DERIVED CATEGORIES OF CUBIC FOURFOLDS

ALEXANDER KUZNETSOV

ABSTRACT. We discuss the structure of the derived category of coherent sheaves on cubic fourfolds of
three types: Pfaffian cubics, cubics containing a plane and singular cubics, and discuss its relation to the
rationality of these cubics.

1. INTRODUCTION

In this paper we are going to discuss one of the classical problems of birational algebraic geometry,
the problem of rationality of a generic cubic hypersurface in P°. Our point of view will be somewhat
different from the traditional approaches. We will use the derived category of coherent sheaves on the
cubic hypersurface (more precisely, a certain piece of this category) as an indicator of nonrationality.

To be more precise, let V be a vector space of dimension 6, so that P(V) = P>. Let Y C P(V) be a
hypersurface of degree 3, a cubic fourfold. By Lefschetz hyperplane section theorem PicY = Z and is
generated by H, the restriction of the class of a hyperplane in P(V). By adjunction Ky = —3H. So,
Y is a Fano variety. By Kodaira vanishing we can easily compute the cohomology of line bundles Oy,
Oy (—1) and Oy (-2).

1, forp=t=0
dim HP(Y, Oy (—t)) =4 ° P (1)
0, for —2<t¢<0and (p,t)# (0,0)

As a consequence, we see that the triple (Oy, Oy (1), Oy (2)) is an exceptional collection in D°(Y), the
bounded derived category of coherent sheaves on Y. We denote by Ay the orthogonal subcategory to
this exceptional collection:

Ay = (Oy,0y(1),0y ()= = {F € DY) | H*(Y, F) = H*(Y, F(~1)) = H*(Y, F(~2)) = 0}. (2)
Then we have a semiorthogonal decomposition
D'(Y) = (Ay, Oy, Oy (1), Oy (2)) (3)

(see Section 2 for the definition of semiorthogonal decompositions).

This triangulated category Ay is the piece of D(Y) discussed above. By many features it looks like
the derived category of a K3 surface (for example, its Serre functor equals the shift by two functor [2],
and its Hochschild homology is very similar to that of a K3 surface). Moreover, as we shall see, for some
cubic fourfolds Ay is equivalent to the derived category of a K3 surface. We expect that this happens if
and only if Y is rational.

Conjecture 1.1. The cubic fourfold Y is rational if and only if the subcategory Ay C DP(Y) defined
by (2) is equivalent to the derived category of a K3 surface.
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The “only if” part of the above is a special case of a more general Conjecture suggested in [K4], where
a new birational invariant, the Clemens—Griffiths component of the derived category, is constructed.
While it is very hard (and not completely clear how) to check that the definition of this component
is correct, it is more or less straightforward that it is preserved under smooth blow-ups, which implies
that it is a birational invariant. In the case of the cubic fourfold Y the Clemens—Griffiths component is
either 0, if Ay is equivalent to the derived category of a K3 surface, or Ay itself, in the opposite case.
So, Conjecture 1.1 can be reformulated as stating that Y is rational if and only if the Clemens—Griffiths
component of its derived category is zero.

Our goal is to give some evidence for Conjecture 1.1. More precisely, we will analyze the category Ay
for all cubic fourfolds that are known to be rational, and show that in these cases Ay is equivalent to
the derived category of some K3 surface. Moreover, we will give examples of cubic fourfolds Y for which
Ay can not be equivalent to the derived category of any K3 surface. So, we expect these cubic fourfolds
to be nonrational.

Basically, there are three known series of rational cubic fourfolds:

(1) Pfaffian cubic fourfolds [Tr1, Tr2];

(2) cubic fourfolds Y containing a plane P = P2 and a 2-dimensional algebraic cycle T such that
T-H?—T-P is odd [Hal, Ha2J;

(3) singular cubic fourfolds.

We are dealing with these in Sections 3, 4 and 5 respectively after introducing some necessary material
in Section 2. Moreover, in Section 4 we investigate more general case of a cubic fourfold containing a
plane without any additional conditions. We show that in this case the category Ay is equivalent to the
twisted derived category of a K3 surface S (the twisting is given by a Brauer class of order 2) and in the
Appendix we argue that this twisted derived category is not equivalent to the derived category of any
surface if PicS = Z and the Brauer class is nontrivial, which is true for general cubic fourfold with a
plane. So, we expect such cubic fourfolds to be nonrational.

Acknowledgement: I am very grateful to A. Bondal and D. Orlov for useful discussions and to
L. Katzarkov for inspiring and stimulating questions, and especially for attracting my attention to the
case of singular cubic fourfolds. I am also grateful to D. Huybrechts for clarifications on the twisted
Chern character and to F. Bogomolov and D. Kaledin for discussions on the Brauer group of K3 surfaces.

2. PRELIMINARIES

Let k be an algebraically closed field of zero characteristic. All algebraic varieties will be over k and
all additive categories will be k-linear.

By D’(X) we denote the bounded derived category of coherent sheaves on an algebraic variety X.
This category is triangulated. For any morphism f : X — X’ of algebraic varieties we denote by
f« : DY(X) — D’(X’) and by f* : D*(X’) — D*(X) the derived push-forward and pull-back functors
(in first case we need f to be proper, and in the second to have finite Tor-dimension, these assumptions
ensure the functors to preserve both boundedness and coherence). Similarly, ® stands for the derived
tensor product.

For a proper morphism of finite Tor-dimension f : X — X’ we will also use the right adjoint f' of the
push-forward functor, which is given by the formula

FI(F) 2 f*(F) @ wyyx/[dim X — dim X'],

where wx/x is the relative canonical line bundle.
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2.1. Semiorthogonal decompositions. Let 7 be a triangulated category.

Definition 2.1 ([BK, BOJ). A semiorthogonal decomposition of a triangulated category 7 is a sequence
of full triangulated subcategories Ay, ..., A, in 7 such that Hom7(A;, A;) = 0 for i > j and for every
object T' € T there exists a chain of morphisms 0 =1,, — T,,_1 — --- — 17 — Ty = T such that the
cone of the morphism T} — T}_1 is contained in Ay, for each k =1,2,...,n.

We will write 7 = (A4, As,...,A,) for a semiorthogonal decomposition of a triangulated category 7
with components A7, As, ..., A,.

An important property of a triangulated subcategory A C 7 ensuring that it can be extended to a
semiorthogonal decomposition is admissibility.

Definition 2.2 ([BK, B]). A full triangulated subcategory A of a triangulated category 7 is called
admissible if for the inclusion functor i : A — 7T there is a right adjoint ' : 7 — A, and a left adjoint
i*: T — A functors.

