

THE RATIONALITY OF CERTAIN MODULI SPACES OF CURVES OF GENUS 3

INGRID BAUER AND FABRIZIO CATANESE

INTRODUCTION

The aim of this paper is to give an explicit geometric description of the birational structure of the moduli space of pairs (C, η) , where C is a general curve of genus 3 over an algebraically closed field k of arbitrary characteristic and $\eta \in \text{Pic}^0(C)_3$ is a non trivial divisor class of 3-torsion on C .

As it was observed in [B-C04] lemma (2.18), if C is a general curve of genus 3 and $\eta \in \text{Pic}^0(C)_3$ is a non trivial 3 - torsion divisor class, then we have a morphism $\varphi_\eta := \varphi_{|K_C+\eta|} \times \varphi_{|K_C-\eta|} : C \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$, corresponding to the sum of the linear systems $|K_C + \eta|$ and $|K_C - \eta|$, which is birational onto a curve $\Gamma \subset \mathbb{P}^1 \times \mathbb{P}^1$ of bidegree (4,4). Moreover, Γ has exactly six ordinary double points as singularities, located in the six points of the set $\mathcal{S} := \{(x, y) | x \neq y, x, y \in \{0, 1, \infty\}\}$.

In [B-C04] we only gave an outline of the proof (and there is also a minor inaccuracy). Therefore we dedicate the first section of this article to a detailed geometrical description of such pairs (C, η) , where C is a general curve of genus 3 and $\eta \in \text{Pic}^0(C)_3 \setminus \{0\}$.

The main result of the first section is the following:

Theorem 0.1. *Let C be a general (in particular, non hyperelliptic) curve of genus 3 over an algebraically closed field k (of arbitrary characteristic) and $\eta \in \text{Pic}^0(C)_3 \setminus \{0\}$.*

Then the rational map $\varphi_\eta : C \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ defined by

$$\varphi_\eta := \varphi_{|K_C+\eta|} \times \varphi_{|K_C-\eta|} : C \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$$

is a morphism, birational onto its image Γ , which is a curve of bidegree (4,4) having exactly six ordinary double points as singularities. We can assume, up to composing φ_η with a transformation of $\mathbb{P}^1 \times \mathbb{P}^1$ in $\mathbb{PGL}(2, k)^2$, that the singular set of Γ is the set

$$\mathcal{S} := \{(x, y) \in \mathbb{P}^1 \times \mathbb{P}^1 | x \neq y ; x, y \in \{0, 1, \infty\}\}.$$

Date: May 19, 2008.

The research of the authors was performed in the realm of the DFG Forschergruppe 790 "Classification of algebraic surfaces and compact complex manifolds".

Conversely, if Γ is a curve of bidegree $(4, 4)$ in $\mathbb{P}^1 \times \mathbb{P}^1$, whose singularities consist of exactly six ordinary double points at the points of \mathcal{S} , its normalization C is a curve of genus 3, s.t. $\mathcal{O}_C(H_2 - H_1) =: \mathcal{O}_C(\eta)$ (where H_1, H_2 are the respective pull backs of the rulings of $\mathbb{P}^1 \times \mathbb{P}^1$) yields a non trivial 3 - torsion divisor class, and $\mathcal{O}_C(H_1) \cong \mathcal{O}_C(K_C + \eta)$, $\mathcal{O}_C(H_2) \cong \mathcal{O}_C(K_C - \eta)$.

From theorem (0.1) it follows that

$\mathcal{M}_{3,\eta} := \{(C, \eta) : C \text{ is a general curve of genus 3, } \eta \in \text{Pic}^0(C)_3 \setminus \{0\}\}$ is birational to $\mathbb{P}(V(4, 4, -\mathcal{S})) / \mathfrak{S}_3$, where

$$V(4, 4, -\mathcal{S}) := H^0(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(4, 4)(-2 \sum_{a \neq b, a, b \in \{\infty, 0, 1\}} (a, b))).$$

In fact, the permutation action of the symmetric group

$\mathfrak{S}_3 := \mathfrak{S}(\{\infty, 0, 1\})$ extends to an action on \mathbb{P}^1 , so \mathfrak{S}_3 is naturally a subgroup of $\mathbb{P}GL(2, k)$. We consider then the diagonal action of \mathfrak{S}_3 on $\mathbb{P}^1 \times \mathbb{P}^1$, and observe that \mathfrak{S}_3 is exactly the subgroup of $\mathbb{P}GL(2, k)^2$ leaving the set \mathcal{S} invariant. The action of \mathfrak{S}_3 on $V(4, 4, -\mathcal{S})$ is naturally induced by the diagonal inclusion $\mathfrak{S}_3 \subset \mathbb{P}GL(2, k)^2$.

On the other hand, if we consider only the subgroup of order three of $\text{Pic}^0(C)$ generated by a non trivial 3 - torsion element η , we see from theorem (0.1) that we have to allow the exchange of η with $-\eta$, which corresponds to exchanging the two factors of $\mathbb{P}^1 \times \mathbb{P}^1$.

Therefore $\mathcal{M}_{3,\langle \eta \rangle} := \{(C, \langle \eta \rangle) : C \text{ general curve of genus 3, } \langle \eta \rangle \cong \mathbb{Z}/3\mathbb{Z} \subset \text{Pic}^0(C)\}$ is birational to $\mathbb{P}(V(4, 4, -\mathcal{S})) / (\mathfrak{S}_3 \times \mathbb{Z}/2)$, where the action of the generator σ (of $\mathbb{Z}/2\mathbb{Z}$) on $V(4, 4, -\mathcal{S})$ is induced by the action on $\mathbb{P}^1 \times \mathbb{P}^1$ obtained by exchanging the two coordinates.

Our main result is the following:

Theorem 0.2. *Let k be an algebraically closed field of arbitrary characteristic. We have:*

- 1) *the moduli space $\mathcal{M}_{3,\eta}$ is rational;*
- 2) *the moduli space $\mathcal{M}_{3,\langle \eta \rangle}$ is rational.*

One could obtain the above result abstractly from the method of Bogomolov and Katsylo (cf. [B-K85]), but we prefer to prove the theorem while explicitly calculating the field of invariant functions. It mainly suffices to decompose the vector representation of \mathfrak{S}_3 on $V(4, 4, -\mathcal{S})$ into irreducible factors. Of course, if the characteristic of k equals two or three, it is no longer possible to decompose the \mathfrak{S}_3 - module $V(4, 4, -\mathcal{S})$ as a direct sum of irreducible submodules. Nevertheless, we can write down the field of invariants and see that it is rational.

