THE RATIONALITY OF CERTAIN MODULI SPACES
OF CURVES OF GENUS 3

INGRID BAUER AND FABRIZIO CATANESE

INTRODUCTION

The aim of this paper is to give an explicit geometric description
of the birational structure of the moduli space of pairs (C,n), where
C is a general curve of genus 3 over an algebraically closed field k of
arbitrary characteristic and n € Pic®(C)3 is a non trivial divisor class
of 3-torsion on C.

As it was observed in [B-C04] lemma (2.18), if C' is a general curve
of genus 3 and n € Pic®(C)3 is a non trivial 3 - torsion divisor class,
then we have a morphism ¢, ‘= Q|xotn X QKe—n : C — P! x P!,
corresponding to the sum of the linear systems |K¢ + 5| and |K¢c —
n|, which is birational onto a curve I' C P! x P! of bidegree (4,4).
Moreover, I'" has exactly six ordinary double points as singularities,
located in the six points of the set S := {(z,y)|z # y, =,y € {0, 1,00} }.

In [B-C04] we only gave an outline of the proof (and there is also
a minor inaccuracy). Therefore we dedicate the first section of this
article to a detailed geometrical description of such pairs (C, ), where
C is a general curve of genus 3 and n € Pic°(C)3 \ {0}.

The main result of the first section is the following;:

Theorem 0.1. Let C be a general (in particular, non hyperelliptic)
curve of genus 3 over an algebraically closed field k (of arbitrary char-
acteristic) and n € Pic®(C)3 \ {0}.

Then the rational map @, : C — P x P! defined by

Pu = PlKotnl X PlKo—n 1 C — P! x P!
1s a morphism, birational onto its image I', which is a curve of bidegree
(4,4) having exactly six ordinary double points as singularities. We

can assume, up to composing @, with a transformation of P x P! in
PGL(2,k)?* , that the singular set of T is the set

S :={(z,y) € P! x IP’1|x7éy cx,y €4{0,1,00}}.
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Conversely, if T is a curve of bidegree (4,4) in P x P!, whose singu-
larities consist of exactly sixz ordinary double points at the points of S,
its normalization C' is a curve of genus 3, s.t. Oc(Hy — Hy) =: Oc(n)
(where Hy, Hy are the respective pull backs of the rulings of P! x P!)
yields a non trivial 3 - torsion divisor class, and Oc(Hy) = Oc(Kc+n),
Oc(Hs) = Oc(Kc —1).

From theorem (0.1) it follows that
Ms,, = {(C,n) : C'is a general curve of genus 3, n € Pic’(C);\{0}}
is birational to P(V (4,4, —S))/S3, where

V(4,4,-8) == H'(Op1m (4,4)(=2 Y (ab)).
a#b,a,be{c0,0,1}

In fact, the permutation action of the symmetric group

S3 = 6({o0,0,1}) extends to an action on P!, so &3 is naturally
a subgroup of PGL(2, k). We consider then the diagonal action of G3
on P! x P!, and observe that &3 is exactly the subgroup of PGL(2, k)?
leaving the set S invariant. The action of &3 on V' (4,4, —8) is naturally
induced by the diagonal inclusion &3 C PGL(2,k)?* .

On the other hand, if we consider only the subgroup of order three
of Pic?(C) generated by a non trivial 3 - torsion element 7, we see from
theorem (0.1) that we have to allow the exchange of n with —», which
corresponds to exchanging the two factors of P! x P!,

Therefore Mgy == {(C,(n)) : C general curve of genus 3, (n) =
Z/37 C Pic°(C)} is birational to P(V (4,4, —8) /(63 x Z/2), where the
action of the generator o (of Z/27Z) on V (4,4, —S8) is induced by the
action on P! x P! obtained by exchanging the two coordinates.

Our main result is the following:

Theorem 0.2. Let k be an algebraically closed field of arbitrary char-
acteristic. We have:

1) the moduli space Ms,, is rational;

2) the moduli space M3 1y is rational.

One could obtain the above result abstractly from the method of Bo-
gomolov and Katsylo (cf. [B-K85]), but we prefer to prove the theorem
while explicitly calculating the field of invariant functions. It mainly
suffices to decompose the vector representation of &3 on V(4,4,—S)
into irreducible factors. Of course, if the characteristic of & equals
two or three, it is no longer possible to decompose the &3 - module
V(4,4,—8) as a direct sum of irreducible submodules. Nevertheless,
we can write down the field of invariants and see that it is rational.
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1. THE GEOMETRIC DESCRIPTION OF PAIRS (C,7).

