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1. Introduction

This survey is an invitation to recent techniques related to the Minimal Model
Program. My goal is to persuade you that the MMP, at least in some of its parts,
is not a subject to be afraid of any more, and that it can be swallowed by a hungry
postgraduate student within one (advanced) course.
Indeed, in writing this paper, I had in particular such a student in mind. I delib-

erately tried not to be too pedantic, so that the material can be widely accessible,
and that the exposition can be as clear as possible.
Until recently, the proofs of foundational results in the MMP were of such technical

complexity that they remained opaque to all but a handful of experts. This state of
affair is changing due to the emergence of a new outlook on the subject. This new
outlook is the topic of this paper.
The Minimal Model Program has seen tremendous progress in the last decade,

which is measurable both in scope of the results achieved, as well as in the depth of
our understanding of the subject. The seminal paper [BCHM10], building on earlier

Many thanks to P. Cascini, A. Corti, K. Frantzen, D. Greb, A.-S. Kaloghiros, J. Kollár,
A. Küronya, Th. Peternell and S. Weigl for many useful comments and discussions. I was sup-
ported by the DFG-Forschergruppe 790 “Classification of Algebraic Surfaces and Compact Com-
plex Manifolds”.
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results of Mori, Reid, Kawamata, Kollár, Shokurov, Siu, Corti, Nakayama and many
others, settled many results and advanced hugely our knowledge of the theory. The
paper [BCHM10] builds upon, in some sense, classical theory, starting with the
Cone theorem on our preferred variety, and employing a complicated induction to
construct a sequence of surgery operations, which is then shown to terminate and
yield a desired birational model which has exceptional properties. This, in turn,
provided a proof of one of the most influential conjectures in Algebraic Geometry
in the last 50 years, the finite generation of the canonical ring, posed in Zariski’s
famous paper [Zar62]. A more general version of this result is Theorem 2.3 below.
On the other hand, it has recently become clear that we can look at the picture the

other way round. In [Laz09, CL10a], Theorem 2.3 was proved directly and without
the MMP, only by using induction on the dimension and the Kawamata-Viehweg
vanishing. The proof of this result is not the topic here, as it was clearly surveyed
in [Cor11, CL12]. In this paper, I take Theorem 2.3 as a black box, and build upon
it.
The morale of the story is that this result, together with the right tools which

are developed in Section 2, implies (almost) everything we know about the MMP in
a clearer and quicker way. This was worked out in [CL10b], and is the content of
Section 3 below. This section forms the basis for the discussion in the remainder of
the paper, and it is important both from the motivational viewpoint, as well as in
the scope of the techniques used.
Moreover, the new tools give the right perspective to think about some other

problems in the field. One of them is a (possibly more philosophical) question:
what makes the canonical sheaf ωX special, say on a smooth projective variety X .
Ever since Riemann’s work on curves in the 19th century, the importance of ωX has
been realised: in part because of the Riemann-Roch theorem, and in part because
often it is very difficult to find reasonable and useful divisors on X . Of course, in the
20th century it was understood further that this line bundle is important because
of Serre duality, Kodaira vanishing and so on. Therefore, it is logical to concentrate
on ωX as a centre point of classification, i.e. the MMP.
The class of varieties where the classical MMP works is huge – in particular, all

smooth varieties are covered. However, there are many singular varieties where the
results cannot apply. Indeed, Example 5.1 gives a normal projective variety for
which no reasonable definition of the MMP attached to ωX works. On the other
hand, there are varieties, called Mori Dream Spaces, which possess a rich birational
geometry similar to the classical MMP, but they need not necessarily fall into the
class of singularities allowed by the classical MMP. I survey this type of varieties
in Section 4, drawing parallels to Section 3, and this motivates what happens in
Section 5.
This begs the question whether we can formulate a framework which contains

both the classical MMP and Mori Dream Spaces, and which constitutes, in some
sense, the maximal class where a “reasonable” birational geometry can be performed.



AROUND AND BEYOND THE CANONICAL CLASS 3

Indeed, this was done in [KKL12] by extending the techniques from [CL10b], and as
I try to convince you in Section 5, the result is surprisingly simple and appealing.
Finally, I close the paper with a discussion of a particular conjecture which aims

to describe various cones in the space of divisors on Calabi-Yau manifolds. The Cone
conjecture, due to Morrison and Kawamata, is a still pretty mysterious prediction,
but I argue that it is consistent with probably the most important outstanding
conjecture in birational geometry, the Abundance conjecture. On the way, we will
see how the material from Section 2 applies nicely to show that parts of these cones
have a particularly nice shape.
Throughout the paper, all varieties are normal and projective, and everything

happens over the complex numbers. I follow notation and conventions from [Laz04],
and anything which is not explicitly defined here, can be found there.

2. Graded rings of higher rank

In this section I make a brief introduction to divisorial rings, with particular
accent on the higher rank case. It has only recently become clear that, even though
at first they seem more complicated than rings graded by N, once you are ready to
make a brave step and develop (or are just simply willing to accept) the necessary
theory, then most proofs become much easier and more conceptual.
To start with, let X be a Q-factorial projective variety, and let D be a Q-divisor

on X . Then we define the global sections of D by

H0(X,D) = {f ∈ k(X) | div f +D ≥ 0}.

Note that, even though D might not be an integral divisor, this makes perfect sense,
and that H0(X,D) = H0(X, ⌊D⌋), where the latter H0 is the vector space of global
sections of the standard divisorial sheaf OX(⌊D⌋). This is compatible with taking
sums: in other words, there is a well-defined multiplication map

H0(X,D1)⊗H0(X,D2) → H0(X,D1 +D2).

Therefore, if we are given a bunch of Q-divisors D1, . . . , Dr on X , we can define
the corresponding divisorial ring as

R = R(X ;D1, . . . , Dr) =
⊕

(n1,...,nr)∈Nr

H0(X, n1D1 + · · ·+ nrDr).

When r = 1, then we usually say that the ring R(X,D1) is the section ring of D1.
Throughout this paper, there is a recurring assumption that rings that we study

are finitely generated, and we will see that this assumption alone has far-reaching
consequences.
So say that we have a divisorial ring R as above, and assume that it is finitely

generated. Then we have a corresponding cone C =
∑

R+Di which sits in the space
of R-divisors DivR(X). Inside C, there is another, much more important cone – the
support of R. This cone, SuppR, is defined as the convex hull of all integral divisors
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D ∈ C which have sections, i.e. H0(X,D) 6= 0. It is easily seen that SuppR is a
rational polyhedral cone: indeed, pick generators fi of R, and let Ei ∈ C be the
divisors such that fi ∈ H0(X,Ei). Then clearly SuppR =

∑
R+Ei.

Example 2.1. The first example when R is finitely generated is when all Di are
semiample divisors: indeed, this is an old result of Zariski [Zar62].
On the other hand, even on curves there are divisorial rings which are not finitely

generated. Indeed, let E be an elliptic curve, let D be a non-torsion divisor of degree
0, and let A be an ample divisor on E. Then the N2-graded ring

R(E;D,A) =
⊕

(i,j)∈N2

Ri,j

is not finitely generated: it is easy to see that the support of this ring is equal to
the set (R+D + R+A) \ R>0D, and hence it is not a rational polyhedral cone.
This immediately yields a surface Y and a line bundle M on Y whose section

ring is not finitely generated: set Y = P(OE(D)⊕ OE(A)) and M = OY (1). Then
H0(Y,M⊗k) ≃

⊕
i+j=k Ri,j, hence the section ring R(Y,M) is not finitely generated

by the argument above.

The following lemma summarises the main tools when operating with finite gen-
eration of divisorial rings. The proof can be found in [CL10a, §2.4].

Lemma 2.2. Let X be a Q-factorial projective variety, and let D1, . . . , Dr be Q-
divisors such that the ring R(X ;D1, . . . , Dr) is finitely generated.

(1) If p1, . . . , pr ∈ Q+, then the ring R(X ; p1D1, . . . , prDr) is finitely generated.
(2) Let G1, . . . , Gℓ be Q-divisors such that Gi ∈

∑
R+Di for all i. Then the ring

R(X ;G1, . . . , Gℓ) is finitely generated.

An important example. It has become clear in the last several decades that
sometimes varieties are not the right objects to look at – often, it is much more
convenient to look at pairs (X,∆), where X is a normal projective variety and ∆ is
a Weil Q-divisor onX such thatKX+∆ is Q-Cartier. There are plenty of reasons for
looking at these objects: they obviously generalise the concept of a (Q-Gorenstein)
variety (by taking ∆ = 0), they are suitable for induction because of adjunction
formula, they are closely related to open varieties X \∆, and so on. It is difficult to
name all the advantages of working in this setting, especially since the idea of pairs
and their singularities brewed for a very long time; a good place to find a thorough
explanation of all this is [KM98].
Not all pairs are useful for us. We concentrate on a special kind of pairs, those

that have klt singularities. This means the following. First note that if f : Y → X is
a log resolution of the pair (X,∆), that is, Y is a smooth variety and the support of
the set f−1

∗ ∆ ∪ Exc f is a simple normal crossings divisor, then by the ramification
formula, there exists a Q-divisor R on Y such that

KY = f ∗(KX +∆) +R.
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Then we say that (X,∆) is klt, or that it has klt singularities, if all the coefficients
of R are bigger than −1. It can be shown that this does not depend on the choice
of the resolution f .
This looks like a very mysterious condition. However, a good way to think about

it is to assume from the start that X is smooth, that Supp∆ has simple normal
crossings, and that all coefficients of ∆ lie in the open interval (0, 1). It is a fun
exercise to prove that such a pair indeed has klt singularities. In particular, smooth
varieties X , viewed as pairs (X, 0), have klt singularities.
Also of importance for us is that this is an open condition, in the following sense.

