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Abstract. We study unirational algebraic varieties and the fields of rational functions on them. We show that

after adding a finite number of variables some of these fields admit an infinitely transitive model. The latter is an

algebraic variety with the given field of rational functions and an infinitely transitive regular action of an algebraic

group generated by unipotent algebraic subgroups. We expect this property holds for all unirational varieties and

in fact is a peculiar one for this class of algebraic varieties among those varieties which are rationally connected.

1. Introduction

This article aims to relate unirationality of a given algebraic variety with the property of being a homogeneous

space with respect to unipotent algebraic group action. More precisely, let X be an algebraic variety defined

over a field k, and Aut(X) be the group of regular automorphisms of X. We assume for clarity that Aut(X)

carries the structure of an (infinite dimensional or pro-) algebraic group in the sense of e.g. [17], [18]. Let also

SAut(X) ⊆ Aut(X) be the (closed normal) subgroup generated by algebraic groups isomorphic to the additive

group Ga.

Definition 1.1 (cf. [1]). We call X infinitely transitive if for any k ∈ N and any two collections of points

{P1, . . . , Pk} and {Q1, . . . , Qk} on X there exists an element g ∈ SAut(X) such that g(Pi) = Qi for all i. Similarly,

we call X stably infinitely transitive if the variety X × km is infinitely transitive for some m.

Recall that in Birational Geometry adding a number m of algebraically independent variables to the function

field k(X) is referred to as stabilization. Geometrically this precisely corresponds to taking the product X×km with

the affine space. Note also that if X is infinitely transitive, then it is unirational, i.e., k(X) ⊆ k(y1, ....ym) for some

k(X)-transcendental elements yi (see [1, Proposition 5.1]). This suggests to regard (stable) infinite transitivity as

a birational property of X (in particular, we will usually assume the test variety X to be smooth and projective):

Definition 1.2. We call X stably b-infinitely transitive if the field k(X)(y1, ....ym) admits an infinitely transitive

model (not necessarily smooth or projective) for some m and k(X)-transcendental elements yi. If m = 0, we call

X b-infinitely transitive.
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Example 1.3. The affine space X := kdimX is stably infinitely transitive (and infinitely transitive when dimX ≥
2). More generally, any rational variety is stably b-infinitely transitive, and it is b-infinitely transitive if the

dimension ≥ 2.

Example 1.3 suggests that being stably b-infinitely transitive does not give anything interesting for rational

varieties. In the present article, we put forward the following:

Conjecture 1.4. Any unirational variety X is stably b-infinitely transitive.

Thus, Conjecture 1.4 together with the above unirationality result from [1, Proposition 5.1] provides a (potential)

characterization of unirational varieties among all those which are rationally connected. Note that the class

of rationally connected varieties contains all stably b-infinitely transitive varieties. At the same time, not every

rationally connected variety is stably b-infinitely transitive, as one may expect from the case of (Fano) hypersurfaces

of degree d in Pn+1, d >
2
3

(n+ 3) (see [11]).

Remark 1.5. Originally, the study of infinitely transitive varieties was initiated in the paper [9]. We also remark

one application of these varieties to the Lüroth problem in [1], where a non-rational infinitely transitive variety

was constructed. See [5], [4], [6], [10], [14], [15] and [16] for other results, properties and applications of infinitely

transitive (and related) varieties.

We are going to verify Conjecture 1.4 for some particular cases of X (see Theorems 2.2, 2.3 and Propositions ??,

3.6, 3.8 and 3.10 below). At this stage, one should note that it is not possible to lose the stabilization assumption

in Conjecture 1.4:

Example 1.6. Any three-dimensional algebraic variety X with an infinitely transitive model is rational. Indeed, let

us take a one-dimensional algebraic subgroup G ⊂ SAut(X) acting on X with a free orbit. Then X is birationally

isomorphic to G×Y (see Remark 2.11 below), where Y is a rational surface (since X is unirational). On the other

hand, if X := X3 ⊂ P4 is a smooth cubic hypersurface, then it is unirational but not rational (see [3]). However,

Conjecture 1.4 is true as stated for X3, because X3 is stably b-infinitely transitive (see Proposition 3.6 below). In

this context, it would be also interesting to settle down the case of the quartic hypersurface X4 in P4 (or, more

generally, in Pn for arbitrary n), which relates our subject to the old problem of (non-)unirationality of (generic)

X4 (cf. 3.10 and Remark 3.11 below).