Lemma 2.3 ([BK, B]). (i) If Ai,..., A, is a semiorthogonal sequence of admissible subcategories in a
triangulated category T (i.e. Homz(A;, Aj) =0 for i > j) then

<A17~ : 'aAkaL<A1a s 7-’4k> N <-Ak+17 s 7~ATL>J_7~Ak+17 s 7~An>

1s a semiorthogonal decomposition.
(ii) If D*(X) = <A1, Ag, ..., An> is a semiorthogonal decomposition of the derived category of a smooth
projective variety X then each subcategory A; C DY(X) is admissible.

Actually the second part of the Lemma holds for any saturated (see [BK]) triangulated category.

Definition 2.4 ([B]). An object F' € 7T is called exceptional if Hom(F, F') = k and Ext’(F, F') = 0 for
all p # 0. A collection of exceptional objects (F1,..., Fy,) is called exceptional if Ext?(Fj, Fy,) = 0 for all
Il >k and all p € Z.

Assume that 7 is Hom-finite (which means that for any G, G’ € 7 the vector space @z Hom(G, G'[t])
is finite-dimensional).

Lemma 2.5 ([B]). The subcategory <F> of DP(X) generated by an exceptional object F is admissible and
is equivalent to the derived category of vector spaces DP(k).

Proof: Consider the functor D?(k) — D¥(X) defined by V + V ® F, where V is a complex of vector
spaces. It is fully faithful since F' is exceptional, hence the subcategory <F > of D°(X) is equivalent
to DP(k). The adjoint functors are given by G — RHom(G, F)* and G — RHom(F, G) respectively. [

As a consequence of 2.3 and of 2.5 one obtains the following

Corollary 2.6 ([BO]). If X is a smooth projective algebraic variety then any exceptional collection
Fi,...,F, in D°(X) induces a semiorthogonal decomposition

DY(V) = (A Fi,...,Ep)
where A= (Fy,...,F,)*t ={F ¢ D*(X) | Ext**(Fy, F) =0 for all 1 < k < m}.

An example of such a semiorthogonal decomposition is given by (3). Indeed, by (1) the triple of
line bundles (Oy,Oy (1), Oy (2)) is an exceptional collection in D’(Y), which gives a semiorthogonal
decomposition with the first component defined by (2).
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2.2. Mutations. If a triangulated category 7 has a semiorthogonal decomposition then usually it has
quite a lot of them. More precisely, there are two groups acting on the set of semiorthogonal decompo-
sitions — the group of autoequivalences of 7, and a certain braid group. The action of the braid group
is given by the so-called mutations.

Roughly speaking, the mutated decomposition is obtained by dropping one of the components of the
decomposition and then extending the obtained semiorthogonal collection by inserting new component
at some other place as in Lemma 2.3. More precisely, the basic two operations are defined as follows.

Lemma 2.7 ([B]). Assume that A C T is an admissible subcategory, so that we have two semiorthogonal
decompositions T = <.AL,.A> and T = <A, J-A>. Then there are functors La,Ry4 : T — T wvanishing
on A and inducing mutually inverse equivalences ~A — ALt and A+ — L+ A respectively.

The functors L 4 and R 4 are known as the left and the right mutation functors.
Proof: Let ¢ : A — 7T be the embedding functor. For any F' € T we define

L(F) = Cone(ii' F — F),  R(F) = Cone(F — #i*F)[—1].

Note that the cones in this triangles are functorial due to the semiorthogonality. All the properties are
verified directly. O

Remark 2.8. If A is generated by an exceptional object E we can use explicit formulas for the adjoint
functors i', * of the embedding functor i : A — 7. Thus we obtain the following distinguished triangles

RHom(E,F)®@ E — F — Lg(F), Rg(F) — F — RHom(F,E)" ® E. (4)
It is easy to deduce from Lemma 2.7 the following

Corollary 2.9 ([B]). Assume that T = <A1,A2, .. ,.An> is a semiorthogonal decomposition with all
components being admissible. Then for each 1 < k <n — 1 there is a semiorthogonal decomposition

T= <.A1, coy Ao, Ly, (Agsr)s Ay Az, - ,An>
and for each 2 < k <n there is a semiorthogonal decomposition
T = (A1, Apeo, Ag, R, (A1), Aggs - Ap)
There are two cases when the action of the mutation functors is particularly simple.

Lemma 2.10. Assume that T = <A1,A2,...,An> is a semiorthogonal decomposition with all compo-
nents being admissible. Assume also that the components Ax and Api1 are completely orthogonal, i.e.
Hom( Ak, Ag+1) = 0 as well as Hom(Ag11, Ax) = 0. Then

L, (Akr1) = Ags1 - and Ry, (Ag) = Ay,

so that both the left mutation of Apy1 through Ay and the right mutation of Ay through Agiq boil down
to just a permutation and

T - <A17 cee 7Ak—17 Ak—l—l) Ak7 Ak-}—?a CIEIR 7An>
is the resulting semiorthogonal decomposition of T .
Lemma 2.11. Let X be a smooth projective algebraic variety and DY(X) = <.A, B> a semiorthogonal

decomposition. Then
La(B)=B®uwx and Rp(A) = Ao wi.

An analogue of this Lemma holds for any triangulated category which has a Serre functor (see [BK]).
In this case tensoring by the canonical class should be replaced by the action of the Serre functor.
We will also need the following evident oservation.
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Lemma 2.12. Let ® be an autoequivalence of T. Then
PoRg = Ry4) 0@, Pollg =Ly o®.
In particular, if L is a line bundle on X and E is an exceptional object in Db(X) then
TroRg = RpgroTy, Trpollg 2 LegroTy,
where Ty, : D*(X) — DY(X) is the functor of tensor product by L.

3. PFAFFIAN CUBIC FOURFOLDS

Let W be a vector space of dimension 6. Consider P(A2W*), the space of skew-forms on W, and its
closed subset
Pf(W) = {w € P(A°W*) | w is degenerate}.
It is well known that a skew form is degenerate if and only if its Pfaffian is zero, so Pf(WW) is a hypersurface
in P(A2W*) and its equation is given by the Pfaffian in homogeneous coordinates of P(A2W*). In
particular,

1
deg Pf(W) = 3 dim W = 3.

We will say that Pf(W) is the Pfaffian cubic hypersurface.
It is easy to check that Pf(1/) is singular, its singularity is the image of the Grassmanian Gr(2, W*)
under the Pliicker embedding. So,

codimp(x2yy+) (sing(Pf(W))) = dimP(A2W*) — dim Gr(2, W*) = 14 — § = 6.

Let now V be a 6-dimensional subspace of A2W* such that P(V) ¢ Pf(W*). Then Yy, = P(V)NPf(W*) is
a cubic hypersurface in P(V), its equation being the restriction of the Pfaffian in coordinates of P(A2W*)
to P(V). We will say that Yy is the Pfaffian cubic fourfold associated with the subspace V' C AZW*.
Note that thanks to the big codimension of sing(Pf(1¥*)), the Pfaffian cubic fourfold Yy is smooth for
sufficiently generic V.

