A generalization of Barannikov-Kontsevich theorem
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Abstract

We study the twisted de Rham complex associated with a holomorphic function on a Kéhler manifold whose
critical point set is compact. We prove the Fi-degeneration of the Hodge-to-de Rham spectral sequence. It is
a generalization of Barannikov-Kontsevich Theorem.
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1 Introduction

1.1 Twisted de Rham complexes

Let X be a complex manifold. Let f be a holomorphic function on X such that the set of critical points Cr(f) is
compact.

Let Q% denote the sheaf of holomorphic k-forms on X. There exists the exterior derivative d : Q% — Q&+t
The exterior product of df induces morphisms df : Q% — Q’;’(H, ie, T—df AT.

Let A be a variable. Let Q% [A] denote the sheaf of formal power series with Q% -coefficients. Namely, for any
open subset U of X, let Q% [A\](U) denote the space of formal power series >j50 m;M, where 1; € Q% (U). We

obtain the differential Ad + df : Q% [A\] — Q% [A] determined by 7 ~ Adr + df A 7. It satisfies (Ad + df)? = 0.
The complex Q% [A]; = (Q%[A], Ad + df) is called the twisted de Rham complex, or the formal twisted de Rham
complex when we emphasize to consider the formal series. We obtain the cohomology group H*(X, Q% [A]f). It is
naturally a C[A]-module, where C[A] denotes the ring of formal power series with C-coefficients.

There are several different versions of twisted de Rham complex. For example, if X and f are algebraic, let
denote the sheaf of algebraic k-forms on the algebraic variety X®'¢ with Zariski topology, and it is also natural
[A] of polynomials with QF _-coefficients on X8, We obtain the algebraic twisted de

Xalg

[Al,Ad + df ) and the cohomology group H*(X™&, Q% [A]lf).

k
QXalg

: k
to consider the sheaf Q7%

Rham complex Q%..,[A]; = (Q%a

1.2 A basic question

By setting FL(Q%[A\s) = MQ%[A]s for any non-negative integer j, we obtain the filtered complex FyQ%[M];-
The associated complexes G]riTA Q%[ ) = ]-"/{ /]-"f\"H (j > 0) are isomorphic to the complex (2%, df). Note that
the cohomological support of (%, df) is contained in Cr(f). Because Cr(f) is compact, H*(X, (2%, df)) is a finite
dimensional complex vector space. There is the spectral sequence associated with the filtered complex, for which

EYY = HPM(X, Grly, (Q%[Ny)) = HPH(X, (QX, df))-
We study the following question.
Question 1.1 Is the spectral sequence for FQ% [\ degenerates at the E;-level?

We can rephrase the condition in several ways.

Lemma 1.2 The spectral sequence degenerates at the Eq-level if and only if the following equivalent conditions are
satisfied.
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e For any ¢ and j, the exact sequences 0 — GrrjfA — Q%[N /FIT — Q% [Mf/FL — 0 induce the
following exact sequences:

0 — H'(X, G, (U [\]y)) — H (X, Q%[N /7)) — HY(X, Q% [N5/F) — 0.

e For any ¢, HY(X,Q%[M\]s) are isomorphic to H (X, (Q%,df)) ® C[A] as C[A]-modules. In particular, the
formal twisted de Rham cohomology groups H'(X,Q%[\]s) are free C[A]-modules of finite rank.

Remark 1.3 It is easy to see that the second condition implies the first. For the convenience of readers, we shall
recall that the Ey-degeneration is equivalent to the first condition in §3.1.3. We shall later explain that the first
condition implies the second condition in a generalized context. (See Corollary 3.10.)

1.2.1 Classical results related to the question

There are two classical results related to this question. One appeared in the classical Hodge theory. As Deligne
observed, if X is projective and f = 0, the desired FEj-degeneration follows from the Hodge decomposition of
H*(X,C). Deligne generalized it to more general algebraic varieties by using mixed Hodge theory. This Fi-
degeneration and its generalizations are not only deep results in the Hodge theory, but also useful for various
applications including some vanishing theorems. Deligne and Illusie gave an alternative proof of the F;-degeneration
using the reduction to the positive characteristic.

The other appeared in the singularity theory, in particular, the study of Brieskorn lattices. If f has only one
critical point, the F-degeneration holds because the ¢-th cohomology group of (2%, df) is 0 unless ¢ equals dim X.
In this case, the Ej-degeneration is an important starting point of the deep theory of primitive forms of Kyoji
Saito. (See [19] and [20] for more backgrounds.)

1.3 Barannikov-Kontsevich Theorems and variations

The modern study of twisted de Rham complexes was opened by the celebrated theorem of Barannikov and
Kontsevich.

Theorem 1.4 (Barannikov-Kontsevich) The E;-degeneration for FxQ% [N s holds in the case where X and f
are quasi-projective.

This is a fundamental theorem in the study of the holomorphic Landau-Ginzburg model of the mirror symmetry.
For example, it is essential in the proof of smoothness of some moduli spaces associated with Landau-Ginzburg
models. (See [6].)

The original proof of Barannikov and Kontsevich was given by a generalization of the method of Deligne and
Illusie. Indeed, Barannikov and Kontsevich proved the following theorem for the algebraic version of the twisted
de Rham complexes, which implies Theorem 1.4.

Theorem 1.5 (Barannikov-Kontsevich) Suppose that f : X — C is a projective morphism of algebraic vari-
eties. Then,

dim H? (X%, (%, df)) = dim H? (X8, (O, d + df))

holds for any j and for any complex number . 1

Theorem 1.5 implies that H7 (X, Q% [\]f) are free C[A]-modules, and that the F;-degeneration of the spectral
sequence for the filtered complex Fx\Q%..,[A]s. In the setting of Theorem 1.4, there exists a projective morphism
of algebraic varieties F' : Y — C with an open embedding ¢ : X — Y such that f = F o.. Under the assumption
that Cr(f) is compact, the set Cr(F) of critical points of F is decomposed as Cr(F) = Cr(f) U (Cr(F) N (Y \ X)).
Then, we obtain the E;-degeneration for Q% [A]; from the E;-degeneration for FxQ5...,[A] .

