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Introduction

Let C be a connected smooth projective curve of genus g ≥ 2 over an al-
gebraically closed field k. Consider the coarse moduli scheme Bunr,d (resp.
Bunr,L) of stable vector bundles on C with rank r and degree d ∈ Z (resp.
determinant isomorphic to the line bundle L on C).

Motivated by work of A. Tyurin [10, 11] and P. Newstead [7, 8], it has
been believed for a long time that Bunr,L is rational if r and the degree of L
are coprime. Finally, this conjecture was proved in 1999 by A. King and A.
Schofield [4]; they deduce it from their following main result:

Theorem 0.1 (King–Schofield). Bunr,d is birational to the product of an
affine space An and Bunh,0 where h be the highest common factor of r and d.

The present text contains the complete proof of King and Schofield trans-
lated into the language of algebraic stacks. Following their strategy, the moduli
stack Bunr,d of rank r, degree d vector bundles is shown to be birational to a
Grassmannian bundle over Bunr1,d1 for some r1 < r; then induction is used.
However, this Grassmannian bundle is in some sense twisted. Mainly for that
reason, King and Schofield need a stronger induction hypothesis than 0.1: They
add the condition that their birational map preserves a certain Brauer class ψr,d

on Bunr,d. One main advantage of the stack language here is that this extra
condition is not needed: The stack analogue of theorem 0.1 is proved by a direct
induction.

(In more abstract terms, this can be understood roughly as follows: A Brauer
class corresponds to a gerbe with band Gm. But the gerbe on Bunr,d corre-
sponding to ψr,d is just the moduli stack Bunr,d. Thus a rational map of coarse
moduli schemes preserving this Brauer class corresponds to a rational map of
the moduli stacks.)

This paper consists of four parts. Section 1 contains the precise formulation
of the stack analogue 1.2 to theorem 0.1; then the original results of King and
Schofield are deduced. Section 2 deals with Grassmannian bundles over stacks
because they are the main tool for the proof of theorem 1.2 in section 3. Finally,
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appendix A summarizes the basic properties of the moduli stack Bunr,d that we
use. In particular, a proof of Hirschowitz’ theorem about the tensor product of
general vector bundles on C is given here, following Russo and Teixidor [9].

The present article has grown out of a talk in the joint seminar of U. Stuhler
and Y. Tschinkel in Göttingen. I would like to thank them for the opportunity
to speak and for encouraging me to write this text. I would also like to thank J.
Heinloth for some valuable suggestions and for many useful discussions about
these stacks.

1 The King-Schofield theorem in stack form

We denote by Bunr,d the moduli stack of vector bundles of rank r and degree
d on our smooth projective curve C of genus g ≥ 2 over k = k̄. This stack
is algebraic in the sense of Artin, smooth of dimension (g − 1)r2 over k and
irreducible; these properties are discussed in more detail in the appendix.

Our main subject here is the birational type of Bunr,d. We will frequently
use the notion of a rational map between algebraic stacks; it is defined in the
usual way as an equivalence class of morphisms defined on dense open substacks.
A birational map is a rational map that admits a two-sided inverse.

Definition 1.1. A rational map of algebraic stacks M //___ M′ is bira-
tionally linear if it admits a factorization

M ∼ //___ M′ × An
pr1 //M′

into a birational map followed by the projection onto the first factor.

Now we can formulate the stack analogue of the King-Schofield theorem 0.1;
its proof will be given in section 3.

Theorem 1.2. Let h be the highest common factor of the rank r ≥ 1 and the
degree d ∈ Z. There is a birationally linear map of stacks

µ : Bunr,d //___ Bunh,0

and an isomorphism between the Picard schemes Picd(C) and Pic0(C) such that
the following diagram commutes:

Bunr,d
µ //___

det

��

Bunh,0

det

��
Picd(C)

∼ // Pic0(C)

(1)

Remark 1.3. One cannot expect an isomorphism of Picard stacks here: If (1)
were a commutative diagram of stacks, then choosing a general vector bundle
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E of rank r and degree d would yield a commutative diagram of automorphism
groups

Gm
∼ //

( )r

��

Gm

( )h

��
Gm

∼ // Gm

which is impossible for r 6= h.

Remark 1.4. In the theorem, we can furthermore achieve that µ preserves
scalar automorphisms in the following sense:

Let E and E′ = µ(E) be vector bundles over C that correspond to a general
point in Bunr,d and its image in Bunh,0. Then E and E′ are stable (because we
have assumed g ≥ 2) and hence simple. The rational map µ induces a morphism
of algebraic groups

µE : Gm = Aut(E) −→ Aut(E′) = Gm

which is an isomorphism because µ is birationally linear. Thus µE is either
the identity or λ 7→ λ−1; it is independent of E because Bunr,d is irreducible.
Modifying µ by the automorphism E′ 7→ E′dual of Bunh,0 if necessary, we can
achieve that µE is the identity for every general E.

