LINES ON CUBIC HYPERSURFACES OVER FINITE FIELDS

OLIVIER DEBARRE, ANTONIO LAFACE, AND XAVIER ROULLEAU

ABSTRACT. We show that smooth cubic hypersurfaces of dimension n defined over a finite field
F, contain a line defined over F, in each of the following cases:

e n=3and q>11;

en=4 and g=2or q>5;

e n>05H.
For a smooth cubic threefold X, the variety of lines contained in X is a smooth projective surface
F(X) for which the Tate conjecture holds, and we obtain information about the Picard number
of F(X) and the 5-dimensional principally polarized Albanese variety A(F(X)).

1. INTRODUCTION

The study of rational points on hypersurfaces in the projective space defined over a finite
field has a long history. Moreover, if X C P"™! is a (smooth) cubic hypersurface, the (smooth)
variety F'(X) parametrizing lines contained in X is an essential tool for the study of the geometry
of X. Therefore, it seems natural to investigate F'(X) when X is a cubic hypersurface defined
over a finite field F;, and the first question to ask is whether X contains a line defined over F,.

One easily finds smooth cubic surfaces defined over F, containing no F,-lines, with ¢ ar-
bitrarily large. On the other hand, if dim(X) > 5, the variety F(X), when smooth, has ample
anticanonical bundle, and it follows from powerful theorems of Esnault and Fakhruddin—-Rajan
that X always contains an F,-line (Section 6). So the interesting cases are when dim(X) = 3 or
4.

When X is a smooth cubic threefold, F'(X) is a smooth surface of general type. Using a
recent formula of Galkin—Shinder which relates the number of F -points on F'(X) with the number
of Fy- and F 2-points on X (Section 2.3), we find the zeta function of F/(X') (Theorem 4.1). Using
the Weil conjectures, we obtain that a smooth X always contains F,-lines when ¢ > 11 (Theorem
4.4). Using a computer, we produce examples of smooth cubic threefolds containing no lines for
q €12,3,4,5} (Section 4.5.4), leaving only the cases where ¢ € {7,8,9} open, at least when X is
smooth.

Theorem 4.1 can also be used for explicit computations of the zeta function of F'(X). For
that, one needs to know the number of F -points of X for sufficiently many r. Direct compu-
tations are possible for small ¢ or when X has symmetries (see Section 4.5.1 for Fermat hyper-
surfaces, Section 4.5.2 for the Klein threefold, and [Ke] for cyclic cubic threefolds). If X contains
an F-line, it is in general faster to use the structure of conic bundle on X induced by projection
from this line, a method initiated by Bombieri and Swinnerton-Dyer in 1967 (Section 4.3). This is
illustrated by an example in Section 4.5.3, where we compute the zeta function of a cubic X and
of its Fano surface F'(X) in characteristics up to 31. In all these examples, once one knows the
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zeta function of F'(X), the Tate conjecture (known for Fano surfaces, see Remark 4.2) gives its
Picard number. It is also easy to determine whether its 5-dimensional Albanese variety A(F (X))
is simple, ordinary, supersingular...

Singular cubics tend to contain more lines (Example 4.17). When X is a cubic threefold
with a single node, the geometry of F'(X) is closely related to that of a smooth genus-4 curve
([CG], [KvG]; see also [GS, Example 5.8]). Using the results of [HLT] on pointless curves of genus
4, we prove that X always contains F-lines when ¢ > 4 (Corollary 4.8) and produce examples
for ¢ € {2,3} where X contains no F-lines (Section 4.5.5).

When X is a smooth cubic fourfold, F'(X) is a smooth fourfold with trivial canonical class.
Using again the Galkin—Shinder formula, we compute the zeta function of F'(X) (Theorem 5.1)
and deduce from the Weil conjectures that X contains an F,-line when ¢ > 5 (Theorem 5.2).
Since the cohomology of @p(x) is very simple (it was determined by Altman and Kleiman; see
Proposition 5.3), we apply the Katz trace formula and obtain that X still contains an F,-line
when ¢ = 2 (Corollary 5.4). This leaves the cases where ¢ € {3,4} open, at least when X is
smooth. We suspect that any cubic fourfold defined over F, should contain an F,-line.
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2. DEFINITIONS AND TOOLS

2.1. The Weil and Tate conjectures. Let F, be a finite field with ¢ elements and let ¢ be a
prime number prime to q.

Let Y be a projective variety of dimension n defined over F. For every integer r > 1, set
N, (Y) := Card(Y (Fyr)).

and define the zeta function
.

Z(Y,T) := exp (Z NT(Y)7>.

r>1

Let F, be an algebraic closure of F, and let Y be the variety obtained from Y by extension
of scalars from F, to F,. The Frobenius morphism F:Y — Y acts on the étale cohomology
H*(Y, Q) by a Q-linear map which we denote by F*. We have Grothendieck’s Lefschetz Trace
formula ([M1, Theorem 13.4, p. 292]): for all integers r > 1,

(1) NAY)= D (1) T(FT H Y, Qo).