In this section we give a geometric description of pairs (C,n), where
C is a general curve of genus 3 and 7 is a non trivial element of Pic®(C)s,
and we prove theorem (0.1).

Let k be an algebraically closed field of arbitrary characteristic. We
recall the following observation from [B-C04], p.374.

Lemma 1.1. Let C be a general curve of genus 3 and n € Pic®(C)3 a
non trivial divisor class (i.e., n is not linearly equivalent to 0). Then
the linear system | K¢ + 1| is base point free. This holds more precisely
under the assumption that the canonical system |Kq| does not contain
two divisors of the form Q + 3P, Q + 3P’, and where the 3-torsion
divisor class P — P’ is the class of n. This condition for all such n
s in turn equivalent to the fact that C is either hyperelliptic or it is
non hyperelliptic but the canonical image ¥ of C' does not admit two
inflexional tangents meeting in a point Q) of 3.

Proof. Note that P is a base point of the linear system |K¢ + 7] if and
only if
HO<C, OC(KC + 77)) = HO(C, OC(KC +n— P))
Since dimH°(C, Oc (K¢ + 1)) = 2 this is equivalent to
dimHl(C, Oc(Kc +n— P)) =1.

Since H(C, Oc(Kc+n—P)) =2 H°(C,Oc(P—n))*, this is equivalent
to the existence of a point P’ such that P—n = P’ (note that we denote
linear equivalence by the classical notation “=”.) Therefore 3P = 3P’
and P # P', whence in particular H°(C, O¢(3P)) > 2. By Riemann -
Roch we have

dzmHO(C’, Oc(KC - 3P)) =
deg(Kc — 3P) +1 — g(C) + dimH°(C,Oc(3P) > 1.
In particular, there is a point ) such that Q = Ko — 3P = Ko — 3P".

Going backwards, we see that this condition is not only necessary,
but sufficient. If C' is hyperelliptic, then @ + 3P, Q + 3P’ € |K¢| hence
P, P" are Weierstrass points, whence 2P = 2P’, hence P — P’ yields a
divisor class n of 2-torsion, contradicting the nontriviality of 7.

Consider now the canonical embedding of C' as a plane quartic >.
Our condition means, geometrically, that C' has two inflection points
P, P’, such that the tangent lines to these points intersect in Q € C.

We shall show now that the (non hyperelliptic) curves of genus three
whose canonical image is a quartic ¥ with the above properties are
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contained in a five dimesnional family, whence are special in the moduli
space M3 of curves of genus three.

Let now p, g, p’ be three non collinear points in P2. The quartics in
IP? form a linear system of dimension 14. Imposing that a plane quartic
contains the point ¢ is one linear condition. Moreover, the condition
that the line containing p and ¢ has intersection multiplicity equal to
3 with the quartic in the point p gives three further linear conditions.
Similarly for the point p’, and it is easy to see that the above seven
linear conditions are independent. Therefore the linear subsystem of
quartics 3 having two inflection points p, p’, such that the tangent lines
to these points intersect in ¢ € ¥ has dimension 14 -3 -3 -1 = 7.
The group of automorphisms of P? leaving the three points p, ¢, p’
fixed has dimension 2 and therefore the above quartics give rise to a
five dimensional algebraic subset of Ms.

Finally, if the points P, P’, () are not distinct, we have (w.l.o.g.) P =
(@ and a similar calculation shows that we have a family of dimension

7T—-3=4 O
Consider now the morphism

¢n(:= et X Plre—n)) 1 C — P x P
and denote by I' C P! x P! the image of C under ¢,,.

Remark 1.2. 1) Since 7 is non trivial, either I' is of bidegree (4,4),
or degp, = 2 and I' is of bidegree (2,2). In fact deg ¢, = 4 implies
= -

2) We shall assume in the following that ¢, is birational, since oth-
erwise C'is either hyperelliptic (if I is singular) or C' is a double cover
of an elliptic curve I' (branched in 4 points).

In both cases C' lies in a 5 - dimensional subfamily of the moduli
space M3 of curves of genus 3.

