THE RATIONALITY OF THE MODULI SPACE OF
CURVES OF GENUS 3 AFTER P. KATSYLO

CHRISTIAN BOHNING

ABSTRACT. This article is a survey of P. Katsylo’s proof that the
moduli space M3 of smooth projective complex curves of genus 3
is rational. We hope to make the argument more comprehensible
and transparent by emphasizing the underlying geometry in the
proof and its key structural features.
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1. INTRODUCTION

The question whether 913 is a rational variety or not had been open
for a long time until an affirmative answer was finally given by P. Kat-
sylo in 1996. There is a well known transition in the behaviour of the
moduli spaces 9, of smooth projective complex curves of genus g from
unirational for small g to general type for larger values of g; the moral
reason that 913 should have a good chance to be rational is that it
is birational to a quotient of a projective space by a connected linear

algebraic group. No variety of this form has been proved irrational
1



2 CHRISTIAN BOHNING

up to now. More precisely, 93 is birational to the moduli space of
plane quartic curves for PGLj3 C-equivalence. All the moduli spaces
C(d) of plane curves of given degree d are conjectured to be rational
(see [Dol2], p.162; in fact, there it is conjectured that all the moduli
spaces of hypersurfaces of given degree d in P for the PGL,,;; C-action
are rational. I do not know if this conjecture should be attributed to
Dolgachev or someone else).

There are heuristic reasons that the spaces C(d) should be rational at
least for all large enough values for d. Maybe it is not completely out
of reach to prove this rigorously. We hope to return to this problem
in the future. In any case one might hazard the guess that irregular
behaviour of C'(d) is most likely to be found for small values of d, and
showing rationality for C'(4) turned out to be exceptionally hard.
Katsylo’s proof is long and computational, and, due to the importance
of the result, it seems desirable to give a more accessible and geometric
treatment of the argument.

This paper is divided into two main sections (sections 2 and 3) which
are further divided into subsections. Section 2 treats roughly the con-
tents of Katsylo’s first paper [Kat1] and section 3 deals with his second
paper [Kat2].

Finally I would like to thank Professor Yuri Tschinkel for proposing
the project and many useful discussions. Moreover, I am especially
grateful to Professor Fedor Bogomolov with whom I discussed parts of
the project and who provided a wealth of helpful ideas.

2. A REMARKABLE (SL3 C, SO3 C)-SECTION

2.1. (G, H)-sections and covariants. A general, i.e. nonhyperellip-
tic, smooth projective curve C' of genus 3 is realized as a smooth plane
quartic curve via the canonical embedding, whence 93 is birational to
the orbit space C'(4) := P(H°(P?,0(4))/SL3 C. We remark that when-
ever one has an affine algebraic group GG acting on an irreducible variety
X, then, according to a result of Rosenlicht, there exists a nonempty
invariant open subset Xy C X such that there is a geometric quotient
for the action of G on X (cf. [Po-Vi], thm. 4.4). In the following we
denote by X/G any birational model of this quotient, i.e. any model
of the field C(X)% of invariant rational functions.

The number of methods to prove rationality of quotients of projective
spaces by connected reductive groups is quite limited (cf. [Doll] for an
excellent survey). The only approach which our problem is immedi-
ately amenable to seems to be the method of (G, H)-sections. (There
are two other points of view I know of: The first is based on the remark
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that if we have a nonsingular plane quartic curve C', the double cover of
P2 branched along C'is a Del Pezzo surface of degree 2, and conversely,
given a Del Pezzo surface S of degree 2, then | — K| is a regular map
which exhibits S as a double cover of P? branched along a plane quartic
C'; this sets up a birational isomorphism between 93 and DP(2), the
moduli space of Del Pezzo surfaces of degree 2. We can obtain such
an S by blowing up 7 points in P?, and one can prove that D9(2) is
birational to the quotient of an open subset of Py := (P?)"/PGL3C,
the configuration space of 7 points in P? (which is visibly rational),
modulo an action of the Weyl group W (E») of the root system of type
E; by Cremona transformations (note that W (E7) coincides with the
permutation group of the (—1)-curves on S that preserves the incidence
relations between them). This group is a rather large finite group, in
fact, it has order 21°.3%*.5.7. This approach does not seem to have
led to anything definite in the direction of proving rationality of 93
by now, but see [D-O] for more information.

The second alternative, pointed out by I. Dolgachev, is to remark
that 903 is birational to MY, the moduli space of genus 3 curves
together with an even theta-characteristic; this is the content of the
classical theorem due to G. Scorza. The latter space is birational to
the space of nets of quadrics in P? modulo the action of SL,C, i.e.
Grass(3, Sym? (C*)V)/SL, C. See [Dol3], 6.4.2, for more on this. Com-
pare also [Kat0], where the rationality of the related space

Grass(3, Sym? (C°)¥)/SLs C is proven; this proof, however, cannot be
readily adapted to our situation, the difficulty seems to come down to
that 4, in contrast to 5, is even).

Definition 2.1.1. Let X be an irreducible variety with an action of a
linear algebraic group G, H < G a subgroup. An irreducible subvariety
Y C X is called a (G, H)-section of the action of G on X if

1) G Y=X;
(2) H-Y CY;
B)geG, gYNY #£0) = ge H.

In this situation H is the normalizer Ng(Y) :={g € G|gY C Y} of
Y in G. The following proposition collects some properties of (G, H)-
sections.

Proposition 2.1.2. (1) The field C(X)% is isomorphic to the field
C(Y)H wvia restriction of functions to'Y.

(2) Let Z and X be G-varieties, f : Z — 'Y a dominant G-morphism,

Y a (G, H)-section of X, and Y’ an irreducible component of
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f7UY) that is H-invariant and dominates Y. Then Y’ is a

(G, H)-section of Z.

Part (2) of the proposition suggests that, to simplify our problem of
proving rationality of C'(4), we should look at covariants Sym* (C?)¥ —
Sym? (C?)Y of low degree (C? is the standard representation of SLj C).
The highest weight theory of Cartan-Killing allows us to decompose
Sym‘(Sym* (C?)¥), i € N, into irreducible subrepresentations (this is
best done by a computer algebra system, e.g. Magma) and pick the
smallest i such that Sym® (C®)" occurs as an irreducible summand.
This turns out to be 5 and Sym?* (C?)V occurs with multiplicity 2.

For nonnegative integers a, b we denote by V' (a, b) the irreducible SL3 C-
module whose highest weight has numerical labels a, b.
Let us now describe the two resulting independent covariants

aq, Qg V(074) - V(0>2)

of order 2 and degree 5 geometrically. We follow a classical geometric
method of Clebsch to pass from invariants of binary forms to con-
travariants of ternary forms (see [G-Y], §215). The covariants ay,
are described in Salmon’s treatise [Sal], p. 273, 1.18-19, and p. 271, 1.
32-33, cf. also [Dix|, p. 280-282. We start by recalling the structure
of the ring of SLy C-invariants of binary quartics ([Muk], section 1.3,
[Po-Vi], section 0.12).

2.2. Binary quartics. Let
(1) f1 = &oxg + 461251y + 6&x3x] + 4€smoa’ + &l

be a general binary quartic form. The invariant algebra R = C[, . . ., &]%2C
is freely generated by two homogeneous invariants g and g3 (where
subscripts indicate degrees):

_ So &\ & &
2 wi)=do (g &) §)
S & &
(3) 93(5):det SERSIRS
& & &

If we identify fy with its zeroes z,...,24 € P* = CU{oo} and write

(21 — 23)(22 — 1)

A ) )
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for the cross-ratio, then

1
=0 \A=-1, 2 ori,
271

G3=0 <= A= —wor —w withw=¢e¢5 ,

the first case being commonly referred to as harmonic cross-ratio, the
second as equi-anharmonic cross-ratio.

Clebsch’s construction is as follows: Let x, y, z be coordinates in P?,
and let u, v, w be coordinates in the dual projective plane (P?)V. Let
o = ax* + 4bx3y* + ... be a general ternary quartic. We want to con-
sider those lines in P? such that their intersection with the associated
quartic curve C,, is a set of points whose cross-ratio is harmonic resp.
anharmonic. Writing a line as ux + vy +wz = 0 and substituting in (2)
resp. (3), we see that in the harmonic case we get a quartic in (P?)Y,
and in the equi-anharmonic case a sextic. More precisely this gives us
two SL3 C-equivariant polynomial maps

(4) o:V(0,4) — V(0,4)",
(5) ¥ V(0,4) — V(O,6)v ,

and o is homogeneous of degree 2 in the coefficients of ¢ whereas
is homogeneous of degree 3 in the coefficients of ¢ (we say o is a con-
travariant of degree 2 on V'(0,4) with values in V' (0, 6), and analogously
for ¢). Finally we have the Hessian covariant of ¢:

(6) Hess : V(0,4) — V(0,6)

which associates to ¢ the determinant of the matrix of second partial
derivatives of . It is of degree 3 in the coefficients of .
We will now cook up aq, as from ¢, o, 1, Hess: Let ¢ operate on v;
by this we mean that if ¢ = ax* + 4bz3y + ... then we act on 1) by the
differential operator

ot ot

4
a@u“ + b@u?’@v +

(i.e. we replace a coordinate by partial differentiation with respect to
the dual coordinate). In this way we get a contravariant p of degree 4
on V(0,4) with values in V/(0,2). If we operate with p on ¢ we get ;.
We obtain as if we operate with ¢ on Hess.

This is a geometric way to describe ay, ay. For every ¢ = [c; : ¢p] € P?
we get in this way a rational map

(7) fe=c10q + a5 : P(V(0,4)) --+ P(V(0,2)) .
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For the special quartics
(8) ¢ = ax’ + by + cz' + 6fy*2% + 6g2°2” + 6ha’y?

the quantities a; and s were calculated by Salmon in [Sal|, p. 257 ff.
We reproduce the results here for the reader’s convenience. Put

(9) L :=abc, P:=af*+bg* + ch?*,
Q = beg®h? + cah®f? + abf?¢®, R := fgh;
Then
(10) o1 = (3L + 9P + 10R) (afx? + bgy® + chz®)+
(10L + 2P + 4R)(gha® + hfy? + fg2%)
—12(a® 2% + 2 g*y* + h2?) ;
(11) g = (L + 3P+ 30R)(afx® + bgy® + chz?)+
(10L — 6P — 12R)(gha* + hfy* + fgz°)
—4(a®f22® + V2 g%y + Ph32?) .

Note that the covariant conic —g5 (i — 3a2) looks a little simpler.

Let us see explicitly, using (8)-(11), that f. is dominant for every ¢ € P*;
fora=b=c=f=9g=h=1weget ap = 48(2® + y* + 2?),
s = 16(z?+y*+2?), so the image of ¢ under f, in this case is a nonsin-
gular conic unless c = [—-1:3]. Butfora=1,b=¢=0,f=g=h=1
we obtain a; = 1322 + 6y? + 622, ap = 1122 — 18y? — 1822, and for
these values —a; + 3ap defines a nonsingular conic.