Clearly, the map µ in the theorem restricts to a birationally linear map
between the dense open substacks of stable vector bundles. But any rational
(resp. birational, resp. birationally linear) map between these induces a rational
(resp. birational, resp. birationally linear) map between the corresponding
coarse moduli schemes; cf. proposition A.6 in the appendix for details. Hence
the original theorem of King and Schofield follows:

Corollary 1.5 (King–Schofield). Let Bunr,d be the coarse moduli scheme of
stable vector bundles of rank r and degree d on C. Then there is a birationally
linear map of schemes

µ : Bunr,d
//___ Bunh,0.

Of course, this is just a reformulation of the theorem 0.1 mentioned in the
introduction.

Remark 1.6. As mentioned before, King and Schofield also prove that the
rational map µ : Bunr,d

//___ Bunh,0 preserves their Brauer class ψr,d. This
is equivalent to the condition that µ induces a rational map between the corre-
sponding Gm-gerbes, i. e. a rational map Bunr,d //___ Bunh,0 that preserves
scalar automorphisms in the sense of remark 1.4.

We recall the consequences concerning the rationality of Bunr,L. Because the
diagram (1) commutes, µ restricts to a rational map between fixed determinant
moduli schemes; thus one obtains:
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Corollary 1.7 (King–Schofield). Let L be a line bundle on C, and let Bunr,L

be the coarse moduli scheme of stable vector bundles of rank r and determinant
L on C. Then there is a birationally linear map of schemes

µ : Bunr,L
//___ Bunh,O

where h is the highest common factor of r and deg(L).

In particular, Bunr,L is rational if the rank r and the degree deg(L) are
coprime; this proves the conjecture mentioned in the introduction. More gen-
erally, it follows that Bunr,L is rational if Bunh,O is. For h ≥ 2, it seems to be
still an open question whether Bunh,O is rational or not.

2 Grassmannian bundles

Let V be a vector bundle over a dense open substack U ⊆ Bunr,d. Recall
that a part of this datum is a functor from the groupoid U(k) to the groupoid
of vector spaces over k. So for each appropriate vector bundle E over C, we
do not only get a vector space VE over k, but also a group homomorphism
AutOC

(E)→ Autk(VE). Note that both groups contain the scalars k∗.

Definition 2.1. A vector bundle V over a dense open substack U ⊆ Bunr,d has
weight w ∈ Z if the diagram

k∗
� � //

( )w

��

AutOC
(E)

��
k∗

� � // Autk(VE)

commutes for all vector bundles E over C that are objects of the groupoid U(k).

Example 2.2. The trivial vector bundle On over Bunr,d has weight 0.

We denote by Euniv the universal vector bundle over C × Bunr,d, and by
Euniv

p its restriction to {p} × Bunr,d for some point p ∈ C(k).

Example 2.3. Euniv
p is a vector bundle of weight 1 on Bunr,d, and its dual

(Euniv
p )dual is a vector bundle of weight −1.

For another example, we fix a vector bundle F over C. By semicontinuity,
there is an open substack U ⊆ Bunr,d that parameterizes vector bundles E of
rank r and degree d over C with Ext1(F,E) = 0; we assume U 6= ∅. The
vector spaces Hom(F,E) are the fibres of a vector bundle Hom(F, Euniv) over U
according to Grothendieck’s theory of cohomology and base change in EGA III.

Similarly, there is a vector bundle Hom(Euniv, F ) defined over an open sub-
stack of Bunr,d whose fibre over any point [E] with Ext1(E,F ) = 0 is the vector
space Hom(E,F ).
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Example 2.4. Hom(F, Euniv) is a vector bundle of weight 1, and Hom(Euniv, F )
is a vector bundle of weight −1.

Note that any vector bundle of weight 0 over an open substack U ⊆ Bunr,d

contained in the stable locus descends to a vector bundle over the corresponding
open subscheme U ⊆ Bunr,d of the coarse moduli scheme, cf. proposition A.6.
Vector bundles of nonzero weight do not descend to the coarse moduli scheme.

Proposition 2.5. Consider all vector bundles V of fixed weight w over dense
open substacks of a fixed stack Bunr,d. Assume that V0 has minimal rank among
them. Then every such V is generically isomorphic to Vn

0 for some n.

Proof. The homomorphism bundles End(V0) and Hom(V0,V) are vector bun-
dles of weight 0 over dense open substacks of Bunr,d. Hence they descend to
vector bundles A and M over dense open subschemes of Bunr,d, cf. proposition
A.6. The algebra structure on End(V0) and its right(!) action on Hom(V0,V)
also descend; they turn A into an Azumaya algebra and M into a right A-
module.

