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CURVES OF LOW DEGREES ON PROJECTIVE
VARIETIES

OLIVIER DEBARRE

We work over the field of complex numbers. For X ¢ P a smooth
projective variety, we let €5 (X) C Hilb(X) be the (quasi-projective)
moduli space of smooth, genus-g, degree-d curves on X.

We want to explain how theses spaces can be used, in very specific
cases, to study the geometry of X. One of the first striking example of
this was the proof by Clemens and Griffiths of the non-rationality of
smooth cubic 3-folds using the (smooth projective) surface parametriz-
ing the lines that it contains.

We will start with this particular example, then move on to cubic
4-folds, then to Fano varieties of degree 10.

The general philosophy is that when the degree of a hypersurface X
is very small with respect to its dimension, spaces of rational curves
on X tend to become more and more “rational”; it is known that
they have a rationally connected compactification, for example ([HS]).
Going in another direction, I will describe how these spaces can help
understand the geometry of the variety X in a few particular cases:
cubic hypersurfaces of dimension 3 or 4, and Fano varieties of degree
10.

1. CURVES ON CUBIC 3-FOLDS

Recall that the mazimal rationally connected fibration (mrc fibration
for short) of a smooth (complex) variety X is a rational dominant map
p: X --» R(X) such that for z € R(X) very general, any rational
curve in X that meets p~'(2) is contained in p~!(2). The general fibers
are proper and rationally connected, and the fibration p is unique up
to birational equivalence.

Let X C P* be a general (although some results are known for any
smooth X)) cubic hypersurface. The intermediate Jacobian J(X) :=
H>Y(X)V/H3(X,Z) is a 5-dimensional principally polarized abelian va-
riety. We have:
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o for g =0or d <5, €](X) is integral of dimension 2d ([HRS3],
Theorem 1.1);

e for d <5, aj : €7(X) — J(X) is the mrc fibration ([HRS2],
Theorem 1.1);

o for d > 4, aj : €Y(X) — J(X) is dominant with irreducible
general fibers.

It is natural to ask whether aj : €3(X) — J(X) is the mrc fibration

for all d (i.e., are the fibers rationally connected?).

1.1. Lines.
e ©Y(X) is a smooth projective irreducible surface of general type;
e the image of aj : €7 (X) — J(X) is a surface S with minimal
class #%/3! and S — S is a theta divisor;
e aj induces an isomorphism Alb(%?(X)) ~ J(X) ([CG]).

The second item yields a proof of Torelli: the period map 23> — ot
is injective (the dimension of 27 is 10).

1.2. Conics.

° ?S(X ) is a smooth projective irreducible fourfold;

e the image of aj : ?S(X) — J(X) is a P?-bundle over S (a conic
is uniquely determined by a line in X and a 2-plane containing
the line).

1.3. Plane cubics.

. ?;(X) is isomorphic to G(2, P4);
e the Abel-Jacobi map is constant.

1.4. Twisted cubics.

e aj : ¢3(X) — J(X) is birational to a P%-bundle over a theta
divisor ([HRS2], §4).

1.5. Elliptic quartics.

e aj: ¢} (X) — J(X) is birational to a PS-bundle over S ([HRS2],
§4.1).

1.6. Normal rational quartics.

e aj: ¢ (X) — J(X) is dominant and the general fiber is bira-
tional to X ([IMa], Theorem 5.2), hence unirational.
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1.7. Normal elliptic quintics.
e ¢ (X) is an irreducible 10-fold;
e there is a factorization ([MT1], Theorem 5.6; [IMa], Theorem
3.2)
aj: Ta(X) S M(2,0,2) 2 J(X),
where
— M(2;0,2) is some component of the moduli space of rank-2
stable vector bundles on X with ¢; = 0 and ¢y, = 2;
— «a is a P°-bundle over an open subset of M (2;0,2);
— (3 is birational (proved in [IMa] via ingenious geometrical
constructions).

The map « is obtained via the Serre construction: to C' € €3 (X), one
can associate by the Serre construction a stable rank-2 vector bundle
E- on X with Chern classes ¢; = 0 and ¢; = 2 such that C is the
zero-locus of a section of E¢(1).