Let L. be the linear system generated by 6 quintics which defines f. and
let B, be its base locus; thus U, := P(V(0,4))\B is an SL3 C-invariant
open set, and if f.o := f.|v., then X, := fcfl((Cho), where hq defines a

non-singular conic, is a good candidate for an (SL3 C, SO3 C)-section

of U.. We choose hy = xz — 3°.

Proposition 2.2.1. X, is a smooth irreducible SO3 C-invariant va-
riety, SL3C - X = P(V(0,4)), and the normalizer of X. in SL3C is
exactly SO3 C. In particular, X. is an (SL3C, SO3 C)-section of U..

Proof. The SO3 C-invariance of X, follows from its construction. We
show that the differential d(f.o). is surjective for all € X : In fact,

d(feo)(TU:) D d(feo)(sls(x)) = sl3(feo(x)) = Ten, PV(0,2)

Here sl3(x) denotes the tangent space to the SLs C-orbit of z in U,, i.e.
if O, : SL3C — U, is the map with O,(g) = gz, then we get a map
d(Oy)e : sly — T, U., and sl3(z) := {d(O,).(§) | € sl3}. Hence X, is
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smooth.

Assume X. were reducible, let X; and X5 be two irreducible compo-
nents. By prop. 2.1.2 (2) and the irreducibility of the group SO3C,
X; and X, are (SL3 C, SO3 C)-sections of U,, so we can find g € SL3 C,
x1 € X1, xo € X, such that gxr; = x9. But then, by the SL3C-
equivariance of f.o, g stabilizes Chy and is thus in SO3 C. But, again
by the irreducibility of SO3C, x5 is also a point of X, i.e. X; and X5
meet. This contradicts the smoothness of X.. O

The trouble is that, if X is the closure of X, in P(V/(0,4)), then X,
is an irreducible component of the intersection of 5 quintics. To even-
tually prove rationality, however, we would like to have some equations
of lower degree. This can be done for special c.

2.3. From quintic to cubic equations. IfI'y, C PV(0,4) x PV (0, 2)
is the graph of f., it is natural to look for SL3 C-equivariant maps

9:V(0,4) x V(0,2) > V'

where V' is another SL3 C-representation, ¢ is a homogeneous polyno-
mial map in both factors V(0,4), V(0,2), of low degree, say d, in the
first factor, linear in the second, and such that I'y is an irreducible
component of {(z,y) € PV(0,4) x PV(0,2)|J(x,y) = 0}. If V' is ir-
reducible, there is an easy way to tell if ¥ vanishes on I'y, for some
c € P: This will be the case if V' occurs with multiplicity one in
Sym*™V(0,4). Here is the result.

Definition 2.3.1. Let ¥ : V(0,4) — V/(2,2) be the up to factor unique
SL3 C-equivariant, homogeneous of degree 3 polynomial map with the
indicated source and target spaces, and let ® : V(2,2) x V(0,2) —
V'(2,1) be the up to factor unique bilinear SL3 C-equivariant map. De-
fine © : V(0,4) x V(0,2) — V(2,1) by O(z,y) := ®(¢(z),y).

Remark 2.3.2. The existence and essential uniqueness of the maps of
definition 2.3.1 can be easily deduced from known (and implemented
in Magma) decomposition laws for SL3 C-representations. That they are
only determined up to a nonzero constant factor will never bother us,
and we admit this ambiguity in notation. The explicit form of ¥, ®,
© will be needed later for checking certain non-degeneracy conditions
through explicit computation. They can be found in Appendix A,
formulas (64), (65).

Theorem 2.3.3. (1) The linear map O(f,-) : V(0,2) — V(2,1)
has one-dimensional kernel for f in an open dense subset Vi of

V(0,4), and, in particular, ker ©(h3,-) = Chy.
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(2) For somecy € P, Ty, is an irreducible component of {O(x,y) =
0} Cc V(0,4) x V(0,2).

(3) X, CPV(0,4) coincides with the closure X in PV (0,4) of the
preimage X of ho under the morphism from PV, — PV(0,2)
given by f+— ker O(F,-), and is thus an irreducible component
of the algebraic set {Cf|P(¥(f),ho) = 0} C PV(0,4) defined
by 15 cubic equations.

(4) The rational map ¥ : PV (0,4) --» VPV (0,4) C PV(2,2) as
well as its restriction to X are birational isomorphisms unto
their images.

Proof. (1): One checks that V(2,1) occurs with multiplicity one in
the decomposition of Sym®V'(0,4). Thus for some ¢, € P', we have
O(f, corar+coa0az) = 0forall f € V(0,4). The fact that ker ©(h3, ) =
Chy follows from a direct computation using the explicit form of © (the
inclusion ” D" also follows from Salmon’s equations 2.2 (8)-(11)). Thus,
by upper-semicontinuity, (1) follows.

(2): We have seen in (1) that 'y, is contained in {O(z,y) = 0}. Again
by (1),

Ly, N (U NPVG) x PV(0,2)) =
{O(z,y) = 0} N ((Ue, NPVG) x PV(0,2))

and (2) follows.

(3) follows from to (2) and the definition of X,,.

(4): Since X is an (SL3 C, SO3 C)-section of PV, it suffices to prove
that the SLj C-equivariant rational map ¥ : PV(0,4) --» WPV(0,4)
(defined e.g. in the point Ch3) is birational. We will do this by writing
down an explicit rational inverse. To do this, remark that V(a,b)
sits as an SLs C-invariant linear subspace inside Sym®C? ® Sym®(C?)¥
(it has multiplicity one in the decomposition into irreducibles), thus

elements of V'(a,b) may be viewed as tensors x = (lelzl; ) € TP C3,

covariant of order b and contravariant of order a, or of type (Z) The
inverse of the determinant tensor det™' is thus in 79C3. For f €
V(0,4) and g € V(2,2) one defines a bilinear SLj C-equivariant map
a:V(0,4) x V(2,2) — Sym®’C? @ Sym?*(C?)V, (f,9) — a(f,g), as the
contraction
S A LR

followed by the symmetrization map. One checks that Sym?C? ®
Sym?(C3)¥ decomposes as V' (2,3) @V (1,2) @V (0,1), but Sym*V/ (0, 4)
does not contain these as subrepresentations (use Magma), so a(f, U(f))
0 for all f € V(0,4). But the explicit form of ¥ and « show that
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ker a(-, ¥(h2)) = ChZ, whence, by upper-semicontinuity, the dimension
of the kernel of (-, ¥(f)) is one for all f in a dense open subset of
V(0,4), and the rational map ¥ : PV(0,4) --» YPV(0,4) C PV(2,2)
has the rational inverse U(f) — kera(-, ¥(f)). O

Remark 2.3.4. It would probably be illuminating to have a geometric
interpretation of the covariant W : V' (0,4) — V/(2,2) given above sim-
ilar to the one for ay, as in subsection 2.2. Though there is a huge
amount of classical projective geometry attached to plane quartics, I
have been unable to find such a geometric description.

Clearly, U vanishes on the cone of dominant vectors in V' (0,4), and
one may check, using the explicit formula for ¥ in Appendix A (64),
that W also vanishes on the SL3 C-orbit of the degree 4 forms in two
variables, x and y, say. However, this is not enough to characterize ¥
since the same holds also for e.g. the Hessian covariant.

2.4. From cubic to quadratic equations. We have to fix some fur-
ther notation.

Definition 2.4.1. (1) Z is the affine cone in V' (2,2) over ¥(X) C
PV (2,2).

(2) L is the linear subspace L := {g € V(2,2)|®(g,ho) = 0} C
V(2,2).

(3) €:V(0,4) x V(0,2) — V(2,2) is the unique (up to a nonzero
factor) nontrivial SL3 C-equivariant bilinear map with the indi-
cated source and target spaces (the explicit form is in Appendix
A (66)).

(4) ¢:V(0,4) xV(0,2) — V(1,1) is the unique (up to factor) non-
trivial SL3 C-equivariant map with the property that it is homo-
geneous of degree 2 in both factors of its domain (cf. Appendix
A (67) for the explicit description). We put I := ((+, hg) :
V(0,4) — V(1,1).

Let us state explicitly what we are heading towards:

The affine cone Z over the birational modification W (X)
of our (SL3 C, S03 C)-section X C PV, C PV(0,4) (whose
closure in PV (0,4) was seen to be an irreducible compo-
nent of an algebraic set defined by 15 cubic equations)
has the following wonderful properties: Z lies in L, the
linear map €(-, hg) : V(0,4) — V(2,2) restricts to an
SO3C-equivariant isomorphism between V' (0,4) and L,
and if, via this isomorphism, we transport Z into V' (0, 4)
and call this Y, then the equations for Y are given by
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I'' More precisely, Y is the unique irreducible compo-

nent of I'~(0) passing through the point /2, and T maps

V'(0,4) into a five-dimensional SO3 C-invariant subspace

of V(1,1)!
Thus, if we have carried out this program, Y (or Z) will be proven to
be an irreducible component of an algebraic set defined by 5 quadratic
equations! This seems quite miraculous, but a satisfactory explanation
why this happens probably requires an answer to the problem raised
in remark 2.3.4.
We start with some preliminary observations: It is clear that Z C L
and C(PV(0,4))5C ~ C(Z)%0:C*C" C* acting by homotheties. In
the following, we need the decomposition into irreducibles of SL3C-
modules such as V(2,2), V(2,1) and V(1,1) as SO3 C-modules. The
patterns according to which irreducible representations of a complex
semi-simple algebraic group decompose when restricted to a smaller
semi-simple subgroup are generally known as branching rules. In our
case the answer is

(12) V(2,2) =V (2,2)s® V(2,2)s® V(2,2),® V(2,2), & V(2,2),,

(13) V2, )=V(2, 1) V(2,1),V(2,1)s,
(14) V(lvl) = V<1>1)4EBV(171)27
(15) V(0,4) =V (0,4)s ®V(0,4),® V(0,4)0.