If Y is moreover smooth, the Weil conjectures proved by Deligne in [D1, Théoreme (1.6)] say that
for each i, the (monic) characteristic polynomial

Q:(Y,T) := det(T1d —F*, H(Y, Qy))
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has integral coefficients and is independent of ¢; in particular, so is its degree b;(Y) := h'(Y, Qo),
called the i-th Betti number of Y. All the conjugates of its complex roots w;; have modulus ¢'/2.
Poincaré duality implies bg,—;(Y) = b;(Y) and wa,—;; = ¢"/w;; for all 1 < 5 < b;(Y).

We can rewrite the trace formula (1) as

bi(Y)
@ M= Y Y
0<i<2n j=1
or
(3) zv,7) =[] py.T)
0<i<2n
Finally, it is customary to introduce the polynomials
bi(Y)
i 1
(4) P(Y,T) = det(1d—TF*, (Y, Q,)) = T*M)Q; (Y, T) - [T - w,T).
j=1

Whenever i is odd, the real roots of Q);(Y, T') have even multiplicities ([EJ, Theorem 1.1.(b)]),
hence b;(Y) is even. We can therefore assume w; jip,(vy2 = @ for all 1 < 5 < b(Y)/2, or
T*MQi(Y,¢¢/T) = ¢ Y)2Q,(Y, T). If m := by (Y)/2, we will write

(5) QY. T)=T*"" +a,T°" ' + -+ a, T + qa, T + -+ "y T+ g™

The Tate conjecture for divisors on Y states that the Qg-vector space in H? (7, Qg(l))

generated by classes of F,-divisors is equal to the space of Gal(F,/F,)-invariants classes and
that its dimension is equal to the multiplicity of ¢ as a root of the polynomial Q»(Y,T) ([T2,
Conjecture 2, p. 104)).

2.2. The Katz trace formula. Let Y be a proper scheme of dimension n over F,. The endo-
morphism f — f9 of Oy induces an F-linear endomorphism §, of the F-vector space H*(Y, Oy)
and for all » > 1, one has ([K], Corollaire 3.2)

n

(6) NA(Y) - 1p, =Y (~1) Te(§), H'(Y,0y))  inF,

J=0

In particular, the right side, which is a priori in F, is actually in the prime subfield of F,.

2.3. The Galkin—Shinder formulas. Let X C P%jl be a reduced cubic hypersurface defined
over F.

We let F(X) C Gr(1, P;ijl) be the scheme of lines contained in X, also defined over F,.
When n > 3 and the singular set Sing(X) is finite, F(X) is a local complete intersection of

dimension 2n — 4, smooth if X is smooth, and geometrically connected ([AK, Theorem (1.3) and
Corollary (1.12)]).

In the Grothendieck ring of varieties over Fy, one has the relation ([GS, Theorem 5.1])
(7) L2[F(X)] = [X®] — (1 + L")[X] + L"[Sing(X)],

where X® := X?/&, is the symmetric square of X and, as usual, L denotes the class of the
affine line. Together with the relation [GS, (2.5)], it implies that, for all » > 1, we have ([GS,
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Corollary 5.2.3)])

(8) NT(F(X» _ NT(X)2 — 2<1 + C.;ZQZNT(X> + N2T(X> + q(n_2)TNT(Sing(X)).

2.4. Abelian varieties over finite fields. Let A be an abelian variety of dimension n defined
over a finite field F, of characteristic p and let ¢ be a prime number prime to p. The Z,-module
HY(A,Z,) is free of rank 2n and there is an isomorphism

(9) /\.Hl(zv Qﬂ)%H.(Za QZ)
of Gal(F,/F,)-modules.

An elliptic curve E defined over F,, is supersingular if its only p-torsion point is 0. All super-
singular elliptic curves are isogenous. The abelian variety A is supersingular if Aqu is isogenous

to E™, where E is a supersingular elliptic curve (in particular, any two supersingular abelian

varieties are isogenous over F,). The following conditions are equivalent ([Hu, Theorems 110,
111, and 112])

(i) A is supersingular;
(ii) Q1(Ar,,,T) = (T £ q"/*)*" for some r > 1;
(iii) Card(A(Fy)) = (¢"/* £ 1)*" for some r > 1;
(iv) each complex root of Q1(A,T) is /g times a root of unity;
(v) in the notation of (5), if ¢ = p", one has p["/2l | a; for all j € {1,...,n}.
If condition (ii) is satisfied, one has Qa(Ap,.,T) = (T —¢")"®*~V) and the Tate conjecture, which
holds for divisors on abelian varieties, implies that the Picard number of Ap ., hence also the

geometric Picard number of A, is n(2n — 1), the maximal possible value. Conversely, when n > 1,
if Ap,, has maximal Picard number for some r, the abelian variety A is supersingular.

o The abelian variety A is ordinary if it contains p” (the maximal possible number) p-torsion
F,-points. This is equivalent to the coefficient a,, of 7" in )1(A,T") being prime to p; if this is
the case, A is simple (over F,) if and only if the polynomial Q1(A, T') is irreducible (see [HZ, §2]).

