UNIRATIONALITY AND EXISTENCE OF INFINITELY TRANSITIVE MODELS
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ABSTRACT. We study unirational algebraic varieties and the fields of rational functions on them. We show that
after adding a finite number of variables some of these fields admit an infinitely transitive model. The latter is an
algebraic variety with the given field of rational functions and an infinitely transitive regular action of an algebraic
group generated by unipotent algebraic subgroups. We expect this property holds for all unirational varieties and

in fact is a peculiar one for this class of algebraic varieties among those varieties which are rationally connected.

1. INTRODUCTION

This article aims to relate unirationality of a given algebraic variety with the property of being a homogeneous
space with respect to unipotent algebraic group action. More precisely, let X be an algebraic variety defined
over a field k, and Aut(X) be the group of regular automorphisms of X. We assume for clarity that Aut(X)
carries the structure of an (infinite dimensional or pro-) algebraic group in the sense of e.g. [17], [18]. Let also
SAut(X) C Aut(X) be the (closed normal) subgroup generated by algebraic groups isomorphic to the additive
group Gy.

Definition 1.1 (cf. [1]). We call X infinitely transitive if for any k¥ € N and any two collections of points
{P1,..., Py} and {Q1,...,Qr} on X there exists an element g € SAut(X) such that g(P;) = @, for all i. Similarly,

we call X stably infinitely transitive if the variety X x k™ is infinitely transitive for some m.

Recall that in Birational Geometry adding a number m of algebraically independent variables to the function
field k(X)) is referred to as stabilization. Geometrically this precisely corresponds to taking the product X x k" with
the affine space. Note also that if X is infinitely transitive, then it is unirational, i.e., k(X) C k(y1, ....ym ) for some
k(X)-transcendental elements y; (see [1, Proposition 5.1]). This suggests to regard (stable) infinite transitivity as

a birational property of X (in particular, we will usually assume the test variety X to be smooth and projective):

Definition 1.2. We call X stably b-infinitely transitive if the field k(X)(y1, ...y ) admits an infinitely transitive
model (not necessarily smooth or projective) for some m and k(X)-transcendental elements y;. If m = 0, we call

X b-infinitely transitive.
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Example 1.3. The affine space X := k%™ ig stably infinitely transitive (and infinitely transitive when dim X >
2). More generally, any rational variety is stably b-infinitely transitive, and it is b-infinitely transitive if the

dimension > 2.

Example 1.3 suggests that being stably b-infinitely transitive does not give anything interesting for rational

varieties. In the present article, we put forward the following:
Conjecture 1.4. Any unirational variety X is stably b-infinitely transitive.

Thus, Conjecture 1.4 together with the above unirationality result from [1, Proposition 5.1] provides a (potential)
characterization of unirational varieties among all those which are rationally connected. Note that the class
of rationally connected varieties contains all stably b-infinitely transitive varieties. At the same time, not every
rationally connected variety is stably b-infinitely transitive, as one may expect from the case of (Fano) hypersurfaces
of degree d in P"*+1, d > %(n + 3) (see [11]).

Remark 1.5. Originally, the study of infinitely transitive varieties was initiated in the paper [9]. We also remark
one application of these varieties to the Liiroth problem in [1], where a non-rational infinitely transitive variety
was constructed. See [5], [4], [6], [10], [14], [15] and [16] for other results, properties and applications of infinitely

transitive (and related) varieties.

We are going to verify Conjecture 1.4 for some particular cases of X (see Theorems 2.2, 2.3 and Propositions 77,
3.6, 3.8 and 3.10 below). At this stage, one should note that it is not possible to lose the stabilization assumption

in Conjecture 1.4:

Example 1.6. Any three-dimensional algebraic variety X with an infinitely transitive model is rational. Indeed, let
us take a one-dimensional algebraic subgroup G C SAut(X) acting on X with a free orbit. Then X is birationally
isomorphic to G X Y (see Remark 2.11 below), where Y is a rational surface (since X is unirational). On the other
hand, if X := X3 C P* is a smooth cubic hypersurface, then it is unirational but not rational (see [3]). However,
Conjecture 1.4 is true as stated for X3, because X3 is stably b-infinitely transitive (see Proposition 3.6 below). In
this context, it would be also interesting to settle down the case of the quartic hypersurface X4 in P* (or, more
generally, in P" for arbitrary n), which relates our subject to the old problem of (non-)unirationality of (generic)

X, (cf. 3.10 and Remark 3.11 below).