1. THE GEOMETRIC DESCRIPTION OF PAIRS (C, η) .

In this section we give a geometric description of pairs (C, η) , where C is a general curve of genus 3 and η is a non trivial element of $\text{Pic}^0(C)_3$, and we prove theorem (0.1).

Let k be an algebraically closed field of arbitrary characteristic. We recall the following observation from [B-C04], p.374.

Lemma 1.1. *Let C be a general curve of genus 3 and $\eta \in \text{Pic}^0(C)_3$ a non trivial divisor class (i.e., η is not linearly equivalent to 0). Then the linear system $|K_C + \eta|$ is base point free. This holds more precisely under the assumption that the canonical system $|K_C|$ does not contain two divisors of the form $Q + 3P$, $Q + 3P'$, and where the 3-torsion divisor class $P - P'$ is the class of η . This condition for all such η is in turn equivalent to the fact that C is either hyperelliptic or it is non hyperelliptic but the canonical image Σ of C does not admit two inflectional tangents meeting in a point Q of Σ .*

Proof. Note that P is a base point of the linear system $|K_C + \eta|$ if and only if

$$H^0(C, \mathcal{O}_C(K_C + \eta)) = H^0(C, \mathcal{O}_C(K_C + \eta - P)).$$

Since $\dim H^0(C, \mathcal{O}_C(K_C + \eta)) = 2$ this is equivalent to

$$\dim H^1(C, \mathcal{O}_C(K_C + \eta - P)) = 1.$$

Since $H^1(C, \mathcal{O}_C(K_C + \eta - P)) \cong H^0(C, \mathcal{O}_C(P - \eta))^*$, this is equivalent to the existence of a point P' such that $P - \eta \equiv P'$ (note that we denote linear equivalence by the classical notation “ \equiv ”.) Therefore $3P \equiv 3P'$ and $P \neq P'$, whence in particular $H^0(C, \mathcal{O}_C(3P)) \geq 2$. By Riemann - Roch we have

$$\begin{aligned} \dim H^0(C, \mathcal{O}_C(K_C - 3P)) &= \\ \deg(K_C - 3P) + 1 - g(C) + \dim H^0(C, \mathcal{O}_C(3P)) &\geq 1. \end{aligned}$$

In particular, there is a point Q such that $Q \equiv K_C - 3P \equiv K_C - 3P'$.

Going backwards, we see that this condition is not only necessary, but sufficient. If C is hyperelliptic, then $Q + 3P, Q + 3P' \in |K_C|$ hence P, P' are Weierstrass points, whence $2P \equiv 2P'$, hence $P - P'$ yields a divisor class η of 2-torsion, contradicting the nontriviality of η .

Consider now the canonical embedding of C as a plane quartic Σ . Our condition means, geometrically, that C has two inflection points P, P' , such that the tangent lines to these points intersect in $Q \in C$.

We shall show now that the (non hyperelliptic) curves of genus three whose canonical image is a quartic Σ with the above properties are

contained in a five dimensional family, whence are special in the moduli space \mathcal{M}_3 of curves of genus three.

Let now p, q, p' be three non collinear points in \mathbb{P}^2 . The quartics in \mathbb{P}^2 form a linear system of dimension 14. Imposing that a plane quartic contains the point q is one linear condition. Moreover, the condition that the line containing p and q has intersection multiplicity equal to 3 with the quartic in the point p gives three further linear conditions. Similarly for the point p' , and it is easy to see that the above seven linear conditions are independent. Therefore the linear subsystem of quartics Σ having two inflection points p, p' , such that the tangent lines to these points intersect in $q \in \Sigma$ has dimension $14 - 3 - 3 - 1 = 7$. The group of automorphisms of \mathbb{P}^2 leaving the three points p, q, p' fixed has dimension 2 and therefore the above quartics give rise to a five dimensional algebraic subset of \mathcal{M}_3 .

Finally, if the points P, P', Q are not distinct, we have (w.l.o.g.) $P = Q$ and a similar calculation shows that we have a family of dimension $7 - 3 = 4$. \square

Consider now the morphism

$$\varphi_\eta(:= \varphi_{|K_C+\eta|} \times \varphi_{|K_C-\eta|}) : C \rightarrow \mathbb{P}^1 \times \mathbb{P}^1,$$

and denote by $\Gamma \subset \mathbb{P}^1 \times \mathbb{P}^1$ the image of C under φ_η .

Remark 1.2. 1) Since η is non trivial, either Γ is of bidegree $(4, 4)$, or $\deg \varphi_\eta = 2$ and Γ is of bidegree $(2, 2)$. In fact $\deg \varphi_\eta = 4$ implies $\eta \equiv -\eta$.

2) We shall assume in the following that φ_η is birational, since otherwise C is either hyperelliptic (if Γ is singular) or C is a double cover of an elliptic curve Γ (branched in 4 points).

In both cases C lies in a 5 - dimensional subfamily of the moduli space \mathcal{M}_3 of curves of genus 3.

Let P_1, \dots, P_m be the (possibly infinitely near) singular points of Γ , and let r_i be the multiplicity in P_i of the proper transform of Γ . Then, denoting by H_1 , respectively H_2 , the divisors of a vertical, respectively of a horizontal line in $\mathbb{P}^1 \times \mathbb{P}^1$, we have that $\Gamma \in |4H_1 + 4H_2 - \sum_{i=1}^m r_i P_i|$. By adjunction, the canonical system of Γ is cut out by $|2H_1 + 2H_2 - \sum_{i=1}^m (r_i - 1)P_i|$, and therefore

$$4 = \deg K_C = \Gamma \cdot (2H_1 + 2H_2 - \sum_{i=1}^m (r_i - 1)P_i) = 16 - \sum_{i=1}^m r_i(r_i - 1).$$

Hence $\sum_{i=1}^m r_i(r_i - 1) = 12$, and we have the following possibilities

	m	(r_1, \dots, r_m)
i)	1	(4)
ii)	2	(3,3)
iii)	4	(3,2,2,2)
iv)	6	(2,2,2,2,2,2)

We will show now that for a general curve only the last case occurs, i.e., Γ has exactly 6 singular points of multiplicity 2.

We denote by S the blow up of $\mathbb{P}^1 \times \mathbb{P}^1$ in P_1, \dots, P_m , and let E_i be the exceptional divisor of the first kind, total transform of the point P_i .

We shall first show that the first case (i.e., $m = 1$) corresponds to the case $\eta \equiv 0$.

