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ABSTRACT. We study properties of double covers of P? ramified along nodal sextic surfaces
such as non-rationality, Q-factoriality, potential density, and elliptic fibration structures.

We also consider some relevant problems over fields of positive characteristic.
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All varieties are assumed to be projective, normal, and defined over the field C unless
otherwise stated.

1. INTRODUCTION.

For a given variety, it is one of substantial questions whether it is rational or not. Global
holomorphic differential forms are natural birational invariants of smooth algebraic varieties
which solve the rationality problem for algebraic curves and surfaces (see [147]). However,
these birational invariants are not sensitive enough to tell whether a given higher dimen-
sional algebraic variety is non-rational. There are only four known methods to prove the
non-rationality of a higher dimensional algebraic variety (see [79]).

The non-rationality of a smooth quartic 3-fold was proved in [80] using the group of bira-
tional automorphisms as a birational invariant. The non-rationality of a smooth cubic 3-fold
was proved in [39] through the study of its intermediate Jacobian. Birational invariance
of the torsion subgroups of the 3rd integral cohomology groups were used in [4] to prove
the non-rationality of some unirational varieties. The non-rationality of a wide class of
rationally connected varieties was proved in [88] via reductions into fields of positive char-
acteristic (see [34], [89], and [90]). Meanwhile, the method of intermediate Jacobians works
only in 3-folds. In most of interesting cases, the 3rd integral cohomology groups have no
torsion. The method of the paper [88] works in every dimension, but its direct application
gives the non-rationality just for a very general element of a given family. Even though the

method of [80] works in every dimension, the area of its application is not so broad.

For this paper we mainly use the method that has evolved out of [80]. The most significant
concept in the method is the birational super-rigidity that was implicitly introduced in [80].

Definition 1.1. A terminal Q-factorial Fano variety V with Pic(V) = Z is birationally

super-rigid if the following three conditions hold:
1
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(1) the variety V cannot be birationally transformed into a fibration! whose general
enough fiber is a smooth variety of Kodaira dimension —oo;

(2) the variety V' cannot be birationally transformed into another terminal Q-factorial
Fano variety with Picard group Z that is not biregular to V;

(3) Bir(V) = Aut(V).

Implicitly the paper [80] proved that all the smooth quartic 3-folds in P* are birationally
super-rigid. Moreover, some Fano 3-folds with non-trivial group of birational automor-
phisms were also handled by the technique of [80], which gave the following weakened
version of the birational super-rigidity:

Definition 1.2. A terminal Q-factorial Fano variety V with Pic(V) = Z is called biratio-
nally rigid if the first two conditions of Definition 1.1 are satisfied.

It is clear that the birational rigidity implies the non-rationality. Initially the technique
of [80] was applied only to smooth varieties such as quartic 3-folds, quintic 4-folds, certain
complete intersections, double spaces and so on, but later, to singular varieties in [44], [65],
[66], [67], [103], [111], [113], and [119]. Moreover, similar results were proved for many
higher-dimensional conic bundles (see [125] and [126]) and del Pezzo fibrations (see [115]).
Recently, Shokurov’s connectedness principle in [130] shed a new light on the birational
rigidity, which simplified the proofs of old results and helped to obtain new results (see [25],
[29], [42], [49], [114], and [118]).

A quartic 3-fold with a single simple double point is not birationally super-rigid, but it is
proved in [111] to be birationally rigid (for a simple proof, see [42]). However, a quartic
3-fold with one non-simple double point may not necessarily be birationally rigid as shown
in [44]. On the other hand, Q-factorial quartic 3-folds with only simple double points are
birationally rigid (see [103]).

Double covers of P? with at most simple double points, so-called, double solids, were studied
in [37] with a special regard to quartic double solids, i.e., double covers of P3 ramified along
quartic nodal surfaces. It is natural to ask whether a double solid is rational or not. We
can immediately see that all double solids are non-rational when their ramification surfaces
are of degree greater than six. However, if the ramification surfaces have lower degree, then

the problem is not simple.

Smooth quartic double solids are known to be non-rational (see [38], [94], [133], [134], [135],
[136], and [144]), but singular ones can be birationally transformed into conic bundles.
Quartic double solids cannot have more than 16 simple double points (see [12], [53], [92],
[106], and [123]) and in the case of one simple double point they are non-rational as well (see
[13] and [138]). There are non-Q-factorial quartic double solids with six simple double points
that can be birationally transformed into smooth cubic 3-folds (see [91]) and therefore are
not rational due to [39]. On the other hand, some quartic double solids with seven simple

IFor every fibration 7 : Y — Z, we assume that dim(Y) > dim(Z) # 0 and 7.(Oy) = Oz.
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double points are rational (see [91]). In general, the rationality question of singular quartic
double solids can be very subtle and must be handled through the technique of intermediate
Jacobians (see [13], [128], and [129]).

In the present paper we will consider the remaining case — the non-rationality question
of sextic double solids, i.e., double covers of P? ramified along sextic nodal surfaces. To
generate various examples of sextic double solids, we note that a double cover 7 : X — P3
ramified along a sextic surface S C IP? can be considered as a hypersurface

U2 = fﬁ(x):‘h Z,’U))

of degree 6 in the weighted projective space P(1,1,1,1,3), where z, y, z, and w are homo-
geneous coordinates of weight 1, u is a homogeneous coordinate of weight 3, and fg is a

homogeneous polynomial of degree 6.

A smooth sextic double solid is proved to be birationally super-rigid in [77]. Moreover, a
smooth double space of dimension n > 3 was considered in [110]. The birational super-
rigidity of a double cover of P? ramified along a sextic with one simple double point was
proved in [113]. To complete the study in this direction, one needs to prove the following:

Theorem A. Let 7 : X — P? be a Q-factorial double cover ramified along a sextic nodal
surface S C P3. Then X is birationally super-rigid.

As an immediate consequence, we obtain:

Corollary A. Every Q-factorial double cover of P3 ramified along a sextic nodal surface is
non-rational and not birationally isomorphic to a conic bundle.

Remark 1.3. Our proof of Theorem A does not require the base field to be algebraically
closed. Therefore, the statement of Theorems A is valid over an arbitrary field of charac-

teristic zero.

One can try to prove the non-rationality of a sextic double solid using the technique of
intermediate Jacobians (see [13], [128], and [129]), but it seems to be very hard and still
undone even in the smooth case (see [22]) except for the non-rationality of a sufficiently
general smooth sextic double solid via a degeneration technique (see [13], [36], and [138]).

It is worth while to put emphasis on the Q-factoriality condition of Theorem A. Indeed,

rational sextic double solids do exist if we drop the Q-factoriality condition.

Example 1.4. Let X be the double cover of P? ramified in the Barth sextic (see [6]) given
by the equation

42 — ) (T2 — 22 (122 = ) —w? (14 2n) (2 + P+ 22— )P =0

in Proj(Clz,y, z,w]), where 7 = 1%6 Then X has only simple double points and the

number of singular points is 65. Moreover, there is a determinantal quartic 3-fold V c P*
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with 42 simple double points such that the diagram

f
VC—)P4
I |
Pl Iy
v N

X P3

™

commutes (see [53] and [108]), where p is a birational map and + is the projection from one
simple double point of the quartic V. Therefore, the double cover X is rational because
determinantal quartics are rational (see [103] and [108]). In particular, X is not Q-factorial
by Theorem A. Indeed, one can show that Pic(X) = Z and C1(X) = Z'* (see Example 3.7
in [53]).

A point p on a double cover 7 : X — P? ramified along a sextic surface S is a simple double
point on X if and only if the point 7(p) is a simple double point on S. Sextic surfaces
cannot have more than 65 simple double points (see [7], [82], and [143]). Furthermore, for
each positive integer m not exceeding 65 there is a sextic surface with m simple double
points (see [6], [21], and [132]), but in many cases it is not clear whether the corresponding
double cover is Q-factorial or not (see [37], [46], and [53]).

Example 1.4 shows that the Q-factoriality condition is crucial for Theorem A. Accordingly,
it is worth our while to study the Q-factoriality of sextic double solids.

A variety X is called Q-factorial if a multiple of each Weil divisor on the variety X is a
Cartier divisor. The Q-factoriality depends on both local types of singularities and their
global position (see [35], [37], and [103]). Moreover, the Q-factoriality of the variety X
depends on the field of definition of the variety X as well. When X is a Fano 3-fold with
mild singularities and defined over C, the global topological condition

rank(H?(X,Z)) = rank(Hy (X, Z))
is equivalent to the Q-factoriality. The following three examples are inspired by [5], [91],and
[103].
Example 1.5. Let 7 : X — P3 be the double cover ramified along a sextic S and given by
u? + g3 (z,y, z,w) = hi(z,y, z,w) f5(z,y, z,w) C P(1,1,1,1,3),

where g3, h1, and f5 are sufficiently general polynomials defined over R of degree 3, 1, and
5, respectively; x, y, z, w are homogeneous coordinates of weight 1; u is a homogeneous
coordinate of weight 3. Then the double cover X is not Q-factorial over C because the
divisor hy = 0 splits into two non-Q-Cartier divisors conjugated by Gal(C/R) and given by
the equation

(u + \/jlg3($7yv va))(u - \/jgg(x,y, va)) = 0.

The sextic surface S C Proj(Cl[z,y, z, w]) has 15 simple double points at the intersection
points of the three surfaces

{h1(z,y,z,w) =0} N{g3(z,y,z,w) =0} N{f5(x,y, z,w) = 0},
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which gives 15 simple double points of X. Introducing two new variables s and t of weight
2 defined by

_ U+ v —193(%3/, Zaw) _ f5($ayaz7w)
hl(xvyvzaw) U — V—lgg(ac,y,z,w)

+— U — V—1g3(l‘,y,2,’lU) _ f5(.ﬁL’,y,Z,1U)
hl(l',y,Z,UJ) U+ v —193(%’,@/,2,’(/))

we can unproject X C IP(1,1,1,1,3) in the sense of [121] into two complete intersections

{ shi(z,y, z,w) = u+V—1g3(z,y, z,w)

s =

s(u—v=1gs(z,y,2,w)) = f5(z,y, 2, w)
thi(z,y, z,w) = u — V—1g3(z,y, 2, w)
e {t(u +V=1gs(@,y, 2, 0) = fs(w,y, 2, 0)
respectively, which are not defined over R. Eliminating variable u, we get
Vi = {s*hy — 2v/—1sg3 — f5 = 0} C P(1,1,1,1,2)
{ Vi = {t?hy + 2v/—1tgs — f5 =0} C P(1,1,1,1,2)

and for the unprojections ps : X --+ Vs and p; : X --+ V; we obtain a commutative diagram

Y, Yy
NN
Ps Pt

Ve<--Z--- x---%-- - Vi

} cP(1,1,1,1,3,2)

} c P(1,1,1,1,3,2),

with birational morphisms ¢s, Vs, ¢¢, and 1, such that ¥5 and ¥; are extremal contractions
in the sense of [41], while ¢s and ¢; are flopping contractions. Both the weighted hypersur-
faces Vs and V; are quasi-smooth (see [75]) and Q-factorial with Picard groups Z (Lemma 3.5
in [43], Lemma 3.2.2 in [50], Théoréme 3.13 of Exp. XI in [68], see also [20]). Moreover,
Vs and V; are projectively isomorphic in P(1,1,1,1,2) by the action of Gal(C/R) = Zs. In
particular,
Pic(Y,) = Pic(Y,) 2 Z & Z;

Ys and Y; are Q-factorial; CI(X) = Z @ Z. However, the Gal(C/R)-invariant part of the
group CI(X) is Z. Thus the 3-fold X is Q-factorial over R. It is therefore birationally
super-rigid and non-rational over R by Theorem A. It is also not rational over C because
Vs = V; is birationally rigid (see [43]). Moreover, the involution of X interchanging fibers
of 7 induces a non-biregular involution 7 € Bir(Vs) which is regularized by ps, i.e., the
self-map p;to7ops: X — X is biregular (see [32]).

Example 1.6. Let V C P* be a quartic 3-fold with one simple double point 0. Then the
quartic V' is Q-factorial and Pic(V') = Z. In fact, V can be given by the equation
t2f2($7 Y, z, U}) + tfg(l’, Y, z, ’LU) + f4($7 Y, z, U}) =0C ]P)4 = PI‘Oj(C[ZC, Y, z,w, t])

Here, the point o is located at [0 : 0 : 0 : 0 : 1]. It is well known that the quartic 3-fold
V' is birationally rigid and hence non-rational (see [42], [103], and [111]). However, the
quartic V' is not birationally super-rigid because Bir(V') # Aut(V'). Indeed, the projection
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¢V --» P3 from the point o has degree 2 at a generic point of V and induces a non-
biregular involution 7 € Bir(V').

Let f : Y — V be the blow up at the point o. Then the linear system | — nKy| is free
for some natural number n > 0 and gives a birational morphism g = ¢|_,x |+ Y — X
contracting every curve C; C Y such that f(C;) is a line on V passing through the point
0. We then obtain the double cover 7 : X — P3 ramified along the sextic surface S C P3
given by the equation

f32<x7 y7 Z7w) - 4f2<x7 y7 Z7w)f4($7y7 27 w) = 0'
The variety X, a priori, has canonical Gorenstein singularities.

We suppose that V' is general enough. Each line f(C;) then corresponds to an intersection
point of three surfaces

{fg(ﬂ:,y,z,w) = 0} N {fg(x,y,z,w) = 0} N {f4(x,y,z,w) = 0}

in P3 = Proj(Clxz,y, z,w]) which gives 24 different smooth rational curves Cy,Ca,--- ,Cay
on Y. For each curve C; we have

Nyse, 2 Oc,(—1) ® Oc,(-1)

and hence the morphism ¢ is a standard flopping contraction which maps every curve C;
to a simple double point of the 3-fold X. In particular, the sextic S C P? has exactly 24
simple double points. However, the 3-fold X is not Q-factorial and CI(X) =7Z @ Z.

1 is biregular on X and interchanges

Put p := go f~!. Then the involution v = po 70 p~
the fibers of the double cover w. Thus the map p is a regularization of the birational

non-biregular involution 7 in the sense of [32], while the commutative diagram

is a decomposition of the birational involution 7 € Bir(V) in a sequence of elementary links
(or Sarkisov links) with a mid-point X (see [41], [43], and [78]).