The theorem of Barannikov-Kontsevich for the algebraic twisted de Rham complexes (Theorem 1.5) has at-
tracted many mathematicians because of its significance in the non-commutative Hodge theory (see [6]), and
because the theorem and its generalization are deeply related with various fields of mathematics. Indeed, alter-
native proofs for Theorem 1.5 with different methods have been found by Sabbah [15] using Hodge modules and
microlocalization, and by Ogus and Vologodsky [14] using their non-abelian Hodge correspondence in positive char-
acteristic. Later, Arinkin, Cildararu and Hablicsek [1] revisited it in their study of Deligne-Illusie method from the
viewpoint of derived algebraic geometry. Sabbah also studied generalizations to the case where f is not necessarily
projective but cohomologically tame [17]. See [2] and [12] for a generalization to the Kontsevich complexes.



The L2-analogue of the twisted de Rham complex associated with (X, f) has been also studied in [3, 7]. In
particular, Li and Wen [7] studied the case where X has a complete Kéhler metric with bounded curvature, and f is
strongly elliptic, which is a kind of non-degeneracy condition at infinity. They established an analogue of Theorem
1.5 in this context.

1.4 Main result

In this paper, we shall study a generalization of Theorem 1.4. It is an affirmative answer to a question asked by
Kontsevich to the author.

Theorem 1.6 If X is Kdhler, the Ey-degeneration for Fx\Q% [\ holds.

Note that X can be a small neighbourhood of Cr(f), and that we do not need any assumption on the behaviour of
(X, f) at infinity. It is our purpose to show that a local assumption around Cr(f) is enough for the F;-degeneration
for the formal twisted de Rham complex, though global assumptions are useful to obtain stronger consequences as
in Theorem 1.5.
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2 Integrable mixed twistor D-modules

2.1 Mixed twistor D-modules

The theory of twistor D-modules has been developed in [16, 18] and [9, 10, 11] as a twistor version of Hodge modules
[21, 22] inspired by the principle called Simpson’s Meta theorem [23].

2.1.1 Rx-triples

For any complex manifold X, we set X = Cy x X. Let p) : X — X denote the projection. Let Dy denote the
sheaf of holomorphic linear differential operators on X, and let © x denote the tangent sheaf of X. We obtain
the sheaf of subalgebras Rx C Dx generated by A - (piOx) over Ox. If X is an open subset in C”, we have
Rx = Ox(A\01,...,A0n).

We set § = {A € C|[[\| = 1}. Let ¢ : § — S be defined by o(A\) = —A. Let Dbgy /g denote the
sheaf of distributions on S x X which are continuous with respect to S. (See [16, §0.5].) It is naturally an
Rx|sxx 0, s U’l(RX‘SXx)—module by the action (P, ® 07 1(P)) -7 = Pio~1(P2)7. A sesqui-linear pairing of
R x-modules M’ and M" is a morphism of Rx|sxx @0, s 01 (Rx|sxx)-modules Mgy x®0c, s o} loxx) =
Dbsxx/s- Such a tuple (M', M”,C) is called an R x-triple.

For Rx-triples T; = (M}, MY, C;) (i = 1,2), a morphism T; — 73 is defined to be a pair of R x-homomorphisms
@ My — M) and " : MY — MY such that C; o (¢’ x id) = Cy o (id x¢"). The category of R x-triples is an
abelian category.

For an increasing filtration W of T in the category of R x-triples, we have the increasing filtrations W (M) and
W(M”) such that W;(T) = (M'/W_;_(M’), W;(M"),C;), where C; denote the induced sesqui-linear pairings.



2.1.2 Direct image of R x-triples

Let FF: X — Y be a morphism of complex manifolds. We set wy := A~ dimXp}wX, where wx denotes the

canonical line bundle of X. Similarly, we set wy := A~ Y p¥ )y We set Ry x = wy @p1 ) F~ YRy ®w§1).
For any R x-module M, we obtain the following Ry-modules:

F{(M) := RV (idc xF)i (Ry  x @k, M) (j € Z).

For any Rx-triple T = (M’, M",C), we obtain the Rx-triples F} (T) = (F?(M'), F{(M"), F;,C) (j € Z) on
Y. (See [16, §1.4].) When T is equipped with an increasing filtration W, let WjH(FTj (7)) denote the image of
FTj (WeT) — FTJ (T) by which we obtain the filtration W on FTJ (7).

2.1.3 Pure twistor D-modules

A polarizable pure twistor D-module of weight w on a complex manifold X is an R x-triple satisfying some con-
ditions. (See [18, 10].) Let MT(X,w) denote the category of polarizable pure twistor Dx-modules of weight
w.

Theorem 2.1 ([16, 9, 10]) Let F' : X — Y be a projective morphism of complex manifolds. For any T €
MT(X, w), we have F{(T) € MT(Y,w + j). 1

There exists the full subcategory MT,qs (X, w) C MT (X, w) of regular polarizable pure twistor Dx-modules of
weight w. (See [16, 9] for the regularity condition.) We obtain the following generalization of Theorem 2.1 in the
regular case.

Theorem 2.2 ([13]) Let F : X — Y be a morphism of complex manifolds. Let T € MT,ee (X, w). Suppose that
X is Kdhler, and that the support of T is proper over Y. Then, we have FTJ (T) € MT g (Y, w + j). 1

2.1.4 Mixed twistor D-modules

A mixed twistor D-module on X is a filtered R x-triple (7, W) and satisfying some additional conditions. (See [11,
§7].) Let MTM(X) denote the category of mixed twistor D-modules on X. The following theorem is fundamental.

Theorem 2.3 ([11]) Let F : X — Y be a projective morphism of complex manifolds. For (T,W) € MTM(X),
we have (F}(T),W) € MTM(Y') for any j. 1

For any (7, W) € MTM(X), we have Gr)V (T) € MT(X,w). There exists the full subcategory MTM,eq(X) C
MTM(X) of mixed twistor Dx-modules (7, W) such that Gr!” (7) € MTyeg(X,w). Theorem 2.3 is generalized as
follows in the regular case.