The fibers of a are P(H°(X, Ec(1))) ~ P® hence the Abel-Jacobi
map factors through a.

According to Murre, the Chow group of algebraic 1-cycles of fixed
degree on X3 modulo rational equivalence is canonically isomorphic to
J(X). The map (3 can then be defined directly as £ — co(E).

1.8. Normal elliptic sextics.
e ¢} (X) is an irreducible 12-fold;
e aj: 63 (X) — J(X) is dominant and the general fiber is ratio-
nally connected ([V], Theorem 2.1).

1.9. Fano 3-folds X, of degree 14 and index 1. There is a very
interesting relationship with Fano 3-folds X4 of degree 14 and index 1
(IMT1], [IMa], [K]). They are obtained as linear sections of G(2,6) C
P4 by a P?. N

Let C' € 62(X3) and let 7 : X — X be its blow-up, with exceptional
divisor 2. We have

—Kg =—1"Kx, — E1£2W*H —FE.

XSli_n

This linear system induces a morphism X — P* which is a small
contraction ¢ onto (the normalization of) its image. Its non-trivial
fibers are the strict transforms of the 25 lines bisecant to C': the divisor
E is p-ample hence there is a flop

X:)’Zgi)XgLXvé,

where )Nfé is smooth projective and x(FE) is ¢'-antiample.
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We have p(X}) = 2. Since the extremal ray gencrated by the class of
curves contracted by ¢’ has K )zé—degree 0 and K, is not nef (— Ky

_ 5
¢ H ), the other extremal ray is K ~é—negative and defines a contraction
7 )?é — X} and one checks:
e X} is a smooth Fano threefold X4 of index 1, with Picard group
generated by H' := —Kx;;
e 7' is the blow-up of an elliptic quintic curve ¢’ C X3, with
exceptional divisor £’ = 5™ H — 3x.(F) and X*ﬂ',*HllE TH —
4F.

Conversely, given an elliptic quintic curve C” in a X4, one can construct
a quintic C' in an X3. In other words, we have a birational isomorphism

(551<'%) -2 6551(3{14)

between 20-dimensional varieties. We have:

e The intermediate Jacobians of X3 and Xy, are isomorphic (be-
cause J(X3) x J(C) =~ J(X14) x J(C"), J(X3) is not a product,
and J(X3) and J(Xi4) have same dimension). Since we have
Torelli for X3, the X3 obtained from C" C X4 is uniquely de-
termined.

e The variety Xj4 only depends on E¢ (Kuznetsov proves in [K]
that P(.7|x,,) is obtained by a flop of P(E¢)).

So we get a commutative diagram

dim. 20 CHA3) ¢ ——————~- + 64 (214) dim. 20
P®—bundle J
dim. 15 M, (2;0,2) . 24 dim. 15

/
dim. 10 23

.

The map ~ is actually an isomorphism of stacks and the fiber of
(between stacks) at [X3] is the (quasi-projective) moduli space of locally
free rank-2 stable E such that ¢;(E) = 0 and H'(X3, E(—1)) = 0
(instanton bundles), an open subset of J(X3) ([K], Theorem 2.9).
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2. CURVES ON CUBIC 4-FOLDS

Let Y C P® be a general cubic hypersurface. Since we are in even
dimension, there is no intermediate Jacobian.

The variety €9(Y) is integral of dimension 3d + 1 ([HRS3], Theorem
1.1 again). To study these varieties, one could use, instead of the
Abel-Jacobi map, their mrc fibration ([dJS]). Here is what is known,
or conjectured:

o 2(Y) is a symplectic 4-fold ([BD]) hence is its own reduction;

e the map 43 (Y) --+ (V) given by residuation is a P3-bundle
so this is the mrc fibration;

e (V) is uniruled (a general cubic curve lies on a unique cubic
surface and moves in a 2-dimensional linear system on it);

e there is a map €.(Y) --» _Z(Y) (where # (V) — (P®)Y is the
relative intermediate Jacobian of smooth hyperplane sections
of V) whose general fibers are these cubics (§1.6) hence are
unirational; moreover, ¢ (Y') should be non-uniruled (see also
Example 2.2 below), so this should be the mrc fibration;

e for d > 5 odd, there is ([dJS], Theorem 1.2; [KM]) a holomor-
phic 2-form on (a smooth nonsingular model of) €3 (Y") which
is non-degenerate at a general point. In particular, €3 (Y) is
not uniruled.

