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CURVES OF LOW DEGREES ON PROJECTIVE
VARIETIES

OLIVIER DEBARRE

We work over the field of complex numbers. For X ⊂ PN a smooth
projective variety, we let C g

d (X) ⊂ Hilb(X) be the (quasi-projective)
moduli space of smooth, genus-g, degree-d curves on X.

We want to explain how theses spaces can be used, in very specific
cases, to study the geometry of X. One of the first striking example of
this was the proof by Clemens and Griffiths of the non-rationality of
smooth cubic 3-folds using the (smooth projective) surface parametriz-
ing the lines that it contains.

We will start with this particular example, then move on to cubic
4-folds, then to Fano varieties of degree 10.

The general philosophy is that when the degree of a hypersurface X
is very small with respect to its dimension, spaces of rational curves
on X tend to become more and more “rational”; it is known that
they have a rationally connected compactification, for example ([HS]).
Going in another direction, I will describe how these spaces can help
understand the geometry of the variety X in a few particular cases:
cubic hypersurfaces of dimension 3 or 4, and Fano varieties of degree
10.

1. Curves on cubic 3-folds

Recall that the maximal rationally connected fibration (mrc fibration
for short) of a smooth (complex) variety X is a rational dominant map
ρ : X 99K R(X) such that for z ∈ R(X) very general, any rational
curve in X that meets ρ−1(z) is contained in ρ−1(z). The general fibers
are proper and rationally connected, and the fibration ρ is unique up
to birational equivalence.

Let X ⊂ P4 be a general (although some results are known for any
smooth X) cubic hypersurface. The intermediate Jacobian J(X) :=
H2,1(X)∨/H3(X,Z) is a 5-dimensional principally polarized abelian va-
riety. We have:
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• for g = 0 or d ≤ 5, C g
d (X) is integral of dimension 2d ([HRS3],

Theorem 1.1);
• for d ≤ 5, aj : C g

d (X) → J(X) is the mrc fibration ([HRS2],
Theorem 1.1);
• for d ≥ 4, aj : C 0

d (X) → J(X) is dominant with irreducible
general fibers.

It is natural to ask whether aj : C 0
d (X)→ J(X) is the mrc fibration

for all d (i.e., are the fibers rationally connected?).

1.1. Lines.

• C 0
1 (X) is a smooth projective irreducible surface of general type;

• the image of aj : C 0
1 (X) → J(X) is a surface S with minimal

class θ3/3! and S − S is a theta divisor;
• aj induces an isomorphism Alb(C 0

1 (X)) ' J(X) ([CG]).

The second item yields a proof of Torelli: the period map X 3
3 → A5

is injective (the dimension of X 3
3 is 10).

1.2. Conics.

• C
0

2(X) is a smooth projective irreducible fourfold;

• the image of aj : C
0

2(X)→ J(X) is a P2-bundle over S (a conic
is uniquely determined by a line in X and a 2-plane containing
the line).

1.3. Plane cubics.

• C
1

3(X) is isomorphic to G(2,P4);
• the Abel-Jacobi map is constant.

1.4. Twisted cubics.

• aj : C 0
3 (X) → J(X) is birational to a P2-bundle over a theta

divisor ([HRS2], §4).

1.5. Elliptic quartics.

• aj : C 1
4 (X)→ J(X) is birational to a P6-bundle over S ([HRS2],

§4.1).

1.6. Normal rational quartics.

• aj : C 0
4 (X) → J(X) is dominant and the general fiber is bira-

tional to X ([IMa], Theorem 5.2), hence unirational.
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1.7. Normal elliptic quintics.

• C 1
5 (X) is an irreducible 10-fold;

• there is a factorization ([MT1], Theorem 5.6; [IMa], Theorem
3.2)

aj : C
1

5(X)
α−→M(2; 0, 2)

β−→ J(X),

where
– M(2; 0, 2) is some component of the moduli space of rank-2

stable vector bundles on X with c1 = 0 and c2 = 2;
– α is a P5-bundle over an open subset of M(2; 0, 2);
– β is birational (proved in [IMa] via ingenious geometrical

constructions).

The map α is obtained via the Serre construction: to C ∈ C 1
5 (X), one

can associate by the Serre construction a stable rank-2 vector bundle
EC on X with Chern classes c1 = 0 and c2 = 2 such that C is the
zero-locus of a section of EC(1).

The fibers of α are P(H0(X,EC(1))) ' P5 hence the Abel-Jacobi
map factors through α.