Proposition 1.3. *Let $\Gamma \subset \mathbb{P}^1 \times \mathbb{P}^1$ a curve of bidegree $(4,4)$ having a point P of multiplicity 4, such that its normalization $C \in |4H_1 + 4H_2 - 4E|$ has genus 3 (here, E is the exceptional divisor of the blow up of $\mathbb{P}^1 \times \mathbb{P}^1$ in P .) Then*

$$\mathcal{O}_C(H_1) \cong \mathcal{O}_C(H_2) \cong \mathcal{O}_C(K_C).$$

In particular, if $\Gamma = \varphi_\eta(C)$, (i.e., we are in the case $m = 1$) then $\eta \equiv 0$.

Remark 1.4. Let Γ be as in the proposition. Then the rational map $\mathbb{P}^1 \times \mathbb{P}^1 \dashrightarrow \mathbb{P}^2$ given by $|H_1 + H_2 - E|$ maps Γ to a plane quartic. Viceversa, given a plane quartic C' , blowing up two points $p_1, p_2 \in (\mathbb{P}^1 \times \mathbb{P}^1) \setminus C'$, and then contracting the strict transform of the line through p_1, p_2 , yields a curve Γ of bidegree $(4,4)$ having a singular point of multiplicity 4.

Proof (of the proposition). Let H_1 be the full transform of a vertical line through P . Then there is an effective divisor H'_1 on the blow up S of $\mathbb{P}^1 \times \mathbb{P}^1$ in P such that $H_1 \equiv H'_1 + E$. Since $H_1 \cdot C = E \cdot C = 4$, H'_1 is disjoint from C , whence $\mathcal{O}_C(H_1) \cong \mathcal{O}_C(E)$. The same argument for a horizontal line through P obviously shows that $\mathcal{O}_C(H_2) \cong \mathcal{O}_C(E)$. If $h^0(C, \mathcal{O}_C(H_1)) = 2$, then the two projections $p_1, p_2 : \Gamma \rightarrow \mathbb{P}^1$ induce the same linear series on C , thus $\varphi_{|H_1|}$ and $\varphi_{|H_2|}$ are related by a projectivity of \mathbb{P}^1 , hence Γ is the graph of a projectivity of \mathbb{P}^1 , contradicting the fact that the bidegree of Γ is $(4,4)$.

Therefore we have a smooth curve of genus three and a divisor of degree 4 such that $h^0(C, \mathcal{O}_C(H_1)) \geq 3$. Hence $h^0(C, \mathcal{O}_C(K_C - H_1)) \geq 1$, which implies that $K_C \equiv H_1$. Analogously, $K_C \equiv H_2$. \square

The next step is to show that for a general curve C of genus 3, cases *ii*) and *iii*) do not occur. In fact, we show:

Lemma 1.5. *Let C be a curve of genus 3 and $\eta \in \text{Pic}^0(C)_3 \setminus \{0\}$ such that φ_η is birational and the image $\varphi_\eta(C) = \Gamma$ has a singular point P of multiplicity 3. Then C belongs to an algebraic subset of \mathcal{M}_3 of dimension ≤ 5 .*

Proof. Let S again be the blow up of $\mathbb{P}^1 \times \mathbb{P}^1$ in P , and denote by E the exceptional divisor. Then $\mathcal{O}_C(E)$ has degree 3 and arguing as in prop. (1.3), we see that there are points Q_1, Q_2 on C such that $\mathcal{O}_C(H_i) \cong \mathcal{O}_C(Q_i + E)$. Therefore $\mathcal{O}_C(Q_2 - Q_1) \cong \mathcal{O}_C(H_2 - H_1) \cong \mathcal{O}_C(K_C - \eta - (K_C + \eta)) \cong \mathcal{O}_C(\eta)$, whence $3Q_1 \equiv 3Q_2$, $Q_1 \neq Q_2$. This implies that there is a morphism $f : C \rightarrow \mathbb{P}^1$ of degree 3, having double ramification in Q_1 and Q_2 . By Hurwitz' formula the degree of the ramification divisor R is 10 and since $R \geq Q_1 + Q_2$ f has at most 8 branch points in \mathbb{P}^1 . Fixing three of these points to be $\infty, 0, 1$, we obtain (by Riemann's existence theorem) a finite number of families of dimension at most 5. \square

From now on, we shall make the following

Assumptions.

C is a curve of genus 3, $\eta \in \text{Pic}^0(C)_3 \setminus \{0\}$, and

- 1) $|K_C + \eta|$ and $|K_C - \eta|$ are base point free;
- 2) $\varphi_\eta : C \rightarrow \Gamma \subset \mathbb{P}^1 \times \mathbb{P}^1$ is birational;
- 3) $\Gamma \in |4H_1 + 4H_2|$ has only double points as singularities (possibly infinitely near).

Remark 1.6. By the considerations so far, we know that a general curve of genus 3 fulfills the assumptions for any $\eta \in \text{Pic}^0(C)_3 \setminus \{0\}$.

We use the notation introduced above: we have $\pi : S \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ and $C \subset S$, $C \in |4H_1 + 4H_2 - 2 \sum_{i=1}^6 E_i|$.

Remark 1.7. Since S is a regular surface, we have an easy case of Ramanujam's vanishing theorem: if D is an effective divisor which is 1-connected (i.e., for every decomposition $D = A + B$ with $A, B > 0$, we have $A \cdot B \geq 1$), then $H^1(S, \mathcal{O}_S(-D)) = 0$.

This follows immediately from Ramanujam's lemma ensuring that $H^0(D, \mathcal{O}_D) = k$, and the long exact cohomology sequence associated to

$$0 \rightarrow \mathcal{O}_S(-D) \rightarrow \mathcal{O}_S \rightarrow \mathcal{O}_D \rightarrow 0.$$

In most of our applications we shall show that D is linearly equivalent to a reduced and connected divisor (this is a stronger property than 1-connectedness).

□

We know now that $\mathcal{O}_C(H_1 + H_2) \cong \mathcal{O}_C(2K_C)$, i.e.,

$$\mathcal{O}_C \cong \mathcal{O}_C(3H_1 + 3H_2 - \sum_{i=1}^6 2E_i).$$

Since $h^1(S, \mathcal{O}_S(-H_1 - H_2)) = 0$, the exact sequence

$$\begin{aligned} (1) \quad 0 \rightarrow \mathcal{O}_S(-H_1 - H_2) \rightarrow \mathcal{O}_S(3H_1 + 3H_2 - \sum_{i=1}^6 2E_i) \rightarrow \\ \rightarrow \mathcal{O}_C(3H_1 + 3H_2 - \sum_{i=1}^6 2E_i) \cong \mathcal{O}_C \rightarrow 0, \end{aligned}$$

is exact on global sections.

