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Abstract

We study the twisted de Rham complex associated with a holomorphic function on a Kähler manifold whose
critical point set is compact. We prove the E1-degeneration of the Hodge-to-de Rham spectral sequence. It is
a generalization of Barannikov-Kontsevich Theorem.
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1 Introduction

1.1 Twisted de Rham complexes

Let X be a complex manifold. Let f be a holomorphic function on X such that the set of critical points Cr(f) is
compact.

Let ΩkX denote the sheaf of holomorphic k-forms on X. There exists the exterior derivative d : ΩkX → Ωk+1
X .

The exterior product of df induces morphisms df : ΩkX → Ωk+1
X , i.e., τ 7−→ df ∧ τ .

Let λ be a variable. Let ΩkX [[λ]] denote the sheaf of formal power series with ΩkX -coefficients. Namely, for any
open subset U of X, let ΩkX [[λ]](U) denote the space of formal power series

∑
j≥0 τjλ

j , where τj ∈ ΩkX(U). We

obtain the differential λd + df : ΩkX [[λ]] → Ωk+1
X [[λ]] determined by τ 7→ λdτ + df ∧ τ . It satisfies (λd + df)2 = 0.

The complex Ω•X [[λ]]f = (Ω•X [[λ]], λd + df) is called the twisted de Rham complex, or the formal twisted de Rham
complex when we emphasize to consider the formal series. We obtain the cohomology group H∗(X,Ω•X [[λ]]f ). It is
naturally a C[[λ]]-module, where C[[λ]] denotes the ring of formal power series with C-coefficients.

There are several different versions of twisted de Rham complex. For example, if X and f are algebraic, let
ΩkXalg denote the sheaf of algebraic k-forms on the algebraic variety Xalg with Zariski topology, and it is also natural
to consider the sheaf ΩkXalg [λ] of polynomials with ΩkXalg -coefficients on Xalg. We obtain the algebraic twisted de
Rham complex Ω•Xalg [λ]f = (Ω•Xalg [λ], λd+ df) and the cohomology group H∗(Xalg,Ω•Xalg [λ]f ).

1.2 A basic question

By setting F jλ(Ω•X [[λ]]f ) = λjΩ•X [[λ]]f for any non-negative integer j, we obtain the filtered complex FλΩ•X [[λ]]f .

The associated complexes GrjFλ(Ω•X [[λ]]f ) = Fjλ/F
j+1
λ (j ≥ 0) are isomorphic to the complex (Ω•X , df). Note that

the cohomological support of (Ω•X , df) is contained in Cr(f). Because Cr(f) is compact, H∗(X, (Ω•X , df)) is a finite
dimensional complex vector space. There is the spectral sequence associated with the filtered complex, for which

Ep,q1 = Hp+q
(
X,GrpFλ(Ω•X [[λ]]f )

)
= Hp+q(X, (Ω•X , df)).

We study the following question.

Question 1.1 Is the spectral sequence for FλΩ•X [[λ]]f degenerates at the E1-level?

We can rephrase the condition in several ways.

Lemma 1.2 The spectral sequence degenerates at the E1-level if and only if the following equivalent conditions are
satisfied.
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• For any ` and j, the exact sequences 0 −→ GrjFλ −→ Ω•X [[λ]]f/F j+1
λ −→ Ω•X [[λ]]f/Fjλ −→ 0 induce the

following exact sequences:

0 −→ H`
(
X,GrjFλ

(
Ω•X [[λ]]f

))
−→ H`

(
X,Ω•X [[λ]]f/F j+1

λ

)
−→ H`

(
X,Ω•X [[λ]]f/F jλ

)
−→ 0.

• For any `, H`(X,Ω•X [[λ]]f ) are isomorphic to H`(X, (Ω•X , df)) ⊗ C[[λ]] as C[[λ]]-modules. In particular, the
formal twisted de Rham cohomology groups H`(X,Ω•X [[λ]]f ) are free C[[λ]]-modules of finite rank.

Remark 1.3 It is easy to see that the second condition implies the first. For the convenience of readers, we shall
recall that the E1-degeneration is equivalent to the first condition in §3.1.3. We shall later explain that the first
condition implies the second condition in a generalized context. (See Corollary 3.10.)

1.2.1 Classical results related to the question

There are two classical results related to this question. One appeared in the classical Hodge theory. As Deligne
observed, if X is projective and f = 0, the desired E1-degeneration follows from the Hodge decomposition of
H∗(X,C). Deligne generalized it to more general algebraic varieties by using mixed Hodge theory. This E1-
degeneration and its generalizations are not only deep results in the Hodge theory, but also useful for various
applications including some vanishing theorems. Deligne and Illusie gave an alternative proof of the E1-degeneration
using the reduction to the positive characteristic.

The other appeared in the singularity theory, in particular, the study of Brieskorn lattices. If f has only one
critical point, the E1-degeneration holds because the `-th cohomology group of (Ω•X , df) is 0 unless ` equals dimX.
In this case, the E1-degeneration is an important starting point of the deep theory of primitive forms of Kyoji
Saito. (See [19] and [20] for more backgrounds.)

1.3 Barannikov-Kontsevich Theorems and variations

The modern study of twisted de Rham complexes was opened by the celebrated theorem of Barannikov and
Kontsevich.

Theorem 1.4 (Barannikov-Kontsevich) The E1-degeneration for FλΩ•X [[λ]]f holds in the case where X and f
are quasi-projective.

This is a fundamental theorem in the study of the holomorphic Landau-Ginzburg model of the mirror symmetry.
For example, it is essential in the proof of smoothness of some moduli spaces associated with Landau-Ginzburg
models. (See [6].)

The original proof of Barannikov and Kontsevich was given by a generalization of the method of Deligne and
Illusie. Indeed, Barannikov and Kontsevich proved the following theorem for the algebraic version of the twisted
de Rham complexes, which implies Theorem 1.4.

Theorem 1.5 (Barannikov-Kontsevich) Suppose that f : X → C is a projective morphism of algebraic vari-
eties. Then,

dimHj(Xalg, (Ω•Xalg , df)) = dimHj(Xalg, (Ω•Xalg , d+ df))

holds for any j and for any complex number λ.

Theorem 1.5 implies thatHj(Xalg,Ω•Xalg [λ]f ) are free C[λ]-modules, and that the E1-degeneration of the spectral
sequence for the filtered complex FλΩ•Xalg [λ]f . In the setting of Theorem 1.4, there exists a projective morphism
of algebraic varieties F : Y → C with an open embedding ι : X → Y such that f = F ◦ ι. Under the assumption
that Cr(f) is compact, the set Cr(F ) of critical points of F is decomposed as Cr(F ) = Cr(f) t

(
Cr(F ) ∩ (Y \X)

)
.

Then, we obtain the E1-degeneration for FλΩ•X [[λ]]f from the E1-degeneration for FλΩ•Y alg [λ]f .
The theorem of Barannikov-Kontsevich for the algebraic twisted de Rham complexes (Theorem 1.5) has at-

tracted many mathematicians because of its significance in the non-commutative Hodge theory (see [6]), and
because the theorem and its generalization are deeply related with various fields of mathematics. Indeed, alter-
native proofs for Theorem 1.5 with different methods have been found by Sabbah [15] using Hodge modules and
microlocalization, and by Ogus and Vologodsky [14] using their non-abelian Hodge correspondence in positive char-
acteristic. Later, Arinkin, Căldăraru and Hablicsek [1] revisited it in their study of Deligne-Illusie method from the
viewpoint of derived algebraic geometry. Sabbah also studied generalizations to the case where f is not necessarily
projective but cohomologically tame [17]. See [2] and [12] for a generalization to the Kontsevich complexes.
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The L2-analogue of the twisted de Rham complex associated with (X, f) has been also studied in [3, 7]. In
particular, Li and Wen [7] studied the case where X has a complete Kähler metric with bounded curvature, and f is
strongly elliptic, which is a kind of non-degeneracy condition at infinity. They established an analogue of Theorem
1.5 in this context.