Here the subscripts indicate the numerical label of the highest weight
of the respective SOz C-submodule of the ambient SL3 C-module under
consideration. Note also that SO3 C ~ PSL, C, so we are really back in
the much classically studied theory of binary forms. It is not difficult
(and fun) to check (12), (13), (14) by hand; let us briefly digress on
how this can be done (cf. [Fu-Hal):

We fix the following notation. Let first n = 2] + 1 be an odd integer,
g = sl3C the Lie algebra of SL3C, and let t4 its standard torus of
diagonal matrices of trace 0, and define the standard weights ¢; € tg,
i=1,...,n, by ¢(diag(z1,...,z,)) := z;. Inside g we find b := so3 C
defined by

X Y U
b= Z X'V | |X,Y, Zeg,C, Yt = V!,
-Vt Ut 0
Z=-7'UVecC}.
Then t, := {diag(zy,..., 2, —21,...,—2;) |2; € C}; by abuse of nota-

tion we denote the restrictions of the functions ¢; to t, by the same let-
ters. The fundamental weights of g are 7w; := €1+ - -+¢;, i =1,...,n—1,
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the fundamental weights of b are w; := ¢, +--- 4+ ¢, (1 <i <) and
w = (1 +---+¢€)/2. Let Ay and Ay the corresponding weight lat-
tices. A:{ and A;r are the dominant weights. For g (and similarly for
h) an irreducible representation V' (A) for A € AJ comes with its formal
character

chy = Z ma(p)e(p) € Z[Ag],

ReII(N)

an element of the group algebra Z[Ay| generated by the symbols e())
for A € Ay, where II(\) means the weights of V()), and my(u) is
the dimension of the weight space corresponding to p in V(). We
have a formal character chy for any finite-dimensional g-module V' =
VM) @@V (M), Aty oo, A € A defined by

t
ChV = Z Ch)\i .
i=1

The important point is that V (i.e. its irreducible constituents) can
be recovered from the formal character chy, meaning that in Z[Ay] we
can write chy uniquely as a Z-linear combination of characters corre-
sponding to dominant weights A € A;.

We go back to the case [ =1, n = 3. We have ) = s03 C = sl C. The
character chy(q) of the irreducible so3 C-module V(a) := V (aw;) is not
hard: The weights of V' (a) are

—awy, (—a+2)wy, ..., (@ —2)wy, aw;

(all multiplicities are 1). It remains to understand the weights and their
multiplicities in the irreducible g = sl3 C-module V(a,b) := V(am +
bra). In fact noting that m restricted to the diagonal torus of soz C
above is 2wy, and the restriction of m, is 0, we see that, once we know
the formal character of V(a,b) as sl3 C-module, we simply substitute
2wy for m; and 0 for 75 in the result and obtain in this way the formal
character of the so3 C-module V (a,b), and hence its decomposition into
irreducible constituents as so3 C-module.

Let us assume a > b (otherwise pass to the dual representation); we
describe the weights and their multiplicities of the sl3 C-module V (a, b)
following [Fu-Hal, p. 175ff.: Imagine a plane with a chosen origin from
which we draw two vectors of unit length, representing m; and m,, such
that the angle measured counterclockwise from 7 to 7y is 60°. Thus
the points of the lattice spanned by 7, o are the vertices of a set of
equilateral congruent triangles which gives a tiling of the plane.

The weights of V' (a,b) are the lattice points which lie on the edges of
a sequence of b (not necessarily regular) hexagons H; with vertices at
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lattice points, i = 0,...,b—1, and a sequence of [(a—b)/3]+1 triangles
T;, j =0,...,[(a —b)/3]. The H; and T} are concentric around the
origin, and H; has one vertex at (a —i)m + (b— )72, T} has one vertex
at the point (¢ — b — 3j)m, and H; and Tj are otherwise determined
by the condition that the lines through m, mo, my — m are axes of
symmetry for them, i.e. they are preserved by the reflections in these
lines (one should make a picture now).

The multiplicities of the weights obtained in this way are as follows:
Weights lying on H; have multiplicity ¢ 4+ 1, and weights lying on one
of the Tj have multiplicity b. This completely determines the formal
character of V(a,b).

Let us look at V/(2,2) for example. Here we get three concentric regular
hexagons (one of them is degenerate and consists of the origin alone).
The weights are thus:

2m1 4 2my, 3w, —2my + 4wy, —3m + 3me, —4my + 2wy, —37y,
—2m — 2my, —3my, 2m — 4wy, 3™ — 3mo, 4T — 27y, 3my
(these are the ones on the outer hexagon, read counterclockwise, and
have multiplicity one),
T + T, —T1 + 2mo, —2m + T, —W — Mo, T — 2T, 2T — Mo

(these lie on the middle hexagon and have multiplicity two), and finally
there is 0 with multiplicity 3 corresponding to the origin. Consequently;,
the formal character of V'(2,2) as a representation of so3 C is

e(—8wy) + 2e(—6w;) + de(—4wy) + 4e(—2wy) + Se(0wy) ,
+4de(2wy) + de(dwq) + 2e(6w) + e(8wy)
which is equal to chy gy 4 chy ) + 2chy 4y + chy (o). This proves (12),
and (13), (14) and (15) are similar.
We resume the discussion of the main content of subsection 2.4. Before

stating the main theorem, we collect some preliminary facts in the
following lemma.

Lemma 2.4.2. (1) The following deccomposition of L C V(2,2)
as SOz C-subspace of V' (2,2) holds (possibly after interchanging
the roles of V(2,2)4 and V (2,2)}):

L=V(22)s®V(22),®V(2,2).

(2) The map €(-, ho) : V(0,4) — V(2,2) is an SOs-equivariant iso-
morphism onto L.

(3) Putting Y :=¢(-, ho)~(Z) C V(0,4), we have hi € Y.

(4) One has T'(V(0,4)) € V(1,1)s C V(1,1), and the inclusion
Y c T710) holds.
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Proof. (1): Using the explicit form of ® one calculates that the dimen-
sion of the image of the SO3 C-equivariant map ®(-, hy) : V(2,2) —
V(2,1) is 12. Thus, in view of the decomposition (13) of V(2,1)
as SOj C-representation, we must have ®(V(2,2),ho) = V(2,1)s &
V(2,1),. Since

(16) dim V(a,b) = %(a+1)(b+1)(a+b+2),

the dimension of V/(2, 2) is 27 and the kernel L of ®(-, ho) has dimension
15; in fact, V(2,2)s, V(2,2)¢ and (after possibly exchanging V(2,2)4
and V(2,2))) V(2,2), must all be in the kernel, since these represen-
tations do not appear in the decomposition of the image.

(2): Using the explicit form of € given in Appendix A (66), one calcu-
lates that the dimension of the image of €(-, hg) is 15 whence this linear
map is injective. Moreover, its image is contained in L, hence equals
L, because the map V(0,4) x V(0,2) — V(2,1) given by (f,g) —
®(e(f), g) is identically zero since there is no V/(2,1) in the decompo-
sition of V(0,4) ® Sym? V (0, 2).

(3): As we saw in theorem 2.3.3 (1), Chy € X, and we have 0 #
U(h2) € Z. From the decomposition (12), we get, ¥(hZ) being invari-
ant, (U(h2))c = L593C. By the decomposition (15), we get that the
preimage under €(-, hg) of W(hZ) spans the SOz C-invariants V' (0,4),
which are thus in Y. So in particular, hi € Y.

(4): The first part is straightforward: Just decompose Sym? V' (0,4) as
SO3 C-module by the methods explained above, and check that it does
not contain any SO3 C-submodule the highest weight of which has nu-
merical label 2 (this suffices by (14)). The second statement of (4) fol-
lows from the observation that the map ¢ : V(0,4) x V(0,2) — V(1,1)
(Def. 2.4.1 (4)) factors:

c-(=%oe,ceCr,

where 7 : V(2,2) — V(1,1) is the unique (up to nonzero scalar)
non-trivial SL3 C-equivariant map which is homogeneous of degree 2.
This is because V (1, 1) occurs in the decomposition of Sym? V(0,4) ®
Sym? V(0,2) with multiplicity one, and 7 o € is not identically zero, as
follows from the explicit form of these maps (cf. Appendix A, (66),
(68)). Thus, defining T' : V(0,4) — V(1,1) by T'(-) := (5 0 €)(-, ho)
(which thus differs from I' just by a nonzero scalar), we must show
I'(Y) = 0. But recalling the definitions of Y, I and Z (Def. 2.4.1 (1)),
it suffices to show that 7 o U is identically zero; the latter is true since
it is an SLz C-equivariant map from V(0,4) to V(1, 1), homogeneous



14 CHRISTIAN BOHNING

of degree 6, but Sym°®V(0,4) does not contain V(1,1). This proves
(4). O

Let us now pass from SO3C to the PSLy C-picture and denote by

V(d) the space of binary forms of degree d in the variables zj, zs.
This is of course consistent with our previous notation since, under the
isomorphism s03 C ~ sl, C, V(d) is just the irreducible so3 C-module
the highest weight of which has numerical label d; since we consider
PSL; C-representations, d is always even.
We will fix a covering SLy C — SO3 C and thus an isomorphism PSLy; C
~ SO3C, and we will fix isomorphisms 0, : V(0) & V(4) ® V(8) —
V(0,4) and 0, : V(4) — V(1,1)4 such that (1,0,0) maps to h2 under
01 and both §; and d, are equivariant with respect to the isomorphism
PSL, C ~ SO3 C; we will discuss in a moment how this is done, but for
now this is not important. Look at the diagram

) U:=67YY
he o : (00 40T &)
Y c I40) c V(0,4) = V(0)® V(4)a V()

01
F|F*1(O) r 0= (52_1 OF051
0eV(1,1) = V(4)
d2
N

V(1,1) ~V(1,1),& V(1,1)

By part (4) of lemma 2.4.2, we have 671(0) D U, and by part (3) of the
same lemma, (1,0,0) € U. Moreover, recalling our construction of X
in theorem 2.3.3, we see that dim X = dimPV(0,4) —dimP V(0,2) =
14 — 5 = 9, whence, chasing through the definitions of Z, Y, U, we
get dimU = 10. But the explicit form of § (we will see this in a
moment) allows us to conclude, by explicit calculation of the rank of the
differential of 0 at the invariant point (1,0,0), that dim 71,0 U = 10,
whence T(1,00)U = V(0) ® V(8). Therefore, as U is irreducible, it is
the unique component of the (possibly reducible) variety §1(0) passing
through (1,0,0). Moreover, it is clear the condition {§ = 0} amounts
to 5 quadratic equations! We have proven

Theorem 2.4.3. There is an isomorphism
(17) C(PV(0,4))%"C ~ C(U)™=
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where
d: V) V() e V() —V(4)

1s PSLa-equivariant and homogeneous of degree 2, and U is the unique
irreducible component of 6~1(0) passing through (1,0,0). Moreover,

We close this section by describing the explicit form of the covering

SLy C — SO3 C and the maps 41, 62, and by making some remarks on
transvectants and the final formula for the map 9.
Let e, ey, e3 be the standard basis in C?, and denote by x;, 22, 3 the
dual basis in (C3)V. In this notation, hl = x 23 — z3. We may view
the 2's as coordinates on C? and identify C?* with the Lie algebra sl; C
by assigning to (z1, xs, x3) the matrix

X = < T2 ) € sl,C.
T3 —22

Consider the adjoint representation Ad of SLy C on sly C. Clearly, for
X € sl,C, A € SLy,C, the map Ad(4) : X — AXA™! preserves
the determinant of X, which is just our hg; the kernel of Ad is the
center {£1} of SLy C, and since SLy C is connected, the image of Ad is
SO3 C. This is how we fix the isomorphism PSL,; C ~ SO3 C explicitly,
and how we view SO3 C as a subgroup of SL3 C. Note that the induced
isomorphism sl C — s03 C on the Lie algebra level can be described
as follows:

020

(18) e::(gé)H 001 ],
00 0

000

:(?8>H 100 |,

020

2.0 0

h:((l)_ol) 00 0

00 —2

(where we view s03 C as a subalgebra of sl; C in a way consistent with
the inclusion on the group level described above). For example,

a((56))eo=(00) (2 =)
()= (v )
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SO
T 020 T
i) — 0 01 )
T3 0 0O I3

To give the isomorphism d; : V(0) & V(4) @ V(8) — V(0,4) explicitly,

we just have to find highest weight vectors inside V' (0), V' (4), V(8) and

corresponding highest weight vectors inside V'(0,4). For example, h

acts on z5 € V(4) by multiplication by 4, and 25 is killed by e, so this

is a highest weight vector inside V'(4). But if we compute

h(zy23 — 2523) = (h - 21)23 + 3z1(h - 23)75 — 2(h - 29) 7075
—2x5(h - x3)13 = (—221)75 + 321 (223)25 — 2- 0 - 2073

—275(2x3) w3 = 4(7103 — 2303)

e- (a:lzvg — x%x%) = (e- xl)xg + 3z (e - :Eg,):vg —2(e- xg).rg:vg

and

—2x5(e - x3)w3 = (—=213) - w5 + 31 - 0 - 25 — 2(—73)T073
—225-0-23 =0

(use (18) and remark that the z’s are dual variables, so we have to
use the dual action), then we find that a corresponding highest weight
vector for the submodule of V (0, 4) isomorphic to V (4) is z;23 — x323.
Proceeding in this way, we see that we can define §; uniquely by the
requirements:

(19) 610 L A2 25 v oo — 2322 25 v a3,

and using the Lie algebra action and linearity, we can compute the
values of d; on a set of basis vectors in V(0) & V(4) & V(8).

To write down d, explicitly, remark that V(1,1) may be viewed as the
SL3 C-submodule of C3 ® (C3)¥ consisting of those tensors that are
annihilated by

A._6®3+8®8+8®8
" ey~ Oxy  Oey  Ory  Oes  Oxg
We take again our highest weight vector 25 € V(4), and all we have to
do is to find a vector in C* ® (C*)Y on which h acts by multiplication
by 4 and which is annihilated by e and A. Indeed, e;z3 is one such.

Thus we define d5 by
Oy : Z§ — €123 .

Then it is easy to compute the values of dy on basis elements of V' (4)
in the same way as for ;. )
Let us recall the classical notion of transvectants (" Uberschiebung ” in
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German). Let di, d2, n be nonnegative integers such that 0 < n <
min(dy, ds). For f € V(dy) and g € V(dy) one puts

(20) Un(f,9) == (i —n)! (dy — )! Z(_l)i(n) of g

d! dy! = i) 02002 021025
(cf. [B-S], p. 122). The map (f, g) — ¥.(f, g) is a bilinear and SLy C-
equivariant map from V' (d;) x V(dz) onto V(dy + ds — 2n). The map
min(di,d2)

V(d)®@V(dy) — @ V(di+dy—2n)

n=0
min(di,d2)

(f,.9)—~ > tulf9)

n=0

is an isomorphism of SLy C-modules (” Clebsch-Gordan decomposition”).
Thus transvectants make the decomposition of V(d;) ® V(ds) into ir-

reducibles explicit; a similar result for SL3 C-representations would be

very important in several areas of computational invariant theory and

also for the rationality question for moduli spaces of plane curves, but

is apparently unknown.

The explicit form of § that results from the computations is then

(21) 6(fo, f1, fs) = — 12625¢6(f87 fs) + ﬁ%(fs, f1)

11 7
+5—4¢2(f4, fa) — %.ﬂfo;
where (fo, f1, fs) € V(0)®V (4) @V (8). Note that the fact that 6 turns

out to be such a linear combination of transvectants is no surprise in
view of the Clebsch-Gordan decomposition: In fact, 4 may be viewed
as map

V:(VOo)aVd) e V() (V(O)aVH) eV (8) — V(4)
and using the fact that ¢ is symmetric and collecting only those tensor

products in the preceding formula for which V' (4) is a subrepresenta-
tion, we see that ¢ comes from a map

" (V0O)eVHE)e (V(4) e V(4)
e(VR)oV(H) e (V@) V(8) = V(4).
Thus it is clear from the beginning that ¢ will be a linear combination
of g, 4, e, 1y as in formula (21), and the actual coefficients are
easily calculated once we know ¢ explicitly!

In fact, the next lemma shows that the actual coefficients of the transvec-
tants v;’s occurring in ¢ are not very important.
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Lemma 2.4.4. For \ := (Ao, Ao, Ay, Ng) € C* consider the homoge-
neous of degree 2 PSLq-equivariant map

Hh: VR aV()aV(4) — V(4)
fs + fo+ fa = Xets(fs, f3) + 20a0a(fs, f1) + Xatbo(fas fa) + 200 fafo -
Suppose that A\g # 0. Then:
(1) One has 1 € §,(0) and Ty 6, (0) = V(8) @ V(0); thus there is
a unique irreducible component Uy of 5;1(0) passing through 1
on which 1 1s a smooth point.
(2) If furthermore A € (C*)*, then PU) is PSLy C-equivariantly iso-
morphic to PUq geq1.6) for some € # 0 (depending on X).

Proof. Part (1) is a straightforward calculation, and for part (2) we
choose complex numbers fig, fu4, pg with the properties 6u2 = g,
Uafls = Mg, Hopa = g, and compute € from 6eus = Ay, Then the map
from PU to PU( ge,1,6) given by sending [fo + fa+ fs] to [pofo+ prafa+
s fs] gives the desired isomorphism. O

In the next section we will see that for any ¢ # 0, the PSLy C-
quotient of PU(; 61,6 is rational, and so the same holds for PU) for
any A € (C*)*; note however that the reduction step in lemma 2.4.4
(2) just simplifies the subsequent calculations, but is otherwise not
substantial.

3. FURTHER SECTIONS AND INNER PROJECTIONS

3.1. Binary quartics again and a (PSL,C, &,)-section. All the
subsequent constructions and calculations depend very much on the
geometry of the PSLy C-action on the module V(4). In fact, the first
main point in the proof that PU,/PSL, C is rational will be the con-
struction of a (PSLs C, &,)-section of this variety (&4 being the group
of permutations of 4 elements); this is done by using proposition 2.1.2
(2) for the projection of V(8) @ V(0) @ V(4) to V(4) and producing
such a section for V'(4) via the concept of stabilizer in general position
which we recall next.

Definition 3.1.1. Let G be a linear algebraic group G acting on an
irreducible variety X. A stabilizer in general position (s.g.p.) for the
action of G on X is a subgroup H of GG such that the stabilizer of a
general point in X is conjugate to H in G.

An s.g.p. (if it exists) is well-defined to within conjugacy, but it need
not exist in general; however, for the action of a reductive group GG on

an irreducible smooth affine variety, an s.g.p. always exists by results
of Richardson and Luna (cf. [Po-Vi], §7).
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Proposition 3.1.2. For the action of PSLyC on V(4), an s.g.p. is
given by the subgroup H generated by

(5] e[ 0)]

H is isomorphic to the Klein four-group By ~ 7./27. & 7./27 and its
normalizer N(H) in PSLy C is isomorphic to &y; one has N(H)/H =~
Ss.

More explicitly, N(H) = (1,0), where, putting 6 := exp(27i/8), one

T e )

Proof. We will give a geometric proof due to Bogomolov ([Bogl], p.18).
A general homogeneous degree 4 binary form f € V(4) determines a
set of 4 points ¥ C P!; the double cover of P! with branch points ¥
is an elliptic curve; it is acted on by its subgroup of 2-torsion points
Hy ~ 7Z/2Z&7/2Z, and this action commutes with the sheet exchange
map, hence descends to an action of H; on P* which preserves the point
set X and thus the polynomial f; in general H; will be the full auto-
morphism group of the point set X since a general elliptic curve does
not have complex multiplication.

Let us see that Hy is conjugate to H: Hy is generated by two commut-
ing reflections 7y, v, acting on the Riemann sphere P! (with two fixed
points each). By applying a suitable projectivity, we see that Hy is
conjugate to (w,~5) where v4 is another reflection commuting with w;
thus w interchanges the fixed points of 7} and also the fixed points of
p: Thus if we change coordinates via a suitable dilation (a projectivity
preserving the fixed points of w), 74 goes over to p, and thus Hy is
conjugate to H.

One computes that o and 7 normalize H; in fact, 0 lwo = p, 0 tpo =
wp, and 77 wT = wp, 771 p7T = p. Moreover, T has order 4 and o order
3, (10)* = 1, thus one has the relations

1

™ =0%=(r0)?=1.
It is known that &, is the group on generators R, S with relations
R* = 8% = (RS)? = 1; mapping R — 7!, S + 70, we see that the
group (1,0) < N(H) is a quotient of Gy4; since (7, ) contains elements
of order 4 and order 3, its order is at least 12, but since there are no
normal subgroups of order 2 in &, &, = (7,0). To finish the proof,
it therefore suffices to note that the order of N(H) is at most 24: For
this one just has to show that the centralizer of H in PSL, C is just H,
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for then N(H)/H is a subgroup of the group of permutations of the
three nontrivial elements H — {1} in H (in fact equal to it). Elements
in PGLy C commuting with w must be of the form

(5 )] = [ %))

and if these commute also with p, the elements 1, w, p, wp are the only
possibilities. O

Corollary 3.1.3. The variety (V(4)7)° C V(4) consisiting of those
points whose stabilizer in PSLy C is exactly H is a (PSLyC, N(H))-
section of V(4).

Proof. The fact that the orbit PSLy C-(V (4)#)? is dense in V (4) follows
since a general point in V/(4) has stabilizer conjugate to H; the assertion
Vg € PGL, C, Vz € (V(4)7)?: gz € (V(4)H)? = g€ N(H) is clear
by definition. O

Let us recall the representation theory of N(H) = &, viewed as the
group of permutations of four letters {a, b, ¢, d}; the character table
is as follows (cf. [Se]).

1 (ab) (ab)(cd) (abc) (abed)
ol l1l 1 1 1 1
e |1 -1 1 1 —1
0 |2 0 2 -1 0
w13 1 10 -1
ab |3 -1 10 1

Vi, 1s the trivial 1-dimensional representation, V, is the 1-dimensional
representation where €(g) is the sign of the permutation g; &4 = N(H)
being the semidirect product of N(H)/H = S3 by the normal subgroup
H, Vj is the irreducible two-dimensional representation induced from
the representation of G5 acting on the elements of C* which satisfy
r+y+ 2 = 0 by permutation of coordinates. Vj, is the extension to C?
of the natural representation of &4 on R3 as the group of rigid motions
stabilizing a regular tetrahedron; finally, V., = V. ® V.