Notation and conventions. Throughout the paper we keep up with the following:

• k is an algebraically closed field of characteristic zero and k∗ is the multiplicative group of k;

• X1 ≈ X2 denotes birational equivalence between two algebraic varieties X1 and X2;

• we abbreviate infinite transitivity (transitive, transitively, etc.) to inf. trans.
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2. Varieties with many cancellations

2.1. The set-up. The goal of the present section is to prove the following:

Theorem 2.2. Let K := k(X) for some (smooth projective) algebraic variety X of dimension n over k. We

assume there are n distinct presentations (we call them cancellations (of K or X)) K = K ′(xi) for some K ′-

transcendental algebraically independent elements xi. Then there exists an inf. trans. model of K(y1, . . . , yn) for

some K-transcendental elements yi.

Let us put Theorem 2.2 into a geometric perspective. Namely, the presentation K = K ′(xi) reads as there exists

a (smooth projective) model of K, say Xn
i , with a surjective regular map πi : Xn

i → Y n−1
i and the general fiber

' P1 such that πi admits a section over an open subset in Y n−1
i . Moreover, by resolving indeterminacies, we may

assume Xn
i := X fixed for all i. Then, since K admits n cancellations, n vectors, each tangent to a fiber of some

πi, span the tangent space to X at the generic point.

Here is a geometric counterpart of Theorem 2.2:

Theorem 2.3. Let X be a smooth projective variety of dimension n. Assume that there exist n flat morphisms

πi : X → Yi satisfying the following:

(1) Yi is a (normal) projective variety such that πi admits a section over an open subset in Yi;

(2) for general point ζ ∈ X and the fiber Fi := π−1
i (πi(ζ)) ' P1, vector fields TF1, ζ , . . . , TFn, ζ span the tangent

space TX, ζ .

Then X is stably b-inf. trans.

Let X be as in Theorem 2.3. Fix an embedding Yi ⊆ PNi , 1 ≤ i ≤ n, and consider the affine cone H∗i minus the

origin over Yi. Note that H∗i → Yi is a principal toric bundle, and we define L∗i := π∗i (H∗i ), a principal toric bundle

over X. Put also TX := L∗1 ×X . . .×X L∗n. Note that TX → X is a principal toric bundle which has a section (the

diagonal) and all fibers isomorphic to (k∗)n. In particular, we have TX ≈ X × kn, and Theorem 2.3 follows from

Proposition 2.4. TX is stably b-inf. trans.

2.5. Proof of Proposition 2.4: one-dimensional case. Let us illustrate the proof of Proposition 2.4 in the

simplest case when X = P1. Consider a non-trivial principal toric bundle T over X of rank ≥ 3. Then we have

T = O(n1)∗ ×P1 . . .×P1 O(nr)∗ for some ≥ 3 and nj 6= 0 for at least one j.

Lemma 2.6. The following holds:

• T ' (k2 \ {0})/Zm × T for some m and the torus T = (k∗)r−1;

• the natural projection π : T→ T is Aut(T)-equivariant and the Aut(T)-action on T is transitive.

Proof. Let mZ ⊆ Z = Pic(X) be the sublattice generated by O(ni) for all i. Then we may assume that m = n1

and m|ni for all i. Note that C := OX(m)∗ is the affine cone minus the origin over a rational normal curve of

degree m. Let us lift all O(ni)∗ to C. Then we get

T ' C ×C O(n2)∗ ×C . . .×C O(nr)∗ = (k2 \ {0})/Zm × T
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because C ' (k2 \ {0})/Zm and O(ni)∗ are trivial over C for all i.

Further, the morphism π : T → T is given by invertible regular functions on T. Since there are no such

(non-constant) functions on (k2 \ {0})/Zm, π is Aut(T)-equivariant. The transitivity statement is evident. �

Let Autf (T) ⊆ Aut(T) be the subgroup which preserves the fibers of π from Lemma 2.6. Then Autf (T) can

be identified with the space of regular maps T → Aut((k2 \ {0})/Zm) (whose images contain the identity map

id ∈ Aut((k2 \ {0})/Zm)) and hence is a closed subgroup in Aut(T). The same holds for the group

Autuf (T) := SAut((k2 \ {0})/Zm)(k[T ]) ⊆ Autf (T) ∩ SAut(T).

