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1. INTRODUCTION

The following theorem was proved in [Kov94] over the complex num-
bers. It turns out that the proof given there works with very small
adjustments in arbitrary characteristic. The purpose of this note is to
verify this, that is, to prove the following.

Theorem 1.1. Let X be a K3 surface of Picard number at least three

over an algebraically closed field of arbitrary characteristic. Then one

of the following mutually exclusive conditions are satisfied:

(1.1.1) X does not contain any curve of negative self-intersection

(1.1.2) NE(X) =
∑

R+ℓ where the sum runs over all smooth rational

curves on X.

Definitions and Notation 1.2. Let k be an algebraically closed
field of arbitrary characteristic. Everything will be defined over k.
A K3 surface is a smooth projective surface X such that ωX ≃ OX

and h1(X,OX) = 0.
The closed cone of effective curves insideN1(X) is denoted byNE(X).

For more details about the construction and basic properties of this
should consult [Kol96, II.4].
A class ξ ∈ N1(X) is called integral if it can be represented by a

divisor on X. It is called effective (respectively ample) if it is integral
and can be represented by an effective (respectively ample) divisor. A
class ξ ∈ NE(X) is called extremal if it cannot be written as the sum
of two incomparable classes in NE(X). A class of a smooth rational
curve is called a nodal class. The set of all nodal classes is denoted by
N (X).
Let h be an ample class and define

Q(X) := {ξ ∈ N1(X) | ξ · h > 0, ξ · ξ = 0}

Note that by the positivity condition this is just half of a quadric cone.
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The convex hull of a set will be denoted by Conv.
An open subset of the boundary of the cone is called circular if the

cone is not locally finitely generated at any point in the open set.

Acknowledgment. This paper owes its existence to Max Lieblich
who suggested that perhaps the original statement is also true in arbi-
trary characteristic.

2. SIMPLE FACTS

Let us start with an easy, well-known consequence of Riemann-Roch
theorem:

Lemma 2.1. Let a ∈ N1(X) be an integral class. Then a ·a is an even

integer. If furthermore a · a ≥ −2, then either a or −a is effective.

Proof. As a is integral, there exists a line bundle L representing a. By
Riemann-Roch

(2.1.1) h0(X,L )− h1(X,L ) + h0(X,L ∨) =
1

2
a · a+ 2

and hence a · a has to be even.
If a · a ≥ −2, then the right hand side of (2.1.1) is positive, so either

h0(X,L ) > 0 or h0(X,L ∨) > 0, so either a or −a is effective. �

Corollary 2.2. Q(X) ⊂ NE(X) and for any e ∈ Q(X) the hyper-

plane (e · = 0) = {ξ ∈ N1(X) | e · ξ = 0} is a supporting hyperplane

of Conv(Q(X)).

Proof. The first statement follows directly from (2.1) and since for any
ξ ∈ Conv(Q(X)) (effective) irreducible class, ξ ·e ≥ 0, this also implies
the second statement. �

Corollary 2.3. Let e, d ∈ NE(X) such that e · e = 0 and d · d > 0.
Then d is in the interior of NE(X) and e · d > 0.

Proof. Since d is in the interior of Q(X) and Q(X) ⊂ NE(X), it follows
that d is in the interior of NE(X). Then since (e· = 0) is a supporting
hyperplane, d cannot be contained in it and hence e · d > 0. �

Next we establish that nodal rays can only accumulate along the
cone generated by Q(X).

Lemma 2.4. Let {ℓn} ⊂ N (X) be an infinite sequence of nodal

classes such that R+ℓn −→
n→+∞

R+ξ for some ξ ∈ NE(X). Then ξ ·ξ = 0.

Proof. Let ℓ ∈ N (X). Then for infinitely many n ∈ N, ℓn 6= ℓ, so
ℓn · ℓ ≥ 0 and hence ξ · ℓ ≥ 0. Applying this with ℓ = ℓn yields that
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ξ · ξ ≥ 0. On the other hand since ℓn · ℓn < 0, it follows that ξ · ξ ≤ 0
as well and so we must have ξ · ξ = 0. �

Corollary 2.5. Let h ∈ NE(X) be an ample class and ε > 0 a real

number. Define

Qε(X) := {ξ ∈ N1(X) | ξ · h = 1, ξ · ξ ≥ −ε}.