In particular, the generic fibre MK is a right module under the central simple
algebra AK over the function field K := k(Bunr,d). By our choice of V0, there
are no nontrivial idempotent elements in AK ; hence AK is a skew field.

We have just constructed a functor V 7→MK from the category in question
to the category of finite-dimensional right vector spaces over AK . This functor
is a Morita equivalence; its inverse is defined as follows:

Given such a right vector space MK over AK , we can extend it to a right
A-module M over a dense open subscheme of Bunr,d, i. e. to a right End(V0)-
module of weight 0 over a dense open substack of Bunr,d; we send MK to the
vector bundle of weight w

V := M ⊗End(V0) V0.

Using this Morita equivalence, the proposition follows from the correspond-
ing statement for right vector spaces over AK .

Corollary 2.6. There is a vector bundle of weight w = 1 (resp. w = −1) and
rank h = hcf(r, d) over a dense open substack of Bunr,d.

Proof. Because the case of weight w = −1 follows by dualizing the vector bun-
dles, we only consider vector bundles of weight w = 1. Here Euniv

p is a vector
bundle of rank r over Bunr,d, and Hom(Ldual, Euniv) is a vector bundle of rank
r(1− g+deg(L))+ d over a dense open substack if L is a sufficiently ample line
bundle on C. Consequently, the rank of V0 divides r and r(1− g+ deg(L)) + d;
hence it also divides their highest common factor h.

To each vector bundle V over a dense open substack U ⊆ Bunr,d, we can
associate a Grassmannian bundle

Grj(V) −→ U ⊆ Bunr,d.

5



By definition, Grj(V) is the moduli stack of those vector bundles E over C
which are parameterized by U , endowed with a j-dimensional vector subspace
of VE . Grj(V) is again a smooth Artin stack locally of finite type over k, and its
canonical morphism to U is representable by Grassmannian bundles of schemes.

If V is a vector bundle of some weight, then all scalar automorphisms of E
preserve all vector subspaces of VE . This means that the automorphism groups
of the groupoid Grj(V)(k) also contain the scalars k∗. In particular, it makes
sense to say that a vector bundle over Grj(V) has weight w ∈ Z: There is an
obvious way to generalize definition 2.1 to this situation.

To give some examples, we fix a point p ∈ C(k). Let Parm
r,d be the moduli

stack of rank r, degree d vector bundles E over C endowed with a quasiparabolic
structure of multiplicity m over p. Recall that such a quasiparabolic structure
is just a coherent subsheaf E′ ⊆ E with the property that E/E′ is isomorphic
to the skyscraper sheaf Om

p .

Example 2.7. Parm
r,d is canonically isomorphic to the Grassmannian bundle

Grm((Euniv
p )dual) over Bunr,d.

Here we have regarded a quasiparabolic vector bundle E• = (E′ ⊆ E) as
the vector bundle E together with a dimension m quotient of the fibre Ep. But
we can also regard it as the vector bundle E′ together with a dimension m
vector subspace in the fibre at p of the twisted vector bundle E′(p). Choosing a
trivialization of the line bundle OC(p) over p, we can identify the fibres of E′(p)
and E′ at p; hence we also obtain:

Example 2.8. Parm
r,d is isomorphic to the Grassmannian bundle Grm(E ′univ

p )
over Bunr,d−m where E ′univ is the universal vector bundle over C × Bunr,d−m.

These two Grassmannian bundles

Bunr,d
θ1←− Parm

r,d
θ2−→ Bunr,d−m

form a correspondence between Bunr,d and Bunr,d−m, the Hecke correspon-
dence. Its effect on the determinant line bundles is given by

det θ1(E•) = det(E) ∼= OC(mp)⊗ det(E′) = OC(mp)⊗ det θ2(E•) (2)

for each parabolic vector bundle E• = (E′ ⊆ E) with multiplicity m at p.

Proposition 2.9. Let V and W be two vector bundles of the same weight w
over dense open substacks of Bunr,d. If j ≤ rk(W) ≤ rk(V), then there is a
birationally linear map

ρ : Grj(V) //___ Grj(W)

over Bunr,d.
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Proof. According to proposition 2.5, there is a vector bundle W ′ of weight w
such that V ∼= W ⊕W ′ over some dense open substack U ⊆ Bunr,d. We may
assume without loss of generality that U is contained in the stable locus and
denote by U ⊆ Bunr,d the corresponding open subscheme, cf. proposition A.6.

We use the following simple fact from linear algebra: If W and W ′ are vector
spaces over k with dim(W ) ≥ j, then every j-dimensional vector subspace of
W ⊕W ′ whose image S in W also has dimension j is the graph of a unique
linear map S →W ′.

This means that Grj(W ⊕W ′) contains as a dense open subscheme the total
space of the vector bundle Hom(Suniv,W ′) over Grj(W ) where Suniv is the
universal subbundle of the constant vector bundle W over Grj(W ).