1.4 Main result

In this paper, we shall study a generalization of Theorem 1.4. It is an affirmative answer to a question asked by
Kontsevich to the author.

Theorem 1.6 If X is Kähler, the E1-degeneration for FλΩ•X [[λ]]f holds.

Note that X can be a small neighbourhood of Cr(f), and that we do not need any assumption on the behaviour of
(X, f) at infinity. It is our purpose to show that a local assumption around Cr(f) is enough for the E1-degeneration
for the formal twisted de Rham complex, though global assumptions are useful to obtain stronger consequences as
in Theorem 1.5.

Acknowledgement I would like to thank Maxim Kontsevich for what he has brought to mathematics. This
study is motivated by one of his questions. Theorem 1.6 is one of three topics in the author’s talk in the conference
“Mathematics on the Crossroad of Centuries” held in 2024 September. The others will be explained elsewhere. A
preliminary version of this paper was prepared for the conference in Rikkyo University in 2023 January. I heartily
thank the organizers for the opportunity of the talks.

I thank Claude Sabbah for helpful discussions and for his kindness.
I am partially supported by the Grant-in-Aid for Scientific Research (A) (No. 21H04429), the Grant-in-Aid for

Scientific Research (A) (No. 22H00094), the Grant-in-Aid for Scientific Research (A) (No. 23H00083), and the
Grant-in-Aid for Scientific Research (C) (No. 20K03609), Japan Society for the Promotion of Science. I am also
partially supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research
Center located in Kyoto University.

2 Integrable mixed twistor D-modules

2.1 Mixed twistor D-modules

The theory of twistor D-modules has been developed in [16, 18] and [9, 10, 11] as a twistor version of Hodge modules
[21, 22] inspired by the principle called Simpson’s Meta theorem [23].

2.1.1 RX-triples

For any complex manifold X, we set X = Cλ × X. Let pλ : X → X denote the projection. Let DX denote the
sheaf of holomorphic linear differential operators on X , and let ΘX denote the tangent sheaf of X. We obtain
the sheaf of subalgebras RX ⊂ DX generated by λ · (p∗λΘX) over OX . If X is an open subset in Cn, we have
RX = OX 〈λ∂1, . . . , λ∂n〉.

We set S =
{
λ ∈ C

∣∣ |λ| = 1
}

. Let σ : S → S be defined by σ(λ) = −λ. Let DbS×X/S denote the
sheaf of distributions on S × X which are continuous with respect to S. (See [16, §0.5].) It is naturally an
RX|S×X ⊗OCλ|S

σ−1(RX|S×X)-module by the action (P1 ⊗ σ−1(P2)) · τ = P1σ−1(P2)τ . A sesqui-linear pairing of

RX -modulesM′ andM′′ is a morphism of RX|S×X⊗OCλ|S
σ−1(RX|S×X)-modulesM′|S×X⊗OCλ|S

σ−1(M′′|S×X)→
DbS×X/S . Such a tuple (M′,M′′, C) is called an RX -triple.

For RX -triples Ti = (M′i,M′′i , Ci) (i = 1, 2), a morphism T1 → T2 is defined to be a pair of RX -homomorphisms
ϕ′ : M′2 → M′1 and ϕ′′ : M′′1 → M′′2 such that C1 ◦ (ϕ′ × id) = C2 ◦ (id×ϕ′′). The category of RX -triples is an
abelian category.

For an increasing filtration W of T in the category of RX -triples, we have the increasing filtrations W (M′) and
W (M′′) such that Wj(T ) =

(
M′/W−j−1(M′),Wj(M′′), Cj

)
, where Cj denote the induced sesqui-linear pairings.
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2.1.2 Direct image of RX-triples

Let F : X −→ Y be a morphism of complex manifolds. We set ωX := λ− dimXp∗XωX , where ωX denotes the
canonical line bundle of X. Similarly, we set ωY := λ− dimY p∗Y ωY . We set RY←X := ωX ⊗F−1(OY)F

−1(RY ⊗ω−1Y ).
For any RX -module M, we obtain the following RY -modules:

F j† (M) := Rj(idC×F )!
(
RY←X ⊗LRX M

)
(j ∈ Z).

For any RX -triple T = (M′,M′′, C), we obtain the RX -triples F j† (T ) = (F−j† (M′), F j† (M′′), F†C) (j ∈ Z) on

Y . (See [16, §1.4].) When T is equipped with an increasing filtration W , let Wj+`(F
j
† (T )) denote the image of

F j† (W`T )→ F j† (T ) by which we obtain the filtration W on F j† (T ).

2.1.3 Pure twistor D-modules

A polarizable pure twistor D-module of weight w on a complex manifold X is an RX -triple satisfying some con-
ditions. (See [18, 10].) Let MT(X,w) denote the category of polarizable pure twistor DX -modules of weight
w.

Theorem 2.1 ([16, 9, 10]) Let F : X → Y be a projective morphism of complex manifolds. For any T ∈
MT(X,w), we have F j† (T ) ∈ MT(Y,w + j).

There exists the full subcategory MTreg(X,w) ⊂ MT(X,w) of regular polarizable pure twistor DX -modules of
weight w. (See [16, 9] for the regularity condition.) We obtain the following generalization of Theorem 2.1 in the
regular case.

Theorem 2.2 ([13]) Let F : X → Y be a morphism of complex manifolds. Let T ∈ MTreg(X,w). Suppose that

X is Kähler, and that the support of T is proper over Y . Then, we have F j† (T ) ∈ MTreg(Y,w + j).

2.1.4 Mixed twistor D-modules

A mixed twistor D-module on X is a filtered RX -triple (T ,W ) and satisfying some additional conditions. (See [11,
§7].) Let MTM(X) denote the category of mixed twistor D-modules on X. The following theorem is fundamental.

Theorem 2.3 ([11]) Let F : X → Y be a projective morphism of complex manifolds. For (T ,W ) ∈ MTM(X),
we have (F j† (T ),W ) ∈ MTM(Y ) for any j.

For any (T ,W ) ∈ MTM(X), we have GrWw (T ) ∈ MT(X,w). There exists the full subcategory MTMreg(X) ⊂
MTM(X) of mixed twistor DX -modules (T ,W ) such that GrWw (T ) ∈ MTreg(X,w). Theorem 2.3 is generalized as
follows in the regular case.

Theorem 2.4 ([13]) Let F : X → Y be a morphism of complex manifolds. Let T ∈ MTMreg(X). Suppose that

X is Kähler, and that the support of T is proper over Y . Then, we have F j† (T ) ∈ MTMreg(Y ).