According to Murre, the Chow group of algebraic 1-cycles of fixed
degree on X3 modulo rational equivalence is canonically isomorphic to
J(X). The map β can then be defined directly as E 7→ c2(E).

1.8. Normal elliptic sextics.

• C 1
6 (X) is an irreducible 12-fold;

• aj : C 1
6 (X) → J(X) is dominant and the general fiber is ratio-

nally connected ([V], Theorem 2.1).

1.9. Fano 3-folds X14 of degree 14 and index 1. There is a very
interesting relationship with Fano 3-folds X14 of degree 14 and index 1
([MT1], [IMa], [K]). They are obtained as linear sections of G(2, 6) ⊂
P14 by a P9.

Let C ∈ C 1
5 (X3) and let π : X̃ → X be its blow-up, with exceptional

divisor E. We have

−K eX3
≡
lin
−π∗KX3 − E≡

lin
2π∗H − E.

This linear system induces a morphism X̃ → P4 which is a small
contraction ϕ onto (the normalization of) its image. Its non-trivial
fibers are the strict transforms of the 25 lines bisecant to C: the divisor
E is ϕ-ample hence there is a flop

χ : X̃3
ϕ−→ X̄3

ϕ′←− X̃ ′3,

where X̃ ′3 is smooth projective and χ(E) is ϕ′-antiample.
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We have ρ(X̃ ′3) = 2. Since the extremal ray generated by the class of
curves contracted by ϕ′ has K eX′3-degree 0 and K eX′ is not nef (−K eX′3 =

ϕ′∗H̄ ), the other extremal ray isK eX′3-negative and defines a contraction

π′ : X̃ ′3 → X ′3 and one checks:

• X ′3 is a smooth Fano threefold X14 of index 1, with Picard group
generated by H ′ := −KX′3

;
• π′ is the blow-up of an elliptic quintic curve C ′ ⊂ X ′3, with

exceptional divisor E ′ ≡ 5ϕ′∗H̄ − 3χ∗(E) and χ∗π′∗H ′≡
lin

7H −
4E.

Conversely, given an elliptic quintic curve C ′ in aX14, one can construct
a quintic C in an X3. In other words, we have a birational isomorphism

C 1
5 (X3) 99K C 1

5 (X14)

between 20-dimensional varieties. We have:

• The intermediate Jacobians of X3 and X14 are isomorphic (be-
cause J(X3)× J(C) ' J(X14)× J(C ′), J(X3) is not a product,
and J(X3) and J(X14) have same dimension). Since we have
Torelli for X3, the X3 obtained from C ′ ⊂ X14 is uniquely de-
termined.
• The variety X14 only depends on EC (Kuznetsov proves in [K]

that P(S |X14) is obtained by a flop of P(EC)).

So we get a commutative diagram

dim. 20 C 1
5 (X3) oo //_________

P5−bundle
��

C 1
5 (X14)

��

dim. 20

dim. 15 MX3(2; 0, 2)
γ

isom.
//

��

X14

δ
uujjjjjjjjjjjjjjjjjjjjjjj

��																		
dim. 15

dim. 10 X3
r�

%%JJJJJJJJJJJ

A5.

The map γ is actually an isomorphism of stacks and the fiber of δ
(between stacks) at [X3] is the (quasi-projective) moduli space of locally
free rank-2 stable E such that c1(E) = 0 and H1(X3, E(−1)) = 0
(instanton bundles), an open subset of J(X3) ([K], Theorem 2.9).
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2. Curves on cubic 4-folds

Let Y ⊂ P5 be a general cubic hypersurface. Since we are in even
dimension, there is no intermediate Jacobian.

The variety C 0
d (Y ) is integral of dimension 3d+ 1 ([HRS3], Theorem

1.1 again). To study these varieties, one could use, instead of the
Abel-Jacobi map, their mrc fibration ([dJS]). Here is what is known,
or conjectured:

• C 0
1 (Y ) is a symplectic 4-fold ([BD]) hence is its own reduction;

• the map C 0
2 (Y ) 99K C 0

1 (Y ) given by residuation is a P3-bundle
so this is the mrc fibration;
• C 0

3 (Y ) is uniruled (a general cubic curve lies on a unique cubic
surface and moves in a 2-dimensional linear system on it);
• there is a map C 0

4 (Y ) 99KJ (Y ) (where J (Y )→ (P5)∨ is the
relative intermediate Jacobian of smooth hyperplane sections
of Y ) whose general fibers are these cubics (§1.6) hence are
unirational; moreover, J (Y ) should be non-uniruled (see also
Example 2.2 below), so this should be the mrc fibration;
• for d ≥ 5 odd, there is ([dJS], Theorem 1.2; [KM]) a holomor-

phic 2-form on (a smooth nonsingular model of) C 0
d (Y ) which

is non-degenerate at a general point. In particular, C 0
d (Y ) is

not uniruled.

