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Abstract

In this survey paper birational geometry of higher-dimensio-
nal rationally connected varieties is discussed. In higher
dimensions the classical rationality problem generalizes to
the problem of description of the structures of a rationally
connected fiber space on a given variety. We discuss the
key concept of birational rigidity and present examples of
Fano fiber spaces with finitely many rationally connected
structures.

Introduction

0.1. The Liiroth problem. The modern age in birational geometry started with
the negative solution of the Liiroth problem: does unirationality imply rationality?
In [3,12] negative answers were given for dimension three, in [2] for arbitrary di-
mension > 3. The unirationality of the produced examples was proved by direct
(sometimes almost obvious) constructions and the hardest part was to prove their
non-rationality. The paper of Iskovskikh and Manin on the three-dimensional quar-
tics [12] started a whole new field of research in the framework of which new methods
of proving non-rationality were developed, the methods that work effectively for a
large class of higher-dimensional algebraic varieties. The aim of this survey is to
describe and explain by examples some of the main ideas in this field.

In [12] the following fact was shown.

Theorem 0.1. Let x:V --» V' be a birational map between smooth three-
dimensional quartics V,V' C P*. Then x is a bireqular (projective) isomorphism.
In particular, the group of birational self-maps Bir V- = Aut V' is finite (for a generic
quartic V' it is trivial).

Corollary 0.1. The smooth three-dimensional quartic V C P* is non-rational.

Proof of the corollary. The group of birational self-maps of an algebraic
variety X is a birational invariant. However, by Theorem 0.1 the group Bir V'
is finite, whereas the Cremona group BirP? is infinite. Therefore, V cannot be
birational to P3, which is what we need. Q.E.D.

Remark 0.1. The argument above is obvious. For a long time (for more than
20 years after the paper [12] was published) quite a few people believed that this was
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the only way to deduce non-rationality of the three-dimensional quartic. However,
with all simplicity and brevity of this argument, there is a disadvantage, namely,
if the group Bir X is “of the same size” as the Cremona group BirP? in the sense
of cardinality, one cannot prove non-rationality of the variety X in this way. In
particular, this method does not work for the complete intersection Va3 C P° of
a quadric and a cubic (a description of the group Bir V,.3 is given below following
[13]). Tt is almost certain that the groups Bir Va.3 and BirP® are non-isomorphic,
but today we cannot even approach this problem.

However, there are two (very close to each other) ways to derive Corollary 0.1
from the constructions of the paper [12], although not directly from Theorem 0.1.
Their advantage is in the fact that they work for other Fano varieties, in particular,
for V5.3. Let us describe these arguments.

A second proof of Corollary 0.1. In [12] the following fact was actually
shown.

Proposition 0.1. Let x:V --» X be a birational map of a smooth three-
dimensional quartic V' onto a smooth projective variety X, |R| a movable complete
linear system on X, ¥ C |nH| = | — nKy/| its strict transform on V with respect
to x, where H € PicV is the class of a hyperplane section of V.C P*. Then, if for
some positive integers a,b € Z, the linear system |aR + bK x| is empty, then the
linear system |anH + bKy/| is empty, either, that is, b > an.

Corollary 0.2. Let a: X — S be a morphism. Assume that one of the following
two cases holds:

o S =P the general fiber a='(s), s € S, is a rational surface,

e dim S = 2, and the general fiber o= (s), s € S, is an irreducible rational curve.

Then there is no birational map x:V --+ X, where V. C P* is a smooth quartic.

Since a linear projection P? —-s P? or P? -—» P! realizes P? as a P'- or P2-bundle,
respectively, Corollary 0.2 implies non-rationality of the three-dimensional quartic.
Proof of Corollary 0.2. Assume the converse: there is a birational map
x:V --» X. Let A be a complete very ample linear system on S. Let |R| = a*A be
its pull back on X. Obviously, the class R is trivial on the fibers of «, so that for
any a,b > 0 we get
|CLR +bK X| = @,

since the fiber a~!(s) has the negative Kodaira dimension. Let ¥ C |[nH| be the
strict transform of the system |R| on V' with respect to x. By Proposition 0.1, we
get b > an. Since a, b are arbitrary, we get n = 0. But X is a movable linear system,
so that n > 1. A contradiction. Q.E.D. for Corollary 0.2.

Remark 0.2. We have just obtained a much stronger fact than non-rationality
of V. Corollary 0.2 asserts that there is no rational map v:V --+ S onto a variety
S of positive dimension, the generic fiber of which is a rational surface or a rational
curve. In the modern terminology, on V there are no structures of a fiber space



into rational curves or rational surfaces. Since on P? there are infinitely many such
structures, the quartic V' is non-rational. Although the argument above is much less
obvious than the first proof of Corollary 0.1, its potential is much greater: it shows
in which direction one should generalize the rationality problem and what class of
algebraic varieties should be involved into consideration. These generalizations will
be considered below. Completing our discussion of the three-dimensional quartic,
let us give

A third proof of Corollary 0.1. The argument given below is also based
on Proposition 0.1, however it is more direct than the previous one. Assume that
X:V --» P3 is a birational map and |R| is the complete linear system of planes in
P3. The linear system |aR + bKps| = |(a — 4b)R| is empty if and only if a < 4b. Let
¥ C |nH| be the strict transform of the system |R| on V. By Proposition 0.1, for any
positive integers a, b, satisfying the inequality a < 4b, we get b > an. Thus n < }l,
that is, n = 0, which is impossible. A contradiction. Q.E.D. for non-rationality of
the three-dimensional quartic.

Keeping in mind the three proofs of non-rationality of the three-dimensional
quartic, we will show in this paper, what class of varieties it is natural to consider
in general, what questions it is natural to ask, and what answers it is natural to
expect.

0.2. Rationally connected varieties. Recall [14,15] that an algebraic variety
X is said to be rationally connected, if any two (generic) points z,y € X can be
joined by an irreducible rational curve, that is, there exists a morphism f:P! — X
such that z,y € f(P'). The projective space PM and smooth Fano varieties are
rationally connected. In [5] the following fundamental fact was proved.

Theorem 0.2. Let m: X — S be a fiber space (that is, a surjective morphism
of projective varieties with connected fibers), the base S and generic fiber = 1(s),
s € S, of which are rationally connected. Then the variety X itself is rationally
connected.

The fiber spaces m: X — S described in the theorem above are called rationally
connected fiber spaces. From the viewpoint of classification of algebraic varieties,
rationally connected varieties are the most natural generalization of rational varieties
in dimension three and higher. Obviously, the rationality problem makes sense for
rationally connected varieties only.

Definition 0.1. A structure of a rationally connected fiber space on a rationally
connected variety X is an arbitrary rational dominant map ¢: X --+ S, the fiber of
general position of which ¢1(s), s € S, is irreducible and rationally connected. If
the base S is a point, then the structure is said to be trivial.

An alternative definition: a structure of a rationally connected fiber space on
a variety X is a birational map x: X --+ X* onto a variety X* equipped with a
surjective morphism 7: X* — S realizing X* as a rationally connected fiber space.
We identify the structures of a rationally connected fiber space p;: X --» S and
po: X --» Sy, if there exists a birational map «a:S; --+ Sy such that the following



diagram commutes:

X & X
1 | L (1)
Sl _(3_) 527

that is, w9 = a o ;. In other words, ¢; and p, have the same fibers. The set of
non-trivial structures of a rationally connected fiber space on the variety X (modulo
the identification above) is denoted by RC(X).

On the set RC(X) there is a natural relation of partial order: for ¢, s € RC(X)
we have ¢; < o, if there is a rational dominant map a:.S; --+ S such that the
diagram (1) commutes. In other words, the fibers of ¢; are contained in the fibers
of . For a general point s € Sy we have

a”(s) = iy ' (5)),

therefore o € RC(S7) is a structure of a rationally connected fiber space on S;. It
is easy to see that the correspondence ¢, +— « determines a bijection of the sets
{ € RC(X)|Y > ¢1} and RC(Sy). Therefore from the geometric viewpoint of
primary interest are the minimal elements of the ordered set RC(X). Denote the
set of minimal elements by RCyin(X). Set also RCy(X) C RC(X) to be the set of
structures, the generic fiber of which is of dimension d. Obviously, if d = min{e €
Z.|RC. # 0}, then RCy C RCyin-

For each d € {1,...,dim X — 1} on the set RCy(X) there is a natural relation of
fiber-wise birational equivalence: py ~ o if there exists a birational transformation
x € Bir X and a birational map «: S7 --+ Sy such that the diagram

X -5 oX
o1 L v
Sl _(ié') 527

commutes, that is, ¢ 0 x = «a o ¢;. In other words, the birational self-map x
transforms the fibers of ; into the fibers of ps. The quotient set RCy(X)/ ~ we
denote by the symbol RCy(X).

For instance, any two linear projections ;, po: PM —-s PM=4 are fiber-wise bira-
tionally equivalent and realize the same element in RCy(PM). On the other hand,
let V' C PM be a smooth Fano hypersurface of index two, that is, a hypersurface of
degree M — 1.

Proposition 0.2. Any two distinct generic linear projections 1, po: PM ——5 P!
determine the structures of a rationally connected fiber space on'V, pi|v:V --+ P,
which are not fiber-wise birationally equivalent.

For the proof, see Sec. 3.

The fibers of the structures ¢;|y are Fano hypersurfaces of index 1, that is,
hypersurfaces of degree M — 1 in PM~1  Since for a general hypersurface V, a
general projection p:PM --» P! and a general point p € P! for M > 5 we have
RC(p| v (p)) = 0 (see [18] and Sec. 1 of the present paper), the structures ¢|y are
minimal elements of the set RC (V).