Notation and conventions. Throughout the paper we keep up with the following:
e k is an algebraically closed field of characteristic zero and k™ is the multiplicative group of k;
e X; =~ X, denotes birational equivalence between two algebraic varieties X; and Xs;

e we abbreviate infinite transitivity (transitive, transitively, etc.) to inf. trans.



2. VARIETIES WITH MANY CANCELLATIONS

2.1. The set-up. The goal of the present section is to prove the following:

Theorem 2.2. Let K := k(X) for some (smooth projective) algebraic variety X of dimension n over k. We
assume there are n distinct presentations (we call them cancellations (of K or X)) K = K'(x;) for some K'-
transcendental algebraically independent elements x;. Then there exists an inf. trans. model of K(y1,...,yn) for

some K-transcendental elements y;.

Let us put Theorem 2.2 into a geometric perspective. Namely, the presentation K = K'(z;) reads as there exists
a (smooth projective) model of K, say X, with a surjective regular map m; : XJ* — Y;"il and the general fiber
~ P! such that m; admits a section over an open subset in Yinfl. Moreover, by resolving indeterminacies, we may
assume X := X fixed for all . Then, since K admits n cancellations, n vectors, each tangent to a fiber of some
m;, span the tangent space to X at the generic point.

Here is a geometric counterpart of Theorem 2.2:

Theorem 2.3. Let X be a smooth projective variety of dimension n. Assume that there exist n flat morphisms
m;i » X — Y; satisfying the following:
(1) Y; is a (normal) projective variety such that 7; admits a section over an open subset in Y;;
(2) for general point ¢ € X and the fiber F; := m; '(m;(C)) ~ P, wector fields Tr, ¢, - - ., Tk, ¢ span the tangent
space T'x ¢.

Then X 1is stably b-inf. trans.

Let X be as in Theorem 2.3. Fix an embedding Y; C P, 1 < i < n, and consider the affine cone H minus the
origin over Y;. Note that H} — Y} is a principal toric bundle, and we define L} := 7 (H/), a principal toric bundle
over X. Put also Tx := L} xx ... xx L¥. Note that Tx — X is a principal toric bundle which has a section (the

diagonal) and all fibers isomorphic to (k*)". In particular, we have Tx ~ X x k", and Theorem 2.3 follows from
Proposition 2.4. Tx is stably b-inf. trans.

2.5. Proof of Proposition 2.4: one-dimensional case. Let us illustrate the proof of Proposition 2.4 in the
simplest case when X = P!. Consider a non-trivial principal toric bundle ¥ over X of rank > 3. Then we have

T =0(n1)* xp1 ... xp O(n,)* for some > 3 and n; # 0 for at least one j.

Lemma 2.6. The following holds:
o T~ (K*\{0})/Z, x T for some m and the torus T = (k*)"~';

o the natural projection m: T — T is Aut(T)-equivariant and the Aut(%)-action on T is transitive.

Proof. Let mZ C Z = Pic(X) be the sublattice generated by O(n;) for all i. Then we may assume that m = ny
and m|n; for all . Note that C' := Ox(m)* is the affine cone minus the origin over a rational normal curve of
degree m. Let us lift all O(n;)* to C. Then we get

T~ Cxe OMn)* Xe ... xe O(ny)* = (K2 \ {0})/Z x T
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because C ~ (k?\ {0})/Z, and O(n;)* are trivial over C for all i.
Further, the morphism = : € — T is given by invertible regular functions on ¥. Since there are no such

(non-constant) functions on (k*\ {0})/Z,,, 7 is Aut(¥)-equivariant. The transitivity statement is evident. O

Let Autf(%) C Aut(%) be the subgroup which preserves the fibers of 7 from Lemma 2.6. Then Aut;(%) can
be identified with the space of regular maps T — Aut((k® \ {0})/Z,,) (whose images contain the identity map
id € Aut((k*\ {0})/Z,,)) and hence is a closed subgroup in Aut(¥). The same holds for the group

Aut¥(T) := SAut((k>\ {0})/Z.,)(K[T]) € Auty(T) N SAut(%).