Say you have at hand a klt pair (X,∆) with X being Q-factorial, and that you have
an effective Q-divisor D on X . Then for all rational 0 ≤ ε ≪ 1, the pair (X,∆+εD)
is again klt. This is easy to see from the definition.
Therefore, divisors of the form KX +∆ are of special importance for us, and they

are called adjoint divisors. A special case of the divisorial ring above is when all Di

are (multiples of) adjoint divisors – we then say that the ring R is an adjoint ring .
Now we are ready to state the most important example of a finitely generated

divisorial ring.

Theorem 2.3. Let X be a Q-factorial projective variety, and let ∆1, . . . ,∆r be big
Q-divisors such that all pairs (X,∆i) are klt.
Then the adjoint ring

R(X ;KX +∆1, . . . , KX +∆r)

is finitely generated.

This was first proved in [BCHM10] by employing the full machinery of the classical
MMP: the idea is to prove that a certain version of the Minimal Model Program
works, and then to deduce the finite generation as a consequence. However, as
mentioned in the introduction, of importance here for us is that Theorem 2.3 can
be proved without the MMP, and this was done in [CL10a].

Asymptotic valuations. We will see that finite generation of a divisorial ring R

has important consequences on the convex geometry of the cone SuppR. We would
like to relate the ring R to the behaviour of linear systems |D| for integral divisors
D ∈ SuppR. The way to achieve this is via asymptotic geometric valuations.
Let X be a Q-factorial projective variety. Then each prime divisor Γ on X gives

a valuation on the ring of rational function k(X) as the order of vanishing at the
generic point of Γ. This is not sufficient, as the behaviour of elements of k(X)
depends also on the higher codimension points.
Therefore a geometric valuation Γ on X is any valuation on k(X) which is given

by the order of vanishing at the generic point of a prime divisor on some birational
model Y → X , and we denote the value of this valuation on a Q-divisor D by
multΓD; in other words, we take into account exceptional divisors as well.
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Now, if D is an effective Q-Cartier divisor, then the asymptotic order of vanishing
of D along Γ is

oΓ(D) = inf{multΓD
′ | D ∼Q D

′ ≥ 0};

put differently, if multΓ |kD| is the valuation at Γ of a general element of the linear
system |kD|, then

oΓ(D) = inf
1

k
multΓ |kD|

over all k sufficiently divisible.
It is straightforward to see that each oΓ is a homogeneous function, that

oΓ(D +D′) ≤ oΓ(D) + oΓ(D
′)

for every two effective Q-divisors D and D′, and that

oΓ(A) = 0

for every semiample divisor A. The following is a basic result [Nak04]:

Lemma 2.4. Let X be a Q-factorial projective variety, and let D and D′ be two big
Q-divisors on X such that D ≡ D′. Then oΓ(D) = oΓ(D

′).

Proof. I first claim that for any ample Q-divisor A, we have

oΓ(D) = lim
ε↓0

oΓ(D + εA).

To this end, note that by Kodaira’s trick we can write D ∼Q δA + E for some
rational δ > 0. Therefore

(1 + ε)oΓ(D) = oΓ(D + εδA+ εE) ≤ oΓ(D + εδA) + εoΓ(E) ≤ oΓ(D) + εoΓ(E),

and we obtain the claim by letting ε ↓ 0.
Now, fix an ample divisor A and a rational number ε > 0. Since the divisor

D −D′ + εA is numerically equivalent to εA, and thus ample, we have

oΓ(D + εA) = oΓ
(
D′ + (D −D′ + εA)

)
≤ oΓ(D

′).

Letting ε ↓ 0 and applying the claim, we get oΓ(D) ≤ oΓ(D
′). The reverse inequality

is analogous. �

Now we have all the theory needed to state the result which gives us the main
relation between finite generation and the behaviour of linear systems.

Theorem 2.5. Let X be a Q-factorial projective variety, and let D1, . . . , Dr be Q-
divisors on X. Assume that the ring R = R(X ;D1, . . . , Dr) is finitely generated.
Then:

(1) SuppR is a rational polyhedral cone,
(2) if SuppR contains a big divisor, then all pseudo-effective divisors in SuppR

are in fact effective,
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(3) there is a finite rational polyhedral subdivision SuppR =
⋃

Ci into cones of
maximal dimension, such that oΓ is linear on Ci for every geometric valuation
Γ over X,

(4) there exists a positive integer k such that oΓ(kD) = multΓ |kD| for every
integral divisor D ∈ SuppR.

We already saw (1) before, and the proof of (2) is also very easy. I omit the proof
of (3) and (4), but it is not too difficult once one sets up a good basis of algebra
and convex geometry. This important result is contained in the proof of [ELM+06,
Theorem 4.1], and is merely extracted verbatim in [CL10b, Theorem 3.6].
A simple, but as we will see important consequence is the following.

Lemma 2.6. Let X be a normal projective variety and let D be an effective Q-
divisor on X. Then D is semiample if and only if R(X,D) is finitely generated and
oΓ(D) = 0 for all geometric valuations Γ over X.

The proof is very simple: if D is semiample, then we conclude by Example 2.1.
Conversely, for every point x ∈ X , Theorem 2.5 implies that x does not belong to
the base locus of the linear system |mD| for m sufficiently divisible.
As a demonstration of the previous two results, we will see immediately how inside

the cone SuppR, all the cones that we can imagine behave nicely. The following is
effectively the proof of Mori’s Cone theorem, see Section 3. I borrow the proof from
[CL10b, KKL12].

Proposition 2.7. Let X be a Q-factorial projective variety and let D1, . . . , Dr be
Q-divisors on X. Assume that the ring R = R(X ;D1, . . . , Dr) is finitely generated,
and denote by π : DivR(X) → N1(X)R the natural projection. Then:

(1) the cone SuppR ∩ π−1
(
Mov(X)

)
is rational polyhedral,

(2) if SuppR contains an ample divisor, then the cone SuppR ∩ π−1
(
Nef(X)

)

is rational polyhedral, and every element of this cone is semiample.

Mov(X)

Nef(X)

SuppR
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Proof. For every prime divisor Γ on X , denote by CΓ the span of the set of all Q-
divisors D ∈ SuppR such that oΓ(D) = 0. Note that Mov(X) is the intersection of
all CΓ by Theorem 2.5(4).
Let SuppR =

⋃
Ci be a finite rational polyhedral subdivision as in Theorem 2.5.

We may add all the faces of all the cones Ci to the subdivision. To show (1), it is
enough to prove that each CΓ is a union of some of Ci. But this follows once we
notice that, if CΓ intersects the relative interior of some Cℓ, then Cℓ ⊆ CΓ since oΓ is
a linear non-negative function on Cℓ.
For (2), if the relative interior of Cℓ contains an ample divisor, then oΓ|Cℓ ≡ 0 for

every Γ as above. Hence, every element of Cℓ is semiample by Lemmas 2.2 and 2.6,
and so Cℓ ⊆ SuppR ∩ π−1

(
Nef(X)

)
. Therefore, the cone SuppR ∩ π−1

(
Nef(X)

)
is

equal to the union of some Ci, which suffices. �

We also note the following crucial consequence of Theorem 2.5 [KKL12, Theorem
4.2]. It shows that the chamber decomposition as in Theorem 2.5 gives canonically
birational contractions from our variety.

Theorem 2.8. Let X be a Q-factorial projective variety, and let D1, . . . , Dr be Q-
divisors on X. Assume that the ring R = R(X ;D1, . . . , Dr) is finitely generated,
and that SuppR contains a big divisor. Let SuppR =

⋃
Ci be a finite rational

polyhedral decomposition as in Theorem 2.5, and let Fj be all the codimension 1
faces of the cones Ci.

(1) For each i, let Di be a Cartier divisor in the interior of Ci, and let Xi =
ProjR(X,Di). Then the variety Xi and the birational map ϕi : X 99K Xi

do not depend on the choice of Di (up to isomorphism). The map ϕi is a
contraction.

(2) For each j, let Gj be a Cartier divisor in the relative interior of Fj, and let
Yj = ProjR(X,Gj). If Fj contains a big divisor, then the variety Yj and
the birational map θj : X 99K Yj do not depend on the choice of Gj (up to
isomorphism). The map θj is a contraction.