3. CUBIC SURFACES

There exist smooth cubic surfaces defined over F, containing no F-lines, with ¢ arbitrarily
large. This is the case for example for the diagonal cubics with equation

3, .3, .3 3
Ty + Ty + T3+ axy,

where a € F, is not a cube. If ¢ = 1 (mod 3), there is such an a, since there are elements of
order 3 in F, hence the morphism Fy — F7*, z +— 22 is not injective, hence not surjective.

4. CUBIC THREEFOLDS

4.1. The zeta function of the surface of lines. Let X C P4Fq be a smooth cubic hypersurface
defined over F,. Its Betti numbers are 1, 0, 1, 10, 1, 0, 1 and the eigenvalues of the Frobenius
morphism acting on the 10-dimensional vector space H?(X, Q) are all divisible by ¢ as algebraic
integers ([K, Remark 5.1]). We can therefore write (1) as
10
N(X)=1+q+¢"+¢" —q ) _w).
j=1
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where, by the Weil conjectures proved by Deligne (Section 2.1), the complex algebraic integers
wj (and all their conjugates) have modulus ,/g. The trace formula (3) reads

Py(X,T)

D = o= — @ = 1)

where Py(X,T) = [[}2,(1 — qu;T). If we set

(10 M) i= (N (X) = (1 07+ 47 +4)) = = Y,
we obtain
(11) PyX.T) = exp (30 My (X (ny).

r>1
We will show in Section 4.3 that the numbers M, (X) have geometric significance.

Theorem 4.1. Let X C P%q be a smooth cubic hypersurface defined over ¥, and let F(X) be
the smooth surface of lines contained in X. With the notation (4), we have

P(F(X),T) = P(X,T/q)= [] 1 —wT),

1<j<10
P(F(X),T) = ] (1 —-wwd),
1<j<k<10
P(F(X),T) = P(X,T)= [ (1—aqwT),
1<5<10
where the complex numbers wy, ..., w1 have modulus \/q. In particular,

H1§j§10(1 —w;T) H1§j§10(1 — qu;T)
(1-T7)(1—¢°T) H1§j<k§10(1 — wjwiT)

Proof. There are several ways to prove this statement. The first is to prove that there are
isomorphisms

(13) H*(X, Qi) = H'(F(X), Qu(~1)) and A*H'(F(X),Q¢) = H*(F(X), Q)

of Gal(F,/F,)-modules. The first isomorphism holds with Z,-coefficients: if we introduce the
incidence variety I = {(L,z) € F(X) x X | « € L} with its projections pry: I — F(X)
and pry: I — X, it is given by pry, pry ([CP, p. 256]). The second isomorphism follows, by
standard arguments using smooth and proper base change, from the analogous statement in
singular cohomology, over C, which is proven in [R, Proposition 4].

(12) Z(F(X),T) =

But both isomorphisms in (13) also follow directly from the Galkin—Shinder relation (7)
([GS, Example 6.3]). These isomorphisms (and Poincaré duality) then imply the formulas for the
polynomials P;(F(X),T) given in the theorem.

Alternatively, simply substituting in the definition of Z(F(X),T') the values for N, (F(X))
given by the Galkin—Shinder formula (8) directly gives (12), from which one deduces the formulas
for the polynomials P;(F(X),T). O
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Remark 4.2 (The Tate conjecture for F(X)). The Tate conjecture for the surface F'(X) (see
Section 2.1) was proved in [R] over any field k of finite type over the prime field, of characteristic
other than 2. This last restriction can in fact be lifted. The proof in [R] rests on the following
two facts:

a) F(X) maps to its (5-dimensional) Albanese variety A(F'(X)) onto a surface with class a
multiple of %, where 6 is a principal polarization on A(F(X));
b) by(A(F(X))) = ba(F (X)),

Item a) is proved (in characteristic # 2) via the theory of Prym varieties ([B2, Proposition 7]).
For item b), we have dim(A(F(X))) = h'(F(X), Opx)) = 5 ([AK, Proposition (1.15)]), hence
by(A(F(X))) = (P3mA)) = 45 whereas by(F(X)) = deg(Py(F(X),T)) = 45 by Theorem 4.1.