Let Py, ..., P, be the (possibly infinitely near) singular points of T',
and let r; be the multiplicity in P; of the proper transform of I". Then,
denoting by Hy, respectively Hy, the divisors of a vertical, respectively
of a horizontal line in P* x P!, we have that I € [4H,+4Hy— " ;P
By adjunction, the canonical system of I is cut out by |2H; + 2H, —
S (r; — 1) P, and therefore

=1
m

4=degKc=T-(2H, +2H, =Y (ri=1)P) =16 — Y ri(r; — 1).
=1

i=1

Hence )", r;(r; — 1) = 12, and we have the following possibilities
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’ \m\(rl,...,rm)‘
i) |1 (4)
i) | 2 (3,3)
4] (3,2.2.2)
V) 6222222

We will show now that for a general curve only the last case occurs,
i.e., I' has exactly 6 singular points of multiplicity 2.

We denote by S the blow up of P! x P! in Py,..., P,,, and let E; be
the exceptional divisor of the first kind, total transform of the point
P;.

We shall first show that the first case (i.e., m = 1) corresponds to
the case n = 0.

Proposition 1.3. Let I' C P! x P! a curve of bidegree (4,4) having a
point P of multiplicity 4, such that its normalization C' € |4Hy+4Hy —
AE| has genus 3 (here, E is the exceptional divisor of the blow up of
P x P! in P.) Then

Oc(Hy) = Oc(Hy) = Oc(Ke).

In particular, if I' = ¢,(C), (i.e., we are in the case m = 1) then
n=0.

Remark 1.4. Let T' be as in the proposition. Then the rational map
P! x P! --» P? given by |H, + H, — FE| maps I' to a plane quartic.
Viceversa, given a plane quartic C’, blowing up two points pi,ps €
(P! x P') \ €’ and then contracting the strict transform of the line
through py,p2, yields a curve I' of bidegree (4,4) having a singular
point of multiplicity 4.

Proof (of the proposition). Let Hy be the full transform of a vertical
line through P. Then there is an effective divisor H; on the blow up S
of P! x P! in P such that H; = H; + E. Since H, - C = E-C = 4, H;
is disjoint from C', whence O¢(H;) = O¢(FE). The same argument for
a horizontal line through P obviously shows that Oc(Hs) = O¢(E). If
ho(C,Oc(H,)) = 2, then the two projections py, ps : I' — P! induce the
same linear series on C, thus ¢y, and ¢, are related by a projectivity
of P!, hence T is the graph of a projectivity of P!, contradicting the
fact that the bidegree of I' is (4,4).

Therefore we have a smooth curve of genus three and a divisor of
degree 4 such that h°(C, O¢(H;)) > 3. Hence h°(C, Oc(Kc—Hy)) > 1,
which implies that Ko = H;. Analogously, Ko = Hs. U
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The next step is to show that for a general curve C' of genus 3, cases
i1) and i77) do not occur. In fact, we show:

Lemma 1.5. Let C be a curve of genus 3 and n € Pic®(C)3\ {0} such
that ¢, is birational and the image ¢, (C') = T' has a singular point
P of multiplicity 3. Then C' belongs to an algebraic subset of M3 of
dimension < 5.

Proof. Let S again be the blow up of P* x P! in P, and denote by
E the exceptional divisor. Then O¢(E) has degree 3 and arguing as
in prop. (1.3), we see that there are points Q1,2 on C such that
Oc(HZ) = Oc<QZ + E) Therefore Oc(@g - Ql) = OC(HQ - Hl) =
Oc(Kc —n — (K¢ + 1)) = Oc(n), whence 3Q1 = 3Q2, Q1 # Q2.
This implies that there is a morphism f : C' — P! of degree 3, having
double ramification in @); and ). By Hurwitz’ formula the degree of
the ramification divisor R is 10 and since R > @)1 + (2 f has at most
8 branch points in P!. Fixing three of these points to be 00,0, 1, we
obatain (by Riemann’s existence theorem) a finite number of families
of dimension at most 5. U

From now on, we shall make the following
Assumptions.
C is a curve of genus 3, n € Pic’(C)3 \ {0}, and
1) |K¢ + n| and |K¢ — 1| are base point free;
2) ¢, : C — T C P! x P! is birational;
3) I' € |4H;+4H,| has only double points as singularities (possibly
infinitely near).

Remark 1.6. By the considerations so far, we know that a general curve
of genus 3 fulfills the assumptions for any n € Pic®(C)3 \ {0}.

We use the notation introduced above: we have 7 : S — P! x P! and
CCS,Cel4H, +4H, — 230  Eil.

Remark 1.7. Since S is a regular surface, we have an easy case of
Ramanujam’s vanishing theorem: if D is an effective divisor which is
1-connected (i.e., for every decomposition D = A + B with A, B > 0,
we have A- B > 1), then H'(S,0s(—D)) = 0.