Conjecture 0.1. For e < M — 2 and a general hypersurface V.C PM of degree
M — 1 we have RC.(V) = 0.

For a general four-dimensional quartic V = V; C P° Conjecture 0.1 asserts that
V' has no structures of a rationally connected fiber space with the base of dimension
two or three. The assumption of genericity is essential: if V' O P, where P C P is
a two-dimensional plane, then the projection from that plane 7p:P® --» P2 fibers
V into cubic surfaces, that is, wp| € RCo(V).

Proposition 0.2 shows that the set RCy(X) can be quite big and possess a natural
structure of an algebraic variety.

The second proof of Corollary 0.1 now can be formulated in the following way:
Proposition 0.1 implies that for a smooth three-dimensional quartic V' C P* we have
RC(V) = 0. Since RC(P3) # 0, the quartic V is non-rational.

The arguments of Sec. 0.1 show that the rationality problem generalizes to the
following questions concerning birational geometry of a rationally connected variety

X:
e compute the sets RC(X), RCyin(X), RCy(X) and RCy4(X),
e compute the group of birational self-maps Bir X.

We single out computing the group of birational self-maps as a separate problem,
since it is of independent interest. In fact, it is necessary to compute this group to
describe the quotient set RC4(X); moreover, one should know the action of the
group Bir X on the set RCy(X). Besides, the interest to the problem of computing
the group Bir X (like the special interest to the rationality problem) comes from
tradition.

0.3. The structure of the paper. The aim of this paper is to explain
the main ideas connected with the problems that were set up above, for certain
natural classes of rationally connected varieties. Sec. 1 is devoted to discussing the
key concept of birational rigidity. We give the necessary definitions and describe
the main steps in proving birational rigidity (that is, excluding and “untwisting”
maximal singularities). As an example of description of a group of birational self-
maps we give (following [13]) a proof of the theorem on generators and relations in
the group Bir V5.3 for the three-dimensional complete intersection of a quadric and a
cubic in P°. Here we follow [13], giving all details of the proof, since the paper [13] is
not easily accessible. This group by its “size” is comparable with the Cremona group
Bir P, so that the cardinality argument is insufficient to prove non-rationality of the
variety V5.3 (which at the same time automatically follows from birational rigidity:
RC(Va.3) = 0). Description of the group Bir V4.3 presents an exceptionally visual
example of “untwisting” maximal singularities.

In Sec. 2 we consider examples of rationally connected varieties, the set of ra-
tionally connected structures on which is non-empty but finite: the direct products
of divisorially canonical Fano varieties (Sec. 2.1), Fano fiber spaces V/P! with a
non-trivial group of birational self-maps Z /27 x Z /27, permuting the two elements



in RC(V), so that #RC(V) =1 (Sec. 2.2) and Fano fiber spaces V/P! with no non-
trivial birational self-maps, BirV = AutV and {RC(V) = tRC(V) = 2 (Sec. 2.3).
The varieties, considered in Sec. 2.2 and 2.3, present examples of flops in higher
dimensions. These are the first examples of non-trivial untwisting of maximal sin-
gularities in dimensions higher than three; the varieties of the type of Sec. 2.3 are
the first examples of non-trivial links in higher dimensions (in the terminology of
Sarkisov program [4,33]).

In Sec. 3, following [21], we prove Proposition 0.2. Computation of the group
of birational self-maps of a rationally connected variety V', which is the total space
of a rationally connected fiber space m:V — S, dim.S > 1, naturally breaks into
two separate problems: that of comparison of the group BirV with the group of
fiber-wise (with respect to 7) birational self-maps Bir(V/S) and that of computa-
tion of the group Bir(V/S). In Sec. 3 we consider the problem of computing the
group Bir(V/S), where C' is a curve, for an essentially bigger class of fiber spaces.
Proposition 0.2 follows from the main theorem of Sec. 3 in a straightforward way.
A birational correspondence between two rationally connected structures described
in Proposition 0.2 turns out to be a biregular map, for a generic V' it is identical.

If a rationally connected fiber space V/S determines a unique non-trivial ratio-
nally connected structure on V', then the exact sequence

1 — Bir(V/S) — BirV — Bir S

reduces computation of the group of birational self-maps to computation of the
group of the proper birational self-maps, preserving the fibers of 7:

X

vV - V
T | m
S «— 5,

or, equivalently, the group Bir F;, of birational self-maps of the fiber F, over the
generic (non-closed) point of the base S. We can also look at y as a continuous
family of birational self-maps of fibers

S > s+ xs € Bir Fj.

If V/S is a Fano fiber space, the general fiber of which is birationally superrigid,
then the results of Sec. 3 make it possible to give a complete description of the group
of birational self-maps of the variety V, like it is done below in Sec. 2.2 and 2.3 for
Fano fiber spaces over P!,

1 Birational rigidity

1.1. Termination of canonical adjunction. A rationally connected variety
X satisfies the classical condition of termination of canonical adjunction: for any
effective divisor D the linear system |D + nKx| is empty for n > 0, since Kx is
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negative on some family of rational curves sweeping out X. The classical proof
of the Castelnuovo rationality criterion [1] makes use of this condition, fixing the
precise step n, of canonical adjunction when |D + n,Kx]| is still non-empty, but
|ID + (n. + 1)Kx| = 0: it turns out that the linear system |D + n,Kx| has very
useful properties. To formalize this idea, for a smooth rationally connected variety
X consider the Chow group A*X of algebraic cycles of codimension ¢ modulo rational
equivalence, A'X = Pic X, and set A4 X = A’X®R. Let AL X C AL X be the closed
cone generated by effective classes, that is, the cone of pseudoeffective classes. Set
also AL X C AgX to be the closed cone generated by the classes of movable
divisors (that is, divisors in movable linear systems).

Definition 1.1. The threshold of canonical adjunction of a divisor D on the
variety X is the number ¢(D,X) = sup{e € Q;|D +cKx € ALX}. If Y is a
non-empty linear system on X, then we set ¢(3, X) = ¢(D, X), where D € ¥ is an
arbitrary divisor.

Example 1.1. (i) Let X be a primitive Fano variety, that is, a smooth projective
variety with the ample anticanonical class and Pic X = ZKx. For any effective
divisor D we have D € | —nKx| for some n > 1, so that ¢(D, X) = n. If we replace
the condition Pic X = ZKx by the weaker one rk PicX = 1, that is, Kx = —rH,
where Pic X = ZH, r > 2 is the index of the variety X, then for D € |[nH| we get
c(D, X) ="

(i) Let m: V' — S be a rationally connected fiber space with dim V' > dim S > 1,
A an effective divisor on the base S. Obviously, ¢(7*A, V) = 0. If PicV = ZKy @
7 Pic S, that is, V/S is a primitive Fano fiber space, and D is an effective divisor
on V', which is not a pull back of a divisor on the base S, then

De|—nKy+ 1R

for some divisor R on S, where n > 1. Obviously, ¢(D, V') < n, and moreover, if the
divisor R is effective, then ¢(D, V) = n.

(iii) Let Fy,..., Fx be primitive Fano varieties, V = F} X ... X Fk their direct
product. Let H; = —Kp, be the positive generator of the group Pic F;. Set

Si - H Fi7
JFi
so that V = F; x S;. Let p;:V — F; and 7;: V — S; be the projections onto the
factors. Abusing our notations, we write H; instead of p; H;, so that

K
PicV = @ 7.H,
=1

and Ky = —H; — ... — Hg. For any effective divisor D on V' we get
D e |7’L1H1 + ... —I—TLKHK|
for some non-negative ny,...,ng € Z,, and obviously

c¢(D,V) =min{ny,...,ng}.
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This example can be reduced to the previous one: assume that ¢(D, V) = n; and
set n=ny, m=m, F=F,S=25. We get

Y C|—nKy+ 7Y,

K
where Y = > (n; — n)H; is an effective class on the base S of the fiber space
i=2
m:V — S. This is the case of Example 1.1 (ii) above.
The threshold of canonical adjunction is easy to compute, but the main disad-
vantage of this concept is that it is not a birational invariant.
Example 1.2. Let m:PM --s P™ be a linear projection from a (M —m — 1)-
dimensional plane P C PM. Consider a movable linear system A of hypersurfaces

of degree n in P™ and let ¥ be its pull back via 7. Obviously, ¢(3,PM) = VESE

However, let us blow up the plane P, say o:PT — P so that the composite map
noo:Pt — P™is a PM~™_bundle. Let X* be the strict transform of ¥ on P*. Since
7o o is a morphism with rationally connected fibers, we get ¢(3X",P*) = 0. This
example can be easily generalized to linear projections of Fano complete intersections
V C PM of index 2 or higher, similar to the case considered in Proposition 0.2.

1.2. Birationally rigid varieties. In order to overcome birational non-
invariance of the threshold of canonical adjunction, we give

Definition 1.2. For a movable linear system > on the variety X define the
virtual threshold of canonical adjunction by the formula

(D) = inf {e(X, X)),

where the infimum is taken over all birational morphisms X% — X, X* is a smooth
projective model of C(X), X the strict transform of the system X on X*.

The virtual threshold is obviously a birational invariant of the pair (X, >): if
x: X --» X is a birational map, ¥ = y, X is the strict transform of the system X
with respect to x 7!, we get ¢yt (X) = cuing(B7).