To extend a) to all characteristics, we consider X as the reduction modulo the maximal ideal
m of a smooth cubic 2" defined over a valuation ring of characteristic zero. There is a “difference
morphism” dp(x): FI(X)x F(X) — A(F (X)), defined over k, which is the reduction modulo m of
the analogous morphism dp(4): F(2') x F(2') — A(F(Z')). By [B2, Proposition 5], the image
of dp(2) is a divisor which defines a principal polarization ¥ on A(F (Z )), hence the image of
dp(x) is also a principal polarization on A(F(X)), defined over k.

Since the validity of the Tate conjecture is not affected by passing to a finite extension of
k, we may assume that F'(X) has a k-point, which we lift to F(Z"). We can then define Al-
banese morphisms, and ap(x): F(X) = A(F(X)) is the reduction modulo m of ap(zy: F(Z") —
A(F(Z)). The image of ayp has class 9?/3! ([B2, Proposition 7]), hence the image of ap(x)
also has class (J]a(x))?/3! (this class is not divisible in H°(A(X), Z), hence ap(x) is generically
injective). This proves a), hence the Tate conjecture for F'(X), in all characteristics.

Going back to the case where k is finite, Theorem 4.1 implies the equality Qo(F(X),T) =
Q2(A(F(X)),T). Since the Tate conjecture holds for divisors on abelian varieties, this proves
that F'(X) and A(F(X)) have the same Picard numbers, whose maximal possible value is 45.

Corollary 4.3. Let 2my be the multiplicity of the root £,/q of Q1(F(X),T) and let my,...,m.
be the multiplicities of the pairs of non-real conjugate roots of Q1(F(X),T), so that my +m_ +
> iy m; =5. The Picard number of F(X) is then

p(F(X)) =my(2my — 1) +m_(2m_ — 1) + ZmQ

We have p(F (X)) > 5, with equality if and only if Q1(F(X),T) has no multiple roots.

If q is not a square, the possible Picard numbers are all odd numbers between 5 and 13, and
17 and 25.

If q is a square, the possible Picard numbers are all odd numbers between 5 and 21, and 25,
29, and 45. We have p(F(X)) = 45 if and only if Q1(F(X),T) = (T + /q)".

Proof. The Tate conjecture holds for divisors on F(X) (Remark 4.2). As explained at the end
of Section 2.1, it says that the rank of the Picard group is the multiplicity of ¢ as a root of
Q2(F(X),T). The remaining statements then follow from Theorem 4.1 by inspection of all
possible cases for the values of m,,m_,mq,..., m.. O

4.2. Existence of lines on smooth cubic threefolds over large finite fields. We can now
bound the number of F,-lines on a smooth cubic threefold defined over F,.
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Theorem 4.4. Let X be a smooth cubic threefold defined over F, and let N1(F'(X)) be the number
of Fy-lines contained in X. We have

14+45¢+¢* —10(¢+1)\/q if ¢ > 64;
M(F(X))> 14+ 13¢+¢*—6(¢g+1)y/q if 16 <q <61,
1-3¢+¢*—2(¢+1)/g if ¢<13.
In particular, X contains at least 10 F,-lines of ¢ > 11.

Moreover, for all q,

Ni(F(X)) < 1+445q+ ¢* + 10(q + 1),/q.

Proof. As we saw in Section 2.1, we can write the roots of Q(F(X),T) as wy,...,ws, w1, .. ,ws.
The r; := w; + W, are then real numbers in [-2,/g,2,/q] and, by (2) and Theorem 4.1, we have
N(F(X) = 1= > rm+5q+ Y (wwp +@wp +w@ +@@) — > qr+¢°

1<5<5 1<j<k<5 1<5<5
= 14+5¢+¢"—(g+1) > m+ > mn
1<5<5 1<j<k<5
= Fq(rl, ce ,7“5).

Since the real function Fy: [—2,/q,2,/q]° — R is linear in each variable, its extrema are reached
on the boundary of its domain, i.e., at one of the points 2,/ (£1,...,#£1). At such a point 1;
(with [ positive coordinates), we have

F,(r;) =1+5q¢+q¢ —2(2l —5)(q+ 1)\/q+ %(4(1(21 —5)% — 20q).

The minimum is obviously reached for [ € {3,4,5}, the maximum for [ = 0, and the rest is
easy. 0

4.3. Computing techniques: the Bombieri-Swinnerton-Dyer method. By Theorem 4.1,
the zeta function of the surface of lines contained in a smooth cubic threefold X C P%q defined over
F, is completely determined by the roots qwy, .. ., gwio of the degree-10 characteristic polynomial
of the Frobenius morphism acting on H3(X, Q). If one knows the numbers of points of X over
sufficiently many finite extensions of F, these roots can be computed from the relations

exp(D MT(X)g) = PAX.T/q) = A(F(X).T) = ] (1 -w7).
where M, (X) = q%(;\fr(X) —(1+¢ +¢* +¢*)) was defined in (1(;)._

The reciprocity relation (5) implies that the polynomial P, (F(X),T') is determined by the
coefficients of 1,7, ...,T?, hence by the numbers N;(X),..., N5(X). The direct computation of
these numbers is possible (with a computer) when ¢ is small (see Section 4.5 for examples), but
the amount of calculations quickly becomes very large.