With each V' C A2W* we can also associate a global section sy of the vector bundle V* ® Ogr(2,w)(1)
on the Grassmanian Gr(2, W) and its zero locus Xy C Gr(2,W).

The following was proved in [K3].

Theorem 3.1. Let Yy be a smooth Pfaffian cubic fourfold. Then Xy is a smooth K3 surface and there
is an equivalence of categories Ay, = D°(Xy).

Remark 3.2. The same holds true even for singular Pfaffian cubic fourfolds as long as Xy is a surface.

4. CUBIC FOURFOLDS WITH A PLANE

Let Y C P(V) be a cubic fourfold containing a plane. In other words we assume that there is a
vector subspace A C V of dimension 3 such that P(A) C Y. Let 0 : ¥ — Y be the blowup of P(A).
Let also B = V/A be the quotient space. Then the linear projection from P(A) gives a regular map
7:Y — P(B) = P2

Lemma 4.1. The map 7 is a fibration in two-dimensional quadrics over P(B) with the degeneration curve
of degree 6. Let D be the exceptional divisor of 0. Leti: D — 'Y be the embedding and p : D — P(A) the
projection.
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Let H and h denote the pullbacks to Y of the classes of hyperplanes in P(V) and P(B) respectively. Then
we have linear equivalences

D=H-h, h=H-D, Ky=-3H+D=-2Hh

—_~—

Proof: Consider the blowup P(V) of P(V) in P(A). It is naturally projected to P(B) and this projection

—_~—

identifies P(V') with Ppg)(£) for a vector bundle
E=A® Opgp)® Opp)(-1)

—_~—

on P(B). The complete preimage of Y under the map P(V) — P(V) decomposes as the union of the
proper preimage and the exceptional divisor. It follows that Y =3H - D , where H' stands for the
pullback to I?(\‘7) of the class of a hyperplane in P(V) and D’ stands for the exceptional divisor of IPT(\‘7)
Note also that we have b’ = H' — D’ on W, where h' stands for the pullback to IE(\X7) of the class of a
hyperplane in P(B). Thus Y = 2H’ + I/, so it follows that the fibers of Y over P(B) are the quadrics in
the fibers of IPT(\V/) = Pp(p)(£). Moreover, it follows that the degeneration curve is the vanishing locus of
the determinant of the morphism

E — E*® Opp)(1),
given by the equation of Y. So, the degeneration curve is the zero locus of a section of the line bundle
(det E*)* @ Op(p)(4) = Op(p)(6). N
Restricting the relation h' = H' — D" to Y we deduce h = H — D. As for the canonical clas, the first
equality is evident since Y is a smooth blow-up, and replacing D by H — h we get the last equality. [

Now we will need the results of [K1] on the structure of the derived category of coherent sheaves on a
fibration in quadrics. According to loc. cit. there is a semiorthogonal decomposition
D'(Y) = (@(D"(P(B), By)), 7" (D*(P(B))) ® Oy, n*(D"(P(B))) ® Oy (H)), (5)

where By is the sheaf of even parts of Clifford algebras corresponding to this fibration. As a coherent
sheaf on P(B) it is given by the formula

Bo=0Opp) ® MNE®ROpp(-1) @& AE®Ops/(-2)

and the multiplication law depends on the equation of Y. Further, D(P(B), By) is the bounded derived
category of sheaves of coherent right By-modules on P(B), and the functor ® : D*(P(B), By) — D*(Y) is
defined as follows. Consider also the sheaf of odd parts of the corresponding Clifford algebras,

Bl = E @ ASE ® OP(B)(_l)

Denote by « the embedding ¥ — Ppp)(E), and by q : Ppp)(E£) — P(B) the projection. Then there is
a canonical map of left ¢*By-modules ¢*By — ¢*B1(H'), which is injective and its cokernel is supported
on Y. So, twisting by O(—2H’) for later convenience we obtain an exact sequence

0— ¢*Bo(—2H') — ¢*B1(—H') — a,.& — 0,
where € is a sheaf of left 7*By-modules on Y. The functor ® is just the kernel functor given by &£, that is
O(F) =7"F Qn=p, E.

At first glance, the category D°(P(B), By) has nothing to do with K3 surfaces. However, after a small
consideration it is easy to see that it has.

From now on we assume that the fibers of ¥ over P(B) are quadrics of rank > 3 (i.e. the don’t
degenerate into a union of two planes). This condition holds if Y is sufficiently generic. Consider the
moduli space M of lines contained in the fibers of ¥ over P(B). Since on a smooth two-dimensional
quadric the moduli space of lines is a disjoint union of two P!, while on a singular quadric the moduli
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space of lines is one P, it follows that M is a P!-fibration over the double cover S of P(B) ramified in the
degeneration curve. Note that S is a K3 surface, and M produces an element of order 2 in the Brauer
group of S. Let B be the corresponding sheaf of Azumaya algebras on S. Denote by f: S — P(B) the
double covering.

Lemma 4.2. We have f.B = By. In particular, D*(S,B) = D*(P(B),By). The composition of the

equivalence with the functor ® is given by
F i 1" fF Qrep, £.

Proof: The first claim is the classical property of the Clifford algebra. Indeed, M is nothing but the
isotropic Grassmannian of half-dimensional linear subspaces in the quadrics, which always embeds into
the projectivizations of the half-spinor modules, and for a 2-dimensional quadric this embedding is an
isomorphism. So, (locally in the étale topology) M is the projectivization of the half-spinor module. On
the other hand, the even part of the Clifford acts on the half-spinor modules and this action identifies it
with the product of their matrix algebras. Hence (locally in the étale topology) the Clifford algebra is
isomorphic to the pushforward of the endomorphism algebra of the half-spinor module which is precisely
the Azumaya algebra corresponding to its projectivization.

The second claim is evident (the equivalence is given by the pushforward functor f,). O

Theorem 4.3. There is an equivalence of categories Ay = D(S, B).

Proof: Consider the semiorthogonal decomposition (5). Replacing the first instance of D*(P(B)) by the
exceptional collection (Op(py(—1), Op(p), Op(p)(1)) and the second instance of DY(P(B)) by the excep-
tional collection (Op(py, Op(p)(1), Opp)(2)) we obtain a semiorthogonal decomposition

DY) = (®(DP(P(B), By)), O3 (—h), 05, 05 (h), Og.(H), Og (h + H), Oz (2h + H)). (6)

On the other hand, since Y is the blowup of ¥ in P(A), we have by [Or] the following semiorthogonal

decomposition
DY) = (o*(D"(Y)), ip* (D" (B(A)))).
Replacing D(P(A)) with the standard exceptional collection (Op(a), Op(a)(1), Op(4y(2)), and Db(Y) with
its decomposition (3), we obtain the following semiorthogonal decomposition
DY) = (0*(Ay), Oy, 04 (H), 05 (2H),i.0p,ixOp(H ), i.Op(2H)). (7)

Now we are going to make a series of mutations, transforming decomposition (6) into (7). This will give
the required equivalence D°(S, B) = D*(P(B), By) = Ay.

