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1. INTRODUCTION

These are notes taken from an overview talk given at the 2012 Simons Sympo-
sium Geometry Over Nonclosed Fields. The talk focused on uniruledness criteria and
their applications. One of the points made in the talk is that uniruledness criteria
can be useful even in the study of varieties that are known a priori not to contain
any rational curves. Two examples were given to illustrate this point.

• Assume we are given two normal, complex projective varieties X and Y,
where Y is not uniruled. Perhaps somewhat surprisingly, uniruledness
criteria apply to show that those components of Hom(X, Y) whose points
correspond to surjective morphisms are Abelian varieties. If Y is smooth,
their dimension can be bounded in terms of the Kodaira dimension κ(Y).
• Given a smooth family f : X → Y of canonically polarised manifolds over

a smooth quasi-projective base manifold Y, uniruledness criteria help to
bound the variation of f in terms of the (logarithmic) Kodaira-dimension
of Y.

The first item is discussed in detail in Section 2 below. We have chosen not to in-
clude any discussion of the moduli problems in this text because there are several
surveys available, including [KS06, Sect. 5], [Keb11].

Next, it was shown how uniruledness criteria help to study the geometry of
varieties that are uniruled or even rationally connected. In essence, we aim to
decompose a given variety into parts depending on “density” of rational curves.
More precisely, given a polarised projective manifold X, we show that the Harder-
Narasimhan filtration of the tangent sheaf TX induces a sequence of increasingly
fine “partial rational quotients”. This construction will be discussed in Section 3.
We list a number of relatively new results pertaining to the dependence of the
partial rational quotients on the choice of the polarisation, and to the relation be-
tween the partial rational quotients and the minimal model program. In spite of
the progress made, a full understanding of the geometric meaning of the partial
rational quotients is currently still missing.
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Miyaoka’s uniruledness criterion and other criteria. The prototypical uniruledness cri-
terion that we will be using most in this survey is Miyaoka’s generic semipositivity.

Theorem 1.1 (Miyaoka’s uniruledness criterion, [Miy87, Cor. 8.6]). Let X be a nor-
mal, complex, projective variety of dimension dim X ≥ 2, and C ⊂ X a general complete
intersection curve. Then X is smooth along C, and either X is uniruled or Ω1

X |C is a nef
vector bundle. �

Miyaoka’s criterion was shown using the Harder-Narasimhan filtration of TX
to exhibit a foliation along which the curve C can be deformed, in order to con-
struct rational curves via bend-and-break. Over C, an elementary introduction to
“deformation along a subsheaf” is found in the expository papers [KKL10, JK11].
The key ingredient in the construction of the partial rational quotients is a criterion
used to guarantee that leaves of a foliation are algebraic and rationally connected,
Theorem 3.3. This can be seen as a generalisation and improvement of Miyaoka’s
Theorem 1.1.

Other uniruledness criteria. For completeness’ sake, we mention a few other im-
portant criteria which were not discussed in the talk for lack of time. The most
relevant is probably the result of Boucksom–Demailly–Păun–Peternell, [BDPP04],
which asserts that the canonical bundle of any projective manifold is pseudo-
effective, unless the manifold is uniruled. This result has recently been generalised
by Campana–Peternell to higher tensor-powers of sheaves of differentials.

Theorem 1.2 (Pseudo-effectivity of quotients of pluri-forms, [CP11, Theorem 0.1]).
Let X be a complex, projective manifold, m ∈ N and (Ω1

X)
⊗m → F a torsion free

coherent quotient. If X is not uniruled, then det F is pseudo-effective. In particular, if X
is not uniruled, then ωX is pseudo-effective. �

Theorem 1.2 has been generalised to reflexive differentials on singular vari-
eties, see [GKP11, Prop. 5.6]. It plays a crucial role in recent generalisations of the
Beauville-Bogomolov decomposition to varieties with trivial Chern class and sin-
gularities as they appear in minimal model theory. We refer to the paper [GKP11]
for more details, and for an overview of this set of problems.