We will explain a method for computing directly the numbers M;(X),..., M5(X). It was
first introduced in [BSD] and uses a classical geometric construction which expresses the blow up
of X along a line as a conic bundle. It is valid only in characteristic # 2 and requires that X
contain an F-line L.

Let X — X be the blow up of L. Projecting from L induces a morphism 7, : X = P2Fq
which is a conic bundle and we denote by I'y, C P%q its discriminant curve, defined over F,.
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Assume from now on that q is odd; the curve 'y, is then a nodal plane quintic curve and the
associated double cover p: I'y — ', is admissible in the sense of [B1, Définition 0.3.1] (the curve
T, is nodal and the fixed points of the involution associated with p are exactly the nodes of r L
[BSD, Lemma 2]).!

One can then define the Prym variety associated with p and it is isomorphic to the Albanese
variety of the surface F'(X) ([Mur, Theorem 7] when I'j, is smooth). The following is [BSD,
Formula (18)].

Proposition 4.5. Let X C P%q be a smooth cubic threefold defined over ¥y, with q odd, and
assume that X contains an F,-line L. With the notation (10), we have, for all r > 1,

MT(X) - Nr(fL) - NT(FL)

Proof. We will go quickly through the proof of [BSD] because it is the basis of our algorithm. A
point z € P%(F,) corresponds to an F -plane P, D L and the fiber 7' () is isomorphic to the
conic C,, such that X N P, = L + C,. We have four cases:

(i) either C, is geometrically irreducible, i.e., z ¢ T'1(F,), in which case ;' (x)(F,) consists
of ¢ + 1 points;

(ii) or C, is the union of two different Fy-lines, i.e., x is smooth on I';, and the 2 points of
p~Y(z) are in T (F,), in which case 77" (z)(F,) consists of 2¢ + 1 points;

(iii) or C, is the union of two different conjugate Fp-lines, i.e., x is smooth on I';, and the 2
points of p~!(x) are not in T';,(F,), in which case 7, '(x)(F,) consists of 1 point;

(iv) or C, is twice an Fline, i.e., z is singular on T'y,, in which case ;' (x)(F,) consists of
q + 1 points.

The total number of points of ' (F,) lying on a degenerate conic C, is therefore ¢ Ny (U)+ Ny (I'p)
and we obtain

Ni(X) = (g+ 1) (Mi(P},) — Ni(T1)) +gNi(Tr) + Ny(I'p).

Finally, since each point on L C X is replaced by a Pll;q on X , we have

Ni(X) = Ni(X) = (g + 1) + (¢ +1)%,
thus Ni(X) = @+ +q+1+q(M (Ty) — Ni(T1)). Since the same conclusion holds upon
replacing ¢ with ¢", this proves the proposition. 0

Let x € 't (F,). In order to compute the numbers Ny (I'z) — N;(T'1,), we need to understand
when the points of p~!(z) are defined over F,,.

We follow [BSD, p. 6]. Take homogenous F,-coordinates z1, ..., x5 on P* so that L is given
by the equations x; = 5 = x3 = 0. An equation of X can then be written as

f+2qx4 + 2qow5 + 175 + 2lowyw5 + L3773,

where f is a cubic form, ¢q, g2 are quadratic forms, and ¢4, {5, {5 are linear forms in the variables
x1,xa, r3. We choose the plane P%q - P4Fq defined by x4 = x5 = 0. If © = (21, 29,23,0,0) € P%q,
the conic C, considered above has equation

U+ 2010192 + 20201Y3 + (1Y + 20ay2ys + (3y3

"n characteristic 2, the curves I';, and r £, might not be nodal (see Lemma 4.13).
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and the quintic I', C P%_has equation det(M) = 0, where

' @ @
(14) Mp:=|a b6 06
@ by U3

For each i € {1,2,3}, let ¢; € HO(FL,ﬁ(ai)), where a; = 2, 4, or 4, be the determinant of
the submatrix of My obtained by deleting its ith row and ¢th column. The —§; are transition
functions of an invertible sheaf . on T’y such that £®? = wr, (a thetacharacteristic). It defines

the double cover p: fL — Ty

A point x € Pg,_is singular on Tz if and only if d;(2) = d2(z) = d3(x) = 0. These points
do not contribute to M, since the only point of p~(x) is defined over the field of definition of x.
This is the reason why we may assume that x is smooth in the next proposition.

