ARITHMETIC OF K3 SURFACES

ANTHONY VARILLY-ALVARADO

INTRODUCTION

Being surfaces of intermediate type, i.e., neither geometrically rational or ruled, nor of
general type, K3 surfaces have a rich yet accessible arithmetic theory, which has started to
come into focus over the last fifteen years or so. These notes, written to accompany a 4-hour
lecture series at the 2015 Arizona Winter School, survey some of these developments, with
an emphasis on explicit methods and examples. They are mostly expository, though I have
included at the end two admittedly optimistic conjectures on uniform boundedness of Brauer
groups (modulo constants) for lattice polarized K3 surfaces over number fields, which to my
knowledge have not appeared in print before (Conjectures 4.5 and 4.6). The topics treated
in these notes are as follows.

Geometry of K3 surfaces. We start with a crash course, light on proofs, on the geometry
of K3 surfaces: topological properties, including the lattice structure of H*(X,Z) and simple
connectivity; the period point of K3 surface, the Torelli theorem and surjectivity of the period
map.

Picard groups. Over a number field k, the geometric Picard group Pic(X) of a projective
K3 surface X/k is a free Z-module of rank 1 < p(X) < 20. Determining p(X) for a given K3
surface is a difficult task; we explain how work of van Luijk, Kloosterman, Elsenhans-Jahnel

and Charles [vL07,Klo07, EJ11b, Chal4| solves this problem.

Brauer Groups. The Galois module structure of Pic(X) allows one to compute an impor-
tant piece of the Brauer group Br(X) = H?*(Xg,G,,) of a locally solvable K3 surface X,
consisting of the classes of Br(X) that are killed by passage to an algebraic closure, modulo
Brauer classes coming from the ground field. These algebraic classes can be used to construct
counter-examples to the Hasse principle on K3 surfaces via Brauer-Manin obstructions.

For surfaces of negative Kodaira dimension (e.g., cubic surfaces) the Brauer group con-
sists entirely of algebraic classes. In contrast, for K3 surfaces we know that Br(X(C)) =
(Q/Z)?*~r. However, a remarkable theorem of Skorobogatov and Zarhin [SZ08] says that
over a number field the quotient of Br(X') by the subgroup of constant classes is finite. We ex-
plain work by several authors on the computation of the transcendental Brauer classes on K3

surfaces, and their impact on the arithmetic of such surfaces [HVAV11, HVA13, MSTVA16].
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Uniform boundedness questions. Finally, we explain in broad strokes an analogy be-
tween Brauer classes on K3 surfaces and torsion points on elliptic curves; the later are known
to be uniformly bounded over a fixed number field, by work of Merel [Mer96]. It is our hope
that analogous statements could be true for K3 surfaces.

Results from AWS. As part of the Arizona Winter School, a number of students were
assigned to work on projects related to material of these notes. The experience was successful
beyond reasonable expectations, and several members of the resulting three group projects
continued working together long after the school. We briefly report on their findings.

I omitted several active research topics due to time constraints, notably rational curves
on K3 surfaces, modularity questions, and Mordell-Weil ranks of elliptic K3 surfaces over
number fields. I have resisted the temptation to add these topics so that the notes remain a
faithful, detailed transcription of the four lectures that gave rise to them.!

Prerequisites. The departure point for these notes is working knowledge of the core chap-
ters of Hartshorne’s text [Har77, I-11I], as well as a certain familiarity with the basic theory
of algebraic surfaces, as presented in [Har77, V §§1,3,5] or [Bea96|. I also assume the reader
is familiar with basic algebraic number theory (including group cohomology and Brauer
groups of fields), and basic algebraic topology, at the level usually covered in first-year grad-
uate courses in the United States. More advanced parts of the notes use étale cohomology
as a tool; Milne’s excellent book [Mil80] will come in handy as a reference. Many of the top-
ics treated here have not percolated to advanced textbooks yet. For this reason, I provide
detailed references throughout for readers seeking more depth on particular topics.
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the semester program “Rational Points and Algebraic Cycles” in 2012. Bjorn Poonen and
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am also tremendously indebted to Dan Abramovich, who has shown me how to think about
uniform boundedness problems and thus breathed life into Conjecture 4.5.

I thank the organizers of the Arizona Winter School 2015 for giving me the opportunity
to share this material with tomorrow’s arithmetic geometers, and for the financial support
they provided as I prepared these notes. I also thank Nils Bruin, Bianca Viray and the
Pacific Institute of Mathematical Sciences for supporting a visit to Simon Frasier University
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1. GEOMETRY OF K3 SURFACES

References: [LP80,Mor83, BHPVAV04, Huyl15].
Huybrechts” notes [Huy15] are quite detailed and superbly written, and will soon appear in
book form. Our presentation of the material in this section owes a lot to them.

1.1. Examples of K3 surfaces. By a variety X over an arbitrary field £ we mean a sepa-
rated scheme of finite type over k. Unless otherwise stated, we shall assume varieties to be
geometrically integral. For a smooth variety, we write wy for the canonical sheaf of X and
K x for its class in Pic X.

Definition 1.1. An algebraic K3 surface is a smooth projective 2-dimensional variety over a
field k£ such that wx ~ Ox and H'(X, Ox) = 0.

Example 1.2 (K3 surfaces of degrees 4, 6, and 8). Let X be a smooth complete intersection
of type (dy,...,d,) in P}, i.e., X C P" has codimension r and X = H,N---NH,, where H; is a
hypersurface of degree d; > 1 fori =1,...,r. Then wy ~ Ox(>_d;—n—1) [Har77, Exercise
11.8.4]. To be a K3 surface, such an X must satisfy r = n — 2 and > d; = n+ 1. It does
not hurt to assume that d; > 2 for each i. This leaves only a few possibilities for X (check
this!):

(1) n=3 and (dy) = (4), i.e., X is a smooth quartic surface in P3.

(2) n =4 and (dy,ds2) = (2,3), i.e., X is a smooth complete intersection of a quadric and
a cubic in P{.

(3) n =5 and (dy,ds,d3) = (2,2,2), i.e., X is a smooth complete intersection of three
quadrics in P3.

Exercise 1.3. For each of the three types X of complete intersections in Example 1.2 prove
that H'(X, 0x) = 0.

Example 1.4 (K3 surfaces of degree 2). Suppose for simplicity that char k # 2. Let 7: X —
P? be a double cover branched along a smooth sextic curve C' C P%. Note that X is
smooth if and only if C' is smooth. By the Hurwitz formula [BHPVdAV04, 1.17.1], we have
wx = 7 (wpr ® Op2(6)%1/?) = O, and since m.0x =~ Op © Opz(—3), we deduce that
H' (X, Ox) = 0; see [CD89, Chapter 0, §1] for details. Hence X is a K3 surface if it is
smooth.

Example 1.5 (Kummer surfaces). Let A be an abelian surface over a field k of characteristic
# 2. The involution ¢: A — A given by x + —z has sixteen k-fixed points (the 2-torsion

points of A). Let A — A be the blow-up of A along the k-scheme defined by these fixed
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points. The involution ¢ lifts to an involution 7: A ,Zf; the quotient m: A E/Z =: X is
a double cover ramified along the geometric components of the exceptional divisors of the
blow-up E\, ..., Es. Let E; be the image of E; in X, fori=1,...,16.

We have wz; ~ 0;(> E;), and the Hurwitz formula implies that w; ~ m*'wx ® 07> E;).
Hence 03 ~ m*wx. The projection formula [Har77, Exercise I1.5.1] then gives

(1) wx @m0 ~ .05

Since .05 ~ Ox & L®7!, where L is the square root of Ox (3" F;), taking determinants
of both sides of (1) gives w%? ~ &x. We conclude that Kx € Pic X is numerically trivial
(i.e., its image in Num X is zero—see §1.3), and thus h°(X,wx) = 0 if wx % Ox. Suppose
this is the case. Then since h°(X,m.0;) = 1, (1) implies that h°(X,wy ® m.03) = 1, and
hence h'(X,wx ® L®™ ') = 1. Fix an ample divisor A on X; our discussion above implies
that (A, Kx — [L])x > 0, where (, )x denotes the intersection pairing on X. On the other
hand, L ~ 13" E;, so (A, [L])x > 0. But then (4, Kx) > 0, which contradicts the numerical

triviality of Kx. Hence we must have wy ~ Ox.
Exercise 1.6. Prove that H'(X, @x) = 0 for the surfaces in Example 1.5.

1.2. Euler characteristic. If X is an algebraic K3 surface, then by definition we have
h(X,Ox) =1 and h' (X, Ox) = 0. Serre duality then gives h*(X, Ox) = h°(X, Ox) =1, so

X an algebraic K3 surface = x(X, Ox) = 2.

1.3. Linear, algebraic, and numerical equivalence. Let X be a smooth surface over
a field k, and write Div X for its group of Weil divisors. Let ( , )x: DivX x DivX — Z
denote the intersection pairing on X [Har77, § V.1]. Recall three basic equivalence relations
one can put on Div X:

(1) Linear equivalence: C, D € Div X are linearly equivalent if C' = D + div(f) for
some f € k(X) (the function field of X).

(2) Algebraic equivalence: C, D € Div X are algebraically equivalent if there is a
connected curve T, two closed points 0 and 1 € T', and a divisor £ in X x T, flat
over T, such that Fy — E; = C — D.

(3) Numerical equivalence: C, D € Div X are numerically equivalent if (C, F)x =
(D, E)x for all £ € Div X.

These relations obey the following hierarchy:
Linear equivalence = Algebraic equivalence = Numerical equivalence

Briefly, here is why these implications hold. For the first implication: if C' = D+div(f), then
we can take T = Pi = Projk[t,u] and F = div(tf —u) in X x P} to see that C' and D are
algebraically equivalent. For the second implication: suppose that an algebraically equiva-

lence between C' and D is witnessed by £ C X x T. Let H be a very ample divisor on X,
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and let X < P} be the embedding induced by H. This allows us to embed X x T (and hence
E) in P%.. The Hilbert polynomials of the fibers of E — T" above closed points are constant,
by flatness (and connectedness of T'). Since (C, H)x is the degree of C' in the embedding
induced by H, we conclude that (C, H)x = (D, H)x. Now use the fact that any divisor on
X can be written as a difference of ample divisors [Har77, p. 359]—this decomposition need
not happen over the ground field of course, but intersection numbers are preserved by base
extension of the ground field, so we may work over an algebraically closed field to begin with.

Write, as usual, Pic X for the quotient of Div X by the linear equivalence relation; let
Pic™ X C Pic X be the set of numerically trivial classes, i.e.,

Pic" X ={L €PicX : (L, L')x =0 for all L' € Pic X}.

Finally, let Pic® X C Pic” X be the set of classes algebraically equivalent to zero. Let
NS X = Pic X/ Pic’ X be the Néron-Severi group of X, and let Num X = Pic X/ Pic” X.

Lemma 1.7. Let X be an algebraic K3 surface, and let L € Pic X. Then

2

L

Proof. This is just the Riemann—Roch theorem for surfaces [Har77, Theorem V.1.6], taking
into account that Kx =0 and x (X, Ox) = 2. O

Proposition 1.8. Let X be an algebraic K3 surface over a field. Then the natural surjections
PicX - NSX — Num X
are 1somorphisms.

Proof. Since X is projective, there is an ample sheaf L' on X. If L € ker(Pic X — Num X)),
then (L,L')x = 0, and thus if L # Ox then H’(X,L) = 0. Serre duality implies that
H*(X,L) ~ H°(X, L®"')Y = 0. Hence x(X,L) < 0; on the other hand, by Lemma 1.7 we
have x (X, L) = $L?42, and hence L? < 0, which means L cannot be numerically trivial. [

1.4. Complex K3 surfaces. Over £ = C, there is a notion of K3 surfaces as complex
manifolds that includes algebraic K3 surfaces over C, although most complex K3 surfaces
are not projective. This more flexible theory is crucial in proving important results for K3
surfaces, such as the Torelli Theorem [PSS?L BR75,LP80]. It also allows us to study K3
surfaces via singular cohomology.

Definition 1.9. A complex K3 surface is a compact connected 2-dimensional complex man-
ifold X such that wy := Q% ~ Ox and H'(X, Ox) = 0.