In particular, $h^0(S, \mathcal{O}_S(3H_1 + 3H_2 - \sum_{i=1}^6 2E_i)) = 1$. We denote by G the unique divisor in the linear system $|3H_1 + 3H_2 - \sum_{i=1}^6 2E_i|$. Note that $C \cap G = \emptyset$ (since $\mathcal{O}_C \cong \mathcal{O}_C(G)$).

Remark 1.8. There is no effective divisor \tilde{G} on S such that $G = \tilde{G} + E_i$, since otherwise $\tilde{G} \cdot C = -2$, contradicting that \tilde{G} and C have no common component.

This means that $G + 2 \sum_{i=1}^6 E_i$ is the total transform of a curve $G' \subset \mathbb{P}^1 \times \mathbb{P}^1$ of bidegree $(3,3)$.

Lemma 1.9. $h^0(G, \mathcal{O}_G) = 3$, $h^1(G, \mathcal{O}_G) = 0$.

Proof. Consider the exact sequence

$$0 \rightarrow \mathcal{O}_S(K_S) \rightarrow \mathcal{O}_S(K_S + G) \rightarrow \mathcal{O}_G(K_G) \rightarrow 0.$$

Since $h^0(S, \mathcal{O}_S(K_S)) = h^1(S, \mathcal{O}_S(K_S)) = 0$, we get

$$h^0(S, \mathcal{O}_S(K_S + G)) = h^0(G, \mathcal{O}_G(K_G)).$$

Now, $K_S + G \equiv H_1 + H_2 - \sum_{i=1}^6 E_i$, therefore $(K_S + G) \cdot C = -4$, whence $h^0(G, \mathcal{O}_G(K_G)) \cong h^0(S, \mathcal{O}_S(K_S + G)) = 0$.

Moreover, $h^1(G, \mathcal{O}_G(K_G)) = h^1(S, \mathcal{O}_S(K_S + G)) + 1$, and by Riemann - Roch we infer that, since $h^1(S, \mathcal{O}_S(K_S + G)) = h^0(S, \mathcal{O}_S(-G)) = 0$, that $h^1(S, \mathcal{O}_S(K_S + G)) = 2$. □

We will show now that G is reduced, hence, by the above lemma, we shall obtain that G has exactly 3 connected components.

Proposition 1.10. G is reduced.

Proof. By remark (1.8) it is sufficient to show that the image of G in $\mathbb{P}^1 \times \mathbb{P}^1$, which we denoted by G' , is reduced.

Assume that there is an effective divisor A' on $\mathbb{P}^1 \times \mathbb{P}^1$ such that $3A' \leq G'$. We clearly have $A' \cap \Gamma \neq \emptyset$ but, after blowing up the six points P_1, \dots, P_6 , the strict transforms of A' and of Γ are disjoint, whence A' and G' must intersect in one of the P_i 's, contradicting remark (1.8).

If G' is not reduced, we may uniquely write $G' = 2D_1 + D_2$ with D_1, D_2 reduced and having no common component. Up to exchanging the factors of $\mathbb{P}^1 \times \mathbb{P}^1$, we have the following two possibilities:

- i) $D_1 \in |H_1 + H_2|$;
- ii) $D_1 \in |H_1|$.

In the first case also $D_2 \in |H_1 + H_2|$ and its strict transform is disjoint from C . Remark (1.8) implies that D_2 meets Γ in points which do not belong to D_1 , whence D_2 has double points where it intersects Γ . Since $D_2 \cdot \Gamma = 8$ we see that D_2 has two points of multiplicity 2, a contradiction (D_2 has bidegree $(1, 1)$).

Assume now that $D_1 \in |H_1|$. Then, since $2D_1 \cdot \Gamma = 8$, D_1 contains 4 of the P_i 's and D_2 passes through the other two, say P_1, P_2 . This implies that for the strict transform of D_2 we have: $\hat{D}_2 \equiv H_1 + 3H_2 - 2E_1 - 2E_2$, whence $\hat{D}_2 \cdot C = 8$, a contradiction. \square

We write now $G = G_1 + G_2 + G_3$ as a sum of its connected components, and accordingly $G' = G'_1 + G'_2 + G'_3$.

Lemma 1.11. *The bidegree of G'_j , ($j \in \{1, 2, 3\}$) is $(1, 1)$.*

Up to renumbering P_1, \dots, P_6 we have $G'_1 \cap G'_2 = \{P_1, P_2\}$, $G'_1 \cap G'_3 = \{P_3, P_4\}$ and $G'_2 \cap G'_3 = \{P_5, P_6\}$.

More precisely, $G_1 \in |H_1 + H_2 - E_1 - E_2 - E_3 - E_4|$, $G_2 \in |H_1 + H_2 - E_1 - E_2 - E_5 - E_6|$, $G_3 \in |H_1 + H_2 - E_3 - E_4 - E_5 - E_6|$.

Proof. Assume for instance that G'_1 has bidegree $(1, 0)$. Then there is a subset $I \subset \{1, \dots, 6\}$ such that $G_1 = H_1 - \sum_{i \in I} E_i$. Since $G_1 \cdot C = 0$, it follows that $|I| = 2$. But then $G_1 \cdot (G - G_1) = 1$, contradicting the fact that G_1 is a connected component of G .

Let (a_j, b_j) be the bidegree of G_j : then $a_j, b_j \geq 1$ since a reduced divisor of bidegree $(m, 0)$ is not connected for $m \geq 2$. Since $\sum a_j = \sum b_j = 3$, it follows that $a_j = b_j = 1$.

Writing now $G_j \equiv H_1 + H_2 - \sum_{i=1}^6 \mu(j, i) E_i$ we obtain

$$\sum_{j=1}^3 \mu(j, i) = 2, \quad \sum_{i=1}^6 \mu(j, i) = 4, \quad \sum_{i=1}^6 \mu(k, i) \mu(j, i) = 2$$

since $G_j \cdot C = 0$) and $G_k \cdot G_j = 0$). We get the second claim of the lemma provided that we show: $\mu(j, i) = 1, \forall i, j$.

The first formula shows that if $\mu(j, i) \geq 2$, then $\mu(j, i) = 2$ and $\mu(h, i) = 0$ for $h \neq j$. Hence the second formula shows that

$$\sum_{h,k \neq j} \sum_{i=1}^6 \mu(j, i)(\mu(h, i) + \mu(k, i)) \leq 2,$$

contradicting the third formulae. \square

In the remaining part of the section we will show that each G'_i consists of the union of a vertical and a horizontal line in $\mathbb{P}^1 \times \mathbb{P}^1$.