Lemma 2.7. In the notation of Lemma 2.6, the group SAut(T) acts fiberwise inf. trans. on π : T → T . More

precisely, let P1, . . . , Pk and Q1, . . . , Qk be distinct points such that π(Pi) = π(Qi) for all i. Then there exists

g ∈ Autuf (T) such that g(Pi) = Qi for all i.

Proof. The group SAut((k2 \ {0})/Zm) acts inf. trans. on (k2 \ {0})/Zm. Let us take gi ∈ SAut((k2 \ {0})/Zm)

such that gi(Pi) = Qi for all i.

Further, if h : kN → SAut((k2 \ {0})/Zm) is a regular map, then any algebraic subgroup

Ga ⊆ SAut((k2 \ {0})/Zm) defines a regular map kN+1 → SAut((k2 \ {0})/Zm) as follows:

(kN , g) 7→ h(kN )g, g ∈ Ga.

In particular, we may assume that the above gi ∈ h(kN ) for all i and some N and h. Let us also pick up a regular

map p : T → kN with h ◦ p(Pi) = gi for all i. Then h ◦ f defines an element g ∈ Autuf (T) such that g(Pi) = Qi for

all i. �

Lemmas 2.6, 2.7 provide T = (k2 \ {0})/Zm × T with the inf. trans. model (k2 \ {0})/Zm × kr−1.

2.8. Proof of Proposition 2.4: general case. Let X be a smooth projective variety. We assume that there

exists a flat morphism π : X → Y onto a (normal) projective variety Y such that the general fiber F of π is

isomorphic to P1 and π admits a section over an open subset in Y . Let L ∈ Pic(X) be such that L
∣∣
F

= O(m) for

some m 6= 0. Take also a very ample line bundle H ∈ Pic(Y ) and form a principal toric bundle T̂ := L∗×X π
∗(H∗)

over X. Then we get the following relative version of Lemma 2.7:

Lemma 2.9. For the natural projection πH : T̂ → H∗, the group SAut(T̂ ) acts fiberwise inf. trans. on T̂ .

Proof. Note that the general fiber of πH equals (k2 \ {0})/Zm and H∗ is quasi-affine (cf. the proof of Lemma 2.6).

Also, the assumption on π implies that the fibration πH : T̂ → H∗ is birationally trivial over an open subset

U ⊆ H∗. Then we get the exact situation of 2.5, with T replaced by U , T replaced by (k2 \ {0})/Zm × U , and

π : T→ T replaced by πH : (k2 \ {0})/Zm ×U → U . The same argument as in the proof of Lemma 2.7 shows that

the group G := Autf ((k2 \{0})/Zm×U) acts fiberwise inf. trans. on (k2 \{0})/Zm×U (with respect to projection

πH). It remains to show that any g ∈ Ga ⊆ G extends to an element in Aut(T̂ ) (then it will be automatically from

SAut(T̂ )).

Obviously, g induces a birational automorphism of T̂ , with possible poles contained in S := H∗ \ U . However,

since H∗ is quasi-affine, there exists a regular function fS ∈ OH∗ such that the vector field fS∂/∂t (for the vector
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field ∂/∂t generated by Ga 3 g) has no poles on T̂ . Then, since ∂/∂t is locally nilpotent, we can choose fS to be

such that Ga = exp (k∂/∂t) ' exp (fSk∂/∂t) (cf. [8, the proof of Lemma 8.2] for a similar argument). �

Let TX be as in Proposition 2.4. Because of the condition (1) in Theorem 2.3, summing up the constructions

in 2.5 and Lemma 2.9, we arrive at n (birationally trivial) projections πHi
: TX → H∗i , with generic fiber of

πHi
equal (k2 \ {0})/Zmi

× Ti and Ti being a torus, dimTi = n − 1. Furthermore, for each i there are groups

Autuf,i(TX) ⊆ SAut(TX), similar to Autuf (T) from 2.5, acting fiberwise with respect to πHi
(Autuf,i(TX)-action is

trivial on the Ti-factor of the general fiber of πHi
). Let AutH(TX) ⊆ SAut(TX) be the (closed) subgroup generated

by Autuf,i(TX) for all i.

Now, pick up the point ζ ∈ X as in Theorem 2.3, identify ζ with a (generic) point on TX , and put Oζ :=

AutH(TX) · ζ. Proposition 2.4 now follows from

Lemma 2.10. The group AutH(TX) acts inf. trans. on Oζ . Moreover, we have TX ≈ Oζ × Ts, where Ts is a

torus. In particular, TX is stably b-inf. trans.