Let us explain the sense in which an algebraic K3 surface is also a complex K3 surface. To
a separated scheme X locally of finite type over C one can associate a complex space X",

whose underlying space consists of X (C), and a map ¢: X* — X of locally ringed spaces in
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C-algebras. For a ringed space Y, let €oh(Y') denote the category of coherent sheaves on Y.
To .7 € €oh(X) one can then associate F*" := ¢"F € Coh(X*"); we have OF)c > Qxan. If
X is a projective variety, then the functor

®: Coh(X) — Coh(X™) F = F

is an equivalence of abelian categories. This is known as Serre’s GAGA principle [Ser55]. In
the course of proving this equivalence, Serre shows that for .# € €oh(X), certain functorial
maps

e: HI(X, #) —» HI(X™, F*)
are bijective for all ¢ > 0 [Ser55, Théoreme 1]. Hence:

Proposition 1.10. Let X be an algebraic K3 surface over k = C. Then X®" is a complex
K3 surface. O

1.5. Singular cohomology of complex K3 surfaces. In this section X denotes a complex
K3 surface, e(-) is the topological Euler characteristic of a space, and ¢;(X) is the i-th
Chern class of (the tangent bundle of) X for ¢ = 1 and 2. As in §1.2, one can show that
X(X, Ox) = 2. Noether’s formula states that

X(X. 0x) = (@ (X)? + (X))

see [BHPVAV04, Theorem 1.5.5] and the references cited therein. Since wyx ~ Ox, we have
c1(X)? =0, and hence e(X) = (X)) = 24.
For the singular cohomology groups of X, we have
H°(X,7Z) = Z because X is connected, and
H*(X,7Z) = Z because X is oriented.
The exponential sequence
0—=>Z—0x — 05 —0
gives rise to a long exact sequence in sheaf cohomology
0 — H(X,Z) - H(X, 0x) — H(X, 0%) - H(X,Z) — H'(X, Ox) —
— HY(X,0%) & HA(X,Z) — H*(X, O0x) — H(X, 0%) — H*(X,Z)
Since H*(X, Ox) — HY(X, 0%) is surjective and H'(X, Ox) = 0, we have H'(X,Z) = 0.
Poincaré duality then gives

(2)

0 =1kHY(X,Z) = tkH,(X,Z) = 1k H*(X, Z),

so H*(X,Z) is a torsion abelian group, and H*(X, Z)is = Hi(X,Z)iors. The universal
coefficients short exact sequence

0 — Ext'(Hy(X,Z),Z) — HX(X, Z) — Hom(Hy(X,Z),Z) = 0

shows that Hy (X, Z)os is dual to H*(X, Z)os (fill in the details!).
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Proposition 1.11. Let X be a complex K3 surface. Then Hy(X,Z)ors = 0.

Proof. An element of order n in Hy (X, Z)os gives a surjection Hy(X,Z) — Z/nZ, hence a
surjection m (X, z) — Z/nZ, which corresponds to an unramified cover Y — X of degree
n, and we must have e(Y') = ne(X) = 24n. The Hurwitz formula tells us that wy ~ m*wx,
S0 wy =~ Oy, which implies h*(Y,Oy) = h°(Y,wy) = 1. Noether’s formula tells us that
XY, 0y) = 5(c1(Y)? + ea(Y)). So2—h'(0y) = 35 - 24n and hence h'(Oy) = 2 — 2n. We
conclude that n = 1. U

Proposition 1.11 and the discussion preceding it shows that H*(X,Z) = 0 and H*(X,7Z)
is a free abelian group. Since e(X) = 24, we deduce that tk H*(X,Z) = 24 — 1 — 1 = 22.
Poincaré duality thus tells us that the cup product induces a perfect bilinear pairing:

B: H*(X,Z) x H*(X,Z) — Z.

Proposition 1.12 ([BHPVAV04, VIIL.3.1]). The pairing B is even, i.e., B(x,z) € 2Z for
all v € H*(X,Z). O

The bilinear form B thus gives rise to an even integral quadratic form
q: H*(X,Z) — 7, xr+— B(z,x).

Extend ¢ by R-linearity to a form ¢g: H*(X,Z) ® R — R, and let b, (resp. b_) denote
the number of positive (resp. negative) eigenvalues of q. The Thom-Hirzebruch index theo-
rem [Hir66, p. 86] says that

by —b_ = é(cl(X)Z — 2¢5(X)) = —16.

On the other hand, we know that
by +b_ =22

so we conclude that b, = 3 and b_ = 19. In sum, HZ(X ,Z) equipped with the cup-product
is an indefinite even integral lattice of signature (3,19). Perfectness of the pairing B tells us
that the lattice H*(X, Z) is unimodular, i.e., the absolute value of the determinant of a Gram
matrix is 1. This is enough information to pin down the lattice H*(X, Z), up to isometry. To
state a precise theorem, recall that the hyperbolic plane U is the rank 2 lattice, which under
a suitable choice of Z-basis has Gram matrix

01
10)’
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and Eg(—1) denotes the rank 8 lattice, which under a suitable choice of Z-basis has Gram

matrix
-2 0 1 o o0 0 0 O
0 -2 0 1 O 0 0 0
1 0 -2 1 O 0 0 O
0 1 1 -2 1 0O 0 O
0O 0 O 1 -2 1 0 0
0O 0 0 0 1 -2 1 0
o o0 0 0 O 1 -2 1
o o0 0 0 O 1 -2

Theorem 1.13 ([Ser73, § V.2.2]). Let L be a an even indefinite unimodular lattice of sig-
nature (r,s), and suppose that s —r > 0. Then r = s mod 8 and L is isometric to

US @ Fy(—1)206/8, O
The above discussion can thus be summarized in the following theorem.

Theorem 1.14. Let X be a complex K3 surface. The singular cohomology group H*(X,7Z),
equipped with the cup-product, is an even indefinite unimodular lattice of signature (3,19),
isometric to the K3 lattice

Axs = U @ Bg(—1)%2 O

1.6. Complex K3 surfaces are simply connected.
Theorem 1.15. Every complex K3 surface is simply connected.

Sketch of the proof: The key ingredient is that all complex K3 surfaces are diffeomorphic
to each other [BHPVAV04, VIII Corollary 8.6]; this theorem takes a fair amount of work:
first, (complex) Kummer surfaces are diffecomorphic, because any two 2-tori are isomorphic
as real Lie groups. Second, there is an open set in the period domain around the period point
of a K3 surface where the K3 surface can be deformed. Third, projective Kummer surfaces
are dense in the period domain. Putting these three ideas together shows all complex K3
surfaces are diffeomorphic. It thus suffices to compute (X, z) for a single K3 surface. We
will pick X a smooth quartic in P% and apply the following proposition.

Proposition 1.16. Any smooth quartic in P is simply connected.

Proof. Let v : P& — P3! be the 4-uple embedding. Any smooth quartic X C P is embedded
under v as v(P2) N H for some hyperplane H C P2!. By the Lefschetz hyperplane theorem
71 (v(P3) N H) is isomorphic to 7 (v(P?)) = m (P?) = 0. O

1.7. Differential geometry of complex K3 surfaces. A theorem of Siu [Siu83] (see

also [BHPVAV04, § IV.3]) asserts that complex K3 surfaces are Kéhler; thus there is a Hodge
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decomposition on H¥(X,C) ~ H%; (X)r ®r C (here Hiz (X)r denotes de Rham cohomology
on the underlying real manifold X):

(3) HY(X,C) = P B™(X),

pt+q=Fk
where H??(X') denotes the Dolbeault cohomology group of complex differential forms of type
(p,q) (isomorphic by Dolbeaut’s theorem to H?(X, Q%)), which satisfy:

HP(X) = H"(X)  and > WPUX) = by,
pt+q=k
where h?4(X) = dim¢ H??(X), and b, = tk(H*(X,Z)) = dim¢ H*(X, C) denotes the k-th
Betti number of X; see [Voi07, Chapter 6].

Proposition 1.17. Let X be a complex K3 surface. The Hodge diamond of X is given by

R0 1
hl,O hO,l 0 0
h20 htt h? =1 20 1
h? h'? 0 0
h?? 1

Proof. From H'(X,Z) = H*(X,Z) = 0 and the Hodge decomposition (3) applied to the
complexification of these groups for £ = 1 and 3 we get the vanishing of the second and
fourth rows. We have h%° = (X, Ox) = 1, and from wx ~ Ox we get h*" = 1. Serre
duality and wy ~ Ox together give h%? = h%0 = K22 Since by = h?° 4+ At 4+ 02 = 22
we obtain ! = 20. Finally, the h?¢ “outside” this diamond vanish by Serre duality and
dimension reasons. U

The lattice H*(X,Z) can be endowed with a Hodge structure of weight 2. We review what
this means; for more details see [Huy15, Chapter 3] and [Voi07, Chapter 7]

Definition 1.18. Let Hz be a free abelian group of finite rank. An integral Hodge structure
of weight n on Hz is a decomposition, called the Hodge decomposition,

He := Hy ®, C = @ Hr4

p+q=n

such that H?? = H?? and H?? = 0 for p < 0.
When X is a complex K3 surface, the middle cohomology decomposes as
H*(X,C) 2 H**(X) @ H"'(X) @ H**(X),

and the outer pieces are 1-dimensional. The cup product on H*(X, Z) extends to a symmetric
bilinear pairing on H*(X, C), equal to the bilinear form (o, 3) Jx aAB. Write H*0(X) =
Cwy. Then the Hodge—Riemann relations assert that

9



(1) (wx,wx) =0;
(2) (wx@%) > O;
(3) V := H*°(X) @ H**(X) is orthogonal to H"!(X).
Exercise 1.19. Check the Hodge-Riemann relations above.
Thus Cwy = H*°(X) determines the Hodge decomposition on H*(X,C). Let
Ve={veV:v=10} =R -{wx +wx, i(wx —wx)},

so that V := Vg ®g C. The intersection form restricted to Vg is positive definite and
diagonal on the basis given above. Hence, the cup product restricted to H*(X) N H*(X,R)
has signature (1,19).

1.8. The Néron-Severi lattice of a complex K3 surface. For a complex K3 sur-
face, the long exact sequence (2) associated to the exponential sequence and the vanishing
H'(X, 0x) = 0 give an injection

¢ : Pic(X) 2 HY(X, 0%) — H*(X,7Z).

which is also called the first Chern class. Let 4,: H*(X,Z) — H?*(X,C) be the canonical
map. The Lefschetz (1,1)-theorem says that the image of i, o ¢; is H"'(X) N i, H*(X, Z).
It is called the Néron-Severi lattice NS X. When X is an algebraic K3 surface, this lattice
coincides with the Néron-Severi group previously defined in §1.3 by Proposition 1.8 and the
GAGA principle [Ser55, Proposition 18 and the remarks that follow].

In words, the Néron-Severi lattice consists of the integral classes in H*(X,Z) that are
closed (1,1)-forms. In particular, the Picard number p(X) = rkNS(X) = rkPic(X) is at
most the dimension of H"(X).

Proposition 1.20. Let X be a complex K3 surface. Then 0 < p(X) < 20. If X is algebraic,
then the signature of NSX @R is (1, p(X) — 1). O

1.9. The Torelli theorem. A marking on a complex K3 surface X is an isometry, i.e., an
isomorphism of lattices,

®: H*(X,Z) > Axs.
A marked complex K3 surface is a pair (X, ®) as above. We denote the complexification of
® by ®¢. The period point of (X, ®?) is Pc(Cwx) € P(Axs ® C). By the Hodge-Riemann
relations, the period point lies in an open subset Q (in the complex topology) of a 20-
dimensional quadric inside P(Ags ® C):

Q={2cP(Axs®C) : (z,2) =0, (x,7) > 0};

here (, ) denotes the bilinear form on Az ® C. We call Q2 the period domain of complex K3
surfaces.

Exercise 1.21. Check that € is indeed an open subset of a quadric in P(Ax; ® C) ~ PZ.
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Theorem 1.22 (Weak Torelli theorem [PSS71,BR75,LP80]). Two compler K3 surfaces X
and X' are isomorphic if and only if there are markings

d: H*(X,Z) 5 Ags < H*(X',Z): @
whose period points in €} coincide. 0

The weak Torelli theorem follows from the strong Torelli theorem. We briefly explain the
statement of the latter. Since the intersection form on H"'(X) N H?*(X,R) is indefinite, the
set {x € H"'(X)NH*(X,R) : (z,7) > 0} has two connected components. Exactly one of
these components contains Kéhler classes?; we call this component the positive cone. A class
x € NS X is effective if there is an effective divisor D on X such that x = i, o ¢; (Ox(D)).

Theorem 1.23 (Strong Torelli Theorem). Let (X, ®) and (X', ®') be marked complex K3
surfaces whose period points on ) coincide. Suppose that

fr= (@) tod: H}(X,Z) — H* (X', 7Z)

takes the positive cone of X to the positive cone of X', and induces a bijection between the
respective sets of effective classes. Then there is a unique isomorphism f: X' — X inducing

. 0

1.10. Surjectivity of the period map. A point w € P(Aks ® C) gives a 1-dimensional
C-linear subspace H?? C Ags ® C. Let H*? = H2O0 C Aks ® C be the conjugate linear
subspace, and let H' be the orthogonal complement of H*® @ H%?, with respect to the
C-linear extension of the bilinear form on Axs. We say H* @ H' ¢ H*? is a decomposition
of K3 type for Ags ® C.

Theorem 1.24 (Surjectivity of the period map [Tod80]). Given a point w € Q inducing a
decomposition Axs®@C = H* @H" @H"? of K3 type there exists a complex K3 surface X and
a marking P : HQ(X, Z) = Ax3 whose C-linear extension preserves Hodge decompositions.

O

1.11. Lattices and discriminant groups. To give an application of the above results, we
need a few facts about lattices; the objects introduced here will also play a decisive role in
identifying nontrivial elements of the Brauer group of a complex K3 surface.

Although we have already been using the concept of lattice in previous sections, we start
here from scratch, for the sake of clarity and completeness. A lattice L is a free abelian group
of finite rank endowed with a symmetric nondegenerate integral bilinear form

(,}:LxL—Z.

2A Kihler class h € H?(X,R) is a class that can be represented by a real (1, 1)-form which in local coordinates
(21, 22) can be written as ¢ ) a;;2; A Zj, where the hermitian matrix (a;;(p)) is positive definite for every
peX.
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We say L is even if (x,x) € 27Z for all x € L. We may extend (, ) Q-linearly to L ® Q, and
define the dual abelian group

LY :=Hom(L,Z)~{x € L& Q: (x,y) € Zfor ally € L}.