Theorem 2.4 ([13]) Let F : X — Y be a morphism of complex manifolds. Let T € MTM,es(X). Suppose that
X is Kdhler, and that the support of T is proper over Y. Then, we have F]f (T) € MTM, (). |

2.1.5 Pure and mixed twistor D-modules on a point

Let pt denote the set of one point. An Ryi-module is an Oc,-module. Let o : P! — P! be the anti-holomorphic
map defined by o(A\) = (=A\)7!. Let 0 : C; — C} and o : P!\ {0} — C, denote the induced maps. Let M’, M"
be locally free O¢,-modules of finite rank with rank M’ = rank M”. Let

C: MTCX ®o* (Mﬁck) — Ocy

be an Ocs-homomorphism which is perfect in the sense the induced morphism V¢ : 0™ (M")jcx — (M/)I\ﬂ/q is an
isomorphism, where (M')Y = Homo,, (M', Oc, ). Such a triple (M', M",C) is called a smooth R-triple. For
any smooth Rp¢-triple 7 = (M’, M”,C'), we obtain the locally free Opi-module Y(7) by gluing (M’)Y on C, and
o*(M") on P\ {0} with Ue.

A polarizable pure twistor D-module on pt is a smooth Rp-triple 7 such that Y(7) is isomorphic to a direct
sum of Op: (w). A mixed twistor D-module on pt is a smooth Rp¢-triple 7 with a weight filtration W such that
GrY (T) are pure of weight w.



Let ax : X — pt denote the canonical morphism. We set @;c/(c = )\_k(pf\Q’;(). We have the exterior derivative
d : ﬁlj{ c ﬁ’?}é For a coherent R x-module M with compact support, we obtain the complex of sheaves
M ®Q;(/cc on X. We have

ali (M) = R X+ (id xay), (M ® 0%, /C)
as the Oc¢, -module.

Corollary 2.5 Suppose that M underlies a reqular mized twistor D-module on X with compact support. We also
assume that X is Kdhler. Then, agﬁ (M) are locally free Oc, -modules. 1

This is closely related with the F;-degeneration property. We consider the subcomplexes fﬁ; M ® 62;( /C) =

NM @ ﬁ;(/c. Because M : agﬁ(/\/l) — a?XT(M) are monomorphisms, the following is exact for any ¢ and j:

0 — R X (id xay ). F(Q /¢ ® M) — BRI X (id xax ). (Q% jc @ M) —
RIMXH(id xay ), (e ® M)/FL) — 0. (1)
Hence, the following is an epimorphism for any j and ¢:

R XH (i xa), (e ® M)/FLT) — R4 (d xax). (e © M)/F)). )

This means the E;-degeneration of the spectral sequence associated with the filtration F) on ﬁ:v c® M.

2.2 Integrable mixed twistor D-modules

We set Rx = Rx(A20)) C Dxy. If X is an open subset in C", we have Rx = Ox (A1, ..., 0n,A20,). By the
identification S = {e¥~1?}, we obtain the vector field 95 on S.

Let M’, M" be R x-modules. Let T = (M, M, C) be an R x-triple. For any section m’ of M’ for U C S x X,
we set Opm’ = /—1Am’ = (V=19 — \/—dlz\ax)m’. Similarly, dpm” is defined for a section m” of M"”. The
R-triple T is called integrable if

8pC(m/, o= (m")) = C(dgm’, =1 (m")) + C(m/, o= (Dgm”")).

(See [11, §2.1.5] for integrable R x-triples, which originally goes back to [16].) An integrable R x-triple is called
Rx-triple. A morphism of R x-triples 7; = (M}, M/, C) (i = 1,2) is defined to be a morphism (¢, ¢") of Rx-
triples such that ¢’ and ¢" are ﬁ x-homomorphisms. For a morphism of complex manifolds F': X — Y and for an
R x-triple T, the Ry-triples Fg (T) are naturally Ry-triples.

An integrable mixed twistor D-module on X is a filtered ﬁx—triple (T, W) satisfying some conditions. (See
[11, §7.2.3].) Let MTM‘rlgtg(X ) denote the category of integrable mixed twistor Dx-modules whose underlying
mixed twistor Dx-modules are regular. Let Cyes(X) denote the full subcategory of R x-modules underlying regular

integrable mixed twistor Dx-modules, i.e., an Rx-module M" is an object of Creg(X) if and only if there exists
(M, M C),W) € MTM2! (X).

reg

2.3 Ry-modules induced by Hodge modules

Let Dx denote the sheaf of holomorphic linear differential operators on X. Let F;(Dx) denote the subsheaf of
differential operators of degree at most j. We set R (Dy) := > ez N F;(Dx) and RF(Dx) := R (Dx)(\20)).

Let M be a regular holonomic Dy-module. Let F(M) be a good filtration of M. We obtain R (Dx)-module
RE(M) = djez N F;(M). 1t is naturally an RF(Dx)-module. By the analytification, it induces an R x-module
denoted by R (M). In this way, we obtain a functor from the category of good filtered regular holonomic Dx-
modules to the category of R x-modules.

Lemma 2.6 If (M,F) is a filtered regular holonomic D-module underlying a mized Hodge module, we have
RE(M) € Creg(X). (See [21, 22] for Hodge modules.)

int

Proof There exists a natural functor from the category of mixed Hodge modules on X to MTM,, (X) as explained
in [11, §13.5]. In the level of filtered D-modules, it is given as above. 1



3 Main Theorem

3.1 Preliminary

Let X be a complex manifold. Let M € Cyeq(X) be an R x-module underlying an integrable regular mixed twistor
D-module induced by a mixed Hodge module. Let Ch(EpgrM) C T*X denote the characteristic variety of the
underlying Dx-module Epg(M). Let 0x : X — T* X denote the O-section. We assume the following.

e The set Cr(f) is compact.
e Any ¢ # 0 is a regular value of f.
e Ch(Epr(M)) Ndf(X) C 0x(Cr(f)).