We want to decompose V' (8) & V(0) @ V(4) as N(H)-module; we fix
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the notation:

4 4 2.2 4_ 4
(22) ap:=1; ay:=z] + 25, ag := 62725, az = 2] — 25,

ay =422 — 2123), a5 = 42 + 2125);
e1 1= 28(2827 — 2728), eq :=56(2]2y + 2025 — 2izh — 2123),
e3 1= 56(2l 2y — 2028 — 2225 + 2120), ey 1= 25 — 25
(T 5.3 3.5 7
e5 = 8(z 22 — T2 25 + 12725 — 2125),
(AT 5.3 3.5 7
eg :=8(2y20 + 72025 + 12725 + 2124),
er 1= 25+ 25, eg = 28(2922 + 2229), eg 1= T0z12; .
Lemma 3.1.4. One has the following decompositions as N (H )-modules:
(23) V(0)=Vy, V4) =V, @V, V(8) =V @V @ Vp @V, .
More explicitly,

(24) V(0) = (ao), V(4) = (as, as, a5) ® (a1, az),
V(8) = (e4, e5,€6) B (€1, €2, €3) B (es, Ter — eg) B (Der + eg) .

Here (eq,€5,€6) corresponds to V., and (e, ez, e3) corresponds to Vy.
Moreover,

(25)  V(0)" = (ao), V()" = (a1, a2), V(8)" = (er, es,¢9) .

Proof. We will prove (25) first; one observes that quite generally for & >
0, V(2k)H# = (V(2k)?)* (p and w commute) and that the monomials
ziz2 I J = 0,...,2k, are invariant under p if j + k is even, and
otherwise anti-invariant, so if & = 2s, dim V' (2k)” = 2s + 1, and if
k= 2s+ 1, dimV(2k)? = 2s 4+ 1. Since w is also a reflection, we
have 2 dim(V (2k)?)* — dim V (2k)? = tr(w|y (k) ), and the trace is 1 for
k =2s, and —1 for k = 2s + 1, thus

dimV(2k)? =s+1, k=25, dimV(2k)¥ =5, k=2s5+1.

In particular, the H-invariants in V'(0), V' (4), V(8) have the dimensions
as claimed in (25), and one checks that the elements given there are
indeed invariant.

To prove (23), we use the Clebsch-Gordan formula V(2k) @ V(2) =
V(2k +2)® V(2k) ® V(2k — 2) (cf. (20)) iteratively together with the
fact that the character of the tensor product of two representations of a
finite group is the product of the characters of each of the factors; since
V(2) has dimension 3 and dim V' (2) = 0, V(2) is irreducible; the value
of the character of the N(H)-module V(2) on 7 is 1, so V(2) = V.
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Now V(2) @ V(2) =V (4) & V(2) @ V(0), and looking at the character
table, one checks that

(e¥)” = xo + (e¥)) + (¥) + (6). .
This proves the decomposition in (23) for V' (4). The decomposition for
V (8) is proven similarly (one proves V(6) = V,, @ Vi, & V. first).
The proof of (24) now amounts to checking that the given spaces are
invariant under o and 7; finally note that V., corresponds to (e4, 5, €g)
since the value of the character on 7 is 1. 0

Recall from Lemma 2.4.4 that we want to prove the rationality of
(PU,)/PSLy C and we can and will always assume in the sequel that
A= (1,6¢,1,6) for € # 0. In view of Lemma 3.1.4 it will be convenient
for subsequent calculations to write the map 0, : V/(8) @V (0)®V (4) —
V(4) in terms of the basis (ey,...,eq,ag,a1,...,a;) in the source and
the basis (ay, . . ., as) in the target. Denote coordinates in V' (8)®V (0)®
V' (4) with respect to the chosen basis by (x1,..., 29, S, $1,...,85) =:
(x,8). Then one may write

Q1(z, )
(26) Iz, s) = :
Qs(z, s)
with Q1(x, s),...,Qs(z, s) quadratic in (z, s); their values may be com-

puted using formulas (20), (22), and the definition of 6, in Lemma 2.4.4,
and they can be found in Appendix B.

Theorem 3.1.5. Let Oy C V(8)DV (0)@V (4) be the subvariety defined
by the equations Q1 = --- = Q5 =0, s3 = s, = s5 = 0. There is exactly
one T-dimensional irreducible component Qy of Qx passing through the
N (H)-invariant point bey + eg in V(8); Qx is N(H)-invariant and

(27) C(PU,)P2C = C(P Q)N

Proof. We want to use Proposition 2.1.2, (2).

Note that 5e; + eg € Uy: In fact, §y maps the N(H)-invariants in
V(8) @& V(0) & V(4) to the N(H)-invariants in V(4) which are 0.
Since U, is the unique irreducible component of 5;1(0) passing through
ap = 1, Uy contains the whole plane of invariants (ag, 5e7 + eg).

If we denote by p : V(8) @ V(0) ® V(4) — V(4) the projection, then
Oy = p {(V(4)") N 6;1(0). Clearly, Oy is N(H)-invariant, and one
only has to check that 5e; 4 eg is a nonsingular point on it with tan-
gent space of dimension 7 by direct calculation: Then there is a unique
7-dimensional irreducible component Q) of o) A passing through 5e;+eq
which is N(H)-invariant (since 5e; + eg is an invariant point on it and
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this point is nonsingular on Q)\)

It remains to prove (27): Q, is an irreducible component of p~ (V' (4)7)N
Uy and Q% = Q,Np~1((V(4)7)?) is a dense N (H )-invariant open subset
of Q) dominating (V'(4)7)°. Thus by Proposition 2.1.1 (2),

CPU,)P2C ~ c(P QNI ~ C(P Q)N
O

3.2. Dividing by the action of H. Next we would like to ”divide
out” the action by H, so that we are left with an invariant theory prob-
lem for the group N(H)/H = &3. Look back at the action of N(H) on
M :={s3=s,=35=0} C V(8 & V(0) @ V(4) which is explained in
formulas (23), (24); we will adopt the notational convention to denote
the irreducible N (H)-submodule of V/(8) isomorphic to Vi, by V(8)y)
and so forth; thus

(28)
M =V(0)xo) ®V({4)0) ®V(8)xo) @ V(8)0) ®V(8)w) ®V(8)ew) s
and looking at the character table of G4, we see that the action of H

is nontrivial only on V(8)(y) @ V(8)ep) = (€1, €2, €3) ® (€4, €5, €6) Where
T1, T, x3 and x4, x5, xg are coordinates; in terms of these, we have

(29) (W) (21, .., 76) = (=21, T2, —T3, —T4, T5, —T¢),
(p)(@1,. .., 26) = (21, =2, —T3, T4, —T5, —Ts),
(wp>(‘r17 cee 71:6) - (_J;lﬂ —X2, T3, —Ty4, —ITs, xﬁ)?

and

(30) ’7'($1, . ,1’6) = (—1‘1, —il’g, —Zﬁ?g, Ty, —i$6, —'i235),

U<x17 s 7x6) = (4.T3, _Z:Eh 1T, _8x67 —§SU4, —ZI5) .

Thus we see that the map
P(V(8)(y) ® V(8)(ey)) — {z17223 = 0} — R x P?,

(x ze) o [ (22,25, %0 o101
1y---546 .73171'2’1'3 ) x%x%x% )

where R = C3, is dominant with fibres H-orbits, and furthermore
N(H)-equivariant for a suitable action of N(H) on R x P?: In fact, we
will agree to write

( 1 1 1 ) <J]2{E3 31 I1[E2>
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and remark that the subspaces

R <ﬂ’ E7ﬁ> . <x2x37 x3x17x1x2>
r1 To X3 1 To X3
of the field of fractions of C [V(8)(y) @ V(8)(ey)] are invariant under o
and 7 (thus P? = P(T)). If we denote the coordinates with respect to

the basis vectors in R resp. T given above by 7, ry, 73 r€sp. yi, Y2, Y3,
then the actions of 7 and o are described by

T(r1,re,r3) = (=11, 73,72), 0(r1,72,73) = (—213,71/2, —79)
T(y1,92,93) = (Y1, —vs, —y2) , o(y1,92,v3) = ((1/16)ys, —16y1, —ysa) .

Thus the only N(H )-invariant lines in R resp. T are the ones spanned
by (2,1,—1) resp. (—1,16,—16) on which 7 acts by multiplication by
—1 resp. by +1 and hence

(31) R=R® Rp, T =T T
We see that the morphism
(32) 7w P(M) — {z1z923 = 0}
— RXP(T®V(8) ) ®V(8)(0)®V(0)(xo) ®V(4)(0) =~ R xP*,
<<I4 Ty .736) (.1321‘3 31 Z‘lxz)
m(x,s)=(|—,—,— ), : :
Ty T I3 L1 L2 T3

DXy Ty g Sy Sy Sa)

is N(H)-equivariant, dominant, and all fibres are H-orbits. If we
consider (z7,xs, Tg, So, 51, 52) as coordinates in V(8),) @ V(8)@) @
V(0)(xo) @ V(4) ) in the target of the map m (as we do in formula
(32)) we denote them by (y7, ys, Yo, Y10, Y11, Y12) to achieve consistency
with [Kat2].

How do we get equations which define the image

m(P Oy N {z1z0m3 # 0}) C R x (P — {y1yays = 0})
in P8 — {y110y3 = 0} from the quadrics Q:(z, s), ..., Qs(z, s) in formula

(26)? We can set s3 = s4 = s5 = 0 in Q1, ..., Qs to obtain equations
Q1,...,Qs5 for PQ, in P(M); the point is now that the quantities

~ A @ Qi Q

le QQ? _37 _47 _4

r1 T2 I3

are H-invariant (as one sees from the equations in Appendix B). More-
over, the map

T P(M) — {z12925 = 0} — R x (P® — {y190y3 = 0})
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is a geometric quotient for the action of H on the source (by [Po-Vi],
Thm. 4.2), so we can write

Ql = C_I1(7“1, cee >y12), Q2 = C_Iz(ﬁ, cee >y12), a:_ = C_I3(7“1, cee >y12)7
1
Qs Qs
— = CI4(7“1,-~~7?J12)7 — = CI5(7“1,--~7?J12)
i) T3
where ¢i,...,¢g5 are polynomials in (7“177“2,7“3)7 (y17y27937y77-~;y12)

which one may find written out in Appendix B. Here we just want
to emphasize their structural properties which will be most important
for the subsequent arguments:

(1) The polynomials ¢, g2 are homogeneous of degree 2 in the set of
variables (yi,...,y12); the coefficients of the monomials in the
y’s are (inhomogeneous) polynomials of degrees < 2in rq, rq, 73.
For r; =ry =r3 =0, q1, ¢ do not vanish identically.