There is an injective map of abelian groups L — LY sending z to ¢,: y — (z,y). The
discriminant group is LY/L, which is finite since ( , ) is nondegenerate. Its order is the
absolute value of the discriminant of L. For an even lattice L we define the discriminant form
by

qr: LY/L — Q/2Z z+ L (x,x) mod 2Z.
Let /(L) be the minimal number of generators of LY /L as an abelian group.
Theorem 1.25 ([Nik79, Corollary 1.13.3]). If a lattice L is even and indefinite (when ten-

sored with R), and vk L > ¢(L)+2 then L is determined up to isometry by its rank, signature
and its discriminant form. U

An embedding of lattices L < M is primitive if it has saturated image, i.e., if the cokernel
M/ L is torsion-free.

Exercise 1.26. Let L < M be an embedding of lattices, and write let L+ = {2 € M :
(x,y) =0 for ally € L}.

(1) Show that L is a primitive sublattice of M.
(2) Show that if L is primitive, then (L*+)+ = L.

Theorem 1.27 ([Nik79, Corollary 1.12.3]). There ezists a primitive embedding L — Axs
of an even lattice L of rank r and signature (p,r — p) into the K3 lattice Axs if p < 3,
r—p<19, and ((L) <22 —r. O

1.12. K3 surfaces out of lattices. We conclude our discussion of the geometry of complex
K3 surfaces with an application of the foregoing results, in the spirit of [Mor88, §12].

Question: Is there a complex K3 surface X with Pic X a rank 2 lattice with the following
intersection form?

H C
H| 4 8
c|8 4

(A better question would be: does there exist a smooth quartic surface X C P? containing
a smooth curve C' of genus 3 and degree 87 Such a surface would contain the above lattice
in its Picard group. The answer to this question is yes, but it would take a little more
technology than we’ve developed to answer this better question.)

Let L = ZH + ZC', with an intersection pairing given by the above Gram matrix. By
Theorem 1.27, we know there is a primitive embedding L — Ags; fix such an embedding.
Our next move is to construct a Hodge structure of weight two on Aks

AKS ® C _ HQ,O D Hl,l D HO,2
12



such that H"* N Aks = L. For this, choose w € Ags ® C satisfying (w,w) = 0, (w,@) > 0, in
such a way that L+ ® Q is the smallest Q-vector space of Axs ® Q whose complexification
contains w. Essentially, this means that we want to set w = Y a;x; where {z;} is a basis
for L+ ® Q and the o; are algebraically independent transcendental numbers except for the
conditions imposed by the relation (w,w) = 0. Then:

HY'N (AK3®Q) = (LL)J— ®Q=L®Q,

which by the saturatedness of L implies that H"! N Ags = L. By Theorem 1.24, there exists
a K3 surface X and a marking ®: H*(X,Z) = Ags such that NS(X) = L. Using stronger
versions of Theorem 1.24 (e.g. [Mor88, p. 70]), one can show that h = ®'(H) is ample.
Furthermore, Reider’s method can be used to show that h is very ample.

2. Pi1cARD NUMBERS OF K3 SURFACES

References: [Ter85,Ell04,Klo07,vL07,Sc¢h09,EJ08,EJ11a,EJ11b,EJ12,Sch13,HKT13,Chal4,
PTvL15]

In this section, all K3 surfaces considered are algebraic. Let X be a K3 surface over a
field K. Fix an algebraic closure K of K, and let X = X xx K. Let p(X) denote the rank
of the Néron-Severi group NS X of X. The goal of this section is to give an account of the
explicit computation of p(X) in the case when K is a number field. One of the key tools is
reduction modulo a finite prime p of K. We will see that whenever X has good reduction
at p, there is an injective specialization homomorphism NS X < NS Xp. For a prime ¢
different from the residue characteristic of p there is in turn an injective cycle class map
NS X, ® Q; — HZ (X,,Q.(1)) of Galois modules. The basic idea is to use the composition
of these two maps (after tensoring the first one by Q) for several finite primes p to establish

tight upper bounds on p(X). We begin by explaining what good reduction means, and where
the two maps above come from.

2.1. Good reduction.

Definition 2.1. Let R be a Dedekind domain, set K = Frac R, and let p C R be a nonzero
prime ideal. Let X be a smooth proper K-variety. We say X has good reduction at p if X
has a smooth proper R,-model, i.e., if there exists a smooth proper morphism X — Spec R,
such that & xr, K ~ X as K-schemes.

Remark 2.2. Let k = R, /pR, be the residue field at p. The special fiber X' X g, k is a smooth
proper k-scheme.

Remark 2.3. The ring R, is always a discrete valuation ring [AM69, Theorem 9.3].

Example 2.4. Let p be a rational prime and let

R=Zgp ={m/neQ:meZnecZ\{0}and pfn}.
13



Set p = pZ,). In this case K = Q and R, = R. Let X C P? = ProjQ[z,y, z, w] be the K3
surface over Q given by

at + 2yt = 21 + 4w’
Let X = ProjZy)lz,y, z, w]/(z* + 2y* — 2* — 4w*). Note that if p # 2, then X is smooth
and proper over R, and X xr Q ~ X. Hence X has good reduction at primes p # 2.

Exercise 2.5. Prove that the conic X := Proj Q[z,y, z]/(zy — 192%) has good reduction at
p = 19. Naively, we might think that p is not a prime of good reduction if reducing the
equations of X mod p gives a singular variety over the residue field. This example is meant
to illustrate that this intuition can be wrong.

2.2. Specialization. In this section, we follow the exposition in [MP12, §3]; the reader
is urged to consult this paper and the references contained therein for a more in-depth
treatment of specialization of Néron-Severi groups.

Let R be a discrete valuation ring with fraction field K and residue field k. Fix an algebraic
closure K of K, and let R be the integral closure of R in K. Choose a nonzero prime p € R
so that k = R/p is an algebraic closure of k. For each finite extension L/K contained in
K, we let Ry, be the integral closure of R in L. This is a Dedekind domain, and thus the
localization of Ry, at p N Ry is a discrete valuation ring R’ ; call its residue field £’

Let X be a smooth proper R-scheme. Restriction of Weil divisors, for example, gives
natural group homomorphisms

(4) Pic X}, < Pic XRIL — Pic Ay,
and the map Pic Xp; — Pic A, is an isomorphism (see the proof of [BLR90, §8.4 Theorem 3]).
If X — Spec R has relative dimension 2, then the induced map?® Pic X, — Pic X} preserves
the intersection product on surfaces [Ful98, Corollary 20.3]. Taking the direct limit over L
of the maps (4) gives a homomorphism

Pic XI? — Pic ng

that preserves intersection products of surfaces when X — Spec R has relative dimension 2.

Proposition 2.6. With notation as above, if X — Spec R is a proper, smooth morphism of
relative dimension 2, then p(Xg) < p(X;).

Proof. Since the map Pic Xz — Pic A} preserves intersection products, it induces an injection
Pic XI?/ Pic” XI? — Pic Xk’/ Pic” Xk’

The claim now follows from the isomorphism Pic Y/ Pic" Y ~ NSY /(NSY )iors [Tat65, p. 98],

applied to Y = Xk and Aj. U

3This map has a simple description at the level of cycles: given a prime divisor on X, take its Zariski
closure in X, and restrict to &j. This operation respects linear equivalence and can be linearly extended
to Pic XL.

14



Remark 2.7. The hypothesis that X — Spec R has relative dimension 2 in Proposition 2.6
is not necessary, but it simplifies the exposition. See [Ful98, Example 20.3.6].

We can do a little better than Proposition 2.6. Indeed, without any assumption on the
relative dimension of X — Spec R, the map Pic Xz — Pic X} gives rise to a specialization
homomorphism

sPri: NSXg — NS Ay
see [MP12, Proposition 3.3].

Theorem 2.8. With notation as above, if chark = p > 0, then the map
SPK i X7z idz[l/p] : NS X ®z Z[l/p] — NS X; ®z Z[l/p]

15 injective and has torsion-free cokernel.
Proof. See [MP12, Proposition 3.6]. O

Remark 2.9. If Y is a K3 surface over a field then NSY ~ PicY (Proposition 1.8), so SPr &
is the map we already know, and it is already injective before tensoring with Z[1/p].

The moral of the story so far (Proposition 2.6) is that if X is a smooth projective surface
over a number field, then we can use information at a prime of good reduction for X to
bound p(X). The key tool is the cycle class map, which we turn to next; this map is the
algebraic version of the connecting homomorphism in the long exact sequence in cohomology

associated to the exponential sequence.

2.3. The cycle class map. In this section we let X be a smooth projective geometrically
integral variety over a finite field F, with ¢ = p” elements (p prime). Write Fq for a fixed
algebraic closure of F,, and let o € Gal(F,/F,) denote the Frobenius automorphism x ~ 2.
Let X¢ denote the (small) étale site of X := X XF, F,, and let ¢ # p be a prime. For an
integer m > 1, the Tate twist (Z/("Z)(m) is the sheaf u$™ on X¢. For a fixed m there is a

natural surjection (Z/¢("Z)(m) — (Z/0"Z)(m); putting these maps together, we define
H& (X, Ze(m)) = lim HE (X, (Z/0"Z) (m)),

Hz (X, Qe(m)) := HE (X, Zo(m)) ®z, Q.
Since ¢ # p, the Kummer sequence

0—>Wn—>GmﬂGm—>0

is an exact sequence of sheaves on X4 [Mil80, p. 66], so the long exact sequence in étale
cohomology gives a boundary map

(5) On: Hét(fj Gm) - Hﬁt(f, /M”)-
15



Since H, (X, G,,) ~ Pic X [Mil80, I11.4.9], taking the inverse limit of (5) with respect to the
¢-th power maps {fin+1 — f1en } we obtain a homomorphism

(6) Pic X — H3, (X, Z(1)).

The kernel of this map is the group Pic” X of divisors numerically equivalent to zero [Tat65,
pp. 97-98], and since Pic X/Pic” X ~ NS X /(NS X)os, tensoring (6) with Q, gives an
injection

(7) C: NSX@@(‘—)Hgt(X,Qg(l))

The map c is compatible with the action of Gal(F,/F,), and moreover, there is an isomor-
phism of Gal(F,/F,)-modules

(8) Hzt<)?7 QZ(D) = (1&1 Hzt()?v Z/ﬁ"Z) ®Ze QZ) ®Ze (QZ ®Z@ l.gllulf") )
=: H?et\(}?7 Qﬁ)

where Gal(F,/F,) acts on Q ®, Hm jun according to the usual action of Gal(F,/F,) on
fhon C Fq. In particular, the Frobenius automorphism o acts as multiplication by ¢ on
Qr ®z, @ pen: indeed, we are regarding pm C F, as a Z/¢"Z-module via the multiplication
m- (="

Proposition 2.10. Let X be a smooth proper scheme over a finite field F, of cardinality
q = p" with p prime. Write o € Gal(F,/F,) for the Frobenius automorphism x + z9. Let
{ # p be a prime and let o*(0) denote the automorphism of H%,(X, Q) induced by o. Then
p(X) is bounded above by the number of eigenvalues of o*(0), counted with multiplicity, of

the form (/q, where C is a root of unity.

Proof. Write o* for the automorphisms of NS X induced by o. The divisor classes generating
NS X are defined over a finite extension of k, so some power of o* acts as the identity on
NS X. Hence, all eigenvalues of o* are roots of unity. Using the injection (7), we deduce that
p(X) is bounded above by the number of eigenvalues of o*(1) operating on HZ (X, Q,(1))
that are roots of unity. The isomorphism (8) shows that this number is in turn equal to the
number of eigenvalues of 0*(0) operating on HZ (X, Q) of the form (/q, where ( is a root
of unity. 0

Remark 2.11. Let F C F, be a finite extension of F,. The Tate conjecture [Tat65, p. 98]
implies that

(NS Xp @ Q) = HZ (X, Qy(1))C21Fa/),
One can deduce that the upper bound in Proposition 2.10 is sharp (exercise!). This conjecture
has now been established for K3 surfaces X when ¢ is odd [Nyg83, NO85, Chal3, Maul4,

MP15], and also for ¢ even if the geometric Picard rank of the surface is > 2 [Chal6].
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Proposition 2.10 implies that knowledge of the characteristic polynomial of ¢* acting on
HZ,(X,Qy) gives an upper bound for p(X). It turns out that it is easier to calculate the
characteristic polynomial of (¢*)7!, because we can relate this problem to point counts
for X over a finite number of finite extensions of F,. To this end, we take a moment to
understand what (o*)~! looks like.

2.3.1. Absolute Frobenius. For a scheme Z over a finite field F, (with ¢ = p"), welet Fz: Z —
Z be the absolute Frobenius map: this map is the identity on points, and =z + 2P on the
structure sheaf; it is not a morphism of F-schemes. Set ®; = F}; the map ®, x1: Z xF, —
7 xF, induces a linear transformation ®}: HZ (Z, Q;) — HZ(Z, Q). The action of F; on Z
is (naturally equivalent to) the identity [Mil80, VI Lemma 13.2], and since F = F, x I =
®, x o, the maps ®% and o*(0) operate as each other’s inverses on HZ (Z,Q,). Using the
notation of Proposition 2.10, we conclude that the number of eigenvalues of 0*(0) operating
on HZ (X,Qy) of the form (/q is equal to the number of eigenvalues of ®% operating on
HZ, (X, Q) of the form ¢, where ( is a root of unity.