In our stack situation, these considerations imply that Grj(V) is birational to
the total space of the vector bundle Hom(Suniv,W ′) over Grj(W) where Suniv

is the universal subbundle of the pullback of W over Grj(W). This defines the
rational map ρ.

The vector bundle Hom(Suniv,W ′) has weight 0 because Suniv andW ′ both
have weight w. Since the scalars act trivially, we can descend Grj(W) and this
vector bundle over it to a Grassmannian bundle over U and a vector bundle over
it, cf. proposition A.6. In particular, our homomorphism bundle is trivial over
a dense open substack of Grj(W). This proves that ρ is birationally linear.

Corollary 2.10. Let V be a vector bundle of weight w = ±1 over a dense open
substack of Bunr,d. If j is divisible by hcf(r, d), then the Grassmannian bundle

Grj(V) −→ Bunr,d

is birationally linear.

Proof. By corollary 2.6, there is a vector bundleW of weight w and rank j. Due
to the proposition, Grj(V) is birationally linear over Grj(W) ' Bunr,d.

3 Proof of theorem 1.2

The aim of this section is to prove theorem 1.2, i. e. to construct the birationally
linear map µ : Bunr,d //___ Bunh,0 where h is the highest common factor of
the rank r and the degree d. We proceed by induction on r/h.

For r = h, the theorem is trivial: Tensoring with an appropriate line bundle
defines even an isomorphism of stacks Bunr,d

∼ // Bunh,0 with the required
properties. Thus we may assume r > h.

Lemma 3.1. There are unique integers rF and dF that satisfy

(1− g)rF r + rF d− rdF = h (3)

and
r < hrF < 2r. (4)
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Proof. (3) has an integer solution rF , dF because h is also the highest common
factor of r and (1 − g)r + d; here rF is unique modulo r/h. Furthermore, rF
is nonzero modulo r/h since −rdF = h has no solution. Hence precisely one of
the solutions rF , dF of (3) also satisfies (4).

We fix rF , dF and define

r1 := hrF − r, d1 := hdF − d, h1 := hcf(r1, d1).

Then r1 < r, and h1 is a multiple of h. In particular, r1/h1 < r/h.

Lemma 3.2. There is an exact sequence

0 −→ E1 −→ F ⊗k V −→ E −→ 0 (5)

where E1, F , E are vector bundles over C and V is a vector space over k with

rk(E1) = r1, rk(F ) = rF , rk(E) = r, dim(V ) = h
deg(E1) = d1, deg(F ) = dF , deg(E) = d

such that the following two conditions are satisfied:

i) Ext1(F,E) = 0, and the induced map V → Hom(F,E) is bijective.

ii) Ext1(E1, F ) = 0, and the induced map V dual → Hom(E1, F ) is injective.

Proof. We may assume h = 1 without loss of generality: If there is such a
sequence for r/h and d/h instead of r and d, then the direct sum of h copies is
the required sequence for r and d.

By our choice of rF and dF and Riemann-Roch, all vector bundles F and E
of these ranks and degrees satisfy

χ(F,E) := dimk Hom(F,E)− dimk Ext1(F,E) = h = 1.

If F and E are general, then

Hom(F,E) ∼= k and Ext1(F,E) = 0

according to a theorem of Hirschowitz [2, section 4.6], and there is a surjective
map F → E by an argument of Russo and Teixidor [9]. Thus we obtain an
exact sequence

0 −→ E1 −→ F −→ E −→ 0 (6)

that satisfies condition i (with V = k).
(For the convenience of the reader, a proof of the cited results is given in the

appendix, cf. theorem A.7.)
Furthermore, all vector bundles of the given ranks and degrees satisfy

χ(E1, F ) = χ(F,E)− χ(E,E) + χ(E1, E1) > χ(F,E) = h = 1

because r1 < r. Now we can argue as above: For general E1 and F , we have
Ext1(E1, F ) = 0 by Hirschowitz, and there is an injective map E1 → F with
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torsionfree cokernel by Russo-Teixidor; cf. also theorem A.7 in the appendix.
Thus we obtain an exact sequence (6) that satisfies condition ii (with V = k).

Finally, we consider the moduli stack of all exact sequences (6) of vector
bundles with the given ranks and degrees. As explained in the appendix (cf.
corollary A.5), it is an irreducible algebraic stack locally of finite type over k.
But i and ii are open conditions, so there is a sequence that satisfies both.

From now on, let F be a fixed vector bundle of rank rF and degree dF that
occurs in such an exact sequence (5).

Definition 3.3. The rational map of stacks

λF : Bunr,d
//___ Bunr1,d1

is defined by sending a general rank r, degree d vector bundle E over C to the
kernel of the natural evaluation map

εE : Hom(F,E)⊗k F −→ E.