This follows immediately from Ramanujam’s lemma ensuring that
H°(D,Op) = k, and the long exact cohomology sequence associated
to

0— Og(—D) - Og — Op — 0.
In most of our applications we shall show that D is linearly equivalent
to a reduced and connected divisor (this is a stronger property than
1-connectedness).
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We know now that O¢(H; + Hs) = Oc¢(2K¢), i.e.,

6
Oc = O¢(3H, +3Hy — ) 2E;).

i=1

Since h'(S,Os(—H; — Hy)) = 0, the exact sequence

6
(1) 0— Og(—H, — Hy) — Og(3H, + 3H — Y 2E;) —

=1

6
— Oc¢(3H, +3Hy — » 2E;) = Oc — 0,
i=1
is exact on global sections. ‘
In particular, h°(S, Og(3H, + 3Hy — 3.0_ 2E;)) = 1. We denote by
G the unique divisor in the linear system |3H, +3H, —>.0_, 2E;|. Note
that C NG =0 (since O¢ = Oc(G)).

Remark 1.8. There is no effective divisor Gon S such that G = G+
E;, since otherwise G - C' = —2, contradicting that G and C have no
common component.

This means that G + 22?:1 E; is the total transform of a curve
G’ C P! x P! of bidegree (3,3).

Lemma 1.9. h°(G,0q) = 3, h}(G,Og) = 0.
Proof, Consider the exact sequence
0 — Os(Ks) — Os(Ks + G) — O(Ka) — 0.
Since h°(S, O5(Ks)) = h(S,05(Ks)) = 0, we get
ho(S, Os(Ks + G)) = h°(G, Oc(Ke)).

Now, Ks + G = Hy + Hy — 30| E;, therefore (Kg + G) - C = —4,
whence h%(G, Og(Kg)) = h°(S, 0s(Ks + G)) = 0.

Moreover, ' (G, Oq(Kg)) = (S, Os(Ks+G))+1, and by Riemann
- Roch we infer that, since h'(S, Og(Ks + G)) = h°(S,0s(—G)) = 0,
that hl(S, Os(Ks—i-G)) = 2. J

We will show now that G is reduced, hence, by the above lemma, we
shall obtain that GG has exactly 3 connected components.

Proposition 1.10. G is reduced.
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Proof. By remark (1.8) it is sufficient to show that the image of G in
P! x P!, which we denoted by ¢, is reduced.

Assume that there is an effective divisor A’ on P! x P! such that
3A" < G'. We clearly have A’ N T" # () but, after blowing up the

six points P, ..., Ps, the strict transforms of A’ and of I' are disjoint,
whence A’ and G’ must intersect in one of the P,’s, contradicting remark
(1.8).

If G’ is not reduced, we may uniquely write G' = 2D; + D, with
Dy, Dy reduced and having no common component. Up to exchanging
the factors of P! x P!, we have the following two possibilities:

1) D1 € ‘Hl + HQ‘,

ii) Dy € |Hy|.
In the first case also Dy € |Hy + Hs| and its strict transform is disjoint
from C. Remark (1.8) implies that Dy meets I' in points which do
not belong to Dy, whence Dy has double points where it intersects I.
Since Dy - I' = 8 we see that Dy has two points of multiplicity 2, a
contradiction (D has bidegree (1,1)).

Assume now that D; € |H,|. Then, since 2D;-I" = 8, D; contains 4 of
the P;’s and D, passes through the other two, say Py, P,. This implies
that for the strict transform of Dy we have: Dy = H,+3Hy—2F, —2F5,
whence Dy - C = 8, a contradiction. 0

We write now G = G1 + G + (G5 as a sum of its connected compo-
nents, and accordingly G' = G| + G4, + Gf.

Lemma 1.11. The bidegree of G';, (j € {1,2,3}) is (1,1).

Up to renumbering Py, . .., Ps we have YNNG, = { P, P}, GINGY =
{Ps, Py} and G4HN Gy = {Ps, Ps}.

More precisely, Gy € |Hy + Hy — Ey — Ey — E5 — Ey|, Gy € |H, +
Hy — FEy — Ey— E5 — Eg|, G € |Hi + Hy — E3 — Ey — E5 — Eg|.