Lemma 2.7. In the notation of Lemma 2.6, the group SAut(%) acts fiberwise inf. trans. on m : ¥ — T. More
precisely, let Py, ..., Py and Q1,...,Qx be distinct points such that w(P;) = 7(Q;) for all i. Then there exists
g € Auty(%) such that g(P;) = Q; for alli.

Proof. The group SAut((k*\ {0})/Z,) acts inf. trans. on (k®\ {0})/Z,,. Let us take g; € SAut((k*\ {0})/Z,)
such that g;(P;) = Q; for all i.

Further, if h : k" — SAut((k* \ {0})/Z,) is a regular map, then any algebraic subgroup
Gq C SAut((k?\ {0})/Z,,) defines a regular map k™ — SAut((k? \ {0})/Z,,) as follows:

kY, g) = h(k")g, g € G,.

In particular, we may assume that the above g; € h(kN) for all + and some N and h. Let us also pick up a regular
map p: T — kY with h op(P;) = g; for all i. Then ho f defines an element g € Aut}(T) such that g(P;) = Q; for
all 4. .

Lemmas 2.6, 2.7 provide ¥ = (k? \ {0})/Z,, x T with the inf. trans. model (k®\ {0})/Zy, x k"',

2.8. Proof of Proposition 2.4: general case. Let X be a smooth projective variety. We assume that there
exists a flat morphism 7 : X — Y onto a (normal) projective variety Y such that the general fiber F' of 7 is
isomorphic to P! and 7 admits a section over an open subset in Y. Let L € Pic(X) be such that L’F = O(m) for
some m # 0. Take also a very ample line bundle H € Pic(Y) and form a principal toric bundle T:=L*xy T (H*)

over X. Then we get the following relative version of Lemma 2.7:
Lemma 2.9. For the natural projection wy : T — H*, the group SAut(T) acts fiberwise inf. trans. on T.

Proof. Note that the general fiber of 7, equals (k*\ {0})/Z,, and H* is quasi-affine (cf. the proof of Lemma 2.6).
Also, the assumption on 7 implies that the fibration 7 : T — H* is birationally trivial over an open subset
U C H*. Then we get the exact situation of 2.5, with T replaced by U, ¥ replaced by (k*\ {0})/Z,, x U, and
7: % — T replaced by 7y : (k*\ {0})/Z, x U — U. The same argument as in the proof of Lemma 2.7 shows that
the group G := Aut((k*\ {0})/Z,, x U) acts fiberwise inf. trans. on (k®\ {0})/Z,, x U (with respect to projection
T4). It remains to show that any g € G, C G extends to an element in Aut(7’) (then it will be automatically from
SAut(T)).

Obviously, g induces a birational automorphism of T , with possible poles contained in S := H*\ U. However,

since H* is quasi-affine, there exists a regular function fg € Qg+ such that the vector field fsd/0t (for the vector
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field 9/0t generated by G, > g) has no poles on T. Then, since 0/0t is locally nilpotent, we can choose fg to be
such that G, = exp (k0/0t) ~ exp (fskd/0t) (cf. [8, the proof of Lemma 8.2] for a similar argument). O

Let Tx be as in Proposition 2.4. Because of the condition (1) in Theorem 2.3, summing up the constructions
in 2.5 and Lemma 2.9, we arrive at n (birationally trivial) projections 7, : Tx — H, with generic fiber of
7y, equal (k* \ {0})/Z,, x T; and T; being a torus, dim7; = n — 1. Furthermore, for each i there are groups
Aut},;(Tx) C SAut(Tx), similar to Auts(T) from 2.5, acting fiberwise with respect to 7., (Aut},;(Tx)-action is
trivial on the Tj-factor of the general fiber of 7). Let Aut,(Tx) C SAut(Tx) be the (closed) subgroup generated
by Autf;(Tx) for all i.