We check that this does define a rational map. Let UF ⊆ Bunr,d be the
open substack that parameterizes all E for which Ext1(F,E) = 0 and εE is
surjective. Then the εE are the restrictions of a surjective morphism εuniv of
vector bundles over C × UF . So the kernel of εuniv is also a vector bundle; it
defines a morphism λF : UF → Bunr1,d1 . This gives the required rational map
because UF is nonempty by our choice of F .

For later use, we record the effect of λF on determinant line bundles:

detλF (E) ∼= det(F )⊗h ⊗ det(E)dual. (7)

Following [4], the next step is to understand the fibres of λF . We denote by
Hom(Euniv

1 , F ) the vector bundle over an open substack of Bunr1,d1 whose fibre
over any point [E1] with Ext1(E1, F ) = 0 is the vector space Hom(E1, F ).

Proposition 3.4. Bunr,d is over Bunr1,d1 naturally birational to the Grass-
mannian bundle Grh(Hom(Euniv

1 , F )).

Proof. If E is a rank r, degree d vector bundle over C for which Ext1(F,E) = 0
and the above map ε := εE is surjective, then the exact sequence

0 −→ ker(ε) −→ Hom(F,E)⊗k F
ε−→ E −→ 0

satisfies the condition i of the previous lemma. This identifies the above open
substack UF ⊆ Bunr,d with the moduli stack of all exact sequences (5) that
satisfy i.

Similarly, let U ′F ⊆ Grh(Hom(Euniv
1 , F )) be the open substack that param-

eterizes all pairs (E1, S ⊆ Hom(E1, F )) for which Ext1(E1, F ) = 0 and the
natural map α : E1 → Sdual⊗kF is injective with torsionfree cokernel. For such
a pair (E1, S), the exact sequence

0 −→ E1
α−→ Sdual ⊗k F −→ coker(α) −→ 0
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satisfies the condition ii of the previous lemma. This identifies U ′F with the
moduli stack of all exact sequences (5) that satisfy ii.

Hence both Bunr,d and Grh(Hom(Euniv
1 , F )) contain as an open substack the

moduli stack U ′′F of all exact sequences (5) that satisfy both conditions i and ii.
But U ′′F is nonempty by our choice of F , so it is dense in both stacks; thus they
are birational over Bunr1,d1 .

Still following [4], the proof of theorem 1.2 can now be summarized in the
following diagram; it is explained below.

Bunr,d

λF %%J
J

J
J

J
ρ //___ Grh(W)

��

µ̃1 //___ Parh
h1,0

θ1

��

θ2 // Bunh1,−h
µ2 //___ Bunh,0

Bunr1,d1 µ1
//___ Bunh1,0

Here µ1 and µ2 are the birationally linear maps given by the induction hypoth-
esis. (θ1, θ2) is the Hecke correspondence explained in the previous section; note
that θ2 is birationally linear by corollary 2.10.

The square in this diagram is cartesian, so µ̃1 is the pullback of µ1, and
W := µ∗1(Euniv

p )dual is the pullback of the vector bundle (Euniv
p )dual over Bunh1,0

to which θ1 is the associated Grassmannian bundle. Using remark 1.4, we may
assume that µ1 preserves scalar automorphisms, i. e. that W has the same
weight −1 as (Euniv

p )dual. Then we can apply proposition 2.9 to obtain the
birationally linear map ρ. Now we have the required birationally linear map

µ := µ2 ◦ θ2 ◦ µ̃1 ◦ ρ : Bunr,d
//___ Bunh,0;

it satisfies the determinant condition in theorem 1.2 due to equations (7), (2)
and the corresponding induction hypothesis on µ1, µ2.

A Moduli stacks of sheaves on curves

This section summarizes some well-known basic properties of moduli stacks of
vector bundles and more generally coherent sheaves on curves. For the gen-
eral theory of algebraic stacks, we refer the reader to [5] or the appendix of
[12]. We prove that the moduli stacks in question are algebraic, smooth and
irreducible. Then we discuss descent to the coarse moduli scheme. Finally, we
deduce Hirschowitz’ theorem [2] and a refinement by Russo and Teixidor [9]
about morphisms between general vector bundles.

Recall that we have fixed an algebraically closed field k and a connected
smooth projective curve C/k of genus g. We say that a coherent sheaf F on C
has type t = (r, d) if its rank rk(F ) (at the generic point of C) equals r and its
degree deg(F ) equals d.

If F ′ and F are coherent sheaves of types t = (r, d) and t′ = (r′, d′) on C,
then the Euler characteristic

χ(F ′, F ) := dimk Hom(F ′, F )− dimk Ext1(F ′, F )
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satisfies the Riemann-Roch theorem χ(F ′, F ) = χ(t′, t) with

χ(t′, t) := (1− g)r′r + r′d− rd′.