Proof. Assume for instance that G’ has bidegree (1,0). Then there is
asubset I C {1,...,6} such that Gy = H, =) _,_; E;. Since G;-C =0,
it follows that |I| = 2. But then G, - (G — G1) = 1, contradicting the
fact that (G is a connected component of G.

Let (a;,b;) be the bidegree of G;: then a;,b; > 1 since a reduced
divisor of bidegree (m,0) is not connected for m > 2. Since ) a; =
> b; = 3, it follows that a; = b; = 1.

Writing now G; = Hy + Hy — Y20, u(j,7) E; we obtain

3 6 6

ZMUJ) =2, Zﬂ(]az) =4, Zﬂ(kal)ﬂ(%l) =2

j=1 i=1 i=1
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since G; - C' = 0) and G}, - G; = 0). We get the second claim of the
lemma provided that we show: pu(j,i) = 1,Vi, j.

The first formula shows that if u(j,7) > 2, then p(j,7) = 2 and
p(h,i) =0 for h # j. Hence the second formula shows that

0> i) (i) + p(k, i) <2,

hkj i=1

contradicting the third formulae. O

In the remaining part of the section we will show that each G/, consists
of the union of a vertical and a horizontal line in P! x P!,
Since O¢(Ke + 1) = Oc(H;) and O¢(Ke — 1) = Oc(Hsy) weget:
6
Oc(2H, — Hy) = Oc(K¢) = Oc(2H, + 2H, — Y Ej),
i=1

whence the exact sequence

6 6
(2) 0— Og(—Hy —4Hy+ > E;) — Os(3H, — Y _E;) —

=1 =1

6
— 00(3H1 - ZEZ) = OC — 0,

i=1
Proposition 1.12. H'(S, Og(—(H, +4H, — Y0, F;))) = 0.

Proof. The result follows immediately by Ramanujam’s vanishing the-
orem, but we can also give an elementary proof using remark 1.7.

It suffices to show that the linear system |H, +4H, — 3.0 | Ej| con-
tains a reduced and connected divisor.

Note that Gy + [3H, — Es — Eg| C |Hy +4Hy — >0, Ey|, and that
|3Hy — E5 — Eg| contains |Hy — E5 — Eg| + |2H,|, if there is a line Ho
containing Py, P, else it contains |Hy — E5| 4+ |Hy — Eg| + |Hz|. Since
Gl'HQZGl'(HQ_E5):Gl'(HQ_E6>:Gl'(HQ_E5_E6):1,
we have obtained in both cases a reduced and connected divisor.

t

Remark 1.13. One can indeed show, using Go + |3Hy — E3 — E4| C
|H,+4Hy — >0 | Ejl and G+ [3Hy — By — Ey| C |Hy +4H, — 0| Ej
that |H, + 4Hy — >0, E;| has no fixed part, and then by Bertini’s
theorem, since (Hy +4Hy — Y0 | F;)? =8 —6 = 2 > 0, a general curve
in [Hy +4H, — Y0, By is irreducible.
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In view of proposition 1.12 the above exact sequence (and the one
where the roles of Hy, Hy are exchanged) yields the following:

Corollary 1.14. For j € {1,2} there is exactly one divisor N; €
6
’3Hj - Zz’:l Eﬁ’
By the uniqueness of i, we see that G = N; + Ny. Denote by NV}

the curve in P* x P! whose total transform is N; + 30| E;.

We have just seen that G is the strict transform of three vertical and
three horizontal lines in P* x P!. Hence each connected component G,
splits into the strict transform of a vertical and a horizontal line. Since
G is reduced, the lines are distinct (and there are no infinitely near
points).

We can choose coordinates in P* x P! such that G} = ({oo} x P})U
(P x {o0}), G = ({0} xPYU(P X {0}) and G4 = ({1}xPHU(P!x{1}).

Remark 1.15. The points Py, ..., Ps are then the points of the set §
previously defined.

Conversely, consider in P xP! the set S := {Py, ..., Ps} = ({00, 0,1} x
{00,0,1}) \ {(00, ), (0,0),(1,1)}. Let 7 : S — P! x P! be the blow
up of the points P, ..., Ps and suppose (denoting the exceptional di-
visor over P; by E;) that C' € |[4H, +4Hy — ) 2E;| is a smooth curve.
Then C has genus 3, Oc(3Hy) = Oc(D_E;) = Oc(3Hs)). Setting
Oc(n) := Oc(Hs — Hy), we obtain therefore 3n = 0.

It remains to show that Oc(n) is not isomorphic to O¢.

Lemma 1.16. 7 is not trivial.