Suppose that fo(z,y, z,w) and fi(x,y, z,w) are defined over Q and
f3($, Y, 2, U)) = \/593(:67 Y, z, UJ),

where g3(z,y, z,t) is defined over Q as well. Then the quartic 3-fold V is defined over Q(1/2)
and not invariant under the action of Gal(Q(+/2)/Q). However, the sextic surface S C P3
is given by the equation

2g§(x7y7sz) - 4f2(x7y7sz)f4(x7ya Zaw) =0C P?) = Proj(@[z,y,z,w]),

which implies that the 3-fold X is defined over Q as well. Moreover, the Gal(Q(v/2)/Q)-
invariant part of the group Cl(X) is Z. Therefore, the 3-fold X is Q-factorial and birationally
super-rigid over Q by Theorem A and Remark 1.3.
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Example 1.7. Let V be a smooth divisor of bidegree (2,3) in P! x P3. The 3-fold V is
then defined by the bihomogeneous equation

f3(x7y7 Z7w)32 + 93(37711/7 2, UJ)St + h3(x7y7 2, w)tz = 07

where f3, g3, and hs are homogeneous polynomial of degree 3. In addition, we denote the
natural projection of V to P3 by 7w : V — P3. Suppose that the polynomials fs, g3, and
hs are general enough. The 3-fold V' then has exactly 27 lines C7,Co, -+ ,Co7 such that
— Ky - C; = 0 because the intersection

{fs(z,y,z,w) =0} N{gs(z,y, z,w) = 0} N {hs(x,y, z,w) =0}

in P3 consists of exactly 27 points. The projection 7 has degree 2 in the outside of the 27
points 7(C;). The anticanonical model

Proj | @ H (V, Oy (—nKv))

n>0

of V is the double cover X of P? ramified along the nodal sextic S defined by

g (x,y, z,w) — 4f3(x,y, 2, w)hs(z,y, 2, w) = 0.
It has exactly 27 simple double points each of which comes from each line C;. The morphism
@-k,| » V — X given by the anticanonical system of V' contracts these 27 lines to the
simple double points. Therefore, it is a small contraction and hence the double cover X
cannot be Q-factorial. A generic divisor of bidegree (2, 3) in P! x P3 over C is known to be
non-rational (see [5], [33], and [131]), and hence the double cover X is also non-rational.

As shown in Examples 1.5, 1.6, and 1.7, there are non-Q-factorial sextic double solids with
15, 24, and 27 simple double points. However, we will prove the following:

Theorem B. Let 7 : X — P3 be a double cover ramified along a nodal sextic surface
S C P3. Then the 3-fold X is Q-factorial when #|Sing(S)| < 14 and it is not Q-factorial
when #| Sing(S)| > 57.

Using Theorem A with the theorem above, we immediately obtain:

Corollary B. Let m : X — P3 be a double cover ramified along a sextic S C P3 with at
most 14 simple double points. Then X is birationally super-rigid. In particular, X s not

rational and not birationally isomorphic to a conic bundle.

In [21], there are explicit constructions of sextic surfaces in P? with each number of simple
double points not exceeding 64, which give us many examples of non-rational singular sextic
double solids with at most 14 simple double points.

Besides the birational super-rigidity, a Q-factorial double cover of P? ramified in a sextic
nodal surface has other interesting properties. Implicitly the method of [80] to prove the
birational (super-)rigidity also gives us information on birational transformations to elliptic
fibrations and Fano varieties with canonical singularities.
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Construction A. Consider a double cover 7 : X — P3 ramified along a sextic S C P3
with a simple double point o. Let f : W — X be the blow up at the point o. Then the
anticanonical linear system | — K| is free and the morphism ¢|_g,,| : W — P? is an
elliptic fibration such that the diagram

w X
] b

is commutative, where  : P3 ——» P2 is the projection from the point (o).

It is a surprise that some double covers of P? ramified in nodal sextics can be birationally
transformed into elliptic fibrations in a way very different from the one described in Con-

struction A.

Construction B. Let 7 : X — P3 be a double cover ramified along a sextic S C P? such
that the surface S contains a line L C P? and the line L passes through exactly four simple
double points of S. For a general enough point p € X, there is a unique hyperplane H, C P3
containing w(p) and L. The set LN (C'\Sing(S)) consists of a single point q,, where C C H,
is the quintic curve given by SN H, = LUC. The two points w(p) and g, determine a line
Ly, in P3. Define a rational map 2 : X --+ Grass(2,4) by Z1(p) = L,. The image of the
map 2y, is isomorphic to P2, hence we may assume that the map 21, is a rational map of X
onto P?. Obviously the map =y, is not defined over L, the normalization of its general fiber
is an elliptic curve, and a resolution of indeterminacy of the map =1, birationally transforms
the 3-fold X into an elliptic fibration.

In this paper we will prove that these two constructions are essentially the only ways to
transform X birationally into an elliptic fibration when X is Q-factorial.

Theorem C. Let m: X — P3 be a Q-factorial double cover ramified along a nodal sextic
S. Suppose that we have a birational map p : X --» Y, where 7 :' Y — Z is an elliptic
fibration. Then one of the following holds:

(1) there are a simple double point o on X and a birational map 3 : P* -~» Z such that

the projection ~y from the point w(o) makes the diagram

X------ -y
P3*Z>P2*€>Z

commute.
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(2) the sextic S contains a line L C P with #|Sing(S)NL| = 4 and there is a birational
map (B :P? --» Z such that the diagram

1§ commutative, where =1 is the rational map defined in Construction B.

In the case of one simple double point, Theorem C was proved in [27].

Corollary C1. All birational transformations of a Q-factorial double cover of P? ramified

2

along a sextic nodal surface into elliptic fibrations® are described by Constructions A and B.

The following result was also proved in [24].

Corollary C2. A smooth double cover X of P? ramified along a sextic surface S C P3

cannot be birationally transformed into any elliptic fibration.

Remark 1.8. Let X be a double cover of P? ramified in a sextic surface S C P? such that
the surface S has a double line (see [67]). Then the set of birational transformations of X
into elliptic fibrations is infinite and cannot be effectively described (see [31]).

The statement of Theorem C is valid over an arbitrary field ' of characteristic zero, but in
Construction A the singular point must be defined over [F as we see in the example below.
Similarly the same has to be satisfied for Theorem D, but the total number of singular

points on a line must be counted in geometric sense (over the algebraic closure of ).

Example 1.9. Let X be the double cover of P? ramified in a sextic S C P? and defined by
the equation

u? =28 + 295 + 45 + (. + ) (2° — 220" + y(2* — 20Y) (2 — 3w)

in P(1,1,1,1,3). Then X is smooth in the outside of 4 simple double points given by
x =y =2*—2w* = 0. Hence, X is Q-factorial, birationally super-rigid, and non-rational
over C by Theorems A and B. Moreover, x = y = 0 cuts a curve C C X such that
—Kx -C =1 and n(C) C S is a line. Therefore, X can be birationally transformed
over C into exactly 5 elliptic fibrations given by Constructions A and B. However, the
3-fold X defined over Q is birationally isomorphic to only one elliptic fibration given by
Construction B.

Birational transformations of other higher-dimensional algebraic varieties into elliptic fi-
brations were studied in [24], [25], [26], [28], [29], [30], [31], and [124]. It turns out that

2Fibrations 71 : U1 — Z1 and 72 : U2 — Z2 can be identified if there are birational maps a : Uy --» Us
and B : Z1 --+ Z3 such that 7 o o = B o7 and the map « induces an isomorphism between generic fibers

of 71 and 79.
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classification of birational transformations into elliptic fibrations implicitly gives classifica-
tion of birational transformations into canonical Fano 3-folds.

In the present paper we will prove the following result.

Theorem D. Let 7 : X — P3 be a Q-factorial double cover ramified in a nodal sextic
S C P3. Then X is birationally isomorphic to a Fano 3-fold with canonical singularities
that is not bireqular to X if and only if the sextic S contains a line L passing through 5
simple double points of the surface S C P3.

During the proof of Theorem D, we will explicitly describe the constructions of all possible
birational transformations of sextic double solids into Fano 3-folds with canonical singular-

ities.

Example 1.10. Let X be the double cover of P3 ramified in a sextic S C P? and defined
by the equation
u? =28 + 2 + o + (2 +y)(2° — 2wt

in P(1,1,1,1,3). Then X is smooth in the outside of 5 simple double points given by
r =y = z(z* —w’) = 0. For the same reason as in Example 1.9, the double cover X is
Q-factorial, birationally super-rigid, and non-rational. As for elliptic fibrations, it can be
birationally transformed into 5 elliptic fibrations given by Construction A. Also, the 3-fold
X is birationally isomorphic to a unique Fano 3-fold with canonical singularities that is not

biregular to X.

The statements of Theorems A, C, and D are valid over all fields of characteristic zero,
but over fields of positive characteristic some difficulties may occur. Indeed, the vanishing
theorem of Yu.Kawamata and E.Viehweg (see [84], [142]) is no longer true in positive charac-
teristic. Even though there are some vanishing theorems over fields of positive characteristic
(see [55], [127]), they are not applicable to our case. A smooth resolution of indeterminacy
of a birational map may fail as well because it implicitly uses resolution of singularities
(see [74]) which is completely proved only in characteristic zero. However, resolution of
singularities for 3-folds is proved in [1] for the case of characteristic > 5 (see also [45]).

Consider the following very special example.

Example 1.11. Suppose that the base field is F5 = Z/5Z. Let X be the double cover of
P3 = Proj(Fs[z,y, 2, w]) ramified along the sextic S given by the equation

x5y + x4y2 + x2y3z — y5z — 2t p a2+ yz5 + x3y2w + 2x2y3w—

2_ xzyw3 + a:y2w3 + z?zwd + xyw4 + zw® + 2yw5 = 0.

—xy2Pw — ry2tw
Then X is smooth (see [52] and [63]) and Pic(X) = Z by Lemma 3.2.2 in [50] or Lemma 3.5
in [43] (see [20] and [68]). Moreover, X contains a curve C' given by the equations z =y =0
whose image in P3 is a line L contained in the sextic S C P3. For a general enough point
p € X, there is a unique hyperplane H, C P3 containing 7(p) and L. The residual quintic

curve Q C Hy, given by SNH, = LUQ intersects L at a single point ¢, with mult, (Q[z) = 5.



SEXTIC DOUBLE SOLIDS 11

The two points 7(p) and ¢, determine a line L, in P3. As in Construction B we can define
a rational map ¥ : X --» P? by the lines L,. As we see, the situation is almost same as
that of Construction B. We, at once, see that a resolution of indeterminacy of the map ¥
birationally transforms the 3-fold X into an elliptic fibration.

Therefore, Theorem C and even Corollary C2 are not valid over some fields of positive
characteristic. We will however prove the following result:

Theorem E. Let w: X — P? be a double cover defined over a perfect field F and ramified
along a sextic nodal surface S C P3. Suppose that X is Q-factorial and Pic(X) = Z. Then
X is birationally super-rigid and birational maps of X into elliptic fibrations are described
by Constructions A and B if char(F) > 5.

Non-rationality and related questions like non-ruledness or birational rigidity over fields of
positive characteristic may be interesting in the following cases:

(1) arithmetics of algebraic varieties over finite fields (see [54], [93], and [107]);

(2) classification of varieties over fields of positive characteristic (see [102] and [127]);

(3) algebro-geometric coding theory (see [18], [61], [62], [73], [137], and [140]);

(4) proofs of the non-rationality of certain higher-dimensional varieties by means of
reduction into fields of positive characteristic (see [34], [88], [89], and [90]), where
even non-perfect fields may appear in some very subtle questions as in [90].

In arithmetic geometry, it is an important and difficult problem to measure the size of the
set of rational points on a given variety defined over a number field F. One of the most
profound works in this area is, for example, Faltings Theorem that a smooth curve of genus
at least two defined over a number field F has finitely many F-rational points (see [56]).
One of higher dimensional generalizations of the theorem is the Weak Lang Conjecture that
the set of rational points of a smooth variety of general type defined over a number field is

not Zariski dense, which is still far away from proofs.

A counterpart of the Weak Lang Conjecture is the conjecture that for a smooth variety X
with ample — K x defined over a number field F there is a finite field extension of the field
F over which the set of rational points of X is Zariski dense. We can easily check that this
conjecture is true for curves and surfaces, where the condition implies that X is rational
over some finite field extension. Therefore, smooth Fano 3-folds are the first nontrivial cases

testing the conjecture.

Definition 1.12. The set of rational points of a variety X defined over a number field F
is said to be potentially dense if for some finite field extension K of the field F the set of
K-rational points of X is Zariski dense in X.

Using elliptic fibrations, [15] and [70] have proved:

Theorem 1.13. The set of rational points is potentially dense on all smooth Fano 3-folds
defined over a number field F possibly except double covers of P3 ramified along smooth

sextics.
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Arithmetic properties of algebraic varieties are closely related to their biregular and bira-
tional geometry (see [8], [9], [10], [11], [58], [95], [96], [97], [98], [99], [100], and [101]). For
example, the possible exception appears in Theorem 1.13 because smooth double covers of
IP? ramified in sextics are the only smooth Fano 3-folds that are not birationally isomorphic
to elliptic fibrations (see [81]). Besides Fano varieties, on several other classes of algebraic
varieties the potential density of rational points has been proved (see [15], [16], and [17]).

In Section 8 we prove the following result:

Theorem F. Let 7 : X — P3 be a double cover defined over a number field F and ramified
along a sextic nodal surface S C P3. If Sing(X) # @, then the set of rational points on X
are potentially dense.

As shown in Theorem C, the sextic double solid can be birationally transformed into an
elliptic fibration if it has a simple double point. Therefore, we can adopt the methods of
[15] and [70] in this case.

Acknowledgement. We would like to thank V.Alexeev, F.Bogomolov, A.Corti, M.Grinenko,
V .Iskovskikh, M.Mella, A.Pukhlikov, V.Shokurov, Yu.Tschinkel, and L.Wotzlaw for help-
ful conversations. This work has been done during the first author’s stay at KIAS and
POSTECH in Korea. We would also like to thank them for their hospitality. The second
author has been partially supported by POSTECH BSRI research fund-2004.