2.1. Constructing symplectic forms on moduli spaces. Mukai
proved in 1984 that any moduli space of simple sheaves on a K3 or
abelian surface has a closed non-degenerate holomorphic 2-form : the
tangent space to the moduli space .Z at a point [.#] representing a
simple sheaf % on a smooth projective variety Y is isomorphic to
Ext'(.%,.7). The Yoneda coupling

Ext'(#, %) x Ext'(F, F) — Ext*(F,F)

is skew-symmetric whenever [.#] is a smooth point of the moduli space.
When Y is a symplectic surface S with a symplectic holomorphic form
w € HY(S,0%), Mukai composes the Yoneda coupling with the map

Ext?(Z, F) — H(S,05) % H*(S,0%) = C,

and this defines the symplectic structure on .#y,,.
Over an n-dimensional variety Y such that h%7"2(Y) # 0, we

e pick a nonzero element w € H”*q*Q(Y, Oy 9);
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e use the exterior power At(.#)" € Ext!(#,.7 ® Qf) of the
Atiyah class' At(F) € Ext'(#,.7 @ O});
to define

F)\doe
Ext}(F, 7) 0 g7, 7 @ QL) 2

HT2(Y,QL) =2 H™(Y, Q%) ~ C.
Composing the Yoneda coupling with this map provides a closed (pos-
sibly degenerate) 2-form «, on the moduli space ..

Example 2.1. Since h'3(Y") = 1, the construction provides a (unique)
2-form on every moduli space of sheaves on Y. Kuznetsov & Mark-
ouchevitch use this construction in a round-about way to produce a
symplectic structure on the (smooth) fourfold €(Y) of lines L C YV
(originally discovered by Beauville and Donagi by a deformation argu-
ment; the simple-minded idea to look at sheaves of the form & does
not work).

Example 2.2. Let .45 be the (quasi-projective) moduli space of sheaves
on Y of the form i, F, where i : X — Y is a non-singular hyperplane

section of Y and [E] € Mx(2;0,2). By §1.7, A5 is a torsor under

the (symplectic) relative intermediate Jacobian ¢y of smooth hyper-

plane sections of Y. The Donagi-Markman symplectic structure ([DM],

8.5.2) on _Zy induces a symplectic structure on .45 which should be the

same as the Kuznetsov-Markouchevitch structure ([MT2]; [KM], Theo-

rem 7.3 and Remark 7.5). Note that since we do not know whether the

Donagi-Markman 2-form on _#y extends to a smooth compactification,

we cannot deduce that ¢y is not uniruled.

Example 2.3. Let X7, be the smooth Fano fourfold obtained by inter-
secting G(2, V;) in its Pliicker embedding by a general hyperplane and
a general quadric. Then h*!(X{,) = 1. The Hilbert scheme ?S(X 1) of
(possibly degenerate) conics in X{, is smooth, hence it is endowed, by
the construction above, with a canonical global holomorphic 2-form.
Since 65 (X{,) has dimension five, this form must be degenerate.

Let A:Y — Y xY be the diagonal embedding and let A(Y)®? C Y xY be the
closed subscheme defined by the sheaf of ideals fg(y). Since JA(y)/ﬂi(Y) ~ Qy,
we have an exact sequence

0 — A*Qy — ﬁA(Y)@) — A*ﬁy — O
If .7 is a locally free sheaf on Y, we obtained an exact sequence
0= F @0y = pru(pz(F @ Opyy)) = F — 0.

hence an extension class Atg € Ext'(%,.Z @ Qy). The same construction can be
extended to any coherent sheaf on Y by working in the derived category (Illusie).
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There is a naturally defined rational map
—0
C(Xip) ——» P(H(Ixy,(2)) ~ P°

whose image a sextic EPW hypersurface Zxi C P (see [O1] for the
definition of Eisenbud-Popescu-Walter (EPW for short) sextics). In
the Stein factorization

%QO(XfO) - Yxfo - ZXilO,

the projective variety Yy is a smooth fourfold over which €3(X7) is
(essentially) a smooth fibration in projective lines. Thus the 2-form on
€Y(X7,) thus descends to Yxa and this makes Yy into a holomorphic
symplectic fourfold ([IM2]; originally [O1]) called a double EPW sextic.