Proof. The group AutH(TX) is irreducible as an (infinite dimensional) algebraic variety (see e.g. [18] for the general

argument). Note also that for any P ∈ Oζ , those g ∈ AutH(TX) which map P to a given open subset in TX form

an open subgroup in AutH(TX). In particular, every πHi
determines an open subgroup Ui,P ⊆ AutH(TX) which

maps P to a generic fiber of πHi
.

Let {P1, . . . , Pk}, {Q1, . . . , Qk} be two finite subsets in Oζ . For P := Pj , Qj in the preceding discussion, we

obtain an open locus
⋂
j U · Pj =

⋂
j U · Qj in Oζ , where U :=

⋂
i,j(Ui,Pj ∩ Ui,Qj ) is open and non-empty due to

the irreducibility of AutH(TX). Let z1, . . . , zN be local analytic coordinates on U . We have ∂/∂zi ∈ TTX ,ζ for

all i due to the condition (2) in Theorem 2.3. We also have exp (k∂/∂zi) ⊂ AutH(TX) for all i (cf. the proof of

Lemma 2.9). Then, similar to the proof of Lemma 2.7, we find g := gi1 . . . gin for some gij ∈ Autf,ij (TX), such

that g(Pj) = Qj for all j. Hence AutH(TX) acts inf. trans. on Oζ .

Further, complete ∂/∂zi to a basis on TTX ,ζ , {∂/∂z1, . . . , ∂/∂zN , ∂/∂zN+1, . . . , ∂/∂z2n}. Vectors ∂/∂zi, i ≥
N + 1, span the tangent space TTs,ζ , where Ts 3 ζ is a torus whose descend to X determines a toric bundle, trivial

on each fiber Fi (see Theorem 2.3, (2)). In particular, Ts ⊂ Ti for all i, and Ts is transversal to Oζ . The latter

implies that TX ≈ Oζ × Ts. �

Remark 2.11. Conversely, in view of Theorem 2.3, given a b-inf. trans. variety X there exist dimX cancellations

of X. Indeed, for general point ζ ∈ X we can find dimX tangent vectors spanning TX,ζ , such that each vector

generates a copy of Ga =: Gi ⊆ SAut(X), 1 ≤ i ≤ n (cf. the proof of Lemma 2.10). Let G ⊆ SAut(X) be the

subgroup generated by the groups G2, . . . , Gn. Then we have X ≈ G1 ×G · ζ.

3. Examples

Here we collect several examples and properties of (stably) b-inf. trans. varieties.

3.1. Quotients. Let us start with the projective space Pn, n ≥ 2, and a finite group G ⊂ PGLn+1(k). Notice

that the quotient Pn/G is stably b-inf. trans. Indeed, let us replace G by its central extension G̃ acting linearly

on V := kn+1, so that V/G̃ ≈ Pn/G× P1. Further, form the product V × V with the diagonal G̃-action, and take
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the quotient V ′ := (V × V )/G̃. Then, projecting on the first factor we get V ′ ≈ V × V/G̃, and similarly for the

second factor. This implies that V ′ admits 2n+ 2 cancellations (cf. Theorem 2.2). Hence V ′ is stably b-inf. trans.

by Theorem 2.3. The argument just used can be summarized as follows:

Lemma 3.2. Let X → S be a Pm-fibration for some m ∈ N. Then the product X ×S X ≈ X × km admits 2m

algebraically independent cancellations over S.

Proof. Note that X ×S X has two projections (left and right) onto X, both having a section (the diagonal ∆X ⊂
X ×S X), hence the corresponding Pm-fibrations are birational (over S) to X × km. This gives 2m algebraically

independent cancellations over S. �

Corollary 3.3. Assume that X carries a collection of distinct birational structures of Pmi-bundles, πi : X → Si,

with the condition that the tangent spaces of generic fibers of πi span the tangent space of X at the generic point.

Then X is stably b-inf. trans.

Proof. Indeed, after multiplying by the maximum of mi we may assume that all Pmi-bundles provide with at least

2mi different cancellations (see Lemma 3.2). We can now apply Theorem 2.3. �

Remark 3.4. It seems plausible that given an inf. trans. variety X and a finite group G ⊂ Aut(X), variety X/G

is stably b-inf. trans. (though the proof of this fact requires a finer understanding of the group SAut(X)). At

this stage, note also that if G is cyclic, then there exists a G-fixed point on X. Indeed, since X is unirational (cf.