2. MOVABLE LOG PAIRS AND NOTHER-FANO INEQUALITIES.

To study sextic double solids we frequently use movable log pairs introduced in [2]. In
this section we overview their properties and Nother-Fano inequalities that are the most
important tools for birational (super-)rigidity.

Definition 2.1. On a variety X a movable boundary Mx = >""" | a;M, is a formal finite
Q-linear combination of linear systems M; on X such that the base locus of each M;
has codimension at least two and each coefficient a; is non-negative. A movable log pair
(X, Mx) is a variety X with a movable boundary Mx on X.

Every movable log pair can be considered as a usual log pair by replacing each linear system
by its general element. In particular, for a given movable log pair (X, M x) we may handle
the movable boundary M x as an effective divisor. We can also consider the self-intersection
M3 of Mx as a well-defined effective codimension-two cycle when X is Q-factorial. We
call Kx + Mx the log canonical divisor of the movable log pair (X, Mx). Throughout the
rest of this section, we will assume that log canonical divisors are Q-Cartier divisors.

Definition 2.2. Movable log pairs (X, Mx) and (Y, My ) are birationally equivalent if
there is a birational map p : X --» Y such that My = p(Mx).

The notions such as discrepancies, (log) terminality, and (log) canonicity can be defined for
movable log pairs as for usual log pairs (see [86]).
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Definition 2.3. A movable log pair (X, M) has canonical (terminal, resp.) singularities
if for every birational morphism f: W — X each discrepancy a(X, Mx, E) in

Kw + [~ (Mx) ~q [*(Kx + Mx) + > a(X, Mx, E)E

E: f-exceptional divisor

is non-negative (positive, resp.).

Example 2.4. Let M be a linear system on a 3-fold X with no fixed components. Then
the log pair (X, M) has terminal singularities if and only if the linear system M has only

isolated simple base points which are smooth points on the 3-fold X.

Log Minimal Model Program holds good for three-dimensional movable log pairs with canon-
ical (terminal) singularities (see [2] and [86]). In particular, it preserves their canonicity

(terminality).

Every movable log pair is birationally equivalent to a movable log pair with canonical or
terminal singularities. Away from the base loci of the components of its boundary, the

singularities of a movable log pair coincide with those of its variety.

Definition 2.5. A proper irreducible subvariety Y C X is called a center of the canonical
singularities of a movable log pair (X, M) if there are a birational morphism f: W — X
and an f-exceptional divisor E C W such that the discrepancy a(X, Mx,F) < 0 and
f(E) =Y. The set of all the centers of the canonical singularities of the movable log pair
(X, Mx) will be denoted by CS(X, Mx).

Note that a log pair (X, M) is terminal if and only if CS(X, Mx) = @.

Let (X, Mx) be a movable log pair and Z C X be a proper irreducible subvariety such that
X is smooth along the subvariety Z. Then elementary properties of blow ups along smooth
subvarieties of smooth varieties imply that

Z e CS(X,Mx) = multz(Mx) >1
and in the case when codim(Z C X) = 2 we have

Z € CS(X,Mx) <= multyz(Mx) > 1.

For a movable log pair (X, Mx) we consider a birational morphism f : W — X such that
the log pair (W, My := f~1(Mx)) has canonical singularities.

Definition 2.6. The number x(X, Mx) = dim(¢jnm(iy+ry)|(W)) for n > 0 is called
the Kodaira dimension of the movable log pair (X, M), where m is a natural number such
that m(Kw + My ) is a Cartier divisor. When |nm(Kw + My/)| = @ for all n € N, the
Kodaira dimension (X, Mx) is defined to be —oco.

Proposition 2.7. The Kodaira dimension of a movable log pair is well-defined. In partic-
ular, it does not depend on the choice of the birationally equivalent movable log pair with

canonical singularities.
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Proof. Let (X, Mx) and (Y, My) be movable log pairs with canonical singularities such
that there is a birational map p : Y --» X with Mx = p(My). Choose positive integers
mx and my such that both mx(Kx + Mx) and my (Ky + My) are Cartier divisors. We
must show that either

Inmx (Kx + Mx)| = |[nmy (Ky + My)| =@ for alln e N

or
dim(¢\nmX(Kx+Mx)|(X)) = dim(gb\nmy(Ky—&-MY)‘(Y)) for n>> 0.

We consider a Hironaka hut of p : Y --» X, i.e., a smooth variety W with birational

morphisms g : W — X and f: W — Y such that the diagram

commutes. We then obtain
Kw + My ~q ¢"(Kx + Mx) +Xx ~q f"(Ky + My) + Zy,

where My, = g~} (Mx), ©x and Xy are the exceptional divisors of g and f respectively.
Because the movable log pairs (X, Mx) and (Y, My) have canonical singularities, the
exceptional divisors ¥ x and Yy are effective and hence the linear systems |n(Kw + My)|,
lg* (n(Kx +Mx))|, and |f*(n(Ky + My))| have the same dimension for a big and divisible
enough natural number n. Moreover, if these linear systems are not empty, then we have

Pn(Kw+Mw)l = Plg*(n(Kx+Mx)| = Plf*(n(Ky+My))|>
which implies the claim. O

By definition, the Kodaira dimension of a movable log pair is a birational invariant and a
non-decreasing function of the coefficients of the movable boundary.

Definition 2.8. A movable log pair (V, My ) is called a canonical model of a movable log
pair (X, Mx) if there is a birational map ¢ : X --» V such that My = ¥(Mx), the
movable log pair (V, My ) has canonical singularities, and the divisor Ky + My is ample.

Proposition 2.9. A canonical model of a movable log pair is unique if it exists.

Proof. Let (X, Mx) and (Y, My) be canonical models such that there is a birational map
p:Y --» X with Mx = p(My). Take a smooth variety W with birational morphisms
g: W — X and f: W — Y such that the diagram

commutes. We have

Kw + Mw ~Q g*(KX +Mx) +Xx ~Q f*(Ky —i—My) + Xy,
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where My = g Y (Mx) = f~1(My), x and Ly are the exceptional divisors of birational
morphisms g and f respectively. Let n € N be a big and divisible enough number such that
n(Kw + Mw), n(Kx + Mx), and n(Ky + My ) are Cartier divisors. For the same reason
as in the proof of Proposition 2.7 we obtain

Dln(Kw+Mw)| = Pl (n(Kx+Mx))| = O f*(n(Ky+My))|

Therefore, the birational map p is an isomorphism because Kx + Mx and Ky + My are
ample. ]

The existence of the canonical model of a movable log pair implies that its Kodaira dimen-
sion equals to the dimension of the variety.

Nother-Fano inequalities can be immediately reinterpreted in terms of canonical singularities
of movable log pairs. For reader’s understanding, we give the theorems and their proofs
on the relation between singularities of movable log pairs and birational (super-)rigidity.
In addition, with del Pezzo surfaces of Picard number 1 defined over non-closed fields, we
demonstrate how to apply the theorems, which is so simple that one can easily understand.

The following result is known as a classical Nother-Fano inequality.

Theorem 2.10. Let X be a terminal Q-factorial Fano variety with Pic(X) = Z. If every
movable log pair (X, Mx) with Kx + Mx ~q 0 has canonical singularities, then X is

birationally super-rigid.

Proof. Suppose that there is a birational map p : X --» V such that V is a Fano variety with
Q-factorial terminal singularities and Pic(V') = Z. We are to show that p is an isomorphism.
Let My = 7| —nKy| and Mx = p~}(My) for a natural number n >> 0 and a rational
number r > 0 such that Ky + Mx ~q 0. Because | — nKy| is free for n > 0 and V has at
worst terminal singularities, the log pair (V, My ) has terminal singularities. In addition,
the equality

K(X,Mx) =kr(V,My) =0.
implies that the divisor Ky 4+ My is nef; otherwise the Kodaira dimension x(V, My ) would
be —occ.
Let f: W — X be a birational morphism of a smooth variety W such that g = po f is a
morphism. Then

I
Kw + Mw = f*(Kx + Mx) +>_a(X, Mx, F)F; + Y _ a(X, Mx, Ey)Ej

3

=1 k=1
lo m

=g (Kv + My)+ Z a(V,My,G;)G; + Z a(V, My, Ey) Ek,
=1 k=1

where My = f~1(Myx), each divisor F; is f-exceptional but not g-exceptional, each di-
visor G is g-exceptional but not f-exceptional, and each Ej is both f-exceptional and
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g-exceptional. Applying Lemma 2.19 in [87], we obtain
a(X, Mx, Ex) = a(V, My, Ek)

for each k and we see that there is no g-exceptional but not f-exceptional divisor, i.e.,
l2 = 0 because the log pair (V, My ) has terminal singularities. Furthermore, there exits no
f-exceptional but not g-exceptional divisor, i.e., I1 = 0 because the Picard numbers of V
and X are the same. Therefore, the log pair (X, Mx) has at worst terminal singularities.
For some d € Qs1, both the movable log pairs (X,dMx) and (V,dMy ) are canonical
models. Hence, p is an isomorphism by Proposition 2.9.

We now suppose that we have a birational map x : X --» Y of X into a fibration7: Y — Z,
where Y is smooth and a general fiber of 7 is a smooth variety of Kodaira dimension —oc.
Let My = c|7*(H)| and Mx = x~!(My), where H is a very ample divisor on Z and ¢
is a positive rational number such that Kx + Mx ~g 0. Then the Kodaira dimension
k(X, Mx) is zero because the log pair (X, Mx) has at worst canonical singularities and
Kx + Mx ~qg 0. However, the Kodaira dimension x(Y, My) = —oo. This contradiction
completes the proof. O

The proof of Theorem 2.10 shows a condition for the Fano variety X to be birationally rigid
as follows:

Corollary 2.11. Let X be a terminal Q-factorial Fano variety with Pic(X) = Z. Suppose
that for every movable log pair (X, Mx) with Kx +Mx ~q 0 either the singularities of the
log pair (X, Mx) are canonical or the divisor —(Kx +p(Mx)) is ample for some birational
automorphism p € Bir(X). Then X is birationally rigid.

Log Minimal Model Program tells us that the condition in Theorem 2.10 is a necessary and
sufficient one for X to be birationally super-rigid.

Proposition 2.12. Let X be a terminal Q-factorial Fano 3-fold with Pic(X) = Z. Then X
is birationally super-rigid if and only if every movable log pair (X, Mx) with Kx+Mx ~g 0
has at worst canonical singularities.

Proof. Suppose that X is birationally super-rigid. In addition, we suppose that there is a
movable log pair (X, M x) with non-canonical singularities such that Kx + Mx ~qg 0. Let
f: W — X be a birational morphism such that the log pair (W, My := f~}(Mx)) has
canonical singularities. Then

k k
Kw + Mw = [*(Kx + Mx) + Y a(X, Mx, E)E; ~¢ Y _ a(X, Mx, E)E;,
=1 =1

where E; is an f-exceptional divisor and a(X, My, E;) < 0 for some j.
Applying relative Log Minimal Model Program to the log pair (W, My) over X we

may assume Ky + My is f-nef. Then, Lemma 2.19 in [87] immediately implies that
a(X, Mx, E;) <0 for all i. Log Minimal Model Program for (W, My ) gives a birational
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map p of W into a Mori fibration space Y, i.e., a fibration 7 : Y — Z such that —Ky is
m-ample, the variety Y has Q-factorial terminal singularities, and Pic(Y/Z) = Z. However,

-1

the birational map po f~" is not an isomorphism. O

Despite its formal appearance, Theorem 2.10 can be effectively applied in many different
cases. For example, the following result in [95] and [96] is an application of Theorem 2.10.

Theorem 2.13. Let X be a smooth del Pezzo surface defined over a perfect field F with
Pic(X) 2 Z and K% < 3. Then X s birationally rigid and non-rational over F.

Proof. Suppose that X is not birationally rigid. Then there is a movable log pair (X, Mx)
defined over F such that Kx + Mx ~g 0 and that is not canonical at some smooth point
o € X. Therefore, mult,(Mx) > 1 and

3> K% = M% > mult’(Mx) deg(o ® F) > deg(o ® F),

where F is the algebraic closure of the field F. In the case Kg( = 1, the strict inequality is
a contradiction. Moreover, if Kgg = 2, then the point o is defined over F and if K g’( =3,
then the point o splits into no more than two points over the field F.

Suppose that KE{ is either 2 or 3. Let f: V — X be the blow up at the point 0. Then
Kt = K% —deg(o®F)

and V' is a smooth del Pezzo surface because Pic(X) = Z, the inequality mult,(Mx) > 1
holds, and the boundary Mx is movable. The double cover ¢|_f,,| induces an involution
7 € Bir(X) that is classically known as Bertini or Geizer involution. Simple calculations
show the ampleness of divisor —(Kx + 7(Mx)), which contradicts Corollary 2.11. O

The proofs of Theorems 2.10 and 2.13 and Lemma 5.3.1 in [90] imply that a result similar
to Theorem 2.13 holds over a non-perfect field as well. Indeed, one can prove that a non-
singular del Pezzo surface X defined over non-perfect field F is non-rational over F and is
not birationally isomorphic over F to any non-singular del Pezzo surface Y with Pic(Y) = Z,
which is smooth in codimension one, if Pic(X) & Z and K% < 3.

Most applications of Theorems 2.10 have the pattern of the proof of Theorem 2.13 implicitly.
The following result can be considered as a weak Nother-Fano inequality.

Theorem 2.14. Let X be a terminal Q-factorial Fano variety with Pic(X) =2 Z,p: X --» Y
a birational map, and ™ :' Y — Z a fibration. Suppose that a general enough fiber of m is
a smooth variety of Kodaira dimension zero. Then the singularities of the movable log pair

(X, Mx) is not terminal, where My = rp=1(|7*(H)|) for a very ample divisor H on Z
and r € Qsq such that Kx + Mx ~q 0.

Proof. Suppose CS(X, Mx) = @. Let My = r|7*(H)|. Then we see

K(X,cMx) = k(Y,cMy) < dim(Z) < dim(X).
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However, CS(X,cMx) = @ for small ¢ > 1 and hence k(X,cMyx) = dim(X), which is a
contradiction. O

The easy result below shows how to apply Theorem 2.14.