The second condition implies Cr(f) C f~1(0). Because the characteristic varieties are cone, the third condition
implies Ch(Epg(M)) N (adf)(X) C 0x(Cr(f)) for any non-zero constant .

3.1.1 Cohomology group of the restriction to A =0

Let L(f) denote the R x-module given by Ox with the meromorphic integrable connection d + d(A~'f). We
obtain the Rx-module My = M ® L(f) on X, and the complex of sheaves M; ® Q% ,c on X. We recall that
My € Creg(X). Let 1y : {0} x X — Cy x X denote the inclusion. We obtain the complex of coherent Sym O x-
modules ¢j(Mf ® Q;(/C). It induces a complex of coherent Or- x-modules denoted by (v} (M ® Q;(/(C))N

Lemma 3.1 The cohomological support of (v5(My @ ﬁ:\,/@))w is contained in 0x (Cr(f)). As a result,

H* (X, 15(M; ® Q%))
are finite dimensional.

Proof Let (¢:3 M)~ and (¢5£(f))™ denote the coherent Op« x-modules induced by (5 M and ¢} L(f), respectively.
The support of (13 M)~ is the characteristic variety Ch(Epr.M). The support of (¢5L£(f))™ is the image of df (X).
The support of (13 M)~ is df (X) + Ch(Epr(M)) in T*X.

Let wy denote the canonical bundle of X. Let Sym © x @ \* © x ®wyx be the Koszul resolution of Ox by Sym © x-
free modules. It induces an O« x-free resolution Or«x @ 7* (/\' Ox ® wX) of 0x.(Ox), where 7 : T*X — X

denotes the projection.
We have

(3(Ms @ B%e)) ™ = (3Mp)™ S0, (Or-x @7 (\Ox Bwx)).

Hence, the cohomological support is contained in the intersection of the support of (¢ M)~ and the 0x (X), which
is contained in 0x (Cr(f)). 1
3.1.2 Cohomology group of the vanishing cycle sheaf

Let ¢y : X — X x C; be the graph embedding, i.e., tf(z) = (z, f(x)). There exists the V-filtration V(.4 (Epr(M)))
along t. We obtain the regular holonomic Dx-module

¢;(Epr(M)) == ) Gry (151Epr(M)).
—1<a<0

Lemma 3.2 The support of ¢5(Epr(M)) is contained in the compact subset Cr(f). As a result, the cohomology
group H* (X7 ¢#(EprM) ® QB() is finite dimensional.

Proof The third condition implies that Zpg (M) is non-characteristic to the hypersurfaces f~*(c) on X \ Cr(f).
Hence, ¢¢(ZEpr(M)) =0 on X \ Cr(f). 1



3.1.3 Fi-degeneration and long exact sequences

We recall that the E;-degeneration condition of a spectral sequence associated with a filtered complex for the
convenience of readers. Let A be an abelian category. Let (K°®,d) be a complex with a decreasing filtration
F*(K*). To simplify the notation, we set FPP+7(KJ) := FP(K7)/FP*"(K7).

Lemma 3.3 Let ro € Z>1. The following conditions are equivalent.
A(rg): HI(FPPHT(K®)) — HI(FPPTL(K®)) are epimorphisms for any j,p € Z and 0 < r < rq.
B(rg): HI(FPPTT(K®)) — HI(FPPY=1(K®)) are epimorphisms for any j,p € Z and 0 < r < rq.

Proof It is easy to see that B(rg) implies A(rg). Suppose that A(rg) holds. We shall prove H? (FPPT"(K*®)) —
HI(FPP+r=1([K*)) are epimorphisms for any j,p € Z and 0 < r < rg, by an induction on 7. We have the following
commutative diagram:

HI (Fp,p+r—1) - HI (Fp7p+1)
| |

0 —— Hj+1(Fp+7"—17p+7") LN Hj+1(Fp+17p+r) SN Hj+1<Fp+1,p+r—1) - 5.

By A(rg), we have b = 0. By the assumption of the induction on r, ¢ is a monomorphism. Hence, we obtain a = 0,
and the induction can proceed. 1

Recall that the spectral sequence EP-? for the filtered complex F*(K*®) is given as

EP9 = 709 [(ZPH] 4 dzP= TRy

r—1

by setting ZP9 = Ker(d : FPKPTT — Fp’p+T(Kp+q+1)>. (See [4] for more details.) There exist the natural
morphisms d, : EP9 — EPT™477t1 quch that d,. o d, = 0, induced by d : FPKPT? — FPKPTatl  There exist
natural isomorphisms

EPS = Ker (BP9 — Brroo=r+t) [ (pratr=t o gpa).
Lemma 3.4 We have d, =0 for any 1 <r <rg— 1 if and only if A(rq) holds.

Proof We shall use an induction on ro. Suppose that d, =0 (1 < r < ry—2) and that A(ro — 1) holds. We have
EPY = EP = gPHa(FPPrL(K®)) for 1 <r <ry— 1. We consider

Hj(Fp’pH)
0 — s HItL(Fptro=lp+ro) _C  pri+l(pe+letroy 2 o pi+l(preletro—ly (.

By A(rg — 1), c is a monomorphism, and we have bo a = 0. There exists a unique morphism ¢ : HI(FPPT1) —
HIFTY(Fptro=Lptro) guch that co ¢ = b. By the construction, ¢ = d,,_;. Hence, A(rg) holds if and only if
by 1 =0, I

We say that the spectral sequence degenerates at the E;-level if d,. = 0 for any » > 1. We obtain the following
proposition.

Proposition 3.5 The E;-degeneration holds if and only if one of the following equivalent conditions holds.
o HI(FPP+r(K®)) — HI(FPP+"=1(K*)) are epimorphisms for any j,p € Z and 1 < r. 1

3.2 Refinement of the Theorem 1.6
3.2.1 Main Theorem

Let us explain a refined statement of Theorem 1.6. We define the filtration F§¥(M @ ﬁ:\’/({:) = MM fl:v/c) for

k € Z>o. Note that GrkB (M SNI;(/C) is isomorphic to (M ® 52;(/(5) for any k > 0. Let us state the main
theorem of this paper.