Proof. Assume n = 0. Then O¢(H,) = Oc(Hs) and, since I' has bide-
gree (4, 4), we argue as in the proof of proposition 1.3) that h°(O¢(H;)) >
3, whence Oc(Hl) = Oc(Kc)

The same argument shows that the two peojections of I' to P! yield
two different pencils in the canonical system. It follows that the canon-
ical map of C factors as the composition of C — I' C P! x P! with
the rational map ¢ : P! x P! --s P? which blows up one point and
contracts the vertical and horizontal line through it. Since I' has six
singular points, the canonical map sends C' birationally onto a singular
quartic curve in P?, absurd. O

2. RATIONALITY OF THE MODULI SPACES

In this section we will use the geometric despeription of pairs (C, ),
where C'is a genus 3 curve and 7 a non trivial 3 - torsion divisor class,
and study the birational structure of their moduli space.

More precisely, we shall prove the following
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Theorem 2.1. 1) The moduli space M3, = {(C,n) : C a general
curve of genus 3, n € Pic’(C)3\ {0}} is rational.

2) The moduli space M3 iy = {(C,(n)) : C a general curve of genus
3, (n) 2 7Z/37 C Pic°(C)} is rational.

Remark 2.2. By the result of the previous section, and since any au-
tomorphism of P! x P! which sends the set S to itself belongs to the
group &3 X Z /27, follows immediately that, if we set

V(4,4,-8) == H(Opm (4,4)(=2 Y Py),

i#7,1,j€{00,0,1}

Mg, is birational to P(V' (4,4, =8))/&3, while M3,y is birational
to P(V(4,4,—-S8))/(63 x Z/27), where the generator o of Z /27 acts by
coordinate exchange on P! x P!, whence on V (4,4, —8).

In order to prove the above theorem we will explicitly calculate the
respective subfields of invariants of the function field of P(V' (4,4, —S8))
and show that they are generated by purely transcendental elements.

Consider the following polynomials of V := V(4,4, —8§), which are
invariant under the action of Z/27Z:

fu(z,y) = xgrivgyi,

Joooo (T, ) = i’?rf(xl - 1’0)2y§(’y1 - yo)Q,

foo(w,y) = x5(x1 — 20)*y5 (y1 — o).
Let ev : V — @i=0,1,oo kis =: W be the evaluation map at the three
standard diagonal points, i.e., ev(f) := (f(0,0), f(1,1), f(oc0, 00)).
Since fii(j,7) = 9, we can decompose V = U @ W, where U :=
ker(ev) and W is the subspace generated by the three above poly-
nomials, which is easily shown to be an invariant subspace using the
following formulae (x):

e (1,3) exchanges x¢ with zy, multiplies z; — z¢ by —1,
e (1,2) exchanges w1 — zo with x1, multiplies z¢ by —1,

e (2,3) exchanges xy — z1 with zo, multiplies x; by —1.

In fact, ‘the permutation’ representation W of the symmetric group
splits (in characteristic # 3) as the direct sum of the trivial represen-
tation (generated by e; + ey + e3) and the standard representation,
generated by xg := e; — e, 11 := —eg + e3, which is isomorphic to the
representation on V(1) := H(Op:i(1)).

Note that U = zox1 (21 — 20)yoy1 (Yo — y1) HO (P! x P, Opi,p1 (1, 1)).
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We write V(1,1) := H(P! x P!, Opi,p1(1,1)) = V(1) ® V(1), where
V(1) := H°(P', Op1(1)), is as above the standard representation of S3.

Now V(1) ® V(1) splits, in characteristic # 2,3, as a sum of irre-
ducible representations I & 2 @& W, where the three factors are the
trivial, the alternating and the standard representation of Gs.

Explicitly, V(1) @ V(1) 2 A%(V(1)) & Sym?*(V (1)), and Sym?(V (1))
is isomorphic to W, since it has the following basis zoyo, 191, (1 —
20)(y1 — yo). We observe for further use that Z/27Z acts as the identity
on Sym?(V (1)), while it acts on A%*(V (1)), spanned by x1ys — zoy; via
multiplication by —1.

We have thus seen

Lemma 2.3. If char(k) # 2,3 then the &3 -module V splits as a sum
of irreducible modules as follows:

VoleW) s

Choose now a basis (z1, 29, 23, w1, wa, w3, u) of V, such that the z;’s
and the w;’s are respective bases of I ® W consisting of eigenvectors of
o = (123), and u is a basis element of 2. The eigenvalue of z;, w; with
respect to o = (123) is €71, u is o-invariant and (12)(u) = —u.