Since $\mathcal{O}_C(K_C + \eta) \cong \mathcal{O}_C(H_1)$ and $\mathcal{O}_C(K_C - \eta) \cong \mathcal{O}_C(H_2)$ we get:

$$\mathcal{O}_C(2H_2 - H_1) \cong \mathcal{O}_C(K_C) \cong \mathcal{O}_C(2H_1 + 2H_2 - \sum_{i=1}^6 E_i),$$

whence the exact sequence

$$(2) \quad 0 \rightarrow \mathcal{O}_S(-H_1 - 4H_2 + \sum_{i=1}^6 E_i) \rightarrow \mathcal{O}_S(3H_1 - \sum_{i=1}^6 E_i) \rightarrow \mathcal{O}_C(3H_1 - \sum_{i=1}^6 E_i) \cong \mathcal{O}_C \rightarrow 0,$$

Proposition 1.12. $H^1(S, \mathcal{O}_S(-(H_1 + 4H_2 - \sum_{i=1}^6 E_i))) = 0$.

Proof. The result follows immediately by Ramanujam's vanishing theorem, but we can also give an elementary proof using remark 1.7.

It suffices to show that the linear system $|H_1 + 4H_2 - \sum_{i=1}^6 E_i|$ contains a reduced and connected divisor.

Note that $G_1 + |3H_2 - E_5 - E_6| \subset |H_1 + 4H_2 - \sum_{i=1}^6 E_i|$, and that $|3H_2 - E_5 - E_6|$ contains $|H_2 - E_5 - E_6| + |2H_2|$, if there is a line H_2 containing P_1, P_2 , else it contains $|H_2 - E_5| + |H_2 - E_6| + |H_2|$. Since $G_1 \cdot H_2 = G_1 \cdot (H_2 - E_5) = G_1 \cdot (H_2 - E_6) = G_1 \cdot (H_2 - E_5 - E_6) = 1$, we have obtained in both cases a reduced and connected divisor. \square

Remark 1.13. One can indeed show, using $G_2 + |3H_2 - E_3 - E_4| \subset |H_1 + 4H_2 - \sum_{i=1}^6 E_i|$ and $G_3 + |3H_2 - E_1 - E_2| \subset |H_1 + 4H_2 - \sum_{i=1}^6 E_i|$ that $|H_1 + 4H_2 - \sum_{i=1}^6 E_i|$ has no fixed part, and then by Bertini's theorem, since $(H_1 + 4H_2 - \sum_{i=1}^6 E_i)^2 = 8 - 6 = 2 > 0$, a general curve in $|H_1 + 4H_2 - \sum_{i=1}^6 E_i|$ is irreducible.

In view of proposition 1.12 the above exact sequence (and the one where the roles of H_1, H_2 are exchanged) yields the following:

Corollary 1.14. *For $j \in \{1, 2\}$ there is exactly one divisor $N_j \in |3H_j - \sum_{i=1}^6 E_i|$.*

By the uniqueness of G , we see that $G = N_1 + N_2$. Denote by N'_j the curve in $\mathbb{P}^1 \times \mathbb{P}^1$ whose total transform is $N_j + \sum_{i=1}^6 E_i$.

We have just seen that G is the strict transform of three vertical and three horizontal lines in $\mathbb{P}^1 \times \mathbb{P}^1$. Hence each connected component G_j splits into the strict transform of a vertical and a horizontal line. Since G is reduced, the lines are distinct (and there are no infinitely near points).

We can choose coordinates in $\mathbb{P}^1 \times \mathbb{P}^1$ such that $G'_1 = (\{\infty\} \times \mathbb{P}^1) \cup (\mathbb{P}^1 \times \{\infty\})$, $G'_2 = (\{0\} \times \mathbb{P}^1) \cup (\mathbb{P}^1 \times \{0\})$ and $G'_3 = (\{1\} \times \mathbb{P}^1) \cup (\mathbb{P}^1 \times \{1\})$.

Remark 1.15. The points P_1, \dots, P_6 are then the points of the set \mathcal{S} previously defined.

Conversely, consider in $\mathbb{P}^1 \times \mathbb{P}^1$ the set $\mathcal{S} := \{P_1, \dots, P_6\} = (\{\infty, 0, 1\} \times \{\infty, 0, 1\}) \setminus \{(\infty, \infty), (0, 0), (1, 1)\}$. Let $\pi : S \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ be the blow up of the points P_1, \dots, P_6 and suppose (denoting the exceptional divisor over P_i by E_i) that $C \in |4H_1 + 4H_2 - \sum 2E_i|$ is a smooth curve. Then C has genus 3, $\mathcal{O}_C(3H_1) \cong \mathcal{O}_C(\sum E_i) \cong \mathcal{O}_C(3H_2)$. Setting $\mathcal{O}_C(\eta) := \mathcal{O}_C(H_2 - H_1)$, we obtain therefore $3\eta \equiv 0$.

It remains to show that $\mathcal{O}_C(\eta)$ is not isomorphic to \mathcal{O}_C .

Lemma 1.16. *η is not trivial.*

Proof. Assume $\eta \equiv 0$. Then $\mathcal{O}_C(H_1) \cong \mathcal{O}_C(H_2)$ and, since Γ has bidegree $(4, 4)$, we argue as in the proof of proposition 1.3) that $h^0(\mathcal{O}_C(H_i)) \geq 3$, whence $\mathcal{O}_C(H_i) \cong \mathcal{O}_C(K_C)$.

The same argument shows that the two projections of Γ to \mathbb{P}^1 yield two different pencils in the canonical system. It follows that the canonical map of C factors as the composition of $C \rightarrow \Gamma \subset \mathbb{P}^1 \times \mathbb{P}^1$ with the rational map $\psi : \mathbb{P}^1 \times \mathbb{P}^1 \dashrightarrow \mathbb{P}^2$ which blows up one point and contracts the vertical and horizontal line through it. Since Γ has six singular points, the canonical map sends C birationally onto a singular quartic curve in \mathbb{P}^2 , absurd. \square

2. RATIONALITY OF THE MODULI SPACES

In this section we will use the geometric description of pairs (C, η) , where C is a genus 3 curve and η a non trivial 3 - torsion divisor class, and study the birational structure of their moduli space.

More precisely, we shall prove the following

Theorem 2.1. 1) The moduli space $\mathcal{M}_{3,\eta} := \{(C, \eta) : C \text{ a general curve of genus } 3, \eta \in \text{Pic}^0(C)_3 \setminus \{0\}\}$ is rational.