Disclaimer. The talk given at the Simons Symposium aimed to survey how unir-
uledness criteria are used in algebraic geometry today. It did not contain any new
results. There exists some overlap between this overview and other survey papers,
see for instance [Keb04, KS06]. The results discussed at the end of Section 3 have,
however, not all been presented in public yet.

Throughout this survey, we work over the complex number field.

Acknowledgements. The author would like to thank to organisers and the Simons
Foundation for an unusually fruitful conference week. He would like to thank
the other participants for countless discussions and exchange of ideas. Clemens
Jörder and Patrick Graf have kindly read a first version of this paper.

2. APPLICATIONS TO NON-UNIRULED SPACES: DESCRIPTION OF THE
HOM-SCHEME

Let f : X → Y be a surjective morphism between normal complex projective
varieties. A classical problem of complex geometry asks for a criterion to guaran-
tee the (non-)existence of deformations of the morphism f , with X and Y fixed.
More generally, one would like to understand the geometry of the connected com-
ponent Hom f (X, Y) ⊂ Hom(X, Y) of the space of morphisms. Somewhat sur-
prisingly, using Miyaoka’s uniruledness criterion, Theorem 1.1, we obtain a very
precise description of Hom f (X, Y) if the target manifold Y is not uniruled.
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Theorem 2.1 (Description of the Hom-scheme, [HKP06, Theorem 1.2]). Let f :
X → Y be a surjective morphism between normal complex-projective varieties, and as-
sume that Y is not uniruled. Then Hom f (X, Y) is an Abelian variety.

Remark 2.2. If dim Hom f (X, Y) = 0, then Theorem 2.1 implies that Hom f (X, Y)
is a reduced point. Formulated in different terms, Theorem 2.1 implies that
deformation-rigid morphisms are in fact infinitesimally rigid.

In fact, more is true. Up to a finite covering, the scheme Hom f (X, Y) is the max-
imal connected subgroup of the automorphism group of a variety Z that admits
a quasi-étale map1 to Y. Since the existence of an Abelian variety in the automor-
phism group has strong implications for many other invariants, one obtains the
following results as nearly immediate corollaries.

Corollary 2.3 (Deformations and Kodaira dimension, [HKP06, Corollary 1.3]). In
the setup of Theorem 2.1, if Y is smooth and has non-negative Kodaira dimension κ(Y) ≥
0, then dim Hom f (X, Y) ≤ dim Y− κ(Y). �

Corollary 2.4 (Deformations and fundamental group, [HKP06, Corollary 1.5]). In
the setup of Theorem 2.1, let Y be a projective manifold which is not uniruled. If π1(Y) is
finite, then Hom f (X, Y) is a reduced point. �

Corollary 2.5 (Deformations and top Chern class, [HKP06, Corollary 1.6]). In the
setup of Theorem 2.1, let Y be a projective n-dimensional manifold which is not uniruled.
If cn(Y) 6= 0, then Hom f (X, Y) is a reduced point. �

2.A. Idea of proof. We show only the much simpler assertion that Hom f (X, Y)
is smooth, that is, that every infinitesimal deformation of f is induced by a holo-
morphic one-parameter family of morphisms. To this end, assume we are given
an infinitesimal deformation σ ∈ H0(X, f ∗TY).

To avoid technical difficulties and quickly come to the core of the argument, we
make the following extra assumptions.

Additional Assumption 2.6. The varieties X and Y are smooth and the morphism f
is finite. In particular, f∗OX is a locally free sheaf on Y.

2.A.1. Step 1: the composition morphism. Recall that the automorphism group of
the complex variety Y is a complex Lie group. Composing the morphism f with
elements of its maximal connected subgroup Aut0(Y), we obtain an injective com-
position morphism

(2.6.1) f ◦ : Aut0(Y) → Hom f (X, Y).
g 7→ g ◦ f

The tangent spaces to Aut0(Y) and Hom f (X, Y) are well understood. The deriva-
tive of f ◦ at the identity e ∈ Aut0(Y) thus yields a diagram

(2.6.2) TAut0(Y)|e
d f ◦ |e //

∼=
��

THom| f
∼=

��
H0(Y, TY) pull-back

// H0(X, f ∗TY).

