1 the general program
of studying perverse sheaves which are algebras with respect to the convolution, highlighting
the difficulties that are present in the general case. Then, we discuss several classes of potential
examples: the example with the Cohomological Hall algebra (a.k.a COHA) of a quiver in §3.2,
that of “cluster perverse sheaves” associated to wall-crossing structures in §3.3, and that of
Lefschetz perverse sheaves associated to the complex Chern-Simons functional in §3.4.

Acknowledgments. The research of M.K. was supported by World Premier International
Research Center Initiative (WPI Initiative), MEXT, Japan and by the JSPS KAKENHI grant
20H01794. The work of Y.S. was partially supported by Simons Foundation grant MP-TSM-
00001658, NSF grant 2401518, IHES Sabbatical Professorship and ERC grant ”Renew Quan-
tum”.

We would like to express our gratitude to A. Soibelman for correcting the English in the
Introduction.

1 Perverse sheaves and their Fourier transform

1.1 Motivation: Borel summation and the Borel plane

The famous Borel summation process for divergent series can be seen as an application of the
Fourier transform in the complex domain. It connects two copies of the complex plane C which
are loosely related “by the Fourier transform”:

• The original (“irregular”) plane Cz with coordinate (“large parameter”) z in which we
study possibly divergent formal power series near 8:

(1.1.1) pfpzq “

8
ÿ

n“0

an
zn`1

Such series typically satisfy linear differential equations irregular at 8, are divergent
everywhere but serve as asymptotic expansions of interesting analytic solutions in various
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sectors. Quantum mechanical asymptotic series in powers of the Planck constant ℏ are
realized here by putting z “ 1{ℏ.

• The dual (Borel or “regular”) plane Cw with coordinate w where we study (or obtain)
solutions of differential equations with regular singularities, given by convergent series
in w, which represent multivalued functions and so can be analyzed topologically. The
modern way of doing so is by using the language of perverse sheaves.

On the formal level, Borel summation of the series (1.1.1) (when it is possible) consists, first,
of taking the termwise Fourier transform of the series using the identity (particular case of the
general formula for the Fourier transform of zα)

FT

ˆ

1

zn`1

˙

“
wn

n!
.

This gives the Borel-transformed series

pfB
pwq “

8
ÿ

n“0

an
n!
wn

which has more chances to converge. In good cases it has nonzero radius of convergence
and extends to an analytic function fBpwq “on the entire Cw” but possibly multivalued, with

singularities etc. Then the prescription for the sum fpzq of the original series pfpzq is obtained

by taking the inverse1 Fourier (-Laplace) transform of pfBpwq:

fpzq :“

ż 8

0

fB
pwqe´zwdw.

Because of singularities of fBpwq there can be several inequivalent allowable choices of the
integration contour leading to ambiguity of the Borel sum, which is not surprising if the series
is divergent.

1the kind that sends wn{n! back into 1{zn`1
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On the conceptual level, the Borel summation approach can be said to consist in representing
irregular data2 as Fourier transforms of regular ones. The success of this approach comes from
the fact that such representation is possible in many cases of practical interest. Differential
equations which are Fourier transforms of regular ones form a rather special class.

2Here we understand the word “irregular” in the wider sense, including but not restricted to differential
equations and functions satisfying them.
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1.2 Perverse sheaves on Riemann surfaces

A Generalities. We fix a base field k. Let X be a complex analytic manifold. We denote
by LSpXq the category of local systems of (not necessarily finite-dimensional) k-vector spaces
on X.

Let S a locally finite complex Whitney stratification of X. Thus each stratum S P S is
a complex submanifold; we denote iS : S Ñ X the embedding. The closure S is, in general,
a singular complex space. We denote by DbpX,Sq the triangulated category of bounded S-
constructible complexes of sheaves F on X. By definition, S-constructibility of F means that
each cohomology sheaf H i

pFq is S-constructible. That is, each i˚SH
q
pFq “ Hq

pi˚SFq is an
object of LSpSq.

We denote PervpX,Sq Ă DbpX,Sq the abelian category of perverse sheaves of k-vector
spaces on X smooth with respect to S. Explicitly, PervpX,Sq consists of complexes F P

DbpX,Sq with the following properties:

(1) For each stratum S P SA we have Hq
pi˚SFq “ 0 for q ą ´ dimC S.

(2) For each stratum S P SA we have Hq
pi!SFq “ 0 for q ă ´ dimC S.

For example, if L P LSpXq is a local system, then LrdimXs, i.e., L put in degree p´ dimXq, is
perverse and lies in PervpX,Hq.

Remark 1.2.1. In [17] we used a different normalization of the perversity conditions for which
a local system in degree 0 is considered to be perverse. In references to [17] later in this paper,
this difference, being easy to account for, is not further highlighted.

B Nearby and vanishing cycles. From now on we assume dimCX “ 1, so X is a complex
curve (Riemann surface, possibly non-compact). Then a stratification S of X is given by a
discrete subset A Ă X so the strata are elements of A and the complement XzA. In this case we
use the notation PervpX,Aq for PervpX,Sq. The definition implies that for any F P PervpX,Aq

the restriction F |CzA is quasi-isomorphic to a local system (not necessarily of finite rank) in
degree ´1 and that Hq

pFq “ 0 for q ‰ ´1, 0.

Example 1.2.2. Let X “ D “ t|z| ă 1u be the unit disk in C and A “ t0u. In this case it is
classical [12] that PervpD, 0q is equivalent to the category of diagrams

Φ
u // Ψ
v
oo

of k-vector spaces are linear maps such that TΨ :“ IdΨ ´uv is an isomorphism (or, what is
equivalent, such that TΦ “ IdΦ ´vu is an isomorphism).

More precisely, see [12] [17, Prop. 1.1.6], the equivalence above depends on a choice of a
radial cut K Ă D, a simple curve starting at 0 and ending on the boundary BD. Given such
K, the sheaves of K-supported hypercohomology Hq

KpFq are 0 for q ‰ 0, the sheaf H0
KpFq on
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‚
0

D

K

K is constructible with respect to the stratification of K into t0u and K ´ t0u, the spaces Φ
and Ψ associated to F are found as its stalks:

Φ “ pH0
KpFqq0, Ψ “ pH0

KpFqqε, @ε P Kzt0u,

and the map u : Φ Ñ Ψ is the generalization map of H0
KpFq. See [12] and the discussion after

[17, Prop. 1.1.6] for the definition of v : Ψ Ñ Φ. The spaces Φ and Ψ are called the spaces
of vanishing cyclies and nearby cycles of F at 0 (in the direction of K). Note also that Ψ is
identified with the stalk of the local system pFr´1sq|Dzt0u at any ε P K ´ t0u (hence the name
“nearby cycles”).

More generally, for a Riemann surface X and a point a P X, we denote by S1
a “ S1

apXq the
circle of directions at a. If K is a smooth simple curve ending at a, we denote by dirapKq P S1

a

the direction of K at a. If A Ă X is discrete and F P PervpX,Aq, then in a small disk near any
a P A we have the situation of Example 1.2.2. In particular, the vector spaces of vanishing and
nearby cycles of F at a, being dependent on the direction of a cut, are naturally local systems
on S1

w which we denote ΦwpFq and ΨwpFq. We thus have functors

(1.2.3) Φa,Ψa : PervpX,Aq ÝÑ LSpS1
aq.

C Transport maps. We now recall the construction of curvilinear transport maps from
[17, §1.1C] Let dimCpXq “ 1 and A Ă X be discrete. Let α be a simple, piecewise smooth arc
in X joining two distinct points a, b P A and not passing through any other elements of A see
Fig. 1. Let us equip α with the orientation going from a to b.

Considering α as a closed subset in X, we have the sheaf H0
αpFq on α which is constant on

the open arc α ´ ta, bu.

a b

c

α
p

ΨαΦa,α
Φb,α

Figure 1: The transport map.
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Its stalks at a and b are the vanishing cycle spaces Φa,α, Φb,α for F at a or b in the direction
of α, while its restriction to αzta, bu is a local system on the open interval; in particular, all
the stalks of this local system are canonically identified; let us denote their common value by
Ψα. So we have the maps

(1.2.4) Φa,α

ua,α // Ψαva,α
oo

vb,α
// Φb,α,

ub,αoo

obtained from the description of F on small disks near a and b and using γ as the choice for a
cut K. We define the transport map along α as

(1.2.5) mabpαq “ mF
abpαq :“ vb,α ˝ ua,α : Φa,α ÝÑ Φb,α.

D Picard-Lefschetz identities for transports. The construction of the maps mabpαq

being purely topological, it is unchanged under isotopic deformations of α which do not pass
through other elements of A. More precisely [17, §1.1C], let pαtqtPr0,1s be an admissible isotopy of
paths from a to b, i.e., a continuous 1-parameter family of simple arcs pαtqtPr0,1s, each αt joining
a with b and not passing through any other c P A. Then we have a commutative diagram

(1.2.6) Φa,α0

ta
��

mabpα0q// Φb,α0

tb
��

Φa,α1

mabpα1q// Φb,α1 ,

where ta is the monodromy of the local systemΦa on S
1
wi

from dirapα0q to dirapα1q, and similarly
for tb.

We now recall what happens when a path crosses a single point of A. That is, we consider
a situation as in Fig. 2, where a path γ1 from a to c approaches the composite path formed by
β from a to b and α from b to c. After crossing b, the path γ1 is changed to γ.

ca

b

γ1

β α

γ

Figure 2: The Picard-Lefschetz situation.
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In this case we have identifications

(1.2.7) Φa,γ Ñ Φa,β Ñ Φa,γ1 , Φc,γ1 Ñ Φc,α Ñ Φc,γ, Φb,β Ñ Φb,α,

given by clockwise monodromies of the local systems Φ around the corresponding arcs in the
circles of directions. So after these identications we can assume that we deal with single vector
spaces denoted by Φ1,Φ3 and Φ2 respectively. Then we have [15, Prop.1.8] [17, Prop.1.1.12]:

Proposition 1.2.8 (Abstract Picard-Lefschetz identity). We have the equality of linear oper-
ators Φ1 Ñ Φ2:

macpγ
1
q “ macpγq ´ mbcpαqmabpβq.

1.3 (Localized) perverse sheaves on C
A The category PervpX,Aq. We start with the case of an arbitrary Riemann surface, i.e.
let X,A be as before. Let LSpXq be the category of local systems of k-vector spaces on X. For
each L P LSpXq the shifted sheaf Lr1s is an object of PervpX,Aq. It is straightforward that
this defines an embedding of the shifted category LSpXqr1s (identified with LSpXq) as a Serre
subcategory on PervpX,Aq and so we have the quotient abelian category

PervpX,Aq “ PervpX,Aq{pLSpXqr1sq.

Explicitly, ObPervpX,Aq “ ObPervpX,Aq while

HomPervpX,AqpF ,Gq “ HomPervpX,AqpF ,Gq{IF ,G,

where IF ,G is the subset (actually a k-vector subspace) formed by morphisms factoring as
F Ñ Lr1s Ñ G for some L P LSpXq. Thus we have a functor PervpX,Aq Ñ PervpX,Aq

bijective on objects and surjective on morphisms.
Note that the first (but not the second) functor in (1.2.3) vanishes on LSpXqr1s and so

descends to a functor which we denote by the same symbol:

(1.3.1) Φa : PervpX,Aq ÝÑ LSpS1
aq.