Proposition 1.1. (i) Assume that on the variety V there are no movable linear
systems with the zero virtual threshold of canonical adjunction. Then on V' there are
no structures of a non-trivial fibration into varieties of negative Kodaira dimension,
that is, there is no rational dominant map p:V --+ S, dim S > 1, the generic fiber
of which has negative Kodaira dimension.

(i) Let m:V — S be a rationally connected fiber space. Assume that every
mowvable linear system > on V with the zero virtual threshold of canonical adjunction,
Cirt(X) = 0, is the pull back of a system on the base: ¥ = w* A, where A is some
movable linear system on S. Then any birational map

|V v
L Lo (2)
S S8,

where m: V% — S* is a fibration into varieties of negative Kodaira dimension, is
fiber-wise, that is, there exists a rational dominant map p:S --+ S*, making the
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diagram (2) commutative, 7¢ o x = pow. In other words, ™ > 7 in the sense of the
order on the set of rationally connected structures: T is the least element of RC(V).

Thus for certain rationally connected varieties the virtual threshold of canonical
adjunction reduces the problem of describing the set RC(V') to the same problem
for the base S. This is a crucial step that in many cases leads to an exhaustive
description of the set RC(V'). But the main disadvantage of the virtual thresholds
is that they are extremely hard to compute.

To be precise, the only known way to compute them is by reduction to the
ordinary thresholds.

Definition 1.3. (i) The variety V is said to be birationally superrigid, if for any
movable linear system > on V' the equality

Cirt(2) = ¢(3, V)

holds.

(ii) The variety V' (respectively, the Fano fiber space V/S) is said to be bira-
tionally rigid, if for any movable linear system ¥ on V' there exists a birational
self-map x € BirV (respectively, a fiber-wise birational self-map x € Bir(V/5)),
providing the equality

it (2) = e(x 2, V).

In the following examples the main classes of Fano varieties and Fano fiber spaces,
for which birational rigidity or superrigidity is known today, are listed.

Example 1.3. Smooth three-dimensional quartics V = V,; C P* are birationally
superrigid: this follows immediately from the arguments of [12]. Generic smooth
complete intersections Vi3 C P® of a cubic and a quadric hypersurfaces are bi-
rationally rigid, but not superrigid. For description of their groups of birational
self-maps (which also demonstrates how the thresholds of canonical adjunction are
decreased by means of birational automorphisms), see Sec. 1.3 below.

Example 1.4. Generic hypersurfaces of index one Vj; C PM are birationally
superrigid [18]. The same is true for generic complete intersections V' C PM+* of
index one and codimension k, provided that M > 2k + 1 [22].

Example 1.5. Let 0: V — Q C PM+! be a double cover, where Q = Q,, C PM+!
is a smooth hypersurface of degree m, and the branch divisor W C (@ is cut out
on @ by a hypersurface W3 C PM*! where m +1 = M + 1. The Fano variety
V' is birationally superrigid for general @, W* [19]. Instead of a double cover an
arbitrary cyclic cover could be considered, instead of a hypersurface Q c PM*!
a smooth complete intersection @ C PM** of appropriate index and codimension
k < %M . A general variety in each of these classes is birationally superrigid [23,27].
Another example is given by iterated double covers [24].

All varieties mentioned in Examples 1.4 and 1.5 can be realized as Fano complete
intersections in weighted projective spaces.

Conjecture 1.1. A smooth Fano complete intersection of index one and di-
mension > 4 in a weighted projective space is birationally rigid, of dimension > 5
birationally superrigid.



Now let us consider the known examples of fiber spaces.

Example 1.6. (V.G.Sarkisov, [31,32]) Let m: V' — S be a conic bundle with a
sufficiently positive discriminant divisor D, satisfying the Sarkisov condition [4K g+
D| # 0. Then §RC; (V') = 1, that is, there is exactly one structure of a conic bundle
on V', namely the projection 7.

Example 1.7. Let F be any of the classes of Fano varieties listed in Examples
1.3-1.5. Let m:V — P! be a smooth Fano fiber space, such that every fiber F, =
7 (), t € P!, isin F. Assume furthermore that the strong K?-condition is satisfied:
K¢ ¢ Int AV. In a certain natural sense almost all fiber spaces V/P' satisfy the
strong K2-condition, which can be considered as a characteristic of “twistedness”
over the base. In these assumptions, a general fiber space V/P! is birationally
superrigid [17,20,25,29].

Example 1.8. Three-dimensional del Pezzo fibrations, satisfying strong K?2-
condition, are birationally rigid [17]. In fact, the strong KZ-condition can be con-
siderably relaxed [7,8,35].

1.3. The method of maximal singularities. In order to prove birational
(super)rigidity of a smooth projective rationally connected variety V', fix a movable
linear system ¥ on V' and set n = ¢(X) € Z,. Assume that the inequality

Coirt(2) < m

holds (otherwise no work is required). In particular, n > 0. By definition, there
exists a birational morphism o:V — V of smooth varieties such that

o3, V) <n,

where Y is the strict transform of ¥ on V. B
Definition 1.4. An exceptional divisor £ C V is called a maximal singularity
of the system 5, if the Noether-Fano inequality

ve(9"%) > na(E) (3)

holds, where v(+) is the multiplicity of the pull back of ¥ on V along E and a(E)
is the discrepancy of E.

Proposition 1.2. In the assumptions above, a mazximal singularity of ¥ does
exst.

For a (very simple) proof, see [12,18,20].

It turns out that maximal singularities of movable linear systems are a very spe-
cial phenomenon. For many classes of Fano varieties and Fano fiber spaces a movable
linear system cannot have a maximal singularity which in view of Proposition 1.2
implies superrigidity.

In this section we present one of the most sophisticated examples of a birationally
rigid, but not superrigid, Fano three-fold, known today, namely the complete inter-
section of a quadric and a cubic in P°. The proof was started in [11] and completed
in [16]. A detailed exposition can be found in [13].
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Here we concentrate on the “untwisting” procedure.

Let us fix notations. We study the complete intersection V. = Q N F C P5,
where () is a quadric and F' is a cubic hypersurface. The variety V is assumed
to be smooth and, moreover, generic in the sense described below, in particular,
PicV = ZH, where H = — Ky is the class of a hyperplane section of V' C P°.

1.3.1. Lines on the complete intersection V. Let L C V be a line in P°.
Proposition 1.3. For the normal sheaf N v there are two possible cases:

o cither Npjv = Op(—1) @ Op; in this case the line L is said to be of general
type,

o or Npjv =2 Op(—2)®0OL(1); in this case the line L is said to be of non-general
type.

Moreover, the line L is of non-general type if and only if any of the following
two equivalent conditions holds:

o there exists a plane P C P° such that L C P and the scheme-theoretic inter-
section V N P is not reduced everywhere along L,

o let 0:V — V be the blow up of L, E = a‘i(L) the exceptional divisor. Then

restricting to E the strict transform on V' of a generic hyperplane section
containing L, we get a non-ample divisor on E.

Proof is straightforward and left to the reader.
We will consider the general complete intersections V' = ) N F', satisfying the
following conditions:

e 1/ does not contain lines of non-general type (it is easy to check by the usual
dimension count that this condition is justified, that is, a general complete
intersection satisfies it),

e there are no three lines on V' lying in one plane and having a common point,
e the quadric () is non-degenerate.

Let L C V be a line. The projection P° --» P3 from L defines a rational map
7V --+ P3 of degree two. Set oy, € BirV to be the corresponding Galois involu-
tion. _ _

More formally, let 0: V' — V be the blow up of L, E = ¢~'(L) C V the excep-
tional divisor. The map 7, extends to a morphism p = 7, o o: vV — P,

Lemma 1.1. The morphism p is a finite morphism of degree 2 outside a closed
subset W C 'V of codimension two, and p(W) C P3 is a finite set of points. The
involution oy extends to a biregular involution of 1% \ W. Its action on PicV =

7ZH ® 7Z.F is given by the formulas

o (H) =4H —5E, o}(E)=3H — 4E.
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Proof. The projection p: V — P3 s a finite morphism outside the set W C 1%
that consists of curves that are contracted by the morphism p. We will show there
are finitely many of them. Set H' = nH —vE and ' = mH — pE to be the classes
in PicV of the strict transform of a general hyperplane section and the divisor £
with respect to ay. The linear system |H — F)| is clearly invariant under «y. Take
a general surface S € |H — E|.

Since Kg = 0, the birational involution «y, | s extends to a biregular involution
of this surface. Denote it by ag, and the restrictions of H and E to S by Hg and
Eg, respectively. We get

OéEHS :nHS—VEs, O‘Z‘ES’:mHS_/vLES

and the class Hg — Eg is a’g-invariant, whence we get n = m + 1, v = p+ 1. Since
ag is an automorphism,

(agHs - (Hs — Es)) = (Hs - (Hs — Es)) =5

and (a§Hg)? = (Hg)? = 6, whence by the obvious equalities (Hg - Es) = 1, (E3) =
—2 we get the following two possibilities for n, m, v, u:

e cither H' =4H — 5E, E' = 3H — 4F,
eor H=H,EF'=F,

the latter being clearly impossible because «; can not be extended to a biregular
automorphism of V.

By construction, the system |[4H — 5F| is movable. However, if a curve C is
contracted by the morphism p, then (C'- (H — F)) = 0 and therefore (C - H') < 0.
We conclude that there can be only finitely many such curves. Q.E.D.