Proposition 4.6. Let © be a smooth F -point of I'r. The curve fL has two F,-points over
z € LL(Fy) if and only if either —6,(x) € (FY)?, or 01(x) = 0 and either —dy(x) or —d3(x) is in
(Fy)2.

Proof. With the notation above, the line L = V(y;) C Pg_ meets the conic C, C P%_at the
points (0, ys, y3) such that

Crys + 20ay0y3 + Ly3 = 0.

Therefore, if —&;(z) = (3(z) — ¢, (x)l3(z) is non-zero, the curve I', has two rational points over
z € T (F,) if and only if —0,(x) € (F))*.

When 6;(x) = 0, we have C,, = L; + Lo, where L; and L, are lines meeting in an F-point
z of L which we assume to be (0,0,1). This means that there is no ys term in the equation of
C,, hence ly(x) = l3(x) = ¢2(x) = 0. The conic C, has equation

G(2)ys + 2¢1 (@) yye + f(2)ys

and the two lines L; and Ly are defined over F if and only if —d3(z) = ¢f(x) — 1(2) f(z) € (F))?
(since 91 (x) = d2(x) = 0, this is necessarily non-zero because z is smooth on I'y).

For the general case: if y3(z) # 0, we make a linear change of coordinates y; = v}, yo =
Yy + tys, ys = y5 in order to obtain y4(z) = 0, and we check that —d3(z) is unchanged; if
z = (0,1,0), we obtain as above ;(x) = d3(x) = 0 and Ly and L, are defined over F,, if and only
if —d5(z) € (F)*. This proves the proposition. O

We can now describe our algorithm for the computation of the numbers M, (X) = N,(I'y) —
N.(Tp).
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The input data is a cubic threefold X over F, containing an F-line L. We choose coordinates
as above and construct the matrix M of (14) whose determinant is the equation of the quintic
I'y C P%q. We compute M, with the following simple algorithm.

Input: (X, L,r)

Output: M,

Compute the matrix My, the three minors d1, 9, 03 and the curve I'y;
M, = 0;

while p e {p : pe T'(F,) | 'L is smooth at p} do

if —d1(p) € (For)? or (01(p) =0 and (—d02(p) € (F-)? or —d5(p) € (F,)?)) then
‘ M, =M, +1;
else
‘ M, .= M, — 1,
end
end
return M,;

Algorithm 1: Computing M,..

4.4. Lines on mildly singular cubic threefolds. We describe a method based on results of
Clemens—Griffiths and Kouvidakis—van der Geer which reduces the computation of the number of
F,-lines on a cubic threefold with a single singular point, of type A; or Ay,? to the computation
of the number of points on a smooth curve of genus 4. One consequence is that there is always
an F,-line when ¢ > 3.

Let C' be a smooth non-hyperelliptic curve of genus 4 defined over a perfect field F. We
denote by gi and hi = K¢ — g} the (possibly equal) degree-3 pencils on C. The canonical curve
¢r.(C) C P3 is contained in a unique geometrically integral quadric surface ) whose rulings cut
out the degree-3 pencils on C'; more precisely,

e cither Q ~ PL x P} and the two rulings of @ cut out distinct degree-3 pencils g3 and
hy = K¢ — g3 on C which are defined over F;

e or () is smooth but its two rulings are defined over a quadratic extension of F and are
exchanged by the Galois action, and so are g3 and hi;

e or () is singular and its ruling cuts out a degree-3 pencil g3 on C' which is defined over F
and satisfies Ko = 2¢3.

Let p: P} --» Pg be the rational map defined by the linear system of cubics containing ¢ (C).
The image of p is a cubic threefold X defined over F; it has a single singular point, p(Q), which
is of type A; if @ is smooth, and of type A, otherwise. Conversely, every cubic threefold X C Py
defined over F with a single singular point x, of type A; or A,, is obtained in this fashion: the
curve C'is Tx, N X and parametrizes the lines in X through x ([CML, Corollary 3.3]).

The surface F'(X) is isomorphic to the non-normal surface obtained by gluing the images
C, and Cj, of the morphisms C' — C® defined by p +— g —p and p — h} —p (when Q is singular,
F(X) has a cusp singularity along the curve Cy = C},). This was proved in [CG, Theorem 7.8]
over C and in [KvG, Proposition 2.1] in general.

Proposition 4.7. Let X C P%q be a cubic threefold defined over ¥, with a single singular point,
of type Ay or As. Let C be the associated curve of genus 4, with degree-3 pencils g3 and hi. For

2A hypersurface singularity is of type A; if it is, locally analytically, given by an equation x{“ +x34- -+ a2 11

Type A; is also called a node.
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any r > 1, set n, := Card(C(F,)). We have

(n? —2ny +mn2)  if g5 and hy are distinct and defined over F;
(n? +2ny 4+ n2)  if g3 and h} are not defined over F;
(ni + na) if g5 = hs.