Further, let γ be a simple path joining a, b P A as in §C. The transport map mabpαq from
(1.2.5) descends to a natural transformations (also denoted mabpαq) between functors (1.3.1)
evaluated on dirapαq and dirbpαq. These transformation satisfy deformation invariance (1.2.6)
and the Picard-Lefschetz identities (Proposition 1.2.8).

B The Gelfand-MacPherson-Vilonen description of PervpC, Aq and PervpC, Aq for
finite A. From now on we assume that our Riemann surface X is the complex line C with
coordinate w. We further assume that the set A is finite.
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Recall the descriptions given in [13]. From the topological point of view, we can replace
C by an open disk D which we view as the interior of a closed disk D, i.e., D “ DzBD, so
A “ ta1. ¨ ¨ ¨ , aNu Ă D.

Fix a point v P BD. Call a v-spider for pD,Aq a system K “ tγ1, ¨ ¨ ¨ , γNu of simple closed
piecewise smoorth arcs in D so that γi joins v with ai and different γi do not meet except at
v, see Fig. 3.

v

D

a2
¨ ¨ ¨

aN

a1
γ1

γ2

γN

Figure 3: A spider defining the GMV-equivalence.

A v-spider for pD,Aq defines a total order on A, by clockwise ordering of the slopes of the
γi at v (assumed distinct) and we choose the numbering A “ ta1, ¨ ¨ ¨ , aNu in this order, as in
Fig. 3.

Denote by QN the category of diagrams of finite-dimensional k-vector spaces

ΦN

uN

��... Ψ

vN

__

v1
��

Φ1

u1

??

such that TΦi
:“ IdΦi

´viui is invertible for each i. This implies that each Ti,Ψ “ IdΨ ´uivi is
invertible as well.

Given a v-spider K for pD,Aq and F P PervpD,Aq, we consider, for each i “ 1, ¨ ¨ ¨ , N ,
the space Φi,KpFq “ Φai,γipFq, i.e., the stalk of the local system ΦaipFq at the point in S1

ai

represented by the direction of γi. Let us also identify the stalk ΨγipFq with the stalk Fv, using
the monodromy along γi. This gives a diagram

ΘKpFq “ pΨpFq,Φi,KpFq, ui,γi , vi,γiq P QN .

Here uai,γi and vai,γi are the canonical maps along γi as in (1.2.5).
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Proposition 1.3.2 ([13]). Let K be a v-spider for pD,Aq. The functor ΘK : PervpD,Aq Ñ QN

is an equivalence.

Further, a spider K defines, for each i ‰ j, a path αK
ij joining ai and aj by first going from

ai to v and then from v to aj.
Let MN be the category whose objects are diagrams consisting of:

(0) Vector spaces Φi, i “ 1, ¨ ¨ ¨ , N .

(1) Linear operators mij : Φi Ñ Φj given for all i, j (including i “ j) such that IdΦi
´mii is

invertible.

Given an object F P PervpD,Aq and a spider K as above, we construct a diagram ΞKpFq “

pΦi,mijq P MN by putting Φi “ Φi,γipFq as before and

mij “

#

mijpα
K
ij q, if i ‰ j;

Id´TipFq, if i “ j,

Proposition 1.3.3 ([13]). The functor ΞK : PervpD,Aq Ñ MN is an equivalence.

Remark 1.3.4. We can think of the point v P BD as being far away at the infinity (“Vladivos-
tok”). This becomes even more natural if we use D as a model for the compelx plane C. For
this reason we will sometimes refer to the description of PervpD,Aq given by Proposition 1.3.3
as the Vladivostok description and call the path mK

ij the Vladivostok path joining ai and aj.
From the naive “physical” point of view this is not the most natural way to connect ai and aj
by a path.

C PervpC, Aq inside PervpC, Aq. For F P PervpC, Aq the hypercohomology H ipC,Fq of C
with coefficients in F vanish for i ‰ ´1, 0. Let Perv0pC, Aq Ă PervpC, Aq be the full subcategory
formed by F such that H ipC,Fq “ 0 for all i. The following statement is a reformulation of
the results of [13, 20].

Proposition 1.3.5. (a) The localization functor PervpC, Aq Ñ PervpC, Aq restricts to an equiv-
alence of categories Perv0pC, Aq Ñ PervpC, Aq.

(b) Each object of Perv0pC, Aq reduces to a single sheaf in degree p´1q.

Proof: (a) In the proof of [13, Prop. 2.3] the authors construct a full embedding λ : MN Ñ QN ,
where MN is the category of diagrams describing PervpC, Aq by Proposition 1.3.3 and QN is
the category of diagrams describing PervpC, Aq by Proposition 1.3.2. The image Impλq is a
subcategory in QN which maps equivalently to MN under the localization functor QN Ñ MN .
It is then verified directly from the definition of λ , see the end of the proof of [20, Thm.2.29]
that Impλq “ Perv0pC, Aq.

(b) This is shown in the first part of the proof of [20, Thm.2.29] .

12



Remark 1.3.6. Se we can write the lifting functor λ in a geometric way, as

λ : PervpC, Aq
„

ÝÑ Perv0pC, Aq Ă PervpC, Aq.

By Proposition 1.3.3, an object of PervpC, Aq is determined by its vanishing cycles Φa and
transport maps between them, but does not have well defined stalks at points outside A, which
for an actual perverse sheaf form a (shifted) local system on CzA. The functor λ provides a
preferred way to supply such local system. Interpreting the construction of λ from [13] in a
geometric fashion, we see that the typical stalk of this system is identified with

À

aPA Φa.

Example 1.3.7. let a P A and F “ ka P PervpC, Aq be the skyscraper sheaf at a. Denoting
F P PervpC, Aq the image of F , the lift λpFq P Perv0pC, Aq is the sheaf j!pkCztauqr1s, where

j : Cztau Ñ C is the embedding. It becomes isomorphic to F “ ka in PervpC, Aq because of
the exact sequence of sheaves

0 Ñ j!pkCztauq Ñ kC Ñ ka Ñ 0

gives an exact sequence in PervpC, Aq

0 Ñ ka Ñ j!pkCztauqr1s Ñ kCr1s Ñ 0

with third term in LSpCqr1s.

1.4 Fourier transform of perverse sheaves and their Stokes data

In this section we assume k “ C.

A The formal Fourier transform. LetDw “ Cxw, Bwy be the Weyl algebra of polynomial
differential operators on C and Dw-Modh

Ą Dw-Modhrs be the categories of holonomic and
holonomic regular singular Dw-modules. It is well known that the solution functor (on all
holonomic modules, regular singular or not)

Sol : Dw-Modh
ÝÑ PervpCq, M ÞÑ SolpMq “ RHomDw

pM,OCqr1s

takes values in PervpCq. Further, its restriction to Dw-Modhrs is an equivalence (Riemann-
Hilbert correspondence). See, e.g., [27]. So we can realize any F P PervpCq as SolpMq for a
unique M “ MF P Dw-Modhr.

The formal Fourier transform is the isomorphism

Dw “ Cxw, Bwy ÝÑ Dz “ Cxz, Bzy, w ÞÑ ´Bz, Bw ÞÑ z,

matching the analytic Fourier transform of solutions. Given M P Dw-Modh, its Fourier trans-
form xM is the same M but considered as a Dz-module using the above isomorphism. We
refer to [27] for background on this construction. In particular, it is known that xM is again

holonomic, so we have the perverse sheaf SolpxMq “ RHomDz
pM,OCqr1s.
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If M is regular, then xM is typically not regular. In this case it is also known that the
perverse sheaf pF “ SolpxMq has 0 as the only possible singularity, so we get the functor (also
called the Fourier transform)

(1.4.1) FT : PervpCq ÝÑ PervpC, 0q, F ÞÑ pF :“ SolpxMFq.

The restriction of FTpFq to Czt0u has thus the form FTgenpFqr1s for a local system FTgenpFq

on C˚, so we have the functor

FTgen : PervpCq ÝÑ LSpC˚
q.

As C˚ is homotopy equivalent to the unit circle S1 Ă C, for any local system L on C˚ we
can speak about the stalk Lζ at ant ζ P S1. Further, for any a P C, the circle S1

a of directions
at a is identified with this fixed S1, so we can view any ΦapFq as a local system on this S1.
With this understanding, the following is true [27, Ch.XII] [5, Prop.6.1.4].

Proposition 1.4.2. Let F P PervpCq. We have a natural isomorphism

FTgenpFq »
à

aPC
ΦapFq

of local systems on S1.

In particular, the functor FTgen factors through PervpCq, which is one of the reasons to
consider this localized category.

Proof: For future reference, we give a sketch of the construction of the identification of the
proposition for generic ζ. Let F P PervpC, Aq. A general result [6, Th.3.1.1] expresses the stalk
of FTpFq at ζ P S1 (considered as the unit circle in C) as the cohomology with support,namely

(1.4.3) FTpFqζ “ H0
tRepζwqě´RupC,Fq, R " 0,

with R large enough so that the shifted half-plane contains A. For a P A let Kapζq “ a` ζ ¨R`

be the half-line in the direction ζ issuing from a, see Fig. 4.
The embedding of the complements

Cz tRepζwq ě ´Ru ãÑ Cz
ď

aPA

Kapζq

is a homotopy equivalence and F is locally constant on both of them. So we can replace the
support in (1.4.3) by the union

Ť

aPAKapζq. Further, if ζ is generic enough, then the union is
disjoint and so we have

FTpFqζ » H0
Ů

aPA KapζqpC,Fq “
à

aPA

H0
KapζqpC,Fq “

à

aPA

ΦapFq.
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‚

‚

‚

‚

a
Kapζq

b

Kbpζq

...

c
Kcpζq

Repζwq ě ´R

Figure 4: The half-lines Kapζq. Here ζ “ 1.

B The Stokes filtration of pF . As xM is typically irregular, its solutions (i.e., sections of
FTgenpFq) can grow exponentially in sectors near 8. So the local system FTgenpFq carries the
additional Stokes structure given by the data of such exponential growth in various sectors. In
our case, the growth is at most of the form eλz where λ is a constant.

Thus each stalk FTpFqζq carries the Stokes filtration pΣλqλPC labelled by the set C with
partial order ďζ given by λ ďζ µ if Repζλq ď Repζµq, i.e., eλz is dominated by eµz, as z Ñ 8

on the ray ζ ¨ R`. The subspace ΣλFTpFqζ Ă FTpFqζ consists of solution of xM which grow in
the direction ζ at most as eλz.

Proposition 1.4.4. For a generic ζ we have

ΣλFTpFqζ “
à

Repζaqě ´λ

ΦapFq.

Proof: This follows from representing solutions of xM as actual Fourier integrals gi,ζpφqpzq

corresponding to φ P ΦaipFq over the half-lines Kipζq as in Fig. 4. See [27, Ch. XII] for more
details. The growth near ζ8 of gi,ζpφqpzq is of the rate e´aiz.

1.5 The Lefschetz perverse sheaf and its Fourier transform

In this section we take k to be an arbitrary field.