Now let P C P° be a 2-plane such that PNV is a_union of three lines, PNV =
LU Ly U Lsy. This is possible only if P C ). Let 0:V — V be the composition of
three blow ups: first, we blow up L, then the strict transform of L;, then the strict
transform of L. B

We denote the exceptional divisors on V', corresponding to the lines L, Ly, Lo,
by the symbols E, Ey, Es, respectively. B

Lemma 1.2. The involution ay extends to a biregular involution on V \ W,

where W is a closed subset of codimension two. The action of oy on PicV =
ZH ®7ZFE & ZFE, ® ZF5 1s given by the formulae:

o) = 4H —5E — 2F, — 2B,
CYZE = 3H —4F — 2E1 — 2E2,
OéZEZ = Ej

where {i,j} = {1,2}.

Proof is obtained in the same way as for the previous lemma; one has to consider,
along with the projection 7y, the projection 7p:P° --» P? from the plane P. The
considerations are more subtle but essentially similar.

12



1.3.2. Conics on the complete intersection V. It is easy to see that
there is a one-dimensional family of irreducible conics Y C V such that the plane
P(Y) =< Y > is contained entirely in the quadric ). Obviously,

PY)NV =Y UL(Y),

where L(Y') is the residual line. We will call the conics described above the special
conics.

Every special conic Y generates the following construction. Set P = P(Y)).
Consider the projection 7p:P® --» P? from the plane P. The fibres of 7p are
3-planes S D P, so that SN Q = P U P(S), where P(S) is the residual plane.
Therefore, 7p fibers V' over P? into elliptic curves Cs = P(S) N F, that is, plane
cubics. A general curve Cy intersects the residual line L(Y') an one point, which
is L(Y) N P(S). We define the involution fy € BirV as a fiber-wise map, setting
By |cg to be the elliptic reflection, where the group law on C is defined by the point
L(Y) N P(S) as the zero.

Let 0:V — V be the composition of the blow up of the conic Y and the blow up
of the strict transform of the line L(Y), E and E™ be the corresponding exceptional
divisors. Obviously, mp o 0:V — P? is a morphism, the general fiber of which is
an elliptic curve Cy, t € P2. The divisor E* is a section of this elliptic fibration,
(ET-Cy) =1.

Lemma 1.3. The birational involution Py extends to a biregular involution on
the complement V\W , where W is a closed subset of codimension two, and moreover,
mpoo(W) C P? is a finite set. The action of By on PicV = ZH & ZE & ZE* is
given by the formulas

B:H = 13H — 14E — 8E*,
B8:E= 12H — 13E — 8E*,
BLEt = E*.

Proof is quite similar to the proof of Lemma 1.1. Let H', E', E* € Pic V be the
classes of the strict transforms of a general hyperplane section and the divisors F
and ET, respectively. On the general curve Cy, t € P2, the involution y maps a
point x € C; to the point Oy (x) € C; satisfying the relation

By (z) +x ~2(C,NEY)

as divisors on (. The kernel of the restriction of PicV onto a general fiber C; is
Z(H — E — ET) = (mp o 0)* PiclP?, so that

H +H=6E*+m(H—E—E"), E+E=4E*+I(H—-E— E)

and E* = ET+k(H—E—E"). Now we proceed exactly as in the proof of Lemma 1.1:
we restrict Sy and all the classes involved onto a general surface S € |H — E — E|
(that is, S is the inverse image of a general line in P? via mp o o). Since Kg = 0,
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Py |s extends to a biregular involution of S. Comparing intersection indices, we get
m =14, = 12.

Now fy is well defined on irreducible fibers, and it is easy to see that any
reducible fiber C; contains a component which intersects H' negatively. Therefore,
there are only finitely many of them. Now k£ = 0 and the proof is complete. Q.E.D.

1.3.3. Relations between the involutions a;. Let P C P° be a plane such
that P C Q and PN F = L; U Ly U L3 is a union of three lines.
Lemma 1.4. The following relation holds:

(ar, oap, oar,)? =idy.

Proof. Obviously, each of the three involutions «ay, preserves the fibers of the
projection 7p:V --» P? from the plane P. Recall that a general fiber 75'(¢) is a
cubic curve Cy, where Cy N P = {x1, 29,23}, v; = C; N L;. Take a point z € Cy;
obviously,

ap,(x)+ x4+ ~ 21 + 22+ T3

on (. Therefore we compute:

2

( ) x1+$2_x7

ap, oap,(x) ~ x3— 19+ T,
(r) ~ 2x9—um,
() ~ =,

which is what we need. Q.E.D.

1.3.4. Copresentation of the group Bir V. After this preparatory work we
can formulate the main theorem describing birational geometry of V.

Set £ and C to be the sets of lines and special conics on V', respectively. Let
G™ be the free group generated by symbols A; and By for all L € £ and Y € C,
respectively. Let R C G be the normal subgroup, generated by the words A% for
all L € L, B forall Y € C and, finally, (Ar, Az, Ar,)? for all triples of distinct lines
Ll, LQ, Ls € L such that < L1 ULy U Ls >= P2,

Set G = G*/R* to be the quotient group. We construct a semi-direct product
G Aut V using the obvious action of AutV on G: for p € AutV set

pALp™" = Ay, pByp ' = Byy).

Let e: AutV — BirV be the homomorphism, sending A; to ay, By to [y and
identical on Aut V.

Theorem 1.1. V is birationally rigid and € is an isomorphism of groups.

Proof. Set B = L UC. Take any movable linear system ¥ C |nH| on V.
Obviously, ¢(X,V) = n. In order to prove that € is a bijection, we take 3 to be
the strict transform of the linear system |H| of hyperplane sections with respect to
a fixed birational self-map x € BirV. Clearly, in that case n = 1 if and only if
X € Aut V' (and by construction biregular automorphisms are in the image of ¢).
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We will prove birational rigidity and surjectivity of € simultaneously, using the
following crucial technical fact.

Proposition 1.4. Assume that cyit(X) < n. Then there exist a subvariety
B € B (that is, a line or a special conic) such that multg > > n. Moreover, there
are at most two subvarieties in B with that property, and if there are two, say
By, By € B, then they are lines, By, By € L, their span < By, By > is a plane
P=P2 and P C Q.

Proof is very technical and represents the main step in the study of birational
geometry of V. A subvariety B € B satisfying the inequality multg ¥ > n is called
a maximal subvariety of the linear system Y. By Proposition 1.2, we know that a
maximal singularity exists. Now the hard part of work is to show that this implies
existence of a maximal curve and this curve is necessarily a line or a special conic.
For the details, see [13].

1.3.5. The untwisting procedure. Now we derive Theorem 1.1 from Propo-
sition 1.4.

Lemma 1.5. (i) Let L C V be a line, ¥ C |ny H| the strict transform of the
linear system Y with respect to . The following equalities hold:

ny =4n —3mult, X, mult; X7 = 5n — 4mult; 2.

(i) Let Y € C be a special conic, L = L(Y') € L the residual line, ¥ C |ny H| the
strict transform of the linear system 3 with respect to By . The following equalities
hold:

ny = 13n — 12multy ¥, multy X7 = 14n — 13 multy X,

mult; ¥ = 8n — Smulty ¥ + mult; X.

(iii) Let P C P® be a 2-plane such that PNV = LU Ly U Ly, X7 as in (i) above.
Then for {i,j} = {1,2} we have

multy, X7 = 2n — 2mult; ¥ + mult,, .

Proof is a straightforward application of Lemmas 1.1-1.3. Q.E.D.

Corollary 1.1. An involution T = «y or By satisfies the inequality ny < n if
and only if L or'Y is a maximal curve of the linear system X, respectively, where
Xt C |InyH| is the strict transform of ¥ with respect to T.

Corollary 1.2. In the notations of the previous corollary assume that ny = n.
Then T = ay, for line L € L and there exist lines Ly, Lo € L, such that LU LU Ly =
PNV, where P C (@ is a plane.

Now let us prove birational rigidity of V' and surjectivity of . Assume that
Cirt(X) < m for a movable linear system Y. By Proposition 1.4, there exists a curve
B € B such that multg ¥ > n. Let 7 € ¢(G) be the corresponding involution (that
is, T =a,if B=LeLand T=py if B=Y €C). By Corollary 1.1, ¥* C |n, H|
with ny, < n, where X% is the strict transform of ¥ with respect to 7. Iterating
this procedure, we construct a sequence of involutions 7; € £(G) such that the strict
transforms X C |n;H| of the system ¥ with respect to the compositions 7; ... 7
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satisfy the inequalities n; < m;_;. Since n; € Z,, at some step we cannot decrease
the threshold ¢(X®, V') any longer. Therefore, for some k > 1 we get

C(E(k)7 V) = Cvirt(Z(k)> V) - CVirt(Z7 V>’

which is birational rigidity. Moreover, if we fix a birational self-map y € BirV
and take ¥ to be the strict transform of the system |H| via x, then the procedure
described above gives nj, = 1 for some k, that is, ©*) C |H|. Comparing dimensions,
we get X(*) = |H|, which implies that 7;...7x € AutV is a biregular map. This
proves surjectivity of e.

The last step in the proof of Theorem 1.1 is to show that ¢ has the trivial kernel.

1.3.6. The set of relations is complete. For convenience of notations, we
write down words in Ay, By, using capital letters and corresponding birational self-
maps using small letters, say ¢t = ¢(T') etc. For a self-map ¢t € Bir V' we define the
integer n(t) € Z, by the formula ¥ C |n(t)H|, where ¥ is the strict transform of
the system |H| via t; obviously, n(t) = 1 if and only if ¢ € AutV. Theorem 1.1
immediately follows from

Proposition 1.5. Let W = Ty...T; be an arbitrary word in the alphabet
{AL,By |L € L)Y € C}. If w € AutV then using the relations in RT one can
transform the word W into the empty word.