2) The moduli space $\mathcal{M}_{3,\langle\eta\rangle} := \{(C, \langle\eta\rangle) : C \text{ a general curve of genus } 3, \langle\eta\rangle \cong \mathbb{Z}/3\mathbb{Z} \subset \text{Pic}^0(C)\}$ is rational.

Remark 2.2. By the result of the previous section, and since any automorphism of $\mathbb{P}^1 \times \mathbb{P}^1$ which sends the set \mathcal{S} to itself belongs to the group $\mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}$, follows immediately that, if we set

$$V(4, 4, -\mathcal{S}) := H^0(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(4, 4)(-2 \sum_{i \neq j, i, j \in \{\infty, 0, 1\}} P_{ij})),$$

$\mathcal{M}_{3,\eta}$ is birational to $\mathbb{P}(V(4, 4, -\mathcal{S}))/\mathfrak{S}_3$, while $\mathcal{M}_{3,\langle\eta\rangle}$ is birational to $\mathbb{P}(V(4, 4, -\mathcal{S}))/(\mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z})$, where the generator σ of $\mathbb{Z}/2\mathbb{Z}$ acts by coordinate exchange on $\mathbb{P}^1 \times \mathbb{P}^1$, whence on $V(4, 4, -\mathcal{S})$.

In order to prove the above theorem we will explicitly calculate the respective subfields of invariants of the function field of $\mathbb{P}(V(4, 4, -\mathcal{S}))$ and show that they are generated by purely transcendental elements.

Consider the following polynomials of $\mathbb{V} := V(4, 4, -\mathcal{S})$, which are invariant under the action of $\mathbb{Z}/2\mathbb{Z}$:

$$\begin{aligned} f_{11}(x, y) &:= x_0^2 x_1^2 y_0^2 y_1^2, \\ f_{\infty\infty}(x, y) &:= x_1^2 (x_1 - x_0)^2 y_0^2 (y_1 - y_0)^2, \\ f_{00}(x, y) &:= x_0^2 (x_1 - x_0)^2 y_0^2 (y_1 - y_0)^2. \end{aligned}$$

Let $ev : \mathbb{V} \rightarrow \bigoplus_{i=0,1,\infty} k_{(i,i)} =: \mathbb{W}$ be the evaluation map at the three standard diagonal points, i.e., $ev(f) := (f(0,0), f(1,1), f(\infty,\infty))$.

Since $f_{ii}(j, j) = \delta_{i,j}$, we can decompose $\mathbb{V} \cong \mathbb{U} \oplus \mathbb{W}$, where $\mathbb{U} := \ker(ev)$ and \mathbb{W} is the subspace generated by the three above polynomials, which is easily shown to be an invariant subspace using the following formulae (*):

- (1, 3) exchanges x_0 with x_1 , multiplies $x_1 - x_0$ by -1 ,
- (1, 2) exchanges $x_1 - x_0$ with x_1 , multiplies x_0 by -1 ,
- (2, 3) exchanges $x_0 - x_1$ with x_0 , multiplies x_1 by -1 .

In fact, ‘the permutation’ representation \mathbb{W} of the symmetric group splits (in characteristic $\neq 3$) as the direct sum of the trivial representation (generated by $e_1 + e_2 + e_3$) and the standard representation, generated by $x_0 := e_1 - e_2, x_1 := -e_2 + e_3$, which is isomorphic to the representation on $V(1) := H^0(\mathcal{O}_{\mathbb{P}^1}(1))$.

Note that $\mathbb{U} = x_0 x_1 (x_1 - x_0) y_0 y_1 (y_0 - y_1) H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 1))$.

We write $V(1, 1) := H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 1)) = V(1) \otimes V(1)$, where $V(1) := H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$, is as above the standard representation of \mathfrak{S}_3 .

Now $V(1) \otimes V(1)$ splits, in characteristic $\neq 2, 3$, as a sum of irreducible representations $\mathbb{I} \oplus \mathfrak{A} \oplus W$, where the three factors are the *trivial*, the *alternating* and the *standard* representation of \mathfrak{S}_3 .

Explicitly, $V(1) \otimes V(1) \cong \wedge^2(V(1)) \oplus \text{Sym}^2(V(1))$, and $\text{Sym}^2(V(1))$ is isomorphic to \mathbb{W} , since it has the following basis $x_0y_0, x_1y_1, (x_1 - x_0)(y_1 - y_0)$. We observe for further use that $\mathbb{Z}/2\mathbb{Z}$ acts as the identity on $\text{Sym}^2(V(1))$, while it acts on $\wedge^2(V(1))$, spanned by $x_1y_0 - x_0y_1$ via multiplication by -1 .

We have thus seen

Lemma 2.3. *If $\text{char}(k) \neq 2, 3$ then the \mathfrak{S}_3 -module \mathbb{V} splits as a sum of irreducible modules as follows:*

$$\mathbb{V} \cong 2(\mathbb{I} \oplus W) \oplus \mathfrak{A}.$$

Choose now a basis $(z_1, z_2, z_3, w_1, w_2, w_3, u)$ of \mathbb{V} , such that the z_i 's and the w_i 's are respective bases of $\mathbb{I} \oplus W$ consisting of eigenvectors of $\sigma = (123)$, and u is a basis element of \mathfrak{A} . The eigenvalue of z_i, w_i with respect to $\sigma = (123)$ is ϵ^{i-1} , u is σ -invariant and $(12)(u) = -u$.

Note that if (v_1, v_2, v_3) is a basis of $\mathbb{I} \oplus W$, such that \mathfrak{S}_3 acts by permutation of the indices, then $z_1 = v_1 + v_2 + v_3$, $z_2 = v_1 + \epsilon v_2 + \epsilon^2 v_3$, $z_3 = v_1 + \epsilon^2 v_2 + \epsilon v_3$, where ϵ is a primitive third root of unity.

Remark 2.4. Since z_1, w_1 are \mathfrak{S}_3 - invariant, $\mathbb{P}(V(4, 4, -\mathcal{S}))/\mathfrak{S}_3$ is birational to a product of the affine line with $\text{Spec}(k[z_2, z_3, w_2, w_3, u]^{\mathfrak{S}_3})$, and therefore it suffices to compute $k[z_2, z_3, w_2, w_3, u]^{\mathfrak{S}_3}$.