(2) The polynomials g3, q4, g5 are homogeneous linear in (y1, . . ., y12);
the coefficients of the monomials in the 3’s are (inhomogeneous)
polynomials of degrees < 2 in 7y, 79, r3. For ry = ry = r3 =0,
43, 4, g5 do not vanish identically.

Theorem 3.2.1. Let Yy be the subvariety of R x P® defined by the
equations ¢ = g2 = q3 = q4 = qs = 0. There is an irreducible N(H)-
invariant component Yy of Y with n([2°]) € Ya, where 2° := 13i(5e7 +
eg) + 5(4e; — ey + e3), such that

(33) C(P Q)N ~ C(v,)NUD

Proof. The variety Y, will be the the closure of the image w(IP Q) N
{z1m923 # 0}) in R x P5.

It remains to see that 2° € Q). Recall from Theorem 3.1.5 that O,
is the unique irreducible component of Q, passing through the N (H)-
invariant point 5e;4-ey, and that this point is a nonsingular point on Qy;
thus, if we can find an irreducible subvariety of Q » which contains both
5er +eg and 2°, we are done. The sought-for subvariety is Oy N V/(8)7,
where V(8)7 are the elements in V'(8) invariant under ¢ € N(H). One
sees that 2° and 5e; + eg lie on it, and computing

V(8)7 = (ber + eg, 8ey — ies5 — eg,4de; — ieq + €3)
V(4)7 = (2(2] — 23) + 42320 + 2125) +4i(23 20 — 2123)),

and using 6,(V(8)7) € V(4)?, we find that Qy NV (8)? is a quadric in
V(8)7 which is easily checked to be irreducible. O
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Thus it remains to prove the rationality of Y\/N(H) = Y,/Gs.

3.3. Inner projections and the ”no-name” method. The variety
Y\ comes with the two projections

5 Pps
Y, —— P8

pRl
R
Recall from (32) that N := P(V(8)®V (4)s) C P® is an N(H )-invariant
3-dimensional projective subspace of P%. We will show C(Y))NH) ~
C(R x N)N) via the following theorem.

Theorem 3.3.1. There is an open N(H)-invariant subset Ry C R
containing 0 € R with the following properties:

(1) For all v € Ry the fibre pp'(r) C Yy is irreducible of dimension
3, and pr'(Ro) is an open N(H)-invariant subset of Y.

(2) There exist N(H)-sections o1, o9 of the N(H)-equivariant pro-
jection Ry x P® — Ry such that N(r) := {(o1(r), o2(r),(1:0 :
0:-+-:0,0:1:0:---:0,(0:0:1:0:---:0)) C P8,
r € Ry, is an N(H)-invariant family of 4-dimensional projec-
tive subspaces in P® with the properties:

(i) N(r) is disjoint from N for all ™ € Ry.
(ii) The fibre pps(py' (1)) C P® contains the line (oy(r), o9(r)) C
N(r) for all r € Ry.
(iii) The projection 7, : P® --» N from N(r) to N maps the
fibre pps(py' (r)) C P® dominantly onto N for all r € Ry.

Before turning to the proof, let us note the following corollary.

Corollary 3.3.2. One has the field isomorphism
CY)NID ~ C(R x N)NUD |
and the latter field is rational. Hence M3 is rational.

Proof. (of corollary) The N (H)-invariant set pj' (Rp) is an open subset
of Y. Let us see that the projection 7, : F, := pps(pp'(r)) --» N is
birational. In fact, F} is of dimension 3 and irreducible and the inter-
section of a 3-codimensional linear subspace and two quadrics in P8.
Moreover, F,,NN(r) contains a line L, by Theorem 3.3.1 (2), (ii). Thus
for a general point P in N, F,.N(L,, P) consists of L, and a single point
(namely the point of intersection of the two lines which are the residual
intersections of each of the two quadrics defining F,. with (L,, P), the
other component being L, itself). Thus 7, is generically one-to-one
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whence birational.

Thus one has a birational N (H)-isomorphism pg'(Ry) --+ Ry x N,
given by sending (r, [y]) to (r,7.([y])). Thus one gets the field isomor-
phism in Corollary 3.3.2.

By the no-name lemma (cf. e.g. [Doll], section 4), C(R x N)NH) ~
C(N)NH(Ty, Ty, Ty), where Ty, Ty, Ty are indeterminates, thus it suf-
fices to show that the quotient of N by N(H) is stably rational of level
< 3. This in turn follows from the same lemma, since clearly, if we
take the representation of G5 in C3 by permutation of coordinates, the
quotient of P(C3) by &3, a unirational surface, is rational. O

Proof. (of theorem) The proof will be given in several steps.

Step 1. (Irreducibility of the fibre over 0) We have to show that the
variety ppspr (0)) C P? is irreducible and 3-dimensional. We have
explicit equations for it (namely the ones that arise if we substitute
ry=ry=r3=01In ¢qq,...,qs, which are thus 3 linear and 2 quadratic
equations); the assertions can then be checked with a computer alge-
bra system such as Macaulay 2. Recall from Theorem 3.2.1 that Y)
contains m([z%]). In fact,

(34) 7([z°]) = ((0,0,0), (—Z:20:—20:65:0:13:0:0:0))> :

as follows from the definition of z° in Theorem 3.2.1 and the defini-
tion of 7 in (32). Thus 7([2°]) lies in the fibre over 0 of pj;' and thus,
since there is an open subset around 0 in R over which the fibres are
irreducible and 3-dimensional, assertion (1) of Theorem 3.3.1 is estab-
lished.

Step 2. (Construction of o1) To obtain o1, we just assign to r € R the
point (r,01(r)) with o3(r) = (0:0:0:0:0:0:1:0:0), i.e. yio =1,
the other y’s being 0. This always is in the fibre pps(py'(r)) as one
sees on substituting in the equations gqi,...,q5. Moreover, this is an
N (H)-section, since yj is a coordinate in the space V' (0),, in formula
(32).

Step 3. (Construction of oq; decomposition of V := P(6,(0) N V(8))
) The construction of a section g, o9(r) = (aél)(r) D 059)(7“)),
involves a little more work. Let us look back at the construction of
Y, in subsection 3.2 for this, especially the definition of the projec-
tion 7 in formula (32), and the decomposition of the linear subspace
M cV(8)®V(0)&V(4). By definition of R, the family of codimension
3 linear subspaces

(35)  L(r) :=={[(z,8)] | x4 = r1m1, x5 = 1929, T6 = 1323} C P(M),

X0
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r = (r,r,73) € R, is N(H)-invariant, i.e. gL(r) = L(gr), for g €
N(H). Tt is natural to intersect this family with P(5;'(0) N V/(8))
which, as we will see, has dimension 3 and look for an H-orbit O, in
the intersection of P(6; '(0) with the open set of L(r) where x;xyz3 # 0.
Moreover, we will see that for r = 0, the point [2°] is in this intersection.
Thus passing to the quotient we may put

(36) (r,02(r)) == 7(O,)

to obtain a oy with the required properties. Indeed, note that we will
have aé?) (r) = 058) = a§9) = 0 which ensures that o2 and o; span a

line. Moreover,
5)
(37) 02(0):(—Z:20:—20:65:0:13:0:0:0)),

by formula (34), which allows us to check assertions (2), (i) and (iii)
of Theorem 3.3.1, which are open properties on the base R, by explicit
computation for the fibre over 0. Property (2), (ii) stated in the theo-
rem is clear by construction. Let us now carry out this program. We
will start by explicitly decomposing V' := P(§;'(0) N V(8)) into irre-
ducible components.

To guess what V' might be, note that according to the definition of )
in Lemma 2.4.4, ¢, vanishes on fg € V(8) if for the transvectant 15 one
has vs( fs, fs) = 0; but looking back at the definition of transvectants
in formula (20), we see that v : V(8) x V(8) — V(4) vanishes if fg
is a linear combination of 2§, 27z, and 2822 (since we differentiate at
least 3 times with respect to z9 in one factor in the summands in for-
mula (20)). Thus X; := PSLyC - (28, 2725, 2922), the variety of forms
of degree 8 with a six-fold zero, is contained in V', and one computes
that the differential of 0|y s) in 2§73 is surjective, so that X is an
irreducible component of V.

The dimension of X is clearly three. Weyman, in [Wey]|, Cor. 4, com-
puted the Hilbert function of X, 4, the variety of binary forms of degree
g having a root of multiplicity > p which is

g—p+d g—p+d—1
HXMd:dp—l—l( )—dp+1—1( .
(Xpgd) = ( ) g (dlp+1)—1) g—p1
For d = 6, g = 8, the leading term in d in this expression is 3d®, which
shows

(38) deg X; =18.

Moreover, we know already that 5e; + eg is in V' from the proof of
Theorem 3.1.5; thus set Xy := PSLy C - (5e7 4 e9). We know that the
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stabilizer of 5e; + eg in PSLy C contains N(H) because ber + eg =
528 + 528 4+ 7021 25 spans the N (H)-invariants in V' (8) by Lemma 3.1.4.
The claim is that the stabilizer is not larger. An easy way to check
this is to use the beautiful theory developed in [Ol], p. 188 ff., using
differential invariants and signature curves, which allows the explicit
determination of the order of the symmetry group of a complex binary
form. More precisely we have (cf. [Ol], Cor. 8.68):

Theorem 3.3.3. Let Q(p) be a binary form of degree n (written in
terms of the inhomogeneous coordinate p = z1/zy) which is not equiv-
alent to a monomial. Then the cardinality k of the symmetry group of

Q(p) satisfies
k<4n —8,

provided that U is not a constant multiple of H?, where U and H are
the following polynomials in p: H = (1/2)(Q,Q)?, T := (Q, H)W,
U :=(Q, 7)Y where, if Q, is a binary form of degree ny, and Qs is a
binary form of degree no, we put

(@1, QQ)(l) 1= n9Q1 Q2 — Q105
(Q1,@2)") = na(ns — 1)Q1Q2 — 2(ns — 1)(m1 — 1)Q1 Q%
+n1(n — 1)@Q1Q5 -
(these are certain transvectants).

Applying this result in our case, we find the upper bound 24 for the
symmetry group of 5e; + eg, which is indeed the order of N(H) = &,.
X3 is irreducible of dimension 3, and computing that the differential of
5,\|V(8) is surjective in He; + eg, we get that X, is another irreducible
component of V. But let us intersect Xy with the codimension 3 linear
subspace in V/(8) consisting of forms with zeroes (i, (s, (3 € P!; there
is a unique projectivity carrying these two three roots of 5He; + ey,
which are all distinct, thus there are 8 - 7 - 6 such projectivities, and
deg Xy > (8 -7-6)/|N(H)|. But one checks easily that V itself has
dimension 3 and is the intersection of 5 quadrics in P(V/(8)), thus has
degree < 32. Thus we must have

(39) degXQ = 14, V = X1 U XQ, degV = 32.
Note also that
(40) [2°] € X, N L(0).