Proof. Denote by W;, ¢ < (W) = [, the left segment of the word W of length
7, that is, W; =17 ...T;. Set

n* (W) = max{n(w;) |1 <i <[(W)},

w(W) = tli[n(w;) =n"(W),1 <@ <UW)}.

Now we associate with every word W the ordered triple
(n* (W), w(W), 1[(W)).

We order the set of words, setting W > W’ if either n*(W') > n*(W’), or n*(W) =
n*(W’) and w(W) > w(W’), or n*(W = n*(W'), w(W) = w(W') and {(W) > I(W').
It is easy to see that every decreasing chain of words W > W® > . breaks.
Therefore, it is sufficient to show that if w € AutV, then the word W can be
transformed into a word W' such that W > W' w = w'.

If the word W contains the subword A;A; or By By, then, eliminating this
subword, we get a smaller word W’ (because the image of each left segment of the
word W’ coincides with the image of some left segment of the word W and the map
of the set of left segments of W’ into the set of left segments of W is injective).

So we can assume that W does not contain subwords A;A; or By By.

Since n(w) = 1, we can assume that n*(W) > 2 (otherwise there is nothing to
prove). Let s = min{i|n(w;) = n*(W)} <I(W) — 1. Let us consider the two cases
T, = Ap and T, = By separately.
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Case 1. T; = By. In this case n(w,_1) = n(wsfy) < n(ws), by the choice of s.
By Corollary 1.1, multy X, > n(wy), where 3 is the strict transform of |H| via ws.
Since by construction n(wsi1) < n(ws), we get Ty = Ts = By. A contradiction to
our assumption that W does not contain subwords A;A; and By By.

Case 2. Let T, = Ay. By the choice of s we get

multy, X, > n(wy).

By assumption, Ts.; # Ts and n(wsy1) < n(ws). By Corollary 1.2, Ty = Ap,
where L' C V is a line such that there exists a third line Z C V/,

LULUZ=PnNV

for some plane P C Q.
Lemma 1.6. (i) Z is a mazimal line of the map ws_1, that is, multy X, 1 >
n(ws_1). Therefore,
n(ws—10z) < n(ws—1).

(ii) The equality
n(ws_10z) — multy X' = n(wy) — multy X, <0
holds, where X' is the strict transform of |H| with respect to ws_jaz. Therefore,
n(ws_1azap) < n(ws_1az).
Proof: straightforward computations based on Lemma 1.5. We will consider the
claim (i) only, leaving (ii) to the reader. Since ws; = w,_1ay, we get ws_1 = wsay,
and by Lemma 1.5,

n(ws_1) = n(wsay) = 4n(w,) — 3multy, s,

multy ¥ 1 = 2n(ws) — 2multy, g + multy, 3.

Therefore, n(ws_1) — multy X, 1 = 2n(w,) — multy ¥y — multy, X, < 0, which is
what we need. For the claim (ii), the arguments are similar. Q.E.D.

Now let us complete the proof of Theorem 1.1. Consider first the case when
multz 3, > n(w,). Using the relations A% = e and Az A A = AL A Az, we can
replace the subword Ay A by the subword Az A A, Az. This operation increases
the length. Denote the new word by W,

Obviously, W;* = W; for i < s — 1. Furthermore,

+ +
Wy = We10z, W, = W1z
and wl,, = w,_1azapap = w10, whereas
s+2 s—1zQ G, — We10 7,

+
Wei; = Wsgi—2
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for i > 3. By the lemma above, n(w;") < n(w,) = n*(W) for i = s,s + 1,5 + 2

(and by construction this is true for the smaller values i < s, either). Therefore, if
w(W) > 2, then n*(W*) = n*(W) and w(W*) = w(W) — 1. If w(W) = 1, then
n*(W+) < n*(W). In any case, W+ < W.

It remains to consider the case mult; X3 = n(ws). In this case n(wyy1) = n(ws),
multy Y1 = n(wsyq1). Since by assumption there are no subwords Ay Ay, we must
have T, o = Az. Now let us replace the subword

Ts Ts+1 Ts+2 = AL AL’ AZ

by the subword Az A Ar. Denote the new word by W+. Now the length is the same,
and by Lemma 1.5 we obtain the inequalities n(w;") < n*(W) for i = s,s+ 1,5+ 2.
Arguing as in the previous case, we complete the proof.

2 Varieties with finitely many structures

In this section, we discuss three types of rationally connected varieties with finitely
many (but more than just one) structures of a rationally connected fiber space: Fano
direct products and two classes of varieties with a pencil of Fano double covers. Our
considerations are based on [26,28,30]. For other examples, see [6,9,10,34,35].

2.1. Fano direct products. Recall that a smooth projective variety F' is
a primitive Fano variety, if Pic ' = ZKp, the anticanonical class is ample and
dim F' > 3.

Definition 2.1. We say that a primitive Fano variety F' is divisorially canonical,
or satisfies the condition (C') (respectively, is divisorially log canonical, or satisfies
the condition (L)), if for any effective divisor D € | — nKpg|, n > 1, the pair

(F,5D) ()

has canonical (respectively, log canonical) singularities. If the pair (4) has canonical
singularities for a general divisor D € ¥ C | — nKp| of any movable linear system
>, then we say that F satisfies the condition of movable canonicity, or the condition
Explicitly, the condition (C') is formulated in the following way: for any birational

morphism ¢: F — F and any exceptional divisor £ C F the following inequality
ve(D) < na(FE) (5)

holds. The inequality (5) is opposite to the Noether-Fano inequality (3). The
condition (L) is weaker: the inequality

vp(D) < n(a(E) +1) (6)
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is required. It is well known (essentially starting from the classical paper of V.A.Iskov-
skikh and Yu.I.Manin [12]) that the condition (M) ensures birational superrigid-
ity. This condition is proved for many classes of primitive Fano varieties, see
[12,18,22,24]. Note also that the condition (C') is stronger than both (L) and (M).
The following fact was proved in [28].
Theorem 2.1. Assume that primitive Fano varieties Fi, ..., Fx, K > 2, satisfy
the conditions (L) and (M ). Then their direct product

V=F x...xFg

18 birationally superrigid.

Now let us show how birational superrigidity makes it possible to describe ratio-
nally connected structures on V.

Corollary 2.1. (i) Every structure of a rationally connected fiber space on the
variety V is given by a projection onto a direct factor. More precisely, let 3: V¥ — S*
be a rationally connected fiber space and x:V — — — V* a birational map. Then
there exists a subset of indices

I={i,....ix} C{L,....K}

and a birational map o: Fy = [] F; --+ S*, such that the diagram

iel
VRN Vi
ol L B
F,o-2s ot
K
commutes, that is, # o x = a omy, where w;: [[ F; — [] Fi is the natural projec-
i=1 iel

tion onto a direct factor. In particular, the variety V' admits no structures of a
fibration into rationally connected varieties of dimension smaller than min{dim F;}.
In particular, V' admits no structures of a conic bundle or a fibration into rational
surfaces.

(ii) The groups of birational and biregular self-maps of the variety V' coincide:
BirV = Aut V. In particular, the group BirV s finite.

(iii) The variety V is non-rational.

Proof. Let us prove the claim (i). Let 8:V* — S* be a rationally connected
fiber space, x:V --» V¥ a birational map. Take a very ample linear system E%
on the base S* and let X* = ﬁ*EﬁS be a movable linear system on V¥ As we have
mentioned above (Example 1.1, (ii)), ¢(3#) = 0. Let X be the strict transform of the
system Xf on V. By our remark, c,i(X) = 0, so that by Theorem 2.1 we conclude
that ¢(X) = 0. Therefore, in the presentation

EC!—anl—...—nKH;d

some coefficient n, = 0. We may assume that e = 1. Setting S = F;, X ... X Fig
and 7m: V' — S to be the projection, we get ¥ C |7*Y| for a non-negative class Y on
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S. But this means that the birational map x of the fiber space V/S onto the fiber
space V*#/S* is fiber-wise: there exists a rational dominant map 7: S --» S*, making

the diagram
X

Vo= VH
T LB
5 -1 s

commutative. For a point z € S* of general position let Ff = 371(z) be the corre-
sponding fiber, FX C V its strict transform with respect to x. By assumption, the
variety FX is rationally connected. On the other hand,

FY=n"(y"(2) = F xy7}(2),

where ' = [} is the fiber of 7. Therefore, the fiber v~1(2) is also rationally con-
nected.

Thus we have reduced the problem of description of rationally connected struc-
tures on V' to the same problem for S. Now the claim (i) of Corollary 2.1 is easy
to obtain by induction on the number of direct factors K. For K = 1 it is obvious
that there are no non-trivial rationally connected structures (see Proposition 1.1,
(i)). The second part of the claim (i) (about the structures of conic bundles and
fibrations into rational surfaces) is obvious since dim F; > 3 for all ¢ = 1,... K.
Non-rationality of V' is now obvious, either.