Note that Extn(F ′, F ) vanishes for all n ≥ 2 since dim(C) = 1.
We denote by Coht the moduli stack of coherent sheaves F of type t on

C. More precisely, Coht(S) is for each k-scheme S the groupoid of all coherent
sheaves on C × S which are flat over S and whose fibre over every point of S
has type t.

Now assume t = t1 + t2. We denote by Ext(t2, t1) the moduli stack of exact
sequences of coherent sheaves on C

0→ F1 → F → F2 → 0

where Fi has type ti = (ri, di) for i = 1, 2. This means that Ext(t2, t1)(S) is for
each k-scheme S the groupoid of short exact sequences of coherent sheaves on
C × S which are flat over S and fibrewise of the given types.

Proposition A.1. The stacks Coht and Ext(t2, t1) are algebraic in the sense
of Artin and locally of finite type over k.

Proof. Let O(1) be an ample line bundle on C. For n ∈ Z, we denote by

Cohn
t ⊆ Coht (resp. Ext(t2, t1)n ⊆ Ext(t2, t1))

the open substack that parameterizes coherent sheaves F on C (resp. exact
sequences 0→ F1 → F → F2 → 0 of coherent sheaves on C) such that the twist
F (n) = F ⊗O(1)⊗n is generated by global sections and H1(F (n)) = 0.

By Grothendieck’s theory of Quot-schemes, there is a scheme Quotn
t of finite

type over k that parameterizes such coherent sheaves F together with a basis
of the k-vector space H0(F (n)). Moreover, there is a relative Quot-scheme
Flag(t2, t1)n of finite type over Quotn

t that parameterizes such exact sequences
0→ F1 → F → F2 → 0 together with a basis of H0(F (n)).

Let N denote the dimension of H0(F (n)). According to Riemann-Roch, N
depends only on t, n and the ample line bundle O(1), but not on F .

Changing the chosen basis defines an action of GL(N) on Quotn
t , and Cohn

t

is precisely the stack quotient Quotn
t /GL(N). Similarly, Ext(t2, t1)n is precisely

the stack quotient Flag(t2, t1)n/GL(N). Hence these two stacks are algebraic
and of finite type over k.

By the ampleness of O(1), the Cohn
t (resp. Ext(t2, t1)n) form an open cov-

ering of Coht (resp. Ext(t2, t1)).

Remark A.2. In general, Coht is not quasi-compact because the family of all
coherent sheaves on C of type t is not bounded.

Proposition A.3. i) Coht is smooth of dimension −χ(t, t) over k.
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ii) If we assign to each exact sequence 0 → F1 → F → F2 → 0 the two
sheaves F1, F2, then the resulting morphism of algebraic stacks

Ext(t2, t1) −→ Coh(t1)× Coh(t2)

is smooth of relative dimension −χ(t2, t1), and all its fibres are connected.

iii) Ext(t2, t1) is smooth of dimension −χ(t2, t2)−χ(t2, t1)−χ(t1, t1) over k.

Proof. i) By standard deformation theory, Hom(F, F ) is the automorphism
group of any infinitesimal deformation of the coherent sheaf F , Ext1(F, F )
classifies such deformations, and Ext2(F, F ) contains the obstructions against
extending deformations infinitesimally, cf. [3, 2.A.6]. Because Ext2 vanishes,
deformations of F are unobstructed and hence Coht is smooth; its dimension at
F is then dim Ext1(F, F )− dim Hom(F, F ) = −χ(t, t).

ii) The fibre of this morphism over [F1, F2] is the moduli stack of all ex-
tensions of F2 by F1; it is the stack quotient of the affine space Ext1(F2, F1)
modulo the trivial action of the algebraic group Hom(F2, F1). Hence this fibre
is smooth of dimension −χ(t2, t1) and connected.

More generally, consider a scheme S of finite type over k and a morphism
S → Coh(t1) × Coh(t2); let F1 and F2 be the corresponding coherent sheaves
over C × S. By EGA III, the object RHom(F2, F1) in the derived category of
coherent sheaves on S can locally be represented by a complex of length one
V 0 δ−→ V 1 where V 0, V 1 are vector bundles. This means that the pullback of
Ext(t2, t1) to S is locally the stack quotient of the total space of V 1 modulo the
action of the algebraic group V 0

/
S given by δ. Hence this pullback is smooth

over S; this proves ii.
iii) follows from i and ii.

Proposition A.4. The stacks Coht and Ext(t2, t1) are connected.