2.1.5 Pure and mixed twistor D-modules on a point

Let pt denote the set of one point. An Rpt-module is an OCλ -module. Let σ : P1 → P1 be the anti-holomorphic
map defined by σ(λ) = (−λ)−1. Let σ : C∗λ → C∗λ and σ : P1 \ {0} → Cλ denote the induced maps. Let M′,M′′
be locally free OCλ -modules of finite rank with rankM′ = rankM′′. Let

C :M′|C∗λ ⊗ σ
∗(M′′|C∗λ)→ OC∗λ

be an OC∗λ -homomorphism which is perfect in the sense the induced morphism ΨC : σ∗(M′′)|C∗λ → (M′)∨|C∗λ is an

isomorphism, where (M′)∨ = HomOCλ
(M′,OCλ). Such a triple (M′,M′′, C) is called a smooth Rpt-triple. For

any smooth Rpt-triple T = (M′,M′′, C), we obtain the locally free OP1 -module Υ(T ) by gluing (M′)∨ on Cλ and
σ∗(M′′) on P1 \ {0} with ΨC .

A polarizable pure twistor D-module on pt is a smooth Rpt-triple T such that Υ(T ) is isomorphic to a direct
sum of OP1(w). A mixed twistor D-module on pt is a smooth Rpt-triple T with a weight filtration W such that

GrWw (T ) are pure of weight w.

4



Let aX : X → pt denote the canonical morphism. We set Ω̃kX/C := λ−k(p∗λΩkX). We have the exterior derivative

d : Ω̃kX/C → Ω̃k+1
X/C. For a coherent RX -module M with compact support, we obtain the complex of sheaves

M⊗ Ω̃•X/C on X . We have

a`X†(M) = RdimX+`(id×aX)∗

(
M⊗ Ω̃•X/C

)
as the OCλ -module.

Corollary 2.5 Suppose that M underlies a regular mixed twistor D-module on X with compact support. We also
assume that X is Kähler. Then, a`X†(M) are locally free OCλ-modules.

This is closely related with the E1-degeneration property. We consider the subcomplexes F jλ(M⊗ Ω̃•X/C) =

λjM⊗ Ω̃•X/C. Because λj : a`X†(M)→ a`X†(M) are monomorphisms, the following is exact for any ` and j:

0 −→ RdimX+`(id×aX)∗F jλ(Ω̃•X/C ⊗M) −→ RdimX+`(id×aX)∗(Ω̃
•
X/C ⊗M) −→

RdimX+`(id×aX)∗
(
(Ω̃•X/C ⊗M)/F jλ

)
−→ 0. (1)

Hence, the following is an epimorphism for any j and `:

RdimX+`(id×aX)∗
(
(Ω̃•X/C ⊗M)

/
F j+1
λ

)
−→ RdimX+`(id×aX)∗

(
(Ω̃•X/C ⊗M)/F jλ

)
. (2)

This means the E1-degeneration of the spectral sequence associated with the filtration Fλ on Ω̃•X/C ⊗M.

2.2 Integrable mixed twistor D-modules

We set R̃X = RX〈λ2∂λ〉 ⊂ DX . If X is an open subset in Cn, we have R̃X = OX 〈λ∂1, . . . , λ∂n, λ2∂λ〉. By the

identification S = {e
√
−1θ}, we obtain the vector field ∂θ on S.

LetM′,M′′ be R̃X -modules. Let T = (M′,M′′, C) be an RX -triple. For any section m′ ofM′ for U ⊂ S×X,
we set ∂θm

′ =
√
−1λ∂λm

′ = (
√
−1λ∂λ −

√
−1λ∂λ)m′. Similarly, ∂θm

′′ is defined for a section m′′ of M′′. The
R-triple T is called integrable if

∂θC(m′, σ−1(m′′)) = C(∂θm
′, σ−1(m′′)) + C(m′, σ−1(∂θm′′)).

(See [11, §2.1.5] for integrable RX -triples, which originally goes back to [16].) An integrable RX -triple is called

R̃X -triple. A morphism of R̃X -triples Ti = (M′i,M′′i , C) (i = 1, 2) is defined to be a morphism (ϕ′, ϕ′′) of RX -

triples such that ϕ′ and ϕ′′ are R̃X -homomorphisms. For a morphism of complex manifolds F : X → Y and for an
R̃X -triple T , the RY -triples F j† (T ) are naturally R̃Y -triples.

An integrable mixed twistor D-module on X is a filtered R̃X -triple (T ,W ) satisfying some conditions. (See
[11, §7.2.3].) Let MTMint

reg(X) denote the category of integrable mixed twistor DX -modules whose underlying

mixed twistor DX -modules are regular. Let Creg(X) denote the full subcategory of R̃X -modules underlying regular

integrable mixed twistor DX -modules, i.e., an R̃X -module M′′ is an object of Creg(X) if and only if there exists
((M′,M′′, C),W ) ∈ MTMint

reg(X).

2.3 R̃X-modules induced by Hodge modules

Let DX denote the sheaf of holomorphic linear differential operators on X. Let Fj(DX) denote the subsheaf of

differential operators of degree at most j. We set RF (DX) :=
∑
j∈Z λ

jFj(DX) and R̃F (DX) := RF (DX)〈λ2∂λ〉.
Let M be a regular holonomic DX -module. Let F (M) be a good filtration of M . We obtain RF (DX)-module

RF (M) =
∑
j∈Z λ

jFj(M). It is naturally an R̃F (DX)-module. By the analytification, it induces an R̃X -module

denoted by RF (M). In this way, we obtain a functor from the category of good filtered regular holonomic DX -

modules to the category of R̃X -modules.

Lemma 2.6 If (M,F ) is a filtered regular holonomic D-module underlying a mixed Hodge module, we have
RF (M) ∈ Creg(X). (See [21, 22] for Hodge modules.)

Proof There exists a natural functor from the category of mixed Hodge modules on X to MTMint
reg(X) as explained

in [11, §13.5]. In the level of filtered D-modules, it is given as above.
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3 Main Theorem

3.1 Preliminary

Let X be a complex manifold. LetM∈ Creg(X) be an R̃X -module underlying an integrable regular mixed twistor
D-module induced by a mixed Hodge module. Let Ch(ΞDRM) ⊂ T ∗X denote the characteristic variety of the
underlying DX -module ΞDR(M). Let 0X : X → T ∗X denote the 0-section. We assume the following.

• The set Cr(f) is compact.

• Any c 6= 0 is a regular value of f .

• Ch(ΞDR(M)) ∩ df(X) ⊂ 0X(Cr(f)).

The second condition implies Cr(f) ⊂ f−1(0). Because the characteristic varieties are cone, the third condition
implies Ch(ΞDR(M)) ∩ (αdf)(X) ⊂ 0X(Cr(f)) for any non-zero constant α.

3.1.1 Cohomology group of the restriction to λ = 0

Let L(f) denote the R̃X -module given by OX with the meromorphic integrable connection d + d(λ−1f). We

obtain the R̃X -module Mf = M⊗ L(f) on X , and the complex of sheaves Mf ⊗ Ω̃•X/C on X . We recall that

Mf ∈ Creg(X). Let ιλ : {0} × X → Cλ × X denote the inclusion. We obtain the complex of coherent Sym ΘX -

modules ι∗λ(Mf ⊗ Ω̃•X/C). It induces a complex of coherent OT∗X -modules denoted by
(
ι∗λ(Mf ⊗ Ω̃•X/C)

)∼
.

Lemma 3.1 The cohomological support of
(
ι∗λ(Mf ⊗ Ω̃•X/C)

)∼
is contained in 0X(Cr(f)). As a result,

H∗
(
X, ι∗λ(Mf ⊗ Ω̃•X/C)

)
are finite dimensional.

