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ABSTRACT. The subgroup of the Schur multiplier of a finite group
G consisting of all cohomology classes whose restriction to any
abelian subgroup of G is zero is called the Bogomolov multiplier
of G. We prove that if G is quasisimple or almost simple, its
Bogomolov multiplier is trivial except for the case of certain covers
of PSL(3,4).

INTRODUCTION

A common method for proving that a given algebraic variety X over a
field k is not rational is as follows. We consider some easily computable
object (usually of algebraic nature), which can be defined functorially
on a sufficiently large class of algebraic varieties and is known to be
preserved under birational transformations (birational invariant). We
calculate its value for X (or for some Y birationally equivalent to X).
If this value is not trivial, i.e. does not coincide with the value of this
birational invariant on the affine or projective space, X is not rational.

The Brauer group Br(X) = HZ(X,G,,), whose birational invari-
ance in the class of smooth projective varieties has been established
by Grothendieck, turned out to be a very convenient tool (the Artin—
Mumford counter-example to Liiroth’s problem, based on using this
invariant, confirms its power). Moreover, even if X is not projective,
this invariant can be useful: embed X as an open subset into a smooth
projective variety Y (if the ground field is of characteristic zero, this is
always possible by Hironaka) and compute Br(Y'). If the latter group
is not zero, Y cannot be birational to P”, and thus X is not rational.
Note that Br(Y') depends only on X (and not on the choice of a smooth
projective model Y'); it is called the unramified Brauer group of X and
denoted by Br,,(X). (The reader interested in historical perspective
and geometric context, including more general invariants arising from
higher-dimensional cohomology, is referred to [Sh], [CTS], [GS, 6.6,

6.7], [Bo07].)
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In concrete cases, it may be difficult to construct Y explicitly, and
thus it is desirable to express Bry, (X) in intrinsic terms, i.e. get a
formula not depending on Y. This approach was realized by Bogomolov
[Bo87] in the case of the quotient variety X = V/G where V' stands for
a faithful linear representation of a linear algebraic group G over C. It
turns out that in this case Bry (X) depends solely on G' (but not on
V).

In the present paper we focus on the case where G is a finite group.
The birational invariant Br,,(V/G) has been used by Saltman to give
a negative answer to Noether’s problem [Sa]. In [Bo87] Bogomolov
established an explicit formula for Bry,,(V/G) in terms of G: this group
is isomorphic to By(G), the subgroup of the Schur multiplier M(G) :=
H?*(G,Q/Z) consisting of all cohomology classes whose restriction to
any abelian subgroup of G is zero. We call By(G) the Bogomolov
multiplier of G.

In [Sal], [Bo87] one can found examples of groups G with nonzero
By(G) (they are all p-groups of small nilpotency class). In contrast,
in [Bo92] Bogomolov conjectured that By(G) = 0 when G is a finite
simple group. In [BMP] it was proved that By(G) = 0 when G is of
Lie type A,,. In the present paper we prove Bogomolov’s conjecture in
full generality.

1. RESULTS
We maintain the notation of the introduction and assume throughout
the paper that G is a finite group.

We say that G is quasisimple if G is perfect and its quotient by the
centre L. = G/Z is a nonabelian simple group. We say that G is almost
simple if for some nonabelian simple group L we have L C G C Aut L.
Our first observation is

Theorem 1.1. If G s a finite quasisimple group other than a 4- or
12-cover of PSL(3,4), then By(G) = 0.

Corollary 1.2. If G is a finite simple group, then By(G) = 0.

This corollary proves Bogomolov’s conjecture.

From Corollary 1.2 we deduce the following

Theorem 1.3. If G is a finite almost simple group, then By(G) = 0.
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Remark 1.4. Following [GL, Ch. 2, §§ 6,7], we call quasisimple groups
@ (as in Theorem 1.1) and almost simple groups A (as in Theorem
1.3), as well as the extensions of A by @, decorations of finite simple
groups. It is most likely that one can complete the picture given in
the above theorems, allowing both perfect central extensions and outer
automorphisms, by deducing from Theorems 1.1 and 1.3 that By(G) =
0 for all nearly simple groups G (see the definition in Section 2.3 below)
excluding the groups related to the above listed exceptional cases. In
particular, this statement holds true for all finite “reductive” groups
such as the general linear group GL(n,q), the general unitary group
GU(n,q), and the like.

Our notation is standard and mostly follows [GLS]. Throughout
below “simple group” means “finite nonabelian simple group”. Our
proofs heavily rely on the classification of such groups.

2. PRELIMINARIES

In order to make the exposition as self-contained as possible, in this
section we collect the group-theoretic information needed in the proofs.
All groups are assumed finite (although some of the notions discussed
below can be defined for infinite groups as well).