Proof. Proposition A.3 implies that Ext(t2, t1) is connected if Coht1 and Coht2

are. We prove the connectedness of the latter by induction on the rank (and on
the degree for rank zero).
Coht is connected for t = (0, 1) because there is a canonical surjection C →

Coht; it sends a point P to the skyscraper sheaf OP . Now consider t = (0, d)
with d ≥ 2 and write t = t1 + t2. By induction hypothesis and A.3, Ext(t1, t2)
is connected. But there is a canonical surjection Ext(t1, t2)→ Coht; it sends an
extension 0→ F1 → F → F2 → 0 to the sheaf F . This shows that Coht is also
connected; now we have proved all connectedness assertions in rank zero.

If F and F ′ are two coherent sheaves on C of type t = (r, d) with r ≥ 1,
then there is a line bundle L on C such that both Ldual⊗F and Ldual⊗F ′ have
a generically nonzero section. In other words, there are injective morphisms
L ↪→ F and L ↪→ F ′. Let tL be the type of L; then F and F ′ are both in the
image of the canonical morphism Ext(t − tL, tL) → Coht. But Ext(t − tL, tL)
is connected by the induction hypothesis and A.3. This shows that any two
points F and F ′ lie in the same connected component of Coht, i. e. Coht is
connected.
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Corollary A.5. The stacks Coht and Ext(t2, t1) are reduced and irreducible.

The moduli stack Bunt of vector bundles, the moduli stack Sstabt of semi-
stable vector bundles and the moduli stack Stabt of (geometrically) stable vector
bundles on C of type t = (r, d) are open substacks

Stabt ⊆ Sstabt ⊆ Bunt ⊆ Coht.

Hence these stacks are all irreducible and smooth of the same dimension −χ(t, t)
if they are nonempty. Stabt is known to be nonempty for g ≥ 2 and r ≥ 1.
Moreover, Sstabt and Stabt are quasi-compact (and thus of finite type) because
the family of (semi-)stable vector bundles of given type t is bounded.

Proposition A.6. Assume g ≥ 2. Let Stabt −→ Bunt be the coarse moduli
scheme of stable vector bundles of type t, and let V be a vector bundle of some
weight w ∈ Z over an open substack U ⊆ Stabt.

i) U descends to an open subscheme U ⊆ Bunt.

ii) Grj(V) descends to a (twisted) Grassmannian scheme Grj(V) over U.

iii) If V has weight w = 0, then it descends to a vector bundle over U.

iv) More generally, any vector bundle of weight 0 over Grj(V) descends to a
vector bundle over Grj(V).

v) Any birationally linear map of stacks Stabt′ //___ Stabt induces a bira-

tionally linear map of schemes Bunt′
//___ Bunt .

Proof. We continue to use the notation introduced in the proof of proposition
A.1. By boundedness, there is an integer n such that Stabt is contained in
Cohn

t ; hence Stabt = Quotstabt /GL(N) where Quotstabt ⊆ Quotn
t is the stable

locus. Here the center of GL(N) acts trivially; by Geometric Invariant Theory
[6], Quotstabt is a principal PGL(N)-bundle over Bunt.

i) Let U ⊆ Quotstabt be the inverse image of U . Then U is a PGL(N)-stable
open subscheme in the total space of this principal bundle and hence the inverse
image of a unique open subscheme U ⊆ Bunt.

ii) Let V be the pullback of V to U ; it is a vector bundle with GL(N)-action.
Hence its Grassmannian scheme Grj(V ) → U also carries an action of GL(N).
But here the center acts trivially: λ · id ∈ GL(N) acts as the scalar λw on
the fibres of V and hence acts trivially on Grj(V ). Thus we obtain an action
of PGL(N) on our Grassmannian scheme Grj(V ) over U . Since this action is
free, Grj(V ) descends to a Grassmannian bundle Grj(V) over U (which may be
twisted, i. e. not Zariski-locally trivial).

iii) The assumption w = 0 means that the scalars in GL(N) act trivially on
the fibres of V . Hence PGL(N) acts on V over U here. Again since this action
is free, V descends to a vector bundle over U.

iv) Here weight 0 means that the scalars in GL(N) act trivially on the
pullback of the given vector bundle to Grj(V ). Hence PGL(N) acts on this
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pullback; but it acts freely on the base Grj(V ), so the vector bundle descends
to Grj(V).

v) Such a birationally linear map can be represented by an isomorphism
ϕ : U ′ → U between dense open substacks U ′ ⊆ Stabt′ ×A? and U ⊆ Stabt. By
i, U corresponds to an open subscheme U ⊆ Bunt; the proof of i shows that U is
a coarse moduli scheme for the stack U . A straightforward generalization of this
argument shows that U ′ corresponds to an open subscheme U′ ⊆ Bunt′ × A?

and that U′ is again a coarse moduli scheme for U ′. By the universal property of
coarse moduli schemes, ϕ induces an isomorphism U′ → U and thus the required
birationally linear map of schemes.