2.2. Periods for cubic 4-folds. Since Y has even dimension, it has
no intermediate Jacobian, but an interesting Hodge structure:
HYY, Clpri = HYP(Y) & H**(V)pin & H>(Y)
dimensions: 1 20 1

with period domain
7% = (] € P | Qw,w) = 0, Q(w, @) > 0},
a bounded symmetric domain of type IV. We get a period map
24— 9PT

where the discrete arithmetic group I' can be explicitely described.
Voisin proved that it is injective and its (open) image was explicitly

described in [L].

2.3. Periods for cubic 3-folds. We can construct another period
map for cubic threefolds: to such a cubic X C P*, associate the cyclic
triple cover Yy — P* branched along X. It is a cubic fourfold, hence
this construction defines a map 23 — 2%°/T.

However, because of the presence of an automorphism of Yy of order
3, we can restrict the image and define a period map (Allcock-Carlson-
Toledo)

%3 N @10/F/7
where
P = {we P | Qw,w) <0} ~BY

and the discrete arithmetic group I'' can be explicitely described. Again,
it is an isomorphism onto an explictily described open subset of 21°/T".
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3. FANO VARIETIES OF DEGREE 10
We define, for k € {3,4,5}, a degree-10 Fano k-fold by
XE =G(2,V5) NP N Q c P(A*VR),

where P**4 is a general (k+4)-plane and Q a general quadric. Let 2}
be the moduli stack for smooth varieties of type X,

Enriques proved that all (smooth) X3,, X}, and X7, are unirational.
A general X3 is not rational, whereas all (smooth) X7, are rational
(Semple, 1930). Some smooth X7, are rational (Prokhorov), but the
rationality of a general X}, is an open question.

We have

IX{CO(Q) ~ CQ D ‘/5,
where V5 corresponds to the rank-6 Plicker quadrics £, : w — wAwAv.
In the 5-plane P (1 Xk, (2)), the degree-(k+5) hypersurface corresponding
to singular quadrics decomposes as

(k—=1)P(V5) + Z;/qcoa
where Z;/ffo is an EPW seatic ([IM2], §2.2; this is indeed the (projective)
dual of the sextic defined in Example 2.3 when k = 4).
It &% is the 20-dimensional moduli space of EPW sextics, we get
morphisms
epw® : XK — EPW
which are dominant ([IM2], Corollary 4.17). Note that
dim(23) = 25,
dim(23) = 24,
dim(27) = 22.

Proposition 3.1 (Debarre-Iliev-Manivel). For a general EPW sextic
Z C P(Vs), with dual Z¥ C P(V’), the fiber (epw®) 1 ([Z]) is isomor-
phic to the smooth surface Sing(Z").

3.1. Gushel degenerations. The link between these Fano varieties
of various dimensions can be made through a construction of Gushel
analogous to what we did with cubics.

Let CG C P(C @ A%V;) be the cone, with vertex v = P(C), over
the Grassmannian G(2,Vs). Intersect CG with a general quadric 2 C
P(C & A?V;) and a linear space P** to get a Fano variety Z* of
dimension k. There are two cases:

e cither v ¢ P*™ in which case Z* is isomorphic to the inter-
section X}, of G(2,Vs) with the projection of P*™ to P(A%V3)
and a quadric;
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e orv € P* in which case P¥** is a cone over a P**2 C P(A2V53)
and Z* is a double cover X% of G(2, Vs) N P**3 branched along

its intersection XJ5 ' with a quadric.