Proof Let (ι∗λM)∼ and (ι∗λL(f))∼ denote the coherent OT∗X -modules induced by ι∗λM and ι∗λL(f), respectively.
The support of (ι∗λM)∼ is the characteristic variety Ch(ΞDRM). The support of (ι∗λL(f))∼ is the image of df(X).
The support of (ι∗λMf )∼ is df(X) + Ch(ΞDR(M)) in T ∗X.

Let ωX denote the canonical bundle of X. Let Sym ΘX⊗
∧•

ΘX⊗ωX be the Koszul resolution ofOX by Sym ΘX -
free modules. It induces an OT∗X -free resolution OT∗X ⊗ π∗

(∧•
ΘX ⊗ ωX

)
of 0X∗(OX), where π : T ∗X → X

denotes the projection.
We have (

ι∗λ(Mf ⊗ Ω̃•X/C)
)∼ ' (ι∗λMf )∼ ⊗OT∗X

(
OT∗X ⊗ π∗

( •∧
ΘX ⊗ ωX

))
.

Hence, the cohomological support is contained in the intersection of the support of (ι∗λMf )∼ and the 0X(X), which
is contained in 0X(Cr(f)).

3.1.2 Cohomology group of the vanishing cycle sheaf

Let ιf : X → X×Ct be the graph embedding, i.e., ιf (x) = (x, f(x)). There exists the V -filtration V (ιf†(ΞDR(M)))
along t. We obtain the regular holonomic DX -module

φf (ΞDR(M)) :=
⊕

−1<a≤0

GrVa
(
ιf†ΞDR(M)

)
.

Lemma 3.2 The support of φf (ΞDR(M)) is contained in the compact subset Cr(f). As a result, the cohomology
group H∗

(
X,φf (ΞDRM)⊗ Ω•X

)
is finite dimensional.

Proof The third condition implies that ΞDR(M) is non-characteristic to the hypersurfaces f−1(c) on X \ Cr(f).
Hence, φf (ΞDR(M)) = 0 on X \ Cr(f).
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3.1.3 E1-degeneration and long exact sequences

We recall that the E1-degeneration condition of a spectral sequence associated with a filtered complex for the
convenience of readers. Let A be an abelian category. Let (K•, d) be a complex with a decreasing filtration
F •(K•). To simplify the notation, we set F p,p+r(Kj) := F p(Kj)/F p+r(Kj).

Lemma 3.3 Let r0 ∈ Z≥1. The following conditions are equivalent.

A(r0): Hj(F p,p+r(K•))→ Hj(F p,p+1(K•)) are epimorphisms for any j, p ∈ Z and 0 ≤ r ≤ r0.

B(r0): Hj(F p,p+r(K•))→ Hj(F p,p+r−1(K•)) are epimorphisms for any j, p ∈ Z and 0 ≤ r ≤ r0.

Proof It is easy to see that B(r0) implies A(r0). Suppose that A(r0) holds. We shall prove Hj(F p,p+r(K•)) →
Hj(F p,p+r−1(K•)) are epimorphisms for any j, p ∈ Z and 0 ≤ r ≤ r0, by an induction on r. We have the following
commutative diagram:

Hj(F p,p+r−1) −−−−→ Hj(F p,p+1)

a

y b

y
0 −−−−→ Hj+1(F p+r−1,p+r)

c−−−−→ Hj+1(F p+1,p+r) −−−−→ Hj+1(F p+1,p+r−1) −−−−→ 0.

By A(r0), we have b = 0. By the assumption of the induction on r, c is a monomorphism. Hence, we obtain a = 0,
and the induction can proceed.

Recall that the spectral sequence Ep,qr for the filtered complex F •(K•) is given as

Ep,qr = Zp,qr
/

(Zp+1
r−1 + dZp−r+1,q+r−2

r−1 )

by setting Zp,qr = Ker
(
d : F pKp+q −→ F p,p+r(Kp+q+1)

)
. (See [4] for more details.) There exist the natural

morphisms dr : Ep,qr → Ep+r,q−r+1
r such that dr ◦ dr = 0, induced by d : F pKp+q → F pKp+q+1. There exist

natural isomorphisms

Ep,qr+1 ' Ker
(
Ep,qr → Ep+r,q−r+1

r

)/
Im
(
Ep−r,q+r−1r → Ep,qr

)
.

Lemma 3.4 We have dr = 0 for any 1 ≤ r ≤ r0 − 1 if and only if A(r0) holds.

Proof We shall use an induction on r0. Suppose that dr = 0 (1 ≤ r ≤ r0 − 2) and that A(r0 − 1) holds. We have
Ep,qr = Ep,q1 = Hp+q(F p,p+1(K•)) for 1 ≤ r ≤ r0 − 1. We consider

Hj(F p,p+1)

a

y
0 −−−−→ Hj+1(F p+r0−1,p+r0)

c−−−−→ Hj+1(F p+1,p+r0)
b−−−−→ Hj+1(F p+1,p+r0−1) −−−−→ 0.

By A(r0 − 1), c is a monomorphism, and we have b ◦ a = 0. There exists a unique morphism ϕ : Hj(F p,p+1) →
Hj+1(F p+r0−1,p+r0) such that c ◦ ϕ = b. By the construction, ϕ = dr0−1. Hence, A(r0) holds if and only if
dr0−1 = 0.

We say that the spectral sequence degenerates at the E1-level if dr = 0 for any r ≥ 1. We obtain the following
proposition.

Proposition 3.5 The E1-degeneration holds if and only if one of the following equivalent conditions holds.

• Hj(F p,p+r(K•))→ Hj(F p,p+r−1(K•)) are epimorphisms for any j, p ∈ Z and 1 ≤ r.

3.2 Refinement of the Theorem 1.6

3.2.1 Main Theorem

Let us explain a refined statement of Theorem 1.6. We define the filtration Fkλ (M⊗ Ω̃•X/C) = λk(M⊗ Ω̃•X/C) for

k ∈ Z≥0. Note that GrkFλ
(
M⊗ Ω̃•X/C

)
is isomorphic to ι∗λ(Mf ⊗ Ω̃•X/C) for any k ≥ 0. Let us state the main

theorem of this paper.
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Theorem 3.6 The E1-degeneration holds for the filtered complex Fλ(M⊗ Ω̃•X/C) with respect to the push-forward
by the projection X → Cλ. In other words, we obtain the following exact sequences for any ` and j:

0→ Hj
(
X,GrFλ`

(
Mf ⊗ Ω̃•X/C

))
→ Hj

(
X,
(
Mf ⊗ Ω̃•X/C

)/
F`λ
(
Mf ⊗ Ω̃•X/C

))
→ Hj

(
X,
(
Mf ⊗ Ω̃•X/C

)/
F`+1
λ

(
Mf ⊗ Ω̃•X/C

))
→ 0. (3)

We obtain Theorem 1.6 from Theorem 3.6 as the special case M = OX . We shall also prove the following.

Theorem 3.7 We have dimHj
(
X, ι∗λ(Mf ⊗ Ω̃•X/C)

)
= dimHj

(
X,φf (ΞDRM)⊗ Ω•X

)
for any j.

Corollary 3.8 In particular, we have dimHj
(
X, (Ω•X , df)

)
= dimHj(X,Ω•X ⊗ φf (OX)).