The horizontal arrows in Diagram (2.6.2) are clearly injective. Since every infin-
itesimal deformation which is in the image of d f ◦|e is clearly induced by a one-
parameter group in Aut0(Y), we need to show that the infinitesimal deformation

1quasi-étale = finite and étale in codimension one



4 STEFAN KEBEKUS

σ ∈ H0(X, f ∗TY) is obtained as the pull-back of a vector field on Y. We argue by
contradiction and assume this is not the case.

Additional Assumption 2.7. The infinitesimal deformation σ ∈ THom| f is not the
pull-back of a vector field on Y.

2.A.2. Step 2: the splitting of f∗OX and étale covers. Fix an ample divisor H ∈ Pic(Y),
and let C ⊂ Y be an associated general complete intersection curve. We recall a
few facts about the push-forward sheaf f∗OX that are relevant in our context.

Fact 2.8 (Description of f∗OX , [Laz80] or [PS00, Theorem A]). The trace map tr :
f∗OX → OY yields a natural splitting

f∗OX ∼= OY ⊕ E ∗.

where E is a locally free sheaf whose restriction E |C is nef. The following conditions are
equivalent.

(1) The morphism f is branched.
(2) The morphism f is branched and its branch locus intersects the curve C.
(3) The degree of the restricted sheaf is positive, deg(E |C) > 0. �

Proposition 2.9 (Ampleness of E |C, [HKP06]). The restricted sheaf E |C is either am-
ple, or there exists a non-trivial factorisation

X
α, finite

//

f

++Z
β, étale

// Y .

Idea of proof. If the restricted sheaf E |C is ample, we are done. If not, it there exists
a term A ⊂ E in the Harder-Narasimhan filtration of E such that the following
holds.

• The restriction A |C is an ample sub-vectorbundle of E |C.
• The quotient E |C

/
A |C has degree zero.

The second point follows from the fact that E |C is nef, so that quotients will always
have semi-positive degrees. Dualizing, we find a sheaf B ⊂ E ∗ of slope zero
whose quotient has negative slope.

Using that there is no map from a semistable sheaf of high slope to one of
smaller slope, one observes that the subsheaf B ⊕ OY ⊆ f∗OX is closed under
multiplication, hence forms a sheaf of OY-algebras. The variety Z is obtained as
Spec of that sheaf. �

To continue the proof of Theorem 2.1, assume we are in a situation where E |C
is not ample. Proposition 2.9 will then give a non-trivial decomposition of f , and
it follows from the étaleness of β that the infinitesimal deformation σ can be inter-
preted as an infinitesimal deformation of the morphism α, that is

σ ∈ H0(X, f ∗TY) = H0(X, α∗TZ).

To prove that σ comes from a one-parameter family of deformations of f , is clearly
suffices to show that σ comes from a one-parameter family of deformations of α —
composing with β will then give the deformation of f . Replacing Y by Z, iterating
the argument, and using that f is of finite degree, we can therefore assume without
loss of generality that the following holds.

Additional Assumption 2.10. The restricted sheaf E |C is ample.
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2.A.3. Step 3: end of proof. To end the proof, use the projection formula to obtain a
decomposition

H0(X, f ∗TY
)
= H0(Y, f∗( f ∗TY)

)
= H0(Y, TY

)
⊕ H0(Y, E ∗ ⊗TY

)
= H0(Y, TY

)
⊕HomY

(
E , TY

)
Consider the associated decomposition of σ. Since σ ∈ THom| f is not the pull-back
of a vector field on Y by Assumption 2.7, we obtain a non-trivial morphism from
E to TY. Using that E |C is ample, this implies that TY|C has a positive subsheaf.
Miyaoka’s criterion, Theorem 1.1, therefore applies to show that Y is uniruled.
This is in clear contradiction to the assumptions made in Theorem 2.1 and there-
fore ends the proof. �

2.B. Further results. Questions.