Now let us describe the series of mutations. We start with decomposition (6).
Step 1. Right mutation of ®(D?(P(B),By)) through Oy (=h).

After this mutation we obtain the following decomposition

DY) = (O3 (=h), @' (D*(P(B), By)), O3, 05(h), O5(H), Oy (h + H), O3 (2h + H)), (8)

where & =Ro_(_p,) o @ : DY(P(B), By) — DO(Y).
Step 2. Right mutation of Oy (—h) through the orthogonal subcategory J-((937(—h)>.
Applying Lemma 2.11 and taking into account equality Ky = —2H — h, we obtain
D(Y) = ('(D"(P(B), Bo)), O, Oy (), Oy (H), Op (h + H), O3 (2h + H), O3 (2H)).  (9)

Lemma 4.4. We have Ext*(Oy(2h + H),O¢(2H)) = 0, so that the pair (O (2h + H), Oy (2H)) is
completely orthogonal.
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Proof: We have
Ext®(O5 (2h + H), 05 (2H)) = H*(Y, O (H — 2h)) =
= H*(P(B), E* ® Oppy(—2)) = H*(P(B), A" ® Op)(—2) ®© Op(p)(—1))) = 0.
O

By Lemma 2.10 the transposition of the pair (Oy(2h + H), O3 (2H)) gives a semiorthogonal decom-
position.
Step 3. Transpose the pair (Oy(2h + H), Oy (2H)).

After the transposition we obtain the following decomposition

DY) = (¢ (D(P(B), Bo)), O3, O3 (h), O3 (H), O5.(h + H), 05 (2H), O5 (2h + H)). (10)

Step 4. Left mutation of Oy (2h + H) through the orthogonal subcategory (O (2h + H))™.
Applying Lemma 2.11 and taking into account equality Ky = —2H — h, we obtain

DY) = (Oy(h— H), ' (D*(P(B), By)), O3, 05(h),05(H), Oy (h + H), O3 (2H)). (11)

Step 5. Left mutation of ®'(D°(P(B), By)) through Oy (h — H).
After this mutation we obtain the following decomposition

DY) = (2"(DY(B(B), By)), O (h — H), Oz, 05 (h), 05 (H), O (h + H), O5 (2H)). (12)

where & = Lo_ g © @ : D*(P(B), Bo) — D(Y).
Step 6. Simultaneous right mutation of Oy (h — H) through Og, of O (h) through O (H), and of
Oy (h + H) through O (2H).

Lemma 4.5. We have Ro  (Oy(h — H)) = i.0p[-1], Ro_m)(O3(h) = i.0p(H)[-1], and also
Ro_ 2m)(Oy(h + H)) = i.Op(2H)[-1].
Proof: Note that
Ext*(O5(h — H),03) = H*(Y,05(H — h)) =
= H*(P(B), E* ® Oppy(—1)) = H*(P(B), A" @ Opp)(—1) © Opp))-
It follows that

1, f =0
dim Ext? (O (h — H), O5) = orp
0, otherwise

By (4) we have the following distinguished triangle
Ro. (O5(h — H)) — Og(h — H) — O5.

Since H — h = D, the right map in the triangle is given by the equation of D, so it follows that the first
vertex is i.Op[—1]. The same argument proves the second and the third claim. g

We conclude that the following semiorthogonal decomposition is obtained:
DY) = ("(D(P(B), Bo)), O3, ixOp, Oz (H),iOp(H), O3 (2H),i,Op(2H)). (13)

Lemma 4.6. We have Ext®(i.p*F,7*G) = 0, so that i.Op(H) is completely orthogonal to Oy (2H) and
so that i.Op is completely orthogonal to (O3 (H), Oy (2H)).
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Proof: Since i is a divisorial embedding, we have w, 5 = Op(D), so i'(—) = i*(—) ® Op(D)[-1].
Therefore we have

Ext®(i.p*F,7*G) = Ext*(p*F,i'n*G) = Ext®*(p*F, i*7*G(D)[-1]) =
= Ext®*(p*F, p"j" G(D)[-1]) = Ext*(F, p.(p"j*G(D))[-1]) = Ext*(F, j*G @ p.Op(D)[-1]) = 0,

the last equality is satisfied because p : D — P(A) is a P!-fibration and Op(D) = Op(H — h) restricts
as O(—1) to all its fibers. O

By Lemma 2.10 the transposition of i.Op(H) to the right of Oy (2H ), and of iOp to the right of the
subcategory (Oy(H), Oy(2H)) in (13) gives a semiorthogonal decomposition.
Step 7. Transpose i.Op(H) to the right of O (2H), and i.Op to the right of (Oy(H), Oy (2H)).
After the transposition we obtain the following decomposition

DY) = (9"(DY(B(B), Bo)), Oy, Oy (H), 05 (2H),i,Op,i~Op(H),iOp(2H)). (14)
Now we are done. Comparing (14) with (7), we see that ®(D*(P(B), By)) = o*(Ay ), hence the functor

o, 0®" : D(P(B),By) — Ay,
F — {Hom(Oz(h — H),®(F)) ® Jp(ay — ®(F) — Hom(®(F), Oy (—h))* @ Oy(—H)} .

is an equivalence of categories. Combining this with the equivalence of Lemma 4.2 we obtain an equiva-
lence D¥(S, B) = Ay. O

The category Db(S, B) can be considered as a twisted derived category of the K3 surface S, the twisting
being given by the class of B in the Brauer group of S. However, sometimes the twisting turns out to be
trivial.

For a 2-dimensional cycle T" on a cubic fourfold Y containing a plane P consider the intersection index

§(TY=T-H-H-T-P. (15)

Note that §(P) = —2, and that 6(H?) = 2. So, if the group of 2-cycles on Y modulo numerical equivalence
is generated by P and H? then § takes only even values.

Proposition 4.7. The sheaf of Azumaya algebras B on S splits if and only if there exists a 2-dimensional
cycle T on'Y such that 6(T) is odd.

Proof: By definition the P!-fibration over S corresponding to the sheaf of Azumaya algebras B is given
by the moduli space M of lines in the fibers of Y over P(B), hence B splits if and only if the map M — §
has a rational multisection of odd degree. Note that §(7") equals the intersection index of the proper
preimage of T in Y with the fiber of Y over P(B). Hence, the set of lines in the fibers of Y that intersect
T gives a multisection of M — S of degree 6(T).