Corollary 3.9 There exists an isomorphism

lim←−̀H
j
(
X,
(
Mf ⊗ Ω̃•X/C

)/
F`λ
(
Mf ⊗ Ω̃•X/C

))
' Hj

(
X, ι∗λ

(
Mf ⊗ Ω̃•X/C

))
⊗ C[[λ]]. (4)

3.2.2 Completion

We naturally regard
(
Mf

/
F jλMf

)
⊗ Ω̃•X/C as the complexes of sheaves on X. We obtain the following complex of

sheaves on X:
̂Mf ⊗ Ω̃•X/C = lim←−

j

(
Mf

/
F jλMf

)
⊗ Ω̃•X/C.

Corollary 3.10 There exists an isomorphism

Hj
(
X,

̂Mf ⊗ Ω̃•X/C

)
' Hj

(
X, ι∗λ

(
Mf ⊗ Ω̃•X/C

))
⊗ C[[λ]].

In particular, Hj
(
X,

̂Mf ⊗ Ω̃•X/C

)
are free C[[λ]]-modules of finite rank.

Proof Let Ω0,q
X denote the sheaf of smooth (0, q)-forms on X. We obtain the following double complex

( ̂Mf ⊗ Ω̃•X/C
)
⊗̂OXΩ0,•

X := lim←−
j

((
Mf

/
F jλMf

)
⊗ Ω̃•X/C ⊗OX Ω0,•

X

)
.

Let Tot
(( ̂Mf ⊗ Ω̃•X/C

)
⊗̂OXΩ0,•

X

)
denote the total complex.

Lemma 3.11 The natural morphism is a fine resolution:

̂Mf ⊗ Ω̃•X/C −→ Tot
(( ̂Mf ⊗ Ω̃•X/C

)
⊗̂OXΩ0,•

X

)
. (5)

Proof It is enough to prove that (5) is a quasi-isomorphism locally around any point of X. Recall that the sheaf
of C∞-functions on X is flat over OX according to [8].

Let G be any pseudo-coherent OX -module. (See [5, Appendix A] for pseudo-coherent sheaves.) We have
G⊗LOX Ω0,q

X ' G⊗OX Ω0,q
X . Let F• → G be a free resolution of G. The natural morphisms F• → Tot(F•⊗OX Ω0,•

X )→
G⊗OX Ω0,•

X are quasi-isomorphisms. Hence, G→ G⊗OX Ω0,•
X is a quasi-isomorphism.

Let G be a pseudo-coherent OX -module flat over OCλ . We naturally regard G/λjG as OX -modules. Let
πj+1 : G/λj+1G → G/λjG denote the projections. We obtain the quasi-isomorphisms

G/λjG → (G/λjG)⊗OX Ω0,•
X .

For any open subset U ⊂ X, the morphisms H0
(
U, (G/λj+1G) ⊗ Ω0,q

X

)
→ H0

(
U, (G/λjG) ⊗ Ω0,q

X

)
are surjective

because ι∗λ(G)⊗Ω0,q
X is fine. Let aq+1

j ∈ H0
(
U, (G/λjG)⊗Ω0,q+1

)
(j = 1, 2, . . .) be sections such that ∂(aq+1

j ) = 0 and

πj+1(aq+1
j+1) = aq+1

j . Let us construct bqj ∈ H0
(
U, (G/λj)⊗Ω0,q

X

)
(j = 1, 2, . . .) such that ∂bqj = aqj and πj+1(bqj+1) = bqj
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inductively on j. Suppose that we have already constructed bqj . There exists cqj+1 ∈ H0
(
U, (G/λj+1G)⊗Ω0,q

X

)
such

that πj+1(cqj+1) = bqj . We obtain

dq+1
j+1 = aq+1

j+1 − ∂c
q
j+1 ∈ H

0
(
U, (λjG/λj+1G)⊗ Ω0,q+1

)
' H0

(
U, ι∗λG ⊗ Ω0,q+1

)
such that ∂(dq+1

j+1) = 0. There exists eqj+1 ∈ H0
(
U, (λjG/λj+1G) ⊗ Ω0,q

X

)
such that ∂eqj+1 = dq+1

j+1. By setting
bqj+1 = cqj+1 + eqj+1, the induction can proceed.

As a result, the natural morphism

lim←−
j

(
G/λjG

)
→ lim←−

j

((
G/λjG

)
⊗ Ω0,•

X

)
is a quasi-isomorphism. Then, we obtain the claim of Lemma 3.11.

We obtain Corollary 3.10 from the following lemma.

Lemma 3.12 The natural morphisms

Hj
(
X,

̂Mf ⊗ Ω̃•X/C

)
→ lim←−̀H

j
(
X,
(
Mf

/
F`λMf

)
⊗ Ω̃•X/C

)
are isomorphisms.

Proof Let π`+1 denote the projection induced by Mf/F`+1
λ Mf →Mf/F`λMf . Let d denote the differential of

the complex Totq
((
Mf

/
F`λMf

)
⊗ Ω̃•X/C ⊗ Ω0,•

X

)
.

Let us consider cohomology classes

α` ∈ Hq
(
X,
(
Mf

/
F`λMf

)
⊗ Ω̃•X/C

)
(` = 1, 2, . . .)

such that π`+1(α`+1) = α`. We shall construct cocycles

a` ∈ H0
(
X,Totq

((
Mf

/
F`λMf

)
⊗ Ω̃•X/C ⊗ Ω0,•

X

))
(` = 1, 2, . . .)

such that a` are representatives of α` and that π`+1(a`+1) = a` inductively on `. Suppose that we have already

constructed a`. There exists a′`+1 ∈ H0
(
X,Totq

((
Mf

/
F`+1
λ Mf

)
⊗ Ω̃•X/C ⊗ Ω0,•

X

))
such that π`+1(a′`+1) = a`.

We obtain a cocycle

d(a′`+1) ∈ H0
(
X,Totq+1

((
F`λMf

/
F`+1
λ Mf

)
⊗ Ω̃•X/C ⊗ Ω0,•

X

))
.

Because π`+1(α`+1) = α`, there exists

b`+1 ∈ H0
(
X,Totq

((
F`λMf

/
F`+1
λ Mf

)
⊗ Ω̃•X/C ⊗ Ω0,•

X

))
such that d(b`+1) = d(a′`+1). Let α′`+1 denote the cohomology class of a′`+1 − b`+1. Because α`+1 − α′`+1 comes

from Hq
(
X,Tot

(
(F`λMf

/
F`+1
λ Mf )⊗ Ω̃•X/C ⊗ Ω0,•

X

))
, there exists a`+1 with the desired property.

Let us consider coboundaries

a` ∈ H0
(
X,Totq

((
Mf/F`λMf

)
⊗ Ω̃•X ⊗ Ω0,•

X

))
(` = 1, 2, . . .)

such that π`+1(a`+1) = a`. Let us construct

b` ∈ H0
(
X,Totq−1

((
Mf

/
F`λMf

)
⊗ Ω̃•X ⊗ Ω0,•

X

))
(` = 1, 2, . . .)

such that d(b`) = a` and π`+1(b`+1) = b` inductively on `. Suppose that we have already constructed b`. There

exists b′`+1 ∈ H0
(
X,Totq−1

((
Mf

/
F`+1
λ Mf

)
⊗ Ω̃•X ⊗ Ω0,•

X

))
such that π`+1(b′`+1) = b`. We obtain a cocycle

a`+1 − d(b′`+1) ∈ H0
(
X,Totq

((
F`λMf

/
F`+1
λ Mf

)
⊗ Ω̃•X ⊗ Ω0,•

X

))
.
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By Theorem 3.6, the natural morphism

Hq
(
X,Gr`FλM⊗ Ω̃•X/C

)
−→ Hq

(
X, (M/F`+1

λ M)⊗ Ω̃•X/C
)

is injective. Hence, there exists

c`+1 ∈ H0
(
X,Totq−1

((
F`λMf

/
F`+1
λ Mf

)
⊗ Ω̃•X ⊗ Ω0,•

X

))
such that d(c`+1) = a`+1 − d(b′`+1). By setting b`+1 = b′`+1 + c`+1, the induction can proceed.