Let us prove the claim (ii) of Corollary 2.1. Set RC(V) to be the set of all
structures of a rationally connected fiber space on V' with a non-trivial base. By the
part (i) we have

RO(V)={mpV = F=[[F0#IcC{l,...,K}}.
iel
Now recall (Sec. 0.2) that the set RC(V) has a natural structure of an ordered
set: a < A if § factors through a. Obviously, m; < 7y if and only if J C I. For
I={1...,K}\ {e} set m; = m., Fy = S.. It is obvious that m ..., 7x are the
minimal elements of RC(V).
Let x € Bir V' be a birational self-map. The map

X" RC(V) — RC(V),
Xar—aoy,

is a bijection preserving the relation <. From here it is easy to conclude that x* is
of the form
X o,

where o € Sk is a permutation of K elements and for I = {iy,...,ix} we define
17 ={o(iy),...,0(ix)}. Furthermore, for each I C {1,..., K} we get the diagram

X

Vi -=» V
T l l Mo
F] —X—I') F]o’,
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where y; is a birational map. In particular, x induces birational isomorphisms
Xe- F, - Fa(e)7

e =1,...,K. However, all the varieties F, are birationally superrigid, so that all
the maps x. are biregular isomorphisms. Thus

X = (x1,---,XK) €EBirV

is a biregular isomorphism, too: xy € Aut V. Q.E.D. for Corollary 2.1.
Remark 2.1. The group of biregular automorphisms Aut V' is easy to compute.
Let us break the set Fi, ..., Fx into subsets of pair-wise isomorphic varieties:

l
I={1,... . K}=\/ 1L,
k=1

where F; = F} if and only if {7, j} C I for some k € {1,...,l}. It is easy to see that
l

AutV = JTAu(]] 7).

7=1 iGIj

In particular, if the varieties F}, ..., Fx are pair-wise non-isomorphic, we get
K
AutV = H Aut F;
i=1

(and this group acts on V' component-wise). In the opposite case, if
ARy, > =F
we obtain the exact sequence
1 — (Aut F)** — AutV — Sg — 1,

where Sk is the symmetric group of permutations of K elements. In fact, in this
case Aut V' contains a subgroup isomorphic to Sk which permutes direct factors of
V, so that AutV is a semi-direct product of the normal subgroup (Aut F)*¥ and
the symmetric group Sk.

It seems that the following generalization of Theorem 2.1 is true.

Conjecture 2.1. Assume that Fi,..., Fx are birationally (super)rigid primi-
tive Fano varieties. Then their direct product V. = Fy x ... X Fg 1is birationally
(super)rigid.

Of course, Theorem 2.1 is meaningful only provided that we are able to prove
the condition (C) for some particular Fano varieties. Certain examples were shown
in [28]: generic Fano hypersurfaces F = Fy; C PM for M > 6 and generic Fano
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double spaces of index 1. More examples (Fano complete intersections) were given
in [29].

2.2. Varieties with an involution. Following [26], let us construct a series of
rationally connected varieties with exactly two non-trivial structures of a rationally
connected fiber space. Fix positive integers m, [, satisfying the equality m + [ =
M+ 1, M > 4. Set P = PM*! and take a hypersurface Wp C P of degree 2I. Let
oy:Y — P the double cover branched over the divisor Wp. Consider the variety
Y = P! x Y, which is realized as the double cover oy:Y — X = P! x P branched
over the divisor W = P! x Wp. Set V = 0,'(Q), where Q C X = P! x P is a smooth
divisor of the type (2,m), that is, it is given by the equation

Az, )u? + 2B (2, )uv + C(z,)v* =0,
where A(-), B(+),C(-) are homogeneous of degree m. Here (u : v) and (z,) =

Furthermore, let Hp be the class of a hyperplane in P, Lx = p% Hp the tau-
tological class on X, where px: X — P is the projection onto the second factor,
Ly = o} Lx|y. It is easy to see that Ky, = —Ly, so that the anticanonical linear
system | — K| is free and determines the projection py = py oo:V — P.

On the other hand, the projection 7: V' — P!, which is the composition of oy |y
and the projection of P! x P onto the first factor, realizes V as a primitive Fano
fiber space, the fiber of which is a Fano double hypersurface of index 1 [19]: PicV =
ZLy ® ZF, where I is the class of a fiber of .

Lemma 2.1. The projection py factors through the double cover oy:Y — P.
More precisely, there is a morphism p:V — Y such that

by =0yop.

The degree of the morphism p at a general point is equal to 2.
Proof. Consider a point z € P\ Wp of general position. Set {y*,y~} = oy '(x) C
Y. Set also
L,=P' x{zr}CcX, LF=P' x{y*}lcY.

It is obvious that the inverse image 03" (L,) is the disjoint union of the lines L} and
L, whereas

py(Ly) =y,
where py:Y — Y is the projection onto the second factor. The divisor ) intersects
L, at two distinct (for a general point x) points ¢, ¢2. Set
o Na)={of 07} CV, of €Ly,

177

The morphism p is the restriction py|y. Obviously,

p () = {or.0p},
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where the sign + or — is the same in the right hand and left hand side. This proves
the lemma.

Let A C V be a subvariety of codimension 2, given by the system of equations
A = B = (C =0. The subvariety A is swept out by the lines L, = P! x {y} which
are contracted by the morphism p. Set Ay = p(A). Obviously,

is a finite morphism of degree 2. Let 7 € Bir V' be the corresponding Galois involu-
tion. It is easy to see that 7 commutes with the Galois involution a € Aut V' of the
double cover o:V — @, so that 7 and « generate a group of four elements. Since
the involution 7 is biregular outside the invariant closed subset A of codimension 2,
that is, 7 € Aut(V \ A), the action of 7 on the Picard group Pic V' is well defined.

Let ¥ C | — nKy + [F| be a movable linear system.

Lemma 2.2. (i) The involution T transforms the pencil |F| of fibers of the
morphism m into the pencil |mLy — F)|.

(i) If I < 0, then the involution T transforms the linear system ¥ into the linear
system X C |nT Ly + T F|, where nt =n+1m >0, It = -1 > 0.

Proof. Obviously, 7Ly = Ly. Let F; = 771(t) be a fiber. We get

p(p(Fy)) = F, UT(F).

However, p(F;) ~ mHy = moyHp by the construction of the variety V. Since
p*Hy = Ly, we obtain the claim (i). Thus 7*F = mLy — F. This directly implies
the second claim of the lemma.

Now let us formulate the main result on birational geometry of the variety V.

Theorem 2.2. The variety V s birationally superrigid. The group BirV of
birational self-maps is isomorphic to Z/27 X 7./27 with o and T as generators. On
the variety V' there are exactly two non-trivial structures of a rationally connected
fiber space, the projection m:V — P! and the map wm:V —-» P,

For the proof, see [26]. Let us just remind the scheme of the arguments modulo
the hardest technical part. Let ¥ C | — nKy + [F| be a movable linear system. If
| € Z,, then the general constructions of [26, Theorem 2] imply that ¢y (2) = ¢(2),
which is what we need. If [ < 0, then consider the system X+ = 7,X. Since 7 is an
isomorphism in codimension one, we have ¢(X1) = ¢(X). Since the virtual threshold
is a birational invariant, ci(X7) = (). However, ¥t C | — ny Ky + [ F],
where by Lemma 2.2 n, =n+Im, l, = —1 > 1. Applying to X" the general theory
([26, Theorem 2]), we get ¢yt (XT) = ¢(X), which implies birational rigidity by
what has been said above.

The very same arguments prove that there are exactly two non-trivial structures
of a fiber space into varieties of negative Kodaira dimension on V', that is, the
projection m and 77.

Finally, if x € BirV, then twisting by 7 if necessary, one may assume that y
preserves the structure 7, that is, transforms the fibers of F; into the fibers F
for some isomorphism v:P! — P!. However, for a generic variety V a general
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fiber F; has the trivial group of birational (= biregular) self-maps and moreover,
a general fiber F; is not isomorphic to any other fiber Fj, s # ¢, which implies
that x € AutV is either the identity map, or the Galois involution «. Therefore,
BirV =7/27 x /27 = {idy, 7, a,at}. Q.E.D. for the Theorem.

2.3. Varieties with two non-equivalent structures. Following [30], let
us construct a family of rationally connected varieties with exactly two non-trivial
structures of a rationally connected fiber space and this time the trivial group of
birational self-maps. Let X be a projective bundle, X = P(£), where the locally
free sheaf € is of the form & = OFM & Opi(1)®2. Thus X is a P = PM*!-bundle
over P!. Let Ly € PicX = ZLx @ ZR be the class of the tautological sheaf, R
the class of a fiber of the fiber space X/P!. Let Q ~ mLx be a smooth divisor,
0:V — @ the double cover branched over a smooth hypersurface W N @, where
W ~2lLx, m+1= M+ 1. Obviously, 7: V — P! is a Fano fiber space, the fiber of
which is a Fano double hypersurface of index 1. We get PicV = ZLy & ZF, where
Ly = o0*(Lx |g) and F is the class of a fiber of 7. It is easy to see that —Ky = Ly
and thus the linear system

|~ Ky = Fl=o"(Lx = RI| )

is movable. Let ¢:V --» P! be the rational map, given by the pencil | — Ky, — F|.
Birational geometry of the variety V' is completely described by

Theorem 2.3. (i) The variety V' is birationally superrigid: for any movable lin-
ear system 3 on V its virtual and actual thresholds of canonical adjunction coincide,

Coirg(2) = ¢(2).

(ii) On the variety V there are exactly two non-trivial structures of a rationally
connected fiber space, namely 7:V — P! and ¢:V --» P'. These structures are
birationally distinct, that is, there is no birational self-map x € Bir V', transforming
the fibers of m into the fibers of . The groups of birational and bireqular self-maps
of the variety V' coincide: BirV = Aut V.

(iii) There is a unique, up to a fiber-wise isomorphism, Fano fiber space 7™: V' —
P! of the same type ((1,1),(0,0)), such that the following diagram commutes:

X

Vo= VT
v | o7
Pl — ]P)l,

where x is a birational map. The construction V. — V1 is involutive, that is,
(VHt=V.