Section 1), it has trivial algebraic fundamental group πalg
1 (X) (see [13]). Then, if the G-action is free on X, we get

G ⊂ πalg
1 (X/G) = {1} for X/G smooth unirational, a contradiction. This fixed-point-non-freeness property of X

relates X to homogeneous spaces, and it would be interesting to investigate whether this is indeed the fact, i.e., in

particular, does X, after stabilization and passing to birational model, admit a uniformization which is a genuine

(finite dimensional) algebraic group?1)

3.5. Cubic hypersurfaces. Let X3 ⊂ Pn+1, n ≥ 2, be a smooth cubic. Then

Proposition 3.6. X3 is stably b-inf. trans.

Proof. Let L ⊂ X3 be a line and π : X3 99K Pn−1 the linear projection from L. Let us resolve the indeterminacies

of π by blowing up X3 at L. We arrive at a smooth variety XL together with a morphism πL : XL → Pn−1 whose

general fiber is P1 (' a conic in P2). Varying L ⊂ X3, we then apply Lemma 3.2 and Corollary 3.3 to get that X3

is stably b-inf. trans. �

1)This question was suggested by J.-L. Colliot-Thélène in connection with Conjecture 1.4. However, there are reasons to doubt the

positive answer, since, for example, it would imply that X is (stably) birationally isomorphic to G/H, where both G, H are (finite

dimensional) reductive algebraic groups. Even more, up to stable birational equivalence we may assume that X = G′/H′, where H′

is a finite group and G′ is the product of a general linear group, Spin groups and exceptional Lie groups. The latter implies, among

other things, that there are only countably many stable birational equivalence classes of unirational varieties, but we could not develop

a rigorous argument to bring this to contradiction.
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3.7. Quartic hypersurfaces. Let X4 ⊂ Pn, n ≥ 4, be a quartic hypersurface with a line L ⊂ X4 of double

singularities. Then

Proposition 3.8. X4 is stably b-inf. trans.

Proof. Consider the cone X4 ⊂ Pn+1 over X4. Then X4 contains a plane Π of double singularities. Pick up

a (generic) line L′ ⊂ Π and consider the linear projection X4 99K Pn−1 from L′. This induces a conic bundle

structure on X4, similarly as in the proof of Proposition 3.6, and varying L′ in Π as above we obtain that X4 is

stably b-inf. trans. Then, since X4 ≈ X4 × k, Proposition 3.8 follows. �

3.9. Complete intersections. Let X2·2·2 ⊂ P6 be the complete intersection of three quadrics. Then

Proposition 3.10. X2·2·2 is stably b-inf. trans.

Proof. Let L ⊂ X2·2·2 be a line and XL → X2·2·2 the blowup of L. Then the threefold XL carries the structure of

a conic bundle (see [7, Ch. 10, Example 10.1.2, (ii)]). Now, varying L and applying the same arguments as in the

proof of Proposition 3.6, we obtain that X2·2·2 is stably b-inf. trans. �

Remark 3.11. Fix n, r ∈ N, n � r, and a sequence of integers 0 < d1 ≤ . . . ≤ dm, m ≥ 2. Let us assume that

(n− r)(r + 1) ≥
m∑
i=1

(
di + r

r

)
. Consider the complete intersection X := H1 ∩ . . . ∩Hm of hypersurfaces Hi ⊂ Pn

of degree di. Then it follows from the arguments in [12] that X contains a positive dimensional family of linear

subspaces ' Pr. Moreover, X is unirational, provided X is generic. It would be interesting to adopt the arguments

from the proofs of Propositions 3.6, 3.8 and 3.10 to this more general setting in order to prove that X is stably

b-inf. trans.

Remark 3.12. Propositions 3.6, 3.8 and 3.10 (cf. Remark 3.11) provide an alternative method of proving unira-

tionality of complete intersections (see [7, Ch. 10] for recollection of classical arguments). Note also that (generic)

X2·2·2 is non-rational (see for example [19]), and (non-)rationality of the most of other complete intersections con-

sidered above is not known. At the same time, verifying stable b-inf. trans. property of other (non-rational) Fano

manifolds (cf. [7, Ch. 10, Examples 10.1.3, (ii), (iii), (iv)]) is out of reach for our techniques at the moment.
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