(3) If Fj ⊆ Ci, then there is a birational morphism ρij : Xi → Yj such that the
diagram

X
ϕi

//_______

θj ��
@

@
@

@ Xi

ρij
~~~~
~~
~~
~~

Yj

commutes.

Proof. I will only show (1) and (3), as the proof of (2) is analogous to that of (1).

Theorem 2.5 implies that we can find a resolution f : X̃ → X and a posi-
tive integer d such that Mob f ∗(dD) is basepoint free for every Cartier divisor
D ∈ SuppR. Denote Mi = Mob f ∗(dDi). Then we have the induced birational
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morphism ψi : X̃ → Xi, which is just the Iitaka fibration associated to Mi. A result
of Reid [Rei80, Proposition 1.2] shows that the divisor Fix |f ∗(dDi)| (and also any
f -exceptional divisor) is contracted by ψi – in other words, ϕi is a contraction.
Let us show that the definition of ϕi does not depend on the choice of Di. Indeed,

pick any other Cartier divisor D′
i in the interior of Ci, and let ψ′

i : X̃ → ProjR(X,D′
i)

be the corresponding map. There exists a Cartier divisor D′′
i in the interior of Ci,

together with positive integers ri, r
′
i, r

′′
i such that

riDi = r′iD
′
i + r′′iD

′′
i .

Denoting M ′
i = Mob f ∗(dD′

i) and M
′′
i = Mob f ∗(dD′′

i ), then we have

(1) riMi = r′iM
′
i + r′′iM

′′
i

(since all functions oΓ are linear on Ci), and the divisors Mi,M
′
i ,M

′′
i are basepoint

free. For any curve C on X̃ contracted by ψi we have Mi · C = 0, hence equation
(1) implies M ′

i · C = 0, and so C is contracted by ψ′
i. Reversing the roles of Di and

D′
i, we obtain that ψi and ψ

′
i contract the same curves, therefore they are the same

map up to isomorphism.
The same method proves (3). �

I finish this section with a simple consequence of Lemma 2.4 and Theorem 2.5,
which will be crucial in Section 5.

Lemma 2.9. Let X be a Q-factorial projective variety, and let D1 and D2 be big Q-
divisors such that D1 ≡ D2. Assume that the rings R(X,Di) are finitely generated,
and consider the maps ϕi : X 99K ProjR(X,Di).
Then there exists an isomorphism η : ProjR(X,D1) −→ ProjR(X,D2) such that

ϕ2 = η ◦ ϕ1.

Proof. By passing to a resolution and by Theorem 2.5, we may assume that there is
a positive integer k such that Mob(kDi) are basepoint free, and that each ϕi is given
by the linear system |Mob(kDi)|. By Lemma 2.4 we have Mob(kD1) ≡ Mob(kD2),
hence ϕ1 and ϕ2 contract the same curves. �

3. Picture 1: Classification

I review briefly the “classical” Minimal Model Program, concentrating on parts
which are important in what follows. There are many well-written surveys and books
on the topic, and if needed, you can consult [KM98] and references therein. It is im-
portant to point out that many concepts which are related or grew out of the MMP,
and that we consider natural or given because they fit beautifully into many corners
of algebraic geometry (such as nefness, the canonical ring, minimal and canonical
models and so on), took a long time to conceive. In order to fully appreciate this
formative process, I urge you to read the wonderful semi-autobiographical survey
[Rei00], and also [Mor87, §9].
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For the sake of simplicity and clarity, I state all the results for smooth varieties,
but note that with minor changes they hold for pairs with klt singularities.
So say you have at hand a smooth n-dimensional projective variety X . As men-

tioned in the introduction, it is reasonable to concentrate on the canonical divisor
KX as the central object of our study. On the other hand, having ample divisors
on a projective variety X is extremely important: they give embeddings of X into
some projective space, and their cohomological and numerical properties are as nice
as you can hope for.
Assume that KX is pseudo-effective. Then, a reasonable question to pose is:

Is there a birational map f : X 99K Y such that the divisor f∗KX is ample?

Here the map f should not be just any birational map, but a birational contraction –
in other words, f−1 should not extract divisors. This is an important condition since
the variety Y should be in almost every way simpler than X ; in particular, some of
its main invariants, such as the Picard number, should not increase. Likewise, we
would like to have KY = f∗KX , and this will almost never happen if f−1 extracts
divisors (take, for instance, an inverse of almost any blowup).
Further, we impose that f should preserve sections of all positive multiples of

KX . This is also important, since global sections are something we definitely want
to keep track of, if we want the divisor KY = f∗KX to bear any connection with
KX . Another way to state this is as follows. Consider the canonical ring of X :

R(X,KX) =
⊕

m∈N

H0(X,mKX).

Then we require that f induces an isomorphism between R(X,KX) and R(X,KY ).
Apart from the relation to Zariski’s conjecture that was mentioned in the introduc-
tion, this is also fundamental in the construction of the moduli space of canonically
polarised varieties; for an introduction to this beautiful topic, upon which I do not
touch any more in these notes, see [HK10, Part III].
We immediately see that the answer to the question above is in general “no” –

the condition would imply that KX is a big divisor. Nevertheless, we can settle for
something weaker, but still sufficient for our purposes: we require that the divisor
KY is semiample. This then still produces an Iitaka fibration g : Y → Z and an
ample divisor A such that KY = g∗A, and the composite map X 99K Z, which is
now not necessarily birational, gives an isomorphism of section rings R(X,KX) and
R(Z,A).
Historically, by the influence of the classification of surfaces on the way we think

about higher dimensional classification, this splits into two problems: finding a bi-
rational map f : X 99K Y such that the divisor KY = f∗KX is nef; and then proving
that the nef divisor KY is semiample. This last part – the Abundance conjecture –
is one of main open problems in higher dimensional geometry, in dimensions at least
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4. We know it holds in dimensions up to 3, and when the canonical divisor is big,
but very little is known in general.
Thus, hopefully by now it is clear that the main classification criterion is whether

the canonical divisor KX is nef. If KX is nef, we are done, at least with the first part
of the programme above. Life gets much tougher, but also much more interesting
when the answer is no.

The Cone and Contraction theorems. Indeed, let NE(X) ⊆ N1(X)R denote
the closure of the cone spanned by effective curves; note that the nef cone Nef(X) is
dual to NE(X) by Nakai’s criterion, with respect to the intersection pairing. Since
KX is not nef, the hyperplane

K⊥
X = {C ∈ N1(X)R | KX · C = 0} ⊆ N1(X)R

must cut the cone NE(X) into two parts; let us denote the two pieces by NE(X)KX≥0

and NE(X)KX<0. Then the celebrated Cone theorem of Mori tells that the negative
part NE(X)KX<0 is locally rational polyhedral. More precisely:

Theorem 3.1. Let X be a smooth projective variety. Then there exist countably
many extremal rays Ri of the cone NE(X) such that KX · Ri < 0 and

NE(X) = NE(X)KX≥0 +
∑

Ri.

Moreover, for every ample Q-divisor H on X, there exist finitely many such rays
R′

i with

NE(X) = NE(X)KX+H≥0 +
∑

R′
i.

In particular, the rays Ri are discrete in the half-space NE(X)KX<0.

Note that in the theorem, the second statement implies the first, by letting H → 0.
This is the standard formulation, and the proof can be found in any treatise of the
subject. A suitable formulation for klt pairs was proved by Kawamata, Kollár and
others.
There is an additional statement that we can contract any of the extremal rays

Ri – this is the Contraction theorem of Kawamata and Shokurov.

Theorem 3.2. With the notation from Theorem 3.1, fix any of the rays R = Ri.
Then there exists a morphism with connected fibres

contR : X → Y

to a normal projective variety Y such that a curve is contracted by contR if and only
if its class lies in R.

The importance of the Contraction theorem is two-fold. First, it is clear that
such a contraction has to be defined by a basepoint free divisor L with L · R = 0;
in general, it is very difficult to show the existence of a single non-trivial non-ample
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basepoint free divisor on a variety – the conclusion that there are many of them is
clearly astonishing.
Second, we want to eventually end up with a variety on which the canonical divisor

is nef, i.e. it has no extremal rays as above. We therefore hope that by contracting
some of the rays we can make the situation better. We will see below that this is
not necessarily the case, at least not immediately. However, I will argue that life
indeed gets better, at least if we choose carefully which rays to contract.
I next state the result which contains both the Cone and Contraction theorems.

The new statement lives in N1(X)R and, by duality, involves the nef cone. This
formulation has been known for a long time, and origins go back at least to [Kaw88].
However, it has only recently been realised [CL10b, Theorem 4.2] that this statement
is much easier to prove than Theorems 3.1 and 3.2, once we have right tools at hand.

Theorem 3.3. Let X be a smooth projective variety such that KX is not nef. Let
V be the visible boundary of Nef(X) from the class κ = [KX ] ∈ N1(X)R:

V =
{
δ ∈ ∂ Nef(X) | [κ, δ] ∩Nef(X) = {δ}

}
.

Then:

(1) every compact subset F which belongs to the relative interior of V , is con-