Proposition 2.15. Let X be a smooth del Pezzo surface of degree one with Pic(X) = Z
defined over a perfect field F and o the unique base point of the anticanonical linear system
of the surface X. Let p : X --» Y be a birational map, where Y is a smooth surface.
Suppose that w:Y — Z is a relatively minimal elliptic fibration with connected fibers such
that a general enough fiber of ™ is smooth. Then the birational map p is the blow up at some
F-rational point p on the del Pezzo surface X and the morphism m is induced by | — nKy|
for some n € N. Furthermore, p € C and the equality p" = ids holds, where C is the
smooth part of the unique curve C of arithmetic genus one in | — Kx| passing though the

point p and considered as a group scheme with the identity ids = o.

Proof. Let Mx = cp~1(|7*(H)|), where H is a very ample on curve Z and ¢ € Qxq, such
that the equivalence Kx + Mx ~q 0 holds. Then the set CS(X, M) contains a point p
on the surface X by Theorem 2.14. In particular, mult,(Mx) > 1, but

1=K%=M%> multf,(/\/lx)deg(p ®@F) > deg(p@F) > 1,

where F is the algebraic closure of the field F. Hence, mult,(Myx) = 1 and the point p is
defined over the field F. Let f: V — X be the blow up at the point p. Then K%/ =0 and

—Ky ~g My = f71(Mx),

which implies that the linear system | — r Ky | is free for a natural number r > 0. The mor-
phism ¢|_, | is a relatively minimal elliptic fibration and My - E = 0 for a general enough
fiber E of the elliptic fibration ¢|_, . Therefore the linear system (p o f)~*(|a*(H)]) is
contained in the fibers of the fibration ¢|_, g, |. Relative minimality of the fibrations = and
®|—rKy| implies p o f is an isomorphism.

Suppose p # o. Let C € | — Kx| be a curve passing through p. Because
1 =K% =C- Mx > mult,(Mx) mult,(C) = mult,(C) > 1,

the curve C is smooth at the point p. Let C = f~1(C) ~ —Ky. Then hO(V,0y(C)) = 1
and the curve C is Gal(F /F)-invariant. In particular, the curve Z has a F-point P|—r KV|(C~‘)
and we have Z 2 P'. Take the smallest natural n such that h9(V, Oy (nC)) > 1. The exact

sequence
0— Ov((n — l)é) — Ov(né) — Oé(né\é) — 0

implies h0(C, Oc(n(p — 0))) = h2(C, Oé(né|é)) # 0, which implies the claim. O

Corollary 2.16. Let X be a terminal Q-factorial Fano variety with Pic(X) = Z such that

every movable log pair (X, Mx) with Kx + Mx ~gq 0 has terminal singularities. Then X
is not birationally isomorphic to a fibration of varieties of Kodaira dimension zero.
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Unfortunately Corollary 2.16 is almost impossible to use. As far as we know, there are
no known examples of Fano varieties that are not birationally isomorphic to fibrations of
varieties of Kodaira dimension zero. The only known example of a rationally connected
variety that can not be birationally transformed into a fibration of varieties of Kodaira
dimension zero is a conic bundle with a big enough discriminant locus in [30].

Theorem 2.17. Let X be a terminal Q-factorial Fano variety with Pic(X) = Z and
p: X --» Y be a non-biregular birational map onto a Fano wvartety Y with canonical
singularities. Then Kx + Mx ~g 0 and

CS(X,Mx) # @,

1

where Mx = Lp~!(| = nKy|) for a natural number n > 0.

Proof. Let My = 1| — nKy|. We then see
KX, Mx)=r(Y,My) =0,

which implies Kx + Mx ~qg 0. Suppose CS(X, Mx) = @. Both the log pair (X,rMx)
and (Y,rMy) are canonical models for a rational number r > 1 sufficiently close to 1. It is
a contradiction that p is an isomorphism by Proposition 2.9. (|

The following easy result shows how to apply Theorem 2.17.

Proposition 2.18. Let X be a smooth del Pezzo surface of degree one with Pic(X) = Z
defined over an arbitrary perfect field F. Then the surface X is not birationally isomorphic

to a del Pezzo surface with du Val singularities which is not isomorphic to the surface X.

Proof. Let p: X --»Y be a birational map over the field F and My = %p71(| —nKyl) for
a natural number n > 0, where Y is a del Pezzo surface with du Val singularities and p is
not an isomorphism. Then Kx + My ~g 0 and CS(X, M x) contains some smooth point
o on the del Pezzo surface X by Theorem 2.17. In particular, mult,(Mx) > 1, but

1= Kg( = M)Z( > multg(/\/lx) deg(o ® F) > deg(o®F) > 1,

where F is the algebraic closure of the field F. Hence, mult,(Mx) = 1 and the point o is
defined over the field F. Let f: V — X be the blow up at the point 0. Then KZ = 0 and

—Ky ~g My = f71(Mx),

which implies freeness of the linear system | — rKy | for a natural number r > 0. The
morphism ¢|_,f,| is an elliptic fibration and My - E' = 0 for a general enough fiber E of
@|—rk |- Therefore, the linear system (p o f)~Y(| = nKy|) is compounded from a pencil,
which is impossible. ]

The paper [80] of V. Iskovskikh and Yu. Manin was based on the idea of G. Fano that
can be summarized by Nother-Fano inequalities. Since 1971 the method of V. Iskovskikh
and Yu. Manin has evolved to show birational rigidity of various Fano varieties. Recently,
Shokurov’s connectedness principle improved the method so that one can extremely simplify
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the proof of the result of V. Iskovskikh and Yu. Manin (see [42]). Furthermore, it also made
it possible to prove the birational super-rigidity of smooth hypersurfaces of degree n in P™,
n > 4 (see [118]). In what follows we will explain Shokurov’s connectedness principle and
how it can be applied to birational rigidity.

Movable boundaries always can be considered as effective divisors and movable log pairs
as usual log pairs. Therefore, we may use compound log pairs that contains both movable
and fixed components. From now, we will not assume any restrictions on the coefficients of

boundaries. In particular, boundaries may not be effective unless otherwise stated.

Definition 2.19. A log pair (V, BY) is called the log pull back of a log pair (X, Bx) with
respect to a birational morphism f:V — X if

n
BY = j7'(Bx) = _a(X, Bx, B)E;,
i=1
where a(X, By, E;) is the discrepancy of an f-exceptional divisor E; over (X, Byx). In
particular, it satisfies Ky + BY ~q f*(Kx + Bx)

Definition 2.20. A proper irreducible subvariety ¥ C X is called a center of the log
canonical singularities of (X, Bx) if there are a birational morphism f : W — X and a
divisor £ C W such that F is contained in the support of the effective part of the divisor
| BV | and f(E) =Y. The set of all the centers of the log canonical singularities of a log
pair (X, Bx) will be denoted by LCS(X, Bx). In addition, the union of all the centers of
log canonical singularities of (X, Mx) will be denoted by LCS(X, Bx).

Consider a log pair (X, Bx), where Bx = Zle a;B; is effective and B;’s are prime divisors
on X. Choose a birational morphism f : Y — X such that Y is smooth and the union of all
the proper transforms of the divisors B; and all f-exceptional divisors forms a divisor with
simple normal crossing. The morphism f is called a log resolution of the log pair (X, Bx).
By definition, the equality

Ky + BY ~q f*(Kx + Bx)
holds, where (Y, BY) is the log pull back of the log pair (X, Bx) with respect to the birational

morphism f.

Definition 2.21. The subscheme £(X, Bx) associated with the ideal sheaf Z(X, Bx) =
f+(Oy([—=BY1)) is called the log canonical singularity subscheme of the log pair (X, Bx).

The support of the subscheme £(X, Bx) is exactly the locus of LC'S(X, Bx). The following
result is called Shokurov vanishing (see [130]).

Theorem 2.22. Let (X, Bx) be a log pair with an effective divisor Bx. Suppose that
there is a nef and big Q-divisor H on X such that D = Kx + Bx + H is Cartier. Then
H{(X,I(X,Bx) ® Ox(D)) =0 fori > 0.
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Proof. Let f: W — X be a log resolution of (X, Bx). Because f*H is nef and big on W
and f*D = Ky + BY + f*H, we obtain

R'f.(f*Ox (D) ® Ow([-B"])) =0

for ¢ > 0 from relative Kawamata-Viehweg vanishing (see [84] and [142]). The degeneration

of local-to-global spectral sequence and
R f.(f*Ox (D) @ Ow([-B"1)) = Z(X, Bx) ® Ox(D)
imply that for all ¢
H'(X,I(X, Bx) ® Ox (D)) = H'(W, f*Ox (D) @ Ow([-B"1)),
while HY (W, f*Ox (D) ® Ow ([-B")) = 0 for i > 0 by Kawamata-Viehweg vanishing. [

Consider the following application of Theorem 2.22.

Lemma 2.23. Let V be a variety isomorphic to P x P'. Let By be an effective Q-divisor
on'V of type (a,b), where a and b € QN [0,1). Then LCS(V, By) = @.

Proof. Intersecting the boundary By with the rulings of V', we see that the set LCS(V, By)
does not contain a curve on V. Suppose that the set LCS(V, By ) contains a point o. There
is a Q-divisor H on V of type (1 — a,1 — b) such that the divisor

D=Ky+By+H
is Cartier. Since the divisor H is ample, Theorem 2.22 implies the sequence
HO(V,0v(D)) — H*(L(V,By),Orv.5,(D)) = 0

is exact. However, H°(V, Oy (D)) = 0, which is a contradiction. O

For every Cartier divisor D on X, the sequence
is exact and Theorem 2.22 implies the following two connectedness theorems of V.Shokurov.

Theorem 2.24. Let (X, Bx) be a log pair with an effective boundary Bx. If the divisor
—(Kx + Bx) is nef and big, then the locus LCS(X, Bx) is connected.

Theorem 2.25. Let (X, Bx) be a log pair with an effective boundary. Let g : X — Z be a
contraction. If the divisor —(Kx + Bx) is g-nef and g-big, then LC'S(X, Bx) is connected
in a neighborhood of each fiber of the contraction g.

The following result is Theorem 17.4 of [87].

Theorem 2.26. Let g : X — Z be a contraction, where the varieties X and Z are normal.
Let Dx = Y"1", d;D; be a Q-divisor on X such that the divisor —(Kx + Dx) is g-nef and
g-big. Suppose that codim(g(D;) C Z) > 2 whenever d; < 0. Then, for a log resolution
h:V — X of the log pair (X, Dx), the locus Uy,<_1E is connected in a neighborhood of
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every fiber of the morphism go h, where E is a divisor on V and the rational number ag is
the discrepancy of E with respect to (X, Dx).

Proof. Let f=goh, A=) apE,and B=3% . | —agk. Then

agp>—1
[A] — |B] = Ky — h*(Kx + Dx) + {-A} + {B}
and R'f,(Oy([A] — | B])) = 0 by Kawamata-Viehweg vanishing. Hence, the map

f(Ov([A])) = f+(O5)([A]))

is surjective. Every irreducible component of [A] is either h-exceptional or the proper
transform of some D; with d; < 0. Thus h.([A]) is g-exceptional and f.(Ovy([A])) = Oz.
Consequently, the map

Oz — f(O1/([A]))
is surjective, which implies the connectedness of | B] in a neighborhood of every fiber of

the morphism f because the divisor [A] is effective and has no common component with
| B]. O

We defined the notions of centers of canonical singularities and he set of centers of canonical
singularities for movable log pairs. However, the movability of boundaries has nothing to
do with all these notions. So we are free to use them for usual log pairs as well.

The following theorem, frequently referred to as adjunction, leads us to the bridge between
Shokurov’s connectedness principle and Nother-Fano inequalities.

Theorem 2.27. Let (X, Bx) be a log pair with an effective divisor Bx, Z an element in
CS(X, Bx), and H an effective irreducible Cartier divisor on X. Suppose that both the
varieties X and H are smooth at a generic point of Z and Z C H ¢ Supp(Bx). Then, the
set LCS(H, Bx|g) is not empty.

Proof. Let f: W — X be a log resolution of (X, Bx + H). Put H= f~Y(H). Then
Kw+H=f"(Kx+Bx+H)+ > aX,Bx+H E)E
E+H
and by our assumption the subvarieties Z and H are centers of the log canonical singularities
of the pair (X, Bx + H). Therefore, applying Theorem 2.26 to the log pullback of (X, Bx +
H) on W, we obtain a divisor E # H on W such that f(E)=Z,a(X,Bx,E) < —1, and
HNE # @. Now the equalities
Ky = (Kw+ )y = fI(Kn + Bxlu) + Y a(X,Bx + H E)E|,
E+H

imply the claim. O

Our taking Nother-Fano inequalities into consideration, it is significant for us to study the
singularities of certain movable log pairs on Fano varieties. It requires us to investigate the
multiplicities of certain movable boundaries or their self-intersections.
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The following result is Theorem 3.1 of [42].

Theorem 2.28. Let S be a smooth surface and Mg an effective movable boundary on the
surface S. Suppose that there is a point o in LCS(S, (1 —a1)B1 + (1 — a2)Bas + Mg), where
a;’s are mon-negative rational numbers and B;’s are irreducible and reduced curves on S

intersecting normally at the point o. Then, we have
dajas ifa; <1 oras <1
mult, (M%) >
4(ay +az —1) ifay > 1 and az > 1.

Furthermore, the inequality is strict if the singularities of the log pair (S, (1 —a1)By + (1 —
az)Bs + Mg) are not log canonical in a neighborhood of the point o.

Proof. Let D = (1 —a1)B1 + (1 —a2)Bs + Mg and f : S" — S be a birational morphism
such that the surface S’ is smooth. We consider

Kg + f1(D) = E;)E;,

where FE; is an f-exceptional curve. We suppose that a(S, D, Fq) < —1 and the curve F is
contracted to the point 0. Then the birational morphism f is a composition of k blow ups
at smooth points.

Claim 1. The statement is true when a; > 1 and a9 > 1 if the statement holds when
a1 <lorag <1.