Note that if (v1,ve,v3) is a basis of I & W, such that &3 acts by
permutation of the indices, then z; = vy + vy + v3, 20 = V1 + €vy + €203,
23 = U1 + €20y + €v3, where € is a primitive third root of unity.

Remark 2.4. Since z,w; are &3 - invariant, P(V (4,4, —8))/&3 is bi-
rational to a product of the affine line with Spec(k|z2a, 23, wa, w3, u]%?),
and therefore it suffices to compute k|22, 23, wa, w3, u] 2.

Part 1 of the theorem follows now from the following

Proposition 2.5. Let T := 2323, S := 23, A| = zpws + z3w,, Ay :=
ZoWs — z3Wsy. Then

S o
k(za, 23, we, w3, u)"? DO K =

73 T3 T
k(Al,T,S + ?,U(S - ?)7142(5 - ?))7

and [k(zy, 23, wa, w3, u) : K] = 6, hence k(zq, 23, wy, w3, u) = K.

Proof. We first calculate the invariants under the action of o = (123),
i.e., k(z9, 23, Wy, w3, u)?. Note that u, 2023, 20w3, Wows, 25 are o-invariant,
and [k(z2, 23, W, w3, u) : k(u, 2023, 20w3, wows, 25)] = 3. In particular,
k(z2, 23, o, w3, 1)’ = k(u, 2023, 20ws3, wows, z3) =: L.

Now, we calculate L7, with 7 = (12). We first observe that L =
k(T, Ay, Ag, S, u). Since 7(29) = €23, T(23) = €*29 (and similarly for
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way, ws), we see that 7(A;) = Ay and 7(T) = T. On the other hand,
T(u) = —u, T(As) = — Ay, 7(S) = L.

S

Claim. , \ \

L™ =k(A4,T,5+ % u(S — &), A (S — L)) = E.

Proof of the Claim. Obviously A;,T,S + %B,u(S — %3), Ay(S — %3) are

invariant under 7, whence £ C L. Since L = F(S), using the equation
B-S=S52+T3for B ::S+%3,We get that [E(S) : E] < 2.
This proves the claim and the proposition. 0

There remains to show the second part of the theorem.

We denote by 7/ the involution on k(z1, 29, 23, w1, Wy, w3, u) induced
by the involution (z,y) + (y,z) on P! x P!. It suffices to prove the
following

Proposition 2.6. E7 = k(A,,T,S + %3, (u(S — %3))2,142(5 — %3))

Proof. Since [E : k(Ay,T,S + %3, (u(S — %3))2,/12(5’ - %3))] < 2 it

suffices to show that the 5 generators Ay, 7,5+ %3,(11(5— %3))2, Ay(S—
%3) are 7' - invariant. This will now be proven in lemma (2.7). O
Lemma 2.7. 7/ acts as the identity on (z1, 2o, 23, W1, Wa, w3) and sends
U —u.

Proof. We note first that 7" acts trivially on the subspace W generated
by the polynomials f;;.

Since U = xoz1(x1—20)Yoy1 (y1—y0)V (1, 1) and zoz1 (21 —20) yoy1 (Y1 —
Yo) is invariant under exchanging z and y, it suffices to recall that the
action of 7/ on V(1,1) = V(1) ® V(1) is the identity on the subspace
Sym?(V (1)), while the action on the alternating &3 - submodule 2
sends the generator u to —u. O

2.1. Char(k) = 3. In order to prove theorem (2.1) if the characteristic
of k is equal to 3 we describe the &3 -module V as follows:

V=2Wo 2,

where W is the (3-dimensional) permutation representation of Ss.

Let now z1, 29, 23, w1, wo, w3, u be a basis of V such that the action of
S3 permutes z1, 29, 23 (resp. wy, we, ws), and (123) : u — u, (12)u +—
—u. Then we have:

Proposition 2.8. The G3- invariant subfield k(V)®: of k(V) is ratio-
nal.
More precisely, the seven &3 - invariant functions

o1 = 21 + 22 + 23,
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09 = 2129 + 2123 + 2223,
03 = 212223,
04 = 21W1 + 22W2 + 23Ws3,
05 = W122%23 + W2Z123 + W321 22,
06 = wi(20 + 23) + wa(z1 + 23) + w3(21 + 22),
o7 = u(z1(ws — ws3) + zo(ws — wy) + z3(w1 — wy))

form a basis of the purely transcendental extension over k.