Then the number of nodal classes not contained in Conv(Qε(X)) is

finite.

Proof. The set {ξ ∈ NE(X) | ξ · h = 1} is compact by Kleiman’s
criterion [KM98, 1.18] and hence any infinite set contained in it has
an accumulation point. By (2.4) all accumulation points have to be
contained in Qε(X), which implies the desired statement. �

Corollary 2.6. Let ξ ∈ NE(X) be an extremal class which is not a

multiple of a nodal class. Then ξ · ξ = 0.

Proof. It follows from Riemann-Roch and [Kol96, II.4.14] that

(2.6.1) NE(X) =
∑

ℓ∈N (X)

R+ℓ+ Conv(Q(X)),

in particular ξ · ξ ≤ 0, and then for any ε > 0,

(2.6.2) NE(X) =
∑

ℓ ∈ N (X)
ℓ 6∈ Conv(Qε(X))

R+ℓ+ (NE(X) ∩ Conv(Qε(X))),

where the above sum is finite by (2.5).
Suppose that ξ · ξ < 0. Without loss of generality we may assume

that ξ · h = 1 and choose an ε > 0 such that ξ 6∈ Conv(Qε(X)). Then
ξ is a multiple of a nodal class by (2.6.2). �

3. SUBCONES GENERATED BY TWO ELEMENTS

The following is a simple, but important computation.

Lemma 3.1. Let e, d be effective classes such that e is indecomposable

and d · d > 0. Let L be the 2-dimensional linear subspace generated by

e and d in N1(X) and C = L ∩NE(X). Then

(3.1.1) if e · e = 0, then there exists an f ∈ C such that f is effective,

e · f > 0, e and f are on opposite sides of d, and f · f = 0, and
(3.1.2) if e · e = −2, then there exists an f ∈ C such that f is effective,

e · f > 0, e and f are on opposite sides of d, and f · f = 0 or

f · f = −2.
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Proof. Let A = d · d, B = e · d, and C = e · e. Set f = αd− βe. Then

f · f = Aα2 − 2Bαβ + Cβ2.

If C = e · e = 0, then B = e · d > 0 by (2.3) and hence the equation

0 = Aα2 − 2Bαβ = α(Aα− 2Bβ)

has a positive integer solution, α = 2B, β = A such that the class
f = αd − βe has f · f = 0. Since αd = f + βe, f and e lie on
opposite sides of d and it also follows that f is effective by (2.1) and
since e · f > 0.
If C = e·e = −2, then set x = Bα/2+β, y = α/2, and N = 2A+B2.

Then

f · f = Aα2 − 2Bαβ − 2β2 =

= −2
(

(Bα/2 + β)2 − (2A+B2)(α/2)2
)

= −2(x2 −Ny2).

Now if N is a square, then as above there are two effective solutions
for f · f = 0 and they are on opposite sides of d and hence one of them
is on the side of d opposite to e.
If N is not a square then finding an f with f · f = −2 is equivalent

to solving Pell’s equation x2−Ny2 = 1 [IR90, 17.5.2]. One may choose
a solution with both x, y > 0 which again ensures that e and f are on
oipposite sides of d and that e · f > 0. This completes the proof. �

Corollary 3.2. If ̺(X) = 2, let NE(X) = R+ξ + R+η. Then one of

the following mutually exclusive cases hold:

(3.2.1) Neither R+ξ nor R+η contain any effective classes.

(3.2.2) Both R+ξ and R+η contain an effective class of 0 or −2 self-

intersection.

Proof. If N (X) = ∅, then the decomposition in (2.6.1) implies that
NE(X) = Conv(Q(X)). If there exists an integral (equivalently, effec-
tive) class in Q(X), then by (3.1.1) we are in case (3.2.2). If there are
no integral classes in Q(X) then we are in case (3.2.1).
If N (X) 6= ∅, then by the decomposition in (2.6.1) and (3.1.2) we

are in case (3.2.2). �

4. K3 SURFACES CONTAINING A SMOOTH RATIONAL CURVE

Theorem 4.1. Let X be a K3 surface and ξ ∈ NE(X) an extremal

vector. Assume that ̺(X) ≥ 3 and X contains a smooth rational curve.