tained in a union of finitely many supporting rational hyperplanes,

(2) every Cartier divisor on X whose class belongs to the relative interior of V
is semiample.

Proof. The proof is almost by picture. Note first that since KX is not nef, the class
κ is not in Nef(X). The set V is then precisely the points that κ “sees” on Nef(X).

Nef(X)V

κ

wj αj

Since F is compact, we can pick finitely many rational points w1, . . . , wm ∈
N1(X)R very close to F , such that F is contained in the convex hull of these points.
Then it is obvious that F belongs to the boundary of the cone Nef(X) ∩

∑
R+wi,

hence it is enough to show that this cone is rational polyhedral.
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Note that since each wi is very close to F , and F belongs to the relative interior
of V , the line containing κ and wi will intersect the ample cone. Therefore, there
are rational ample classes αj and rational numbers tj ∈ (0, 1) such that

wj = tjκ+ (1− tj)αj .

For each j, choose an ample Q-divisor Aj which represents the class
1−tj
tj
αj such that

the pair (X,Aj) is klt (use Bertini’s theorem). Then wj is the class of the divisor
tj(KX + Aj). By Theorem 2.3, the adjoint ring

R = R(X ;KX + A1, . . . , KX + Am)

is finitely generated. Denote by π : DivR(X) → N1(X)R the natural projection.
Then

Nef(X) ∩
∑

R+wi ⊆ π(SuppR)

by Theorem 2.5(2), and the conclusion follows by Proposition 2.7. �

Remark 3.4. Note that, with a bit more care, the proof above can be modified to
prove the following: if additionally the divisor KX is big, then the whole set V is
contained in finitely many supporting rational hyperplanes. I leave the details to
you.

Lemma 3.5. Let X be a smooth projective variety such that KX is not nef. Then
Theorem 3.3 (and Remark 3.4) imply the Cone and Contraction theorems.

Proof. Note that the KX -negative extremal rays are dual (with respect to the in-
tersection pairing) to the rational hyperplanes containing faces of Nef(X) which are
themselves contained in V . Indeed, as in the proof of Theorem 3.3, any class δ in the
relative interior of V can be written as δ = tκ + (1− t)α for some t ∈ (0, 1), where
κ is the class of KX , and α is some ample class. Hence, any curve orthogonal to δ
must be negative on κ. This immediately implies the lemma, since for any extremal
ray R, the contraction contR is the Iitaka fibration of any line bundle which belongs
to the interior of the face orthogonal to R. �

This is a good place to point out that the Cone theorem has an additional claim,
which I deliberately chose not to include in the statement above. Namely, the rays
Ri are not generated by just any curves – they are generated by rational curves.
Furthermore, we can choose a rational curve Ci generating Ri so that

0 < −KX · Ci ≤ dimX + 1.

As we will see below, the existence of such rational curves is not necessary in order
to perform the Minimal Model Program. However, it has very important structural
consequences for the geometry of certain varieties, such as Fanos, which are covered
by rational curves.
This rational curves claim is the only part of the original Cone theorem which

cannot be deduced from the proof in [CL10b] presented above. The original Cone
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theorem is proved by an ingenious bend-and-break method of Mori which proceeds
by reduction to positive characteristic. The ultimate dream is that finite generation
techniques could provide an insight into how to prove statements about rational
curves without passing to positive characteristic, which would then give hope that
similar claims hold on a wider variety of spaces, such as Kähler manifolds.

Contractions in the MMP. Let us go back to the procedure in the Minimal
Model Program. The Cone and Contraction theorems tell us that that if we pick a
KX-negative extremal ray R, we can contract it to obtain another normal projective
variety Y , and we hope that it shares many of the properties of X that we started
with, for instance Q-factoriality. Note that, by Theorem 3.3, the map contR is
given by any semiample divisor lying in the relative interior of the set R⊥∩Nef(X),
and it is therefore birational (recall that we assumed at the beginning that KX is
pseudo-effective). Here the situation branches into two distinct cases.
Assume first that the exceptional set of the map contR contains a prime divisor E.

Then, in fact, we have Exc(contR) = E, and moreover, Y is also Q-factorial – I will
prove a more general version of this in Theorem 5.5, but one should note that the
proof is almost identical. In this case, we say that contR is a divisorial contraction.
A drawback is that Y is no longer necessarily smooth, but still it has singularities

which are very close to the smooth case, and we can continue our programme on Y .
However, something changed for the better: the Picard number dropped by 1 since
we contracted the divisor E; our variety became simpler.
Assume next that the exceptional set of the map contR does not contain a prime

divisor, i.e. that we have codimX Exc(contR) ≥ 2. In this case, we say that contR is
a flipping contraction.
This situation is bad: not only do we have that Y is not Q-factorial, but even

KY = (contR)∗KX is not a Q-Cartier divisor. Indeed, since contR is an isomorphism
in codimension 1, we have KX = cont∗RKY . If C is a curve contracted by contR,
then KX · C < 0, and by the projection formula this equals KY · (contR)∗C = 0, a
contradiction.
The great insight of Mori, Reid and others is this. Note that the divisor KX is

anti-ample with respect to the map contR, and the result that we want to end up
with in the end should give the canonical divisor which is nef. Thus, it is a natural
thing to try to construct at least a birational map X+ → Y which “turns the sign”
of all curves contracted by contR; in other words, it “flips” them. Therefore, we
would like to have a diagram:

X
ϕ

//_______

contR
  
AA

AA
AA

AA
X+

cont+
R}}{{

{{
{{
{{

Y

such that KX+ is ample with respect to cont+R.
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This diagram, or just the map ϕ, is called the flip of contR. Since, by our re-
quirements, the map ϕ should not extract divisors, the morphism cont+R is also an
isomorphism in codimension 1. It is then not too difficult, but crucial, to show that
the existence of the diagram is equivalent to the fact that the relative canonical ring

R(X/Y,KX) =
⊕

n∈N

(contR)∗OX(nKX)

is finitely generated as a sheaf of algebras over (contR)∗OX = OY . It immediately
follows that X+ is Q-factorial and that the Picard number of X+ is the same as
that of X .
The flip as above is by now proved to exist in any dimension. The first proof for

threefolds was given by Mori in [Mor88]. It was proved in general in [BCHM10] by
MMP techniques, and in [Laz09, CL10a] as a consequence of Theorem 2.3.

Termination of the MMP. The variety X+, thus, has all the desired features
similar to X , so we continue the procedure with X+ instead of X (again, as in the
case of divisorial contractions, we lose smoothness, but we are all right if we slightly
enlarge our category). Unfortunately, it is not easy to find an invariant of varieties
which behaves well under flips; the only such example currently exists on threefolds.
It is, therefore, the crucial problem to find a sequence of divisorial contractions and
flips which terminates.
We know how to do this for varieties of general type, and this was proved first

in [BCHM10]. Here, I give an argument close to that from [CL10b] – I hope to
convince you that it is not too difficult to deduce it as a consequence of Theorem
2.3.

Theorem 3.6. Let X be a variety of general type. Then there exists a sequence of
KX-divisorial contractions and KX-flips which terminates.

Sketch of the proof. The proof is by double induction: the first level of induction is
on the Picard number ρ = dimN1(X)R, and we can assume that the result holds for
varieties with Picard number smaller than ρ. I define the second level of induction
a few lines below.
Denote by π : DivR(X) → N1(X)R the natural projection. Similarly as in the

proof of Theorem 3.3, we choose ample Q-divisors A1, . . . , Am such that all the
pairs (X,Ai) are klt, such that the cone π

(∑
R+(KX + Ai)

)
has dimension ρ, and

that this cone contains an ample divisor.
We can assume that KX is an effective divisor, and note that for 0 < ε ≪ 1, the

pair (X,∆ = εKX) is klt. Therefore, by Theorem 2.3, the ring

R = R(X ;KX +∆, KX + A1, . . . , KX + Am)

is finitely generated. We note that the cone

C = R+KX +
∑

R+(KX + Ai)
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is equal to the support of R.
Let C =

⋃
i∈I Ci be the rational polyhedral decomposition as in Theorem 2.5. The

second level of induction is on the cardinality of the set I.
By Proposition 2.7, the cone C∩π−1

(
Nef(X)

)
is rational polyhedral, and let F be

a codimension 1 face of this cone which intersects the interior of C. If R ⊆ N1(X)R
is the extremal ray of NE(X) orthogonal to F , then the corresponding contraction
contR is given by any basepoint free divisor which belongs to the interior of F , cf.
the proof of Lemma 3.5.
If contR is divisorial, then we finish by induction on ρ. Therefore, we may assume

that contR is flipping, and then by the discussion above, there exists a flip ϕ : X 99K

Y of contR.
The map ϕ is an isomorphism in codimension 1, hence it induces isomorphisms

DivR(X) ≃ DivR(Y ) and

R ≃ R(Y ;KY + ϕ∗∆, KY + ϕ∗A1, . . . , KY + ϕ∗Am).

The cone C′ = ϕ∗C ⊆ DivR(Y ) has a decomposition C′ =