A The exponential integral as Fourier transform. Let X be a smooth complex alge-
braic variety of dimension n and S : X Ñ C be a regular function. Given a regular volume
form dx on X, we can consider exponential integrals

(1.5.1) Ipzq “ Ipℏq “

ż

Γ

e
i
ℏSpxqdx, z “ 1{ℏ,
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where Γ is a locally finite n-cycle in X such that the integral converges. We can consider Ipzq

as a multivalued function whose determinations are labelled by choices of Γ.
It is classical that one can split the integration in Ipzq into two stages. First, we have the

relative volume form dx{dS, a rational section of Ωn´1
X{C and form the multivalued function LS

on C
LSpwq “

ż

ΓwĂS´1pwq

dx

dS

where Γw is an pn´1q-cycle in the fiber varying with w via the Gauss-Manin connection. Then
formally (assuming that Γ is formed out of the Γw, w P γ for a cycle γ in C)

Ipzq “

ż

γ

LSpwqeizwdw

is (a determination of) the Fourier transform of LS. Note that LS is a Nielsen type function,
satisfying a differential equation with regular singularities, so all transcendental nontriviality
of Ipℏq comes from the 1-dimensional Fourier transform.

B The Lefschetz perverse sheaf. A sheaf-theoretic analog of the function LS is given
by the collection of perverse sheaves

Li
S “ H i

pervpRS˚pkXrdimpXqsq, i P Z

on C. Here H i
perv is the degree i perverse cohomology taken with respect to the perverse t-

structure. We will be particularly interested in the case i “ 0 and write simply LS “ L0
S while

using the notation L‚
S for the graded perverse shead

À

i Li
S.

Proposition 1.5.2. Assume that the function S : X Ñ C has only isolated singularities and
is proper as a morphism of algebraic varieties (so each S´1paq is compact). Then:

(a) If a P C is a non-critical value for S, then LSr´1s is a local system near w and its stalk
at a is identified with HnpS´1paq,kq.

(b) If a is a critical value then

ΦapLSq “
à

xPS´1paq

ΦSpkXrdimpXqsqx

is the direct sum of the classical (Lefschetz) spaces of vanishing cycles for S at the critical points
over a.

Thus, for k “ C sections of the local system LSr´1s over the open set of non-critical values of
S give determinations of LS.

Proof: (a) follows since the perverse t-structure is centered around the middle dimension. Part
(b) follows from the definition of vanishing cycles.
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Remark 1.5.3. One can say that the first step towards categorification of the exponential integral
(1.5.1) is given by FTpLSq, the Fourier transform of the perverse sheaf LS.

3As we saw in §1.4,
the structure of FTpLSq near 8 is entirely given by the image of LS in PervpCq, i.e., by the
vanishing cycles of LS and the transport maps mabpγq between then. To find these data, we do
not need to compactify S to a proper morphism X Ñ C. For example, if S is a Morse function,
then it suffices to have the part of X containing the critical points and the Lefschetz thimbles
emanating from critical points towards other critical points.

2 Alien derivatives for perverse sheaves: elementary

theory

2.1 Additive convolution of localized perverse sheaves and Fourier
transform

Convolution of étale perverse sheaves on commutative algebraic groups was studied by N. Katz
[19]. We will need a simplified version for analytic perverse sheaves on the additive group C,
see e.g. [10].

A Additive convolution. Let k be an aribtrary field. Let A,B Ă C be finite subsets
and let F P PervpC, Aq, G P PervpC, Bq. Then F b G is a constructible complex (in fact, a
perverse sheaf) on C ˆ C. We have the addition map

` : C ˆ C ÝÑ C, pw1, w2
q ÞÑ w1

` w2.

Let A ` B “ `pA ˆ Bq be the set of sums a ` b, a P A, b P B. The map ` gives the additive
convolution

F ˚ G :“ Rp`q˚pF b Gq

Note that F ˚ G is a priori a constructible complex on C with singularities (points of local
non-constancy of cohomology) contained in A ` B.

Proposition 2.1.1. [10, Prop.2.4.3] If F P PervpC, Aq and G P Perv0pC, Bq, then F ˚ G P

Perv0pC, A ` Bq.

Let PervpCq “
Ť

A PervpC, Aq be the category of all perverse sheaves on C with finitely
many singularities. In a similar way we define the quotient category PervpCq and its lift
Perv0pCq Ă PervpCq. By the above, PervpCq and Perv0pCq are equivalent.

Corollary 2.1.2. [10, Th.2.4.11] The operation ˚ makes PervpCq » Perv0pCq into a symmetric
monoidal category with unit object 1 being the class of k0 in PervpCq or, equivalently, its lift
j!kCzt0u P Perv0pCq, see Example 1.3.7.

3For the next step one should replace cohomology groups by appropriate categories, cf. [17].
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B Comparison with the Hurwitz convolution for analytic functions. The opera-
tion ˚ for perverse sheaves is a categorical analog of the additive (or Hurwitz) convolution of
holomorphic functions f, g P Cttwuu defined near 0:

(2.1.3) pf ˚ gqpwq “

ż w

0

fpuqgpw ´ uqdu.

If

fpwq “

8
ÿ

n“0

an
wn

n!
, gpwq “

8
ÿ

n“0

bn
wn

n!
,

then

pf ˚ gqpwq “

8
ÿ

n“0

ˆ

ÿ

i`j“n

aibj

˙

wn`1

pn ` 1q!

(series without constant term, in fact we have 1 ˚ 1 “ w). The theorem of Hurwitz (additive
version of the Hadamard theorem of multiplication of singularities) says that if f, g extend
to possibly multivalued analytic functions in C with singularities in possible infinite sets A,B
respectively, then f ˚ g similarly extends to a possibly multivalued analytic function in C with
singularities in A Y B Y pA ` Bq. See [14] and later treatments in [29] and [28] §6.4. The
additional possible singularities at A “ A ` t0u and B “ t0u ` B in Hurwitz’s theorem as
compared to Proposition 2.1.1 come from the fact that the integration path in (2.1.3), starting
from 0, is a chain but not a cycle with coefficients in the local system of determinations of the
integrand.

C Additive convolution and Fourier transform. Let k “ C. The classical principle
that “Fourier transform takes convolution into product” has in our case the following form.

Proposition 2.1.4. For F ,G P Perv0pCq we have a natural isomorphism of local systems on
S1

FTgenpF ˚ Gq » FTgenpFq b FTgenpGq.

Proof: By the Riemann-Hilbert correspondence, the direct image R`˚ in the definition of F ˚G
can be calculated at the level of D-modules. That is, let M,N P Dw-Modhrs. We define the
D-module additive convolution to be the complex of Dw-modules

M ˚
D N “ R `

D
˚ pM b Nq,

where:

(1) MbN “ MbCN considered as a module overDwbCDw “ Cxw1, w2, Bw1 , Bw2y (polynomial
differential operators on C ˆ C);

(2) R`D
˚ is the derived D-module direct image, i.e., the de Rham complex along the fibers

of ` : C ˆ C Ñ C.
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So defined, M ˚DN is a complex with holonomic regular singular cohomology and SolpM ˚D

Nq » SolpMq ˚ SolpNq in the derived category of constructible complexes.
Further, the tensor product of local systems in the claim of the proposition corresponds to

the tensor product of Dz-modules over Crzs. So our claim is a consequence of the following
one.

Lemma 2.1.5. Let M,N P Dw-Modhrs. Then we have a natural isomorphism in derived
category

{M ˚D N » xM b
L
Crzs

pN

Proof of lemma: The fibers of the map ` are 1-dimensional with the relative tangent bundle
generated by the vector field Bw1 ´ Bw2 . So M ˚D N is the complex

M bC N
Bw1 ´Bw2

ÝÑ M bC N

with the differential Bw1 ´ Bw2 “ Bw b 1 ´ 1 b Bw. Now, xM bL
Crzs

pN is the complex

xM bC pN
zb1´1bz

ÝÑ xM bC pN.

But xM is M in which z acts as Bw and Bz as ´w, and similarly for pN , so the second complex
is identified with the first after the Fourier transform. This proves the lemma and Proposition
2.1.4.

D The Thom-Sebastiani theorem. Propositions 1.4.2 and 2.1.4 lead to a multiplicativity
property (a version of the Thom-Sebastiani theorem) which does not involve Fourier transform
and can be proved directly at the level of perverse sheaves. We take k to be an arbitrary field.

Let LSpS1qC be the category of C-graded local systems on S1, i.e. of collections L “ pLcqcPC
of local systems on S1 such that La “ 0 for almost all a. This category has a symmetric
monoidal structure given by

pL b Mqc “
à

a`b“c

La b Mb.

We have the total vanishing cycle functor

Φ : PervpCq ÝÑ LSC
pS1

q, F ÞÑ ΦpFq :“ pΦcpFqqcPC.

Theorem 2.1.6. [10, Th.2.8.3] The functor Φ is symmetric monoidal. In other words, for
any F ,G P Perv0pCq and any c P C we have a natural isomorphism of local systems on S1

ΦcpF ˚ Gq »
à

a`b“c

ΦapFq b ΦbpGq.

For convenience of the reader and future reference we give a direct proof. It is enough
to consider the case c “ 0, the case of arbitrary c is similar. We further identify the stalks
of the local systems of vanishing cycles at the point 1 P S1, i.e., in the direction of R`, the
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identification of monodromy following by the same arguments as below. We will use the letter
Φ to mean such stalks.

For a perverse sheaf E P PervpCq we have a canonical identification

Φ0pEq “ RΓtRepwqě0upt|w| ă ru, Eq,

where r ą 0 is small enough. Indeed, the discussion in §1.2 B gives Φ0pEq as RΓR`
pt|w| ă ru, Eq

but the half-plane Repwq ě 0 (the part of it lying in the disk |w| ă r) is stratified homotopy
equivalent (w.r.t. to the stratification of |w| ă r by 0 and everything else) to the real half-line.
Therefore, using w1, w2 as coordinates in C ˆ C, we have

(2.1.7) Φ0pF ˚ Gq “ RΓZpt|w1
` w2

| ă ru,F b Gq, Z :“ tRepw1
` w2

q ě 0u,

see Fig. 5. Now consider the subset

W :“
ď

a,bPA,a`b“0

␣

Repw1
´ aq ě 0, Repw2

´ bq ě 0
(

Ă Z.

t|w1 ` w2| ă ru

Z

W

W

w1

w2

Figure 5: The two sets of supports in the Thom-Sebastiani theorem.

If r is small enough, then the union in the definition of W is disjoint and

(2.1.8) RΓW pt|w1
` w2

| ă ru,F b Gq “
à

a,bPA,a`b“0

ΦapFq b ΦbpGq

by the Künneth theorem. It remains to notice that the complements of the two supports, i.e.,
the open subsets

U “ t|w1
` w2

| ă ru zZ and V “ tw1
` w2

| ă ru zW

are stratified homotopy equivalent (with respect to the stratification given by the singularities
of F b G). More precisely, U can be obtained as a deformation retract of V with deformations
affecting only the area where F b G is locally constant, so RΓZ “ RΓW and therefore (2.1.7)
and (2.1.8) give the same answer.
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2.2 Rectilinear transports with avoidances and alien transports

A Rectilinear transports. We start by taking k to be an arbitrary field. Let a, b P A be
two distinct points. The most natural path joining a and b is the straight line interval ra, bs.
We denote by

(2.2.1) ζab “
b ´ a

|b ´ a|
P S1 :“ tζ P C : |ζ| “ 1u

the slope of ra, bs in the direction from a to b.
If ra, bs does not contain any other elements of A, then for any F P PervpC, Aq we can use

ra, bs to define the rectilinear transport

(2.2.2) mab “ mF
ab “ mF

abpra, bsq : Φa,ra,bspFq ÝÑ Φb,ra,bspFq.