Theorem A.7 (Hirschowitz, Russo-Teixidor). Assume g ≥ 2. Let F1 and
F2 be a general pair of vector bundles on C with given types t1 = (r1, d1) and
t2 = (r2, d2).

i) If χ(t1, t2) ≥ 0, then dim Hom(F1, F2) = χ(t1, t2) and Ext1(F1, F2) = 0.

ii) If χ(t1, t2) ≥ 1 and r1 > r2 (resp. r1 = r2, resp. r1 < r2), then a
general morphism F1 → F2 is surjective (resp. injective, resp. injective
with torsionfree cokernel).

Proof. The cases r1 = 0 and r2 = 0 are trivial, so we may assume r1, r2 ≥ 1; then
Stabt1 6= ∅ 6= Stabt2 . By semicontinuity, there is a dense open substack U ⊆
Stabt1 × Stabt2 of stable vector bundles F1, F2 with dim Hom(F1, F2) minimal,
say equal to m. According to Riemann-Roch, m ≥ χ(t1, t2); part i of the
theorem precisely claims that we have equality here.

Let Hom(Funiv
1 ,Funiv

2 ) be the vector bundle of rank m over U whose fibre
over F1, F2 is Hom(F1, F2). By generic flatness (cf. EGA IV, §6.9), there is a
dense open substack V in the total space of Hom(Funiv

1 ,Funiv
2 ) such that the

cokernel of the universal family of morphisms F1 → F2 is flat over V. Then its
image and kernel are also flat over V; we denote the types of cokernel, image
and kernel by tQ = (rQ, dQ), t = (r, d) and tK = (rK , dK).

If r = 0, then the theorem clearly holds: In this case, the general morphism
ϕ : F1 → F2 has generic rank zero, so ϕ = 0; this means m = 0. Together with
m ≥ χ(t1, t2), this proves i and shows that the hypothesis of ii cannot hold here.
Henceforth, we may thus assume r 6= 0.

Note that t1 = tK + t and t2 = t + tQ; moreover, we have a canonical
morphism of moduli stacks

Φ : V −→ Ext(t, tK)×Coht Ext(tQ, t)

that sends a morphism ϕ : F1 → F2 to the extensions

0→ ker(ϕ)→ F1 → im(ϕ)→ 0 and 0→ im(ϕ)→ F2 → coker(ϕ)→ 0.

Conversely, two extensions 0 → K → F1 → I → 0 and 0 → J → F2 → Q → 0
together with an isomorphism I → J determine a morphism ϕ : F1 → F2. Thus
Φ is an isomorphism onto the open locus in Ext×Coh Ext where both extension
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sheaves F1, F2 are stable vector bundles and dim Hom(F1, F2) = m. Hence the
stack dimensions coincide, i. e.

m− χ(t1, t1)− χ(t2, t2) = −χ(t1, tK)− χ(t, t)− χ(tQ, t2).

Since χ is biadditive, this is equivalent to

m− χ(t1, t2) = −χ(tK , tQ). (8)

In particular, χ(tK , tQ) ≤ 0 follows.
Now suppose that tK and tQ were both nonzero. Since the general vector

bundles F1 and F2 are stable, we then have

dK

rK
<
d1

r1
<
d

r
<
d2

r2
<
dQ

rQ
.

Using the assumption χ(t1, t2) ≥ 0, we get

χ(tK , tQ)
rKrQ

= 1− g − dK

rK
+
dQ

rQ
> 1− g − d1

r1
+
d2

r2
=
χ(t1, t2)
r1r2

≥ 0

and hence χ(tK , tQ) > 0. This contradiction proves tK = 0 or tQ = 0.
(In some sense, this argument also covers the cases rK = 0 and rQ = 0. More

precisely, rK = 0 implies tK = 0 because every rank zero coherent subsheaf of
a vector bundle F1 is trivial. On the other hand, rK 6= 0 and tQ = (0, dQ) 6= 0
would imply χ(tK , tQ) = rKdQ > 0 which is again a contradiction.)

In particular, we get χ(tK , tQ) = 0; together with equation (8), this proves
part i of the theorem.

If r1 > r2 (resp. r1 ≤ r2), then rK > rQ (resp. rK ≤ rQ) and hence
rK 6= 0 = rQ (resp. rK = 0); we have just seen that this implies tQ = 0 (resp.
tK = 0), i. e. the general morphism ϕ : F1 → F2 is surjective (resp. injective).

Furthermore, the morphism of stacks V → CohtQ
that sends a morphism

ϕ : F1 → F2 to its cokernel is smooth (due to the open embedding Φ and
proposition A.3). If r1 < r2, then rQ ≥ 1, so BuntQ

is open and dense in CohtQ
;

this implies that the inverse image of BuntQ
is open and dense in V, i. e. the

general morphism ϕ : F1 → F2 has torsionfree cokernel.
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[1] A. Grothendieck. Éléments de géométrie algébrique (EGA). Inst. Hautes
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