Proof. 01,...,07 determine a morphism v : V — A7, We will show
that ¢ induces a birational map ¢ : V/&3 — Al i.e., for a Zariski
open set of V we have: ¢(x) = 1(2’) if and only if there is a 7 € G3
such that x = 7(2’). By [Cat], lemma (2.2), we can assume (after
acting on x with a suitable 7 € &3), that x; = 2/ for 1 < ¢ < 6, and
we know that (setting u := x7, v’ = al)

w(zi (s — xg) + w2(x6 — 4) + 23(T4 — T5)) =
' (x1(x5 — x6) + wo(T6 — T4) + 23(T4 — 5)).

Therefore, if B(xy,...,2s) := x1(x5—x6) +xo(v6—24)+x3(x4—25) # 0,
this implies that u = u/. O

Therefore, we have shown part 1 of theorem (2.1).

We denote again by 7’ the involution on k(z1, 22, 23, w1, we, w3, )
induced by the involution (x,y) — (y,z) on P! x PL. In order to
prove part 2) of thm. (2.1), it sufficies to observe that oy,...,0g, 02

are invariant under 7" and [k(oy,...,07) : k(oy,...,0%)] < 2, whence
(k(V)®8)(Z/22) = k(gy,. .., 02). This proves theorem (2.1).

2.2. Char(k) = 2. Let k be an algebraically closed field of character-
istic 2. Then we can describe the G5 - module V as follows:
VW V(1,1),

where W is the (3 - dimensional) permutation representation of G3. We
denote a basis of W by 2z, 25, 23. As in the beginning of the chapter,
V(1,1) = H(P! x P', Opi,p1(1,1)). We choose the following basis of
V(1,1): wy = z1y1, wa = (w0 + 21)(Yo + Y1), w3 = ToYo, W := ToY.
Then &3 acts on wy, wq, w3 by permutation of the indices and

(1,2) : w— w + ws,

(1,2,3) : w — w + wy + ws.
Let € € k be a nontrivial third root of unity. Then Theorem (2.1) (in
characteristic 2) follows from the following result:
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Proposition 2.9. Let k be an algebraically closed field of characteristic
2. Let 0q,...,06 be as defined in (2.6) and set

v = (w + wy)(wy + ewy + Ews) + (w + wy + ws)(wy + Ewy + ews),

t:=(w~+ w2)(w+ wy + w;3).
Then
1) ]{7(2’1, 22, 23, W1, w27w37w)63 = k(ala e a0—67v)}'

G3XZ/2Z — k(

2) k(217227z37w17w27w37w) 017"'7067t)'

In particular, the respective invariant subfields of k£(V) are generated
by purely transcendental elements, and this proves theorem (2.1).

Proof of (2.9). 2) We observe that Z/2Z (z; — y;) acts trivially on
21, 29, 23, W1, We, w3 and maps w to w + wy + wo + ws. It is now easy
to see that ¢ is invariant under the action of &3 x Z/2Z. Therefore
]{7(0'1, ...,0¢, t) Cc K = k’(Zl, 29, 23, W1, Wa, W3, U})63XZ/QZ. By [Cat],
lemma (2.8), [k(21, 22, 23, Wy, we, ws, t) : k(oy,...,06,t)] = 6, and obvi-
ously, [k(z1, 22, 23, w1, we, w3, w) : k(z1, 29, 23, W1, Wa, w3, t)] = 2. There-
fore [k(z1, 22, 23, w1, wo, w3, w) : k(oy,...,06,t)] = 12, whence K =
k’(O’l, c. ,O'G,t).

1) Note that for Wy := w; + ewy + €2ws, Wy := w; + 2wy + 3ws, we
have: W3 and W3 are invariant under (1,2, 3) and are exchanged un-
der (1,2). Therefore v is invariant under the action of &3 and we have
seen that k(oy,...,06,v) C L := k(z1, 22, 23, w1, we, w3, w)S*, in par-
ticular [k(z1, 22, 23, w1, we, w3, w) : k(oy,...,06,v)] > 6. On the other
hand, note that k(zq, 22, 23, Wy, we, ws, w) = k(21, 22, 23, W1, Wa, w3, V)]
(since v is linear in w) and again, by [Cat], lemma (2.8), [k(z;, w;,v) :
k(o1,...,06,v)] = 6. This implies that L = k(oy,...,06,0). O
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