2.1. Schur multiplier. The material below (and much more details)
can be found in [Ka).

The group M(G) := H?*(G,Q/Z), where G acts on Q/Z trivially, is
called the Schur multiplier of G. It can be identified with the kernel of
some central extension

1—>M(G)—>é—>G—>1.

The covering group G is defined uniquely up to isomorphism provided
G is perfect (i.e. coincides with its derived subgroup |G, G]).

We will need to compute M(G) in the case where G is a semidirect
product of a normal subgroup N and a subgroup H. If A is an abelian
group on which G acts trivially, the restriction map Resy: H%(G, A) —
H?(H, A) gives rise to a split exact sequence [Ka, Prop. 1.6.1]

1— K — H*(G,A) — H*(H,A) — 1.

The kernel K can be computed from the exact sequence [Ka,
Th. 1.6.5(ii)]

1 — H'(H,Hom(N, A)) — K "= H*(N, A)¥ — H2(H,Hom(N, A)).
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If N is perfect and A = Q/Z, we have Hom(N, A) = 1 and thus [Ka,
Lemma 16.3.3]

(2.1)

M(G) =2 M(N)? x M(H).

2.2. Bogomolov multiplier. The following properties of By(G) :=
ker[H*(G,Q/Z) — [, H*(A,Q/Z)] are taken from [Bo87|, [BMP].

(1)

(2)

(3)
(4)

By(G) = ker[H*(G,Q/Z) — [z H*(B,Q/Z)], where the prod-
uct is taken over all bicyclic subgroups B = Z,, X Z, of G
[Bo87], [BMP, Cor. 2.3].

For an abelian group A denote by A, its p-primary component.
We have

By(G) = €D Bo, (@),

where By ,(G) := By(G) "M(G),,. For any Sylow p-subgroup S
of G we have By ,(G) C By(S). In particular, if all Sylow sub-
groups of G are abelian, By(G) = 0 [Bo87|, [BMP, Lemma 2.6].
If G is an extension of a cyclic group by an abelian group, then
By(G) = 0 [Bo87, Lemma 4.9].

For v € M(G) consider the corresponding central extension:

1—>Q/Z—i>év—>G—>1,
and denote

K,:={heQ/Z|i(h) € [ ker(n)}.

XEHOI’H(GW 7Q/Z)

Then v does not belong to By(G) if and only if some nonzero
element of K, can be represented as a commutator of a pair of

elements of G, [BMP, Cor. 2.4].

If 0 # v € M(G), we say that G is y-minimal if the restriction
of v to all proper subgroups H C G is zero. A y-minimal group
must be a p-group. We say that a y-minimal nonabelian p-group
G is a y-minimal factor if for any quotient map p: G — G/H
there is no 4" € By(G/H) such that v = p*(y/) and ' is G/H-
minimal. A 7-minimal factor G must be a metabelian group
(i.e. [[G,G],][G,G]] = 0) with central series of length at most
p, and the order of v in M(G) equals p [Bo87, Theorem 4.6].
Moreover, if G is a y-minimal p-group which is a central exten-
sion of G** := G/|G,G] and G** = (Z,)", then n = 2m and
n > 4 [Bo87, Lemma 5.4].
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2.3. Finite simple groups. We need the following facts concerning
finite simple groups (see, e.g., [GLS]) believing that the classification
of finite simple groups is complete.

(1)
(2)

(3)

Classification. Any finite simple group L is either a group of
Lie type, or an alternating group, or one of 26 sporadic groups.
Schur multipliers. As L is perfect, it has a unique covering
group L, and L = L/M(L). The Schur multipliers M(L) of all
finite simple groups L are given in [GLS, 6.1].

Automorphisms. The group of outer automorphisms Out(L) :=
Aut(L)/L is solvable. It is abelian provided L is an alternating
or a sporadic group. For groups of Lie type defined over a finite
field F' = F, the structure of Out(L) can be described as follows.
If L comes from a simple algebraic group L defined over F, we
denote by T a maximal torus in L. Every automorphism of L
is a product idf g where i is an inner automorphism (identified
with an element of L), d is a diagonal automorphism (induced
by conjugation by an element h of the normalizer N4(L), see
[GLS, 2.5.1(b)]), f is a field automorphism (arising from an
automorphism of the field F), and g is a graph automorphism
(induced by an automorphism of the Dynkin diagram corre-
sponding to L); see [GL, Ch. 2, § 7] or [GLS, 2.5] for more
details.