2.4. Upper bounds I: Putting everything together.

Theorem 2.12. Let R be a discrete valuation ring of a number field K, with residue field
k ~TF,. Fiz an algebraic closure K of K, and let R be the integral closure of R in K. Choose
a nonzero prime p € R so that k = R/p is an algebraic closure of k. Let { # chark be a
prime number.

Let X — R be a smooth proper morphism of relative dimension 2, and assume that the
surfaces Xz and X are geometrically integral. There are natural injective homomorphisms
of Qu-inner product spaces

NS Xz ® Q; — NS X; ® Qp — HZ(X;, Qu(1))

and the second map is compatible with Gal(k/k)-actions. Consequently, p(Xz) is bounded
above by the number of eigenvalues of ®%, operating on Hzt(ka, Qy), counted with multiplicity,
of the form qC, where ( is a root of unity. O

Convention 2.13. We will apply Theorem 2.12 to K3 surfaces X over a number field K.
In such cases, we will speak of a finite prime p C Ok of good reduction for X. The model
X — Spec R with R = (Ok), satisfying the hypotheses of Theorem 2.12 will be implicit,
and we will write X for the (K-isomorphic) scheme X, and X, for Xj.

Keep the notation of Theorem 2.12. The number of eigenvalues of ®% of the form ¢
can be read off from the characteristic polynomial () of this linear operator. To compute
this characteristic polynomial, we use two ideas. First, the characteristic polynomial of a
linear operator on a finite dimensional vector space can be recovered from knowing traces of
sufficiently many powers of the linear operator, as follows.
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Theorem 2.14 (Newton’s identities). Let T be a linear operator on a vector space V' of
finite dimension n. Write t; for the trace of the i-fold composition T of T, and define

k—1
1
ay ;= —t; and ay = 7 (tk + Z ajtkj) fork=2...n.
j=1

Then the characteristic polynomial of T is equal to

det(z-Id—T) = 2" + a2 ' 4+ - + ap_12 + an.

Second, the traces of powers of @3, operating on HZ, (X, Q) can be recovered from the

Lefschetz trace formula
Tr ((D%,)") = #X(Fy) — 1 —¢*;
see [Man86, §27] for a proof of this formula in the surface case. When X}, is a K3 surface, we
have n = 22, so at first glance we have to count points over F for ¢« = 1,...,22. However,
the characteristic polynomial of 3, happens to satisfy a functional equation, coming from
the Weil conjectures:
00, (x) = a2, (g% ).

If we are lucky, counting points over F, for i = 1,...,11 will be enough to determine the
sign of the functional equation, and thus allow us to compute ¢, (z). If we are unlucky, one
can always compute two possible characteristic polynomials, one for each possible sign in the
functional equation, and discard the polynomial whose roots provably have absolute value
different from ¢ (i.e., absolute value distinct from that predicted by the Weil conjectures). In
practice, if we already know a few explicit divisor classes on X, we can cut down the amount
of point counting required to determine ), (z). For example, knowing that the hyperplane
class is fixed by Galois tells us that (z —¢) divides ¢,(x); this information can be used to get
away with point count counts for « = 1,...,10 only. More generally, if one already knows
an explicit submodule M C NS X, as a Galois module, then the characteristic polynomial
() of Frobenius acting on M can be computed, and since ¢y (x) | ¢,4(x), one can compute
,(x) with only a few point counts, depending on the rank of M.

Exercise 2.15. Show that if A has rank r then counting points on Aj(F,) for i =
1,...,[(22 — r)/2] suffices to determine the two possible polynomials 1,(z) (one for each
possible sign in the functional equation).

Example 2.16 ([HVA13, §5.3]). In the polynomial ring Fs[z, y, z, w|, give weights 1, 1, 1 and
3, respectively, to the variables z, y, z and w, and let Pg,(1,1,1,3) = ProjF3[x,y, z, w] be
the corresponding weighted projective plane. Choose a polynomial ps(x,y, 2) € Fslz,y, 2|5
so that the hypersurface X given by

9) w? = 2y2($2 + 22y + 29°)* + (22 + 2)ps(x,y, 2)
18



is smooth, hence a K3 surface (of degree 2). The projection 7: P(1,1,1,3) --» ProjF3|x, y, ]
restricts to a double cover morphism 7: X — IP’IQF3, branched along the vanishing of the right
hand side of (9).

Let N; := #X(F3i); counting points we find

M| N | Ns| No| Ns| O Ne| DN N | N, | Nio
7] 79| 703 ] 6607 | 60427 | 532711 | 4792690 | 43068511 | 387466417 | 3486842479

Applying the procedure described above, this is enough information to determine the char-
acteristic polynomial ¢3(z). The sign of the functional equation for 3(z) is negative—a
positive sign gives rise to roots of absolute value # 3. Setting J(:z:) = 372243(3x), we obtain
a factorization into irreducible factors as follows:

1
Y(x) = g(x —1)(z + 1)(32% + 32" + 52 + 52'7 + 620 + 22'° + 22

— 321 — 42" — 82!t — 6210 — 82 — 428
— 32" + 2% + 22° 4 62" + 52° + 527 + 3z + 3).

The roots of the degree 20 factor of ¢)(z) are not integral, so they are not roots of unity. We
conclude that p(X) < 2.

On the other hand, inspecting the right hand side of (9), we see that the line 2z+2 = 0 on
IP? is a tritangent line to the branch curve of the double cover morphism 7. The components

of the pullback of this line intersect according to the following Gram matrix

()

which has determinant —5 # 0, and thus they generate a rank 2 sublattice L of NS X. We
conclude that p(X) = 2. Since the determinant of the lattice L is not divisible by a square,
the lattice L must be saturated in NS X, so NS X = L.

By Theorem 2.12, any K3 surface over QQ whose reduction at p = 3 is isomorphic to X has

geometric Picard rank at most 2.

2.5. Upper bounds II. Keep the notation of Theorem 2.12. It is natural to wonder how
good the upper bound furnished by Theorem 2.12 really is, at least for K3 surfaces, which
are the varieties that concern us. The Weil conjectures tell us that the eigenvalues of (I)*Xk’
operating on HZ (X, Q) have absolute value* g. Since the characteristic polynomial of
CIDj}k, lies in Q[z], the eigenvalues not of form ¢¢ must come in complex conjugate pairs. In
particular, the total number of eigenvalues that are of the form ¢¢ must have the same parity
as the f-adic Betti number by = dimg, Hz, (X}, Q¢). For a K3 surface, by = 22 because the
l-adic Betti numbers coincide with the usual Betti numbers (use [Mil80, Theorem 3.12]).

4“When we say absolute value here we mean any archimedean absolute value of the field obtained by adjoining
to K the eigenvalues of @7 .
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We conclude, for example, that Theorem 2.12 by itself cannot be used to construct a
projective K3 surface over a number field of geometric Picard rank 1. This was a distressing
state of affairs, since it is a classical fact that outside a countable union of divisors, the points
in the coarse moduli space Koy of complex K3 surfaces of degree 2d represent K3 surfaces
of geometric Picard rank 1. The complement of these divisors is not empty (by the Baire
category theorem!), but since number fields are countable, it was conceivable that there did
not exist K3 surfaces over number fields of geometric Picard rank 1. Terasoma and Ellenberg
showed that such surfaces do exist [Ter85, El1104], and van Luijk constructed the first explicit
examples [vLO7].

2.5.1. wvan Luigk’s method. The idea behind van Luijk’s method [vL07] is beautiful in its sim-
plicity: use information at two primes of good reduction. See Convention 2.13 to understand
the notation below.

Proposition 2.17. Let X be a K3 surface over a number field K, and let p and p' be two
finite places of good reduction. Suppose that NS X, ~ Z" and NS X, ~ Z", and that the
discriminants Disc (NS X,) and Disc (NS X /) are different in Q* /Q*2. Then p(X) < n—1.

Proof. By Theorem 2.12, we know that p(X) < n. If p(X) = n, then NS X is a full rank sub-
lattice of both NS X, and NS X . This implies that Disc NS(X) is equal to both Disc (NS Yp)

and Disc (N S Yp/) as elements of Q*/Q*2, so the discriminants of the reductions are equal
in Q*/Q*2. This is a contradiction. O

Example 2.18 ([vL07, §3]). The following is van Luijk’s original example. Set
f=2a%—a2%y — 2’2+ 2%w — zy? — zyz + 2eyw + 2% + 222w
+ y3 + y2z — y2w + yz2 + yzw — wa + 22w + 2w? + 2w3,
and let X be the quartic surface in IP’% = Proj Qlz, y, z,w] given by
wf + 2z(xy? + vyzr — 122 — y2® + 23) — 3(2% + wy + y2) (22 + 2y) = 0.
One can check (using the Jacobian criterion), that X is smooth, and that X has good
reduction at p = 2 and 3. Let ¢,(z) denote the characteristic polynomial of Frobenius
acting on H,(X,, Q,), and let v, (z) = p~2%¢,(px). Proceeding as in Example 2.16, we use
point counts to compute

~ 1
wQ(x):5(33_1)2(2$20+x19_x18+x16+x14_|_x11+2x10+x9+$6+x4_x2+x+2)

~ 1
Py(x) = g(m —1)2(32% 4 2" — 32" + 2'7 + 620 — 62" + 2" + 622 — M — 720 — 2

+ 62% + 27 — 62°% + 62* + 2% — 322 + 2 +3)

The roots of the degree 20 factors of zzp(:c) are not integral for p = 2 and 3, so they are not

roots of unity. We conclude that p(X5) and p(X3) are both less than or equal to 2.
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Next, we compute Disc(NS X,) for p = 2 and 3 by finding explicit generators for NS X .
For p = 2 note that, besides the hyperplane section H (i.e., the pullback of Tps(1) to X3),
the surface X, contains the conic

C:w=2"+zy=0.

We have H? = 4 (it’s the degree of X, in P3), and C' - H = degC = 2. Finally, by the
adjunction formula C? = —2 because C has genus 0 and the canonical class on X is trivial.
All told, we have produced a rank two sublattice of NS X, of discriminant

det (4 2 ) = —12.
2 =2

We conclude that Disc(NS X,) = —3 € Q*/Q*2.
For p = 3, the surface X3 contains the hyperplane class H and the line L: w = z = 0,
giving a rank two sublattice of NS X3 of discriminant

4 1
det = —9.
e <1 _2) 9

Thus Disc(NS X3) = —1 € Q*/Q*2. Proposition 2.17 implies that p(X) < 1, and since
NS X contains the hyperplane class, we conclude that p(X) = 1.

2.6. Further techniques. In Examples 2.16 and 2.18 above, we computed the discriminant
of the Néron-Severi lattice for some K3 surfaces by exhibiting explicit generators. What if we
don’t have explicit generators? In [Klo07] Kloosterman gets around this problem by using
that Artin-Tate conjecture, which states that for a K3 surface X over a finite field F, the
Brauer group Br X := H, (X, G,,)ors of X is finite and

(10) lim % — ¢* "4 Br X| Disc(NS X)),

where p(X) = rk(NS X). The Artin-Tate conjecture follows from the Tate conjecture when
2 1 ¢ [Mil75], and the Tate conjecture is now known to hold in odd characteristic; see Re-
mark 2.11. Assume then that ¢ is odd. Pass to the finite extension of the ground field so
that NS X = NS X. Since the Artin-Tate conjecture holds, so in particular Br X is finite, a
theorem of Lorenzini, Liu and Raynaud states that the quantity # Br X is a square [LLRO5].
Hence (10) can be used to compute | Disc(NS X)| as an element of Q* /Q*2.

Elsenhans and Jahnel have made several contributions to the computation of Néron-Severi
groups of K3 surfaces. For example, in [EJ11a], they explain that one can use the Galois
module structures of Néron-Severi groups to refine Proposition 2.17. Let X be a K3 surface
over a number field K, and let p be a finite place of good reduction for X, with residue field
k (see Convention 2.13). The specialization map

SPi ®1d: NSX ®zQ — NSX, ®zQ
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is an injective homomorphism. The Q-vector space NS X, ®7Q is a Gal(k/k)-representation,
while the Q-vector space NS X ®;Q is a Gal(K /K )-representation. Let L denote the kernel
of the latter representation.

Exercise 2.19. Show that the field extension L/K is finite and unramified at p.

Exercise 2.19 shows that, after choosing a prime q in L lying above p, there is a unique lift
of Frobenius to L, which together with the specialization map, makes NS X ®;Q a Gal(k/k)-
submodule of NS X; ®7 Q. By understanding the Gal(k/k)-submodules of NS X; ®7 Q as
we vary over several primes of good reduction, we can find restrictions on the structure of
NS X ®z Q, and often compute p(X).