3.2.3 Reformulation

Let ιf : X → X × Ct denote the graph embedding. We obtain the R̃X×Ct-module M̃ = ιf†M on X × Ct. The
following lemma is standard.

Lemma 3.13 There exists a natural isomorphism M̃⊗L(t) ' ιf†(Mf ). As a result, there exists a natural quasi-
isomorphism:

M̃ ⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ ' ιf∗
(
Mf ⊗ Ω̃•X/Cλ

)
[−1].

It induces the quasi-isomorphisms of the subcomplexes

Fkλ
(
M̃ ⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ

)
' ιf∗

(
Fkλ
(
Mf ⊗ Ω̃•X/Cλ

))
[−1]

and the quotient complexes:

GrkFλ
(
M̃ ⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ

)
' ιf∗

(
GrkFλ

(
Mf ⊗ Ω̃•X/Cλ

))
[−1].

Let π01 : Cλ×X×Ct → Cλ×X denote the projection. Let VRX×Ct ⊂ RX×Ct denote the sheaf of subalgebras

generated by π∗01RX and tðt. Because M̃ ∈ Creg(X × Ct), M̃ has a V -filtration along t, that is an increasing and

exhaustive filtration Va(M̃) (a ∈ R) of M̃ by coherent VRX×Ct-submodules satisfying the following conditions.

• For any a ∈ R, there exists ε > 0 such that Va(M̃) = Va+ε(M̃).

• GrVa = Va/V<a are flat over OCλ .

• tVa ⊂ Va−1, and tVa = Va−1 if a < 0.

• ðtVa ⊂ Va+1, and the induced morphisms ðt : GrVa −→ GrVa+1 are isomorphisms if a > −1.

• The induced actions of −ðtt− λa on GrVa (M̃) are locally nilpotent.

Because M̃ is induced by a mixed Hodge module, Va(M̃) are coherent over π∗01RX .
We obtain the following complex:

V−1(M̃) −→ λ−1V0(M̃)⊗ dt, s 7−→ (∂t + λ−1)s dt.

The first term sits in the degree 0. It extends to the following double complex:

V−1(M̃)⊗ π∗01Ω̃•X/C −→ λ−1V0(M̃)⊗ dt⊗ π∗01Ω̃•X/C. (6)

Let C1(M) denote the complex of sheaves on Cλ × X × Ct obtained as the total complex of (6). We have the

subcomplexes F jλC1(M) = λjC1(M). We may naturally regard C1(M) as a subcomplex of M̃⊗L(t)⊗Ω̃•Cλ×X×Ct/Cλ .

Lemma 3.14 The inclusion C1(M) → M̃ ⊗ L(t) ⊗ Ω̃•Cλ×X×Ct/Cλ is a quasi-isomorphism. It induces quasi-
isomorphisms of subcomplexes

FkλC1(M) −→ Fkλ
(
M̃ ⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ

)
and the quotient complexes:

GrkFλ C1(M) −→ GrkFλ
(
M̃ ⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ

)
.
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Proof For any a > −1, the induced morphisms

GrVa (M̃)→ λ−1 GrVa+1(M̃)⊗ dt s 7−→ ∂t(s)⊗ dt

are isomorphisms. We obtain that the quotient of C1(M)→ M̃⊗ L(t)⊗ Ω̃•Cλ×X×Ct/Cλ is acyclic, that is the first

claim. The second claim is equivalent to the first claim. The third claim follows from the second claim.

By Lemma 3.14, Theorem 3.6 is reduced to the following theorem.

Theorem 3.15 The E1-degeneration property holds for the filtered complex F•λC1(M) with respect to the push-
forward by the projection Cλ ×X × Ct → Cλ.

3.2.4 Refinement

Let π012 : Cλ ×X × Ct × Cu → Cλ ×X × Ct and π01 : Cλ ×X × Ct × Cu → Cλ ×X denote the projections. We
obtain the following complex on Cλ ×X × Ct × Cu:

π∗012V−1(M̃) −→ λ−1π∗012V0(M̃)⊗ dt, s 7−→ (u∂t + λ−1)s dt. (7)

The first term sits in the degree 0. We extend it to the following double complex:

π∗012V−1(M̃)⊗ π∗01Ω̃•X/C −→ λ−1π∗012V0(M̃)⊗ dt⊗ π∗01Ω̃•X/C.

Let C(M) denote the associated complex on Cλ ×X × Ct × Cu. We have the subcomplexes F jλC(M) = λjC(M).
We consider the C∗-action on Cλ×Cu given by a(λ, u) = (a−1λ, au). It induces a C∗-action on Cλ×X×Ct×Cu.

Because M is induced by a Hodge module, π∗012V−1(M̃) and λ−1π∗012V0(M̃) are naturally C∗-equivariant. The
differential u∂t + λ−1 is C∗-equivariant.

Let π03 : Cλ × X × Ct × Cu −→ Cλ × Cu denote the projection. The direct image sheaves R`π03∗C(M) are
C∗-equivariant.

Theorem 3.16 The E1-degeneration holds for the filtered complex F•λC(M) with respect to the push-forward by

π03, and R`π03∗GrjFλ C(M) are locally free C∗-equivariant O{0}×Cu-modules of finite rank.

We obtain Theorem 3.15 from Theorem 3.16 by specializing along u = 1.

3.3 Formal neighbourhood along u = 0

3.3.1 Basic strictness

Let π0 : Cλ × X × Ct → Cλ denote the projection. Let ιu : Cλ × X × Ct × {0} → Cλ × X × Ct × Cu and
ι01 : Cλ ×X × {0} −→ Cλ ×X × Ct denote the inclusion maps.

Lemma 3.17 R`π0∗
(
ι∗uC(M)

)
are locally free OCλ-modules of finite rank for any `.

Proof Because GrVa (M̃) (−1 < a ≤ 0) underlie regular mixed twistor D-modules on a Kähler manifold X whose

supports are compact, the sheaves Rjπ0∗
(
GrVa (M̃) ⊗ Ω̃•X/C

)
are locally free OCλ -modules of finite rank. (See

Corollary 2.5.)
Note that ι∗uC(M) is quasi-isomorphic to

λ−1ι01∗

((
V0(M̃)/V−1(M̃)

)
⊗ dt⊗ Ω̃•X/C

)
[−1].