In fact, from the proof of Theorem 3.2.1, we know [z°] € V, and
[2°] € L(0) being clear, we just check that z° has no root of multiplicity
> 6.
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Step 4. (Construction of oo; intersecting V with a family of linear
spaces in P(M)) Let L°(r) be the open subset of L(r) C P(M) where
r1wox3 # 0. According to the strategy outlined at the beginning of
Step 3, we would like to compute the cardinalities

IL°(r)y N Xy, |L°(r) N X,

for r varying in a small neighbourhood of 0 in R. It is, however,
easier from a computational point of view to determine the number of
intersection points of X; resp. X, with certain boundary components
of L°(r) in L(r) first; the preceding cardinalities will afterwards fall out
as the residual quantities needed to have deg X; = 18, deg X, = 14.
Thus let us introduce the following additional strata of L(r)\L%(r):

(41) Lo :=A{[(x,9)] |21 = 29 = 13 = x4 = x5 = 16 = 0},
Li(r) :=={[(z,s)] |z1 # 0, x4 = rixq, 3 = 13 = x5 = 26 = 0},
Lo(r) :=={[(z,s)] | z2 # 0, x5 = roxq, 1 = x3 = x4 = x6 = 0},
Ls(r) :=A{[(z,s)] | x3 # 0, x¢ = r373, T1 = T3 = T4 = x5 = 0},
Ly(r) == {[(x, 8)] | zaws # 0, x5 = rox0, T6 = r3x3, T1 = 24 = 0}
Lo(r) == {[(x, 8)] | z125 # 0, x4 = 7121, T6 = T373, T3 = 5 = 0}
Ls(r) == {[(x, 8)] | z122 # 0, 24 = 1121, X5 = 7279, T3 = 26 = 0}.

L(r) is the disjoint union of these and L°(r). From the equations
describing §, one sees that V' is defined in P(V(8)) with coordinates
x1,...,Tg by
(42) —19222 — 1922376 + 38422 — 19222 — 1922575 + 38473
—12z124 + 122728 + 180329 = 0,
(43) 64z — 1927376 — 12873 — 6422 + 192975 + 12873
—2x3 + 1622 + 222 — 1622 — 5022 = 0,

(44) 962516 — 6721315 — 6721926 + 12481915
—12x127 + 122428 + 1802129 = O,
(45) 6x426 + 422314 + 8411206 + 1567123
—6z517 — 422907 + 24x508 — 2642928 + 302579 — 302929 = 0,
(46) —6x4w5 — 422914 + 842125 + 1562129

—|—6[L‘6.T7 + 42(133[E7 + 241’@%‘8 - 264ZE3I8 — 20@'@759 + 301’3$9 = 0,
and thus

(47) Li(r)nV =0 Vi=1,2,3
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for r in a Zariski open neighbourhood of 0 € R (for Li(r) consider
equation (44) and assume 967973 —672ro—672r3+1248 # 0, for LQ(C) we
see that (45) cannot hold if 6ryrs +42r; +84r;+ 156 # 0, and for Ls(r)
equation (46) is impossible provided that —6r;re —42r; + 84ry + 156 #
0).

Let us consider the intersection V N Ly. We have to solve the equations

12772 + 180x8m9 = 0, 222 — 1675 — 5025 = 0,

which have the four distinct solutions (z7, zs, x9) = (5,0, £1), (27, x5, x9) =
(15,45, —1), whence

(48) LO nv = {[567 + 69], [1567 + 568 - 69]} .

We will also have to determine the intersection V' N Ly(r) explicitly.
We have to solve the equations

—12r2% + 122725 + 1802829 = 0,
—2r22? + 1627 4 222 — 1622 — 5023 = 0,
—12%15[]7 + 127’15(]11‘8 + 1801’1%9 = 0,

in the variables 1, x7,xs,z9. We can check (e.g. with Macaulay 2)
that the subscheme they define has dimension 0 (and degree 8) for
r1 = 0. We already know four solutions with x; = 0, namely the ones
given in formula (48). Then it suffices to check that

(z1, 77,78, 79) = (£1,71,1,0), (21, 27, T8, T9) = (Fa, (90 — 5r%), —5r, 6),

where a is a square-root of 25(rf — 36), are also solutions (with z; # 0
in a neighbourhood of 0 in R, and obviously all distinct there). Thus

(49) Ll(T) N V = {[i(el —I— T‘164) —|— rer —|— 68]7
[+(ae; + riaey) + (90 — 5r?)e; — Bries + Gegl} .

We still have to see how the intersection points Lo NV and Li(r) NV
are distributed among X; and Xs: Suppose f € V(8) is a binary octic
such that [f] € LoNP(V (8)) or [f] € Li(r)NP(V(8)); then f is a linear
combination of the binary octics ey, eq4, €7, g, €9 defined in (22), which
involve only even powers of z; and z; thus if (a : b) € P! is a root of
one of them, so is its negative (a : —b) whence

[f] lies in X if and only if (1 : 0) or (0 : 1) is a root of
multiplicity > 6.
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Applying this criterion, we get, using (48) and (49)
(50) LoNX; =0, LoN Xy = {[Ber £ egl, [15e7 & Heg — eg]},
Li(r) N Xy = {[&(e1 + r1eq) + rier + es]},
Li(r) N Xy = {[*(ae; + riaey) + (90 — 5r2)e; — 5ries + 6eg)} .

The reader may be glad to hear now that we do not have to repeat this
entire procedure for Ly(r) and Ls(r); in fact, Li(r), La(r), Ls(r) are
permuted by N(H) in the following way: For the element o € N(H)
we have

o-Li(r)=Ly(o-1), o-La(r)=Ls(oc-r), o-Ls3(r)=Li(o-71),

(
which follows from (30) (and (28)) and the definition of R. Thus we
get that generally for i =1,2,3

(1) Li(r) N Xy = {A(r), Pa(r)}, Li(r) N Xy = {Qu(r), Qa(r)}

where Pi(r), Py(r), Q1(r), Q2(r) are mutually distinct points, and this
is valid in a Zariski open N(H )-invariant neighbourhood of 0 € R. It
remains to check that

L(0) NV consists of 32 reduced points.

We check (with Macaulay 2) that if we substitute 4 = x5 = 26 = 0 in
equations (42)-(46), they define a zero-dimensional reduced subscheme
of degree 32 in the projective space with coordinates 1, x2, x3, 7, Tg, Tg.
Taking into account (47), (50), (51), we see that all the intersections in
equations (50), (51) are free of multiplicities in an open N (H )-invariant
neighbourhood of 0 € R and moreover, since deg X; = 18, deg X, = 14,
we must have there

LY(r) N X consists of 12 reduced points, and L°(r) N X,
consists of 4 reduced points.

Now these 4 points make up the H-orbit 9, we wanted to find in Step
3: Clearly L°(r)N Xy is H-invariant, and H acts with trivial stabilizers
in L°(r) (as is clear from (29)). Thus we have completed the program
outlined at the beginning of Step 3. It just remains to notice that
[2°] € X5 N LY(0). This is clear since [2°] € V, but 2° does not have a
root of multiplicity > 6.

Step 5. (Verification of the properties of N(r)) For the completion of
the proof of Theorem 3.3.1, it remains to verify the properties of the
subspace N(r) in parts (2), (i) and (iii) of that theorem. First of all,
it is clear that

N(r) = (o1(r),o9(r), (1:0:0:---:0),
(0:1:0:---:0), (0:0:1:---:0))
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is N(H)-invariant in the sense that g - N(r) = N(g-r) for g € N(H)
by the construction of o, oo and because the last three vectors in the
preceding formula are a basis in the invariant subspace P(T) C P®
(where by (31) T' = T{y) ® T(g)). Moreover, by the definition of oy in
Step 2, and the formula (37) for 02(0), one has dim N(0) = 4, which
thus holds also for » € R sufficiently close to 0.

Recall that N was defined to be N := P(V(8)) & V(4)(p) C P*, and
as such can be described in terms of the coordinates (y; : yo : Y3 : Y7 :
Yg -+ 1 yp2) in PP as

N ={y1 =y =ys = yr + Tyo = y1o = 0}

(cf. (24)). Thus we get that N(0) N N = (), and the same holds in an
open N (H )-invariant neighbourhood of 0 in R.

For Theorem 3.3.1, (2), (iii), it suffices to check that my maps the fibre
pes(pp'(0)) dominantly onto N, which can be done by direct calcula-
tion. This concludes the proof. 0

APPENDIX A. COLLECTION OF FORMULAS FOR SECTION 2

We start with some remarks on how to calculate equivariant projec-
tions, and then we give explicit formulas for the equivariant maps in
section 2.

Let a, b be nonnegative integers, m := min(a, b), and let G := SL3 C.
We denote the irreducible G-module whose highest weight has nu-
merical labels a, b by V(a,b). For k = 0,...,m we define V¥ :=
Sym® ¥ C3 @ Sym”*(C?)V. Let e;, ey, e3 be the standard basis in C?
and 1, T2, 3 the dual basis in (C3).

There are G-equivariant linear maps A* : V¥ — VFlfork =0,..., m—
land 6% : VF — VE-lfor k=1,...,m given by

52 AP = ~ 0 o0 o= 3
(52) '*Zaei‘gaxi’ = @
i=1 i=1

(The superscript k& thus only serves as a means to remember the
sources and targets of the respective maps). If for some positive in-
tegers «, B the G-module V* contains a G-submodule isomorphic to
V (e, ) we will denote it by V¥(a, 3) to indicate the ambient module
(this is unambiguous because it is known that all such modules occur
with multiplicity one).

It is clear that A is surjective and 6% injective; one knows that ker(AF) =
Vk(a — k,b — k) whence



34 CHRISTIAN BOHNING

(53) Vk’zév’f(a—z‘,b—z‘).

We want to find a formula for the G-equivariant projection of V9 =
Sym* C?®Sym”(C?)Y onto the subspace V°(a—i,b—i) fori = 0,... ,m.
We call this linear map 7, ;.

We remark that, by (53), one can decompose each vector v € V? as
v =1y + -+ v, where v; € V% a —i,b — i), and this decomposition
is unique. Note that

(54) 6t 8 (ker AY) =V (a —i,b— 1)
so that

VO =ker A ® 6" (ker AY) @ §'0%(ker A%) @ --- 6" ... 6 (ker AY)
SRR R VA

Of course, 7, ,(v) = v;. It will be convenient to put

(55) L':=0'00%0---080A" o0 A'0 A, i=0,....m

(whence LY is the identity) and

(56) U':'=A"1oA"20...0A% ' o---06tod", i=0,....,m

(U° being again the identity). By Schur’s lemma, we have

Ui

Vi(a—ip—i) = Ci *1dyi(a—ip—i)

for some nonzero rational number ¢; € Q*. This is easy to calculate:
For example, since 4™ @ 257" € ker A’ = Vi(a —i,b — i), we have that
¢; is the unique number such that

(57) Ulled""@ab™) =¢;-ef " @ab™.