The main tool is the characteristic polynomial g, 0of Frobenius as an endomorphism
of NS X, ®z Q. If Yrwop has simple roots, then Gal(k/k)-submodules of NS X, ®7 Q are in
bijection with the monic polynomials dividing Xgyob-

Recall that NS X, ®z Qy is a Gal(k/k)-submodule of HZ,(X,,Q,(1)) via the cycle class
map, SO Xrrob divides the characteristic polynomial {Dvp of Frobenius acting on H, (X, Q,(1)),
and we have seen that the roots of X are roots of unity (because some power of Frobenius
acts as the identity). Therefore, xmopn divides the product of the cyclotomic polynomials that
divide Jp. The Tate conjecture implies that ygop is in fact equal to this product. So let Vipae
denote the highest dimensional Q,-subspace of HZ (X,,Q¢(1)) on which all the eigenvalues
of Frobenius are roots of unity. Let L C NS X, be a sublattice; typically, L will be generated
by the classes of explicit divisors we are aware of on X,. If we are lucky, there are very few
possibilities for Gal(k/k)-submodules of the quotient Vipye/(L ®z Q;), which we compare as
we vary over finite places of good reduction. This is best explained through an example.

Example 2.20 ([EJ11a, §5]). The following is an example of a K3 surface X over Q with
good reduction at p = 3 and 5, such that p(X3) = 4 and p(X5) = 14, for which we can

show that p(X) = 1 using only information at these two primes. Let X be the subscheme of
P(1,1,1,3) = Proj Zgs) [z, y, z, w] given by w? = fe(x,y, z), where

fo(z,y, 2) = 22° + a*y? + 203922 + 22?22 + 2%y2® + 20220
+ayty + 2yt + 2yt + 2220 + 2% 4+ 2% 4 432° mod 3,
fo(x,y, 2) = y° + 2*y* + 322" + 22°2 + 322° + 2% mod 5.

Set X = Xy. Counting the elements of A, (Fsn) for n =1,...,10, we compute the charac-
teristic polynomial of Frobenius on HZ (X, , Q¢(1)) (here ¢ # 3 is a prime) and we get

Fa(z) = %(m 1Pt a4 1)

(32" + 5217 + 72'% + 102" + 112" + 112" + 112" + 102 + 9217

+ 927 + 92° + 102" + 112° + 112° + 112" + 102° + 72* + 5z + 1)
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Let L. C NSAf, be the rank 1 sublattice generated by the pullback of the class of a line
for the projection Xy, — IP’]%S (i.e., the “hyperplane class”). The characteristic polynomial
of Frobenius acting on Vrue/(L ®z Q) is (x — 1)(2? + 2 + 1), which has simple roots. We
conclude that, for each dimension 1, 2, 3, and 4, there is at most one Gal(Fs/F3)-invariant
vector subspace of NS A%, that contains L.
Repeating this procedure® at p = 5, we find that the characteristic polynomial of Frobenius

acting on HZ (X5, Q,(1)) is

~ 1

o5(z) = g(:z:— D2+ 2+ o+ 1)@ —2" 42—t 2 — a4 1)

(52® — 52" — 225 + 32° — 2* + 3% — 227 — 52+ 5)

Again, let L C NSA5, be the rank 1 sublattice generated by the pullback of the class of
a line for the projection Xy, — P%s. The characteristic polynomial of Frobenius acting on

VTate/(L ®Z @Z) is
(z—D@* +2® +2 +2+ D)@ —o"+2° -2 +2° —x + 1)

which has simple roots. Thus, for each dimension 1, 2, 5, 6, 9, 10, 13, and 14 there is at
most one Gal(Fs/Fs)-invariant vector subspace of NS X5 that contains L.

Since NS X ®7Q is a Gal(F,/F,)-invariant subspace of NS X, for p =3 and 5, we already
see that p(X) = 1 or 2. If p(X) = 2, then the discriminants of the Gal(F,/F,)-invariant
subspaces of NS Xg, of rank 2 for p = 3 and 5 must be equal in Q* /Q*2. These discriminants
can be calculated with the Artin-Tate formula (10), and they are, respectively —489 and —5.

Hence p(X) = 1.

Unless one uses p-adic cohomology methods to count points of a K3 surface over a finite
field (e.g. [AKR10,CT14]), the slowest step in computing geometric Picard numbers using the
above techniques is point counting. One is restricted to using small characteristics, typically
2, 3 and (sometimes) 5, and in practice, it can be difficult to write a model of a surface over a
number field with good reduction at these small primes. Remarkably, Elsenhans and Jahnel
proved a theorem that requires point counting in only one characteristic. Their result is
quite general; we explain below how to use it in a concrete situation.

Theorem 2.21 ([EJ11b, Theorem 1.4]). Let R be a discrete valuation ring with quotient
field K of characteristic zero and perfect residue field k of characteristic p > 0. Write v for
the valuation of R, and assume that v(p) < p— 1. Let m: X — Spec R be a smooth proper

°In the interest of transparency, one should add that brute-force point counting of Fsn-points of Af, is
usually not feasible for n > 8. However, the defining equation for Af, contains no monomials involving
both y and z. This “decoupling” allows for extra tricks that allow a refined brute-force approach to work.
See [EJ08, Algorithm 17]. Alternatively, one can find several divisors on X, , given by irreducible components
of the pullbacks of lines tritangent to the curve fg(z,y,2) = 0in P%s, and thus compute a large degree divisor

of ¢5(z); see the discussion after Theorem 2.14.
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morphism. Then the cokernel of the specialization homomorphism
sp: Pic Xz — Pic X,
15 torsion-free. O

Recall that for a K3 surface the Picard group and the Néron-Severi group coincide (Propo-
sition 1.8).

Example 2.22. Let R = Z3), so that K = Q and k = F3. Let X be the K3 surface in
P(1,1,1,3) = Proj Z)[z, y, z, w] given by

w? =2y (2% + 2zy + 2y°)* + 2z + 2)ps(2, v, 2) + 3ps(z, v, 2),

where
ps(x,y,2) € Zg[x,y,2]s and  pg(z,y,2) € Z)[r,y, 2]6
are polynomials of degrees 5 and 6, respectively, such that X is smooth as a Z3)-scheme. We
saw in Example 2.16 that NS Xz, = Pic Xz, has rank 2 and is generated by the pullbacks C
and C' for Xz, — P%?) of the tritangent line 2z + z = 0. Theorem 2.21 tell us that if NS X5
has rank 2, then C' and C’ lift to classes C and C' , respectively, in NS X7. The Riemann-
Roch theorem shows that C' and C' are effective, and an intersection number computation
shows that C' and C’ must be components of the pullback of a line tritangent to the branch
curve of the projection Xg — IP%. But now the presence of pg(x,y, 2) could wreck havoc
here, and there may not be a line that is tritangent to the branch curve in characteristic
zero!
For a particular pg(z,y, 2), how does one look for a line tritangent to the curve

207 (2° + 2zy + 2y7)* + (22 + 2)ps(2,y, 2) + 3ps(z,y,2) =0

in ]P%? One can use Grobner bases and [EJ08, Algorithm 8] to carry out this task (on a
computer!). Alternatively, one could use a different prime p of good reduction for X¢g and
look for tritangent lines to the branch curve of the projection Xg, = P%p, still using [EJOS,
Algorithm 8], hoping of course that there is no such line. No point counting is needed in
this second approach, but the Grobner bases computations over finite fields that take place
under the hood are much simpler than the corresponding computations over Q.

Exercise 2.23. Fill in the details in the Example 2.22 to show that C and C’ must be
components of the pullback of a line tritangent to the branch curve of the projection Xz —
P2,

Q

Exercise 2.24. Implement [EJO8, Algorithm 8] in your favorite platform, and use it to write
down a specific homogeneous polynomial pg(x,y, z) of degree 6 for which you can prove that
the surface Xg of Example 2.22 has geometric Picard rank 1.

2.7. More on the specialization map. Let X be a K3 surface over a number field K,

and let p be a finite place of good reduction for X (see Convention 2.13). We have used
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the injectivity of the specialization map spg NS X — NS X, to glean information about

the geometric Picard number p(X) of X. On the other hand, we also know that p(X,) is
even, whereas p(X) can be odd, so the specialization map need not be surjective. In [EJ12],
Elsenhans and Jahnel asked if there is always a finite place p of good reduction such that
p(Xy) - p(X) < 1.

Using Hodge theory, Charles answers this question in [Chal4]. Although the answer to
the original question is “no”, Charles’ investigation yields sharp bounds for the difference
p(X,) — p(X). We introduce some notation to explain his results.

Let Ty be the orthogonal complement of NS X¢ inside the singular cohomology group
H?(X¢, Q) with respect to the cup product pairing; Ty is a sub-Hodge structure of H*(X¢, Q).
Write £ for the endomorphism algebra of Tg. It is known that E is either a totally real field

or a CM field%; see [Zar83].

Theorem 2.25 ([Chal4, Theorem 1]). Let X, Ty and E be as above.
(1) If E is a CM field or if the dimension of Ty as an E-vector space is even, then there

exist infinitely many places p of good reduction for X such that p(X,) = p(X).
(2) If E is a totally real field and the dimension of Ty as an E-vector space is odd, and

if p is a finite place of good reduction for X of residue characteristic > 5, then

p(Xy) = p(X) + [E: Q).

FEquality holds for infinitely many places of good reduction.

Theorem 2.25 gives a theoretical algorithm for computing the geometric Picard number of
a K3 surface X defined over a number field, provided the Hodge conjecture for codimension
2 cycles holds for X x X. The idea is to run three processes in parallel; see [Chal4, §5] for
details.

(1) Find divisors on X however you can (worst case scenario: start ploughing through
Hilbert schemes of curves in the projective space where X is embedded and check
whether the curves you see lie on X). Use the intersection pairing to compute the

rank of the span of the divisors you find. This will give a lower bound p/'(X) for
p(X).

(2) If the Hodge conjecture holds for X x X, then elements of E are induced by codimen-
sion 2 cycles. Find codimension 2 cycles on X x X (again, worst case scenario one
can use Hilbert schemes of surfaces on a projective space where X x X is embedded
to look for surfaces that lie on X x X). Use these cycles to compute the degree
E: Q) B

(3) Systematically compute p(X,) at places of good reduction.

After a finite amount of computation, Theorem 2.25 guarantees we will have computed p(.X):
Suppose that after a finite number of steps in the first process we have computed a lower

6Recall a CM field K is a totally imaginary quadratic extension of a totally real number field.
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bound p'(X) that is sharp, i.e., p/(X) = p(X), but say we can’t yet justify this equality. If
E is a CM field or if the dimension of Ty as an E-vector space is even, then Theorem 2.25

(1) guarantees that eventually p'(X) = p(X,) for some prime p of good reduction. The third
process will allow us to conclude p(X) = p/(X) in this case. If E is a totally real field and the
dimension of T as an E-vector space is odd, then the second process allows us to compute
[E : Q], and the third process will eventually give a prime p of good reduction such that
p(X,) = p'(X)+[E : Q], proving that p(X) = p/(X) in this case as well, using Theorem 2.25
(2). Of course, we should keep running the first process in the meantime in case the lower
bound p'(X) is not yet sharp! But eventually it will be, and we will have computed p(X).
This algorithm is not really practical, but it shows that the problem can be solved, in
principle. Recent work of Poonen, Testa, and van Luijk shows that there is an unconditional
algorithm to compute NS X, as a Galois module, for a K3 surface X defined over a finitely
generated field of characteristic # 2 [PTvL15, §8]. For K3 surfaces of degree 2 over a number

field, there is also work by Hassett, Kresch and Tschinkel on this problem [HKT13].

3. BRAUER GROUPS OF K3 SURFACES
3.1. Generalities.

References: [CT92,CTS87,Sko01,CT03, VA13]

Through this section, k denotes a number field. Call a smooth, projective geometrically
integral variety over k a nice k-variety. Let X be a nice k-variety; is X (k) # (07 There
appears to be no algorithm that could answer this question in this level of generality”. On
the other hand, the Lang-Nishimura Lemma® assures us that if X and Y are nice k-varieties,
k-birational to each other, then

X(k) #£0 < Y(k) #£0.

This suggests we narrow down the scope of the original question by fixing some k-birational
invariants of X (like dimension). It also suggests we look at birational invariants of X that
have some hope of capturing arithmetic. The Brauer group Br X := HZ (X, G,,) is precisely
such an invariant [Gro68, Corollaire 7.3].

Let k, denote the completion of k at a place v of k. Since k < k,, an obvious necessary
condition for X (k) # 0 is X (k,) # 0 for all places v. Detecting if X (k,) # 0 is a relatively
easy task, thanks to the Weil conjectures and Hensel’s lemma (at least for finite places of
good reduction and large enough residue field—see §5 of Viray’s Arizona Winter School
notes, for example [Virl5]). That these weak necessary conditions are not sufficient has been
known for decades [Lin40, Rei42]; see [CT92] for a beautiful, historical introduction to this
topic.

THilbert’s tenth problem over k asks for such an algorithm. The problem is open even for k = Q, but it is
known that no such algorithm exists for large subrings of Q [Poo03].
8See [RY00, Proposition A.6] for a short proof of this result due to Kollar and Szabé.
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Let Ay denote the ring of adeles of k. A nice k-variety such that X (Ay) =[], X(k,) # 0
and X (k) = 0 is called a counterexample to the Hasse principle”. In 1970 Manin observed that
the Brauer group of a variety could be used to explain several of the known counterexamples
to the Hasse principle. More precisely, for any subset S C Br X, Manin constructed an
obstruction set X (A;)S satisfying

X(k) € X (Ar)® C X(Ap),

and he observed that it was possible to have X (A) # 0, yet X (A;,)® = 0, and thus X (k) = 0.
Whenever this happens, we say there is a Brauer-Manin obstruction to the Hasse principle.
We will not define the sets X (A;)° here; the focus of these notes is on trying to write down,
in a convenient way, the input necessary to compute the sets X(A;)°, namely elements of

Br X expressed, for example, as central simple algebras over the function field k(X). For
details on how to define X (A;)®, see [SkoO1, §5.2], [VA13, §3] and [CT15, Virl5).