Card(F(X)(F,)) =

D= D= N

Proof. Points of C®(F,) correspond to

e the 3(nf — ny) pairs of distinct points of C(Fy),
e the n; F, -points on the diagonal,
e the 1(ny —ny) pairs of distinct conjugate points of C(Fgz),

for a total of 3(ni + ny) points (compare with [GS, (2.5)]). When g5 and hj are distinct and
defined over F,, the gluing process eliminates n; F,-points. When g5 and h} are not defined over
F,, the curves C; and C}, contain no pairs of conjugate points, and the gluing process creates n;
new F,-points. Finally, when g} = hi, the map C?(F,) — F(X)(F,) is a bijection. O

Corollary 4.8. When q > 4, any cubic threefold X C P%q defined over F, with a single singular
point, of type Ay or Ay, contains an F,-line.

For ¢ € {2,3}, we produce in Section 4.5.5 explicit examples of cubic threefolds with a
single singular point, of type A;, but containing no F,-lines: the bound in the corollary is the
best possible.

Proof. If X contains no F-lines, Proposition 4.7 implies that either ny =ny =0, or ny =ny =1
and g3 and h} are distinct and defined over F,. The latter case cannot in fact occur: if C(F,) =
{x}, we write g} = x + 2/ + 2. Since g} is defined over F,, so is 2/ + 2, hence 2’ and z” are
both defined over F2. But C(F,2) = {z}, hence 2/ = 2" = z and g5 = 3z. We can do the same
reasoning with A} to obtain hi = 3z = ¢}, a contradiction.

Therefore, we have n; = ny = 0. According to [HLT, Theorem 1.2], every genus-4 curve
over F; with ¢ > 49 has an F,-point so we obtain ¢ < 7.

Because of the reciprocity relation (5), there is a monic degree-4 polynomial H with integral
coefficients that satisfies Q(C,T) = T*H(T + q/T). If wy,...,wy,&1,...,ws are the roots of
Q1(C,T) (see Section 2.4), with |w;| = /g, the roots of H are the r; := w; + @;, and

g+1—ny = Z ri o, @+ l—ny= Z (Wi +@7) = Z (r? —2q).
1<j<4 1<j<4 1<j<4
Since ny = ny = 0, we obtain » ;4,7 = ¢+ 1 and 219547"]2‘ = ¢* + 8¢ + 1, so that
Zl<i<j<4 rir; = —3¢q; we can therefore write

(15) H(T)=T"— (¢+ 1)T° — 3¢T* + aT + .
Finally, since |r;| < 2,/q for each j, we also have [b| = |r1ror3rs| < 16¢* and |a| = \Z?Zl b/r;| <

32¢%/%2. A computer search done with these bounds shows that polynomials of the form (15) with
four real roots and ¢ € {2,3,4,5,7} only exist for ¢ < 3, which proves the corollary. 0

Remark 4.9. For ¢ € {2,3}, the computer gives a list of all possible polynomials

T4-3T3—6T2+24T—-16
Tif3T376Tz+24T715 (%) Ti—4T§—9T§+48T—36 (?)
_ _ ) T*-3T3—-6T%+23T-13 _ ) T*—4T3-9T?+47T-32 (%)
(q - 2) H(T) T ) 7373612422710 (%) ° (q - 3) H(T) T ) T4-4T3-9T2+46T-29 (x) °
T4-3T3—6T2+21T-7 T4—4T3-9T24+44T-22 (7)
T4-3T3—6T2+18T+1 (x)
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The nodal cubics of Section 4.5.5, defined over Fy and Fs, correspond to the polynomials 7% —
373 — 612 4 24T — 15 and T* — 4T3 — 9T? + 47T — 32, respectively. Over Fy, it is possible to list
all genus-4 canonical curves and one obtains that only the polynomials marked with (%) actually
occur (all three are irreducible).

Over F3, our computer searches show that the two polynomials marked with (x) actually
occur (both are irreducible). We do not know whether the other two, T% — 4T3 —9T? + 48T — 36 =
(T —1)(T —3)(T* — 12) and T* — 4T3 — 9T? 4+ 44T — 22 = (T?* — 4T + 2)(T* — 11) (marked with
(7)), actually occur.

4.5. Examples of cubic threefolds. In this section, we present some of our calculations and
illustrate our techniques for some cubic threefolds. We begin with Fermat cubics (Section 4.5.1),
which have good reduction in all characteristics but 3. The case of general Fermat hypersurfaces
was worked out by Weil in [W] (and was an inspiration for his famous conjectures discussed in
Section 2.1). We explain how Weil’s calculations apply to the zeta function of Fermat cubics
(Theorem 4.11) and we compute, in dimension 3, the zeta function of their surface of lines
(Corollary 4.12).