For any b < a, there exists the following canonical splitting of VRX×Ct|C∗λ×X×Ct-modules(
Va(M̃)/Vb(M̃)

)
|C∗λ×X×Ct

=
⊕
b<c≤a

GrVc (M̃)|C∗λ×X×Ct . (8)

Here, the actions of −∂tt− c on GrVc (M̃)|C∗λ×X×Ct are nilpotent. For any −1 < b < a ≤ 0, we obtain the following
exact sequence for any `:

0 −→ R`π0∗
(
GrVb (M̃)⊗ Ω̃•X/Cλ

)
|C∗λ
−→ R`π0∗

((
Va(M̃)/V<b(M̃)

)
⊗ Ω̃•X/Cλ

)
|C∗λ

−→ R`π0∗

((
Va(M̃)/Vb(M̃)

)
⊗ Ω̃•X/Cλ

)
|C∗λ
−→ 0. (9)
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Because Rkπ0∗
(
GrVb (M̃)⊗ Ω̃•X/Cλ

)
are locally free OCλ -modules for any k, we obtain the vanishing of the following

morphisms:

R`π0∗

((
Va(M̃)/Vb(M̃)

)
⊗ Ω̃•X/Cλ

)
−→ R`+1π0∗

(
GrVb (M̃)⊗ Ω̃•X/Cλ

)
.

We obtain the following exact sequences:

0 −→ R`π0∗
(
GrVb (M̃)⊗ Ω̃•X/Cλ

)
−→ R`π0∗

((
Va(M̃)/V<b(M̃)

)
⊗ Ω̃•X/Cλ

)
−→ R`π0∗

((
Va(M̃)/Vb(M̃)

)
⊗ Ω̃•X/Cλ

)
−→ 0. (10)

Then, we obtain the claim of Lemma 3.17 by an easy induction.

3.3.2 The E1-degeneration for another filtration Fu
We consider the subcomplexes F ju = ujC(M). There exist natural isomorphisms GrjFu C(M) ' ιu∗ι∗uC(M). There
exists the following exact sequence:

0 −→ GrjFu C(M) −→ C(M)/F j+1
u C(M) −→ C(M)/F juC(M) −→ 0. (11)

Proposition 3.18 We obtain the following exact sequences:

0 −→ R`π03∗GrjFu C(M) −→ R`π03∗
(
C(M)/F j+1

u C(M)
)
−→ R`π03∗

(
C(M)/F juC(M)

)
−→ 0. (12)

Proof Let us consider the following exact sequence:

0 −→ F1
uC(M)

/
F juC(M) −→ C(M)/F juC(M) −→ Gr0Fu C(M) −→ 0.

Lemma 3.19 We obtain the following exact sequences for any ` ∈ Z≥0 and j ∈ Z≥1:

0 −→ R`π03∗
(
F1
uC(M)

/
F juC(M)

)
|C∗λ×Cu

−→ R`π03∗
(
C(M)/F juC(M)

)
|C∗λ×Cu

−→ R`π03∗
(
Gr0Fu C(M)

)
|C∗λ×Cu

−→ 0. (13)

Proof Recall that Gr0Fu C(M) = ιu∗ι
∗
uC(M) is quasi-isomorphic to

ιu∗

(
λ−1ι01∗

(
π∗012

(
V0(M̃)/V−1(M̃)

)
⊗ dt⊗ π∗01Ω̃•X/Cλ

)
[−1]

)
.

Let π1 : Cλ×X ×Ct×Cu → X denote the projection. Let C•2 denote the Dolbeault resolution, i.e., the associated
complex of the double complex

ιu∗

(
λ−1ι01∗

(
π∗012

(
V0(M̃)/V−1(M̃)

)
⊗ dt⊗ π∗01Ω̃•X/Cλ

)
[−1]

)
⊗ π∗1Ω0,•

X .

For any N ≥ 0, there exists the following subcomplex V−N−1C(M) of C(M):

π∗012V−N−1(M̃)⊗ π∗01Ω̃•X/C −→ λ−1π∗012V−N (M̃)⊗ dt⊗ π∗01Ω̃•X/C.

Let U be an open subset of C∗λ×Cu. Let α be a section of C•2 on U ×X×Ct such that dα = 0. Let N > j+ 10.

By using the splitting (8), we can construct a section α̃ of
(
λ−1π∗012V0(M̃) ⊗ dt ⊗ π∗01Ω̃•X/C[−1]

)
⊗ π∗1Ω0,•

X such

that (i) α̃ induces α, (ii) β(0) := dα̃ is contained in
(
λ−1π∗012V−N (M̃)⊗ dt⊗ π∗01Ω̃•X/C

)
⊗ π∗1Ω0,•

X on U ×X × Ct.

Note that dβ(0) = 0. There exists a section γ(1) of
(
π∗012V−N (M̃)⊗ π∗01Ω̃•X/C

)
⊗ π∗1Ω0,•

X on U ×X × Ct such that

γ(1) ⊗ λ−1dt = β(0). We set β(1) = β(0) − dγ(1) which is contained in

u
(
λ−1π∗012V−N+1(M̃)⊗ dt⊗ π∗01Ω̃•X/C

)
⊗ π∗1Ω0,•

X

on U ×X × Ct. We have dβ(1) = 0. Inductively, for m = 1, . . . , j + 1, we can construct sections β(m) of

um
(
λ−1π∗012V−N+m(M̃)⊗ dt⊗ π∗01Ω̃•X/C

)
⊗ π∗1Ω0,•

X

and sections γ(m) of um−1
(
π∗012V−N+m−1(M̃)⊗ π∗01Ω̃•X/C

)
⊗ π∗1Ω0,•

X such that β(m) = β(m−1) − dγ(m) and γ(m) ⊗

λdt = β(m−1). Then, α̂ = α̃ −
∑j+1
m=1 γ

(m) is a section of C(M) ⊗ π∗1Ω0,•
X such that (i) α̂ induces α, (ii) dα̂ is a

section of F j+1
u C(M)⊗ π∗1Ω0,•

X [1]. Then, we obtain the claim of Lemma 3.19.
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Lemma 3.20 We obtain the following exact sequences for any `, j ∈ Z≥0.

0 −→ R`π03∗GrjFu C(M)|C∗λ×Cu −→ R`π03∗
(
C(M)/F j+1

u C(M)
)
|C∗λ×Cu

−→ R`π03∗
(
C(M)/F juC(M)

)
|C∗λ×Cu

−→ 0. (14)

Proof It is enough to prove that

R`π03∗
(
C(M)/F j+1

u C(M)
)
|C∗λ×Cu

−→ R`π03∗
(
C(M)/F juC(M)

)
|C∗λ×Cu

(15)

are epimorphisms for any ` and j. We use an induction on j. Lemma 3.19 implies the claim in the case j = 1. By
the hypothesis of the induction, we may assume that

R`π03∗
(
F1
uC(M)/F j+1

u C(M)
)
|C∗λ×Cu

−→ R`π03∗
(
F1
uC(M)/F juC(M)

)
|C∗λ×Cu

are epimorphisms. Then, by Lemma 3.19, we obtain that (15) are also epimorphisms.

We obtain the exactness of (12) from the exactness of (14) and the strictness of R`π03∗GrjFu C(M) for any `

and j as in the proof of Lemma 3.17. Thus, we obtain Proposition 3.18.

The supports of R`π03∗
(
C(M)/F juC(M)

)
are contained in Cλ×{0} ⊂ Cλ×Cu. We may naturally regard them

as OCλ [u]/uj-modules.

Corollary 3.21 R`π03∗
(
C(M)/F juC(M)

)
are locally free OCλ [u]/uj-modules.

3.4 Coherence of the specialization along λ = 0

Let ι̃λ : {0} ×X × Ct × Cu −→ Cλ ×X × Ct × Cu denote the inclusion. Let π3 : X × Ct × Cu → Cu denote the
projection.

Proposition 3.22 R`π3∗(ι̃
∗
λC(M)) are coherent OCu-modules.