Define the numbers a(S, E;), m(S, Mg, E;) and m(S, Bj, E;) as follows;

k

> a(S,E)Ei = Ko — f*(Ks),
i=1

k
> m(S, Mg, E)E; = f~1(Mg) — f*(Ms),

i=1
k
> m(S, Bj, E)E; = f'(B;) — f*(By).
i=1
We then observe that the equality
a(S, D, Ez) = a(S, EZ) - m(S, Mg, Ez) + m(S, B, Ei)(al - 1) + m(S, Bo, Ei)(ag — 1)
holds. We may assume that m(S, By, E1) > m(S, B2, E1). Then,
-1 > a(S, D, El) > a(S, El) — m(S, Ms, El) + m(S, BQ, El)(a1 +ag — 2)

and hence o € LCS(S, (2—aj —a2) B2+ Mg). Because the log pair (S, (2—aj —a2)Ba+Mg)
satisfies our assumption, we obtain mult,(M?%) > 4(ay + a2 — 1).

Claim 2. The statement holds when a1 <1 or ag < 1.

We may assume that a; < 1. Let h : T' — S be the blow up at the point o and E be an
exceptional curve of h. Then f factors through h such that f = g o h for some birational
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morphism ¢ : S’ — T which is a composition of k¥ — 1 blow ups at smooth points. Then
K+ (1 — al)Bl + (1 — (ZQ)BQ + (1 — a1 —az + m)E + Mp = h*(KS + D),
where B; = h™1(B;), m = mult,(Mg), and My = h~1(My).

We are to use the induction on k. In the case k = 1, we have S’ = T, E; = E, and
a(S,D,Ey) =a; +ay —m —1< —1. Thus

multo(/\/l?g) >m? > (a1 + az)? > 4aiay
and we are done.
We therefore suppose that k > 1 and g(E}) is a point p € E. We see
p € LCS(T, (1 —a1)By + (1 —a2) By + (1 — a1 — ag +m)E + Mr).

There are three possible cases: p € EN By, p € EN By, and p € By U By. By the induction
hypothesis, the statement holds for the log pair

(T,(1—a1)By + (1 —ay — az + m)E + M)
in the case p € E N By, for the log pair
(T, (1 —az)Ba+ (1 — a1 — az + m)E + Mr)
in the case p € E N By, and for the log pair
(T, (1 —ay; —ag +m)E + Mr)

in the case p ¢ B; U By because all conditions of the theorem are satisfied in these cases
and the morphism ¢ consists of £k — 1 blow ups at smooth points. Also we have

mult,(M%) > m? + mult, (M?3).

In the case p € E N By, we obtain

multo(./\/l%) >m? + 4ay(a; + ag —m) = (2a1 — m)2 + 4dajay > 4ajas.
Consider the case p € E N By. If either as < 1 or a; + as —m < 1, then we can proceed as
in the previous case. If not, then we have

multO(M%) >m? + 4(ay + 2a2 — m — 1) > 4ag > 4ajas.

If p & By U By, then we obtain
multo(./\/l?g) >m? + 4(a; +az —m) > m? + 4ai (a1 + ag —m) > 4ayas,
which completes the proof. ]

Instead of Theorem 2.28, the following simplified version, which is a special case of Theorem
2.1 in [49], is more often applied.

Theorem 2.29. Let S be a smooth surface, o a point on S, and Mg an effective movable
boundary on S such that o € LCS(S, Mg). Then mult,(M?%) > 4. Moreover, if the equality
holds, then mult,(Mg) = 2.
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Even though Theorems 2.28 and 2.29 are results on surfaces, they can be applied to 3-folds
via Theorem 2.27. The following result is Corollary 7.3 of [116], which holds even over fields
of positive characteristic and implicitly goes back to the classical paper [80].

Theorem 2.30. Let X be a smooth 3-fold and Mx an effective movable boundary on X.
Suppose that a point o belongs to CS(X, Mx). Then the inequality multo(/\/l?X) > 4 holds
and the equality holds only when mult,(Mx) = 2.

Proof. Let H be a general very ample divisor on X containing o. Then the point o is a
center of log canonical singularities of the log pair (H, Mx|g) by Theorem 2.27. On the
other hand,

mult, (M%) = mult,((Mx|m)?)

and mult,(Mx) = mult,(Mx|g). Hence, the claim follows from Theorem 2.29. O

As a matter of fact, Theorem 2.30 can be proved in a more geometric way.

Lemma 2.31. Let X be a smooth 3-fold and Mx an effective movable boundary on X.
Suppose that the log pair (X, Mx) has canonical singularities and CS(X, Mx) contains
a point o. Then there is a birational morphism f : V — X such that V has Q-factorial
terminal singularities, f contracts exactly one exceptional divisor E to the point o, and

Ky + My = f"(Kx + Mx),

where My = f~1(Mx).

Proof. Because the log pair (X, Mx) has at worst canonical singularities, there are finitely
many divisorial discrete valuations v of the field of rational functions of X whose centers
on X are the point o and whose discrepancies a(X, Mx,v) are non-positive. Therefore,
we may consider a birational morphism g : W — X such that the 3-fold W is smooth, ¢
contracts k divisors,

k
Kw + Mw = g"(Kx + Mx) + Y _a;E;
i=1
the movable log pair (W, My,) has canonical singularities, and the set CS(W, My) does
not contain subvarieties of U¥_; F;, where My = ¢~ 1(Mx), g(E;) = o, and a; € Q.
Applying the relative version of Log Minimal Model Program (see [86]) to the movable log

pair (W, My) over X, we may assume that W has Q-factorial terminal singularities and
Kw + Mw = g"(Kx + Mx)

because of the canonicity of (X, Mx). Applying the relative Minimal Model Program to
W over the variety X, we get the necessary 3-fold and the birational morphism. O

The following result was conjectured in [41] and proved in [83].
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Theorem 2.32. Let X be a smooth 3-fold and f : V — X be a birational morphism of
a 3-fold V' with Q-factorial terminal singularities. Suppose that the morphism f contracts
exactly one exceptional divisor E and contracts it to a point o. Then the morphism f is the
weighted blow up at the point o with weights (1,n1,n2) in suitable local coordinates on X,
where the natural numbers ni and no are coprime.

With Theorem 2.32, Theorem 2.30 was proved in [41] in the following way, which explains
the geometrical nature of the inequality in Theorem 2.30.

Proposition 2.33. Let X be a smooth 3-fold with an effective movable boundary Mx on
X. Suppose that CS(X, Mx) contains a point o. Let f : V — X be the weighted blow up
at the point o with weights (1,n1,n2) in suitable local coordinates on X such that

Ky + My = f"(Kx + Mx),
where natural numbers n1 and ny are coprime and My = f~Y(Mx). Then

M:4+M

mult, (M%) > . -

> 4.

Moreover, if ny = no, then f is the reqular blow up at the point o and mult,(Mx) = 2.

Proof. Let E C V be the f-exceptional divisor. Then
Ky = f*(Kx) + (n1 +n2)E

and My = f*(Mx) — mE for some m € Qs¢. Thus, m = n; + ng and

2

mult,(M%) > m?E® = M
ning

The following application of Theorem 2.27 is Theorem 3.10 in [42].

Theorem 2.34. Let X be a 3-fold with a simple double point o and Bx an effective boundary
on X such that o € CS(X, Bx). Then the inequality mult,(Bx) > 1 holds.

Proof. Let f: W — X be the blow up at the point o and E be the f-exceptional divisor.
Then

Kw + By = f*(KX + Bx) + (1 — mult,(Bx))E,

where By = f~}(Bx). Suppose that mult,(Bx) < 1. Then, there is a center Z €
CS(W, By) that is contained in E, and hence

LCS(E, Bw|g) # @

by Theorem 2.27. But it is impossible because of Lemma 2.23. g
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3. BIRATIONAL SUPER-RIGIDITY.

The goal of this section is to prove Theorem A.

Let 7 : X — P3 be a Q-factorial double cover ramified along a nodal sextic S C P3. We
then see that Pic(X) & ZKx, —Kx ~ 7*(Ops(1)), and —K% = 2. Consider an arbitrary
movable boundary M x on the 3-fold X such that the divisor —(Kx + Mx) is ample. To
prove Theorem A we must show that CS(X, Mx) = @ and then apply Theorem 2.10.

We suppose that CS(X, Mx) # @. In what follows, we will derive a contradiction.

Lemma 3.1. Smooth points of the 3-fold X are not contained in CS(X, Mx).

Proof. Suppose that CS(X, Mx) has a smooth point o on X. Let H be a general enough
divisor in the linear system | — K x| passing through the point 0. We then obtain

2=H K% >H - M% >multy(M%) >4
from Theorem 2.30, which is absurd. O

Lemma 3.2. Singular points of the 3-fold X are not contained in CS(X, Mx).

Proof. If CS(X, Mx) contains a singular point o on X, then Theorem 2.34 gives us
2=H K% > H - M% > 2mult?(Mx) > 2,

where H is a general enough divisor in | — K x| passing through the point o. It is absurd. [

Lemmas 3.1 and 3.2 together show that any element of the set CS(X, Mx) cannot be a

point of X. Therefore, it must contain a curve C C X. To complete the proof of Theorem A
it is enough to show that the set CS(X, M x) cannot contain a curve.

Lemma 3.3. The intersection number —Kx - C is 1.

Proof. Let H be a general enough divisor in the anticanonical linear system | — Kx|. Then
2=H K% >H M} >multc(MX)H - C>-Kx -C,

which implies —Kx - C' = 1. g

Corollary 3.4. The curve 7(C) C P? is a line and C = P*.

Lemma 3.5. The curve C is not contained in the smooth locus of the 3-fold X .

Proof. Suppose that the curve C' lies on the smooth locus of the 3-fold X. Let f: W —

X be the blow up along the curve C' and E be the f-exceptional divisor. We then get
multc(Mx) > 1 and

My = f1(My) = fH(Mx) — multc(Mx)E.
The linear system | — Ky| = | f*(—Kx) — F| has just one base curve C' such that
7o f(C) =n(C) C P3.
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We see that C' C F if and only if 7(C) C S.

Let H = f*(—Kx). Then the divisor 3H — E has non-negative intersection with all the
curves on W possibly except C. We are to show that the divisor 3H — E is nef. We obtain
(3H — E) - C = 0 unless C is contained in E. Therefore, we suppose that the curve C' is
contained in F.

The normal bundle Ny /¢ of the curve C' = P! on the 3-fold X splits into
Nx o = Oc(a) @ Oc(b)
for some integers a > b. The exact sequence
0— 7o — Tx|c — Nx)jc — 0
shows deg(Nx/c) =a+b=—-Kx-C+29(C)-2=—1.

On the other hand, the curve C is contained in the smooth locus of the proper transform
S 22 S of the sextic S C P3. The exact sequence

0= Ng)o = Nxjo — Nyysle =0
and NS/C ~ Oc(—4) imply b > —4. In particular, a — b < 7.
Let ss be the exceptional section of the ruled surface flp : E — C. Because E3 =
—deg(Nx/c) =1 and —Kx - C = 1, we obtain
T+0b—

(3H—E)-soo:7+2 2>,
which implies that the divisor 3H — F is nef.
Because 3H — E is nef, we get (3H — E) - M2, > 0, but

(3H — E) - M}y = 6r* — dmultZ(Mx) — 2r multe(Mx) < 0,

where r € QN (0,1) such that Mx ~g —rKx. 0
Corollary 3.6. The curve C contains a simple double point of the 3-fold X .

Lemma 3.7. The line 7(C) is contained in the sextic surface S.

Proof. Suppose 7(C) ¢ S. Let ‘H be the linear subsystem in | — K x| of surfaces containing
the curve C. The base locus of H consists of the curve C' and the curve C such that

m(C) = 7(C). Choose a general enough surface D in the pencil H. The restriction Mx|p
is not movable, but

Mx|p = multe(Mx)C + multé(Mx)é + Rp,

where Rp is a movable boundary. The surface D is smooth outside of the singular points
p; of the 3-fold X which are contained in the curve C. Moreover, each point p; is a simple
double point on the surface D. Thus, on the surface D, we have

02202:—2+§,
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where k is the number of the points p; on C. Hence, we obtain C? = C? < 0 on the surface
D because k < 3. Immediately, the inequality

(1 — multx(Mx))C? > (multc(Mx) —1)C-C+Rp-C >0

follows, which implies mult~(Mx) > 1. Therefore, for a general member H € | — Kx| we
have a contradiction

2=H K% >H- - M% > multy:(Mx)H - C + mult’,(Mx)H - C > 2.

Lemma 3.8. The line w(C) is not contained in the sextic surface S.

Proof. Suppose 7(C) C S. Let p be a general enough point on the curve C and L C P3 be
a general line tangent to S at the point m(p). Then the proper transform L C X of L is
an irreducible curve which is singular at the point p. By construction, the curve L is not
contained in the base locus of the components of the movable boundary Mx. Thus, we
obtain contradictory inequalities

2> L- My > mult, Lmult,(Mx) > 2multe(Mx) > 2.
(|

We have shown that the set CS(X, M x) is empty. Now, we can immediately obtain Theo-
rem A from Theorem 2.10.

4. Q-FACTORIALITY.

In this section we study the Q-factoriality on double covers of P3 ramified along nodal
sextics and prove Theorem B.

The Q-factoriality depends both on local types of singularities and on their global position.
In the case of Fano 3-folds, the Q-factoriality is equivalent to the global topological condition

rank(H?(X,Z)) = rank(Hy(X, Z)).

In the case of the double solids, the condition means the 4th integral homology group of X
generated by the class of the full back of a hyperplane in P? via the covering morphism.

Using the method in [37], we study the Q-factoriality on a double cover X of P? ramified
along a sextic S. As before, we assume that X has only simple double points. Note that
Pic(X) = H%(X,Z) when X has at worst rational singularities.

For us in order to see whether a double solid X is QQ-factorial, the main job is to compute
the rank of the group Hy(X,Z). Indeed, the double solid X is Q-factorial if and only if
rank(Hy(X,Z)) = 1 because rank H*(X,Z) = 1. The paper [37] gives us a method to
compute it by studying the number of singularities of S, their position in P?, and the sheaf
T ® Ops(5), where Z is the ideal sheaf of the set ¥ of singular points of S in P3. The
following result was proved in [37] (see also [48] and [47]).
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Theorem 4.1. Under the same notation, we have
rank(Hy(X,Z)) = #(3) — I + 1,

where I is the number of independent conditions which vanishing on X imposes on homo-

geneous forms of degree 5 on P3.

We define the defect of X to be the non-negative integer #(X) — I. Then we can restate
the Q-factoriality as follows:

Corollary 4.2. The double cover X is Q-factorial if and only if the defect of X is 0.