Then

(4.1.1) NE(X) has no circular part,
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(4.1.2) There exists a sequence ℓn ∈ N (X) such that R+ℓn −→
n→+∞

R+ξ,

and

(4.1.3) NE(X) =
∑

ℓ∈N (X)R+ℓ.

Proof. Let ℓ denote the class of a smooth rational curve, guaranteed by
the assumption and let σ : X → X ′ be the morphism contracting ℓ to a
point. Recall that X ′ is still projective and let h1 and h2 be two linearly
independent ample classes on X ′. Let di = σ∗hi for i = 1, 2 and observe
that d1 and d2 are effective classes on X such that ℓ · d1 = ℓ · d2 = 0
and ℓ, d1, d2 are linearly independent.
Suppose there exists U ⊂ ∂NE(X) a non-empty open subset of

∂NE(X) such that R+U is a circular part (i.e., nowhere locally finitely
generated) of NE(X). By (2.4) it follows that U ⊆ Q(X) and hence
in a neighbourhood of R+U every effective class has non-negative self-
intersection.
Let h be an arbitrary ample class and observe that by (3.1) the 2-

dimensional linear subspace generated by h and ℓ contains and f on the
side of h opposite to ℓ there is an effective class f with either f · f = 0
or f ·f = −2. We may repeat the same procedure with ℓ replaced by f
and h replaced by another ample class and find that these classes are
all over near the boundary of NE(X). In particular, we can find an
ample class h ∈ NE(X) and an effective class f with either f · f = 0
or f · f = −2 such that the 2-dimensional linear subspace generated
by h and f intersects U non-trivially. Then applying (3.1) again and
combining it by the observation above we obtain that there exists an
effective class e ∈ U such that e · e = 0.
Next let d one of d1 and d2 such that e, d, ℓ are linearly independent.

Let A = d · d, B = e · d, and C = e · ℓ. Recall that by choice of d we
have d · ℓ = 0.

Claim 4.1.4. 2B2 6= AC2

Proof. Suppose 2B2 = AC2 and let f = ACe − BCd + B2ℓ. Then
f · f = B2(AC2 − 2B2) = 0 and f · e = 0. Then by (2.1) f or −f is
effective. However, since e ∈ U which is a circular part of ∂NE(X),
the only effective classes contained in the hyperplane (e · = 0) are
multiples of e. This implies that then BC = B2 = 0, so B = 0.
Applying the same argument for d, it would follow that d is a multiple
of e which is impossible by the choice of d and e. Therefore we reached
a contradiction and hence the claim is proven. �

Next let n ∈ N and define

±dn = (2(2B2 − AC2)Cn2 − 4Bn)e+ (2C2n)d+ (1− 2BCn)ℓ.
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Then dn ·dn = −2 and by (2.1) either dn or −dn is effective. Choose dn
to be effective. By (4.1.4) 2B2−AC2 6= 0 and hence R+dn → R+e, but
this contradicts the observation that in a neighbourhood of U every
effective class has non-negative self-intersection. Therefore (4.1.1) is
proven.
Now let ξ ∈ NE(X) extremal. If no multiple of ξ is in N (X), then

ξ ∈ sQ(X) by (2.6). If ξ were not contained in the closure of the convex
cone generated by N (X), then by [Kov94, 2.6] NE(X) would have a
circular part, so (4.1.2) follows from (4.1.1).
Finally, since every class in NE(X) may be written as a sum of

finitely many extremal classes (4.1.3) follows from (4.1.2). �

Corollary 4.2. Let X be a K3 surface of Picard number at least three

over an algebraically closed field of arbitrary characteristic. Then one

of the following mutually exclusive conditions are satisfied:

(4.2.1) NE(X) = Conv(Q(X)), or

(4.2.2) NE(X) =
∑

ℓ∈N (X)R+ℓ.

Proof. If X does not contain any curve of negative self-intersection,
then (4.2.1) follows from (2.6.1). Otherwise (4.2.2) follows from (4.1).

�

Remark 4.3. Clearly (4.2) is equivalent to (1.1).
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