We say that A is in linearly general position including 8, if no three points of A lie on a real
line in C and no ζab belongs to R.

Suppose A is in linearly general position including 8. Then all rectilinear transports
mabpra, bsq, a, b P A, are defined. Let MN be the category of diagrams pΦi,mijq as in Proposi-
tion 1.3.3. Let us number A “ ta1, . ¨ ¨ ¨ , aNu in an arbitrary way, and denote ζij “ ζai,aj , i ‰ j
and ΦipFq “ ΦaipFq (a local system on S1). In this notation, we define a functor

Ξrect : PervpC, Aq ÝÑ MN , F ÞÑ pΦi,mijq,

as follows. We put
Φi “ Φai,ai`RpFq “ ΦipFq1

(the stalk of the local system ΦipFq at 1 P S1). Further, mii is defined as Id´TipFq where
TipFq : ΦipFq1 Ñ ΦipFq1 is the counterclockwise monodromy. For i ‰ j we define mij as the
composition

(2.2.3) ΦipFq1
T

ζij
1

ÝÑ ΦipFqζij “ Φai,rai,ajspFq
mF

ai,aj
ÝÑ Φaj ,raj ,aispFq “ ΦjpFqζji

T 1
ζji

ÝÑ ΦjpFq1,

where T
ζij
1 (resp. T 1

ζij
) is the monodromy of the local system ΦipFq from 1 to ζij (resp. from ζji

to 1) taken in the counterclockwise direction, if Impwiq ă Impwjq and in the clockwise direction,
if Impwiq ą Impwjq.

Proposition 2.2.4. If A is in linearly general position including 8, then the functor Ξrect is
an equivalence of categories.

Proof: This statement, which is [17, Prop.2.1.7], is deduced from Proposition 1.3.3 by deforming
the set A to the convex position.
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B Rectilinear transport with avoidances. Let us now allow ra, bs to contain other ele-
ments of A, say ra, bs XA “ ta0 “ a, a1, ¨ ¨ ¨ , ar, ar`1 “ bu, numbered in the direction from a to
b , with r ě 0. Let ε “ pε1, ¨ ¨ ¨ , εrq, εi P t`,´u be a sequence formed by ` and ´ signs. We
define the rectilinear transport with avoidances given by ε to be the map

(2.2.5) mε
ab “ mε,F

ab : Φa,ra,bspFq ÝÑ Φb,ra,bspFq, mε
ab :“ mabpγεq,

where γε is the perturbation of the path ra, bs obtaining by avoiding ai on the left, if εi “ ´,
and on the right, if εi “ `, see Fig. 6.

‚ ‚ ‚ ‚ ‚ ‚
a0 “ a

a1 a2 ¨ ¨ ¨ ar
ar`1 “ b

´ ` ´ ´

Figure 6: Transport with avoidances.

We define m`
ab :“ m`,¨¨¨ ,`

ab , resp. m´
ab :“ m´,¨¨¨ ,´

ab to be the transport with all avoidances on
the right, resp. on the left (both understood as mabra, bs for r “ 0). Let us note the following
consequences of the Picard-Lefschetz identities (Proposition 1.2.8). Here and later in the paper
the identification of the stalks of the local Φ-systems at the intermediate points is done by
clockwise rotation as in the Picard-Lefschetz formula, see (1.2.7).

Proposition 2.2.6. (a) We have

m´
ab “

r
ÿ

s“0

ÿ

1ďi1ă¨¨¨ăisďr

m`
ais ,b

m`
ais´1

,asr
¨ ¨ ¨m`

a,ai1
.

(b) Equivalently, we have

m´
ab “ m`

ab `

r
ÿ

i“1

m`
ai,b
m´

a,ai
.

(c) For the composition of rectilinear transports we have the identity

mar,bmar´1,ar ¨ ¨ ¨ma,a1 “
ÿ

εPt`,´ur

p´1q
|`pεq|mε

ab,

where | ` pεq| is the number of ` signs in ε.

Proof: All three statements follow easily by iterated application of Proposition 1.2.8. Part
(b) is reduced to (a) by expanding each m´

a,ai
according to (a). Part (c) is an instance of [17,

Cor.1.1.19] for the case of the composition of paths which are rectilinear.
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C The alien derivative transport. Assume now that charpkq “ 0. Adapting the
approach of Écalle, we give the following

Definition 2.2.7. The alien derivative transport from a to b for F P PervpCq is the map

m∆
ab “ m∆,F

ab “

r
ÿ

s“0

p´1qs`1

s ` 1

ÿ

1ďi1ă¨¨¨ăisďr

m`
ais ,b

m`
ais´1

,asr
¨ ¨ ¨m`

a,ai1
: Φa,ra,bspFq ÝÑ Φb,ra,bspFq.

Here the superscript ∆ is just a symbol chosen to invoke the standard notation for alien deriva-
tives [9, 28]. Further, the formulas of Écalle extend to the context of perverse sheaves in the
form:

Proposition 2.2.8. We have

m∆
ab “

ÿ

εPt`,´ur

p| ` pεq|!q ¨ p| ´ pεq|!q

pr ` 1q!
mε

ab.

where | ` pεq| and | ´ pεq| are the numbers of ` and ´ signs in ε

Example 2.2.9. For r “ 0: ‚ ‚a b we have m∆
ab “ mabra, bs.

For r “ 1: ‚ ‚a b‚
a1

we have m∆
ab “ 1

2
m`

ab ` 1
2
m´

ab.

For r “ 2: ‚ ‚a b‚
a1

‚
a2

we have

m∆
ab “

1

3
m``

ab `
1

6
m`´

ab `
1

6
m´`

ab `
1

3
m´´

ab .

Remarks 2.2.10. (a) Proposition 2.2.8 represents m∆
ab as a linear combination of the mε

ab with
positive coefficients summing to 1.

(b) It also shows that m∆
ab is stable under introducing dummy singularities and depends

only on ra, bs and not on A. That is, if F does not really have a singularity at some ai, i.e.,
F P PervpC, A z taiuq Ă PervpC, Aq, then calculatingm∆

ab while taking ai into account and while
not taking it into account gives the same answer.

Proof of Proposition 2.2.8: This is a formal consequence of the Picard-Lefschetz identities
(Proposition 1.2.8). To organize the calculations, let us extend the notation mε

ab to the case
when a “ a0, a1, ¨ ¨ ¨ , ar, ar`1 “ b lie, in this order, on a possibly curvilinear simple path γ from
a to b which contains no other elements of A. That is, we define the path γε as in (2.2.5) but
as the perturbation of γ, not ra, bs, according to ε. To indicate the dependence on γ, we write
mε

abpγq. A curvilinear version of Proposition 2.2.6(c), i.e., [17, Cor.1.1.19] gives:

Proposition 2.2.11. Let γi denote the part of γ between ai and ai`1. Then

mar`1,arpγrqmar,ar´1pγr´1q ¨ ¨ ¨ma0,a1pγ0q “
ÿ

δPt`,´ur

p´1q
|`pδq|mδ

abpγq.
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Now, to prove Proposition 2.2.8, we apply Proposition 2.2.11 to each composition in the
RHS of Definition 2.2.7. That is, we take as γ the path which goes from a0 “ a to ai1 avoiding
the intermediate ai on the left, then from ai1 to ai2 with similar avoidances and continues
like this, ending in the curved segment from ais to ais`1 “ b with similar avoidances. The
intermediate points are ai1 , ¨ ¨ ¨ , ais . Then the LHS of the formula of Proposition 2.2.11 for
such γ and such choice of the intermetiate points is the composition in Proposition 2.2.8. So
we get

m`
ais ,ais`1

m`
ais´1

,asr
¨ ¨ ¨m`

ai0 ,ai1
“

ÿ

δPt`,´us

p´1q
|`pδq|m

p`i1´1,δ1,`i2´i1´1,δ2,¨¨¨ ,δs,`r´is q

ab ,

where `m stands for the sequence of m plus signs.
Now we need to find the coefficient at each mε

ab, ε P t`,´ur after we sum these expansions
over all s and all 1 ď i1 ă ¨ ¨ ¨ is ď r with coefficients p´1qs`1{ps ` 1q. For this, let us encode ε
by the subset I “ `pεq “ ti|εi “ `u Ă t1, ¨ ¨ ¨ , ru. The coefficient is then

ÿ

JĄI

p´1q|JzI|

|J | ` 1
“

r´|I|
ÿ

k“0

p´1qk

|I| ` k ` 1

ˆ

r ´ |I|

k

˙

.

So Proposition 2.2.8 reduces to the following.

Lemma 2.2.12. For any integer a,m ą 0 we have

m
ÿ

k“0

p´1qk

a ` k ` 1

ˆ

m

k

˙

“
m!a!

pm ` a ` 1q!
.

Proof of Lemma: For any function f “ fpaq of an integer variable a let ∆f be its difference
derivative: p∆fqpaq “ fpaq ´ fpa ` 1q. The mth iteration of ∆ has the form

p∆mfqpaq “

m
ÿ

k“0

p´1q
k

ˆ

m

k

˙

fpa ` kq.

Let fmpaq “ m!a!{pm ` a ` 1q!, m ě 0. The lemma means that fm “ ∆mf0. To see this, it is
enough to show that ∆fm “ fm`1, which is straightforward:

p∆fmqpaq “
m!a!

pm ` a ` 1q!
´

m!pa ` 1q!

pm ` a ` 2q!
“ m!

a!pm ` a ` 2q! ´ pa ` 1q!

pm ` a ` 2q!
“

“ m!
a!pm ` 1q

pm ` a ` 2q!
“

a!pm ` 1q!

pm ` a ` 2q!
“ fm`1paq.

D Description of PervpC, Aq via alien transports. We now generalize Proposition 2.2.4
to the case when A “ ta1, ¨ ¨ ¨ , aNu Ă C is an arbitrary finite subset. We keep the notation of
§A above and assume only that no rai, ajs is horizontal, i.e, all ζij R R, i ‰ j.
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Define the functor

Ξ∆ : PervpC, Aq ÝÑ MN , F ÞÑ pΦi,mijq,

where, as before,
Φi “ Φai,ai`RpFq “ ΦipFq1, mii “ Id´TipFq

and for i ‰ j the map mij is the composition

ΦipFq1
T

ζij
1

ÝÑ ΦipFqζij “ Φai,rai,ajspFq
m∆,F

ai,aj
ÝÑ Φaj ,raj ,aispFq “ ΦjpFqζji

T 1
ζji

ÝÑ ΦjpFq1.

That is, we replace the rectilinear transform in (2.2.3) (which may no longer make sense because
of the presence of intermediate points) by m∆,F

ai,aj
, the alien transform from ai to aj for F .

Proposition 2.2.13. The functor Ξ∆ is an equivalence of categories.