Now, pick up the point ( € X as in Theorem 2.3, identify ¢ with a (generic) point on Tx, and put O, :=

Auty(Tx) - ¢. Proposition 2.4 now follows from

Lemma 2.10. The group Aut,(Tx) acts inf. trans. on O;. Moreover, we have Tx ~ O¢ x Ty, where Tg is a

torus. In particular, x is stably b-inf. trans.

Proof. The group Auty (T x) is irreducible as an (infinite dimensional) algebraic variety (see e.g. [18] for the general
argument). Note also that for any P € O, those g € Aut,(Tx) which map P to a given open subset in Tx form
an open subgroup in Aut,(¥x). In particular, every 7, determines an open subgroup U; p C Aut,(Tx) which
maps P to a generic fiber of 7.

Let {P1,..., Py}, {Q1,...,Qx} be two finite subsets in O;. For P := P;, (); in the preceding discussion, we
obtain an open locus (\; U - P; = (; U - Q; in O¢, where U := ", ;(U; p; N Uj q,) is open and non-empty due to
the irreducibility of Auty(¥x). Let z1,...,zn be local analytic coordinates on U. We have 0/0z; € Tz, ¢ for
all i due to the condition (2) in Theorem 2.3. We also have exp (kd/0z;) C Aut,(Tx) for all ¢ (cf. the proof of
Lemma 2.9). Then, similar to the proof of Lemma 2.7, we find g := g;, ...g;, for some g;; € Auty; (Tx), such
that g(P;) = Q; for all j. Hence Aut, (T x) acts inf. trans. on Oc.

Further, complete 0/0z; to a basis on Tx ¢, {0/0z1,...,0/02n,0/02N41,...,0/0z2n}. Vectors 0/0z;, i >
N +1, span the tangent space T, ¢, where T, > ( is a torus whose descend to X determines a toric bundle, trivial
on each fiber F; (see Theorem 2.3, (2)). In particular, Ts C T; for all ¢, and Ty is transversal to O,. The latter
implies that Tx ~ O¢ x Ts. [l

Remark 2.11. Conversely, in view of Theorem 2.3, given a b-inf. trans. variety X there exist dim X cancellations
of X. Indeed, for general point ( € X we can find dim X tangent vectors spanning T’y ¢, such that each vector
generates a copy of G, =: G; C SAut(X), 1 < i < n (cf. the proof of Lemma 2.10). Let & C SAut(X) be the
subgroup generated by the groups G, ...,G,. Then we have X ~ G; x & - (.

3. EXAMPLES
Here we collect several examples and properties of (stably) b-inf. trans. varieties.

3.1. Quotients. Let us start with the projective space P*, n > 2, and a finite group G C PGL,41(k). Notice
that the quotient P /G is stably b-inf. trans. Indeed, let us replace G by its central extension G acting linearly

on V := k" so that V/G ~ P"/G x P'. Further, form the product V x V with the diagonal G-action, and take
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the quotient V' := (V x V)/G. Then, projecting on the first factor we get V' ~ V x V/G, and similarly for the
second factor. This implies that V' admits 2n + 2 cancellations (cf. Theorem 2.2). Hence V' is stably b-inf. trans.

by Theorem 2.3. The argument just used can be summarized as follows:

Lemma 3.2. Let X — S be a P™-fibration for some m € N. Then the product X xg X ~ X x k™ admits 2m

algebraically independent cancellations over S.

Proof. Note that X xg X has two projections (left and right) onto X, both having a section (the diagonal Ax C
X Xg X), hence the corresponding P™-fibrations are birational (over S) to X x k. This gives 2m algebraically

independent cancellations over S. O

Corollary 3.3. Assume that X carries a collection of distinct birational structures of P™i -bundles, m; : X — S,
with the condition that the tangent spaces of generic fibers of m; span the tangent space of X at the generic point.

Then X 1is stably b-inf. trans.