Theorem 3.6 The E;-degeneration holds for the filtered complex Fx(M ® Q;c/cc) with respect to the push-forward
by the projection X — Cy. In other words, we obtain the following exact sequences for any £ and j:

0— H (X,Grf (M @ﬁ;(/c)) — Hj(X, (Mf®§;(/c)/f§(/\/1f®ﬁ;(/c))
= B (X, (Mg @ Q%) [FA (M @ O3 je)) = 0. (3)

We obtain Theorem 1.6 from Theorem 3.6 as the special case M = Oy. We shall also prove the following.

Theorem 3.7 We have dim H7 (X, 1} (M ® ﬁ;(/c)) = dim H’ (X, ¢ (EprM) ® Q%) for any j.

Corollary 3.8 In particular, we have dim H? (X, (%, df)) = dim H7 (X, Q% ® ¢7(Ox)).

Corollary 3.9 There exists an isomorphism

meHj (X, (My @0 ) [ FE(My @ 0% ) ) = H(X,05(My © 23) ) @ CIAL (4)

3.2.2 Completion

We naturally regard (M ¥ / ]-'f;/\/l f) ® 62;( /c 38 the complexes of sheaves on X. We obtain the following complex of
sheaves on X:

—

My @ Q% ¢ = lim(My/F{My) © Qe
J

Corollary 3.10 There exists an isomorphism

HI (X, My @ 0% c) = H (X, 55(My @ 0% ) ) @ CIN]

—

In particular, H7 (X, My ® SNIS(/C) are free C[\]-modules of finite rank.

Proof Let Qg(’q denote the sheaf of smooth (0, ¢)-forms on X. We obtain the following double complex

—

(M © 0y 0) oy 95" = lim (M /FEMy) © B e Doy 9X) -
J

Let Tot ((Mf ® QS{/C)@’OX Q?g') denote the total complex.

Lemma 3.11 The natural morphism is a fine resolution:

- o —

Mf@ﬁ}/c*)TO‘E((Mf@ﬁ;(/C)(/X\)oXQg(’.). (5)

Proof It is enough to prove that (5) is a quasi-isomorphism locally around any point of X. Recall that the sheaf
of C>°-functions on X is flat over Ox according to [8].

Let G be any pseudo-coherent Ox-module. (See [5, Appendix A] for pseudo-coherent sheaves.) We have
Gob, 0% ~ Goo, Q%% Let Fy — G be a free resolution of G. The natural morphisms Fy — Tot(Fe®0, Q%) —
G R0y Qgg' are quasi-isomorphisms. Hence, G — G ®0 Q&' is a quasi-isomorphism.

Let G be a pseudo-coherent Ox-module flat over O¢,. We naturally regard G/NG as Ox-modules. Let
Ti+1:G/ NHLG — G/MN G denote the projections. We obtain the quasi-isomorphisms

G/NG = (G/NG) @0y Q%

For any open subset U C X, the morphisms H°(U, (G/NT'G) ® Q(;(’q) — HY(U,(G/NG) ® Qgéq) are surjective
because 1 (G)®@0%7 is fine. Let a?“ € HO(U, (G/NG)@0%1+1) (j =1,2,...) be sections such that 3((1?“) =0 and
7rj+1(a?il) = a?""l. Let us construct b € H" (U, (g//\j)®9gf’) (j =1,2,...) such that gb? = af and 741 (0], ,) = b]



inductively on j. Suppose that we have already constructed b7. There exists ¢, € H O(U(G/NTG) ® Qgéq) such
that m;1(cf ;) = bj. We obtain

ATl =adly = 0cl,, € HO(U,(NG/NT1G) @ QOat) ~ HO(U, 156 @ Q%9T)

J

such that g(dg-ﬂ) = 0. There exists el,, € HO(U,(MG/N1'G) @ 0%) such that del,, = d?ﬁ. By setting
b,y =, +ej,y, the induction can proceed.
As a result, the natural morphism

lim(9/NG) — lim((G/NG)  0F°)

J J

is a quasi-isomorphism. Then, we obtain the claim of Lemma 3.11. |
We obtain Corollary 3.10 from the following lemma.

Lemma 3.12 The natural morphisms

—

HI (X,Mf ® Qk/@) — lim I/ (X, (My/FsMy) @ QS(/C)
l

are isomorphisms.

Proof Let mp1 denote the projection induced by Mf/f§+1Mf — ./\/lf/}'f./\/lf. Let d denote the differential of
the complex Tot? ((./\/lf/ff/\/lf) ® ﬁ;c/c ® Qg&').
Let us consider cohomology classes

o € HY(X, (M /FiMp) @ Q3je)  (E=1,2,..)
such that mp41(apy1) = ap. We shall construct cocycles
ac € H* (X, Tot? (My/FiMp) © Q% e @ 0%7)) (€=1,2,..)

such that a, are representatives of ay and that my1(ast1) = a¢ inductively on £. Suppose that we have already
constructed a;. There exists aj,, € H° (X, Totq((Mf/ff-s-le) ® Q:Y/C ® Q&")) such that mgy1(aj,,) = a.
We obtain a cocycle

d(ay) € H (X, Tot™ ((FiMy /FLIMy) @ 0% e © 9%7)) -

Because my1(apy1) = oy, there exists
besy € HO (X, Tot? ((fﬁMf/f§+1Mf) © 0% c® Q‘;())

such that d(bey1) = d(aj,,). Let aj,; denote the cohomology class of a’eJrl — bgy1. Because ayqq — azﬂ comes
from H? (X, Tot ((.F)Z\Mf/ff\—‘rl./\/lf) ® Q:Y/C ® Qg(")), there exists agy1 with the desired property.
Let us consider coboundaries

ac € HO(X, Tot? (Mg /FiMy) @ 0% @ 0%7)) (6=1,2,..)
such that mp1(ags+1) = ae. Let us construct
by € HO (X, Totq-l((Mf/fﬁMf) 0% ® 92()) (t=1,2,...)

such that d(by) = ay and mpy1(bes1) = by inductively on ¢. Suppose that we have already constructed b,. There
exists bj,, € H° (X, Tot? ! ((Mf/ff\Jrle) Q0% ® Qg(")) such that w41 (b}, ) = be. We obtain a cocycle

e dthn) € HO (X Tt ((FMy /F{0My) @ 8 2. 05°)).