We will now calculate 7" "for | = 0,...,m by induction on [; the
case [ = 0 can be dealt with as follows:
Write v = vy + -+ + v, € V© as before. Then v, = 6'62...6™(u,,) for
some u,, € V™. Now
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L™(v) = L™(vp) = L™(8*6% ... 6™ (uy))
=612 0" o U™ (Up) = ConUnm
SO0 we set
m 1 m
(58) oy = —L™.
K Cm
Now assume, by induction, that ;" L Ty L , Tay have already

been determined. We show how to calculate ;" 1

Now, by (54), Uy_1 € 6 ... 0™ L (ker A™~71). We write vy, ;1 =
St 0 Y (up_yy), for some wu,,__; € ker AmTTE = ymltl(g —
(m—101—1),b—(m—1-1)), and using (57) we get

l
Lm—l—l (U o Z 71_2’:/1)—74(@)> — Lm—l—l(vo + Ul + e + Um—l—l)
=0

— Lm_l_1<Um_l_1) — Lm—l—1(51 o 5m—l—1<um_l_1))
=0T o AT Ao s T ()

1 m—[—1 m—{—1
=0 ...0 oU (Um—1-1) = Cm—1—1Um—1—1 -

So we put

Cm—1-1

I
1 A
o) it L (ya (wvo _ Zﬂgg,;z)) |
i=0

Formulas (52), (55), (56), (57), (58), (59) contain the algorithm to
compute the G-equivariant linear projection
my VO = Voia—ib—i)cV°

and thus to compute the associated G-equivariant bilinear map

' V(a,0) x V(0,0) > V(a—i,b—1)

in suitable bases in source and target (remark that V(a,0) = Sym* C?
and V(0,b) = Sym” (C*)V).
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In particular, we obtain for a = 2, b = 1 the map
(60) m9, : VO =Sym’C’ @ (C*)Y — V(2,1) c V°

1
0 _ id — —51A0
Ty — 1 1 )

for a = b = 2 the map

(61) 79, + VP =Sym’C® ® Sym*(C*)" — V(2,2) c V°

1 1
0 :-d__51A0 _5162A1A0
Mg =1d—% + 10 ;

and for a = b =1 the map

(62) i, VI=C®(C)Y - V(1,1) c V°
1
), =id — §51A0 :

In the following, we will often view elements x € V(a,b) as tensors
xr = (lel”’) € (C3)®* @ (C3)®P =: TPC? (the indices ranging from 1
to 3) which are covariant of order b and contravariant of order a via

the natural inclusions
V(a,b) C Sym*C* ® Sym®(C*)" c T°C?

(the first inclusion arises since V' (a, b) is the kernel of AY the second
is a tensor product of symmetrization maps). In particular, we have
the determinant tensor det € T5C? and its inverse det™' € T9C?. In
formulas involving several tensors, we will also adopt the summation
convention throughout. Finally, we define

(63) can : TPC?* — Sym“ C* ® Sym" (C*)¥
€j1®...®€ja®xi1®...®xib;_)ejl.....eja®xi1.....xib

as the canonical projection.
We write down the explicit formulas for the equivariant maps in section
2. The map ¥ : V(0,4) — V(2,2) (degree 3) is given by

(64) W(f) :=my,(can(g))
giiz i prisia pisisinis plohointizdet T dety o det) ) dety )
The map ¢ : V(2,2) x V(0,2) — V(2,1) (bilinear) is given by
(65) (g, h) == 75 (can(r)),
rﬁjz 1= gjigh““detmip .

The map €: V(0,4) x V(0,2) — V(2,2) (bilinear) is
(66) e(f, h) := can(g), gﬁg = fllhipisiodet= L det;

137115 147216 °
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The map ¢ : V(0,4) x V(0,2) — V(1,1) (homogeneous of degree 2 in
both factors) is given by

(67) C(f: h) = 7T?,l(a) ’

all .= piriz hi3i4fi5i6i7i8fi9i10i11i12detf1 det !
J1

det ! . det: !

15191 1611012 1791113 1841214

The map 7 : V(2,2) — V(1,1) (homogeneous of degree 2) is given by

(68) Fi=al (u), ull = gilizgion

APPENDIX B. COLLECTION OF FORMULAS FOR SECTION 3

In section 3.1, we saw (formula (26)) that

(69)
o = Q1(x, 5)ay + Q2(x, s)az + Q3(x, s)az + Qu(7, s)as + Qs(, s)as .

We collect here the explicit values of the Q;(x, s) (recall A = (1, 6¢, 1, 6),
e #0):

(70) Qi(z,8) = Qq(x) + 2x75, + 122559 + 2x951 + €(125155) + 25051
+48795, — 487385 — 27453 + 162554 — 163655 + €(—1257 — 12s2)

(71) Qa(, 5) = Qa(x) + 4xgs) + 122955 + €(252 — 652) + 25059

—4x183 + 162954 + 167355 — 162554 — 167655 + €(—253 — 453 + 452),
(72)  Qs(z,s) = Qs(x) + 2145, + 122155 + 64wyss + 64354

—2w783 + 21983 + €(128983 — 245485) + 28083,

(73) Q4(z,8) = Q4(x) + 4x55; + 12298; — 122589 + 122959
—8x185 — 16x3583 + 87854 — 8195y + €(—65154 — 65254 + 6535) + 25054 ,
(74) Qs(x, s) = Qs(x) + dxgs) + 122551 4+ 122650 — 12235,

+8x184 — 16x953 — 8xgss — 8xgss + €(65155 — 65255 — 65354) + 25085,
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where
(75) Qi(z) = —19222 — 192x376 + 38422 — 19222 — 192x5w5 + 384232
—12231.T4 + 121’7338 + 1801‘85139,
(76)  Qo(x) = 64x2 — 192316 — 12822 — 6422 + 1927925 4 12822
—2x5 + 1623 + 222 — 1623 — 5073,

(77) Q3(x) = 96x516 — 672x325 — 6721926 + 12487915
—12z127 + 122428 + 1802129,
(78) Q4(x) = 6x4x6 + 42x374 + 84126 + 1562123
—6z5x7 — 422907 + 24w508 — 2642928 + 302529 — 302929,
(79) Qg,(x) = —6x4x5 — 4220914 + 842125 + 1562129

+6$6$7 + 425(]31‘7 + 24ZE61}8 - 264[)&'31’8 - 201‘6[)’29 + 301]31‘9 .

The polynomials ¢i, ..., ¢s defining Yy C R x P® (cf. Theorem 3.2.1)

are:

(80) q1 = (—19273 — 19273 + 384)y13> + (—192r5 — 1921 + 384)y1y3
+(=1271)y2ys + 12y7ys + 180ysys + 2y7yn + 12ysy10

+2yoy11 + €(12y11912) + 2y10911 5
(81)  qo = (64r2 —192r5 — 128)y1y0 + (—6473 + 1921y 4+ 128)y1y3
+(=2rf + 16)yays + 27 — 16y — 50y + ysyin + 12y9y10
+e(2y1) — 6ys) + 2410012,
(82) q3 = (967313 — 6721y — 67213 + 1248)1y,
—12y7 + 12r1ys + 180y9 + 271911 + 12y12,

(83)

qs = (67173 + 421 + 84713 + 156)ys + (—6ry — 42)y; + (2419 — 264)ys
+(30ry — 30)yg + (479 + 12)y11 + (=121 + 12)y12,

(84)

qs = (—6r1r9 — 421 + 841y + 156)ys + (671 + 42)y; + (2415 — 264)ys
+(—=30r3 + 30)yg + (473 + 12)y11 + (12r3 — 12)y;o .

REFERENCES

[Bogl] Bogomolov, F.A., Rationality of the moduli of hyperelliptic curves of arbi-
trary genus, in: Proceedings of the 1984 Vancouver Conference in Algebraic



[Kat0]
[Kat1]
[Kat2]
[Muk]

[Mum]

[O1]

[Po-Vi]

[Pro]
[Sal]
[Se]

[Wey]

RATIONALITY OF s 39

Geometry, CMS Conference Proceedings, vol. 6, American Math. Society
(1986), 17-37

Brion, M. & Schwarz, G.W., Théorie des invariants & Géométrie des
variétés quotients, Collection Travaux en Cours, Hermann Editeurs des
Sciences et des Arts, Paris (2000)

Dixmier, J., On the Projective Invariants of Quartic Plane Curves, Adv.
in Math. 64 (1987), 279-304

Dolgachev, 1., Rationality of fields of invariants, in Algebraic Geometry,
Bowdoin, Proc. Symp. Pure Math. vol. 46 (1987), 3-16

Dolgachev, 1., Lectures on Invariant Theory, London Mathematical Society
Lecture Note Series 296, Cambridge Univ. Press (2003)

Dolgachev, 1., Topics in Classical Algebraic Geometry. Part I, available at
http://www.math.lsa.umich.edu/ idolga/lecturenotes.html
Dolgachev, 1., Ortland, D., Point Sets in Projective Space and Theta Func-
tions, Astérisque, vol. 165 (1989)

Fulton, W. & Harris, J., Representation Theory. A First Course, Springer
G.T.M. 129, Springer-Verlag (1991)

Grace, J.H. & Young, W.H., The Algebra of Invariants, Cambridge Univ.
Press (1903); reprinted by Chelsea Publ. Co. New York (1965)

Katsylo, P. 1., Rationality of the moduli variety of curves of genus 5, Math.
USSR Sbornik, vol. 72 (1992), no. 2, 439-445

Katsylo, P.I., On the birational geometry of the space of ternary quartics,
Advances in Soviet Math. 8 (1992), 95-103

Katsylo, P.I., Rationality of the moduli variety of curves of genus 3, Com-
ment. Math. Helvetici 71 (1996), 507-524

Mukai, S., An Introduction to Invariants and Moduli, Cambridge studies
in advanced mathematics 81, Cambridge Univ. Press (2003)

Mumford, D., Fogarty, J., Kirwan, F., Geometric Invariant Theory, Third
Enlarged Edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34,
Springer-Verlag (1994)

Olver, P. J., Classical Invariant Theory, London Mathematical Society Stu-
dent Texts 44, Cambridge University Press (1999)

Popov, V.L. & Vinberg, E.B., Invariant Theory, in: Algebraic Geometry
IV, A.N. Parshin, L.R. Shafarevich (eds.), Encyclopedia of Mathematical
Sciences, vol. 55, Springer Verlag (1994)

Procesi, C., Lie Groups. An Approach through Invariants and Representa-
tions, Springer Universitext, Springer-Verlag (2007)

Salmon, G., A Treatise on the Higher Plane Curves, Hodges, Foster and
Figgis, (1879); reprinted by Chelsea Publ. Co. (1960)

Serre, J.-P., Linear Representations of Finite Groups, Springer GTM 42,
Springer-Verlag (1977)

Weyman, J., The Equations of Strata for Binary Forms, Journal of Algebra
122 (1989), 244-249