2.B.1. Refinement of Stein factorisation. The methods used to prove Theorem 2.1
show more than claimed above. With a little more work, the technique using
the Harder-Narasimhan filtration of f∗OX can be used to show that there exists a
canonically defined refinement of Stein factorisation for any surjective morphism.
The following definition summarises its main properties.

Definition 2.11 (Maximally étale factorization). Let f : X → Y be a surjective mor-
phism between normal projective varieties, and assume we are given a factorisation

(2.11.1) X α
//

f
))Z

β
// Y

where β is quasi-étale. We say that the factorisation (2.11.1) is maximally étale if the
following universal property holds: for any factorisation f = β′ ◦ α′, where β′ : Z′ → Y
is quasi-étale, there exists a morphism γ : Z → Z′ such that the following diagram
commutes:

X α
//

f
))Z

γ

��

β
// Y

X
α′ //

f

55Z′
β′ // Y.

Theorem 2.12 (Existence of a maximally étale factorisation, [KP08, Theorem 1.4]).
Let f : X → Y be a surjective morphism between normal projective varieties. Then there
exists a maximally étale factorisation. �

Remark 2.13. The universal properties of the maximally étale factorisation imme-
diately imply that the maximally étale factorisation is unique up to unique iso-
morphism, and behaves extremely well under deformations of f , see [KP08, Sec-
tions 1.B, 4].

The natural refinement of Stein factorisation mentioned above is now an imme-
diate corollary.
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Corollary 2.14 (Refinement of Stein factorisation, [KP08, Section 1.A]). Let f : X →
Y be a surjective morphism between normal projective varieties. Then there exists a canon-
ical refinement of Stein factorisation as follows,

X
α1, conn. fibres

//

f

++W
α2, finite

// Z
β, quasi-étale

// Y,

where β comes from the maximally étale factorisation of f . �

2.B.2. Deformations of morphisms to uniruled varieties. If f : X → Y is a surjective
morphisms onto a rationally connected manifold, there is usually little we can say
about the associated connected component of the Hom-scheme; partial results are
found in [HM03, HM04, Hwa07b, Hwa07a]. With some extra work one can show,
however, that the MRC quotient of Y induces a decomposition of Hom f (X, Y)
into an Abelian variety and a space that parametrises deformations over the MRC
quotient. We refer to [KP08, Section 1.C] for a precise formulation of the somewhat
involved result.

2.B.3. Open problems. We conjecture that Theorem 2.1 and its corollaries hold true
when Y is a compact Kähler manifold of non-negative Kodaira dimension. Our
proof needs the projectivity assumption because it employs Miyaoka’s characteri-
sation of uniruledness, Theorem 1.1.

3. APPLICATIONS TO UNIRULED MANIFOLDS: PARTIAL RATIONAL QUOTIENTS

Roughly speaking, the uniruledness criteria of Mori and Miyaoka can be sum-
marised as “positivity properties of TX imply the existence of rational curves on
X”. However, the precise relation between positivity and the geometric properties
of the rational curves found by these criteria remains unclear.

• Does “more positivity” give “more rational curves”?
• If the tangent bundle contains a particularly positive subsheaf F ⊆ T , can

we find rational curves whose geometry relates to F ? If so, how many?
Building on work of Miyaoka and Bogomolov–McQuillan, the present section
aims to clarify at least some aspects of this relation. Given a projective manifold
X, we will see that the terms in the Harder-Narasimhan filtration of TX induce a
canonically defined sequence of partial rational quotients. As of today, a precise geo-
metric description of these partial rational quotients and their dependence on the
choice of the polarisation is missing. We discuss some evidence which points to a
strong connection between the partial rational quotients and the minimal model
program.