Proof. The space H(X, Ly ® 7*Opi(—1)) is two-dimensional and defines a
pencil of divisors |[Lx — R|. Its base set Ax = Bs|Lx — R| is of codimension 2: it
is easy to see that

Ax =P(OZM) =PV~ x P,
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Set Ag = AxNQ, A =0c"1(Ag) C V. Obviously, Ag is a smooth divisor of
bidegree (m,0) on Ay = PM~! x P!, A C V is a smooth irreducible subvariety of
codimension 2.

Lemma 2.3. The base set of the movable linear system | — Ky — F| is equal
to Bs| — Ky — F| = A. PFurthermore, —Ky — F € 0AL_ V. More precisely,
| = nKy +1F| =0 forl <—n.

Proof is straightforward (see [30]).

Now let us study the rational map ¢: V' --» P, In order to do this, we need an
explicit coordinate presentation of the varieties X, ) and W, participating in the
construction of the Fano fiber space V/P'.

Consider the locally free subsheaves

E =0 — €& and & =Op(1)* = €.

Obviously, € = & @ &;. Let Iy € H°(X, Lx) be the subspace, corresponding to the
space of sections of the sheaf H°(P!, &) — HY(P!, £). Set also

I, = H(X, Lx ® 7 Opi (—1)) = H(P', & (—1)).

Let xg,...,xp_1 be a basis of the space Iy, yo, y1 a basis of the space II;. Then the
sections
Zoy -+ -y -1, Yoto, Yol1, Yato, Y1ti, (7)

where ¢, t; is a system of homogeneous coordinates on P*, make a basis of the space
HY(X, Lx). Tt is easy to see that the complete linear system (7) defines a morphism

£X — X CcPMH3,

the image X of which is a quadratic cone with the vertex space P! = £(Ax)
and a smooth quadric in P3, isomorphic to P! x P!, as a base. The morphism ¢ is
birational, more precisely, £&: X\ Ay — X\ £(Ax) is an isomorphism and ¢ contracts
Ax = PM-1 x P! onto the vertex space of the cone. Let

U,y -+, Upr—1, Upo, Uo1, U10, U11

be the homogeneous coordinates on PM+3, corresponding to the ordered set of sec-
tions (7). The cone X is given by the equation

UpoU11 = Up1U10-

On the cone X there are two pencils of (M + 1)-planes, corresponding to the two
pencils of lines on a smooth quadric in P3. Let 7 € Aut PM*3 be the automorphism
permuting the coordinates ug; and u;y and not changing the other coordinates.
Obviously, 7 € Aut X is an automorphism of the cone X, permuting the above-
mentioned pencils of (M 4 1)-planes. One of these pencils is the image of the pencil
of fibers of the projection 7, that is, the pencil {(|R|). For the other pencil we get
the equality

T(|R]) = &(|Lx — R]).
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The automorphism 7 induces an involutive birational self-map 77 € Bir X. More
precisely, 77 is a biregular automorphism outside a closed subset Ay of codimension
2. Let e: X — X be the blow up of the smooth subvariety Ay. Obviously, the variety
X is isomorphic to the blow up of the cone X at its vertex space & (Ax). It is easy
to check that 7 extends to a biregular automorphism of the smooth variety X.

Set QT =77(Q) C X, Wt =75 (W) C X. The divisors Q1 and W+ are well
defined because 7" is an isomorphism in codimension 1.

Lemma 2.4. The divisors Qt and W are divisors of general position in the
linear systems |mLx| and |21 Lx/|, respectively. In particular, Q*, W and QT NW+
are smooth varieties.

Proof. The claim follows immediately from the fact that the linear systems
|kLx|, k € Z,, are invariant under 77, whereas () and W are sufficiently general
divisors of the corresponding linear systems. Note that if a divisor D € |kLx]| is
given by a polynomial

h(uo, <o Upr—1, Uoo, U015 U10, Un)a
of degree k, then its image 77 (D) is given by the polynomial
h+(u*) = h(UO, <oy UM—1, U0, U105 U1, U11)

with permuted coordinates ug; and ui9. Q.E.D. for the lemma.

Let ot: V1t — QT be the double cover, branched over a smooth divisor QT NW ™.
Obviously, V' /P! is a general Fano fiber space of type ((1,1), (0,0)).

Lemma 2.5. (i) The map 7" lifts to a birational map x:V --+ V1, biregular in
codimension 1.

(ii) The action of x on the Picard group is given by the formulas

X*KV+ - KV7 X*F+ - _KV - F7

where Ft is the class of the fiber of the projection VT — P!, so that PicV T =
ZKy+ ® ZF™.

(iii) The construction of the variety V' is involutive: (V)T =2 V.

Proof: the claims (i)-(iii) are obvious. Just note that the following presentation
holds: x = ¢t o ¢!, where ¢:V — V and ¢™: V — V' are blow ups of the smooth
subvarieties of codimension two A C V and AT C VT, respectively. Furthermore,
E = q'(A) is the exceptional divisor of both blow ups, E = AxP! = Ap x P! x P!,
whereas the projections ¢| g and ¢* | g are projections with respect to the second
and third direct factors, respectively.

Finally, let us prove Theorem 2.3. Let 3 C | — nKy+ + [F| be a movable linear
system. If [ € Z, then by Theorem 2 of the paper [26] we get the desired coincidence
of the thresholds: c¢yi(X) = ¢(X). Assume that | < 0. Consider the linear system
Yt =77(X) on V*. By Lemma 2.5, ¥+ C | = ny Ky+ + [ FT|, where I = =1 > 1.
Since 7 is an isomorphism in codimension 1, we get ¢(X) = ¢(X"). Again applying
Theorem 2 of the paper [26], we obtain the desired coincidence of thresholds

Cirt (X)) = inn(B) = (XN =c(X) =ny =n+ 1.
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This proves birational superrigidity.

Let us prove the claim (ii). Arguing as in Sec. 2.2, we show that on V' there
are exactly two non-trivial structures of a rationally connected fiber space (the
arguments above imply that if a movable linear system ¥ satisfies the equality
Cyirt(2) = 0, then either 3 is composed from the pencil |F|, or ¥ is composed from
the pencil | — Ky — F|, which gives a description of the existing structures). For
a general variety V' these structures cannot be birationally equivalent. Indeed, by
birational superrigidity of Fano double hypersurfaces of index 1, any birational map
X" € BirV, which transforms the pencil |F| into the pencil | — Ky — F|, induces
a biregular isomorphism of the fibers of general position in the pencils |F| and
|F*| (the latter is taken on the variety V*). Therefore, x* induces a biregular
isomorphism of the fibers of general position of the fiber spaces Q/P! and QT /P!.
Now by Theorem 3.1 below for m > 3 we get that these fiber spaces are globally
fiber-wise isomorphic. It checks easily that for a sufficiently general divisor () C X
this is impossible. For m = 2 we argue in a similar way, using the branch divisor
Ww.

Finally, the claim (iii) follows from the arguments above.

Q.E.D. for Theorem 2.3.

3 Fiber-wise birational correspondences

In this section, following [21], we study fiber-wise birational correspondences of fiber
spaces, the fiber of which is a hypersurface.

3.1. Fibrations into complete intersections. Let C' be a smooth algebraic
curve with a marked point p € C, and C* = C'\ {p} a “punctured” curve. In what
follows our arguments remain correct if we replace C' by a smooth germ of a curve
p € C, or a small disk A, = {|z| < e} € C. The symbol P stands for the complex
projective space PM M > 3. Let V(d) be the set of smooth divisors V C X = C' x P,
each fiber of which F, =V n{z} x P, x € C, is a hypersurface of degree d > 2. Set

X*=C*"xP, V'=VnX",

so that V* is obtained from V' by throwing away the fiber F}, over the marked point.

Theorem 3.1. Assume that d > 3. Take V1, Vy € V(d) and let x*: Vi* — V5 be
a fiber-wise isomorphism. Then x* extends to a fiber-wise isomorphism x: Vi — V5.

In other words, within the limits of the class V(d) these varieties do not permit
non-trivial birational transforms of the fibers.

Let Z>5 be the set of integers m > 2.

Conjecture 3.1. For a given k > 2 there exist an integer M, > k + 2 and a
finite set S C Z%.,, (which may occur to be empty) such that for each M > M, and
each set (dy, ..., dy) € Z5, \ S the statement of Theorem 3.1 is true for the class
V(dy,...,dy) of smooth complete intersections of the type (dy, ..., dy) in C x PM.

Theorem 3.1 implies the following global fact.
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Corollary 3.1. Let V/P! and V' /P! be smooth fibrations into Fano hypersurfaces
of index 1. Assume that V/P! is sufficiently twisted over the base [20,26]. Then any
birational map x:V --+ V' is a fiber-wise biregular isomorphism.

Let us start with the following question: which singularities can acquire a special
fiber if the total space is smooth?

Let (dy,...,dy) € Z%, be a fixed type of complete intersection. Consider the
class of subvarieties in C' x P, which can be represented locally over C' as

flz'”:szoa

where the equations f; with respect to a system (xg : ... : xp;) of homogeneous
coordinates on P are of the form

f’i = Z alxlv

|I|=d;

I = (jo,--.,Jn) are multi-indices of degree jo + ...+ jy = d;, and the coefficients
ay are regular functions on C, whereas for each point y € C the set of equations
{f.}, restricted on the fiber X, = {y} x P = PP, defines a complete intersection of
codimension k in P. Let us denote the class of these varieties by Z(dy, ..., dy).