The group Out(L) is a split extension of Outdiag(L) :=
Inndiag(L)/L by the group ®I', where Inndiag(L) is the group
of inner-diagonal automorphisms of L (generated by all ¢’s
and d’s as above), ® is the group of field automorphisms and
I' is the group of graph automorphisms of L. The group
O = Outdiag(L) is isomorphic to the centre of L by the isomor-
phism preserving the action of Aut(L) and is nontrivial only in
the following cases (where (m,n) stands for the greatest com-
mon divisor of m and n):

L is of type An(q); 0= Z(n—&-l,q);

L is of type QAn(Q); 0= Z(nJrl,qfl);

L is of type Bn(Q)? On(Q)7 or 2D2n(Q); 0= Z(Q,q—l);

L is of type D2n<Q)a 0= Z’(2,q—1) X Z(Q,q—l);

L is of type ?Dani1(q); O = Lag-1);

L is of type *Eg(q); O = Zz4-1);

L is of type E7(q); O = Z,4-1).

If L is of type 9%(q) for some root system ¥ (d = 1,2,3),
the group @ is isomorphic to Aut(F.). If d = 1, then T' is
isomorphic to the group of symmetries of the Dynkin diagram
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of ¥ and ®I' = & x I provided ¥ is simply-laced; otherwise,
I' = 1 except if ¥ = By, Fy, or Gy and q is a power of 2, 2, or
3, respectively, in which cases T is cyclic and [®I" : ] = 2. If
d# 1, then I' = 1.

The action of ®I" on O is described as follows. If L 2 Dy, (q),
then ® acts on the cyclic group O as Aut(F,) does on the
multiplicative subgroup of Fa of the same order as O; if L =
Dy, (q), then @ centralizes O. If L = A,,(q), Dan11(q), or Eg(q),
then I' = Zy acts on O by inversion; if L = D,,(q) and ¢ is odd,
then I', which is isomorphic to the symmetric group Ss (for
m = 2) or to Zy (for m > 2) acts faithfully on O = Zy X Zs.

(4) Decorations. It is often useful to consider groups close to
finite simple groups, namely, quasisimple and almost simple
groups, as in the statements of Theorems 1.1 and 1.3 above.
As an example, if the simple group under consideration is
L = PSL(2,q), the group SL(2, q) is quasisimple and the group
PGL(2,q) is almost simple. More generally, one can consider
semisimple groups (central products of quasisimple groups) and
nearly simple groups G, i.e. such that the generalized Fitting
subgroup F*(G) is quasisimple. F*(G) is defined as the product
E(G)F(G) where E(G) is the layer of G (the maximal semisim-
ple normal subgroup of G) and F(G) is the Fitting subgroup
of G (or the nilpotent radical, i.e. the maximal nilpotent nor-
mal subgroup of GG). The general linear group GL(n,q) is an
example of a nearly simple group.

3. PROOFS

Proof of Theorem 1.1. As G is perfect, there exists a unique universal
central covering G of G whose centre Z(G) is isomorphic to M(G) and
any other perfect central extension of G is a quotient of G. So we
can argue exactly as in [Bo87, Remark after Lemma 5.7] and [BMP].
Namely, By(G) coincides with the collection of classes whose restriction
to any bicyclic subgroup of G is zero, see 2.2(1). Therefore, to establish

the assertion of the theorem, it is enough to prove that any z € Z(G)
can be represented as a commutator z = [a, b] of some a,b € G. More-
over, it is enough to prove that such a representation exists for all
elements z of prime power order, see 2.2(2).

It remains to apply the results of Blau [Bl] who classified all elements
z having a fixed point in the natural action on the set of conjugacy
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classes of G (such elements evidently admit a needed representation as
a commutator):

Theorem 3.1. ([Bl, Theorem 1]) Assume that G is a quasisimple
group and let z € Z(G). Then one of the following holds:

(i) order(z) = 6 and G/Z(G) = Ag, Ay, Fiay, PSU(6,2?), or 2Eg(2%);

(ii) order(z) = 6 or 12 and G/Z(G) = PSL(3,4), PSU(4,3%) or
M227'

(i1i) order(z) = 2 ord, G/Z(G) = PSL(3,4), and Z(G) is noncyclic;
(iv) there exists a conjugacy class C of G such that Cz = C.

This theorem implies that the only possibility for an element of G of
prime power order to act on the set of conjugacy classes without fixed
points is case (iii) where G/Z(G) = PSL(3,4) and z is an element of
order 2 or 4. So the classes v € H*(G,Q/Z) corresponding to such z’s
are the only candidates for nonzero elements of By(G).

A more detailed analysis of the case PSL(3,4), where Z := Z(G) =
Z3x 7y X Ly, is sketched in [Bl, Remark (2) after Theorem 1]. The result
(rechecked by MAGMA computations) looks as follows: all elements
of Z of orders 2 and 3 fix some conjugacy class of GG, all elements of
orders 6 and 12 act without fixed points, and of the twelve elements of
order 4 exactly six fix a conjugacy class of G.