Part 1 of the theorem follows now from the following

Proposition 2.5. *Let $T := z_2z_3$, $S := z_2^3$, $A_1 := z_2w_3 + z_3w_2$, $A_2 := z_2w_3 - z_3w_2$. Then*

$$\begin{aligned} k(z_2, z_3, w_2, w_3, u)^{\mathfrak{S}_3} \supset K := \\ k(A_1, T, S + \frac{T^3}{S}, u(S - \frac{T^3}{S}), A_2(S - \frac{T^3}{S})), \end{aligned}$$

and $[k(z_2, z_3, w_2, w_3, u) : K] = 6$, hence $k(z_2, z_3, w_2, w_3, u)^{\mathfrak{S}_3} = K$.

Proof. We first calculate the invariants under the action of $\sigma = (123)$, i.e., $k(z_2, z_3, w_2, w_3, u)^\sigma$. Note that $u, z_2z_3, z_2w_3, w_2w_3, z_2^3$ are σ -invariant, and $[k(z_2, z_3, w_2, w_3, u) : k(u, z_2z_3, z_2w_3, w_2w_3, z_2^3)] = 3$. In particular, $k(z_2, z_3, w_2, w_3, u)^\sigma = k(u, z_2z_3, z_2w_3, w_2w_3, z_2^3) =: L$.

Now, we calculate L^τ , with $\tau = (12)$. We first observe that $L = k(T, A_1, A_2, S, u)$. Since $\tau(z_2) = \epsilon z_3$, $\tau(z_3) = \epsilon^2 z_2$ (and similarly for

w_2, w_3), we see that $\tau(A_1) = A_1$ and $\tau(T) = T$. On the other hand, $\tau(u) = -u$, $\tau(A_2) = -A_2$, $\tau(S) = \frac{T^3}{S}$.

Claim.

$$L^\tau = k(A_1, T, S + \frac{T^3}{S}, u(S - \frac{T^3}{S}), A_2(S - \frac{T^3}{S})) =: E.$$

Proof of the Claim. Obviously $A_1, T, S + \frac{T^3}{S}, u(S - \frac{T^3}{S}), A_2(S - \frac{T^3}{S})$ are invariant under τ , whence $E \subset L^\tau$. Since $L = E(S)$, using the equation $B \cdot S = S^2 + T^3$ for $B := S + \frac{T^3}{S}$, we get that $[E(S) : E] \leq 2$.

This proves the claim and the proposition. \square

There remains to show the second part of the theorem.

We denote by τ' the involution on $k(z_1, z_2, z_3, w_1, w_2, w_3, u)$ induced by the involution $(x, y) \mapsto (y, x)$ on $\mathbb{P}^1 \times \mathbb{P}^1$. It suffices to prove the following

$$\textbf{Proposition 2.6. } E^{\tau'} = k(A_1, T, S + \frac{T^3}{S}, (u(S - \frac{T^3}{S}))^2, A_2(S - \frac{T^3}{S})).$$

Proof. Since $[E : k(A_1, T, S + \frac{T^3}{S}, (u(S - \frac{T^3}{S}))^2, A_2(S - \frac{T^3}{S}))] \leq 2$, it suffices to show that the 5 generators $A_1, T, S + \frac{T^3}{S}, (u(S - \frac{T^3}{S}))^2, A_2(S - \frac{T^3}{S})$ are τ' - invariant. This will now be proven in lemma (2.7). \square

Lemma 2.7. τ' acts as the identity on $(z_1, z_2, z_3, w_1, w_2, w_3)$ and sends $u \mapsto -u$.

Proof. We note first that τ' acts trivially on the subspace \mathbb{W} generated by the polynomials f_{ii} .

Since $\mathbb{U} = x_0x_1(x_1 - x_0)y_0y_1(y_1 - y_0)V(1, 1)$ and $x_0x_1(x_1 - x_0)y_0y_1(y_1 - y_0)$ is invariant under exchanging x and y , it suffices to recall that the action of τ' on $V(1, 1) = V(1) \otimes V(1)$ is the identity on the subspace $\text{Sym}^2(V(1))$, while the action on the alternating \mathfrak{S}_3 - submodule \mathfrak{A} sends the generator u to $-u$. \square

2.1. $\text{Char}(k) = 3$. In order to prove theorem (2.1) if the characteristic of k is equal to 3 we describe the \mathfrak{S}_3 -module \mathbb{V} as follows:

$$\mathbb{V} \cong 2\mathbb{W} \oplus \mathfrak{A},$$

where \mathbb{W} is the (3-dimensional) permutation representation of \mathfrak{S}_3 .

Let now $z_1, z_2, z_3, w_1, w_2, w_3, u$ be a basis of \mathbb{V} such that the action of \mathfrak{S}_3 permutes z_1, z_2, z_3 (resp. w_1, w_2, w_3), and $(123) : u \mapsto u$, $(12)u \mapsto -u$. Then we have:

Proposition 2.8. *The \mathfrak{S}_3 - invariant subfield $k(\mathbb{V})^{\mathfrak{S}_3}$ of $k(\mathbb{V})$ is rational.*

More precisely, the seven \mathfrak{S}_3 - invariant functions

$$\sigma_1 = z_1 + z_2 + z_3,$$

$$\begin{aligned}
\sigma_2 &= z_1 z_2 + z_1 z_3 + z_2 z_3, \\
\sigma_3 &= z_1 z_2 z_3, \\
\sigma_4 &= z_1 w_1 + z_2 w_2 + z_3 w_3, \\
\sigma_5 &= w_1 z_2 z_3 + w_2 z_1 z_3 + w_3 z_1 z_2, \\
\sigma_6 &= w_1(z_2 + z_3) + w_2(z_1 + z_3) + w_3(z_1 + z_2), \\
\sigma_7 &= u(z_1(w_2 - w_3) + z_2(w_3 - w_1) + z_3(w_1 - w_2))
\end{aligned}$$

form a basis of the purely transcendental extension over k .

Proof. $\sigma_1, \dots, \sigma_7$ determine a morphism $\psi : \mathbb{V} \rightarrow \mathbb{A}_k^7$. We will show that ψ induces a birational map $\bar{\psi} : \mathbb{V}/\mathfrak{S}_3 \rightarrow \mathbb{A}_k^7$, i.e., for a Zariski open set of \mathbb{V} we have: $\psi(x) = \psi(x')$ if and only if there is a $\tau \in \mathfrak{S}_3$ such that $x = \tau(x')$. By [Cat], lemma (2.2), we can assume (after acting on x with a suitable $\tau \in \mathfrak{S}_3$), that $x_i = x'_i$ for $1 \leq i \leq 6$, and we know that (setting $u := x_7$, $u' := x'_7$)

$$\begin{aligned}
u(x_1(x_5 - x_6) + x_2(x_6 - x_4) + x_3(x_4 - x_5)) = \\
u'(x_1(x_5 - x_6) + x_2(x_6 - x_4) + x_3(x_4 - x_5)).
\end{aligned}$$

Therefore, if $B(x_1, \dots, x_6) := x_1(x_5 - x_6) + x_2(x_6 - x_4) + x_3(x_4 - x_5) \neq 0$, this implies that $u = u'$. \square

Therefore, we have shown part 1 of theorem (2.1).