On the other hand, from the exact sequence
0—Z®Ops3(5) — Ops(b) — @(C -0
peEX
we obtain a long exact sequence
0 — HO(P*, T ® Ops(5)) — HO(P*, Ops (5)) — H(P*, @ C) — H'(P*, T ® Ops(5)) — 0,
pEX

which tells us
defect of X = dim(H'(P*, T ® Ops(5))).
An immediate application of this method is the second part of Theorem B. Since
dim(H°(P3, Ops(5))) = 56, the defect of X is positive if #(X) > 57.
We can easily observe that if #(3) < 6, then the sequence
0 — HYP*, T ® Ops(5)) — H(P?, Op(5)) — HO(P*,H C) — 0,
peEX
is exact regardless of their position. Therefore, when #(X) < 6 the defect of X is trivially
0, i.e., the sextic double solid X is Q-factorial. As a matter of fact, we can go farther. As

Theorem B states, if the surface S has at most 14 nodes, then the 3-fold X is Q-factorial
regardless of their position. In what follows, we prove the first part of Theorem B.

Definition 4.3. We say that a set of points I" on P3 is on sextic-node position if no 5k + 1
points of I' can lie on a curve of degree k in P3 for every positive integer k.

Lemma 4.4. Let 3 be the set of singular points of the sextic S. Then the set 3 is on

sextic-node position.

Proof. Suppose that the surface S is defined by a homogeneous polynomial equation
F(xo,x1,x9,23) = 0 of degree six. We consider the linear system

5. OF

The base locus of the linear system L is exactly the singular locus of the surface S. A curve

L=

of degree k in P? intersects a generic member of the linear system £ exactly 5k times since
L C |Ops(5)|. Therefore, the set ¥ is on sextic-node position. O
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For convenience, we state an elementary lemma.

Lemma 4.5. Let I' = {q1,--- ,qs} be a set of s > 4 points in P3. For a given point q ¢ T,
there is a hyperplane H which contains at least three points of I' but not the point q unless
all the points q,q1,- -+ ,qs lie on a single hyperplane.

Proof. Because not all the points q,q1, - ,qs lie on a single hyperplane, we may assume
there are two distinct hyperplane H; and Hs such that H; U Hy contains the point ¢ and
four points, say ¢i,q2,q3, and g4, of T', ¢ € Hy \ He, and ¢qo € Hy \ Hy. Then one of the
hyperplanes generated by {qi1,q2,q3} and {q1, g2, g4} must not pass through the point g;
otherwise all of the five points ¢, q1,- - - , g4 would be on a single hyperplane. ]

Also, the following result of [14] is useful.

Theorem 4.6. Let 7w : Y — P2 be the blow up at points p1,--- ,ps on P2. Then the linear
system |7 (Op2(d)) — Y7, Ei| is base-point-free for all s < %(hO(PQ, Op2(d+3))—5), where
d>3 and E; = 7Y (p;), if at most k(d+ 3 — k) — 2 of the points p; lie on a curve of degree
1<k<i(d+3).

Theorem 4.1 tells us that the first part of Theorem B immediately follows from the lemma
below.

Lemma 4.7. Let v : V. — P3 be the blow up at k different points T = {p1,...,px} and
p be a point in V \ UF_| E; such that the set T U {vy(p)} is on sextic-node position, where
E; =~y Yp;). If k < 13, then the linear system |y*(Ops(5)) — Zle E;| is base-point-free at
the point p.

Proof. Tt is enough to find a quintic hypersurface in P that passes through all the points of
I’ but not the point ¢ := v(p). We may assume that & = 13. Let r be the maximal number
of points of I" that belong to a single hyperplane of P together with the point q. Note that
2 < r < 13. Without loss of generality, we may also assume that the first 7 points of I, i.e.,
p1,- -+ ,Pr, are contained in a hyperplane H together with the point q.

We prove the statement case by case.
Case 1. (r=2)

We divide the set I' into five subsets of I' such that each subset contains exactly three points
of I and the union of all the five subsets is I'. Because r = 2, the hyperplane generated by
each subset cannot contains the point g. The product of these five hyperplanes is what we

want.

Before we proceed, we note that the points ¢ and py,--- ,p, do not lie on a single line. If
they do, then the hyperplane H must contain more than r points of I'.

Case 2. (r=3)
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By Lemma 4.5, we can find three points of I' outside of H such that generate a hyperplane
not passing though the point ¢. Since » = 3, we can repeat this procedure two more times
with the remaining points of I' in the outside of H. Only one point, say pi3, then remains
in the outside of H. Because the four points, ¢, p1,p2,p3, cannot lie on a line, there is a

quadric hypersurface passing through the points p1, p2, p3, p13, but not the point q.
Case 3. (r=4)

As in the previous case, we can find two hyperplanes which together contains six points of I'
in the outside of H but not q. We then have three remaining points of I' in the outside of H.
There is a line passing though two points, say p1, p2, of p1,- - -, p4, but not the point ¢. Then
these two points together with one of the remaining points in the outside of H generate a
hyperplane not containing the point q. Now, we have four points, two of them are on H
and the others not on H. Obviously, these four points belong to a quadric hypersurface not
passing through the point q. Therefore, the product of the quadric hypersurface and the
hyperplanes gives us a quintic hypersurface that we are looking for.

Case 4. (r=b)

First of all, by Lemma 4.5, we find a hyperplane which contains three points, say pg, p7, ps,
of I' in the outside of H but not the point q. We split the case into two subcases.

Subcase 4.1. When four points of I' on H together with the point ¢ lie on a line.

Assume that the points ¢ and py,--- ,p4 lie on a single line. The hyperplane generated by
the points p4, ps, and pg cannot contains q. The hyperplane generated by {ps, pio,p11}
cannot pass through the point ¢; otherwise the number r» would be bigger than five. By
the same reason, we can find a hyperplane which contains {pa, p12, p13} but not the point
q. Choose a hyperplane which passes through the point p; but not the point ¢. Then we

are done.
Subcase 4.2. When no four points of I' on H lie on a line together with the point q.

In this case, two pairs of points of I' on H give two lines which do not contain the point q.
Therefore, we can find a quadric hypersurface containing six points of I', four from H and
two from '\ (H U {pe, p7,ps}), but not the point q. Furthermore, because the number r is
five we may choose the two points from I"\ (H U {p¢, p7, ps}) so that the other three points
in the outside of H cannot belong to a single line together with the point ¢. We then have
four points which we have not covered yet, three points, say pi1, p12,p13, from the outside
of H, and one point, say p;, on H. Because the points pi1,pi12,p13 and ¢ do not lie on a
line, we can easily find a quadric hypersurface passing through all the four points but not

the point g¢.
Case 5. (r=0)
Again, by Lemma 4.5, we find a hyperplane which contains three points, say p7, ps, pg, of I'

in the outside of H but not the point q. By the sextic-node position condition, we can find
two lines on H which together contain four points of I' on H but not the point q. They
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give us a quadric hypersurface in P? which pass though six points of I'\ {p7, ps, pg}. Among
these six points, two points are from the outside of H and the others from H. Therefore,
we have four points that have not been yet covered. Because two of them are in the outside
of H, we can easily find a quadric hypersurface which contains these four points but not
the point ¢.

Case 6. (r=7)

In this case, we can find three pairs of points of I' on H such that each pair gives us a
line not passing through the point g. It implies that we can construct a cubic hypersurface
which passes through six points of I' on H and three points of I'" in the outside of H but
not the point q. Moreover, we may assume that the remaining three points in the outside
of H do not lie on a single line together with the point ¢ due to the sextic-node position
condition. It is easy to find a quadric hypersurface containing the remaining points of I
but not ¢. So we are done.

Case 7. (r=8 or 9)

We can find four pairs of points of I' on H such that each pair gives us a line not passing
through the point ¢. From this fact, we easily obtain a quartic hypersurface passing eight
points of I' on H and four points of I' outside of H but not the point g. We then have only
one point of I' that is not covered. Just take a hyperplane passing through this point but
not the point ¢, and we are done.

Case 8. (r=10)

Because of the sextic-node position condition, we can find three pairs, say {p1,p2}, {p3,ps},
{ps,pe} of points of ' on H such that each pair gives us a line not passing through the
point ¢ and, in addition, no three of the points p7, ps, pe, p1o cannot lie on a line passing
through point ¢q. This shows there is a quintic hypersurface which passes through I' but not
the point q.

Case 9. (r=11)

We have eleven points of I' on H and two points, pio,p13 of I' in the outside of H. We
can find a quintic curve C on H which passes through the eleven points on H but not the
point ¢ by Theorem 4.6. Note that the support of the curve C' is not a line because of the
sextic-node position condition. A generic hyperplane passing through pio, p13 meets C at
more than two points. Choose two points p’ and p” among these intersection point. Let v

be the point at which two lines pio, p’ and p13,p” intersect. Then the cone over the curve
C with vertex v has all the point of I' but not the point gq.

Case 10. (r=12)

All the points except one point, pi3, lie on the hyperplane H. It immediately follows from
Theorem 4.6 that we can find a plane quintic curve which passing {p1,--- ,pi2} but not the
point g. Taking the cone over the plane quintic curve with vertex pi3, we obtain a quintic
hypersurface that we want.
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Case 11. (r=13)

In this case, all the points lie on the hyperplane H. It immediately follows from Theorem 4.6
that we can find a plane quintic passing all the point except the point ¢, which gives us a
quintic hypersurface in P? that we want.

Consequently, we complete the proof. ]

Therefore, the first part of Theorem B has been proved.

The three-dimensional conjecture of Fujita (see [51], [85], and [122]) implies Lemma 4.7 in
the case when the points in I are in very general position. Moreover, in the case when points
in ¥ are in very general position, the Q-factoriality of X follows from Lefschetz theory (see
Theorem 1.34 in [37]). However, neither three-dimensional nor two-dimensional conjecture
of Fujita cannot be, in general, applied to an appropriate adjoint linear system in our case.
The crucial point here is that the proof of Theorem 4.6 is based on the vanishing theorem
of Ramanujam (see [19] and [120]) for 2-connected effective divisors on an algebraic surface
(see Proposition 2 in [141]) which is slightly stronger in some cases than the vanishing
theorem of Kawamata and Viehweg (see [84] and [142]).

The method of [37] also explains the non-Q-factoriality of Examples 1.5, 1.6, and 1.7 over
C. Let X — P2 be a double cover ramified along a sextic S. Suppose that the sextic
S C P3 is given by the equation

g?z,(xa Y, z, ’l,U) + h‘T(xv Y, z, w)fG—T(xa Y, z, w) = Oa

where g3, h,, and fg_,, 1 < r < 3, are generic homogeneous polynomials over C of degree
3, r, and 6 — r, respectively. Then the number of singular points is 187 — 3r2. All of them
are simple double points. The defect of V is

W' (PP, T ® Opa(5)) = hO(P*, 7 @ Opa(5)) — B (P?, Opa (5)) + h° (P, C)
peEX

= hO(P3,Z ® Ops(5)) — 56 + 18 — 32
Let H be the hypersurface of degree r defined by h, = 0. Then it is easy to check
RO(P3, T @ Ops(5)) > hP(P3, Ops (4)) + RO (H, Oy (2)) + h°(H, Op) = 42 when r = 1
> hO(P3, Ops(3)) + h°(H, O (2)) + h°(H, O (1)) = 33 when r = 2
> hO(P3, Ops(2)) + hY(H, O (2)) + h°(H, O (2)) = 30 when r = 3.

In all the cases, the defect of V is positive. Therefore, the double cover X is not Q-factorial.

5. ELLIPTIC FIBRATIONS.

This section is devoted to Theorem C.

Let 7 : X — P3 be a Q-factorial double cover ramified along a nodal sextic S C P3.
Consider a fibration 7 : ¥ — Z whose general enough fiber is a smooth elliptic curve.
Suppose that we have a birational map p of X onto Y. We then put Mx = %M with
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M = p~Y(|7*(Hz)|), where Hy is a very ample divisor on Z and n is the natural number
such that M C | — nKx].

X--" >y
P3 Z

It immediately follows from Theorem 2.14 that the set CS(X, Mx) is non-empty.

Remark 5.1. The linear system M is not composed from a pencil and cannot be contained
in the fibers of any dominant rational map x : X --» P!,

Using the proof of Lemma 3.1, we can easily show that the set CS(X, M x) does not contain

any smooth point of X.

Lemma 5.2. Let o be a simple double point on X that belongs to CS(X, Mx). Then there
is a birational map 3 : P2 -=s Z such that the diagram

]P>3 — Z > ]P>2 — g > 7
commutes, where vy is the projection from the point 7(0).
Proof. Let f: W — X be the blow up at the point o and C be a general enough fiber of
the elliptic fibration ¢|_g,,| : W — P2, Then for a general surface D in f~1(M),
2(n —mult,(M))=C-D >0,

while mult,(M) > n by Theorem 2.34. We can therefore conclude that mult,(M) = n
and f~1(M) lies in the fibers of the elliptic fibration —ky| - W — P2, which implies the
claim. 0

Corollary 5.3. The set CS(X, Mx) cannot contain two singular points of the 3-fold X .

We assume that CS(X, M x) does not contain any point and that it contains a curve C' C X.

Lemma 5.4. The intersection number —Kx - C is 1.

Proof. Let H be a general enough divisor in the linear system | — Kx|. Then we have
2=H-K%=H M%>multc(M%)H-C > -Kx-C,
which implies —Kx - C' < 2.
Suppose —K x - C' = 2. Then Supp(M%) = C and
multc (M%) = multi( Mx) =1,
which means that for two different divisors M; and Ms in the linear system M we have

multc (M - My) = n?, multe(M;) = multe (M) = n,
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and set-theoretically M1 N Ms = C. However, the linear system M is not composed from a
pencil. Therefore, for a general enough point p € C' the linear subsystem D of M passing
through the point p has no base components. Let D; and Dy be general enough divisors in
D. Then in set-theoretic sense

peDiNDy =M NM,=C,
which is a contradiction. D
Corollary 5.5. The curve 7(C) C P? is a line and C = P*.

Remark 5.6. In the second part of the proof of Lemma 5.4, we have never used the irre-
ducibility of the curve C. Hence, we may assume CS(X, Mx) = {C}. Moreover, the same
arguments imply multc(M?) < 2n2.