Proof: Let us make a small deformation of the set A, replacing it with A1 “ ta1
1, ¨ ¨ ¨ , a1

Nu with
|ai ´a1

i| ! 1 such that A1 is now in linearly general position including 8. Since perverse sheaves
are topological objects, the continuous deformation aiptq “ p1 ´ tqai ` ta1

i, t P r0, 1s of the
sets of singularities gives rise to an equivalence u : PervpC, Aq Ñ PervpC, A1q (“isomonodromic
deformation of perverse sheaves”, see, e.g., [17]). For any F P PervpC, Aq we denote F 1 the
corresponding object of PervpC, A1q, so that ΦipFq is identified with Φa1

i
pFq as a local system

on S1.
Applying Proposition 2.2.4 to A1, we see that any F P PervpC, Aq is uniquely determined

by the data of:

(1) The monodromies of Φa1
i
pF 1q which are identified with the monodromies of ΦipFq.

(2) The rectilinear transports for F 1.

Now, each rectilinear transport mij for F 1 corresponds, under the equivalence u, to the rec-

tilinear transport with avoidances m
εpi,jq

ij for some εpi, jq describing to which side of ra1
i, a

1
js

the (formerly) intermediate points a1
k now lie. Let rij “ |A X pai, ajq| be the number of the

intermediate points on rai, ajs, so εpi, jq is a sequence of length rij.
The alien derivative transport m∆

ai,aj
is a linear combination of all 2rij transports mε

ai,aj
with

strictly positive (in particular, nonzero) coefficients. Knowing any one mε
ai,aj

, any other mε1

ai,aj

is expressed, in virtue of the Picard-Lefschetz formulas, by adding or subtracting compositions
of transports with avoidances for smaller subintervals of rai, ajs. Hence the data of all tmε

ai,aj
u

for all distinct 1 ď i, j ď N and all ε P t`,´urij , is uniquely recovered (by triangular-type

formulas) from the data of tm
εpi,jq
ai,aj u, 1 ď i, j ď N , where we choose one representative εpi, jq

for each ordered pair pi, jq. Therefore the data of such tm
εpi,jq
ai,aj u are in bijection with the data

of tm∆
ai,aj

u, and the proposition is proved.
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2.3 Alien derivatives and Stokes automorphisms for perverse sheaves

A Multiplicative properties of one-sided avoidances. Again, we start by taking k
to be an arbitrary field. For a, b P C and a perverse sheaf F P PervpCq we use notation
m˘

ab “ m˘,F
ab to mean either m`,F

ab “ m`,¨¨¨ ,`,F
ab or m´,F

ab “ m´,¨¨¨ ,´,F
ab , this meaning to be used

consistently in any formula.

Let F P Perv0pC, A1q, G P Perv0pC, A2q and A “ A1 ` A2. By Theorem 2.1.6, for any
direction θ P S1 and any a, b P A we have
(2.3.1)
ΦapF ˚ Gqθ »

à

a1PA1,a2PA2

a1`a2“a

Φa1pFqθ b Φa2pGqθ, ΦbpF ˚ Gq´θ »
à

b1PA1,b2PA2

b1`b2“b

Φb1pFq´θ b Φb2pGq´θ.

Let a “ a1 ` a2, b “ b1 ` b2 P A be distinct, with a1, b1 P A1 and a2, b2 P A2. Note that it is
possible that a1 “ a2 or b1 “ b2 (but not both). Take θ “ ζab to be the direction from a to b.
Let us view the rectilinear transport with one-sided avoidances as a linear map

m˘,F˚G
ab : ΦapF ˚ Gqθ ÝÑ ΦbpF ˚ Gq´θ.

With respect to the decompositions (2.3.1), we then have the matrix element

`

m˘,F˚G
ab

˘b1,b2

a1,a2 : Φa1pFqθ b Φa2pGqθ ÝÑ Φb1pFq´θ b Φb2pGq´θ.

Theorem 2.3.2. (a) Unless the intervals ra1, b1s, ra2, b2s and ra, bs are parallel with the same

direction,
`

m˘,F˚G
ab

˘b1,b2

a1,a2 “ 0. Here a degenerate interval ra1, a1s or rb1, b1s is considered parallel

(with the same direction) to any other interval.

(b) If the intervals ra1, b1s, ra2, b2s and ra, bs are parallel with the same direction, then

`

m˘,F˚G
ab

˘b1,b2

a1,a2 “ m˘,F
a1,b1 b m˘,G

a2,b2 .

Here we understand m˘,F
a1,a1 or m

˘,G
a2,a2 as the identity map.

Let us express the above condition of three intervals being parallel with the same direction by
ra1, b1s ∥ ra2, b2s ∥ ra, bs. Then we can reformulate Theorem 2.3.2 as follows:

Reformulation 2.3.3. In the above notation, we have

m˘,F˚G
ab “

ÿ

a1`a2“a, b1`b2“b
ra1,b1s∥ra2,b2s∥ra,bss

m˘,F
a1,b1 b m˘,G

a2,b2 .

Theorem 2.3.2 and Reformulation 2.3.3 as well as the proof below are inspired by Theorem 6.83
of [28] and its purely analytic proof.
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B Proof of Theorem 2.3.2. Let us treat the case of m´ (avoidances on the left), the
case of m` being similar. Fix a1 P A1, a2 P A2. Let a “ a1 ` a2 P A and

(2.3.4)
K 1

“ a1
` R`θ “ ta1

` t1 θ| t1 ě 0u, K2
“ a2

` R`θ “ ta2
` t2 θ| t2 ě 0u,

K “ a ` R`θ “ ta ` t θ| t ě 0u

be the straight half-lines issuing from a1, a2 and a in the direction θ, see Fig. 7(b). We use t1,
t2 and t as coordinates on these half-lines.

By Example 1.2.2,

(2.3.5)
Φa1pFqθ “ H0

K1pFqa1 , Φa2pGqθ “ H0
K2pFqa2 and therefore

Φa1pFqθ b Φa2pGqθ “ Hpa1,a2q, where H :“ H0
K1ˆK2pF b Gq.

The stalk Hpa1,a2q can be seen as the 0th cohomology of F bG with support in the dark shaded
area near the left of pa1, a2q in Fig. 7(a). Denote

rA1
“ A1

X K 1
“

␣

a1
“ b1

0, b
1
1, b

1
2, ¨ ¨ ¨

(

, rA2
“ A2

X K2
“
␣

a2
“ b2

0, b
2
1, b

2
2, ¨ ¨ ¨

(

in order given by the direction of K 1, K2, see Fig. 7(b).

Fig.(b)

‚

‚

‚

‚

‚

‹

‹‹
‹

‹
‹

0 a1 “ b1
0

b1
1

b1
2

K 1

K

a

b

a2 “ b2
0

b2
1

b2
2

b2
3

K2

Fig.(a)

‚ ‚ ‚

‚
‚

‚ ‹

‹

K 1

K2

pa1, a2q
pb1

1, a
2q

pb1
2, a

2q

pa1, b2
1q

pa1, b2
2q

pa1, b2
3q

T

E

Figure 7: The area T Ă K 1 ˆ K2 and the transport with avoidances for F ˚ G .

The sheaf H on K 1 ˆK2 is constructible with respect to the stratification cut out by rA1 ˆK2,
K 1 ˆ rA2 and their intersection rA1 ˆ rA2, see Fig. 7(a). This is because F b G is constructible
w.r.t. a similar stratification of C ˆ C. In particular, H is locally constant on the interior of
K 1 ˆ K2 near pa1, a2q.

Let rK 1, rK2 be small perturbations of K 1, K2 obtained by avoiding the b1
i, b

2
i , i ą 0, on the

left. Then rK 1 ˆ rK2 coincides with K 1 ˆ K2 near pa1, a2q. By construction,

rH “ H0
rK1ˆ rK2pF b Gq
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is locally constant on the entire interior of rK 1 ˆ rK2 and coincides with H near pa1, a2q. Let also
rK be a similar perturbation of ra, bs Ă K avoiding all the elements of A other than a and b on
the left.

Now look at the composite map

(2.3.6) Φa1pFqθ bΦa2pGqθ
εa1,a2

ÝÑ ΦapF ˚Gqθ
m´,F˚G

ab
ÝÑ ΦbpF ˚Gq´θ “

à

b1`b2“b

Φb1pFq´θ bΦb2pGq´θ.

Here εa1,a2 is an embedding given by the Thom-Sebastiani theorem 2.1.6 which is also indicated

in the equality on the right. The transport m´,F˚G
ab is defined using rK. As explained in §1.2 C

(applied to α “ rK) it is composed of three maps:

(1) The generalization map ua, rK “ uF˚G
a, rK

(in the notation of (1.2.4)) from ΦapF ˚ Gqθ “

H0
rK

pF ˚ Gqa to the stalk at a nearby point c P rK which is H0
rK

pF ˚ Gqc “ pF ˚ Gqr´1sc,
the same as the stalk at c of the local system F ˚ Gr´1s.

(2) The parallel transport of the result of (1) along rK in the local system F ˚Gr´1s until we
almost reach b.

(3) After approaching close to b using (2), applying the variation map vb, rK “ vF˚G
b, rK

(in the

notation of (1.2.4)) at b which is the dual of the generalization map u
pF˚Gq_

b, rK
for the Verdier

dual perverse sheaf pF ˚ Gq_ »F_ ˚ G_.

Let τ P K 1 ˆ K2 be an interior point close to the point pa1, a2q. It also lies in rK 1 ˆ rK2 and

γa1,a2 : Hpa1,a2q “ rHpa1,a2q ÝÑ Hτ “ rHτ

be the generalization map of the constructible sheaves H, rH which coincide in the area contain-
ing pa1, a2q and τ .

Let φ P Φa1pFqθ bΦa2pGqθ “ Hpa1,a2q. As follows from the construction of the identification
in the Thom-Sebastiani theorem (proof of Theorem 2.1.6), the composition ua, rKεa1,a2 can be
seen as the composition of γa1,a2 followed by the “forgetting of support” morphism

Rp`q˚ H
0
K1ˆK2pF b Gq ÝÑ Rp`q˚pF b Gq “ F ˚ G

evaluated in the stalks over c. Therefore we can replace parallel transport of ua, rKεa1,a2pφq along
rK by parallel transport of γa1,a2pφq in the local system given by rH on the interior of rK 1 ˆ rK2.

As this interior is contractible, we have a well defined section rφ of rH on it, extending γa1,a2pφq.

The map ` : C ˆ C Ñ C restricts to `K : K 1 ˆ K2 Ñ K which in coordinates t1, t2 from
(2.3.4) has the form t “ t1 ` t2. Let T “ `

´1
K pra, bqq Ă K 1 ˆ K2 be the preimage of the

half-open interval ra, bq, depicted as the large shaded area on Fig. 7(a), and rT Ă rK 1 ˆ rK2 be
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corresponding perturbation of T . On the edge E “ tt1 ` t2 “ |b ´ a|u of T we have the points
pb1

i, b
2
jq with b1

i ` b2
j “ b, i.e. precisely the points pb1, b2q such that ra1, b1s, ra1, b2s and ra, bs are

parallel in the same direction, as in the statement of Theorem 2.3.2.

