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Abstract. In this short note we prove that in many cases the failure of a

variety to be separably rationally connected is caused by the instability of the

tangent sheaf (if there are no other obvious reasons). A simple application
of the results proves that a smooth Fano complete intersection is separably

rationally connected if and only if it is separably uniruled. In particular, a

general such Fano complete intersection is separably rationally connected.

It has now become clear that the geometry of varieties are in a large part con-
trolled by rational curves. And it is desirable to single out the class of varieties
which contains lots of rational curves. In characteristic zero, such class of varieties
is rationally connected.

Definition 1. A variety X is rationally connected if there is a family of rational
curves

u : P1 × U → X,

such that the two point evaluation morphism

u(2) : P1 × P1 × U → X ×X
is dominant.

Over an uncountable algebraically closed field, this condition is the same as the
geometric condition that there is a rational curve through two general points in
X. Rationally connected varieties in char 0 have been identified as the correct
generalization of rational surfaces to all dimensions [Kol96].

However, in positive characteristic, rationally connected varieties are not the
correct generalization of rational surfaces since there are inseparable unirational
parameterizations of varieties of general type. Instead, one should look at separably
rationally connected varieties.

Definition 2. A variety X is separably rationally connected if the two point eval-
uation morphism

u(2) : P1 × P1 × U → X ×X
is dominant and separable.

But then an interesting question arises:

Question 3. What makes a variety (not) separably rationally connected?

In particular, the following is a well-known open question:

Question 4. Is every smooth Fano hypersurface separably rationally connected?

In this short note we try to suggest an answer to Question 3 in some cases, and
relate it to Question 4. The basic observation is the following.
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Theorem 5. Let X be a normal projective variety of Picard number one over an
algebraically closed field of positive characteristic. Assume that the smooth locus
Xsm of X is separably uniruled. If X is not separably rationally connected, then
the tangent sheaf TX is unstable.

For the ease of the reader, we recall the definition of (separable) uniruledness.

Definition 6. A variety X is (separably) uniruled if there is a family of rational
curves

u : P1 × U → X,

such that the morphism u is dominant (and separable), and non-constant along the
P1 factor.

Remark 7. If X is Q-factorial, then one can prove that the smooth locus Xsm

is rationally connected and two general points can be connected by a free rational
curve. That is, X is freely rationally connected (FRC) as in [She10], Definition 1.2.

Proof of Theorem 5. Since the smooth locus Xsm is separably uniruled, there is a
free curve, i.e. a morphism f : P1 → Xsm such that

f∗TX ∼= O(a1)⊕ . . .⊕O(ar)⊕O(ar+1)⊕O(an),

a1 ≥ a2 ≥ . . . ar > ar+1 = . . . = an = 0, n = dimX.

Define the positive rank R of X to be the maximum of such numbers r. A free
curve is called maximally free if the pull-back of the tangent bundle has R positive
summands.

Given a general point x ∈ X, by [She10], Proposition 2.2, there is a well-defined
subspace D(x) ⊂ TX |x, as the subspace of the positive directions of a maximally
free curve at x (i.e. D(x) is independent of the choice of the maximally free curve).
Furthermore, over an open subset U of X, the subspaces of D(x) glues together
to a (locally free) coherent subsheaf of TX (loc. cit. Proposition 2.5). Denote by
D the saturated subsheaf of TX which extends the locally free subsheaf given by
D(x), x ∈ U . Obviously the rank of D is R.

Let φ : P1 → Xsm be a maximally free curve. Then we have

φ∗TX ∼= O(a1)⊕ . . .⊕O(aR)⊕O(aR+1)⊕ . . .⊕O(an),

φ∗D ∼= O(a1)⊕ . . .⊕O(aR), a1 ≥ a2 ≥ . . . aR > aR+1 = . . . = an = 0,

(c.f. the paragraph after Corollary 3.2, loc. cit.)
Thus we have the equality between the first Chern classes c1(D) = c1(TX). Here

we use the fact that X is Picard number one and we can prove the equality by
taking intersection numbers with a maximally free curve.