First note that this description implies Bo(G) = 0. Indeed, the
criterion given in 2.2(4) can be rephrased for a quasisimple group G as
follows: By(G) = 0 if and only if Z(G) has a system of generators cach
of those can be represented as a commutator of a pair of elements of
G. It remains to notice that if G = PSL(3,4), each 5-tuple of elements
of order 4 in Z generates Z, X Z, because the subgroup of the shape
74 X 73 contains only 4 elements of order 4 (I am indebted to O. Gabber
for this argument). (Another way to prove that By(PSL(3,4)) = 0 was
demonstrated in [BMP] where Lemma 5.3 establishes a stronger result:
vanishing of By(.S), where S is a 2-Sylow subgroup of PSL(3,4).)

The only cases where the condition of the above mentioned criterion
breaks down are those where G is a 12- or 4-cover of PSL(3,4). Indeed,

in these cases we have G = G/Z where Z is generated either by an
element of order 4 (which may be not representable as a commutator)
or of order 12 (which cannot be representable as a commutator). Thus
in these cases we have By(G) # 0. More precisely, in both cases we
have By(G) = Zs because the subgroup generated by commutators is
of index 2 in G (I thank O. Gabber for this remark). u



8 KUNYAVSKII

Remark 3.2. It is interesting to compare [BMP, Lemma 3.1] with a
theorem from the PhD thesis of Robert Thompson [Th, Theorem 1].

Proof of Theorem 1.3. Let L C G C Aut(L) where L is a simple group.
Clearly, it is enough to prove the theorem for G = Aut(L). The group
Out(L) = Aut(L)/L of outer automorphisms of L acts on M(L), and
since L is perfect, we have an isomorphism

(3.1) M(G) 2 M(L)°*E) x M(Out(L))
(see (2.1)).
Lemma 3.3. By(Out(L)) = 0.

Proof of Lemma 3.3. We maintain the notation of Section 2.3. If
Out(L) is abelian, the statement is obvious. This includes the cases
where L is an alternating or a sporadic group. So we may assume L is
of Lie type. If O =1, i.e. L is of type Eg, Fy, or G, the result follows
immediately. If the group ®I' is cyclic, the result follows because O
is abelian (see 2.3(3)). This is the case for all groups having no graph
automorphisms, in particular, for all groups of type B,, or C,, (n > 3),
E-, and for all twisted forms. For the groups of type By, the group ®I'
is always cyclic. It remains to consider the cases A,,, D,, and Eg. In
the case L = Ejg all Sylow p-subgroups of Out(L) are abelian, and the
result holds. Let L = Dy,,(q). If ¢ is even, we have O = 1, I = Z (if
m > 2) or Sy (if m = 2); in both cases the Sylow p-subgroups of Out(L)
are abelian, and we are done. If ¢ is odd, we have O = Zy X Z5, and ®
centralizes O (see Section 2.3), so every Sylow p-subgroup of Out(L)
can be represented as an extension of a cyclic group by an abelian
group, and we conclude as above. Finally, let L be of type A,(q) or
Domi1(q). Then we have O =Zy, h=(n+1,q—1) or h = (4,9 — 1),
respectively, I' = Zy, ® = Aut(F,). The action of both I' and ® on O
may be nontrivial: I' acts by inversion, ® acts on O as Aut(F,) does
on the multiplicative subgroup of IF, of the same order as O. Hence we
can represent the metabelian group Out(L) in the form

(3.2) 1=V —O0ut(l) — A—1,

where V| the derived subgroup of Out(L), is isomorphic to a cyclic
subgroup Z. of O, and the abelian quotient A is of the form Z, X Zy, X Z»
for some integers a, b, c. Since it is enough to establish the result for a
Sylow 2-subgroup, we may assume that a, b and ¢ are powers of 2. Then
the statement of the lemma follows from the properties of y-minimal
elements described in Section 2.2. Indeed, if 7 is a nonzero element
of By(G) and G is y-minimal, then G is metabelian, both V' and A
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are of exponent p, and in any representation of G in the form (3.2)
the group A must have an even number s = 2t of direct summands
Z, with t > 2. However, if G is a Sylow 2-subgroup of Out(L), this
is impossible because A contains only three direct summands. Thus
By (Syla(Out(L))) = 0, and so By(Out(L)) = 0. The lemma is proved.

O

We can now finish the proof of the theorem. Let + be a nonzero
element of By(G). Using the isomorphism (3.1), we can represent 7 as
a pair (v1,72) where v; € M(L), 72 € M(Out(L)). Restricting to the
bicyclic subgroups of G, we see that v, € By(L), y2 € Byo(Out(L)), and
the result follows from Theorem 1.1 and Lemma 3.3. U
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