Proof Let π12 : X×Ct×Cu → X×Ct denote the projection. Note that ι̃∗λπ
∗
12RX×Ct is isomorphic to the algebra

of the symmetric product of π∗12ΘX×Ct , where ΘX×Ct denote the tangent sheaf of X × Ct. Because ι̃∗λC(M) is a
complex of coherent ι̃∗λRX×Ct-modules, it induces a complex of coherent OT∗(X×Ct)×Cu -modules

(
ι̃∗λC(M)

)∼
. Let

Z denote the cohomological support of
(
ι̃∗λC(M)

)∼
.

Lemma 3.23 Let 0X×Ct : X × Ct → T ∗(X × Ct) denote the 0-section. Then, Z ⊂
(
0X×Ct ◦ ιf

)
(Cr(f))× Cu.

Proof Let
(
ι̃∗λC(M)

)
u

denote the pull back of ι̃∗λC(M) by the inclusion X × Ct × {u} → X × Ct × Cu. Let(
ι̃∗λC(M)

)∼
u

denote the induced complex of coherent OT∗(X×Ct)-modules. It equals the pull back of
(
ι̃∗λC(M)

)∼
by

the inclusion T ∗(X × Ct) × {u} → T ∗(X × Ct) × Cu. Let Zu denote the cohomological support of
(
ι̃∗λC(M)

)∼
u

.

Because Z ∩
(
T ∗(X × Ct)× {u}

)
= Zu, it is enough to prove that Zu ⊂ (0X×Ct ◦ ιf )(Cr(f)).

Let ι0,λ : {0} ×X × Ct → Cλ ×X × Ct denote the inclusion. By Lemma 3.14, if u 6= 0,
(
ι̃∗λC(M)

)
u

is quasi-

isomorphic to ι∗0,λ

(
M̃ ⊗ L(u−1t)⊗ Ω̃•Cλ×X×Ct/Cλ

)
. It is quasi-isomorphic to ιf∗ι

∗
λ

(
Mu−1f ⊗ Ω̃•X/Cλ [−1]

)
. Hence,

by Lemma 3.1, the cohomological support of
(
ι̃∗λC(M)

)∼
u

is contained in (0X×Ct ◦ ιf )(Cr(f)).
Let us consider the case u = 0. There exists the following quasi-isomorphism(

ι̃∗λC(M)
)
0
' ιλ∗

(
V0(M̃)/V−1(M̃)

)
⊗ dt⊗ Ω•X [−1].

Because df(X)∩Ch(ΞDR(M)) ⊂ 0X(Cr(f)), the support of the Sym ΘX -module ιλ∗(V0(M̃)/V−1(M̃)) is contained
in ιf (Cr(f)) as in the case of Lemma 3.2. By a similar argument to the proof of Lemma 3.1, we obtain that the
cohomological support of

(
ι̃∗λC(M)

)
0

is contained in (0X×Ct ◦ ιf )(Cr(f)).

Because Z is proper over Cu, we obtain the claim of Proposition 3.22.

Note that GrjFλ C(M) are isomorphic to ιλ∗ι
∗
λC(M) for any j ∈ Z≥0. The supports of R`π03∗(C(M)/F jλC(M))

are contained in {0} × Cu. We may naturally regard R`π03∗(C(M)/F jλC(M)) as OCu -modules.

Corollary 3.24 R`π03∗
(
C(M)/F jλC(M)

)
are coherent OCu-modules for any ` and j.
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3.5 Proof of Theorem 3.16

There exist the following exact sequences:

0 −→ λj
(
C(M)/FkuC(M)

)/
λj+1

(
C(M)/FkuC(M)

)
−→

(
C(M)/FkuC(M)

)/
λj+1

(
C(M)/FkuC(M)

)
−→

(
C(M)/FkuC(M)

)/
λj
(
C(M)/FkuC(M)

)
−→ 0. (16)

We obtain the following morphisms of the stalks at (0, 0) ∈ Cλ × Cu:

R`π03∗

((
C(M)/FkuC(M)

)/
λj
(
C(M)/FkuC(M)

))
(0,0)
−→

R`+1π03∗

(
λj
(
C(M)/FkuC(M)

)/
λj+1

(
C(M)/FkuC(M)

))
(0,0)

. (17)

Lemma 3.25 The morphisms (17) are 0.

Proof Because the multiplication of λj on R`π03∗
(
C(M)/FkuC(M)

)
is a monomorphism by Corollary 3.21, the

induced morphism

R`π03∗

((
C(M)/FkuC(M)

)/
λj
(
C(M)/FkuC(M)

))
(0,0)
−→ R`+1π03∗

(
λj
(
C(M)/FkuC(M)

))
(0,0)

is 0. Hence, the morphism (17) is 0.

There exist the following exact sequences:

0 −→ GrjFλ C(M) −→ C(M)/F j+1
λ C(M) −→ C(M)/F jλC(M) −→ 0.

We obtain the following induced morphisms of the stalks:

R`π03∗
(
C(M)/F jλC(M)

)
(0,0)
−→ R`+1π03∗

(
GrjFλ C(M)

)
(0,0)

. (18)

Lemma 3.26 The morphisms (18) are 0.

Proof There exist the following commutative diagrams of stalks at (λ, u) = (0, 0) for any k ≥ 0:

R`π03∗
(
C(M)/FjλC(M)

)
(0,0)

b`−−−−−→ R`+1π03∗
(
GrjFλ

C(M)
)
(0,0)y y

R`π03∗
(
(C(M)/FkuC(M))

/
λj(C(M)/FkuC(M))

)
(0,0)

0−−−−−→ R`+1π03∗
(
λj(C(M)/FkuC(M))

/
λj+1(C(M)/FkuC(M))

)
(0,0)

.

The lower horizontal arrow is 0 by Lemma 3.25. By the construction, C(M) is flat over OCλ×Cu , and hence
λpC(M) ∩ uqC(M) = λpuqC(M) for any p, q ∈ Z≥0. The right vertical arrows are identified as follows:

R`+1π03∗ιλ∗ι
∗
λC(M)(0,0)

'−−−−−→ R`+1π03∗
(
GrjFλ

C(M)
)
(0,0)y y

R`+1π03∗ιλ∗ι
∗
λ

(
C(M)/FkuC(M)

)
(0,0)

'−−−−−→ R`+1π03∗
(
λj(C(M)/FkuC(M))

/
λj+1(C(M)/FkuC(M))

)
(0,0)

.

Under the identification, the image of b` is contained in the image of the morphism

R`+1π03∗ιλ∗ι
∗
λFkuC(M)(0,0) −→ R`+1π03∗ιλ∗ι

∗
λC(M)(0,0)

for any k ≥ 0. It equals the image of the morphism

uk : R`+1π03∗ιλ∗ι
∗
λC(M)(0,0) −→ R`+1π03∗ιλ∗ι

∗
λC(M)(0,0)

for any k ≥ 0. Because R`+1π03∗ιλ∗ι
∗
λC(M) is OCλ -coherent by Proposition 3.22, we obtain b` = 0.

For any j ≥ 0, there exists ε > 0 such that the following morphism is an epimorphism on {|u| < ε}:

R`π03∗
(
C(M)/F j+1

λ C(M)
)
−→ R`π03∗

(
C(M)/FjλC(M)

)
.

By using the C∗-equivariance, we obtain that it is an epimorphism on Cu. Thus, we obtain Theorem 3.16.
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