The second case is a specialization of the first, and the EPW sextics
Zxr from the first case degenerate to the sextics Z Xk from the second
case. Moreover, in the second case, the sextics ZXé and ZXic(;l are the
same.

Let 2% be the moduli stack for smooth varieties of type XF, and
their Gushel degenerations. The Gushel constructions yields mor-
phisms 2% — 22" and such that the diagrams

k k+1
_
20 &

epwk lepwgq
EPW

commute.

We can perform a ““double Gushel construction” as follows. Let
CCG C P(C? ® A*V;) be the cone, with vertex L = P(C?), over
the Grassmannian G(2,Vs). Intersect CCG with a general quadric
Q C P(C?* @ A*Vs) and a codimension-2 linear space P? to get a Fano
variety Z of dimension 6.

o If LNP? = &, the variety Z is smooth of type 233.

o If L C P in which case P? is a cone over a P” C P(A?V3), the
corresponding variety Zp meets L at two points p and ¢, and the
projection from L induces a rational conic bundle Zy --+ Wg :=
G(2,V5) NP7, undefined at p and ¢, whose discriminant locus is
a threefold X3,. Blowing up these two points, we obtain a conic
bundle Z) — W2 with two disjoint sections corresponding to
the two exceptional divisors. These two sections trivialize the
double étale cover X;, — X7, of the discriminant.

We call the singular variety Zy a double-Gushel degeneration. If we let

yZG be the moduli stack for smooth varieties of type X7, and their
Gushel and double-Gushel degenerations, we obtain a commutative
diagram

3 4 5
2, ————— g — Lo

vl
epw? ePW g

EPW .

Question 3.2. Is epw{,, proper with general fiber isomorphic to P*?
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Period maps. Both H?(X3 Q) and H?(X®, Q) are 20-dimensional
and carry Hodge structures of weight 1. This gives rise to period maps
O X% =y and " X0 — .

By [DIM], the general fibers of ©® are unions of proper surfaces that
come in pairs:
o Fxs , isomorphic to €3 (X},)/¢ and to Sing(Zy; );
10
o F%; , the analogous surface for any line-transform of X
10

In particular, by Proposition 3.1, there is a commutative diagram

23 LWS> EPW ————— EPW [duality

fQ{lOa

where the map ¢ is generically finite (presumably birational) onto its
image. Since J(X3,) is isomorphic to the Albanese variety of the surface
€2(X3,) ([Lo]), the map g is defined by sending the class of an EPW
sextic Z to the Albanese variety of the canonical double cover of its
singular locus (the resulting principally polarized abelian varieties are
isomorphic for Z and ZV).

Theorem 3.3. The image of ¢ and the image of ©° have same clo-
sures.

Proof. This is proved using a double Gushel degeneration (see §3.1):
with the notation above, one proves that J° (20) is still a 10-dimensional
principally polarized abelian variety which is a limit of intermediate
Jacobians of Fano fivefolds of type 233, hence belongs to the closure
of Im(g°).

Since, by Lefschetz theorem, we have H>(W,, Q) = H*(W,, Q) = 0,
the following lemma implies that the intermediate Jacobians J5(20)
and J3(X3)) are isomorphic. This proves already that the image of ©?
is contained in the closure of the image of ©°.

Lemma 3.4. Let Z and W be smooth projective varieties satisfying
HYW,Q) = H*2(W,Q) =0. Let 7 : Z — W be a conic bundle with
smooth irreducible discriminant divisor X C W. Assume further that
7Y X) is reducible. There is an isomorphism of Hodge structures

H*(Z,Z)/tors ~ H" (X, Z)/tors.

To finish the proof of the theorem, we prove, by computing the kernel
of its differential, that the fibers of ©® have dimension at least 5. [



CURVES OF LOW DEGREES ON PROJECTIVE VARIETIES 11

Questions 3.5. Is ° equal to p o epw®?

Question 3.6. Can one extend epw® to the family of nodal X3, with
values in the compactifications studied in [O2]? Can one extend g to
these compactifications?

[dJS]
[HRS1]
[HRS2]
[HRS3]
[HS]
[IM1]
[IM2]

[IMa]
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