Take V € Z(dy,...,dx). Let FF =V N X, be the fiber over the marked point.
Fix a system of equations {f.} for V near the point p € C' and a local parameter
t on the curve C at the point p. Now the equations f; can be expanded into their
Taylor series

fz‘:fi(o)+tfi(1)+..-+tjfi(j)+--.,

where fi(j ) are homogeneous polynomials of degree d; in (z.). The fiber F' C P is
given by the system of equations { f,fo) =0}.
Lemma 3.1. The following estimate holds

dim(X, N Sing V') > dim Sing F' — 1.

Proof is similar to the proof of Lemma 3.4.2 in [13]. The set Sing F' is given on
F' by the condition

f(o)

Lj
If dim Sing F' < 0, then there is nothing to prove. Otherwise, let Y C Sing I’ be a
component of maximal dimension, dimY > 1. The set X, N Sing V' is given on F'
by the condition

rkH

| <k 1.

rk|| If N <k-1. (8)

If the set D = {z € Y|rk ||8fi(0)/8xj|| < k — 2} is of codimension 1 in Y, then the
lemma is proved, since D C X, N Sing V. Assume the converse: codimy D > 2.

28



Take a general curve I' C Y disjoint from D. At each point of the curve I' the rank
of the matrix [|0 fi(o) /0x;]| is equal to k — 1. Consider the morphisms of sheaves

k
1 @Or(l —d;) — Or,
i=1

that are defined locally on the sets of sections (sy,...,sg) by the formula
k )
9fo
/’L':(Slu"wsk)'_) Si
: 25y

with respect to a fixed isomorphism O(—a)®0O(a) = O. By assumption the subsheaf

M k
Ker(pu,) = ﬂ Ker p; C @ Or(1 —d;)
j=0 i=1

is of constant rank 1. Now consider the morphism of sheaves

A Ker(py) —  Orp(1),
A (817 ) Sk) = Zf:l Szfz(l)

Assume that the condition (8) is not true at each point of the curve I'. Then A is
an isomorphism of invertible sheaves, which means that

But this is impossible. Q.E.D. for Lemma 3.1.

Let us consider fibrations into hypersurfaces. In accordance with Lemma 3.1, a
variety V € Z(d) with a local equation f = f© +¢f(I) 4 . is smooth, that is,
V € V(d), if and only if the following two conditions hold:

(i) the hypersurface F' = {f® = 0} has at most zero-dimensional singularities;

(i) for each point x € Sing F' we have f)(x) # 0.

3.2. The diagonal presentation. Take Vi, V, € V(d), d > 2, and let x*: V* —
V5 be a fiber-wise isomorphism outside the marked point p € C'. Since the fibers over
generic points y € C are smooth hypersurfaces of degree d > 2, the isomoprhisms
X;, over the points y € C* are induced by automorphisms of the ambient projective
space &, € AutP. Thus x* = £*|y;, where §, = & 1s an algebraic curve

EC" — AutP

of projective automorphisms. Let P = IP(L) be the projectivization of a linear
space L = CM*!. The curve ¢* can be lifted to a curve &:C — End L, where
E(C*) C AutL. If £(p) € AutL, then x* extends to the fiber-wise (biregular)
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isomorphism x = ¢|y;, and the varieties V; and V3 are fiber-wise isomorphic. Assume
the converse: det{(p) = 0.
Fix a local parameter ¢ on the curve C at the point p, and let

i # g(i)
=0

be the Taylor series of the curve £. We may assume that £©) £ 0.

Lemma 3.2. There exist curves of linear self-maps 3,~v: C — End L, 5(p),v(p) €
Aut L, and a basis (e, . .., en) of the space L such that with respect to this basis the
curve 3¢y~ C — End L has a diagonal form:

Béy e o ey, (9)

where w(e;) € Zy.

Proof. This is a well-known fact of elementary linear algebra.

Now replace V; by v(V4), V by 5(V2). We may simply assume that the fiber-wise
birational correspondence ¢ has the form (9) from the beginning. We claim that if
m = max{w(e;)} > 1, then this is impossible.

Let {ap =0 < a1 < ... < ag} = {w(e;),i = 0,...,M} C Z; be the set of
weights of the diagonal transform (9), £ < M, m = a; the maximal weight. Take
the system of homogeneous coordinates (xg : ... : xp), dual to the basis (e.). We
define the weight of monomials in z,, setting

M

w(xy®xyt . Layy) = Zniw(ei).

1=0

Set A; = {z;lw(ej) = a;} € A = {xg,...,xm} to be the collection of coordinates
of the weight a;. The distinguished sets of coordinates of the maximal and minimal
weight we denote by A, = Ay and A* = A;.

3.3. Birational = biregular. Let f = f(z) +¢f1 + ... be a local (over
the base C) equation of the hypersurface Vo C C' x P, where f) are homogeneous
polynomials of degree d > 3 in the coordinates z,. The series

fo=> ) =D O gy, gy
=0 =0

vanishes on V;, and outside the marked fiber F}, that is, for t # 0, gives an equation
of V1. Let b € Z4 be the maximal degree of the parameter ¢, dividing fe. Then

tfe=g= Ztlg(l)(xg, Ce Xar)
1=0

gives an equation of the hypersurface V; at the marked fiber X, too.
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Lemma 3.3. For each | € Z, the polynomial f belongs to the linear span of
monomials of weight > b — 1, whereas the polynomial g belongs to the linear span
of monomials of weight < b+ (.

Proof. Assume that the monomial ! comes into the polynomial f® with a
non-zero coefficient. Then it generates the component ezl of the series fe
and, moreover, this component comes from this monomial of f only. Therefore
[ +w(z’) > b, which is what we need.

Assume that the monomial 2/ comes into ¢ with a non-zero coefficient. It is
generated by the monomial 7227 of the series f¢, which, in its turn, can be generated
by the monomial 2! from the polynomial f* only, where a + w(x!) =1+ b. Q.E.D.
for the lemma.

Let
P, = {x; = Olw(z;) 2 1} = P(e;j|w(z;) = 0),
P ={z; = Olw(z;) < m -1} = Plejlw(z;) = m)

be the subspaces of the minimal and the maximal weight, respectively.

Lemma 3.4. Ifb > m+ 1, then P, C SingFy. If m(d —1) > b+ 1, then
P* C Sing F3.

Proof. Assume that b > m + 1. The fiber F5 C P over the marked point is
given by the equation f = 0. By assumption f belongs to the linear span of
monomials of weight > m + 1. If a monomial z! comes into f(© with a non-zero
coefficient, then 2! contains a quadratic monomial in the variables A\ A, (otherwise
w(x’) < m).Thus all the first partial derivatives of the polynomial () vanish on
P,. Thus P C Sing F5.

Similarly, if b < m(d—1) — 1, then each monomial 2! in ¢(*) contains a quadratic
monomial in A\ A*, otherwise we get w(z!) > m(d—1), which gives a contradiction
with our assumption and Lemma 3.3. Q.E.D. for Lemma 3.4.

Now take into account that for d > 3 the inequalities

b<m and b>m(d—1)

can not both be true. Consequently, at least one of the two inequalities of Lemma
3.4 holds. Suppose that b > m+1. Since V5 is smooth, P, is a point. Let A, = {z},
so that P, = (1,0,...,0). Again we use the fact that V5 is smooth and conclude
that

f11,0,...,0) £0.

Consequently, the monomial z¢ comes into f() with a non-zero coefficient. By
Lemma 3.3 b < 1.

Therefore m = 0, which is a contradiction.

In the case b < m(d — 1) — 1 the arguments are symmetric: V; is smooth, P*
is the point (0,...,0,1), A* = {x)/} and ¢M(0,...,0,1) # 0, so that md < b+ 1,
whence we get m = 0 again, a contradiction.

Therefore, non-trivial weights cannot occur and £ is a fiber-wise biregular isomor-
phism. Consequently y = £|y, is a fiber-wise isomorphism, too. Proof of Theorem
3.1 is complete.
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Finally, let us prove Proposition 0.2. Let ¢, po:PM ——s P! be two generic
projections. Assume that the structures

7T1:SO1|V:V_—')P1 and 7T2:SO2|V:V_—‘)P1

are fiber-wise birationally equivalent, where V' C PM is a generic smooth hyper-
surface of degree M — 1 > 4, that is, there exists a birational self-map y € BirV
such that m o ¥ = m;. Let P, P, C PM be the centres of the projections ¢, o,
respectively. By genericity we may assume that V' N P; is smooth. Let us blow up
VNP

0;: Vi =V,
E; =o0; 1(V N P;) C V; being the exceptional divisor. The projections m; extend to

the morphisms W;L: V; — P!, the map Y extends to a birational map y*: Vi --» V5.
We get the commutative diagram

X+
Vi S W
o Loy
Pl = P

Now a general fiber of 7 is birationally superrigid. Applying Theorem 3.1, we
see that ™ extends to an isomorphism between V; and V5, which maps every fiber
(m7)71(t) isomorphically onto the fiber (75 )~*(¢), t € P. Now an easy dimension
count shows that for a generic plane P C PM of codimension 2 there are at most
finitely many planes S C P such that PNV = SNV. Since EyN(7) () = PNV,
we obtain that

XH(Ern (mf) (1) = Ex N (m3) ()

(otherwise, there would have been a one-dimensional family of planes S c P
with the property SNV = P, NV). Therefore, x*(F;) = E, and the original
map y € BirV is biregular outside P, NV and P, NV respectively. Therefore,
x € AutV = {idy}. Q.E.D. for Proposition 0.2.
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