So if R < n, or equivalently, Xsm is not separably rationally connected, then the
tangent sheaf is unstable in the sense of Mumford. Indeed, we have

c1(D) ·Hn−1

rankD
>
c1(TX) ·Hn−1

n
> 0

for some ample divisor H. �

Remark 8. Kollár constructed examples of degree p branched covers of Pn in char-
acteristic p which are separably uniruled, rationally connected, but not separably
rationally connected (Exercise 5.19, Chap. V, [Kol96]). In his examples, the sheaf
of differentials ΩX has an unexpected quotient sheaf, whose dual is basically the
sheaf D in the proof.
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One application of Theorem 5 is the following.

Corollary 9. Consider the following three properties of a smooth Fano complete
intersection X of dimension at least 3:

(1) X is separably uniruled.
(2) X is separably rationally connected.
(3) X is rationally connected.

Then the first two properties are equivalent to each other and imply the last one.

Proof. If X is a linear subspace or a smooth quadric hypersurface, the statement
is trivial.

In the following we assume X is neither a linear subspace nor a quadric hypersur-
face. Then we use the following to show that the sheaf of differentials ΩX is stable
for such complete intersections. A proof of the stability over a field of characteristic
0 can be found in [PW95]. The proof only uses the fact that H0(X,Ωq

X(q− 1)) = 0
and the fact that X has Picard number one. All these facts remain true in positive
characteristic. The general vanishing result is proved in Lemma 3.3, [Ben13]. But
below we include a proof for completeness, which is essentially the same as the one
in [Ben13].

The vanishing result we will need is the following.

Lemma 10 ([Ben13]). Let X ⊂ Pn be a smooth complete intersection of degree
(d1, . . . , dc). Then we have Hp(X,Ωq

X(t)) = 0, for all p + q < dimX = n − c, t <
q − p.

Assuming this lemma, the proof proceeds as in [PW95]. For any subsheaf F ⊂
ΩX , we may assume F is reflexive of rank r < dimX. Thus detF is an invertible
subsheaf of Ωr

X . Since X has Picard number one by the Grothendieck-Lefschetz
Theorem (Corollary 3.2, Chap. IV, [Har70]), we know detF is isomorphic to OX(k)
for some k. Then H0(X,Ωr

X(−k)) = 0. So by Lemma 10, −k ≥ r. Then

µ(F) =
detF · O(1)dimX−1

r
≤ −degX < µ(ΩX) = degX ·

∑c
1 di − n− 1

dimX
.

Here in the last inequality we use the assumption that
∑
di − 1− c > 0 (note that

the proof of Corollary 0.3 in [PW95] wrongly assumes this without the restriction
on the complete intersection not being a linear subspace or a hyperquadric). �

Now we use inductions to prove Lemma 10, which is divided into the following
two lemmas.

Lemma 11. Let X ∼= Pn. Then Hp(X,Ωq
X(t)) = 0, for all p+ q < dimX = n, t <

q − p.

Proof. We use induction on q. The statement is true if q = 0. We have the Euler
sequence

0→ ΩX → V ⊗O(−1)→ O → 0.

Taking exterior powers gives

0→ Ωq
X → ∧

qV ⊗O(−q)→ Ωq−1
X → 0,

which gives the following exact sequence of cohomology groups:

Hp−1(X,Ωq−1
X (t))→ Hp(X,Ωq

X(t))→ Hp(X,∧qV ⊗O(−q)).
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By assumption on p, q, Hp(X,∧qV ⊗O(t− q)) = 0. And Hp−1(X,Ωq−1
X (t)) = 0 by

the induction hypothesis since (p− 1) + (q− 1) < dimX, t < (q− 1)− (p− 1). The
statement follows. �

Lemma 12. Let Y ⊂ (X,OX(1)) be a smooth hypersurface of degree d ≥ 2.
And assume that Hp(X,Ωq

X(t)) = 0, for all p + q < dimX, t < q − p. Then
Hp(Y,Ωq

Y (t)) = 0, for all p+ q < dimY, t < q − p.

Proof. We use induction on q. The q = 0 case is easy.
We have short exact sequences:

0→ OY (−d)→ ΩX |Y → ΩY → 0,

0→ Ωq
X(−d)→ Ωq

X → Ωq
X |Y → 0,

0→ Ωq−1
Y (−d)→ Ωq

X |Y → Ωq
Y → 0.