2.1. Constructing symplectic forms on moduli spaces. Mukai
proved in 1984 that any moduli space of simple sheaves on a K3 or
abelian surface has a closed non-degenerate holomorphic 2-form : the
tangent space to the moduli space M at a point [F ] representing a
simple sheaf F on a smooth projective variety Y is isomorphic to
Ext1(F ,F ). The Yoneda coupling

Ext1(F ,F )× Ext1(F ,F ) −→ Ext2(F ,F )

is skew-symmetric whenever [F ] is a smooth point of the moduli space.
When Y is a symplectic surface S with a symplectic holomorphic form
ω ∈ H0(S,Ω2

S), Mukai composes the Yoneda coupling with the map

Ext2(F ,F )
Tr−→ H2(S,OS)

∪ω−−→ H2(S,Ω2
S) = C,

and this defines the symplectic structure on Msm.
Over an n-dimensional variety Y such that hq,q+2(Y ) 6= 0, we

• pick a nonzero element ω ∈ Hn−q−2(Y,Ωn−q
Y );
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• use the exterior power At(F )∧q ∈ Extq(F ,F ⊗ Ωq
Y ) of the

Atiyah class1 At(F ) ∈ Ext1(F ,F ⊗ Ω1
Y );

to define

Ext2(F ,F )
At(F )∧q◦•−−−−−−→ Extq+2(F ,F ⊗ Ωq

Y )
Tr−→

Hq+2(Y,Ωq
Y )

∪ω−−→ Hn(Y,Ωn
Y ) ' C.

Composing the Yoneda coupling with this map provides a closed (pos-
sibly degenerate) 2-form αω on the moduli space M .

Example 2.1. Since h1,3(Y ) = 1, the construction provides a (unique)
2-form on every moduli space of sheaves on Y . Kuznetsov & Mark-
ouchevitch use this construction in a round-about way to produce a
symplectic structure on the (smooth) fourfold C 0

1 (Y ) of lines L ⊂ Y
(originally discovered by Beauville and Donagi by a deformation argu-
ment; the simple-minded idea to look at sheaves of the form OL does
not work).

Example 2.2. Let NY be the (quasi-projective) moduli space of sheaves
on Y of the form i∗E, where i : X → Y is a non-singular hyperplane
section of Y and [E] ∈ MX(2; 0, 2). By §1.7, NY is a torsor under
the (symplectic) relative intermediate Jacobian JY of smooth hyper-
plane sections of Y . The Donagi-Markman symplectic structure ([DM],
8.5.2) on JY induces a symplectic structure on NY which should be the
same as the Kuznetsov-Markouchevitch structure ([MT2]; [KM], Theo-
rem 7.3 and Remark 7.5). Note that since we do not know whether the
Donagi-Markman 2-form on JY extends to a smooth compactification,
we cannot deduce that JY is not uniruled.

Example 2.3. Let X4
10 be the smooth Fano fourfold obtained by inter-

secting G(2, V5) in its Plücker embedding by a general hyperplane and

a general quadric. Then h3,1(X4
10) = 1. The Hilbert scheme C

0

2(X4
10) of

(possibly degenerate) conics in X4
10 is smooth, hence it is endowed, by

the construction above, with a canonical global holomorphic 2-form.
Since C 0

2 (X4
10) has dimension five, this form must be degenerate.

1Let ∆ : Y → Y ×Y be the diagonal embedding and let ∆(Y )(2) ⊂ Y ×Y be the
closed subscheme defined by the sheaf of ideals I 2

∆(Y ). Since I∆(Y )/I 2
∆(Y ) ∼ ΩY ,

we have an exact sequence

0→ ∆∗ΩY → O∆(Y )(2) → ∆∗OY → 0.

If F is a locally free sheaf on Y , we obtained an exact sequence

0→ F ⊗ ΩY → p1∗(p∗2(F ⊗ O∆(Y )(2)))→ F → 0.

hence an extension class AtF ∈ Ext1(F , F ⊗ ΩY ). The same construction can be
extended to any coherent sheaf on Y by working in the derived category (Illusie).
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There is a naturally defined rational map

C
0

2(X4
10) 99K P(H0(IX4

10
(2)) ' P5

whose image a sextic EPW hypersurface ZX4
10
⊂ P5 (see [O1] for the

definition of Eisenbud-Popescu-Walter (EPW for short) sextics). In
the Stein factorization

C 0
2 (X4

10) 99K YX4
10
→ ZX4

10
,

the projective variety YX4
10

is a smooth fourfold over which C 0
2 (X4

10) is

(essentially) a smooth fibration in projective lines. Thus the 2-form on
C 0

2 (X4
10) thus descends to YX4

10
and this makes YX4

10
into a holomorphic

symplectic fourfold ([IM2]; originally [O1]) called a double EPW sextic.