⋃

i∈I′ C
′
i as in Theorem 2.5,

and it is a key step to show that we can assume that I = I ′ and C′
i = ϕ∗Ci. In other

words, it suffices to prove that if an asymptotic order function oΓ is linear on a cone
Ci, then it is also linear on ϕ∗Ci. I omit the proof of this, but once one knows the
correct statement, the proof becomes easy, see [CL10b, Lemma 5.2].
It can be easily shown that for every L ∈ F , the divisor ϕ∗L ∈ DivR(Y ) is again

nef, but not ample. In other words, the set ϕ∗F belongs to the boundary of the
cone Nef(Y ). Note that the interiors of the cones ϕ∗Nef(X) and Nef(Y ) do not
intersect, since otherwise ϕ would be an isomorphism.
Let V ⊆ DivR(X) be the minimal vector space containing C. Let H ⊆ V be the

rational hyperplane which contains F , and let Cℓ, for ℓ ∈ J ( I, be the cones such
that Cℓ and Nef(X) are not on the same side of H.
If we pick rational generators D1, . . . , Dr of the cone D =

⋃
ℓ∈J C

′
ℓ, then the ring

R
′ = R(Y ;D1, . . . , Dr) ≃ R(X ;ϕ−1

∗ D1, . . . , ϕ
−1
∗ Dr)

is finitely generated by Lemma 2.2. Also, we have SuppR′ = D, and this cone
contains an ample divisor by the argument above. Since the size of J is strictly
smaller than that of I, we finish the proof. �

Note that the proof gives more – it shows that the resulting minimal model for
KX is at the same time a minimal model for every divisor D which is in the same
chamber Cj0 as KX ; note that D is a multiple of an adjoint divisor, so it makes sense
to talk about its minimal models. This is one of the guiding lights in this paper, so
let us state it as a standalone result. It is, at this moment, convenient to switch to
pairs and state it in greater generality.

Theorem 3.7. Let X be a Q-factorial projective variety, and let ∆1, . . . ,∆r be big
Q-divisors such that each (X,∆i) is a klt pair. Let C =

∑r

i=1R+(KX +∆i).
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Then there exists a finite rational polyhedral subdivision C =
⋃

Ck and finitely
many birational maps ϕk : X 99K Xk such that Xk is a minimal model for every
divisor in Ck.

4. Picture 2: Mori Dream Spaces

In their influential paper [HK00], Hu and Keel introduced a class of varieties called
Mori Dream Spaces, which have exceptionally nice birational properties. As we will
see, they have only finitely many birational maps to other Q-factorial varieties which
are isomorphisms in codimension 1, and they possess, in some sense, a canonically
given finitely generated divisorial ring.
The original motivation for their study lies in the theory of moduli spaces of

curves; however, it was immediately realised that another big family of varieties
– toric varieties – belongs to this class. Also, it was an expectation based on the
Minimal Model Program that Fano varieties are Mori Dream Spaces, which was
confirmed in [BCHM10]; I discuss this below.
The construction of Hu and Keel uses the theory of variation of GIT structures.

I do not touch upon this beautiful theory here; instead, I try to convince you that
there are obvious parallels between the ingredients and the output of the classical
MMP on the one hand, and the theory of Mori Dream Spaces on the other. Then
in the next section I argue that both of these are just instances of a more general
theory.
Let us start with a definition of Mori Dream Spaces from [HK00].

Definition 4.1. A Q-factorial projective variety X is a Mori Dream Space if:

(1) Pic(X)Q = N1(X)Q,
(2) Nef(X) is the affine hull of finitely many semiample line bundles, and
(3) there are finitely many birational maps fi : X 99K Xi to projective Q-factorial

varieties Xi such that each fi is an isomorphism in codimension 1, each Xi

satisfies (2), and Mov(X) =
⋃
f ∗
i

(
Nef(Xi)

)
.

These spaces are really as nice as a variety can get: all possible cones inside
N1(X)R are rational polyhedral, and as mentioned above, the birational geometry
is as simple as one can generally expect: if one defines a more general version of the
Minimal Model Program – as we will do in the following section – it becomes clear
that the maps fi above are just maps in that MMP.
There is an obvious parallel between Definition 4.1 and the conclusion of Theorem

3.7. In both cases we have a certain distinguished cone with its distinguished finite
rational polyhedral subdivision, which gives a variation (or geography) of minimal
models. On a random variety you cannot hope to do any better than this.
It is then a natural question to ask whether there exists a divisorial ring associated

to a Mori Dream Space which is finitely generated, in analogy with Theorem 2.3.
We will shortly see that this is indeed the case.
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To this end, let X be a Mori Dream Space, and let D1, . . . , Dr be a basis of
Pic(X)Q such that Eff(X) ⊆

∑
R+Di. Then a Cox ring of X is

R(X ;D1, . . . , Dr) =
⊕

(n1,...,nr)∈Nr

H0(X, n1D1 + · · ·+ nrDr).

This ring depends on the choice of divisors D1, . . . , Dr, but the only thing we really
care about is its finite generation, and that question is independent of the choice of
Di, cf. Lemma 2.2. Then we have:

Theorem 4.2. Let X be a Mori Dream Space. Then any of its Cox rings is finitely
generated.

Sketch of the proof. I use the notation from Definition 4.1. The cone Mov(X) is
rational polyhedral by the definition of a Mori Dream Space, and let Q-divisors
M1, . . . ,Mp be its generators. Then the divisorial ring R(X ;M1, . . . ,Mp) is finitely
generated: indeed, for each i, let Ni1, . . . , Nipi be rational generators of the cone
Nef(Xi). Then all the divisors f ∗

i Nik form a set of generators of the cone Mov(X),
and each of the rings

R(X ; f ∗
i Ni1, . . . , f

∗
i Nipi) ≃ R(Xi;Ni1, . . . , Nipi)

is finitely generated since all Nik are semiample. The conclusion follows by Lemma
2.2.
Let Fλ be all the codimension 1 faces of all f ∗

i Nef(Xi), with the property that
Fλ belong to the boundary of the cone Mov(X), and that each Fλ contains a big
divisor. Let ϕλ : X 99K Xλ be the birational contraction associated to Fλ as in
Theorem 2.8, and let Eλk be the exceptional divisors of ϕλ. Then each set

Dλ = Fλ +
∑

k
R+Eλk

is a rational polyhedral cone.
Now, it can be shown that

Eff(X) = Mov(X) ∪
⋃

λ
Dλ.

The idea is to “project” the pseudo-effective cone onto the movable cone. Details
are easy, but a bit tedious, see the proof of [KKL12, Corollary 4.4]. This implies,
in particular, that the cone Eff(X) is rational polyhedral and equal to Eff(X), and
it suffices to show that each of the rings R(X ;Gλ1, . . . , Gλpλ) is finitely generated,
where Gλ1, . . . , Gλpλ are generators of Dλ. But this follows similarly as above – the
point is that the divisors Eλk do not add any sections as they are ϕλ-exceptional.
The details are left to the reader. �

The converse of Theorem 4.2 also holds, but we have to push our techniques a bit
further – this will be done in the next section. The following is a direct consequence
of Theorem 5.7.
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Theorem 4.3. Let X be a Q-factorial projective variety such that Pic(X)Q =
N1(X)Q. Let D1, . . . , Dr be a basis of Pic(X)Q such that Eff(X) ⊆

∑
R+Di.

If the ring R(X ;D1, . . . , Dr) is finitely generated, then X is a Mori Dream Space.

Corollary 4.4. If X is a Fano variety, then X is a Mori Dream Space.

Proof. By Kodaira vanishing, we have H i(X,OX) = H i(X,KX + (−KX)) = 0 for
all i > 0. The exponential sequence

0 −→ Z −→ OX −→ O∗
X −→ 0

then yields the exact sequence

0 = H1(X,OX) → H1(X,O∗
X) → H2(X,Z) → H2(X,OX) = 0,

and in particular Pic(X)Q = N1(X)Q. Let D1, . . . , Dr be a basis of Pic(X)Q such
that Eff(X) ⊆

∑
R+Di, and such that Ai = Di − KX is ample for every i. Then

the Cox ring

R(X ;D1, . . . , Dr) = R(X ;KX + A1, . . . , KX + Ar)

is finitely generated by Theorem 2.3. We conclude by Theorem 4.3. �

It is worth mentioning that Mori Dream Spaces have connections to various im-
portant developments in Algebraic Geometry and beyond. I advise you to read the
wonderful survey [McK10] in order to get a flavour of some of these directions of
research.

5. MMP beyond the canonical class

In this section I discuss what is understood by a good birational theory of an
algebraic variety. When the variety in question is smooth or has mild singularities,
this reduces to the classical Minimal Model Program associated to the canonical
class. Another instance of this story is Mori Dream Spaces. Everything that happens
in this section should be looked at through the prism of these two main examples,
and the goal is to find the largest possible class where we can run something that
looks like the classical MMP.
It is a reasonable question whether we can always achieve the MMP for the canon-

ical class. In Section 3 we saw that, at least conjecturally, we are able to perform
the programme for the class of varieties which have mild singularities, say klt. In
general, if we have a Q-factorial projective variety X with arbitrary singularities,
one approach is to take a resolution f : Y → X . We can write

KY + Γ = f ∗KX + E,

where Γ and E are effective Q-divisors with no common components, and E is f -
exceptional. Then one can either try to do the MMP for the canonical class KY , or
try to do the MMP for KY + Γ.
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There are problems with both of these approaches. In the first one, it is expected
that the MMP will terminate; however, the resulting KY -MMP will not have any of
the properties that we would like it to have – sections of KX will not be preserved,