So we have exact sequence of cohomology groups:

Hp(Y,Ωq
X(t)|Y )→ Hp(Y,Ωq

Y (t))→ Hp+1(Y,Ωq−1
Y (t− d)),

Hp(X,Ωq
X(t))→ Hp(Y,Ωq

X(t)|Y )→ Hp+1(X,Ωq
X(t− d)).

The assumptions on p, q, t, d implies that

(p+ 1) + q < dimX,

t− d ≤ t− 2 < q − p− 2 = (q − 1)− (p+ 1) < q − (p+ 1).

So

Hp(Y,Ωq
X(t)|Y ) = Hp+1(Y,Ωq−1

Y (t−d)) = Hp(X,Ωq
X(t)) = Hp+1(X,Ωq

X(t−d)) = 0,

by the induction hypothesis and the assumption on the cohomology groups of X.
Note the d ≥ 2 assumption is crucial to get the vanishing of Hp+1(Y,Ωq−1

Y (t −
d)). �

As a further corollary, we give a different proof of the following result of Chen-
Zhu.

Corollary 13 ([CZ13]). A general Fano complete intersection of dimension at least
3 is separably rationally connected.

Sketch of proof. It suffices to prove separable uniruledness of a general such com-
plete intersection, which is Exercise 4.4, Chap. V, [Kol96] for hypersurface, and
Proposition 2.13 in Debarre’s book [Deb01] for complete intersections of index at
least 2. The remaining case can be proved in the same way, i.e. by writing down
an explicit complete intersection which contains a free curve.

The key point that make separable uniruledness much easier to prove than the
separable rational connectedness case is that one only need to work with lines and
conics for separable uniruledness, while for separable rational connectedness, the
degree of rational curves grows like the dimension of the variety. �

In the higher Picard number case, the tangent sheaf may fail to be semi-stable
for many reasons, for example, if the variety has a fibration structure. From a more
positive perspective, we would like to prove that if the tangent sheaf is semistable
and if there are no other obvious reasons for the variety to be not separably ratio-
nally connected, then the variety is separably rationally connected.

However, it is not clear what should the term “obvious reasons” mean. Below
we suggest one possibility.
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It is very easy to show that on a smooth projective separably rationally connected
variety X, the group of rational one cycles modulo numerical equivalence N1(X)Q is
generated by (very) free rational curves. Thus if this group is not generated by free
rational curves, then the variety X is obviously not separably rationally connected.
Then essentially the same proof as in 5 gives the following.

Theorem 14. Let X be a smooth Fano variety over an algebraically closed field of
positive characteristic. Assume that X is separably uniruled and the group of ratio-
nal one cycles modulo numerical equivalence N1(X)Q is generated by free rational
curves. If the tangent sheaf of X is semi-stable, then X is separably rationally
connected.

Note that the classes of maximally free rational curves span N1(X)Q by a simple
deformation argument. Similar as in the Picard number one case, one can then
conclude the equality of the first Chern class of D and TX , at least numerically, by
evaluating them on the maximally free curves. The Fano condition is also important
to get the slope inequality in the desired form.

Remark 15. The conditions imply that X is FRC by the quotient construction
(Theorem 4.13, Chap. IV,[Kol96], see also the proof of Corollary 4.14). But they
are too restrictive. For example it suffices to assume that there is a contraction of
X which contracts all the divisors which do not intersect the free curves.

Example 16. There are rationally connected (even FRC), separably uniruled
smooth projective varieties whose group of rational one cycles modulo numerical
equivalence N1(X)Q is not generated by free rational curves. Indeed, take one of
Kollár’s examples (Exercise 5.19, Chap. V, [Kol96]). And let X be a resolution of
singularities, which exists by the local description of the singularities. Finally let
Y be the blow-up of X along a smooth point. Then the intersection number of the
exceptional divisor E with any free rational curve on Y is 0. Otherwise one can
construct very free rational curves on X from a free rational curve on Y which has
positive intersection number with the exceptional divisor.
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