By Theorem 3.6, the natural morphism
HY(X,Grle M® Q% c) — HI(X,(M/FTM) @ Q% )

is injective. Hence, there exists
cern € HO (X, Tot"™ (FAMy /Fi Mp) © 0% 2 0%
such that d(ce41) = aps1 — d(bg_ﬂ). By setting byy1 = b}+1 + ¢gy1, the induction can proceed. |

3.2.3 Reformulation

Let ¢ : X — X x C; denote the graph embedding. We obtain the ﬁXXCt—module M = tgsM on X x C;. The
following lemma is standard.

Lemma 3.13 There exists a natural isomorphism M ® L(t) > 1p4(My). As a result, there exists a natural quasi-
isomorphism: . _ _
M@ L(t) @ O, xxxe,jcn = bpx (Mg @ Qe ) -1
It induces the quasi-isomorphisms of the subcomplexes
FAMeLt)® Q(EAxcht/cA) ~ i (FY( My @ QS(/@))[_U
and the quotient complexes:
Grls, M L(t)® Q2w xxc,/cy) = Lpe (Gl (My @ 0% /¢, ) =10

1

Let mp1 : Cy x X x C; — Cy x X denote the projection. Let VR xxc, C Rxxc, denote the sheaf of subalgebras
generated by 7§; Rx and t0;. Because M € Cyeq(X x C;), M has a V-filtration along ¢, that is an increasing and
exhaustive filtration V(M) (a € R) of M by coherent V'R x x¢,-submodules satisfying the following conditions.

e For any a € R, there exists € > 0 such that V,(M) = V. (M).

Gr}l/ =V, /V<, are flat over Oc, .

tVoCcVy_q1,and tV, =V, if a < 0.

0.V, C Va41, and the induced morphisms 0y : Grg — Gr}:+1 are isomorphisms if ¢ > —1.
e The induced actions of —d;t — Aa on Gr‘a/(/ﬁ) are locally nilpotent.

Because M is induced by a mixed Hodge module, VG(MV) are coherent over 73 Rx.
We obtain the following complex:

Vo (M) — A Wo(M) @ dt, s — (9, + A Y)sdt.
The first term sits in the degree 0. It extends to the following double complex:
Vo1 (M) @ 15 Q% jo — AT V(M) @ dt @ 1y Q% e (6)

Let €;(M) denote the complex of sheaves on Cy x X x C; obtained as the total complex of (6). We have the
subcomplexes F3 €1 (M) = M€ (M). We may naturally regard €; (M) as a subcomplex of MRL(t)@0¢ < X% Cp/Ch"

Lemma 3.14 The inclusion €;(M) — M ® L(t) ® ﬁ(.ZAxXth/(CA is a quasi-isomorphism. It induces quasi-
isomorphisms of subcomplezes

FAC (M) — FY (M@ L(t) @ Q(’CAxch,/ccA)
and the quotient complexes:

Grl, €1(M) — Grly (M@ L(1) ® 08, x e, c,)-

10



Proof For any a > —1, the induced morphisms
Gry (M) = A 1Grl (M) @dt s —> 9,(s) @ dt
are isomorphisms. We obtain that the quotient of € (M) — M L) ® ﬁ(.C,\xXxLCt/(CA is acyclic, that is the first
claim. The second claim is equivalent to the first claim. The third claim follows from the second claim. 1
By Lemma 3.14, Theorem 3.6 is reduced to the following theorem.

Theorem 3.15 The E-degeneration property holds for the filtered complex F3€1 (M) with respect to the push-
forward by the projection Cy x X x C; — C,.

3.2.4 Refinement

Let mp12 : Chuy x X xCy xCy, - Cy x X xC; and mp1 : C), x X x C; x C, — Cy x X denote the projections. We
obtain the following complex on Cy x X x C; x C,:

TE Vo (M) — A i o Vo(M) @ dt, s — (udy + A~ Y)s dt. (7)
The first term sits in the degree 0. We extend it to the following double complex:
To12Vo1 (M) @ 15, Q% )¢ — A 515 Vo (M) @ dt @ 7, X/c

Let €(M) denote the associated complex on Cy x X x C; x C,,. We have the subcomplexes JJ€(M) = ME(M).
We consider the C*-action on Cy x C,, given by a(\,u) = (¢~ )\, au). It induces a C*-action on Cy x X x C; x C,.
Because M is induced by a Hodge module, 775‘12V,1(/K/lv) and )\*17r6‘12V0(/</lv) are naturally C*-equivariant. The
differential ud; + A~! is C*-equivariant.
Let w3 : Cy x X x C; x C,, — Cy x C,, denote the projection. The direct image sheaves R‘my3.,&(M) are
C*-equivariant.

Theorem 3.16 The E4 -degeneration holds for the filtered complex Fy&€(M) with respect to the push-forward by
7os, and RT3, GrrjfA (M) are locally free C*-equivariant Oy xc, -modules of finite rank.

We obtain Theorem 3.15 from Theorem 3.16 by specializing along u = 1.

3.3 Formal neighbourhood along u =0
3.3.1 Basic strictness

Let mg : Cy x X x C; — C, denote the projection. Let ¢, : Cy x X x C; x {0} — Cy x X x C; x C,, and
01 : Cx x X x {0} — C) x X x C; denote the inclusion maps.

Lemma 3.17 R‘ny, (LZQ:(M)) are locally free Oc, -modules of finite rank for any £.