and we possibly extracted divisors along the way (by taking this first blowup f).
The second case is in some sense even worse – our MMP will, in general, not even
terminate, since the canonical ring R(Y,KY +Γ) ≃ R(X,KX) might not be finitely
generated, see Example 5.1.
All this really comes up in nature, and the mild singularities involved in the

Minimal Model Program are indeed necessary. The following example demonstrates
this point clearly; it was kindly communicated to me by J. Kollár, and it is a
straightforward generalisation of Sakai’s example [Som86].

Example 5.1. Let Y and M be as in Example 2.1. Set L =M ⊗ω−1
Y ⊗OY (1) and

E = L ⊕ OY (1)
⊕3, and let Z = P(E) with the projection map π : Z → Y . Thus, Z

is a smooth P3-bundle over Y , and denote ξ = OZ(1). Then

ωZ = π∗(ωY ⊗ det E)⊗ ξ⊗−4 = π∗(ωY ⊗ L⊗OY (3))⊗ ξ⊗−4.

Consider the linear system |ξ ⊗ π∗OY (−1)|. It contains smooth divisors S1, S2, S3

corresponding to the quotients E → L⊕OY (1)
⊕2, and note that P = S1 ∩S2 ∩S3 is

a codimension 3 cycle corresponding to the quotient E → L. In particular, the base
locus of |(ξ ⊗ π∗OY (−1))⊗4| is contained in P .
Let X be a general member of |(ξ ⊗ π∗OY (−1))⊗4|. Then X is smooth in codi-

mension 1, and since Z is smooth, we have that X is normal and Gorenstein, and

ωX = ωZ ⊗OZ(X)⊗OX = (π|X)
∗(ωY ⊗ L⊗OY (−1)) = (π|X)

∗M.

In particular, the canonical ring R(X,ωX) ≃ R(Y,M) is not finitely generated.
A (more complicated) variation of this produces an example which is of general

type, I leave the details to a particularly ambitious reader.

Finding a right setup. Therefore, there are indeed situations where the classical
Minimal Model Program cannot work for the canonical class. On the other hand,
Mori Dream Spaces show that there are varieties where we can do a version of the
MMP for every effective divisor. Of course, this is an exceptionally nice extreme,
and we would like to find, in some sense the maximal class of varieties where a
version of this programme can be performed. Maybe it is too much to hope that
there exists such a class which contains both the classical MMP and Mori Dream
Spaces, since they can be, in some sense, unrelated or only loosely related. However,
we will see that we can indeed build a theory which contains both of these pictures
as special instances.
Say we have a Q-factorial projective variety X and a Q-divisor D on X ; note that

here we allow X to be arbitrarily singular. In general, we do not a priori know much
about the properties of the pair (X,D), unless the divisor D is in some well-known
class, say if D is semiample. Hence, ideally we would like to have a birational map
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f : X 99K Y to a Q-factorial projective variety Y such that the Q-divisor f∗D is
semiample. We also want that the map f induces the isomorphism between section
rings R(X,D) and R(Y, f∗D). If E1, . . . , Eℓ are the prime divisors contracted by f ,
then this is achieved if, for instance,

(2) D = f ∗f∗D +
∑

riEi

for some ri ≥ 0, so we impose this condition as well. Such Y is then called a minimal
model of D.
We first notice that, if an MMP as above can be performed for our Q-divisor D,

then D cannot be isolated in the Néron-Severi space N1(X)R. The following lemma
makes this more precise.

Lemma 5.2. Let X be a Q-factorial projective variety, and let D be a Q-divisor on
X. Assume that there exists an MMP forD as explained above, and let π : DivR(X) →
N1(X)R be the natural projection.
Then there exist Q-divisors D1, . . . , Dr such that

(1) D ∈
∑

R+Di ⊆ DivR(X),
(2) dim π(

∑
R+Di) = dimN1(X)R,

(3) the ring R(X ;D1, . . . , Dr) is finitely generated.

Proof. We assume the notation as above. In particular, let f : X 99K Y be an MMP
for D. Since f∗D is semiample, there exist semiample Q-divisors G1, . . . , Gm on Y
such that:

(1) f∗D ∈
∑

R+Gi ⊆ DivR(Y ),
(2) the dimension of the image of the cone

∑
R+Gi in N

1(Y )R is maximal, and
(3) the ring R(Y ;G1, . . . , Gm) is finitely generated.

Indeed, we take G1 = f∗D, and we can pick G2, . . . , Gm to be ample.
Recall that E1, . . . , Eℓ are the f -exceptional prime divisors on X , cf. (2). Now we

define D1, . . . , Dr, with r = m+ ℓ, as follows. Set

Di = f ∗Gi

for i = 1, . . . , m, and set

Dm+i = f ∗G1 + λiEi

for i = 1, . . . , ℓ, where λi = ℓri. Then it is easy to see that (1) and (2) hold. It
remains to show that the ring R(X ;D1, . . . , Dr) is finitely generated.
For non-negative integers k1, . . . , kr, denote Dk1,...,kr =

∑
kiDi, and note that

Dk1,...,kr =
∑m

i=1 f
∗(kiGi) +

(∑r

i=m+1 ki
)
f ∗G1 +

∑r

i=m+1 kiλiEi.

This implies

H0(X,Dk1,...,kr) = H0
(
X,

∑m

i=1 kiDi +
(∑r

i=m+1 ki
)
D1

)
,
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and thus
R(X ;D1, . . . , Dr) ≃ R(X ;D1, . . . , Dm, D1, . . . , D1).

Now, this last ring is finitely generated by Lemma 2.2, as the ring

R(X ;D1, . . . , Dm) ≃ R(Y ;G1, . . . , Gm)

is finitely generated. �

Therefore, unless you have a finitely generated divisorial ring R such that D ∈
SuppR which is full (in the sense that the image of SuppR in N1(X)R is maximal
dimensional), then you stand no chance of ever performing the Minimal Model
Program for this D.
Now that we have the graded ring R = R(X ;D1, . . . , Dr), we recall that the

chamber decomposition from Theorem 2.5 gives us natural maps

ϕi : X 99K Xi

as in Theorem 2.8. This resembles strongly the situations in Sections 3 and 4, but
as we see immediately, it fails in two crucial ways.
First, recall that one of the requirements that we had was that the maps ϕi

factor into elementary maps as defined earlier. In general (in particular, if the
support of R does not contain mobile divisors), it seems hopeless to expect such a
factorisation. We would like to imitate the procedure in Section 3: to even start the
process, SuppR has to intersect the ample cone. Thus, we include the condition
that SuppR contains an ample divisor – in most applications, like in the context of
Sections 3 and 4, this is harmless.
Second, a fundamental requirement is that all Xi are Q-factorial varieties. Recall

that Xi = ProjR(X,Di) for some (equivalently, any) Q-divisor Di in the interior of
the chamber Ci. LetD′

i be any Q-divisor such thatDi ≡ D′
i. IfXi is Q-factorial, then

in particular, the divisor (ϕi)∗D
′
i is Q-Cartier. It is easy to show [KKL12, Lemma

4.6] that in that case, the section ring R(X,D′
i) is also finitely generated: one has to

show that (ϕi)∗Di ≡ (ϕi)∗D
′
i and that ϕi preserves the section ring R(X,D′

i); since
(ϕi)∗D is ample, the conclusion follows.
Therefore, the divisors in the interior of SuppR must be pretty special – it is not

in general true that finite generation of section rings is a numerical property, see
Example 5.4. These divisors deserve a special name.

Definition 5.3. Let X be a Q-factorial projective variety. A Q-divisor D is gen if
for every Q-divisor D′ ≡ D, the section ring R(X,D′) is finitely generated.

Therefore, our last requirement must be that all the divisors in the interior of
SuppR are gen. We are on the right track: it is an easy exercise to check that this
is the situation in both Sections 3 and 4.
To finish this part of the discussion, one can ask whether this is a redundant

condition – maybe it is true that if you have a divisorial ring R as above (such
that the dimension of SuppR is maximal, and this cone contains an ample divisor),
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then the interior of SuppR is made up of gen divisors automatically. The following
example [KKL12, Example 4.8] shows that this is not the case.

Example 5.4. Let E, D and Y be as in Example 2.1, and let p : Y → E be the
natural projection. Note that Y is a smooth surface with Picard number 2. Consider

L1 = c1
(
OX(1)

)
and L2 = c1

(
OX(1)⊗ p∗OE(−D)

)
.

Then L1 and L2 are numerically equivalent nef and big divisors. One can show
that L2 is semiample while L1 is not, and that R(X,L2) is finitely generated while
R(X,L1) is not, see [Laz04, Example 10.3.3].
Since L2 is semiample but not ample, there exists an irreducible curve C on Y

such that L2 · C = 0. Since L1 is big and nef, we have L2
2 > 0, so the Hodge index

theorem then implies C2 < 0.
Now, set F = L2 +C, and note that F is not nef. Let H be any ample divisor on

Y . Since the Picard number of Y is 2, it follows that L2 ∈ R+F + R+H . Set

R = R(Y ;F,H).

Then one can show the following:

(1) R = R(Y ;F,H) is finitely generated, and
(2) none of the divisors in the cone R+F + R+L2 ⊆ SuppR is gen.

For (2), it suffices to observe that any divisor in R+F +R+L2 is numerically equiv-
alent to a non-negative linear combination of L1 and C. The details are an easy
exercise.

Existence of extremal contractions. Let X be a Q-factorial projective variety
and let D1, . . . , Dr be Q-divisors on X such that the ring R = R(X ;D1, . . . , Dr)
is finitely generated. Denote by π : DivR(X) → N1(X)R the natural projection.
Assume that SuppR contains an ample divisor, that π(SuppR) spans N1(X)R, and
that every divisor in the interior of SuppR is gen. Fix a divisor G ∈ SuppR. I will
show that, following the general strategy of Section 3, we can construct an MMP
for G.
By Proposition 2.7, the cone N = SuppR∩ π−1

(
Nef(X)

)
is rational polyhedral,

and every element of this cone is semiample. We pick any of its codimension 1
faces F , such that F intersects the interior of N , and that G and N are not on the
same side of the rational hyperplane which contains F . Then any line bundle in the