2.2. Periods for cubic 4-folds. Since Y has even dimension, it has
no intermediate Jacobian, but an interesting Hodge structure:

H4(Y,C)prim = H1,3(Y ) ⊕ H2,2(Y )prim ⊕ H3,1(Y )
dimensions: 1 20 1

with period domain

D20 = {[ω] ∈ P21 | Q(ω, ω) = 0, Q(ω, ω̄) > 0},

a bounded symmetric domain of type IV. We get a period map

X 4
3 → D20/Γ

where the discrete arithmetic group Γ can be explicitely described.
Voisin proved that it is injective and its (open) image was explicitly
described in [L].

2.3. Periods for cubic 3-folds. We can construct another period
map for cubic threefolds: to such a cubic X ⊂ P4, associate the cyclic
triple cover YX → P4 branched along X. It is a cubic fourfold, hence
this construction defines a map X 3

3 → D20/Γ.
However, because of the presence of an automorphism of YX of order

3, we can restrict the image and define a period map (Allcock-Carlson-
Toledo)

X 3
3 → D10/Γ′,

where

D10 := {ω ∈ P10 | Q(ω, ω̄) < 0} ' B10

and the discrete arithmetic group Γ′ can be explicitely described. Again,
it is an isomorphism onto an explictily described open subset of D10/Γ′.
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3. Fano varieties of degree 10

We define, for k ∈ {3, 4, 5}, a degree-10 Fano k-fold by

Xk
10 := G(2, V5) ∩Pk+4 ∩ Ω ⊂ P(∧2V5),

where Pk+4 is a general (k+4)-plane and Ω a general quadric. Let X k
10

be the moduli stack for smooth varieties of type Xk
10.

Enriques proved that all (smooth) X3
10, X4

10, and X5
10 are unirational.

A general X3
10 is not rational, whereas all (smooth) X5

10 are rational
(Semple, 1930). Some smooth X4

10 are rational (Prokhorov), but the
rationality of a general X4

10 is an open question.
We have

IXk
10

(2) ' CΩ⊕ V5,

where V5 corresponds to the rank-6 Plücker quadrics Ωv : ω 7→ ω∧ω∧v.
In the 5-plane P(IXk

10
(2)), the degree-(k+5) hypersurface corresponding

to singular quadrics decomposes as

(k − 1)P(V5) + Z∨Xk
10
,

where Z∨
Xk

10
is an EPW sextic ([IM2], §2.2; this is indeed the (projective)

dual of the sextic defined in Example 2.3 when k = 4).
If E PW is the 20-dimensional moduli space of EPW sextics, we get

morphisms
epwk : X k

10 → E PW

which are dominant ([IM2], Corollary 4.17). Note that

dim(X 5
10) = 25,

dim(X 4
10) = 24,

dim(X 3
10) = 22.

Proposition 3.1 (Debarre-Iliev-Manivel). For a general EPW sextic
Z ⊂ P(V5), with dual Z∨ ⊂ P(V ∨5 ), the fiber (epw3)−1([Z]) is isomor-
phic to the smooth surface Sing(Z∨).

3.1. Gushel degenerations. The link between these Fano varieties
of various dimensions can be made through a construction of Gushel
analogous to what we did with cubics.

Let CG ⊂ P(C ⊕ ∧2V5) be the cone, with vertex v = P(C), over
the Grassmannian G(2, V5). Intersect CG with a general quadric Ω ⊂
P(C ⊕ ∧2V5) and a linear space Pk+4 to get a Fano variety Zk of
dimension k. There are two cases:

• either v /∈ Pk+4, in which case Zk is isomorphic to the inter-
section Xk

10 of G(2, V5) with the projection of Pk+4 to P(∧2V5)
and a quadric;
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• or v ∈ Pk+4, in which case Pk+4 is a cone over a Pk+3 ⊂ P(∧2V5)
and Zk is a double cover Xk

G of G(2, V5)∩Pk+3 branched along
its intersection Xk−1

10 with a quadric.