3.A. Rationally connected foliations. The key result of this section is a uniruled-
ness criterion for foliated varieties. The following definition will be used.

Definition 3.1 (Foliation, singular foliation). Let X be a normal variety and F a co-
herent subsheaf of the tangent sheaf TX . Let X◦ ⊆ X be the maximal open set where X
is smooth, and F is a sub-vectorbundle of TX . We call F a (singular) foliation if the
following two conditions hold.

(1) The sheaf F is a saturated subsheaf of TX . In other words, the quotient TX/F
is torsion-free.

(2) The sheaf F is integrable, that is, the sub-vectorbundle F |X◦ ⊆ TX |X◦ is closed
under Lie-bracket.

The foliation F is regular if X◦ = X. A leaf of F is a connected, locally closed holomor-
phic submanifold L ⊂ X◦ such that TL = F |L. A leaf is called algebraic if it is open in
its Zariski closure.
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Remark 3.2. In the setting of Definition 3.1, let L ⊂ X◦ be an algebraic leaf and
L ⊂ X◦ be its Zariski-closure. Then L is again a leaf.

The main result of this section asserts that positivity properties of F imply al-
gebraicity of the leaves and rational connectedness of their closures. In particular,
it gives a criterion for a manifold to be covered by rational curves.

Theorem 3.3 (Rationally connected foliations, [BM01, KST07]). Let X be a normal
complex projective variety, C ⊂ X a complete curve which is entirely contained in the
smooth locus Xreg, and F ⊂ TX a (possibly singular) foliation which is regular in a
neighbourhood of C. The restriction F |C is then a vector bundle on C. If F |C is ample,
and if x ∈ C is any point, then any leaf through x is algebraic. If x ∈ C is general, the
Zariski-closure of any leaf through x is a rationally connected subvariety of X. �

The statement appeared first in the preprint [BM01] by Bogomolov and McQuil-
lan, the first full proof was given in [KST07]. Methods used include a criterion of
Hartshorne for a foliation to have algebraic leaves, the result of Graber-Harris-
Starr, and bend-and-break arguments relying on a vanishing theorem in positive
characteristic.

Remark 3.4. In Theorem 3.3, if x ∈ C is any point, it is not generally true that the
closure of a leaf through x is rationally connected. This was wrongly claimed in
[BM01] and in the first preprint versions of [KST07].

The classical Reeb stability theorem for foliations [CLN85, Theorem IV.3], the
fact that rationally connected manifolds are simply connected [Deb01, Corol-
lary 4.18], and the openness of rational connectedness [KMM92, Corollary 2.4]
immediately yield the following2.

Theorem 3.5 (Rationally connected regular foliations, [KST07, Theorem 2]). In the
setup of Theorem 3.3, if F is regular and L ⊂ X any leaf, then L is algebraic and its
closure is a rationally connected submanifold. �

Remark 3.6. In fact, a stronger statement holds, guaranteeing that most leaves are
algebraic and rationally connected if there exists a single leaf whose closure does
not intersect the singular locus of F , see [KST07, Theorem 28].

The following characterisation of rational connectedness is a straightforward
corollary of Theorem 3.3.

Corollary 3.7 (Criterion for rational connectedness). Let X be a complex projective
variety and let f : C → X be a curve whose image is contained in the smooth locus of X.
If TX |C is ample, then X is rationally connected. �

3.B. Producing foliations using the Harder–Narasimhan filtration of TX . The
usefulness of Theorem 3.3 on rationally connected foliations depends on our abil-
ity to construct geometrically relevant foliations to which the theorem can be ap-
plied. In his work on uniruledness criteria and deformations along a foliation,
Miyaoka noted that the subsheaves of TX which appear in Harder–Narasimhan
filtrations often satisfy this property.