Since the variation map vF˚G
b, rK

in (3) above is dual to uF
_˚G_

b, rK
which has been just described

above, we see that only pb1
i, b

2
jq on E will receive a component of m´,F

ab pεa,a1pφqq: the other
pb1

i, b
2
jq will map far from b. This is precisely part (a) of the theorem.

Let us now prove (b). Let b1 “ b1
i, b

2 “ b2
j be such that b1 ` b2 “ b and ψ P Φb1pF_q´θ b

Φb2pG_q´θ. As before, we use the duality between vF˚G
b, rK

and uF
_˚G_

b, rK
and interpret the latter

in terms of the generalization map γpb1,b2q : Hpb1,b2q Ñ Hσ where σ is a point of T in the area
near pb1, b2q, depicted as the darker shaded area near the edge E on Fig. 7(b). So we have the
equality of the pairings

`

m´,F˚G
ab pεa1,a2pφqq, ψ

˘

“
`

rφpσq, γpb1,b2qpψq
˘

.

where on the right the sections of the two dual local systems are evaluated at a nearby points
so the pairing is well defined. But since rφ is a section of the local system F b Gr´2s, pairing
on the right is precisely

`

pm´,F
a1,b1 b m´,G

a2,b2qpφq, ψ
˘

. This proves the theorem.

C Example: an elementary parallelogram. As an illustration of Theorem 2.3.2 consider
the following particular case. Let A1 “ ta1, b2u and A2 “ ta2, b2u each consist of two elements
such that the intervals ra1, b1s and ra2, b2s are not parallel, so

A “ A1
` A2

“
␣

a :“ a1
` a2, b1

` a2, a1
` b2, b1

` b2
“: b

(

is the set of vertices of a nondegenerate parallelogram, see Fig. 8. Then by Theorem 2.1.6 the
vanishing cycle spaces of F ˚G at these vertices are the tensor products, as indicated in Fig. 8.
As there are no intermediate points, the rectilinear transports for F ˚G between these vertices do
not need avoidances: m` “ m´ “ m. In this situation, Theorem 2.3.2 says that the transports
along the faces of the parallelogram are tensor products of mF

a1,b1 or mG
a2,b2 with Id, so these

maps look (up to isomorphisms of the stalks of the local systems Φ) as forming a commutative
square.

But the diagonal transport mF˚G
ab is equal to 0. This last statement can be seen directly by

noticing that the rays K 1, K2 coming from a1 and a2 in the direction θ “ ζab will contain no
other elements of A1 or A2. So rK 1 “ K 1, rK2 “ K2 and the sheaf H “ rH will be locally constant
everywhere inside K 1 ˆ K2. This means that for φ P Φa1pFq b Φa2pGq the image ua,Kpφq of
φ under the generalization map, can be continued along K all the way through b and so its
variation at b (image under vb,K) is zero.

29



‚a1

‚a2 ‚a

Φa1pFq b Φa2pGq

‚b2

‚ b1

‚a1 ` b2

IdbmG
a2,b2

Φa1pFq b Φb2pGq

mF
a1b1 b Id

‚ b1 ` a2

Φb1pFq b Φa2pGq

IdbmG
a2,b2

‚
b

Φb1pFq b Φb2pGq

mF
a1b1 b Id

0

Figure 8: An elementary parallelogram: the diagonal transport is 0.

D Matrix formulation. The Stokes operator. As before, let S1 “ tζ P C : |ζ| “ 1u

be the circle of directions. Let ω P C be a nonzero number. For any F P PervpCq we write
ΦapFqω for the stalk of ΦapFq at ω{|ω| P S1 and put ΦpFqω “

À

aPCΦapFqω.

Define the operator C˘,F
ω : ΦpFqω Ñ ΦpFqω by defining its matrix elements pC˘,F

ω qba :
ΦapFqω Ñ ΦbpFqω as follows:

pC˘,F
ω q

b
a “

$

’

&

’

%

Id, if a “ b;

T ω
´ω ˝ m˘,F

ab , if b “ a ` ω;

0, b otherwise.

Here T ω
´ω is the clockwise half-monodromy of ΦbpFq from the direction ´ω{|ω| to `ω{|ω| (same

identification as used in composing rectilinear transports).
Reformulation 2.3.3 can be further reformulated as follows.

Corollary 2.3.7. For F ,G P Perv0pCq we have

C˘,F˚G
ω “

ÿ

ω1`ω2“ω
ω1,ω2Pr0,ωs

C˘,F
ω1 b C˘,G

ω2 .

Here for ω1 “ 0 or ω2 “ 0 (only one case can occur, as ω ‰ 0) we understand C˘
0 to be Id.

Definition 2.3.8. Let ζ P S1 and F P PervpCq. We define the Stokes operator associated to ζ
and F as

Stζ “ StFζ “ Id`
ÿ

ωPRą0ζ

C´
ω : ΦpFqζ ÝÑ ΦpFqζ .
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The operator Stζ is invertible because it is represented by a block-upper triangular matrix
with respect to the order ďζ on A. It has Id on the diagonals since it gives identity on the
associated graded space. Proposition 2.3.7 can be reformulated even more concisely.

Proposition 2.3.9. Let F ,G P Perv0pCq. For any ζ P S1.

StF˚G
ζ “ StFζ b StGζ .

In other words, Stζ is an automorphism of the tensor functor Φp´qζ .

E Alien derivatives via matrix elements. Assume now that charpkq “ 0. For F P

PervpCq and a nonzero ω P C we call the alien derivative for F in the direction ω the operator
∆ω “ ∆F

ω : ΦpFqω Ñ ΦpFqω whose matrix elements p∆ωqba : ΦapFqω Ñ ΦbpFqω are defined as
follows:

p∆ωq
b
a “

#

T ω
´ω ˝ m∆

ab, if b “ a ` ω;

0, otherwise.

Thus ∆ω “ 0 for almost all ω.

F Alien derivatives as functor derivations. As StFζ is given by a block-upper triangular
matrix with Id on the diagonal, its logarithm is a well defined operator.

Theorem 2.3.10. (a) We have

log StFζ “
ÿ

ωPRą0ζ

∆F
ω .

(b) Let F ,G P Perv0pCq. With respect to the identification ΦpF ˚Gqω »ΦpFqω bΦpGqω we have
the Leibniz rule

∆F˚G
ω “ ∆F

ω b Id ` Idb∆G
ω.

In other words, the alien derivative is a derivation of the tensor functor Φp´qω.

Proof: (a) follows by comparison of Definition 2.2.7 of the m∆
ab with the logarithmic series

logp1 ` xq “
ř8

s“0p´1qsxs`1{ps ` 1q.

(b) Since Stζ is an automorphism of the tensor functor Φp´qζ , its logarithm ∆Rą0ζ “ log Stζ
is a derivation by formal reasons. Now, Φp´qζ takes values in the tensor category of C-graded
vector spaces (with the graded tensor product). Any endomorphism D of this functor can be
split into homogeneous components D “

ř

ωPCDω, where Dω raises the degree by ω. Clearly,
D is a derivation if and only if each Dω is a derivation. It remains to notice that the ∆ω,
ω P Rą0ζ are precisely the homogeneous components of ∆Rą0ζ , in virtue of (a).
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G Stokes automorphisms in terms of the Fourier transform. Let k “ C and F P

PervpC, Aq. The directions ζab for all distinct a, b P A, see (2.2.1), will be called Stokes
directions for A.

As in §1.4, Fourier transform gives a local system FTgenpFq on C˚ or, equivalently, on S1.
In the proof of Proposition 1.4.2 we constructed an identification of FTgenpFq with ΦpFq “
À

aPAΦapFq outsides of the Stokes directions. Indeed, ζ P S1 is non-Stokes if and only if all
the half-rays Kapζq “ a ` ζR` are disjoint.
Let us now complete that construction by describing how these identifications glue together
at a given Stokes direction ζ. Let ζ` and ζ´ be nearby non-Stokes directions clockwise and
anti-clockwise from ζ. The gluing along ζ for the local system FTgenpFq). with respect to our
prior identifications is given by the map Sζ defined as the composition

ΦpFqζ
T ζ`

ζ pΦq

ÝÑ ΦpFqζ`

(1.4.2)
ÝÑ FTgenpFqζ`

T ζ´

ζ` pFTq

ÝÑ FTgenpFqζ´

(1.4.2)
ÝÑ ΦpFqζ´

T ζ

ζ´ pΦq

ÝÑ ΦpFqζ .

Here, say, T ζ`

ζ pΦq is the monodromy from ζ to ζ` (along the shortest path) for the local system

ΦpFq, and T ζ´

ζ` pFTq is the monodromy from ζ` to ζ´ for FTgenpFq. The following result up to
notation coincides with [5, Th.5.2.2].

Theorem 2.3.11. Sζ coincides with the Stokes automorphism Stζ.

Remark 2.3.12. Because of the triangular nature of Stζ , it preserves the Stokes filtration which
was described in Proposition 1.4.4 for generic (non-Stokes) directions θ: the terms that are
added after crossing ζ, have lower rate of exponential growth. So we obtain a well defined
filtration on the local system FTgenpFq on S1 labelled by the sheaf of posets pA,ďθqθPS1 on S1.
This means that the sheaf of sets A is constant, but the order ďθ varies with θ, see [8, 7] and
[17, §2.4].

H Meaning and reformulation of Theorem 2.3.11. For the convenience of the reader
let us discuss the meaning of Theorem 2.3.11 in more detail. Let V “ FTgenpFqζ , identified
with FTgenpFqζ˘ by monodromy (along the shortest path). Choose R " 0 and let H be the
half-plane tRepζwq ě ´Ru as in the proof of Proposition 1.4.2, so that

V “ H0
HpC,Fq.

For any closed subset Z Ă H let τZ : H0
ZpC,Fq Ñ V be the morphism induced by the inclusion

of supports.

As before, for any a P C and θ P S1 denote Kapθq “ a ` R`θ the ray in the direction θ
issuing from a. We denote

K˘
a “ Kapζ˘

q, Ka “ Kapζq, K˘
“

ğ

aPA

K˘
a , K “

ď

aPA

Ka,
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‚

‚
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‚
a2
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a

ar “ b
K`

a

Kb`K´
a

K´
b

Figure 9: Crossing a Stokes direction ζ “ ζab.

see Fig. 9. As ζ˘ is non-Stokes, the rays K˘
a , a P A, are all distinct, but not so for the

Ka. Let us write Φa for the stalk ΦapFqθ for any θ P rζ`, ζ´s, these stalks being identified by
monodromy and put Φ “

À

aPA Φa. Then we have identifications

Φ »
à

a

H0
K˘

a
pC,Fq “ H0

K˘pC,Fq.

Note that the morphisms

τK˘ : Φ “ H0
K˘pC,Fq Ñ V as well as τK : H0

KpC,Fq Ñ V

are isomorphisms, since the complements CzK˘ and CzK are homotopy equivalent to CzH and
F is locally constant on these complements. It follows from the identifications constructed in
Proposition 1.4.2, that Sζ “ τ´1

K´τK` , i.e., it is equal to the composition

Φ “ H0
K`pC,Fq

τK`

ÝÑ H0
HpC,Fq

τ´1

K´

ÝÑ H0
K´pC,Fq “ Φ

Denote for short the inclusion of support maps for individual rays by

τ˘
a “ τK˘paq : H

0
K˘

a
pC,Fq Ñ V, τa “ τKpaq : H

0
KpaqpC,Fq Ñ V,

so that
τK˘ “

ÿ

aPA

τ˘
a : Φ “

à

aPA

Φa ÝÑ V.