The second case is a specialization of the first, and the EPW sextics
ZXk from the first case degenerate to the sextics ZXk

G
from the second

case. Moreover, in the second case, the sextics ZXk
G

and ZXk−1
10

are the
same.

Let X k
G be the moduli stack for smooth varieties of type Xk

10 and
their Gushel degenerations. The Gushel constructions yields mor-
phisms X k

10 →X k+1
G and such that the diagrams

X k
10

//

epwk
''NNNNNNNNNNNNN X k+1

G

epwk+1
G

��

E PW

commute.
We can perform a “‘double Gushel construction” as follows. Let

CCG ⊂ P(C2 ⊕ ∧2V5) be the cone, with vertex L = P(C2), over
the Grassmannian G(2, V5). Intersect CCG with a general quadric
Ω ⊂ P(C2 ⊕ ∧2V5) and a codimension-2 linear space P9 to get a Fano
variety Z of dimension 6.

• If L ∩P9 = ∅, the variety Z is smooth of type X 5
10.

• If L ⊂ P9, in which case P9 is a cone over a P7 ⊂ P(∧2V5), the
corresponding variety Z0 meets L at two points p and q, and the
projection from L induces a rational conic bundle Z0 99K W 4

5 :=
G(2, V5)∩P7, undefined at p and q, whose discriminant locus is
a threefold X3

10. Blowing up these two points, we obtain a conic

bundle Ẑ0 → W 4
5 with two disjoint sections corresponding to

the two exceptional divisors. These two sections trivialize the

double étale cover X̃3
10 → X3

10 of the discriminant.

We call the singular variety Z0 a double-Gushel degeneration. If we let

X
5

GG be the moduli stack for smooth varieties of type X5
10 and their

Gushel and double-Gushel degenerations, we obtain a commutative
diagram

X 3
10

//

epw3
''OOOOOOOOOOOOO X 4

G

epw4
G

��

// X 5
GG

epw5
GGwwooooooooooooo

E PW .

Question 3.2. Is epw5
GG proper with general fiber isomorphic to P5?
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Period maps. Both H3(X3,Q) and H5(X5,Q) are 20-dimensional
and carry Hodge structures of weight 1. This gives rise to period maps

℘3 : X 3 → A10 and ℘5 : X 5 → A10.

By [DIM], the general fibers of ℘3 are unions of proper surfaces that
come in pairs:

• FX3
10

, isomorphic to C 0
2 (X3

10)/ι and to Sing(Z∨
X3

10
);

• F ?
X3

10
, the analogous surface for any line-transform of X3

10.

In particular, by Proposition 3.1, there is a commutative diagram

X 3
epw3

//

℘3
''NNNNNNNNNNNNN E PW //

℘

��

E PW /duality

℘̄
uullllllllllllllll

A10,

where the map ℘̄ is generically finite (presumably birational) onto its
image. Since J(X3

10) is isomorphic to the Albanese variety of the surface
C 0

2 (X3
10) ([Lo]), the map ℘ is defined by sending the class of an EPW

sextic Z to the Albanese variety of the canonical double cover of its
singular locus (the resulting principally polarized abelian varieties are
isomorphic for Z and Z∨).

Theorem 3.3. The image of ℘3 and the image of ℘5 have same clo-
sures.

Proof. This is proved using a double Gushel degeneration (see §3.1):

with the notation above, one proves that J5(Ẑ0) is still a 10-dimensional
principally polarized abelian variety which is a limit of intermediate
Jacobians of Fano fivefolds of type X 5

10, hence belongs to the closure
of Im(℘5).

Since, by Lefschetz theorem, we have H5(W4,Q) = H3(W4,Q) = 0,

the following lemma implies that the intermediate Jacobians J5(Ẑ0)
and J3(X3

10) are isomorphic. This proves already that the image of ℘3

is contained in the closure of the image of ℘5.

Lemma 3.4. Let Z and W be smooth projective varieties satisfying
Hk(W,Q) = Hk−2(W,Q) = 0. Let π : Z → W be a conic bundle with
smooth irreducible discriminant divisor X ⊂ W . Assume further that
π−1(X) is reducible. There is an isomorphism of Hodge structures

Hk(Z,Z)/tors ' Hk−2(X,Z)/tors.

To finish the proof of the theorem, we prove, by computing the kernel
of its differential, that the fibers of ℘5 have dimension at least 5. �
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Questions 3.5. Is ℘5 equal to ℘ ◦ epw5?

Question 3.6. Can one extend epw3 to the family of nodal X3
10 with

values in the compactifications studied in [O2]? Can one extend ℘ to
these compactifications?
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