relative interior of F gives a birational contraction f : X → Y .
As in the classical setting, there are two cases: either the codimension of the

exceptional locus is 1, or it is at least two. We will see in the following Theorem 5.5
that the first case is good, and in the second case we need a bit more work to rectify
the fact that Y is not Q-factorial; however, strategy in both cases is similar. Then
we can finish similarly as in Theorem 3.6, the details are in [KKL12, Theorem 5.4].
The main deal is, therefore, to prove the existence of elementary contractions.

This is far from straightforward – observe that the construction of flips in Section
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3 was an immediate consequence of finite generation (more precisely, of the relative
version of Theorem 2.3). However, unlike in the classical situation, we have only
one finitely generated ring R at hand, and therefore we cannot apply any of the
standard techniques like restricting ourselves to open subsets and so on.
Thus, the following is the main result [KKL12, Theorem 5.2].

Theorem 5.5. Let the notation and assumptions be as above. Then:

(1) if the exceptional locus of f contains a divisor, then this locus is a single
prime divisor, and Y is Q-factorial,

(2) if f is an isomorphism in codimension 1, then there exists a diagram

X
ϕ

//_______

f
  
AA

AA
AA

AA
X+

f+
}}{{
{{
{{
{{
{

Y

such that ϕ is an isomorphism in codimension 1 which is not an isomorphism,
and X+ is Q-factorial.

Proof. Let SuppR =
⋃

Ci be the decomposition as in Theorem 2.5. By the proof of
Proposition 2.7, there is a cone Cj * π−1

(
Nef(X)

)
of dimension dimSuppR, such

that F is a face of Cj . Let ϕ : X 99K X+ be the birational contraction associated
to any line bundle in the interior of Cj . Then by Theorem 2.8, there is a morphism
f+ : X+ −→ Y and the diagram as above.

NCj
G

SuppR

Note that every curve contracted by f is orthogonal to every divisor in F , hence
all such curves are proportional in N1(X)R. Let R ⊆ N1(X)R denote the ray that
they span.
If f is an isomorphism in codimension 1, then so are ϕ and f+ as ϕ is a contraction.
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If there exists an f -exceptional prime divisor E, then by the Negativity lemma
[KM98, Lemma 3.39], we have E · C < 0 for every curve C contracted by f . Thus
C ⊆ E, and so the exceptional locus of f equals E.
Next we have:

Claim 5.6. Let M be a Q-divisor on X such that M ≡f 0. Then M ∼Q f
∗MY for

some Q-Cartier Q-divisor MY on Y .

This is the crucial part of the proof which uses gen divisors. Before proving the
claim, let us show how it immediately implies the theorem.
Assume first that f is an isomorphism in codimension 1, and we need to show

that X+ is Q-factorial. Consider a Weil divisor P on X+, and let P ′ be its proper
transform on X . Since X is Q-factorial, the divisor P is Q-Cartier, and we pick any
Q-divisor G ∈ Cj . Since all the curves contracted by f belong to R, there exists
a rational number α such that P ′ ≡f αG. By Claim 5.6, there exists a Q-Cartier
Q-divisor D on Y such that P ∼Q αG + f ∗D. By the definition of ϕ, the divisor
f∗G is ample, hence Q-Cartier. Therefore, pushing forward this relation by ϕ, we
obtain that the divisor

P ∼Q αf∗G+ (f+)∗D

is Q-Cartier.
Now, if f contracts a divisor E, we need to show that Y is Q-factorial. Let P

be any Weil divisor on Y , and let P ′ be its proper transform on X . Then P ′ is Q-
Cartier, and since all the curves contracted by f belong to R, there exists a rational
number α such that P ′ ≡f αE. But then, by Claim 5.6 there exists a Q-Cartier
Q-divisor D on Y such that P ′ ∼Q αE + f ∗D. Pushing forward this relation by f ,
we obtain that the divisor P ∼Q D is Q-Cartier.
It remains to prove Claim 5.6. First, note that we can find Q-divisors B1, . . . , Br

in F such that M ≡
∑
λiBi for some nonzero rational numbers λi: indeed, by

assumption, the set π(F) spans the hyperplane in N1(X)R which is orthogonal to
R, hence M belongs to this hyperplane. Denote

B′
1 =

1

λ1

(
M −

∑
i≥2 λiBi

)
.

Then B′
1 ≡ B1, and observe that B′

i is also semiample by Lemmas 2.4 and 2.6. Since
B1 is gen, by Lemma 2.9, there is an isomorphism

η : Y → ProjR(X,B′
1)

such that f ′ = η ◦ f , where f ′ : X → ProjR(X,B′
1). By the definition of f , there

are ample Q-divisors Ai on Y such that Bi ∼Q f ∗Ai for all i ≥ 2, and similarly,
B′

1 ∼Q (f ′)∗A′
1 for an ample Q-divisor A′

1 on ProjR(X,B′
1). Therefore M ∼Q f

∗MY

for MY = λ1η
∗A′

1 +
∑

i≥2 λiAi. �

Finally, as in Section 3, combining everything together yields the following, which
is usually called the geography of (minimal) models.
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Theorem 5.7. Let X be a Q-factorial projective variety, and let D1, . . . , Dr be Q-
divisors on X. Denote by π : DivR(X) −→ N1(X)R the natural projection. Assume
that the ring R(X ;D1, . . . , Dr) is finitely generated, that SuppR contains an ample
divisor, that dim π(SuppR) = dimN1(X)R, and that every divisor in the interior
of SuppR is gen.
Then there is a finite rational polyhedral decomposition

SuppR =
⋃

Ci,

together with birational contractions ϕi : X 99K Xi to Q-factorial projective varieties
Xi, such that Xi is a minimal model for every D ∈ Ci.

6. The Cone conjecture

My main goal in this section is to convince you that several important conjectures
and theories are related: the Cone conjecture for Calabi-Yau manifolds, the Abun-
dance conjecture, finiteness of minimal models up to isomorphisms, and the theory
of Mori Dream Spaces. Taken together, we will see that they, at least morally, form
a coherent picture.
Recall that according to the Minimal Model Program, starting with a variety

X with mild singularities on which KX is pseudo-effective, we expect that there
exists a birational map ϕ : X 99K Y such that the divisor KY is semiample. In
particular, either κ(X,KX) = 0, or there exists a fibration θ : Y → Z such that for
the generic fibre F we have κ(F,KF ) = 0. Thus, when κ(X,KX) ≥ 1, we can study
the geometry of Y via the geometry of the target Z and that of the generic fibre
F . Similarly, when κ(X,KX) = −∞, we know that there exists a KX-MMP which
terminates with a variety Y which has a Mori fibre space structure over a lower
dimensional base Z; in particular, the general fibre of the map Y → Z is a Fano
variety.
Therefore, conjecturally, the study of algebraic varieties splits into three distinct

cases: when KX is either ample, anti-ample, or a torsion divisor. Much is known
about the geometry (at least of moduli) in the first two cases. The third case, which
I here call varieties of Calabi-Yau type, form a rich and extensively studied class.

Remark 6.1. Note that there are many definitions of a Calabi-Yau manifold. Most
often, a Calabi-Yau manifold is a smooth projective variety with ωX ≃ OX and
H1(X,OX) = 0. Sometimes it is required that additionally X is simply connected
and H i(X,OX) = 0 for all 1 ≤ i ≤ dimX .

One of the basic questions in the classification of varieties is how many minimal
models a (say, smooth) variety X can have. The answer is known to be finite
when X is of general type by [BCHM10]. If X is not of general type, there are
known examples when this number is infinite. However, there is a conjecture that
this number is finite up to isomorphism, which means that we ignore birational
identifications with X .
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Consider a variety X of Calabi-Yau type, and denote by Aut(X) the automor-
phism group and by Bir(X) the group of birational automorphisms. Note that
every element of Bir(X) is an automorphism in codimension 1, which is an easy
consequence of the Negativity lemma [KM98, Lemma 3.39]. We have a natural
homomorphism

r : Bir(X) → GL(N1(X))

given by g 7→ g∗. We set A(X) = r
(
Aut(X)

)
and B(X) = r

(
Bir(X)

)
.

Remark 6.2. In general, on a variety X it is more convenient in our context below
to consider the group PsAut(X) of pseudo-automorphisms acting on N1(X) instead
of the group of birational isomorphisms Bir(X): here, elements of PsAut(X) are bi-
rational automorphisms which are isomorphisms in codimension 1. Then we denote
P(X) = r

(
PsAut(X)

)
.

It is a basic question, interesting on its own, how Aut(X) and Bir(X), or equiva-
lently A(X) and B(X), act on certain cones in N1(X)R. The first thing to notice is
that B(X) preserves the effective cone Eff(X) and the movable cone Mov(X), and
that A(X) preserves the nef cone Nef(X).
A more precise answer is suggested by the following Cone conjecture. But first

we need a definition.

Definition 6.3. Let V be a real vector space equipped with a rational structure,
and let C be a cone in V . Let Γ be a subgroup of GL(V ) which preserves C. There
a rational polyhedral cone Π ⊆ C is a fundamental domain for the action of Γ on C
if the following holds:

(1) C =
⋃

g∈Γ gΠ,

(2) int Π ∩ int gΠ = ∅ if g 6= id.

Conjecture 6.4. Let X be a variety of Calabi-Yau type.

(1) There exists a rational polyhedral cone Π which is a fundamental domain for
the action of A(X) on Nef(X) ∩ Eff(X).

(2) There exists a rational polyhedral cone Π′ which is a fundamental domain for
the action of B(X) on Mov(X) ∩ Eff(X).

The first part of the conjecture was formulated by Morrison [Mor93] and was
inspired by developments in mirror symmetry. It was extended to the statement
about the movable cone by Kawamata [Kaw97], and there is formulation which