Proof Because Gr}l/(ﬁ/lv) (—1 < a <0) underlie regular mixed twistor D-modules on a Kéhler manifold X whose
supports are compact, the sheaves R7m, (Gra (./\/l) ® QX/(C) are locally free Oc,-modules of finite rank. (See

Corollary 2.5.)
Note that ¢ €(M) is quasi-isomorphic to

HLOH(( o (M)/V_1 (M ))®dt®§2x/@)[ 1.

For any b < a, there exists the following canonical splitting of V'R X X Cy|C} X xxc,-modules

(VaM)/Vo(M)) s e, = @D Crd (Mjegxxe- (8)

b<c<a

Here, the actions of —9;t — ¢ on GrZ(MV)|C;XxXct are nilpotent. For any —1 < b < a < 0, we obtain the following
exact sequence for any ¢:

0—>Ré7r0*(Grb(M)®QX/C )‘C*—>R7To*(( (M )/V<b( ))®QX/C)\)|C*

— Rem*((va(ﬂ)/vb(ﬂ)) @fz;(/ck)m* 0. (9)

11



Because R*m, (Grl‘,/(ﬁ/lv) ® Q;(/CA) are locally free Oc,-modules for any k, we obtain the vanishing of the following
morphisms:

Rfmo. ((ValM)/VH(M) © D8, ) — B o, (Gl (M) @ 923 c,).

We obtain the following exact sequences:
0 — Rimo. (Gr} (M) @ 0% ) — B'mo ((Va M)/ Var (M) @ 0% e, )
— Rm, ((Va(ﬂ)/%(ﬂ)) ® QX/CJ 0. (10)

Then, we obtain the claim of Lemma 3.17 by an easy induction. 1

3.3.2 The E;-degeneration for another filtration F,

We consider the subcomplexes Fi = u/€(M). There exist natural isomorphisms Grjfu C(M) =~ 1ty €(M). There
exists the following exact sequence:

0 — Gl €(M) — E(M)/FIT (M) — E(M)/FLE(M) — 0. (11)
Proposition 3.18 We obtain the following exact sequences:
0 — R'mo3, Grle €(M) — R'mos. (€(M)/FITIE(M)) — R'7ozs (€(M)/FIE(M)) — 0. (12)
Proof Let us consider the following exact sequence:
0 — Fa€(M)/FIEM) — E(M)/FiE(M) — G1%, ¢(M) — 0.
Lemma 3.19 We obtain the following exact sequences for any £ € Z>o and j € Z>1:
0 — Rimoss (Fu€(M)/FIEM)) e o, — B0, (CM)/FIEM)) i e,

— Rfmos. (Gr €(M)) — 0. (13)

|C%5 xCy

Proof Recall that Gr% €(M) = 1,0 €(M) is quasi-isomorphic to

e (A0 (w12 (Vo (M) Vr (M) @ dt & 5, 0%, ) =11,

Let m; : Cy x X x C; x C,, — X denote the projection. Let C3 denote the Dolbeault resolution, i.e., the associated
complex of the double complex

s (A s01e (o2 (Vo (M) /VA (M) @ dt @ 5, 0, ) [-1]) @ 7105
For any N > 0, there exists the following subcomplex V_py_1&(M) of €(M):
To12Von—1(M) @ 11 Q% )¢ — A Von (M)@dte 7701QX/<C

Let U be an open subset of C; x C,,. Let a be a section of C3 on U x X x C; such that daw = 0. Let N > j +10.
By using the splitting (8), we can construct a section & of ()\_17r512V0(.M) ®dt ® WOIQX/C[ ]) ® m Q% such

that (i) & induces a, (i) 8©) := da is contained in ()\*17T312V_ (M) @ dt @ 73,0, /C) @ m0%" on U x X x C;.
Note that d3(®) = 0. There exists a section 1) of (7‘(812‘/_ (M) ® 7r01QX/<c> @ 7% on U x X x C; such that
AW @ A 1dt = SO, We set BV = BO) — @) which is contained in

U<)\_17T512V7N+1(M) ®dt® 7T01Q;‘(/<c> RS
on U x X x C;. We have d3V) = 0. Inductively, for m =1,...,j + 1, we can construct sections 3™ of

u™ </\717T512V—N+m(M) ® dt ® 7T01QX/C) ® Ty

and sections (™) of u™ (ﬂélQV,Ner,l(M) ® WOIQX/C) ® ﬂi‘Qg(w such that 8™ = Bm=1) _ g~(m) apd (M) g

At = ™=V, Then, & = @ — Zi;;ll 7™ is a section of ¢(M) ® ﬂngé' such that (i) & induces «, (ii) dé@ is a
section of FIt1€(M) @ 73Q%*[1]. Then, we obtain the claim of Lemma 3.19. 1
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Lemma 3.20 We obtain the following exact sequences for any £, € Z>y.
0 — R'mos. G, €(M)jcgxe, — Bimos (CM)/FHEM)) 0. e,

— Rfmoge (€(M) /]-',{Q(M))‘Cixcu — 0. (14)

Proof It is enough to prove that

R'mozs (€M) /FItTE(M)) — R'mos. (€(M)/FiE(M)) (15)

|C% xC, |C% xC,

are epimorphisms for any ¢ and j. We use an induction on j. Lemma 3.19 implies the claim in the case 7 = 1. By
the hypothesis of the induction, we may assume that

R'mos. (Fo€(M)/FiHe(Mm)) — Rimog. (F,€(M)/FiE(M))

C% xC,, ICx xC,

are epimorphisms. Then, by Lemma 3.19, we obtain that (15) are also epimorphisms. 1

We obtain the exactness of (12) from the exactness of (14) and the strictness of RfToz. Grjfu ¢(M) for any ¢
and j as in the proof of Lemma 3.17. Thus, we obtain Proposition 3.18. 1

The supports of Rfmos. (€(M)/FLE(M)) are contained in Cy x {0} C C, x C,.. We may naturally regard them
as Oc, [u]/u?-modules.

Corollary 3.21 R'mos. (€(M)/FI€(M)) are locally free Oc, [u]/u? -modules. 1

3.4 Coherence of the specialization along A =0

Let 7) : {0} x X x C; x C,, — Cy x X x C; x C,, denote the inclusion. Let w3 : X x C; x C, — C,, denote the
projection.