Lemma 5.7. The line 7(C) is contained in the sextic surface S.
Proof. 1t follows from the proof of Lemma 3.7 and Remark 5.6 g

Before we proceed, we observe
4|Sing(X) N C| < {

by intersecting S with either the line 7(C) or a hyperplane in P? passing through m(C).
Furthermore, when 7(C) C S, the equality #|Sing(X) N C| =5 holds if and only if all the
hyperplanes tangent to the sextic surface S at points of 7 (C\ Sing(X)) coincide.

Lemma 5.8. The curve C passes through at least four singular points of X.

Proof. Let H be a general hyperplane in P? containing the line 7(C). Then the curve
D=HnS==n(C)uQ

is reduced, where @) is a quintic curve. The curve D is singular at each singular point p; of
S such that p; € 7(C) for i € {1,...,k}. The set 7(C') N Q consists of at most 5 points and
Sing(D) N7(C) C m(C) N Q. Thus k = #| Sing(X) N C| < 5.

Suppose k < 3. Then the intersection 7(C) N @ contains two points o; and og different
from p; due to the generality in the choice of H. The hyperplane H is therefore tangent to
the sextic S at o1 and og. Hyperplanes passing through the line 7(C) form a pencil whose
proper transforms on the 3-fold X are K3 surfaces in | — Kx| passing through C. Hence,
the lines tangent to the sextic surface S at a general point of the line 7(C) span whole P3.
Note that this is no longer true in the case k = 5 as we mentioned right before the lemma.

Let L1 and Ly be general enough lines in H passing through the points o1 and o9, respec-
tively. Then L; is tangent to the sextic surface S at the point o;. Therefore, the proper
transform ﬂj C X of the curve L; is an irreducible curve such that —Kx - Ej = 2. Also, it
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is singular at the point 0; = 7r*1(0j). Consider the proper transform H of the surface H on
X and a general surface M in the linear system M. Then

M|z = multg(M)C + R,
where R is an effective divisor on H such that C' ¢ Supp(R). Moreover,
2n=M - L;> mults, (L;) multe(M) + Z mult, (M) - mult,(L;) > 2n,
pE(M\C)ﬂij

which implies M N f/j C C set-theoretically. However, on H the curves Ly and Ly span two
pencils with the base loci consisting of the points 61 and 02, respectively. Therefore, we see
R = @ due to the generality in the choice of two curves L and Lo. Note that if £ = 4, then

this is not true.

Hence, set-theoretically M N H = C for a general divisor H € | — Kx| passing through

the curve C and a divisor M € M with H ¢ Supp(M). Let p be a general point on the

surface H and M be the linear system of surfaces in M containing p. Then Mj has no

base components due to Remark 5.1. Therefore, for a general divisor M in M
peMNH=C

because H ¢ Supp(M ), which contradicts the generality of the point p € H. d

Lemma 5.9. Suppose that the curve C contains exactly 4 singular points of the 3-fold X .
Then there is a birational map 3 : P? —-» Z such that the diagram

X--"-—>vy
|

Exo) | lT
v 3
P2----- 7

is commutative, where Z .y is a rational map defined as in Construction B.

Proof. By our assumption, the curve C passes through four singular points p1, p2, p3, ps
of X. We consider the blow up ¢ : X — X at the points pi,---,ps and the blow up
g2 : W — X along the proper transform of the curve C on X. Put g := goo g1 : W — X.
We then get

4
~Kw =g"(-Kx) - Y Ei—F,
=1

where E; and F are the g-exceptional divisors such that g(E;) = p; and g(F) = C. Let L
be a curve on W such that wo g(L) is a line tangent to S at some general point of 7(C').
Then

My - L <2—-2multc(Mx) <0,
where My, = g~ 1(Myx). Because such curves as L span a Zariski dense subset in W, we
obtain multc(Mx) = 1. Each elliptic curve L is a fiber of the elliptic fibration =y o g :
W — P2, Thus Myy lies in the fibers of Er(c) © g, which implies the claim. U

Lemma 5.10. The curve C passes through at most 4 singular points of X.



38 IVAN CHELTSOV AND JIHUN PARK

Proof. Suppose that the curve C passes through 5 singular points pq,--- ,ps of X. Again,
we consider the blow up ¢; : X — X at the points p1,-- - ,ps and the blow up g2 : W — X
along the proper transform of the curve C' on X. Put g := ga 0 g1 : W — X. Then we
obtain

5
~Kw =g (-Kx)— > E;—F,
=1

where E; and F are the g-exceptional divisors such that g(E;) = p; and g(F) = C. Let
f: U — W be a birational morphism such that h = pogo f is a morphism. Then we obtain

Ky + My = (go ) (Kx + Mx) + Y _ a,Gi,
=0
where My = (go f)~H(Mx), G; are the (go f)-exceptional divisors, and a; € Q. Whenever
a; < 0, we have go f(G;) = C. But multc(Mx) < 2 by Remark 5.6 and hence there is
exactly one i, say i = 0, such that ap < 0. It implies f(Gy) = F and ag = 0.

Consider a general enough fiber L of the morphism 7oh : U — Z. Then Ky - L = 0 because
the curve L is elliptic. However, My - L=0 by construction. So we see Gj - L=0fori #0,
which means that f is an isomorphism near L. Thus My - L = 0, where My = f~'(Myx)
and L = f(L).

There is a surface D C W such that 7o g(D) C P3 is the plane tangent to the sextic surface
S along the whole line 7(C'). The surface D is the closure of the set spanned by curves
whose images via 7 o g are lines tangent to the surface S at some point of 7(C).

By the same argument as in the proof of Lemma 5.9, we obtain multg(Mx) = 1, and hence

5
D~ My —F+> bE
=1

for some b; € Z. On the other hand, because L-Gi=0fori # 0, we get
T
Ej - L=f"(E;) L=) ¢;Gi-L=0
i=1
where ¢;; € N. Therefore, L-D < 0, which means L C D. This is impossible because the
curves L span a Zariski dense subset in . ]

Therefore, Theorem C is proven.

6. CANONICAL FANO 3-FOLDS.

To prove Theorem D, we let 7 : X — P3 be a Q-factorial double cover ramified in a nodal
sextic S C P2. We then suppose that there is a non-biregular birational map p: X --» Y of
X onto a Fano 3-fold Y with canonical singularities. We are to show that there is a curve
C C X such that 7(C) is a line on the surface S passing through five nodes of the sextic S.

We put M = p~!(|—=nKy|) and Mx = M for a natural number n > 0. We then see that
Kx 4+ Mx ~q 0 and the singularities of the movable log pair (X, Mx) are not terminal by
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Theorem 2.17. By our construction, the linear system M cannot be contained in the fibers
of any dominant rational map y : X --» Z with 0 < dim(Z) < 2.

Proposition 6.1. The set CS(X, Mx) consists of a single curve C C X which satisfies

(2) m(C) C S,
(3) #|Sing(X) N C| = 5.

Proof. For the proof, we literally repeat the proofs in Section 5 except those of Lemmas 5.2
and 5.9. O

Let pi1, pa, p3, pa, ps € C be singular points of X. We consider the blow up fi : X — X at
all the points p; and the blow up fo : W — X along the proper transform of the curve C'
on X. Put f = fyo f1 : W — X. We then note that W is smooth and

5
~Kw ~ f*(-Kx) - > E; -G,

i=1
where E; and G are the f-exceptional divisors with f(FE;) = p; and f(G) = C. Each surface

E; is isomorphic to the blow up of P! x P! at one point. We have the proper transforms Ff
and F} of two rulings of the quadric P! x P! with self-intersection —1 on each surface E;.

The normal bundle NW/ i of the curve F JZ >~ P! in the 3-fold W splits into
J
NW/F;’ = OF;(C‘) ® OF;‘(b)
for some integers a > b. The exact sequence
0— Tpi — Twlpi —>NW/F; — 0
J J J
implies deg(./\/W/F;) =a+b=—-Ky - F; + Qg(FJ?) — 2 = —2. On the other hand, the exact
J
sequence
0— NEZ'/F; - NW/F;’ - NW/EJF; —0
together with NE,/F; = Opi(—1) implies b > —1. Therefore, a = b = —1 and we can make
v J
a standard flop for each curve F’ ; . Indeed, we let h: W — W be the blow up along all the
curves F; and R; be the h-exceptional divisor dominating the curve FJz Then Ré- =~ pl x P!
and there is a birational morphism h: W — W which contracts each surface R;- to a curve

sz C W and for which ho k™! is not an isomorphism in a neighborhood of each curve Fj’
Let E; = hoh™'(E;) € W. Then E; = P? and
-EAJ7,|EA'Z = OPQ(_2)7

which implies that each divisor F; can be contracted to a terminal cyclic quotient singularity
of type %(1, 1,1). Let f: W — V be the contraction of all the E;. Then V has exactly five
singular points o; of type %(1, 1,1), it is Q-factorial, and Pic(V) 2 Z ® Z.
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Let F = foho h=Y(G). Then there is a birational morphism g : V' — X contracting the
surface F' to the curve C.

W
y X
P )
fl lf
X ! v
|
Pl \L‘z’ﬂ{v
Y
Y------- U

At a generic point of C' the morphism ¢ is a blow up. In fact, the morphism g is the blow
up of the ideal sheaf of the curve C' C X by Proposition 1.2 in [139]. Moreover, the proof
of Lemma 3.8 implies multc(Mx) = 1. Hence,

—Kv ~q My ~q ¢"(=Kx) = F,
where My = g~} (Mx). The morphism g|r : F — C has five reducible fibers consisting of

two copies of P! intersecting transversally at the corresponding singular point o; that is a
simple double point on the surface F'.

Let C' C F be the unique base curve of the pencil | — Ky/|. Then the numerical equivalence
C= K‘Z/ holds. Therefore, we have

—Kyisnef «— —Ky -C>0 < —KJ >0.

Because elementary calculations imply —K‘S/ = %, the anticanonical divisor — Ky is nef and
big. Hence, | — rKy| is base-point-free for a natural number r > 0 by Base Point Freeness
theorem (see [86]). The morphism ¢|_, x| : V — U is birational and U is a canonical Fano
3-fold with —K}, = 1.

The image of every element in the set CS(V, My) on the 3-fold X is an element in
CS(X, Mx) because Ky + My = ¢"(Kx + Mx). Hence, every element in CS(V, My)
must be a curve dominating the curve C' due to the assumption made in Remark 5.6, which
implies multo (M) > 2n2. However, it is impossible because of Remark 5.6. Therefore, the
set CS(V, My ) = @.

For a rational number ¢ slightly bigger than 1, the singularities of the log pair (V,cMy/)
are still terminal and the equivalence

Ky +cMy = ¢\*—TKV|(KU + CMU),

holds, where My = ¢|_,x,|(My). Hence, the movable log pair (U,cMy) is a canonical
model. On the other hand, the movable log pair (Y, | — nKy|) is a canonical model as

well. Consequently, the map

Gl_ricy) 0 (pog) 1Y -5 U

is an isomorphism by Proposition 2.9.
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All the statements above do not depend on the existence of a birational map p of X onto
Y. They depend only on the condition that X has a curve C such that #(C) C S is a
line passing through five nodes of the sextic surface S. Once such a curve C' C X exists,
we can construct a birational transformation of X into a canonical Fano 3-fold by means
of blowing up the ideal sheaf of the curve C C X and the birational morphism given by a

plurianticanonical linear system.

We have proved Theorem D. In addition, we have obtained explicit classification of all
birational transformations of a double cover X into Fano 3-folds with canonical singularities.

As we mentioned before, five singular points of the surface S lying on the line 7(C) C S
force every hyperplane in P tangent to S at some point of 7(C') smooth on S to be tangent
to the surface S along whole the line 7(C'). Such a tangent hyperplane is unique and its
proper transform on V' is the only divisor in the linear system | — Ky — F'| which is contracted
by the birational morphism ¢|_, | to a non-terminal point of the canonical Fano 3-fold U.

7. SEXTIC DOUBLE SOLIDS OVER FINITE FIELDS.

We consider a double cover 7 : X — P2 defined over a perfect field F of characteristic
char(F) > 5. Suppose that the 3-fold X is Q-factorial and that it is ramified along a nodal
sextic surface S C P3. Actually, we may assume that the field F is algebraically closed
because F is perfect. We are to adjust the proofs of both Theorems A and C to the case
char(F) > 5.

We first list valid statements in Sections 3 and 5 in the case char(F) > 5. The following

remain valid:

1) Propositions 2.7, 2.9, and Theorem 2.30;

(
(2) negativity of exceptional loci (see [3] and Lemma 2.19 in [87]);
(
(

)
)

3) resolution of singularities of 3-folds (see [1] and [45]);

4) numerical intersection theory on smooth 3-folds (see [59]);
)

(5) elementary properties of blow ups (see [71]).
Lemma 7.1. Theorems 2.10 and 2.14 are valid in the case char(F) > 5.

Proof. The proofs for the case char(F) = 0 depend only on the facts listed above. O

The following may not remain valid in the case char(FF) # 0:

(1) Theorem 2.34;
(2) special cases of Bertini theorem (see [64]).

For the birational super-rigidity, we need Theorem 2.34 and Bertini theorem.

The characteristic-free method for the proof of Theorem 2.30 in [116] can be used to prove
Theorem 2.34. However, we used Theorem 2.34 just to prove Lemmas 3.2. So instead
of proving Theorem 2.34 in the case char(F) > 5, we prove Lemmas 3.2 only with Theo-
rem 2.30, which is enough for the birational super-rigidity.
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Lemma 7.2. Let (X, Mx) be a movable log pair such that —(Kx + Mx) is ample and let
0 € X be a simple double point. Then the point o does not belong to CS(X, Mx).

Proof. Suppose that the point o belongs to the set CS(X, Mx). Let f : W — X be the blow
up at the point 0 and C be a general enough fiber of the elliptic fibration ¢|_g,,| : W — P2.
Then

2(1 — mult,(Mx)) > C - Mw >0,
where My, = f~1(Mx). This implies mult,(Mx) < 1.
We consider
Kw + My = f*(Kx + Mx) + (1 — mult,(Mx))G,

where G is the f-exceptional divisor. We then see that there is a center B € CS(W, Myy)
with B C G.