Proof. Indeed, after multiplying by the maximum of m; we may assume that all P"*-bundles provide with at least

2m; different cancellations (see Lemma 3.2). We can now apply Theorem 2.3. |

Remark 3.4. Tt seems plausible that given an inf. trans. variety X and a finite group G C Aut(X), variety X/G
is stably b-inf. trans. (though the proof of this fact requires a finer understanding of the group SAut(X)). At
this stage, note also that if G is cyclic, then there exists a G-fixed point on X. Indeed, since X is unirational (cf.
Section 1), it has trivial algebraic fundamental group 72'%(X) (see [13]). Then, if the G-action is free on X, we get
G C m8(X/G) = {1} for X/G smooth unirational, a contradiction. This fixed-point-non-freeness property of X
relates X to homogeneous spaces, and it would be interesting to investigate whether this is indeed the fact, i.e., in
particular, does X, after stabilization and passing to birational model, admit a uniformization which is a genuine

(finite dimensional) algebraic group?*)
3.5. Cubic hypersurfaces. Let X3 C P!, n > 2, be a smooth cubic. Then
Proposition 3.6. X3 is stably b-inf. trans.

Proof. Let L C X3 be a line and 7 : X3 --» P"~! the linear projection from L. Let us resolve the indeterminacies
of m by blowing up X3 at L. We arrive at a smooth variety X, together with a morphism 7, : X; — P"~! whose
general fiber is P! (~ a conic in P?). Varying L C X3, we then apply Lemma 3.2 and Corollary 3.3 to get that X3
is stably b-inf. trans. O

DThis question was suggested by J.-L. Colliot-Théléne in connection with Conjecture 1.4. However, there are reasons to doubt the
positive answer, since, for example, it would imply that X is (stably) birationally isomorphic to G/H, where both G, H are (finite
dimensional) reductive algebraic groups. Even more, up to stable birational equivalence we may assume that X = G’/H’, where H’
is a finite group and G’ is the product of a general linear group, Spin groups and exceptional Lie groups. The latter implies, among
other things, that there are only countably many stable birational equivalence classes of unirational varieties, but we could not develop

a rigorous argument to bring this to contradiction.



3.7. Quartic hypersurfaces. Let Xy C P", n > 4, be a quartic hypersurface with a line L C X4 of double

singularities. Then
Proposition 3.8. X, is stably b-inf. trans.

Proof. Consider the cone X4 C P"t! over X;. Then X, contains a plane II of double singularities. Pick up
a (generic) line L' C II and consider the linear projection X; --» P*~! from L’. This induces a conic bundle
structure on X4, similarly as in the proof of Proposition 3.6, and varying L’ in IT as above we obtain that X4 is

stably b-inf. trans. Then, since X4 ~ X, x k, Proposition 3.8 follows. O

3.9. Complete intersections. Let X5.0.0 C P8 be the complete intersection of three quadrics. Then
Proposition 3.10. Xs.5.5 is stably b-inf. trans.

Proof. Let L C X5.9.9 be a line and X — Xs.9.9 the blowup of L. Then the threefold X, carries the structure of
a conic bundle (see [7, Ch. 10, Example 10.1.2, (ii)]). Now, varying L and applying the same arguments as in the
proof of Proposition 3.6, we obtain that Xs.0.0 is stably b-inf. trans. O

Remark 3.11. Fix n,r € N, n > r, and a sequence of integers 0 < d; < ... < d,,,, m > 2. Let us assume that

(n—r)(r+1)> E ( N r). Consider the complete intersection X := H; N...N H,, of hypersurfaces H; C P™

T
i=1

of degree d;. Then it follows from the arguments in [12] that X contains a positive dimensional family of linear

subspaces >~ P". Moreover, X is unirational, provided X is generic. It would be interesting to adopt the arguments
from the proofs of Propositions 3.6, 3.8 and 3.10 to this more general setting in order to prove that X is stably

b-inf. trans.

Remark 3.12. Propositions 3.6, 3.8 and 3.10 (cf. Remark 3.11) provide an alternative method of proving unira-
tionality of complete intersections (see [7, Ch. 10] for recollection of classical arguments). Note also that (generic)
X9.9.2 is non-rational (see for example [19]), and (non-)rationality of the most of other complete intersections con-
sidered above is not known. At the same time, verifying stable b-inf. trans. property of other (non-rational) Fano

manifolds (cf. [7, Ch. 10, Examples 10.1.3, (ii), (iii), (iv)]) is out of reach for our techniques at the moment.
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