3.2. Flavors of Brauer elements. For a map of schemes X — Y, étale cohomology
furnishes a map of Brauer groups BrY — Br X it also recovers Galois cohomology when
X = Spec K for a field K. In fact,

Br Spec(K) = H,(Spec K, G,,) ~ H? <Gal(I?/K),[?X> = Br K,

where K is a separable closure of K, and Br K is the (cohomological) Brauer group of K.
For a nice k-variety X, write X for X X Spec k OPeC k, where k is a separable closure of k.
There is a filtration of the Brauer group

Bro X € Br; X C Br X,
where
Bro X :=im (Brk — Br X), arising from the structure morphism X — Speck, and
Br; X := ker (Br X — Br X) . arising from extension of scalars X — X.

Elements in Brg X are called constant; class field theory shows that if S C Bry X, then
X(A)% = X(A), so these elements cannot obstruct the Hasse principle. Elements in Br; X
are called algebraic; the remaining elements of the Brauer group are transcendental.

The Leray spectral sequence for X — Speck and G,,

EYT = HP (Gal(k/k),H! (X, G,,)) = HL (X, G,y,)
gives rise to an exact sequence of low-degree terms, which yields an isomorphism

(11) Br; X/Bro X = H'(Gal(k/k), Pic X).

9The equality X (Ag) = [, X (k,) follows from projectivity of X, because X (Ox) = X (k) in this case; here
O}, denotes the ring of integers of k.
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Exercise 3.1. Fill in the necessary details to prove the map in (11) is indeed an isomor-
phism. You will need the vanishing of H*(Gal(k/k), (k)*) for a number field k, due to Tate;
see [NSWO08, 8.3.11(iv)].

Roughly speaking, the isomorphism (11) tells us that the Galois action on Pic X determines
the algebraic part of the Brauer group. There are whole classes of varieties for which Br X =
Br; X, e.g., curves [Gro68, Corollaire 5.8] or rational varieties, by the birational invariance
of the Brauer group and the following exercise.

Exercise 3.2. Show that BrP? = 0. Hint: use the Kummer sequence in étale cohomology
to show that Br IP’Z[E] = 0 for every prime ¢, and the inclusion BrP? — Brk(P}) coming
from the generic point of P to see that Br P! is torsion (see §3.3 below).

Exercise 3.3. Let X be a nice k-variety of dimension 2. Show that if the Kodaira dimension
of X is negative then Br X = Br; X.

3.3. Computing algebraic Brauer-Manin obstructions. On a nice k-variety X with
function field k(X), the inclusion Speck(X) — X gives rise to a map Br X — Brk(X) via
functoriality of étale cohomology. This map is injective; see [Mil80, Example I11.2.22]. When
trying to compute the obstruction sets X (A;)°, at least when S C Br; X, one often tries
to compute the right hand side of (11); one then tries to invert the map (11) and embed
Br;(X) into Brk(X), thus representing elements of Bry X as central simple algebras over
k(X). This kind of representation is convenient for the computation of the obstruction sets
X(Ay)®. See, for example, [SkoO1, p. 145] and [KT04,KT08, CT15, Virl5] for some explicit
calculations along these lines, and [KT04], [VAOS, §3] and [VA13, §3.5] for ideas on how to
invert the isomorphism (11).

3.4. Colliot-Théléne’s conjecture. Before moving on to K3 surfaces, we mention a con-
jecture of Colliot-Thélene [CT03], whose origins date back to work of Colliot-Thélene and
Sansuc in the case of surfaces [CTS80, Question ki]. Recall a rationally connected variety
Y over an algebraically closed field K is a smooth projective integral variety such that
any two closed points lie in the image of some morphism P}, — Y. For surfaces, rational
connectedness is equivalent to rationality.

Conjecture 3.4 (Colliot-Thélene). Let X be a nice variety over a number field k. Suppose
that X is geometrically rationally connected. Then X (A,)P"™X # 0 = X(k) # 0.

Conjecture 3.4 remains wide open even for geometrically rational surfaces, including, for
example, cubic surfaces. See Colliot-Thélene’s Arizona Winter School notes [CT15] for more
on this conjecture, including evidence for it and progress towards it.

3.5. Skorobogatov’s conjecture. Based on growing evidence [CTSSD98, SSDO05, IS15a,

HS15], Skorobogatov has put forth [Sko09] the following conjecture.
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Conjecture 3.5 (Skorobogatov). Let X be a projective K3 surface over a number field k.
Then X (A,)P"* £0 = X(k) #0.

Remark 3.6. The analogous conjecture for other surfaces of Kodaira dimension 0 is false:
Skorobogatov has constructed counter examples of bi-elliptic surfaces for which X (Q) = 0
while X (Ag)®*¥ £ (. Using [VAV11] as a starting point, Balestrieri, Berg, Manes, Park and
Viray constructed an Enriques surface over Q satisfying the analogous conclusion [BBM*15].

3.6. Transcendental Brauer elements on K3 surfaces: An introduction.
References: [SZ08,5712, Wit04,1ler10,157Z11, Prel3,1S15a, New15]

We have seen that there are no transcendental elements of the Brauer group for curves
and surfaces of negative Kodaira dimension. The first place we might see such elements is on
surfaces of Kodaira dimension zero. K3 surfaces fit this profile. In fact, if X is an algebraic
K3 surface over a number field, the group Br X is quite large: there is an exact sequence

0= (Q/Z)** - BrX - P HL(X, Ze(1))iors — O,
£ prime

where p = p(X) is the geometric Picard number of X; see [Gro68, (8.7) and (8.9)]. Moreover,
since X is a surface, [Gro68, (8.10) and (8.11)] gives, for each prime ¢, a perfect pairing of
finite abelian groups

(Br X/(Q/Z)**) {¢} x NS X{(} — Q,/Z,

where A{¢} denotes the (-primary torsion of A. Since NS X is torsion-free (by Proposition 1.8
and the fact that Num X is torsion free, essentially by definition), we conclude that Br X ~
(Q/Z)?**. (Alternatively, one can embed k < C, and use the vanishing of the singular
cohomology group H?(X¢, Z) and comparison theorems [Mil80, 111.3.12].)

This result doesn’t necessarily imply that Br X has infinitely many transcendental ele-
ments, because it’s possible that most elements of Br X might not descend to the ground
field. This is indeed the case, as shown by the following remarkable theorem of Skorobogatov
and Zarhin.

Theorem 3.7 ([SZ08, Theorem 1.2]). If X is an algebraic K3 surface over a number field
k, then the group Br X/ Bry X is finite. 0

It is natural to ask what the possible isomorphism types of Br X/ Bry X are (or for that
matter Br X/ Br; X), at least at first as abstract abelian groups. A related question is: what
prime numbers can divide the order of elements of Br X/ Bry X7 These kinds of questions
have prompted much recent work on Brauer groups of K3 surfaces (e.g., [SZ12,ISZ11,1S15a,
New15]), particularly on surfaces with high geometric Picard rank. Two recent striking
results [IS15a, New15] on the transcendental odd-torsion of the Brauer group are the following

(for a finite abelian group A, write Ayqq for its subgroup of odd order elements).
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Theorem 3.8 ([IS15a,1515b]). Let X{q4cq be a smooth quartic in Pg, given by
azt + byt = 2 + dw'.
Then
Z/3Z if —3abcd € (—4)Q*4,
(Br Xias.ea/ Bro Xjape) gy = Br Xjapea) o @Y ~ L Z/57  if 5abed € (—4)Q~4,
0 otherwise.

Furthermore, transcendental elements of odd order on X .q never obstruct the Hasse prin-
ciple, but they can obstruct weak approrimation.

This work builds on earlier work by Bright, Ieronymou, Skorobogatov, and Zarhin [Brill,
S712,1SZ11]. Curiously, transcendental elements of order 5 on surfaces of the form Xigp,cq
always obstruct weak approximation (density of X (k) in X (Ay) for the product topology of
the v-adic topologies); it is also possible for transcendental elements of order 3 to obstruct
weak approximation. The first example of such an obstruction was found by Preu [Prel3]
on the surface X[ 349). See [IS15b, Theorem 2.3] for precise conditions detailing when such
obstructions arise.

Newton [Newl5] has found a similar statement for K3 surfaces that are Kummer for the
abelian surface ¥ x F, where E is an elliptic curve with complex multiplication.

Theorem 3.9 ([Newlb]). Let E/Q be an elliptic curve with complex multiplication by the full
ring of integers of an imaginary quadratic field. Let X be the Kummer K3 surface associated
to the abelian surface E x E. Suppose that (Br X/ Bry X)oqq # 0. Then Br; X = BrQ and

Br X/BrQ ~ 7Z/3Z.

Moreover X (Ag)P"™™* C X (Aq); consequently, there is always a Brauer-Manin obstruction to
weak approximation on X.

The surfaces of Theorem 3.9 always have rational points by their construction, but it
would be interesting to understand the situation for the Hasse principle on torsors for these
surfaces; it seems likely that Newton’s method will also show that the Hasse principle cannot
be obstructed by odd order transcendental Brauer elements for such torsors.

So far, no collection of odd order elements of the Brauer group has been shown to obstruct
the Hasse principle on a K3 surface.

Question 3.10 ([IS15a]). Does there exist a K3 surface X over a number field k& with
X(Ak) 7& @ such that X(Ak)(BrX)odd = @7

As for transcendental Brauer elements of even order, Hassett and the author showed that
they can indeed obstruct the Hasse principle on a K3 surface. We looked at the other end
of the Néron-Severi spectrum, i.e., at K3 surfaces of geometric Picard rank one (in fact, we

used the technology developed in §2 to compute Picard numbers!).
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Theorem 3.11 ([HVA13]). Let X be a K3 surface of degree 2 over a number field k,
with function field k(X), given as a sextic in the weighted projective space P(1,1,1,3) =
Proj klz,y, z,w] of the form

2A° B (C
9 1
(12) w” = —é-det B 2D FE |,
C FE 2F
where A, ..., F € kl[x,y, z] are homogeneous quadratic polynomials. Then the class </ of the

quaternion algebra (B* — 4AD, A) in Br(k(X)) extends to an element of Br(X).

When k = Q, there exist polynomials A, ..., F € Zx,y,z] such that X has geometric
Picard rank 1 and <7 gives rise to a transcendental Brauer-Manin obstruction to the Hasse
principle on X.

For the second part of Theorem 3.11, one can take

A= —T2* — 162y + 162z — 24y* + 8yz — 1622,
B =32 4+ 222 + 2y — dyz + 427,

C = 102? + dzy + dzz + 4% — 2yz + 22,

D = —162° + 8zy — 23y* + 8yz — 4022,

E =42% — 4oz + 11y° — dyz + 622,

F = —402* + 32xy — 40y — Syz — 232°.

(13)

The reason to look at K3 surfaces with very low Picard rank is that these surfaces have
little structure, e.g., they don’t have elliptic fibrations or Kummer structures that one can
use to construct or control transcendental Brauer elements [Wit04,SSD05, HS05,Ier10, Prel3,
EJ13,1S15a, New15]. Our hope was to give a way to construct Brauer classes that did not
depend on extra structure, that could be systematized for large classes of K3 surfaces. So
far, we have been able to construct all the possible kinds of 2-torsion elements on K3 surfaces

of degree 2 [HVAV11, HVA13, MSTVA16]; see §3.9 below.

Exercise 3.12. Let X be an algebraic K3 surface over C. Prove that if p(X) > 5 then
there is a map ¢: X — PL whose general fiber is a smooth curve of genus 1. Hint: use the
Hasse-Minkowski theorem to show there is class C' € Pic X with C? = 0. Use the linear
system of this class (or a similar class of square zero) to produce the desired fibration.

3.7. Transcendental Brauer elements on K3 surfaces: Hodge Theory.
References: [vG05, Muk84, Cal02, HVAV11,HVA13, MSTVA16,I00V 16, Sko16]

The idea behind the construction of transcendental Brauer elements in [HVAV11, HVA13,
MSTVA16] goes back to work of van Geemen [vG05], and is most easily explained using

sheaf cohomology on complex K3 surfaces; most of this section can be properly rewritten
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using Kummer sequences for étale cohomology and comparison theorems, e.g., see [Sch05,
Proposition 1.3]. The analytic point of view is a little easier to digest.

Let X be a complex K3 surface. Let Br' X = H*(X, 0% )iors. Since H*(X, Z) = 0, the long
exact sequence in sheaf cohomology associated to the exponential sequence gives

0 — H*(X,Z)/c; (NS X) — H*(X, Ox) — H*(X, 0%) — 0

We apply the functor TorZ (-,Q/Z) to this short exact sequence of abelian groups. Note
that Tor?(H*(X, Ox),Q/Z) = H*(X, Ox )iors = 0 and that H*(X, Ox) ® Q/Z = 0 since Q/Z
is torsion and H?*(X, Ox) is divisible. Hence

(14) Br' X ~ (H*(X,Z)/ci(NS X)) ® Q/Z.

Let Tx be the orthogonal complement in H*(X, Z) of NS X with respect to cup product. We
call T'x the transcendental lattice of X. Write Ty = Hom(Tx, Z) for the dual of Tx.