involves klt pairs and pseudo-automorphisms in Totaro’s paper [Tot10a].
Kawamata also formulated the conjecture in the relative setting, i.e. when there

exists a fibration X → S such that KX ≡S 0, in which case one should consider the
groups Aut(X/S) and Bir(X/S), and the relative cones over S instead. A positive
answer to this form of the conjecture would, in particular, give a positive answer to
the conjecture stated above about finiteness of minimal models up to isomorphism.
This gives the main motivation for the Cone conjecture.
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Before I give some more motivation, let me briefly survey what is known (there
are several papers which give a detailed history of the problem and the state of the
art, see for instance [Tot10b]). The starting point is the proof of the conjecture on
Calabi-Yau surfaces by Sterk, Looijenga, Namikawa and Kawamata [Ste85, Nam85,
Kaw97]. This uses fully the global Torelli theorem for K3s. This was generalised
by Totaro [Tot10a] to klt Calabi-Yau pairs – the proof reinterprets the problem by
using hyperbolic geometry. For abelian varieties, the proof is in [PS10]. Finiteness of
minimal models was proved for a class of holomorphic symplectic 4-folds in [HT10],
and a version for the movable cone on projective holomorphic symplectic manifolds
in [Mar11]. Oguiso [Ogu11] gave a proof of the conjecture for the movable cone
of generic hypersurfaces of multi-degree (2, . . . , 2) in (P1)n for n ≥ 4. Kawamata
[Kaw97] gave a proof of (a weaker form of) the relative version of the conjecture
when X → S is a 3-fold over a positive-dimensional base. This, in particular,
showed that if X is a 3-fold with positive Kodaira dimension, then the number of its
minimal models is finite up to isomorphisms. Finally, the conjecture was confirmed
for Calabi-Yau n-folds with Picard number 2 and infinite group Bir(X) in [LP12].

Further motivation. We start with the following result from convex geometry.

Proposition 6.5. Let V be a finite dimensional real vector space equipped with a
rational structure, and let L be a lattice in V . Let C be a rational polyhedral cone in
V of dimension dimV . Let Γ be a subgroup of GL(V ) which preserves L and C.
Then Γ is a finite group, and there exists a rational polyhedral fundamental domain

for the action of Γ on C.

Proof. Let δ1, . . . , δr be primitive classes on the extremal rays of the cone C (in the
sense that they are integral classes not divisible in L). Then any element g ∈ Γ
permutes these δi: this follows since g preserves C, and it sends a primitive class to
a primitive class. Therefore, Γ is finite.
The proof of existence of a rational polyhedral fundamental domain is a bit more

involved. For every point x ∈ V , let Σx denote the stabiliser of x in Γ. Pick a point
x0 ∈ C such that for every z ∈ C we have |Σx0

| ≤ |Σz|. Then Σx0
is actually trivial.

Indeed, there exists 0 < ε ≪ 1 such that if B(x0, ε) is the ε-ball around x0 (in the
standard norm), then the sets g

(
B(x0, ε) ∩ C

)
are pairwise disjoint for g /∈ Σx0

. By
the choice of x0, this implies that |Σx0

| = |Σz| for every z ∈ B(x0, ε) ∩ C. Hence,
for every g ∈ Σx0

we have that g stabilises B(x0, ε) ∩ C, and thus g = id since there
exists a basis of V which belongs to B(x0, ε) ∩ C.
If 〈 , 〉 denotes the standard scalar product on V ≃ RN , for every x, y ∈ V set

d(x, y) =
∑

g∈Γ

〈gx, gy〉.
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Then it is easy to check that d : V × V → R is a scalar product, and that d(x, y) =
d(gx, gy) for every x, y ∈ V and every g ∈ Γ. Let

Π = {x ∈ C | d(x, x0) ≤ d(x, gx0) for every g ∈ Γ}.

Then Π is cut out from C by rational half-spaces, and hence Π is a rational polyhedral
cone. I claim that Π is a fundamental domain for the action of Γ on C. Indeed,
take any w ∈ C. Then there exists h ∈ Γ such that d(w, hx0) ≤ d(w, gx0) for every
g ∈ Γ. This is equivalent to

d(h−1w, x0) ≤ d(h−1w, h−1gx0)

for every g ∈ Γ, and hence h−1w ∈ Π. Therefore, C =
⋃

g∈Γ gΠ. Since Σx0
= {id},

we have int Π ∩ int gΠ = ∅ unless g = id by definition of Π. This completes the
proof. �

In our situation, V is the Néron-Severi space N1(X)R with the standard lattice L
given by the Néron-Severi group N1(X) and the induced rational structure. Then
the immediate consequence is the following.

Corollary 6.6. Let X be a projective variety such that the cone Nef(X)∩Eff(X) is
rational polyhedral. Then the group A(X) is finite, and there exists a fundamental
domain for the action of A(X) on Nef(X) ∩ Eff(X).
Similarly, if the cone Mov(X) ∩ Eff(X) is rational polyhedral, then the group

P(X) is finite, and there exists a fundamental domain for the action of P(X) on
Mov(X) ∩ Eff(X).
In particular, if X is a Mori Dream Space, then the Cone conjecture holds on X.

Proof. This is straightforward from Proposition 6.5. As a side remark, note that
if Nef(X) ∩ Eff(X) is a rational polyhedral cone, then this cone is equal to its
closure, which must be Nef(X); similarly, we have Mov(X) ∩ Eff(X) = Mov(X) if
Mov(X) ∩ Eff(X) is a rational polyhedral cone. �

As a special case of the previous result, we have that on a Fano manifold the
Cone conjecture holds. As Totaro points out in [Tot10b], we can think of Calabi-
Yau manifolds as “just beyond” Fanos. Of course, Calabi-Yaus behave less well than
Fanos: for instance, it is not too difficult to construct examples of Calabi-Yaus for
which the nef or the movable cone are not rational polyhedral; one such convenient
example is in Example 6.7. However, the Cone conjecture gives a description of
these cones which is the best that we can ever hope for, which is one additional
motivation for it, at least philosophically.

Example 6.7. This is [Ogu12, Proposition 1.4]. Let X be the intersection of general
hypersurfaces in P3 × P3 of bi-degrees (1, 1), (1, 1), and (2, 2). Then X is a Calabi-
Yau 3-fold X of Picard number 2, and it has the following properties: the boundary
rays of the pseudo-effective cone (which, in this case, is the same as the movable
cone) are both irrational, and the group Bir(X) is an infinite group.
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Let us see how much of the properties of Fanos we can recover on Calabi-Yaus.
The start for our discussion is the following.

Theorem 6.8. Let X be a variety of Calabi-Yau type, and let B1, . . . , Bq be big
Q-divisors on X. Then the ring R(X ;B1, . . . , Bq) is finitely generated.

Proof. We can assume that each Bi is effective. Let ε > 0 be a rational number such
that all pairs (X, εBi) are klt, and notice that KX + εBi ∼Q εBi. Hence, the ring

R(X ;B1, . . . , Bq)

is finitely generated by Theorem 2.3 and by Lemma 2.2. �

We immediately obtain the following.

Theorem 6.9. Let X be a variety of Calabi-Yau type.

(1) The cone Nef(X)∩Big(X) is locally rational polyhedral in Big(X), and every
element of Nef(X) ∩ Big(X) is semiample.

(2) The cone Mov(X) ∩ Big(X) is locally rational polyhedral in Big(X).

Proof. Part (1) was first proved in [Kaw88, Theorem 5.7]. The problem of finding
the shape of Mov(X)∩Big(X) was posed in [Kaw88, Problem 5.10]. This was solved
in [Kaw97, Corollary 2.7] for 3-folds, and in [KKL12, Theorem 3.8] in general.
Let V be a relatively compact subset of the boundary of Nef(X) ∩ Big(X),

and denote by π : DivR(X) −→ N1(X)R the natural projection. Then we can
choose finitely many big Q-divisors B1, . . . , Bq such that V ⊆ π(

∑q

i=1R+Bi). The-
orem 6.8 implies that the ring R = R(X ;B1, . . . , Bq) is finitely generated, and

hence π−1
(
Nef(X)

)
∩ SuppR is a rational polyhedral cone and its every element

is semiample by Corollary 2.7. But then V is contained in finitely many rational
hyperplanes. This shows (1), and the proof of (2) is similar. �

Let us recall the following known conjecture which generalises Theorem 2.3.

Conjecture 6.10. Let X be a Q-factorial projective variety, and let ∆1, . . . ,∆r be
Q-divisors such that all pairs (X,∆i) are klt.
Then the adjoint ring

R(X ;KX +∆1, . . . , KX +∆r)

is finitely generated.

This conjecture is implied by the full force of the MMP [SC11], including termi-
nation of any sequence of flips and Abundance, although a priori it is weaker than
the MMP. In particular, the conjecture is a theorem in dimensions up to 3.
The following result shows that Conjecture 6.10 and the Cone conjecture are, in

some sense, consistent.
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Proposition 6.11. Let X be an n-dimensional variety of Calabi-Yau type. Assume
either Conjecture 6.10 in dimension n, or the Cone conjecture in dimension n.
Then the cones Nef(X) ∩ Eff(X) and Mov(X) ∩ Eff(X) are spanned by rational

divisors.

Proof. I only show the statements for Nef(X) ∩ Eff(X), the rest is analogous.
Assume Conjecture 6.10 in dimension n. Let D be an R-divisor whose class is

in Nef(X) ∩ Eff(X). Then we can write D ≡
∑r

i=1 δiDi for prime divisors Di and
positive real numbers δi. Fix an ample Q-divisor A on X . By Theorem 6.8, the ring

R(X ;D1, . . . , Dr, A)

is finitely generated, and hence, the cone N = π−1
(
Nef(X)

)
∩
∑

R+Di is rational
polyhedral by Proposition 2.7, where π : DivR(X) → N1(X)R is the natural map.
Since π(D) ∈ N , the result follows.
Now assume the Cone conjecture in dimension n. Let D be an R-divisor whose

class is in Nef(X) ∩Eff(X), and let Π be the fundamental domain for the action of
A(X) on Nef(X)∩Eff(X). Then there exists g ∈ A(X) such that D ∈ gΠ, and the
conclusion follows since gΠ is a rational polyhedral cone. �
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