We denote again by τ' the involution on $k(z_1, z_2, z_3, w_1, w_2, w_3, u)$ induced by the involution $(x, y) \mapsto (y, x)$ on $\mathbb{P}^1 \times \mathbb{P}^1$. In order to prove part 2) of thm. (2.1), it suffices to observe that $\sigma_1, \dots, \sigma_6, \sigma_7^2$ are invariant under τ' and $[k(\sigma_1, \dots, \sigma_7) : k(\sigma_1, \dots, \sigma_7^2)] \leq 2$, whence $(k(\mathbb{V})^{\mathfrak{S}_3})^{(\mathbb{Z}/2\mathbb{Z})} = k(\sigma_1, \dots, \sigma_7^2)$. This proves theorem (2.1).

2.2. $Char(k) = 2$. Let k be an algebraically closed field of characteristic 2. Then we can describe the \mathfrak{S}_3 - module \mathbb{V} as follows:

$$\mathbb{V} \cong \mathbb{W} \oplus V(1, 1),$$

where \mathbb{W} is the (3 - dimensional) permutation representation of \mathfrak{S}_3 . We denote a basis of \mathbb{W} by z_1, z_2, z_3 . As in the beginning of the chapter, $V(1, 1) = H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 1))$. We choose the following basis of $V(1, 1)$: $w_1 := x_1 y_1$, $w_2 := (x_0 + x_1)(y_0 + y_1)$, $w_3 := x_0 y_0$, $w := x_0 y_1$. Then \mathfrak{S}_3 acts on w_1, w_2, w_3 by permutation of the indices and

$$\begin{aligned}
(1, 2) : w &\mapsto w + w_3, \\
(1, 2, 3) : w &\mapsto w + w_2 + w_3.
\end{aligned}$$

Let $\epsilon \in k$ be a nontrivial third root of unity. Then Theorem (2.1) (in characteristic 2) follows from the following result:

Proposition 2.9. *Let k be an algebraically closed field of characteristic 2. Let $\sigma_1, \dots, \sigma_6$ be as defined in (2.6) and set*

$$v := (w + w_2)(w_1 + \epsilon w_2 + \epsilon^2 w_3) + (w + w_1 + w_3)(w_1 + \epsilon^2 w_2 + \epsilon w_3),$$

$$t := (w + w_2)(w + w_1 + w_3).$$

Then

- 1) $k(z_1, z_2, z_3, w_1, w_2, w_3, w)^{\mathfrak{S}_3} = k(\sigma_1, \dots, \sigma_6, v);$
- 2) $k(z_1, z_2, z_3, w_1, w_2, w_3, w)^{\mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}} = k(\sigma_1, \dots, \sigma_6, t).$

In particular, the respective invariant subfields of $k(\mathbb{V})$ are generated by purely transcendental elements, and this proves theorem (2.1).

Proof of (2.9). 2) We observe that $\mathbb{Z}/2\mathbb{Z}$ ($x_i \mapsto y_i$) acts trivially on $z_1, z_2, z_3, w_1, w_2, w_3$ and maps w to $w + w_1 + w_2 + w_3$. It is now easy to see that t is invariant under the action of $\mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}$. Therefore $k(\sigma_1, \dots, \sigma_6, t) \subset K := k(z_1, z_2, z_3, w_1, w_2, w_3, w)^{\mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}}$. By [Cat], lemma (2.8), $[k(z_1, z_2, z_3, w_1, w_2, w_3, t) : k(\sigma_1, \dots, \sigma_6, t)] = 6$, and obviously, $[k(z_1, z_2, z_3, w_1, w_2, w_3, w) : k(z_1, z_2, z_3, w_1, w_2, w_3, t)] = 2$. Therefore $[k(z_1, z_2, z_3, w_1, w_2, w_3, w) : k(\sigma_1, \dots, \sigma_6, t)] = 12$, whence $K = k(\sigma_1, \dots, \sigma_6, t)$.

1) Note that for $W_2 := w_1 + \epsilon w_2 + \epsilon^2 w_3$, $W_3 := w_1 + \epsilon^2 w_2 + \epsilon^3 w_3$, we have: W_2^3 and W_3^3 are invariant under (1, 2, 3) and are exchanged under (1, 2). Therefore v is invariant under the action of \mathfrak{S}_3 and we have seen that $k(\sigma_1, \dots, \sigma_6, v) \subset L := k(z_1, z_2, z_3, w_1, w_2, w_3, w)^{\mathfrak{S}_3}$, in particular $[k(z_1, z_2, z_3, w_1, w_2, w_3, w) : k(\sigma_1, \dots, \sigma_6, v)] \geq 6$. On the other hand, note that $k(z_1, z_2, z_3, w_1, w_2, w_3, w) = k(z_1, z_2, z_3, w_1, w_2, w_3, v)$ (since v is linear in w) and again, by [Cat], lemma (2.8), $[k(z_i, w_i, v) : k(\sigma_1, \dots, \sigma_6, v)] = 6$. This implies that $L = k(\sigma_1, \dots, \sigma_6, v)$. \square

REFERENCES

- [B-C04] Bauer, I., Catanese, F., *Symmetry and variation of Hodge structures*. Asian J. Math., vol.8, n.2, 363–390, (2004)
- [B-K85] Bogomolov, F. A., Katsylo, P. I., *Rationality of some quotient varieties*. Mat. Sb. (N.S.) vol. 126 (168) (1985), no. 4, 584–589.
- [Cat] Catanese, F., *On the rationality of certain moduli spaces related to curves of genus 4* Algebraic geometry (Ann Arbor, Mich., 1981), 30–50, Lecture Notes in Math., 1008, Springer, Berlin (1983).

MATHEMATISCHES INSTITUT, UNIVERSITÄT BAYREUTH, NW II, D-95440 BAYREUTH;
EMAIL: INGRID.BAUER@UNI-BAYREUTH.DE

MATHEMATISCHES INSTITUT, UNIVERSITÄT BAYREUTH, NW II, D-95440 BAYREUTH;
EMAIL: FABRIZIO.CATANESE@UNI-BAYREUTH.DE