To prove the converse, consider the component M3 of M Xp(py M lying over the graph of the
involution of S over P(B) in S Xp(pyS. The points of M@ correspond to pairs of lines in the fibers of Y
over P(B) lying in different families. Associating with such pair of lines the point of their intersection, we
obtain a rational map M® — Y - Y. If Z C M is a rational multisection of M — S of odd degree d,
then we take T' to be (the closure of) the image of Z(?) (defined analogously to M®)) in Y. Then it is
easy to see that §(T) = d? is odd. O

Note that the cubic fourfolds containing a plane P(A) and a 2-dimensional cycle T such that §(7') is
odd are rational by results of Hassett [Hal, Ha2]. So, by Proposition 4.7 for this series of rational cubic
fourfolds the category Ay is equivalent to the derived category of a K3 surface.

On the other hand, if a cubic fourfold Y contains a plane but §(T') is even for any 2-cycle T on Y, so
that the sheaf of Azumaya algebras B doesn’t split, it is still possible that D°(S, B) = D(S’) for some
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other (or even for the same) K3 surface S’. For this, however, the Picard group of S should be sufficiently
big, at least if Pic.S = Z this is impossible.

Proposition 4.8. LetY be a cubic fourfold containing a plane P. If the group of codimension 2 algebraic
cycles on'Y modulo numerical equivalence is generated by P and H? then Ay % Db(S') for any surface S'.

The proof will be given in the Appendix. Actually, we will show that K(S,B) % Ky(S’) for any
surface S’ as lattices with a bilinear form (the Euler form x), where S is the K3 surface corresponding
to Y and B is the induced sheaf of Azumaya algebras on it. More precisely, we will show that Ky(S,B)
doesn’t contain a pair of vectors (vi,vs) such that x(gpg)(vi,v2) = 1, x(s,8)(v2,v2) = 0 (while in Ko(S’)
one can take v = [Og], va = [O,], where O, is a structure sheaf of a point).

5. SINGULAR CUBIC FOURFOLDS

Let Y € P(V) = P® be a singular cubic fourfold. Let P be its singular point. Let o : Y — Y be the
blowup of P. The linear projection from P gives a regular map 7 : Y — P4,

Lemma 5.1. The map 7 is the blowup of a K3 surface S C P* which is an intersection of a quadric
and a cubic hypersurfaces. Let D be the exceptional divisor of w, and Q) the exceptional divisor of o. Let
i:D—-Y,j:S—>P, anda:Q — Y be the embeddings, and p: D — S the projection.

Then the map mo « : Q — P* identifies Q with the quadric passing through S.
Moreover, let H and h denote the pullbacks to Y of the classes of hyperplanes in P(V) and P* respec-
tively. Then we have the following relations in PicY :

Q=2h-D, H=3h-D, h=H-Q D=2H-3Q, Ky=-5h+D=-3H+2Q.

Proof: Let zg,..., 25 be coordinates in V such that P =(1:0:0:0:0:0). Then (21 : 20 : 23 : 24 : 25)
are the homogeneous coordinates in P* and the rational map m o o~ ! takes (2 : 21 : 20 : 23 : 24 : 25) to
(21 : 22 : 23 : 24 : 2z5). Since the point P is singular for Y, the equation of Y is given by

z0F (21, 22, 23, 24, 25) + F3(21, 22, 23, 24, 25) = 0,

where F5 and F3 are homogeneous forms of degree 2 and 3 respectively. It follows that 7 is the blowup
of the surface
S = {Fy(21, 22, 23, 24, 25) = F3(21, 22, 23, 24, 25) = 0} C P,

and that the rational map o o 7! is given by the formula
(21: 201231 24 25) = (—F3(21, 22, 23, 24, 25) : 21F5(21, 22, 23, 24, 25) ¢ ... @ 2500(21, 22, 23, 24, 25)).

It follows that the proper preimage of the quadric {Fy(z1, 22, 23, 24, 25) = 0} C P* in Y is contracted by
o, whence QQ = 2h — D. It also follows that H = 3h — D. Solving these with respect to h and D we get
the other two relations. Finally, since Y is the blow-up of P* in a surfaces S we have Ky = —5h + D.
Substituting h = H — Q, D = 2H — 3@Q we deduce the last equality. O

Theorem 5.2. The category D*(S) is a crepant categorical resolution of Ay . In other words, there exists

a pair of functors
pe:DV(S) = Ay, p" i AP — DU(S),
where A)p/erf = Ay NDPF(Y), such that p* is both left and right adjoint to p. and ps o p* = id.
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The notion of a crepant categorical resolution of singularities was introduced in [K2]. To prove the
Theorem we start with considering a crepant categorical resolution D of D¥(Y). Following [K2], to
construct such D one starts with a dual Lefschetz decomposition (with respect to the conormal bundle)
of the derived category of the exceptional divisor of a usual resolution. We take the resolution o : Y > Y.
Then the exceptional divisor is a three-dimensional quadric ) and the conormal bundle is isomorphic to
Og(—Q) =2 Og(h — H) =2 Og(h). We choose the dual Lefschetz decomposition

DY(Q) = (B2 ® Og(—2h), By ® Og(—h),By)  with By = By = (Og) and By = (0g, Sg),

where Sg is the spinor bundle on Q. Then by [K2] the triangulated category

D = (0. (B2 ® Og(~2h)), ax(By © Og(—h))) = * (. 0(~2h), 0. Og(~h))
is a crepant categorical resolution of D°(Y") and there is a semiorthogonal decomposition

DY) = (a.O0n(—2h), a,Og(—h), D).
Further, we consider the semiorthogonal decomposition of D, induced by the decomposition (3) of D?(Y):
D = (Ay, 05,05 (H),05(2H)).

One can easily show that Ay is a crepant ca:cegorical resolution of Ay (see Lemma 5.8 below). So, to
prove the Theorem, it suffices to check that Ay = D°(S).