Fix now a P A and let a0 “ a, a1, ¨ ¨ ¨ , ar “ b be all elements of A on Ka, see Fig. 9. Recalling
Definition 2.3.8 of Stζ , we can reformulate Theorem 2.3.11 as follows.

Reformulation 2.3.13. For any choice of a as above and any φ P Φa we have

τ´
a pφq “ τ`

a pφq `

r
ÿ

i“1

τ`
ai

pm´
a,ai

pφqq.

33



Remarks 2.3.14. (a) Note the similarity of the above formula with Proposition 2.2.6(b). Here,
instead of the final transport m`

ai,b
to Φb, we have the map τ`

ai
to V which corresponds, infor-

mally, to putting b at 8.

(b) Reformulation 2.3.13 matches rather directly the identities among exponential integrals
of multivalued functions along various paths, traditionally used in resurgence theory.

3 Resurgence theory: convolution algebras in PervpCq

3.1 The general program

We now outline an approach to resurgence as a program of extending and applying the above
elementary theory to a more general concept of perverse sheaves.

A Resurgent perverse sheaves: algebras in the convolution category. We propose
to consider perverse sheaves on Cw (the Borel plane) carrying some algebraic structures with
respect to the convolution operation ˚. For example, associative (commutative or not) algebras,
i.e., perverse sheavesA with an operation (i.e., morphism)A˚A Ñ A satisfying the associativity
and possibly commutativity condition. Or, given such algebra A, we can consider A-modules,
i.e., perverse sheaves M with an operation A ˚ M Ñ M. Other algebraic structures can be
considered (e.g., Lie algebras).

An algebraic structure with respect to convolution defined on a perverse sheaf A would
give a formal convolution operation on its sections over various domains or on the spaces
of vanishing cycles (whose intuitive meaning is to describe singularity data of sections). So
various formulas of resurgent analysis involving convolutions, alien derivatives and such could
be written intrinsically inside the data associated to A. Therefore we propose to call perverse
sheaves equipped with such algebra structures resurgent perverse sheaves.4 In various concrete
examples sections of resurgent perverse sheaves will be represented by actual resurgent functions
in the classical sense.

As Fourier transform takes convolution to fiberwise multiplication, applying it to a resurgent
perverse sheaf A would give a local system on C˚

z the punctured z-plane with an algebra
structure (of the corresponding type) in the fibers and with a Stokes structure such that the
Stokes matrices are isomorphisms of algebras. For example, if A is a commutative algebra, the
Stokes matrices, being isomorphisms of commutative algebras, can be thought of as coordinate
changes. This would fit, e.g., into the interpretation of cluster transformations as Stokes data
for appropriate differential (or rather integral) equations, see [11, §7] and §3.3 below.

B Generalized perverse sheaves and their convolution. In order to realize the above
program, we need to generalize the concept of perverse sheaves.

4To be more precise, we suggest to use this term for a generalization of the notion of perverse sheaf discussed
in the next subsection.
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First of all, we need perverse sheaves on C whose set of singularities A is an arbitrary
countable (for example, everywhere dense) subset in C. A typical example of such A is a (free)
abelian subgroup in C of finite rank r; it cannot be discrete, if r ě 3. Examples like this are
inevitable since in the classical case (Proposition 2.1.1) the singularities of F ˚G are typically all
the sums of a singularity of F and a singularity of G. So to have an interesting map A˚A Ñ A,
the set of singularities of A needs to be closed under addition.

The fundamental object of study should be the localized category PervpC, Aq. Its objects
should have well-defined spaces (more precisey, local systems on S1) of vanishing cycles Φa,
a P A and the transport maps mabpγq : Φa Ñ Φb for some class of paths γ joining a and b.

Note that case of a discrete A Ă C may seen to be covered by the theory of D-modules and
perverse sheaves in the analytic context. However, already the lifting of PervpC, Aq back into
PervpC, Aq in this context is not obvious, since in the classical case |A| ă 8 the generic stalk of
the lifted sheaf is the direct sum of all the Φa (see [13, 20, 10]) which can be infinite-dimensional
for |A| “ 8 and so falls outside of the theory of analytic D-modules.

For this and other reasons we need perverse sheaves with possibly infinite-dimensional stalks
or, more generally, perverse sheaves with values in a more or less arbitrary abelian category
C. For example, when C is the category of pro-finite-dimensional (= locally linearly compact
linearly topological) vector spaces, the dual to the category of all vector spaces, this approach
would give (perverse) cosheaves of [25]. Also, one needs to consider various analytic completions
(e.g. of the infinite direct sum of the vanishing cycles above), intermediate between direct sums
and direct products and involving convergence conditions.

C Lefschetz perverse sheaves in infinite dimensions. It is a very appealing idea to
generalize the construction of the Lefschetz perverse sheaves Li

S from §1.5 to the case when X
is some complex function space of “fields” and S is the classical action functional corresponding
to some physical theory.

Indeed, CritpSq, the critical locus of S, is the space of solutions of the classical equations
of motion; if the problem is set up appropriately, connected components of CritpSq are finite-
dimensional. The behavior of S in the directions “transverse” to CritpSq typically has the
form

Spxq “ fpx1, ¨ ¨ ¨ , xmq `

8
ÿ

i“m`1

x2i ,

the direct sum of a function of finitely many variables and an infinite sum of independent
squares. This means that perverse sheaf Φ “ “ΦSpkXrdimXsq” on CritpSq , or at least, on
some patches of CritpSq, can be defined5 “by hand” starting from the Φf . As adding an extra
independent square transforms vanishing cycles in a known way (Knörrer periodicity), we are
lead to a natural gerbe (of orientation data) whose trivialization defines Φ completely. This by

5Strictly speaking, on a compoment C Ă CritpXq with SpCq “ a P C we should define ΦS´a, not ΦS .
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now well known procedure is axiomatized using the framework of p´1q-shifted symplectic struc-
tures [2]. The hypercohomology groups of connected components C Ă CritpSq with coefficients
in Φ appear in the framework of motivic Donaldson-Thomas (DT for short) theory.

However, such a procedure treats different components independently, as the actual values
of S on the components are ignored or lost. A natural refinement of the above data would be
perverse sheaves6 Li

S on C whose stalks at a P C would be H ipCa,Φq, where Ca is the union
of components C Ă CritpSq with SpCq “ a. This additional structure would also provide the
transport maps mabpγq between motivic DT-invariants for a certain class of paths γ as long as
stability structures are incorporated in our framework (e.g. in the case when X is the stack of
objects of a 3-dimensional Calabi-Yau category of “geometric origin”).

D Unlimited analytic continuation: the analytic pro-étale site. Multivalued ana-
lytic functions fpwq on the Borel plane appearing in resurgence theory, have the remarkable
property of unlimited analytic continuation which has been made precise using slightly different
concepts of continuation “without cut” (sans coupure) in [9] or “without end” (sans fin) in [4].
Intuitively, such a formalization needs to accomodate two features of the functions in question:

(1) They possess no natural boundaries, beyond which analytic continuation is not possible
(such as the unit circle being the natural boundary for the function

ř

nw
n2
).

(2) But they can have isolated singularities including ramification points that can accumulate
on further and further sheets of the Riemann surface.

To explain (2), any “branch” of fpwq is defined over a “sheet” obtained by removing from C a
discrete set of cuts emanating from a discrete set of ramification points “visible on this sheet”.
But after crossing a cut we arrive on a new sheet where fpwq has a new, still discrete but
possibly larger set of ramification points etc. At the end one can have a seemingly paradoxical
outcome that f has a non-discrete, e.g., everywhere dense set of singularities (understood as
points in C).

The features (1) and (2) make one think about the Bhatt-Scholze theory of the pro-étale
site [1]. Indeed, (1) suggests some étale property while going to further and further sheets in
(2) resembles some projective limit procedure. So let us sketch a version of this theory in the
analytic situation. We plan to discuss it in detail in the future.

Let X be a complex manifold of dimension d. We can consider on X the analytic Zariski (or
ana-Zariski for short) topology, in which the closed sets are analytic subsets S Ă X. Then the
open sets are complements XzS of such S. For example, if d “ 1, then an analytic subset in
X is just a discrete subset, possibly infinite. Thus an ana-Zariski open subset is a complement
of a discrete subset.

Let now X and Y be complex manifolds of the same dimension d.

6or objects of the localized category Perv.
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Definition 3.1.1. A holomorphic map f : Y Ñ X is called an analytic étale (ana-étale for
short), if:

• f is a local biholomorphism, i.e., the differential df is invertible everywhere.

• There is an ana-Zariski open sets Y 1 Ă Y , X 1 Ă X such that fpY 1q “ X 1 and moreover,
f : Y 1 Ñ X 1 is an unramified covering (with possibly infinite fibers).

An example is given by the exponential map exp : C Ñ C, with S “ t0u Ă X “ C.

Definition 3.1.2. A holomorphic map f : Y Ñ X is called a pro-ana-étale, if there exist:

• A projective system
Y0 “ X Ð Y1 Ð Y2 Ð ¨ ¨ ¨

with each arrow being ana-étale;

• An injective morphism rf : Y Ñ lim
ÐÝ

Yi whose composition with the projection lim
ÐÝ

Yi Ñ

Y0 “ X coincides with f .

Thus Definition 3.1.1 accounts for the desired feature (1), while Definition 3.1.2 accounts for
(2).

Examples 3.1.3. (a) The embedding map Y “ t|w| ă 1u ãÑ X “ Cw is a local biholomorphism
but not pro-ana-étale. Such Y can be seen as the Riemann surface of a function with natural
boundary.

(b) It seems plausible that the classical example of the Riemann surface of the inverse of the
hyperelliptic integral discussed in [4, §3] can be included into the framework of pro-ana-étale
theory outlined above. We plan to discuss this as well as more general examples in the future.

To define constructible and then perverse sheaves with possible non-discrete sets of singu-
larities, one can follow one of the two paths.

First, each sheaf F on X in the analytic topology has the étale space rXF Ñ X obtained by
topologizing the union of all the stalks Fx, x P X. One can consider sheaves whose étale spaces
have maximal Hausdorff parts of their connected components satisfying the property of being
pro-ana-étale in the above sense, with some constructibility conditions imposed on the sheaves.

Alternatively, one can consider directly some version of pro-ana-étale Grothendieck site on
X and work with sheaves on this site.

.

3.2 A finitistic example: COHA of a quiver with potential

Let Q “ pI, Eq be a finite quiver, with I being the set of vertices and E Ñ I ˆ I being the
set of oriented edges. For any dimension vector d “ pdiqiPI , di P Z` we denote RepdpQq the
stack of complex d-dimensional representations V of Q. By definition, such a representation
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associates to each i P I a di-dimensional C-vector space Vi and to each arrow e P E between i
and j a linear operator ρe : Vi Ñ Vj with no further relations.