Proposition 3.22 R'r;. (15€(M)) are coherent Oc, -modules.

Proof Let ms: X xC; xC,, = X x C; denote the projection. Note that 0577, R x x¢, is isomorphic to the algebra
of the symmetric product of 7{,©x «c,, where Ox ¢, denote the tangent sheaf of X x C;. Because 15€(M) is a
complex of coherent t3 R x xc,-modules, it induces a complex of coherent Or-(x xc,)xc,-modules (Zsf\Q(M))N Let
Z denote the cohomological support of (T”/{Qf(M))N

Lemma 3.23 Let Oxxc, : X x C; = T*(X x C) denote the 0-section. Then, Z C (Oxxc, o t7)(Cr(f)) x Cy.

Proof Let (73€(M)), denote the pull back of 75€(M) by the inclusion X x C; x {u} = X x C; x C,. Let
(Z‘;\(S(M)): denote the induced complex of coherent Op-(x xc,)-modules. It equals the pull back of (T;Q(M))N by

the inclusion T*(X x Cy) x {u} — T*(X x C) x Cy. Let Z, denote the cohomological support of (5€(M))
Because Z N (T*(X x C;) x {u}) = Z,, it is enough to prove that Z, C (Oxxc, © t7)(Cr(f)).

Let ¢p5 : {0} x X x C; — Cy x X x C,; denote the inclusion. By Lemma 3.14, if u # 0, (Z‘;\QZ(M))U is quasi-
isomorphic to g y (M ®Lu"H)® ﬁt?:kxXth/Ck)' It is quasi-isomorphic to ¢4t} (Mu—lf ® (NZ;{/(Ck [— 1}) Hence,

by Lemma 3.1, the cohomological support of (i3&(M)) " is contained in (0x xc, o tf)(Cr(f)).
Let us consider the case u = 0. There exists the following quasi-isomorphism

(BEM)) g = 1= (Vo(M)/V-1 (M) @ dt @ Q% [-1].

0

Because df (X )N Ch(Epr(M)) C 0x (Cr(f)), the support of the Sym © x-module vy, (Vo(M)/V_1(M)) is contained
in ¢f(Cr(f)) as in the case of Lemma 3.2. By a similar argument to the proof of Lemma 3.1, we obtain that the

cohomological support of (Z‘f\€(/\/l))0 is contained in (Ox xc, o tf)(Cr(f)). 1
Because Z is proper over C,, we obtain the claim of Proposition 3.22. |

Note that Grzl-A €(M) are isomorphic to ty.t3€(M) for any j € Z»o. The supports of R'moz.(€(M)/FlE(M))
are contained in {0} x C,. We may naturally regard R‘mos.(€(M)/FiE(M)) as Oc,-modules.

Corollary 3.24 Rmg3. (Q:(M)/]:/J\Qf(./\/l)) are coherent O¢, -modules for any ¢ and j. 1
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3.5 Proof of Theorem 3.16

There exist the following exact sequences:

0 — N (€(M)/FEe(M)) [3+! (e(M)/Fhem)
— (EM)/FEEM)) [ NH (€(M)/Fhe(m)
— (E(M)/FEE(M)) /N (€(M)/FEE(M)) — 0. (16)

We obtain the following morphisms of the stalks at (0,0) € Cy x C,:

R () Efe0) 3 e o)) |

Rf“wog*(v(@(/\/z)/fg@w)) //\j“(Qi(/\/l)/]—"ff@i(/\/l)))(oﬁo). (17)

Lemma 3.25 The morphisms (17) are 0.

Proof Because the multiplication of A7 on Rfmos, (€(M)/FEE(M)) is a monomorphism by Corollary 3.21, the
induced morphism

R ((€M)/FEEM) /N (€M) FEEM))) | s R s (X €M)/ Fhe(M)))

is 0. Hence, the morphism (17) is 0. 1
There exist the following exact sequences:
0 — Gl €(M) — E(M)/F{HE(M) — (M) /FLE(M) — 0.
We obtain the following induced morphisms of the stalks:

R'mos. (€(M)/Fle(M — R g3, (G, €(M)) (18)

))(0,0) (0,0)"
Lemma 3.26 The morphisms (18) are 0.
Proof There exist the following commutative diagrams of stalks at (A, u) = (0,0) for any k& > 0:

. ¥4 .
R7o3. (€(M)/F{EM)) g ) -, R 1oz, (Grl €(M))

! !

Rfmog ((€(M)/FLE(M) /N (€M) / F5E(M))) —— R o (M (€(M)/FEC(M)) /N FHE(M)/FEE(M)))

(0,0)

(0,0) (0,0)"

The lower horizontal arrow is 0 by Lemma 3.25. By the construction, €(M) is flat over Oc, xc,, and hence
APE(M) NuIE(M) = NPulE(M) for any p,q € Z>o. The right vertical arrows are identified as follows:

RZ+171'03*L)\*L§\€(M)(0’0) —= R oy (Grjfk e(M))

! l

R mozsennc (€M) /FEE(M —— R s, (VW (€(M)/FEE(M)) /N HLE(M)/FEEM))) (g -

(0,0)

0.0

Under the identification, the image of b’ is contained in the image of the morphism
R 0303 F R €(M) 0,0) — R mogatrsethE(M) (0,09
for any k£ > 0. It equals the image of the morphism
uk Ré+17r03*L>\*L§\€(M)(O’O) — RHlWOg*L)\*LjC(M)(QO)
for any k£ > 0. Because R“lﬂog*L)\*LjQI(M) is Oc,-coherent by Proposition 3.22, we obtain bt = 0. |
For any j > 0, there exists € > 0 such that the following morphism is an epimorphism on {|u| < €}:
RT3 (€M) /FITE(M)) — Rimozs (€(M)/FLE(M)).

By using the C*-equivariance, we obtain that it is an epimorphism on C,. Thus, we obtain Theorem 3.16. 1
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