Now we describe the way we check this. Substituting the above decomposition of D into the above
decomposition of D?(Y') we obtain

DY) = (2:0q(—2h), a.0q(~h), Ay, O, Oy (H), Oy (2H)). (16)
On the other hand, since 7 : Y — P4 is the blow-up of S we have by [Or] the following semiorthogonal
decomposition
D(Y) = (@(D"(S)), =* (D" (1)),
where the functor ® : DY(S) — DP(Y) is given by F + i,p*F (D). Using one of the standard exceptional
collections D°(P*) = (Ops(—3), Ops(—2), Ops(—1), Ops, Ops(1)) we obtain a semiorthogonal decomposi-
tion
DY) = (2(D"(5)), Oy (~3h), Op(~2h), O3 (~h), 05, Oy (). (17)
Now we are going to make a series of mutations, transforming decomposition (17) into (16). This will
give the required equivalence Db(S) = Ay.
Now let us describe the series of mutations.
Step 1. Left mutation of Oy (—3h), Oy (—2h), and Oy (—h) through d(D(9)).
Lemma 5.3. For any F € D°(P*) we have Loy (s)) (7" F) = 7" F(D).
Proof: Recall that by definition we have
Lo po(sy) (G) = Cone(®(2(G)) — G) (18)
for any G € D*(Y). But
O (n"F) & pui'n F(=D) & pi*n* F[-1] 2 p.p*j* F[-1] = j* F[-1],
S0
(@ (n°F)) = i,p*j F(D)[—1] 2 i,*7* F(D) 1]
and it is clear that the triangle (18) boils down to
ixi*m*F(D)[-1] - n*F — 7" F(D)
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obtained by tensoring exact sequence 0 — Oy — Op (D) — i,Op(D) — 0 with 7*F" and rotating to the
left. n

It follows that after this mutation we obtain the following decomposition
DY) = (05 (~3h + D), 05(~2h + D), O (—h + D), ®(D*(S)), Oy, Oz (h)). (19)

Step 2. Right mutation of ®(D’(S)) through Oy and Og(h).
After this mutation we obtain the following decomposition

DY) = (O5(~3h + D), O3 (~2h + D), Oz (~h + D), 05, 05 (h), ¥ (D(S))), (20)
where & = Ro_ () 0 Ro, o ® : D¥(S) — DY(Y).

Lemma 5.4. We have Ext*(Oy(—h + D),0) = 0, so that the pair (Oy(—h + D),Oy) is completely
orthogonal.

Proof: We have Ext*(Oy(—h + D),05) = H(Y, Oy (h — D)) = H*(P*, Js(1)), where Jg is the sheaf of
ideals of S. On the other hand, since S is the intersection of a quadric and a cubic, we have an exact
sequence

0 — Ops(—5) — Ops(—3) & Ops(—2) — Jg — 0.
Twisting by Opa(1) we deduce the required vanishing. O

By Lemma 2.10 the transposition of the pair (Og(—h+ D), O3 ) gives a semiorthogonal decomposition.
Step 3. Transpose the pair (Oy(—h + D), Og).
After the transposition we obtain the following decomposition

D*(Y) = (05 (=3h + D), O3 (—2h + D), Oy, O5(~h + D), O3 (h), ¥ (D*(S))). (21)
Step 4. Simultaneous right mutation of Oy (—2h + D) through Oy and of Oy (—h+ D) through Og (h).
Lemma 5.5. We have Rog (Oy(—2h + D)) = a..0g[—1], Ro_(n)(Oy(=h + D)) = a,.Oq(h)[-1].

Proof: Note that Ext®(Og(—2h + D),05) = H*(Y,03(2h — D)) = H*(P*,Js(2)). Using the above
resolution of Jg we deduce that

1, forp=0

0, otherwise

dim Eti(Of,(—Qh + D), Of,) = {

It follows that we have a distinguished triangle
Ro? (O?(—Qh + D)) — O?(—Qh + D) — 0}7.

Since 2h — D = @, the right map in the triangle is given by @, so it follows that the first vertex is
a,Og[—1]. The same argument proves the second claim. O

We conclude that the following semiorthogonal decomposition is obtained:

DH(F) = Oy (—3h + D), Oy, 0,00, O (h), 0, Og(h), &'(DV(S)). 22)
Step 5. Left mutation of Oy (h) through a.Og.

Lemma 5.6. We have L,,0,(0y(h)) = Oy (3h — D).



DERIVED CATEGORIES OF CUBIC FOURFOLDS 13

Proof: Note that
Ext®(a.Og, Of/(h)) = Ext’(OQ,a!Of,(h)) = Ext*(Og, Og(h + Q)[—1]) = Ext*(Oq, Oq(3h — D)[—-1]).

But the divisor @ is contracted by o, and 3h — D = H is a pullback by o, hence Og(3h — D) = Og, so
we conclude that

1, f =1
dim Ext? (0,0, O (h)) =4 7
0, otherwise

It follows that we have a distinguished triangle
a:0q[—1] = Oy (h) = La, 0, (O (h)).
Comparing it with the rotation of the exact sequence
0 — Oy (h) — Oy(3h — D) — a.Og — 0
we deduce the required isomorphism. O

As a result of this step we obtain the following semiorthogonal decomposition:

D'(Y) = (O3 (=3h + D), 05,05 (3h — D), a.0q, a,.0q(h), ¥ (D*(S))). (23)

Step 6. Left mutation of the subcategory (a.Og, a.Og(h), ®'(D’(S))) through its orthogonal subcate-
gory (.0gq, .0q(h), ®'(D*(S)))* = (O5:(=3h + D), 05, 05(3h — D)) and a twist by O;.(H).
Applying Lemma 2.11 and taking into account equalities Ky = D — 5h and 3h — D = H, we obtain

D'(Y) = (.0 (~2h), a.0q(~h), @"(D"(5)), Oy, O (H), Oy (2H)), (24)
where
" =To_3n-p)° To, (~snp)© ® =To_(—an) o @
Comparing (24) with (16) we obtain the following

Corollary 5.7. The functor ®" = Ro (- o Ro_ (~2n) © To_ (p-2n) 0 tx 0 p" : D(S) — DY) induces an
equivalence of categories D?(S) = Ay

Now we can finish the proof of Theorem 5.2 by the following
Lemma 5.8. The category Ay is a crepant categorical resolution of the category Ay .

Proof: Recall that by [K2] the category Dis a crepant categorical resolution of DY(Y') via the functors
0y : D — DY) and o : DP*(Y) — D. So, to prove the lemma we only have to check that o, (Ay) C Ay
and J*(A?frf) C Ay. But this is straightforward — if F' € Ay then

Hom(Oy (t), 0«(F')) = Hom(c"(Oy (t)), F)) = Hom(Og (tH)), F') = 0
for t = 0,1, 2 by adjunction between o, and o* and the definition of Ay . Similarly, if G € Ag’frf then
Hom (O (tH)),0"(G)) = Hom(a*(Oy (1)), 0" (G)) = Hom(Oy (), 0.0*(G)) = Hom(Oy (t),G) =0
again by adjunction and by the fact that o, o 0* 2 id on DP(Y). O

Proof of Theorem 5.2: By Corollary 5.7 we have D(S) = Ay and by Lemma 5.8 the category Ay is a
crepant categorical resolution of Ay-. O
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Remark 5.9. The resulting functors between D°(S) and Ay take form
ps = 0x0Ro_(_n) o Ro_ (—an) © To, (p-2n) © ix 0 p* : D(S) — Ay,
F i {o.i(p*F(D — 2h)) — Hom*(F, Og[~1])* ® Oy (—2H) — Hom(F, Qpa(h)|s[-1])" @ Oy (—H)}
p*=psoi*oTo_(3n)2 ° Lo, (2n-p)° Lo, @n-pyoo": AT — Do(S),

G pu(i*o*G(—3h))[2].