We denote by CxQy the path algebra of Q, so representations of Q are the same as left CxQy-
modules. Fix a potential, or a cyclic word in CxQy, i.e., an element s P CxQy

L“

CxQy,CxQy
‰

,
the quotient by the commutator subspace (not the ideal generated by commutators). More
explicitly, s is represented as a linear combination of closed edge paths in Q. A choice of s gives
for any d a regular function

Sd : RepdpQq ÝÑ C, V ÞÑ trV psq

given by taking the trace. Such functions are additive in the following sense: in the induction
diagram of stacks

t0 Ñ E 1 Ñ E Ñ E2 Ñ 0u

tt ))
Repd1 ˆ Repd2 Repd

dimpE 1q “ d1, dimpE2q “ d2,
dimpEq “ d “ d1 ` d2

the pullback of Sd1 ` Sd2 from the left is equal to the pullback of Sd from the right.

The Cohomological Hall Algebra (COHA) associated to pQ, sq is [22]

A “
à

dPZI
`

Ad, Ad “ H‚
`

RepdpQq,ΦSd
pkrdim RepdpQqsq

˘

.

Here dim RepdpQq is the dimension in the sense of stacks. The multiplication Ad1 bAd2 Ñ Ad1`d2

is given by the pullback and pushforward in the induction diagram above.
Now consider the (bi)graded perverse sheaf

A “
à

d

Ad, Ad “ L‚
Sd

where L‚
Sd

is the graded Lefschetz perverse sheaf (see §1.5 B) on C associated to Sd. Each
Ad is a graded perverse sheaf with finitely many singularities only. We will consider Ad as
an object of the localized category PervpCq. It seems plausible that the induction diagram
defines morphisms of graded perverse sheaves Ad1 ˚ Ad2 Ñ Ad2 in PervpCq, i.e., makes A into
an associative convolution algebra refining A, cf. [22, §4].

Remark 3.2.1. The above definition of COHA depends only on the quiver with potential. One
can make an additional choice consisting of the central charge Z : ZI Ñ C. This choice gives rise
to the wall-crossing structure in the sense of [23, 24]. If the wall-crossing structure is analytic in
the sense of [24] then it was conjectured in the loc.cit. that germs of sections of the associated
non-linear fiber bundle over C are resurgent. Assuming the conjecture we obtain a perverse
sheaf on the Borel plane with singularities belonging to the image ZpZIq. This perverse sheaf
seems quite different from the L‚

Sd
.
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3.3 Cluster perverse sheaves and wall-crossing structures

A Two types of examples: Lefschetz type and cluster type. Two main classes of
perverse sheaves on C of infinite rank with possibly infinite set of singularities appear naturally
in resurgence theory:

• Those which comes from holomorphic functions on infinite-dimensional manifolds (natural
generalization of Lefschetz sheaves)

• Those which come from wall-crossing structures [24]. In this section we consider this
class. They can be called cluster perverse sheaves” or wall-crossing perverse sheaves. We
will use the former term, since cluster transformations play the key role in the story.

These classes have nonempty intersection.

B Reminder on stability data on graded Lie algebras. Let us recall the relevant
structures following [21, 23, 24].

Let Γ be a free abelian group of finite rank n endowed with a skew-symmetric integer-valued
bilinear form x´,´y : Γ ˆ Γ Ñ Z. Consider the vector space g “ gΓ “ ‘γPΓQ ¨ eγ. This space
is made into a Poisson algebra with the commutative (associative) product and the Poisson
bracket given by

(3.3.1)
eγ1eγ2 “ p´1q

xγ1,γ2yeγ1`γ2

teγ1 , eγ2u “ p´1q
xγ1,γ2y

xγ1, γ2yeγ1`γ2 .

Let T “ TΓ :“ Specpgq be the algebraic Poisson manifold obtained as the spectrum of the
commutative algebra g. It is a torsor over the algebraic torus HompΓ,Gmq and the Poisson
structure on T is invariant with respect to the torus action.

Let ΓR “ Γ b R. For any strictly convex cone C Ă ΓR we denote

pgC “
ź

γPΓXC´t0u

Q ¨ eγ

the completion of g associated to C. It inherits the Poisson algebra structure.

Recall [21] that stability data on g consist of a pair pZ, aq, where Z : Γ Ñ C is a homomor-
phism of abelian groups (“central charge”) and a is a collection of elements aγ P Q ¨ eγ Ă g
given for each γ P Γzt0u. These data satisfy the so-called support condition which means that
there exists a non-zero quadratic form on ΓbR which is non-negative on those γ P Γ for which
aγ ‰ 0 and which is negative on KerpZ b Rq, see [21, §2] for details.

It is convenient to transform the collection a “ paγq into a collection of numbers Ω “ pΩpγq P

QqγPΓzt0u defined uniquely by the identities

apγq “ ´
ÿ

ně1, 1
n
γPΓzt0u

Ωpγ{nq

n2
eγ .
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Then for any cone C as above containing γ we have a formal identity in pgC :

exp

˜

ÿ

ně1

apnγq

¸

“ exp

˜

´
ÿ

ně1

Ωpnγq
ÿ

kě1

eknγ
k2

¸

:“ exp

˜

´
ÿ

ně1

ΩpnγqLi2penγq

¸

,

where Li2ptq “
ř

kě1 t
k{k2 is the dilogarithm series.

As for any Poisson manifold, the Lie algebra g “ pOpTq, t´,´uq acts on T by Hamiltonian
vector fields (derivations of the coordinate ring pg “ OpTq, ‚q) which have the form tf,´u for
f P g. For any γ P Γzt0u denote by Sγ the formal Poisson automorphism defined by

Sγ “ exppt´Li2peγq,´uq, Sγpeµq “ p1 ´ eγq
xγ,µyeµ

Here the second equality exhibits Sγ as a birational automorphism of T, i.e., an automorphism of
the field of fractions of g. The first equality shows its formal series expansion in pgC for any C Q γ
as above. It is explained in [21] how the Ωpγq are related to enumerative Donaldson-Thomas
invariants of 3-dimensional Calabi-Yau categories.

Further, if the above data satisfy a certain analyticity assumption, then they give rise to an
analytic fiber bundle E over C with fibers isomorphic to T. The gluing functions of E come
from transformations

(3.3.2) Sl “
ź

ZpγqPl

SΩpγq
γ (product in the order given by l)

associated to various rays l Ă C. In this case, the resurgence conjecture of [24] says that with
any analytic section of E and each γ P Γ one can naturally associate a resurgent series in the
standard coordinate z on C.

The notions of wall-crossing structure and analytic wall-crossing structure (see [24]) gener-
alizes the notion of stability data on a graded Lie algebra roughly by considering sheaves of
stability data and analytic stability data.

C A perverse sheaf interpretation. From the point of view of the present paper, it
is natural to think of the target of the central charge map Z : Γ Ñ C as the Borel plane.
Let us assume for simplicity that Z is a set-theoreical embedding. The transformations Sl are
suggestive of Stokes multiplies and are in fact interpreted as such (in the more general context
of integral equations) in [11], cf. also [3].

So it is natural to look for a perverse sheaf7 F on C in some generalized sense as above (in
fact, an object of an apprioriate localized category Perv) with the properties:

(0) F is a Poisson algebra with respect to convolution.

(1) The set A of singularities of F is a subgroup of ZpΓq. So it can be discrete (though still
infinite), if rkpΓq ď 2.

7with k “ Q.
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(2) For a “ Zpγq the space ΦapFq is 1-dimensional, identified with Q ¨ eγ.

(3) For ζ P S1 the Stokes operator Stζ for F is given by SR`ζ from (3.3.2).

Then g would be realized as
À

aPAΦapFq with the operations coming from those on F .

The Fourier transform pF would then be a generalized perverse sheaf of infinite rank (the latter
needs a rigorous definition), and the stalks of the local system FTpFqgen on C˚ would involve
some analytic completions of g “

À

γPΓQ ¨ eγ. For a ray l Ă C the transformation Sl need
not preserve g which is an algebraic direct sum: it maps g into the direct product. But as
such it has a well defined matrix element between any two summands which we can write as
pSlqab : ΦapFq Ñ ΦbpFq. Note that pSlqab “ 0 unless pb ´ aq P l. Therefore it is indeed
meaningful to interpret each Sl as the Stokes operator of some would-be generalized perverse
sheaf F . If we do so, the finite case analysis of §2.3 provides an answer for what should be
the (say, left-)avoiding transport m´,F

ab or the alien transport m∆,F
ab for any a, b P A “ ZpΓq.

Proposition 2.2.13 suggests that his should be sufficient information to recover F as an object
of the localized category.

This picture is expecially compelling when rkpΓq “ 2 and A is a discrete lattice in C. Then
one can look for F as a perverse sheaf in the classical sense but with possibly infinite-dimensional
stalks.

3.4 Perverse sheaves in Chern-Simons theory

An example of a holomorphic function on an infinite-dimensional complex manifold (or stack) is
provided by the complexified Chern-Simons functional (CS functional for short) associated to a
compact oriented 3-manifold M and a complex semisimple Lie group G. Let e.g. G “ SLnpCq.
We take X to be the moduli stack of C8-connections on the trivial SLn-bundle on M , so X is
the quotient of the vector space Ω1pMq b sln by the gauge group C8pM,SLnpCqq, and the CS
functional is

(3.4.1) CS : X ÝÑ C{4π2Z, CSpAq “

ż

M3

tr

ˆ

1

2
A ^ dA `

1

3
A ^ A ^ A

˙

mod 4π2Z.

In fact, quotienting by the subgroup of gauge transformations equal to 1 over a fixed point
m0 P M , gives an infinite-dimensional manifold Xfr (framed connections) with X “ Xfr{SLnpCq

and we can consider CS on this manifold.

In order to get rid of the multivaluedness we pass to the maximal abelian covering rXfr
Z

Ñ Xfr,
so we get a well defined holomorphic function

(3.4.2) ĂCS : rXfr ÝÑ C.

One can then attempt to define and study the corresponding Lefschetz perverse sheaf LCS

along the lines discussed in §3C. Such a study was in fact initiated in [25] although very little
is known about L

ĂCS. Some known facts and some expectations can be summarized as follows.

41



(1) The functional CS in (3.4.1) has finitely many critical values, which are known to be the
regulators of some elements in algebraic K-group K3pCq. Accordingly, the critical values

of ĂCS fall into finitely many arithmetic progressions with step 4π2Z.

(2) The generic stalks of the expected perverse sheaf L
ĂCS (i.e., intuitively, the middle-dimensional

cohomology of the generic fiber of ĂCS) are infinite-dimensional. In fact, it is easier to first
define the Verdier dual cosheaf, as done in [25]. But the spaces of vanishing cycles are
finite-dimensional.

(3) L
ĂCS can be defined as the perverse extension of the local system formed by the middle

cohomology of the fibers on the complement to the set of critical values, see [25, §8.3].

(4) In addition, RΓpC,L
ĂCSq “ 0, so L

ĂCS is, formally, an object of the category Perv0pCq

(although with infinitely many singularities and with infinite-dimensional stalks).

Some further conjectures can be found in [25, §8.3]. It was also explained in loc.cit. how the
wall-crossing structure and resurgence properties of the perturbative expansions of the Chern-
Simons functional integral are related to the perverse sheaf L

ĂCS.
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