Lemma 3.13. The map
¢: H*(X,Z)/ci (NS X) — Ty
v+ NS X = [t — (v, )]

s an isomorphism of lattices.

Proof. First, observe that both NS X and Tx are primitive sublattices of H*(X,Z): for the
former lattice, note that H*(X,Z)/c;(NS X) injects into H*(X, @), which is torsion-free,
and that ¢, is an injective map, because H' (X, Ox) = 0, by definition of a K3 surface. For
the latter, use Exercise 1.26(1).

Since NS X is a primitive sublattice of H*(X, Z), we have T = NS X, by Exercise 1.26(2).
Injectivity of the map ¢ follows: if ¢(v + NS X) =0, then v € Ty = NS X, so v+ NS X is
the trivial class in H*(X,Z)/c; (NS X).

Consider the short exact sequence of abelian groups

0—Tx — H*(X,Z) - H¥X,Z)/Tx =0
Apply the functor Ext)( -, Z). Since H*(X,Z)/Ty is torsion free, we have
Exty (H*(X,Z)/Tx,Z) =0
so the natural map
Homy(H*(X,7Z),7) — Ty,

is surjective. Since H?(X,Z) is unimodular, and hence self dual, this means that every
element of T has the form v ~— (A, v) for some A\ € H*(X,Z). This gives surjectivity of

®. 0

Proposition 3.14. Let X be a complex K3 surface. There are isomorphisms of abelian
groups

BrX ~ Ty ® Q/Z = Homz(Tx,Q/Z).
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Proof. This follows from (14) and Lemma 3.13. O

Informally, Proposition 3.14 tells us there are bijections

{cyclic subgroups of Br' X of order n}
(15) &5 {surjections T'x — Z/nZ}
&L {sublattices I C Tx of index n with cyclic quotient and generator}

where the last bijection comes from

(—) taking the kernel of the surjection Ty — Z/nZ.

(+—) taking the cokernel of the inclusion I' C T'x.

In what follows, we will focus on the case where n = p is a prime number, in which case (15)
tells us that subgroups of order p of Br’ X are in one-to-one correspondence with sublattices
of index p of T'x. Since we are working over a ground field that is already algebraically closed,
this discussion asserts that sublattices of Tx contain information about the transcendental
classes of K3 surfaces!

3.8. First examples: work of van Geemen [vG05, §9]. Let’s implement the above idea
in the simplest possible case. Consider an complex algebraic K3 surface X with NS X ~ Zh,
h? = 2. We will study sublattices of index 2 in T’x, up to isometry, corresponding by (15) to
elements of order 2 in Br’ X.

First, a primitive embedding

NSX = (h) = Az = U®* @ Eg(—1)%*

exists by Theorem 1.27. Let {e, f} be a basis for the first summand of Ags equal to the
hyperbolic plane U, with intersection matrix

(o)

A primitive embedding (h) < Aks is also unique up to isometry by [Nik79, Theorem 1.14.4],
so we may assume that h = e+ f. Let v = e — f; we have v? = —2, (h,v) =0, and

Tx ~ (v) & N, where A’ = U™ @ Eg(—1)%2

The lattice A" is unimodular (hence equal to its dual lattice), so every ¢ € Hom(A’,Z) is of
the form

ox: N — 7, v (v, \).
for some A € A’. In other words, the map

A — Hom(A', Z), A= oy
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is an isomorphism. Tensoring with Z/27 we get an isomorphism
A//ZA/ — HOHI(A/, Z/ZZ), A 42N — O\ ® idz/gz
Hence, a surjection Tx — Z/27Z has the form
a:Tx = 7/27
(16) , ,
nv + X — a,n+ (N, \,) mod 2,

for some A, € A’, determined only up to an element of 2A’, and some a,, € {0,1}. We classify
these surjections by studying their kernels (see (15)). These kernels are lattices which, by
Theorem 1.25, are determined up to isomorphism by their rank, signature, and discriminant
quadratic forms. Recall that the discriminant quadratic form of a lattice (L, (, )) is

qr.: LY/L — Q/2Z z+ L — (x,z) mod 2Z.

Proposition 3.15 ([vG05, Proposition 9.2]). Let X be a complex algebraic K3 surface with
NS X ~ Zh, h? = 2. Let a: Tx — Z/27 be a surjective map as above, and put T',, = ker a.
Then

(1) If ao, = 0 then T) /T, =~ (Z/2Z)3. There are 2*° — 1 such lattices T, all isomorphic
to each other.

(2) If a, = 1 then T /T, ~ Z/8Z. There are 2°° such lattices Ty, sorted out into two
1somorphism classes by their discriminant forms as follows:

(a) The even class, where (Ao, Aoy = 0 mod 2. There are 2°(2'° + 1) such lattices.
(b) The odd class, where 5(Aq, o) =1 mod 2. There are 29(2'° — 1) such lattices.

Proof. In all cases, the order of the discriminant group T'Y /T, is disc(T,) = 22 disc(Tx) = 8,
because I',, has index 2 in Tx. If a, = 0, then I, has an orthogonal direct sum decomposition

Io= (@ & [,NA),
and we obtain a decomposition of the discriminant group
LY /T = ()Y /() ® (TCo NN /(ToNN) = Z)2Z & (Ty N A)Y /(Ty N A).

The discriminant group (I', NA")Y /(T NA’) has order 4. Let p € A’ satisfy (i1, \o) = 1. One
verifies that {\/2, u} generates a subgroup of order 4 in (I', N A")¥/(T', N A’), isomorphic
to (Z/27Z)* (do this!). The discriminant quadratic form is also determined up to isometry
(check this!), so all the lattices 'y, with a, = 0 are isometric. There are 22° —1 choices for A,,
parametrized by elements in A’/2A’; except for the zero vector, which would give I',, = Tx.

For the case a, = 1, we check that w := 3(—v+2X,) is in T'. The vector 4w is not in I,
(it is in Ty, but it is not in the kernel of the map «), but 8w € I',, so w has order 8 in the

discriminant group, which is therefore isomorphic to Z/8Z. The discriminant form ¢, of I';,
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is determined by its value on w, which is

=24+ 4{A0, Ao —142(X\a, Ao
q(w) = (w,w) = i 1<6 ) = + é ) mod 27

Two lattices I', and T', of this form, with discriminant groups generated by w and w’,

respectively, are therefore equivalent if and only if there exists an integer x such that

Jo(zW) = qor(w'). In other words, if and only if

o —142(,A) _ =142\, M)
8 8

On the other hand, a vector A\, is determined only up to elements of 2A’ and thus can

mod 27

T

always be modified (check!) to satisfy (As, Aa) = 0 or 2; we assume a normalization like

this. If (Mg, A\a) = (A, Aw), then x = 1 will show two lattices are isomorphic. If (\,, \y) #

(Aars A}, then we are looking for an integer x such that

, -1 —1+4
5 =

i.e., for an integer x such that 22 = 13 mod 16 has a solution. No such solution exists. We

T mod 27

conclude there are two isomorphism classes of lattices I', with a, = 1, depending on the
parity of %()\a, Aa), as claimed. The count of the number of lattices of each type is left as
an exercise. U

Exercise 3.16. Formulate and prove the analogue of Proposition 3.15 for complex algebraic
K3 surfaces with NSX ~ Zh, h? = 2d (see [MSTVA16]). Can you do the case when
NS X ~ U? Such K3 surfaces are endowed with elliptic fibrations (see Exercise 3.12). What
about the case when p(X) = 197

3.9. From lattices to geometry. Proposition 3.15 is nice, but how are we supposed to
extract central simple algebras over the function field of a complex K3 surface from it? The
hope here is that the lattices I',, of Proposition 3.15 are themselves isomorphic to a piece of
the cohomology of a different algebraic variety, and that the isomorphism is really a shadow
of some geometric correspondence that could shed light on the mysterious transcendental
Brauer classes.

For example, in the notation of §3.8, an obvious sublattice of index 2 of Tx = (v) & A’
is I' :== (2v) @ A’. This lattice is in the even class of Propososition 3.15(2). Note that
wy € Tx ® C, so wxy € I'® C as well. If we can re-embed I' primitively in Ags, say by
amap ¢: ' < Ags, then (¢c(wy) will give a period point in the period domain 2, and by
the surjectivity of the period map (Theorem 1.24) there will exist a K3 surface Y with'®
wy = tc(wy) and Ty ~ ¢(I"). Discriminant and rank considerations imply that NSY ~ Zh/,
h'? =8, ie., Y is a K3 surface of degree 8, with Picard rank 1.

10Note the importance of primitivity of ¢: T’ < Aks here: Ty must be a primitive sublattice of H? (Y, Z); see
the proof of Lemma 3.13.
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Exercise 3.17. Show that there is indeed a primitive embedding ¢: I' < Aks. Hint: what
would ¢(I")* have to look like as a lattice (including its discriminant form)? Could you apply
Theorem 1.27 and [Nik79, Corollary 1.14.4] to this orthogonal complement instead?

Our discussion suggests there is a correspondence, up to isomorphism, between pairs (X, «)
consisting of a K3 surface X of degree 2 and Picard rank 1 together with an even class
a € Br' X, and K3 surfaces of degree 8 and Picard rank 1. This is indeed the case; Mukai
had already observed this in [Muk84, Example 0.9]. Starting with a K3 surface Y of degree 8
with NSY ~ Zh', Mukai notes that the moduli space of stable sheaves E (with respect to h')
of rank 2, determinant algebraically equivalent to h’, and Euler characteristic 4, is birational
to a K3 surface X of degree 2. The moduli space is in general not fine, and the obstruction
to the existence of a universal sheaf is an element o € Br' X[2]. See [C&l02, MSTVA16]
for accounts of this phenomenon. Let mx: X x Y — X be the projection onto the first
factor. In modern lingo, any W;(la-twisted universal sheaf on X x Y induces a Fourier-Mukai
equivalence of bounded derived categories D?(X, o) ~ DP(Y).

Before we explain a more geometric approach to the correspondence (X, «a) «— Y, we
pause to identify the varieties encoded by the remaining isomorphism classes of lattices from
Proposition 3.15.

Proposition 3.18. Let X be a complex algebraic K3 surface with NS X ~ Zh, h? = 2. Let
[, be the kernel of a surjection a: Tx — 7Z/27. Let T'n(—1) denote the lattice T, with its
bilinear form scaled by —1.

(1) If TV )T ~ (Z/27)3, then there is an isometry
La(—1) =~ (hi, hihy, h3)™ C HY(Y,Z),

where Y — P2 x P? is a double cover branched along a smooth divisor of type (2,2) in
P2 x P? and h; is the pullback of Op2(1) along the projection 7;: Y — P? fori=1, 2.

(2) If T) )T ~ (Z/8Z), then
(a) if Ty, belongs to the even class, then there is an isometry
I, ~Ty CH*Y,Z),
where Ty is the transcendental lattice of a K3 surface of degree 8.
(b) if T, belongs to the odd class, then there is an isometry
I.(=1) ~ (H? P)* C HY(Y,7Z),

where Y C P5 is a cubic fourfold containing a plane P, with hyperplane sec-
tion H.

Proof. We have discussed the case (2)(a). However, all the statements can be deduced from

Theorem 1.25 (see also [vG05, §§9.6-9.8]). For example, let Y C P° be a cubic fourfold,
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and write H for a hyperplane section of Y. By the Hodge-Riemann relations, the lattice
H*(Y,Z) has signature (21,2); it is unimodular by Poincaré duality, and it is odd (i.e. not
even), because (H?, H?) = 3. By the analogue of Theorem 1.13 for odd indefinite unimodular

lattices [Ser73, §V.2.2], we have HY(Y,Z) ~ (+1)®* @ (~1)®2 If Y contains a plane P, then
the Gram matrix for (H? P) is

3 1

1 3

(see [Has00, §4.1] for the calculation of (P, P).). One checks that the rank, signature and
discriminant form of (H?2, P)* matches that of I',. Applying Theorem 1.25 finishes the proof
in this case. The other cases are left as exercises. 0

Exercise 3.19. Let Y — P2 x P? be a double cover branched along a smooth divisor of type
(2,2) in P? x P2

(1) Compute the structure of the lattice H*(Y, Z).

(2) For i = 1, 2, let h; be the pullback of @p2(1) along the projection m;: Y — P2
Compute the Gram matrix of the lattice (h%, hihy, h3).

(3) Compute the rank, signature and discriminant quadratic form of (h?, hyhy, h3)*. Use
this to establish Proposition 3.18(1).

Remark 3.20. The connection between cubic fourfolds containing a plane and K3 surfaces of
degree 2 goes back at least to Voisin’s proof of the Torelli theorem for cubic fourfolds [Voi86].
See also Hassett’s work on this subject [Has00]. Fans of derived categories should con-
sult [MS12].

The proof of Proposition 3.18 might make it seem like a numerical coincidence, but the
discussion of the case (2)(a) before the Proposition suggests something deeper is going on.
Let us describe the geometry that connects a pair (X, «) to the auxiliary variety Y.