Proposition 3.8 (Foliations coming from Harder–Narasimhan filtrations). Let X
be a normal n-dimensional projective variety and H = {H1, . . . , Hn−1} ∈ Pic(X) a
polarisation by ample line bundles. Consider the associated Harder–Narasimhan filtration
of TX ,

0 = F0 ( F1 ( F2 ( · · · ( Fk−1 ( Fk = TX

2Höring has independently obtained similar results, [Hör07].



8 STEFAN KEBEKUS

and set

imax = max
{

0 < i < k | µH
(
Fi
/
Fi−1

)
> 0

}
∪ {0}.

Assume that imax > 0. Given any index 0 < i ≤ imax, then Fi is a foliation in the sense
of Definition 3.1.

Idea of proof. The sheaf morphism induced by the Lie-bracket, Fi ×Fi → TX , is
by no means OX-bilinear. An elementary computation shows, however, that the
induced map to the quotient,

N : Fi ×Fi → TX
/
Fi

is in fact bilinear. The claim then quickly follows from the well-known fact that in
characteristic zero, semistability and slope are well-behaved under tensor product,
and that there is no morphism from a semistable sheaf of high slope to one of lower
slope. The map N must thus be trivial. �

Remark 3.9. If X is Q-Fano, then imax = k.

Corollary 3.10 (Rational connectedness of foliations coming from HNFs). In the
setting of Proposition 3.8, the leaves of the foliation Fi are algebraic. The general leaf is
rationally connected.

Proof. Let C ⊂ X be a general complete intersection curve for the polarisation H.
Then C is smooth, and entirely contained in the locus where both X is smooth and
Fi is regular. The restriction Fi|C is thus an ample vector bundle on C. Theo-
rem 3.3 applies and yields both algebraicity and rational connectedness of leaves
that intersect C. The claim holds for all leaves because deformations of C dominate
X. �

3.C. Applications: Sequences of partial rational quotients. Corollary 3.8 allows
to construct a rational map X 99K Chow(X) by mapping general points of X to the
closures of the associated leaves. In summary, we see that every polarised man-
ifold is canonically equipped with a sequence of increasingly fine partial rational
quotients.

Corollary 3.11 (Partial rational quotients associated to a polarisation). In the setting
of Proposition 3.8, there exists a commutative diagram of rational maps,

(3.11.1) X

q1

���
�
� X

q2

���
�
� · · · X

qimax
���
�
� X

MRC Quotient
���
�
�

Q1 //___ Q2 //___ · · · //___ Qimax
//___ Q,

with the following additional property: if x ∈ X is a general point, and Fi the closure of
the qi-fibre through x, then Fi is rationally connected, and its tangent space at x is exactly
TFi |x = Fi|x. �

While many people working in the field share the feeling that the Harder–
Narasimhan filtrations should measure “density of rational curves with respect
to the given polarisation”, no convincing results have been obtained in this direc-
tion. The geometric meaning of the canonically given diagram (3.11.1) is not fully
understood. The following Section 3.D discusses the known results and poses a
few natural questions and conjectures.
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3.D. Interpretation of the partial rational quotients. Open problems. The first
questions that came to our mind when we first saw Corollary 3.11 and Dia-
gram (3.11.1) were probably the following.

Questions 3.12. Let X be a uniruled projective manifold or variety, equipped with a
polarisation. Is the MRC quotient equal to the map qimax ?

Questions 3.13. Do the canonically defined morphisms qi carry a deeper geometric mean-
ing? Is Diagram (3.11.1) characterised by universal properties? To what extent does it
depend on the polarisation chosen?

Today these questions can be answered in special cases. We survey the known
results in the remaining part of this section.

3.D.1. The MRC quotient as a rationally connected foliation. Perhaps somewhat sur-
prisingly, the relative tangent sheaf of the MRC quotient does generally not appear
as one of the terms of the Harder–Narasimhan filtration, unless X is a surface and
the polarisation is particularly well-chosen.