The intersection number of My, with each ruling of G = P! x P! is mult, Mx < 1. On the
other hand, we have multg(Myy) > 1. Therefore, the center B must be a point and

mult g (M3,) > 4

by Theorem 2.30.

Let Hy; and Hs be two general surfaces in | — Kyy| passing through the point B. Then
Hy N Hy consists of the fiber £ of the elliptic fibration ¢|_g,,| with B € E. Consider
general enough divisors D € | — 2Kyy| and Fy, Fy € |f*(—Kx)|. Then the divisors D, Fi,
and Fy do not pass through the point B at all. The divisors Hy + F1, Hy + F5, and D + G
are elements of the linear subsystem H C |f*(—2Kx) — G| of surfaces passing B. The
intersection

Supp(H1 + F1) N Supp(Ha + F2) N Supp(D + G)

contains B and consists of finite number of points. In particular, the linear system H has
no base curves but B is a base point of H. Let H be a general surface in H. Then we obtain

4> H- M3y, > multg(H) multg(ME,) > 4,

which is absurd. O

During excluding a one-dimensional member of CS(X, Mx), we implicitly used Bertini
theorem only one time just for the following special case.

Lemma 7.3. Let C C X be a curve with —Kx - C =1 and n(C) ¢ S. Then a general
enough surface H € | — Kx| passing through C' is smooth along C'\ Sing(X).

Proof. The simple double points of the 3-fold X correspond to the simple double points of
the sextic surface S because char(F) # 2. Meanwhile, the curve L := 7(C) on P?3 is a line.
The line L cannot pass through more than 3 singular points of S; otherwise it would be
contained in S. The surface D = 7(H) C P? is a plane containing L. The singularities
of surface H correspond to the singularities of the curve D NS which is the ramification
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divisor of the double cover 7w : H — D. For a general enough surface H € | — K x|, the plane
D is not tangent to the sextic S at the points of L \ Sing(S), which implies the claim. [

Therefore, the birational super-rigidity remains true over the field F.

Now, we consider the statements in Section 5 over the field F. They also require both
Theorem 2.34 and Bertini Theorem.

The reason why Theorem 2.34 is required again is the lemma below. It can be however
proved only with Theorem 2.30.

Lemma 7.4. Let p : X --+ Y be a birational map and 7 :' Y — Z be a fibration whose
general fiber is a smooth elliptic curve. Let (X, Mx) be the movable log pair such that
M = p~Y(|7*(H)|) and Mx = LM, where H is a very ample divisor on surface Z and n
is the natural number such that M C | — nKx|. Suppose that the set CS(X, Mx) contains
a singular point o € X. Then there is a birational map 3 : P? --» Z such that the diagram

| ﬂlT

P3_1>[P>2__>Z

commutes, where v is the projection from the point w(0).

Proof. Consider the blow up f: W — X at the point 0. Let C be a general fiber of ¢|_g,,|-
Then

2n — 2mult,(M) = C - f1(M) >0,
which implies mult,(Mx) < 1. Furthermore, the multiplicity mult,(Mx) cannot be less
than 1. Indeed, if mult,(Mx) < 1, then the proof of Lemma 7.2 shows a contradictory
inequalities
4> H- M3, > multg(H) multg(M3,) > 4,
where My = f~}(Mx), B is a center of CS(W, My/), and H is a general surface in
|f*(=2Kx) — E| passing through B.

In the case mult,(Mx) = 1, the linear system f~!(M) lies in the fibers of the elliptic
fibration ¢|_g,| : W — P2, which implies the claim. O

Bertini Theorem is required again only for the following statement that can be proved
without using Bertini theorem.

Lemma 7.5. Let C be a curve on X such that —Kx - C =1 and n(C) C S. Suppose that
#|Sing(X) N C| < 3. Then a general surface H € | — Kx| passing through curve C' has at
least 2 different simple double points on the curve C' C X at which the 3-fold X is smooth.
Proof. The surface 7(H) C P? is a plane passing through the line L := 7(C) C S. Therefore,

T(H)NS=LUQ,
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where @ is a plane quintic. Whenever H moves in the pencil of surfaces in | — Kx| passing
through C, the quintic @) moves in a pencil on S whose base locus is Sing(S) N L. It gives
a finite morphism v : L — P! of degree 5 — #|Sing(S) N L| such that in the outside of
the set Sing(S) N L the morphism + is ramified at the points where L U @ is not a normal
crossing divisor on the plane w(H). These points correspond to non-simple double points
of the surface H contained in the curve C' and different from Sing(X) N C. However, this
morphism can not be ramified everywhere because we assumed char(IF) > 5. O

Corollary 7.6. Lemma 5.8 remains true in the case char(F) > 5.
Proof. Apply Lemma 7.5 to the proof of Lemma 5.8. O

Because the proofs of Lemmas 5.9 and 5.10 are characteristic-free, Theorem E is true.

8. POTENTIAL DENSITY.

Now, we prove Theorem F.

Consider a double cover 7 : X — P3 defined over a number field F and ramified along a
nodal sextic surface S C P3. We suppose that Sing(X) # @. We will show that the set of
rational points of the 3-fold X is potentially dense, which means that there exists a finite
extension K of the field F such that the set of all K-rational points of the 3-fold X is Zariski
dense.

The rationality and the unirationality of the 3-fold X over the field Q would automatically
imply potential density of rational points on X. However, the 3-fold X is non-rational in
general due to Theorem A and the unirationality of the 3-fold X is unknown. Moreover,
X is expected to be non-unirational in general. Actually, the degree of a rational dominant
map from P2 to a double cover of P? ramified in a very generic smooth sextic surface must
be divisible by 2 and 3 due to [89] and [90].

The following result was proved in [16]:

Theorem 8.1. Let 7 : D — P? be a double cover defined over a number field F and ramified
along a reduced sextic curve R C P2. Suppose Sing(D) # @. Then the set of rational points
on the surface D is potentially dense if and only if the curve R C P? is not a union of siz

lines intersecting at a single point.

Actually, Theorem 8.1 is a special case of the following result in [17].

Theorem 8.2. Let D be a K3 surface defined over a number field F such that D has either
a structure of an elliptic fibration or an infinite group of automorphisms. Then the set of

rational points on D is potentially dense.

Hence, taking Theorem C into consideration, we see that Theorem F is a three-dimensional
analogue of Theorem 8.1.
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When singularities of the sextic surface S are worse than simple double points but are not
too bad, the double cover X tends to be more rational (see [23]). Thus Theorem F must
be true for sextic surfaces with any singularities possibly except cones over sextic curves.
If the sextic surface S C P? is a reduced union of six hyperplanes passing through one line,
the set of rational points on X is not potentially dense due to Faltings Theorem ([56] and
[57]) because the 3-fold X is birationally isomorphic to a product P? x C, where C is a
smooth curve of genus 2.

As a matter of fact, the sets of rational points are potentially dense on double covers of P"
ramified along general enough sextic hypersurfaces for n > 0 due to the following result

([40]):

Theorem 8.3. Let V' be a double cover of P ramified in a sufficiently general hypersurface
of degree 2d > 4. Then V is unirational if n > c(d), where ¢(d) € N depends only on d.

We will prove the potential density of the set of rational points on X using the technique
of [15], [16], and [70] which relies on the following result proved in [104].

Theorem 8.4. Let F be a number field. Then there is an integer ng such that no elliptic

curve defined over F has a F-rational torsion point of order n > ny.

Let o be a simple double point on X. The point 7(0) is a node of the sextic surface S.
Replacing the field F by a finite extension of F, we may assume that the point o and some
other finitely many points that we will need in the sequel are defined over F. Let f : V — X
be the blow up at the point o with f-exceptional divisor E. Then the linear system | — Ky |
is free and the morphism

P-ky| V= P’

is an elliptic fibration. The surface E is a multisection of ¢|_g,,| of degree 2. Let H be a

general surface in | — f*(Kx)|. Then H is a multisection of ¢|_,| of degree 2 as well.

The following lemma is a corollary of Proposition 2.4 in [15].

Lemma 8.5. Suppose that there is a multisection M of ¢|_k,| of degree d > 2 such that
the morphism ¢|—Kv|‘M is branched at a point p € M which is contained in a smooth fiber
of the elliptic fibration ¢|_g.,|. Then the divisor p1 —p2 € Pic(Cy) is not a torsion for some
distinct two points p1 and pa of the intersection M N Cy, where Cy, = gbf_lKvl(b) and b is a
C-rational point in the complement to a countable union of proper Zariski closed subsets in
P2.

Proof. See [15]. O

Lemma 8.6. Let M € |H| be an irreducible multisection of ¢|_g,| of degree 2 defined
over F such that the set of rational points on M is potentially dense in M and ¢|—Kv||M 18
branched at a point contained in a smooth fiber of ¢|_r.,|. Then the set of rational points

on X 1is potentially dense.
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Proof. For each n € N, we let ®,, be the set of points p of M satisfying the following two

conditions:

(1) the point p is contained in a smooth fiber C), of the elliptic fibration ¢|_g|;
(2) 2np = nH|c, in Pic(Cy).

Let @,, be the Zariski closure of the set ®,, in M.

Suppose ®,, = M for some n. Take a very general fiber C' of @)K, and let

Cﬂ M = {pl:p?}a

where p; # ps. Then either 2np; ~ nH|c or 2npy ~ nH|c because ®,, = M. However,
p1+p2 ~ Hl|c. Thus
2npy ~ 2nps ~ nH|c

and the element p; — po is a torsion in Pic(C'). Therefore, the C-rational point ¢|_g(C)
is contained in the countable union of proper Zariski closed subsets in P? of Lemma 8.5,
which contradicts the very general choice of the fiber C. Accordingly, the set ®,, is not
Zariski dense in M for any n € N. Moreover, it follows from Theorem 8.4 that each set
®,, for n > np, where ng is the number defined in Theorem 8.4, is disjoint from the set of
F-rational points on M.

Because of the assumption on the multisection M, we may assume that the set of F-rational
points on the surface M is Zariski dense. Take an F-rational point

g€ M = M\(ZU", T)),

where the set Z C M consists of points contained in singular fibers of ¢|_g,|. Let C; be
the fiber of ¢|_g, | passing through ¢. Then both the curve C; and the point ¢_g(q)
are defined over the field F. The divisor 2¢ — H|c, € Pic(Cy) is defined over F as well.
Moreover, 2q — H|c, is not a torsion divisor. By Riemann-Roch theorem, for each n € N
there is a unique F-rational point ¢, € C, such that

Gn + (2n - 1)61 = nH|Cq

in Pic(Cy). Because 2q — H|c, is not a torsion divisor, we see that ¢; # ¢; if and only
if ¢ # j. We obtain an infinite collection of F-rational points on Cj,;. Consequently, for
each F-rational point ¢ in M’, the curve Cj is contained in the Zariski closure of the set
of F-rational points of V. Because the set M’ is a Zariski dense subset of M, the set of
rational points on the 3-fold X is potentially dense. ]

In order to prove Theorem F, it is enough to find an element in | H| satisfying the conditions
of Lemma 8.6. To find such an element, we let T" be the set of points (p, q) € S x S satisfying
the following conditions:

(1) p#

(2) the points p and ¢ are smooth points on the sextic surface S;

(3) the point ¢ is contained in the hyperplane D C P? tangent to S at p;
(4) the point ¢ is a smooth point of the intersection S N D;
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(5) the intersection S N D is reduced.
We also let ¢ : T' — S be the projection on the second factor.

Lemma 8.7. The image ¥(T) contains a Zariski open subset of the sextic S C P3.

Proof. Let p be a general point on the sextic S C P2 and D be the hyperplane tangent to
the surface S at the point p in P3. To prove the claim we just need to show that DN S is
reduced, which is nothing but the finiteness of the Gauss map at a generic point of S.

When the surface S is smooth, the intersection D N S is known to be reduced (see [60],
[76], or [112]). Even though S can have double points in our case, the intersection DN S is
reduced because S is not ruled (see [105]). Here, we prove it only with simple calculation.

Suppose that D NS is not reduced and
DNS=mC+FcCD==P?

where m > 2. Then C is a line, a conic, or a plane cubic curve. Let ~ : S — S be the blow
up at the double points of S and C' = 7~1(C). Then S is a surface of general type,

Kg=7"(0ps(2)]s),

and C is either a rational curve or an elliptic curve. Moreover, the self-intersection number
C? of C is negative by adjunction formula, but C' moves in a family on the surface S when

we move the point p in .S, which is a contradiction. U

Therefore, by Lemma 8.7 we can find a hyperplane D C P3 such that D NS is reduced and
singular at some smooth point of S. Moreover, we may assume that D does not contain

the point 7(0) and there is a line L C P3 passing through the point 7(0) such that
LNnDNS+#o

and L intersects the sextic S transversally at four different smooth points of S. Let D be
the surface in the linear system |H| such that = o f(D) = D. Then D is an irreducible
multisection of the elliptic fibration ¢|_,,| of degree 2 such that ¢|_g, || is branched at a
point ¢ € D contained in the fiber C' of ¢|_g, | such that 7o f(C) = L. By construction,
the fiber C' is a smooth elliptic curve, mo f(¢) = LN D NS, and ¢ is a smooth point on D.
Moreover, extending the field F we can assume that D is defined over F. Hence, the set of
rational points is potentially dense on D by Theorem 8.1. Theorem F is proven.

It would be natural to prove Theorem F in the case when the sextic S is singular and
reduced (see Theorem 8.1). Most of the arguments in this section work for any reduced
singular sextic surface. Actually, in the case when the sextic S has non-isolated singularities
(for example, when it is reducible) we do not need to use Lemma 8.7 at all, but in the case
when the sextic S is irreducible and has isolated singularities we can prove Lemma 8.7 using
the finiteness of the Gauss map for curves (see [69]) in the assumption S is not a scroll (see
[105], [145], and [146]), which is satisfied automatically if S is not a cone. Moreover, in
general the proof of Theorem F must be simpler for bad singularities. For instance, in
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the case when the sextic S has a singular point of multiplicity 4, the double cover X is

unirational and non-rational in general due to [138], but it is rational when S has a singular

point of multiplicity 5. However, when S is a cone over a smooth sextic curve R C P2,

the double cover X is birationally equivalent to P! x D, where D is a double cover of P?

ramified along R. The potential density of rational points on X is therefore equivalent to

the potential density of rational points on D, which is still unknown in general (see [17]).
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