Theorem 3.21. Let Y be either
(1) a K3 surface of degree 8 with NSY ~Z, or,

(2) a smooth cubic fourfold containing a plane P such that H*(Y,Z)., ~ (H?, P), where
H denotes a hyperplane section, or

(3) a smooth double cover of P? x P? branched over a smooth divisor of type (2,2) such
that HY(Y,Z)ag =~ (h?, hiha, h%), where hy, hy are the respective pullbacks to Y of
Op2(1) along the two projections my,my: Y — P2
Then there is a quadric fibration m: Y' — P? associated to Y such that, for general Y, the
discriminant locus A C P? of 7 is a smooth curve of degree 6, and the Stein factorization
for the relative variety of mazimal isotropic subspaces YW — P? has the form

W= X — P2
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F1GURE 1. Pictorial representation of Theorem 3.21. Each point of W repre-
sents a linear subspace of maximal dimension in a fiber of the quadric bundle
Y’ — P2,

where X is a double cover of P? branched along A, and W — X is a smooth P"-bundle for
the analytic topology for some n € {1,3}.

So there it is! The surface X is a K3 surface of degree 2, and W — X is a Severi-Brauer
bundle representing a class @ € Br’ X[2]. The bundle W — X can be turned into a central
simple algebra over the function field k(X) that is suitable for the computation of Brauer-
Manin obstructions; see [HVAV11, HVA13, MSTVA16] for details. Figure 1 illustrates this

idea.

Proof of Theorem 3.21. We explain how to construct the quadric bundles Y’ — P2. The
rest of the theorem can be deduced from [HVAV11, Proposition 3.3]; see also [HVAV11,
Theorem 5.1] in the case of cubic fourfolds, [HVA13, Theorem 3.2] for double covers of
P? x P2, and [MSTVA16, Lemmas 13 and 14] for K3 surfaces of degree 8.

If Y is a K3 surface of degree 8 with NSY ~ Z, then it is a complete intersection of three
quadrics V(Qq, Q1,Q2) in P> = ProjClxy,...,xs); see [Bea96, Chapter VIII, Exercise 11]
or [IK13, Proposition 3.8]. There is a net of quadrics

Y/ = {([QZ,Z/,Z], ['x()a"'axf)]) S ]P)Q X ]PS : xQO +yQ1 +ZQ2 == O} g I[DZ X IP)E)?
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and the projection to the first factor gives the desired bundle of quadrics Y’ — P2 For
a general K3 surface Y, the singular fibers of Y’ — P? will have rank 5, and thus the
discriminant locus on P? will be a smooth sextic curve.

If Y is a smooth cubic fourfold containing a plane P, then blowing up and projecting away
from P gives a fibration into quadrics Y’ — P2, The discriminant locus on P? where the
fibers of the map drop rank is smooth already because Y does not contain another plane
intersecting P along a line [Voi86, §Lemme 2|, by hypothesis.

Finally, if Y — P? x P2 is a double cover branched along a type (2, 2)-divisor, then the
projections 7;: Y — IP? give fibrations into quadrics. Smoothness of the discriminant loci is
discussed in [HVA13, Lemma 3.1]. O

Remark 3.22. If Y is defined over a number field, then so is the output data YW — P? of the
above construction. This gives a way of writing down transcendental Brauer classes on X
defined over a number field(!), provided one uses Y as the starting data. The difficulty here
is that one might like to use X as the starting data (over a number field), and compute all
the possible Y over number fields that fit into the above recipe.

Remark 3.23. The results developed in [IOOV16,Skol6] contain as special cases extensions
of Proposition 3.18 and Theorem 3.21 to K3 surfaces of degree 2 without restrictions on their
Néron-Severi groups.

4. UNIFORM BOUNDEDNESS AND K3 SURFACES: SOME QUESTIONS

Let X be a K3 surface over a number field k. In this section, we return to the question
of possible orders of the finite quotient |Br X/ Bry X|, and connect this question to the
geometric correspondences we saw in Theorem 3.21. There is a strong analogy between
torsion points on elliptic curves over number fields, and nonconstant Brauer classes of K3
surfaces over number fields. We start by exploring this idea, and we argue the analogy
suggests it is conceivable that if one fixes just the right amount of data, e.g., a geometric
lattice polarization, then there are only finitely many possibilities for | Br X/ Bry X|.

4.1. Torsion subgroups of elliptic curves. Let E be an elliptic curve over a number field
k. By the Mordell-Weil theorem, the group F(k) is finitely generated and abelian. Hence

E(k) = E(k)tors X ZT,

for some nonnegative integer r. In a 1966 survey paper, Cassels asserts it is a folklore
conjecture that there are only finitely many possibilities for F(k)ios [Cas66, §22]. Shortly
thereafter, Manin showed that for each prime p there is a uniform bound on the p-primary
torsion of elliptic curves over k:

Theorem 4.1 ([Man69]). Let k be a number field; fix a prime p. There is a constant

)
¢ := c(k,p) such that |E(k)sors| < c(k,p) for all elliptic curves E/k.
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Manin proved that the modular curve X;(p”), which has high genus for all » > 0, has
only finitely many k-points—before Faltings’ theorem was known! Shortly thereafter, Ogg
gave a precise conjecture for the possible orders of torsion points on elliptic curves over
Q [OggT75, Conjecture 1]. In a spectacular breakthrough, Mazur proved this conjecture, and
classified all possibilities for E(Q)ors-

Theorem 4.2 ([Maz77, Theorem 8]). Let E/Q be an elliptic curve. Then E(Q)iors i is0-
morphic to one of the following 15 groups:

Z/nZ  for1 <n <10 orn =12, or  Z)27 X Z/2nZ  for 1 <n < 4.

In fact, Mazur showed that the only rational points of the modular curve X;(N) are the
rational cusps if N = 11 or N > 13. After subsequent work establishing (strong) uniform
boundedness of torsion over more classes of number fields [Kam92, KM95], Merel showed
that in fact #E(k)iors could be bounded by a constant depending only on the degree of k:

Theorem 4.3 ([Mer96]). Fiz d > 1. There is a constant ¢ := c(d) such that |E(k)iors| < ¢
for all elliptic curves E over a number field k for which [k : Q] = d.

4.2. From torsion on elliptic curves to Brauer groups of K3 surfaces. Is there a
Mazur/Merel Theorem for K3 surfaces? At first glance, this question makes no sense. K3
surfaces have no group structure: what would torsion subgroup even mean? Perhaps we can
reinterpret the group F(k)ios of an elliptic curve in such a way that it does not depend on
the group structure of F, and then look for an analogue on K3 surfaces:

E(k)iors =~ (Pic® E)iors by [Sil09, I11.3.4], taking Galois invariants,
~ (Pic E)tors ecause only degree 0 line bundles are torsion,
PicE b ly d 0 line bundl i
~H'(E, O )ons [Har77, Exercise 111.4.5],
~ H} (E, Gp)iors [Mil80, III, Proposition 4.9],

~ H} (F, G, iors/He, (Speck, G,,) by Hilbert’s Theorem 90.

The quotient H, (E, G, )iors/He, (Spec k, G,,,) makes no reference to the group structure of £,
and so it is defined for more general varieties. For a K3 surface X/k, we might thus consider
the quotient

HZ, (X, Gp)iors/HZ (Spec k, G,,,) = Br X/ Brg X.
Theorem 3.7 guarantees that Br X/ Bry X is finite!

4.3. Moduli spaces. Understanding the arithmetic of the modular curves Xy(N) and
X1(N) is essential in proving Theorems 4.2 and 4.3. We should expect that defining and
understanding moduli spaces for K3 surfaces with level structures coming from the Brauer
group will be crucial in investigating uniform boundedness problems for Brauer groups on
K3 surfaces. As with modular curves, one can start by studying the geometry of these spaces

when defined as complex analytic varieties.
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In this context, for example, Proposition 3.15 should have the following interpretation:
let K9 denote the locus of the coarse moduli space of complex K3 surfaces of degree 2
whose points correspond to K3 surfaces of Picard rank 1; see [GHS13, §2.5] for a definition
of this space. Then the locus of the (to be defined) moduli space Vy(2,2) parametrizing
pairs (X, («)), where X is a K3 surface of degree 2 and 0 # a € (BrX)[2], such that
p(X) = 1 has three components. Each component maps dominantly onto X§ via the forget
map, with finite degree equal to the number of lattices in the corresponding isomorphism
class of Proposition 3.15. Proposition 3.18 identifies each of these three components in turn
as moduli spaces of other varieties, and Theorem 3.21 details geometric correspondences
realizing the isomorphisms between the moduli spaces of objects in Proposition 3.18 and the
components of Vy(2,2). Compare this with the discussion in §3.9.

The lattice-theoretic calculations of [MSTVA16] show that if p 1 2d, then the analogous
moduli space Yy (2d, p) parametrizing pairs (X, («)), where X is a K3 surface of degree 2d
and 0 # a € (Br X)[p|, has three components. One of these components can be identified,
4 la Mukai, with the moduli space Kyg2 of K3 surfaces of degree 2dp?, and if d = 1 and
p = 2mod 3, then another component is isomorphic to the moduli space Cy,2 of special
cubic fourfolds of discriminant 2p*. Both Kgg2 and Cop2 are varieties of general type for
p > 11 [GHS07, TVA15]. This leads us to propose the following challenge:

Challenge 4.4. Does there exist a K3 surface X/Q of degree 2 with p(X) = 1, such that
(Br X/ Bro X)[11] # 07

The above discussion is admittedly informal, but it should be possible to use ideas of
Rizov [Riz06] to make it precise and arithmetic.

4.4. Uniform boundedness. We conclude by stating optimistic conjectures about Brauer
groups of K3 surfaces over number fields suggested by the above discussion.

Conjecture 4.5 (Uniform boundedness). Fix a number field £ and a lattice L together with
a primitive embedding L — Ags = U3 @ Ei(—1)%2. Let X be a K3 surface over k such
that NS X ~ L. Then there is a constant ¢(K, L), independent of X, such that

| Br X/ Bro X| < ¢(k, L).

Conjecture 4.6 (Strong uniform boundedness). Fix a number field k£ with n = [k : Q] and
a lattice L together with a primitive embedding L < Ags = U®3 @ E;(—1)%%.. Let X be a
K3 surface over k such that NS X ~ L. Then there is a constant c(n, L), independent of X
such that

| Br X/ Bry X| < ¢(n, L).

If, for some lattice L, Conjecture 4.5 is verified with an effectively computable constant
c(k, L), then [KT11, Theorem 1] would imply that the obstruction set X (A;)B" ¥ is effectively
computable for the corresponding surfaces. Skorobogatov’s Conjecture 3.5 would then imply

there is an effective way to determine if X (k) # ) for these K3 surfaces.
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The relevant moduli spaces with level structures whose rational points would shed light
on Conjectures 4.5 and 4.6, have dimension 20 — r, where r = rk L. These spaces tend
to have trivial Albanese varieties (one can use the techniques of [Kon88| to see this); thus,
determining the qualitative arithmetic of these spaces is a difficult problem for small values
of r. However, special cases of these conjectures may be accessible, e.g., by taking specific
L with » = 19 or 20, where the moduli spaces to be studied have dimension < 1. This is
the subject of upcoming joint work with Bianca Viray. More optimistically, recent work of
the author with Dan Abramovich [AVA16a, AVA16b] gives “proofs-of-concept” for similar
questions on abelian varieties, conditional on Lang’s Conjecture and Vojta’s Conjecture,
respectively. These strong conjectures allow us to control the arithmetic of high-dimensional
moduli spaces with level structures. It is our hope that once an arithmetic theory of moduli
spaces of K3 surfaces with Brauer level structures is firmly in place, one may obtain similar
conditional results strengthening the plausibility of Conjectures 4.5 and 4.6.

5. EPILOGUE: RESULTS FROM THE ARIZONA WINTER SCHOOL

We report on the work of three project groups that began at the Arizona Winter School.

5.1. Picard groups of degree two K3 surfaces. Using the techniques presented in §2 as
a starting point, Bouyer, Costa, Festi, Nichols, and West [BCF16] have computed not only
the geometric Picard rank, but the full Galois module structure for general members of the
family of degree 2 K3 surfaces given by

X/Q: w? = az® + by’ + c2® 4 daPy? 22

Over Q, we can assume that a = b = ¢ = 1; for general d, the authors showed that p(X) = 19.
Using explicit generators for NS(X), the authors are able to compute the Galois cohomology
groups H'(Gal(Q/Q),NS(X)) for 0 < i < 2, and hence compute the algebraic Brauer groups

Br; X/ Bry X of this family; see §3.2. The case d = 0, where p(X) = 20 is also studied in
Nakahara’s upcoming Ph. D. thesis.

5.2. Rational points and derived equivalence. Ascher, Dasaratha, Perry, and Zong
constructed remarkable further examples of the kind appearing in Theorem 3.11 which
showed that, over Q, Q9 and R, the existence of rational points on K3 surfaces need not be
preserved by twisted derived equivalences [ADPZ16]. This result stands in sharp contrast
with the untwisted derived equivalence over finite fields and p-adic fields; see [Hon15,LO15]
and [HT16, Corollary 35].

5.3. Effective bounds for Brauer groups of Kummer surfaces. Let A be a principally
polarized abelian surface over a number field k£, and let X be the associated Kummer sur-
face. Building on ideas in [SZ08], Cantoral Farfdn, Tang, Tanimoto, and Visse [CFTTV16]
showed there is an effectively computable constant M, depending on the Faltings’ height of

A and NS(A), such that |Br X/Br; X| < M. By [KT11, Theorem 1], it follows that the
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Brauer-Manin set X (A)B™¥ for these surfaces is effectively computable. Their work also

yields practical algorithms for computing the quotient Bry X/ Brg X when p(A) =1 or 2.
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