Theorem 3.14 (MRC quotient not always equal to qimax , [Eck08, Section 3]). There
exist elementary examples of polarised surfaces where the MRC quotient is not equal to the
map qimax . �

Theorem 3.15 (MRC quotient equals qimax for good surface polarisation, [Neu09,
Theorem 3.8]). If X is a uniruled surface, then there exists a polarisation such that the
MRC quotient equals the map qimax . �

In higher dimensions, we do not expect an analogue of Theorem 3.15 to hold
true. There are, however, positive results when one is willing to generalise the
notion of “polarisation” to include “polarisations by movable curve classes”, as
defined below.

Fact 3.16 (Polarisations by movable curve classes, [Neu10, Section 3]). Let X be a
projective manifold and α ∈ Mov(X) ⊂ N1(X)R a non-trivial numerical curve class,
contained in the closure of the movable cone. Define the slope of a coherent sheaf F as

µα(F ) :=
α.[det F ]

rank F
∈ R.

With this definition, a Harder–Narasimhan filtration exists exactly as in the case of an
ample polarisation. The obvious analogue of Proposition 3.8 holds. �

Warning 3.17. For all we know, there is no analogue of the Mehta-Ramanathan
theorem in the setting of Fact 3.16.

Theorem 3.18 (MRC quotient equals qimax for good movable polarisation, [SCT09,
Theorem 1.1]). Let X be a uniruled complex projective manifold, and let F ⊆ TX denote
the foliation associated with its MRC quotient. Then there exists a numerical curve class
class α, contained in the interior of the movable cone such that the following holds.

(1) The class α is represented by a reduced movable curve C such that F |C is ample.
(2) The sheaf F appears as a term in the Harder–Narasimhan filtration of TX with

respect to α. �

Remark 3.19. If X is a surface, then the interior of the movable cone equals the cone
of general complete intersection curves.

Questions 3.20. Let X be a uniruled projective manifold. Is there an ample polarisation
such that the MRC quotient equals the map qimax?

Questions 3.21. Is there an analogue of Corollary 3.10, “Rational connectedness of
foliations coming from HNFs” when using movable curve classes to define a Harder–
Narasimhan filtration? What if X is singular?



10 STEFAN KEBEKUS

3.D.2. Decomposition of the cone of movable curve classes. Let X be a projective man-
ifold. Given a non-trivial numerical curve class α ∈ Mov(X) ⊂ N1(X)R, we are
interested in the set of classes whose induced Harder–Narasimhan filtration of the
tangent bundle agrees with that of α,

∆α :=
{

β ∈ Mov(X) | HNF(α, TX) = HNF(β, TX)
}

.

The decomposition of the movable cone Mov(X) into disjoint subsets of the form
∆α, called “destabilising chambers”, was studied in the 2010 Freiburg thesis of
Sebastian Neumann. He obtained the following two results.

Theorem 3.22 (Decomposition of the moving cone, [Neu10, Theorem 3.3.4, Propo-
sition 3.3.5]). Let X be a projective manifold. The destabilising chambers are convex cones
whose closures are locally polyhedral in the interior of Mov(X). The decomposition of the
moving cone is locally finite in the interior of Mov(X). If we assume additionally that the
cone of movable curves is polyhedral, then the chamber structure is finite. �

Remark 3.23 (Movable cone of Fano manifolds, [Ara10, Cor. 1.2]). If X is a Fano
manifold, then the closed cone of movable curves is polyhedral.

Theorem 3.24 (Relation to the minimal model program, [Neu10, Theorem 4.1]).
Let X be a Fano manifold of dimension three and α ∈ Mov(X) ⊂ N1(X)R a non-trivial
numerical curve class, with associated Harder–Narasimhan filtration

0 = F0 ( F1 ( F2 ( · · · ( Fk−1 ( Fk = TX .

Then each term Fi is the relative tangent sheaf of a (not necessarily elementary) Mori
fibration. �

Remark 3.25. The proof of Theorem 3.24 relies on the fine classification of Fano
threefolds. It would be very interesting to understand the relation between the
Harder–Narasimhan filtrations and minimal model theory in much greater detail.
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