It will be interesting to describe the subcategory of D?(S) which is mapped to zero by p, : D?(S) — Ay-.

6. APPENDIX. THE GROTHENDIECK GROUP OF A TWISTED K3 SURFACE
ASSOCIATED WITH A CUBIC FOURFOLD CONTAINING A PLANE

For the computation of the Grothendieck group we will use the notion of a twisted Chern character
introduced by Huybrechts and Stellari in [HS1], see also [HS2].

Let S be a polarized K3 surface of degree 2 with Pic S = Zh (and h? = 2), and B a nonsplit Azumaya
algebra of rank 4 on S. Let a € H%(S, O%) be the class of B in the Brauer group Br(S) = H%(S,0%). It
follows from the exponential sequence

exp(2mi(—
0 Z 052220 e 0

and from H3(S,Z) = 0 that there exists 3 € H?(S,Og) such that a = exp(27iB3). Since the order of
a is 2, it follows that 23 is the image of some integer class By € H?(S,Z), hence 3 is the image of

B = 1B € H*(S,4Z) C H*(S,Q). Let us fix such B.

Certainly, the class B € H(S, 1Z) such that a = exp(2miB) is not unique. It is defined up to addition
of an element in H?(S,Z) (ambiguity in a choice of 3) and of an element in H>(S,1Z) (ambiguity in
the lifting of 5 to B). However, the following invariant does not depend on the choices.

Let {t} :=t — [t| denote the fractional part of t € Q.

Lemma 6.1. The fractional part { Bh} of the product Bh does not depend on the choice of B. Moreover,
if {Bh} = % then {B?} does not depend on the choice of B.

Proof: Take any u € H?(S,Z). Then
(B +u)h = Bh + uh, (B +u)? = B? 4+ 2Bu + u?.

It is clear that uh, (2B)u and u? are integral, so {Bh} and {B?} do not change. Further
1 1 1 1 1
(B+§h)h:Bh+§h2 = Bh+1, (B+§h)2 :BQ+Bh+Zh2 :B2+Bh+§.
We see that {Bh} doesn’t change and that if {Bh} = % then {B?} doesn’t change as well. O

One can compute {Bh} from the geometry of the P!-bundle associated with the corresponding Brauer
class a = exp(2miB). It is an interesting question, how to compute { B2} in a similar fashion.

Lemma 6.2. Let M — S be a P'-fibration given by the Brauer class o = exp(2miB) and C C S, a
smooth curve in the linear system |h| on S. Then there exists a rank 2 vector bundle E on C such that
M xg C =Pc(E). Moreover

1
{Bh} = {QdegdetE} ,

for any such bundle E.
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Proof: A vector bundle F exists since the Brauer group of a smooth curve is trivial. The equality of
fractional parts can be deduced as follows. Note that the class a € H?(S,0%) is of order 2, hence it
comes from a class g € H?(S, ju2), where po stands for the group of square roots of unity. Note also
that we have a canonical isomorphism

1
H*(C, o) = pg = 5L/2.

Let us first check that {Bh} coincides with the image of the restriction agc € H?(C, p2) under this
isomorphism. Indeed, this follows immediately from the commutative diagram

H?(S,i7) — H?*(C,17) 17

l e

H2(57 :U’Q) - H2(07 N2) - %Z/Z

in which the vertical arrows are induced by the map exp(2mi(—)) : $Z — po, and the horizontal arrows
are given by the restriction to C.
So, it remains to check that ag ¢ equals {% degdet E } For this we consider exact sequence of groups

,det
1 H2 G |_2 v ) PG L2 X Gm

L,
where p : GLs — PGLs is the canonical projection. From this we obtain an exact sequence of cohomologies
H'(C,GL2(O¢)) — H'(C,PGL2(O¢)) ® H' (C,05) — H*(C, pc)

which can be rewritten as the following commutative (up to a sign which in H?(C, uc) = %Z/Z is
insignificant) diagram

HY(C,GLy(O¢)) =~ HY(C,0%)
pi l{;degm}
HY(C,PGLy(O¢)) — H*(C, uc)

By definition, agjc comes from the class in H*(C, PGLy(O¢)) of the restriction of the Azumaya algebra B¢
and the class of E in H'(C,GL2(O¢)) is its lift. On the other hand, the top horizontal and the right
vertical arrows take F precisely to {% degdet E'}. O

Consider the bounded derived category D’(S, B) of coherent sheaves of B-modules on the surface S.
Its Grothendieck group comes with the Euler bilinear form on it

X(s.8)([F],[G]) = Y _(~1)' dim Ext'(F, G).

We denote by Ky(S, B) the quotient of the Grothendieck group by the kernel of the Euler form, i.e. the
numerical Grothendieck group.

Lemma 6.3. Assume that {Bh} = {B*} = . Then there is no such pair of vectors vi,vs € Ko(S,B)

for which X(S,8) (vi,v2) =1, X(S,B)(U27U2) =0.

Proof: Recall that h € H%!(S,7Z) denotes the positive generator of Pic.S and let p € H*(S,Z) be the
class of a point. By [HS1], Proposition 1.2, there exists a linear map (the B-twisted Chern character)

ch? : Ko(S,B) — H*(X,Q),

such that:
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(1) ImchB = H**(S, B,7) := exp(B)(H’(S,Q) ® HY(S,Q) @ H*(S,Q)) N H*(S,Z) (Corollary 2.4
and Remark 1.3 (ii));

(2) x(s.8)(F,G) = (ch?(F)\/td(S), ch® (G)\/td(S)), where (—, —) is the Mukai pairing
<T1 4+ dih + sip,ro + doh + 32p> = 1189 — 2d1dy + 8172, ri,d;, S; € 7.

Let us describe H**(S, B,Z). We have H(S,Q) @ H*'(S,Q)® H*(S,Q) = {r+dh+sp | r,d,s € Q}
since H1(S,Q) = Qh. Further

exp(B)(r + dh + sp) = r + (rB + dh) + (rB?/2 + dBh + s)p.
So, to obtain an element of H**(S, B,7Z) we must have
rez, rB+ dh € H*(S,7Z), rB?/2 4+ dBh + s € Z.

Let us show that r is even. Indeed, for r odd B + dh € H?(S,Z) would imply B + dh € H*(S,Z),
hence the image of B in H%(S,0g)/H?*(S,Z) = H?*(S,0%) would be zero. So, r is even. Therefore
rB € H?(S,Z), hence dh € H*(S,Z), so d € Z. We conclude that H**(S, B, Z) is generated by elements
2+ 2B, h and p, and it is easy to see that the matrix of the bilinear form x(g ) in this basis is

8 —4B%2 —2Bh 2
—2Bh -2 0
2 0 0

Note that the only potentially odd integer in the matrix is —2Bh, all the rest are definitely even. So,
if we have x(s ) (v1,v2) = 1 then the coefficient of vy at h (in the decomposition of v with respect to
the above basis of Ky(S,B)) is odd. Thus, it suffices to check that for any vy € Ko(S,B) such that
X(s,8)(v2; v2) = 0 the coefficient of vz at h is even.

Indeed, assume that vy = x(2 4+ 2B) + yh + zp. Then

0 = x(s,8)(v2,v2) = (8 — 432):32 — 4Bhay + 4xz — 2y?

implies y? = 422 + 2x2 — x(2B%x — 2Bhy). Taking into account that 2B? = 2Bh = 1 mod 2 we deduce
that 32 = x(x + y) mod 2. It is clear that for 5 = 1 mod 2 this has no solutions, so we conclude that ¥
should be even. O

In what follows we check that for the Azumaya algebra B on a K3 surface .S arising from a cubic fourfold
Y containing a plane the conditions of Lemma 6.3 are satisfied. Then it will follow that D°(S, B) 2 D*(S")
for any surface S’. We will use freely the notation introduced in Section 4.

Lemma 6.4. We have {Bh} = {B?} = 1.

Proof: Let us start with a computation of { Bh}. Recall that we have a fibration in 2-dimensional quadrics
7:Y — P(B) and M is the Hilbert scheme of lines in fibers of 7. Let L be a generic line in P(B) and
C=LXxpp S = f~1(L). Restricting the fibration 7 : Y — P(B) to L we obtain a pencil of quadrics
{@Qx}rer. Then Mo = M xg C is the Hilbert scheme of lines in @). By Lemma 6.2 it suffices to check
that M¢c = Po(FE) with degdet E being odd.

Consider each @, as a quadric in P(V'). It intersects with P = P(A) in a conic ¢y, so we have a pencil
of conics {gy} e in P. It is clear that for sufficiently general L the following two conditions are satisfied:

(1) the base locus of the pencil {g)\} on P is a quadruple of distinct points such that any triple of
them is noncollinear;

(2) the points Nj,..., A\ € L corresponding to singular quadrics @y with A € L (and hence to
the ramification points of f : C — L) are pairwise distinct from the points A\j, A\a,A\3 € L
corresponding to reducible conics gj.
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We will assume that for the chosen L both properties (1) and (2) are satisfied.
Our main observation is that each line on a quadric @) intersects the conic gy = @) NP in a unique
point, hence the Hilbert scheme of lines on Q) identifies either with

@ Uqy, if gy is irreducible and @) is smooth (i.e. A & {1, A2, Az, A, Ay, A5, Ny, AL AGH);
qx, if gy is irreducible and Q) is singular (i.e. A € {\], A5, A5, Nj, AL, A6 s
q;\“ Ug,, ifqy= qj U g, is reducible and @y is smooth (i.e. A € {A1, A2, A3}).

An immediate consequence is the following. The blowup P of P in the base locus of ¢y has a natural
structure of a conic bundle over L with three reducible fibers (over the points \;). Let Pc = P x g C.
This is a conic bundle over C' with 6 reducible fibers, over the preimages )\Et € C of points A\; € L. Then
M is obtained from Po by contracting the components qj\: in the fibers over )\;r and qy, in the fibers
over \; . It follows that a vector bundle E on C such that M = P¢(FE) can be obtained as follows.

First, consider the contraction of components q; in the fibers of P over \; € L. We will obtain a
P!-fibration over L which is isomorphic to Pr(Ey) for some vector bundle Ey on L of rank 2. Then
Po(f*Ep) is obtained from P¢ by contracting the components q; both in the fibers over )\:r and in the
fibers over A;, whereof it follows that M¢ is obtained from Pc(f*Ep) by simple Hecke transformations
in the fibers over the points A, (a simple Hecke transformation of a P!'-bundle is a a blow-up of a point
followed by contraction of the proper preimage of the fiber containing this point). So, Po(F) differs from
Po(f*Ep) by three simple Hecke transformations. It remains to note that degdet f*FEy = deg f* det Ey
is even and to use the well-known fact that whenever Po(E) and Po(E’) are related by a simple Hecke
transformation the parity of degdet E' and degdet E’ is different, so after three Hecke transformations
we obtain Po(FE) with degdet E being odd.

Now, to compute {B?} we are going to use Lemma 6.3. By this Lemma for any a-twisted sheaf F on S
of rank 2 we have x(g.4)(F, F) = (ch”(F)\/td(S), ch”? (F)/td(S)). On the other hand, for any a-twisted
sheaf of rank 2 we have ch®(F) = 2 + 2B + dh + s for some d, s € Z, 5o

X(8,0)(F, F) = 8 — 4B* + 4s — 2d* — 4dBh.

Note that 8 +4s — 2d? — 4dBh = 4s — 2d(d+2Bh) is divisible by 4. Indeed, 2d is divisible by 4 for even d,
while for d odd 2(d + 2Bh) is divisible by 4. We conclude that x (g q)(F, F) = 4B mod 4.

On the other hand, under identification of the category of sheaves of B-modules on S with the category
of a-twisted sheaves, the sheaf B corresponds to a certain rank 2 twisted sheaf. So, we conclude that
X(S,B) (B, B) = 432 mod 4.

Now consider the covering f : S — P(B). We have the pushforward and the pullback functors
f« : D°(S,B) — DY(P(B)), f*: D*(P(B)) — D(S, B). Note that J*Opp) = B, so by adjunction

X(5.8) (B, B) = x(5,8)(f*Opr(s): B) = xp(B)(Or(B), [+B) = Xp(B)(Op(B), Bo) = XB(B)(Bo)-

It remains to note that By = Opy @ (A’A ® Opp)(—1) @ A ® Oppy(-2)) @ AA® Op(B)(—3), so
xp(B)(Bo) = 2, whence {B?} =2/4=1/2. O

Now we can give a proof of Proposition 4.8. Combining Lemma 6.4 with Lemma 6.3 we conclude
that Ko(S, B) does not contain a pair of elements (vi,v2) such that x (g g)(v1,v2) = 1, x(g,8)(v2,v2) = 0.
On the other hand, for any surface S’ in Ky(S’) there is such a pair. Indeed, just take v; = [Og/],
vg = [O,] where O, is a structure sheaf of a point. We conclude that K(S, B) % Ko(S") which implies
that D?(S,B) % D(S").
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