The Fermat cubic threefold contains the line L := ((1,—1,0,0,0),(0,0,1,—1,0)). We also
compute the discriminant quintic I';, C P? defined in Section 4.3, exhibiting strange behavior in
characteristic 2.

In Section 4.5.2, we turn our attention to the Klein cubic, which has good reduction in all
characteristics but 11. Again, it contains an “obvious” line L’ and we compute the discriminant
quintic I';; € P2, again exhibiting strange behavior in characteristic 2. Using the Bombieri—
Swinnerton-Dyer method, we determine the zeta function of F'(X) over F,, for p < 13. We also
compute the geometric Picard numbers of the reduction of F(X) modulo any prime, using the
existence of an isogeny between A(F(X)) and the self-product of an elliptic curve.

In Section 4.5.3, we compute, using the same method, the zeta function of F(X) of a
“random” cubic threefold X containing a line, over the fields F5, F;, Fo3, Fog, and F3;. Note
that existing programs are usually unable to perform calculations in such high characteristics.

In Section 4.5.4, we present examples, found by computer searches, of smooth cubic three-
folds defined over Fy, F3, Fy, or F5 with no lines. We were unable to find examples over F, for
the remaining values ¢ € {7,8,9} (by Theorem 4.4, there are always F-lines for ¢ > 11). For
the example over Fy, we compute directly the number of points over small extensions and deduce
the polynomial P, for the Fano surface F'(X). For the example over F3, we obtain again the
polynomial P; for the Fano surface F(X) by applying the Bombieri-Swinnerton-Dyer method
over Fg.

Finally, in Section 4.5.5, we exhibit cubic threefolds with one node but no lines, defined over
F, or F3, thereby proving that the bound in Corollary 4.8 is optimal.

4.5.1. Fermat cubics. The n-dimensional Fermat cubic X™ C P2 is defined by the equation
(16) Tyl L,
It has good reduction at every prime p # 3.

Remark 4.10. In general, if ¢ = 2 (mod 3) and X C P’]}jl is a cyclic cubic hypersurface
with equation f(z1,...,2,41) + 2, o, the projection 7: X — Pg_defined by (z1,...,2n12) =

(21,...,2p41) induces a bijection X (F,) — P"(F,), because the map x — 2 is a bijection of F,
([Ke, Observation 1.7.2]).
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The remark gives in particular Card(X"(F5)) = Card(P"(F;)) = 2""' — 1. For the number
of points of X™(F,), observe that the cyclic cover 7 is 3-to-1 outside its branch divisor V(f). Let
(z1,...,Zpt1) € P"(Fy). Since 2® € {0,1} for any = € Fy, either 2} + - + 22, = 0 and the
inverse image by 7 has one Fy-point, or 7 + -+ 22, = 1 and the inverse image by « has three
F,-points. One deduces an inductive formula

Card(X"(Fy)) = Card(X"'(Fy)) + 3(Card(P"(F4)) — Card(X"'(Fy))).
Since Card(X°(F)) = 3, we obtain
1

Card (X" (F,)) = 3 (2740 — (=2)"* —1).

Using (8), we see that the number of Fy-lines on X, is
(2n+1 _ 1)2 _ 2(1 + 2n)(2n+1 _ 1) + %(22714-3 _ (_2)n+1 _ 1) _ 22n +14+ ((_1)n _ 9)2n72
8 3 '

For example, the 15 Fs-lines contained in X]_fiz are the line Ly, and its images by permutations
of the coordinates.

In fact, general results are available in the literature on the zeta function of Fermat hyper-
surfaces over finite fields (starting with [W]; see also [SK, Section 3]), although they do not seem
to have been spelled out for cubics. Let us first define

0 P,(Xg ,T) if n is odd,
P (Xg,, T) = q puxp /1)

R if n is even

(this is the reciprocal characteristic polynomial of the Frobenius morphism acting on the primitive
cohomology of X§ ) and set b)) (X") := deg(Py); this is b,(X") if n is odd, and b, (X™) — 1 if n is
even.

Theorem 4.11 (Weil). Let X™ C P’%’Ll be the Fermat cubic hypersurface. Let p be a prime
number other than 3.

e I[fp=2 (mod 3), we have
PY(Xg, T) = (1 = (=p)"T?)" 72,
e Ifp=1 (mod 3), one can write uniquely 4p = a® + 27b* with a = 1 (mod 3) and b > 0,

and
(14 aT + pT*? when n =1,
(1 —pT)° when n = 2,
Pg(Xﬁp, T) = (1+apT + p*T?)° when n = 3,
1+ (2p— )T + p*T?)(1 — p*T)*  whenn =4,
(1 + ap®T + p°T?)* when n = 5.

As will become clear from the proof, it would be possible to write down (complicated)
formulas for all n in the case p =1 (mod 3). We leave that exercise to the interested reader and
restrict ourselves to the lower-dimensional cases.

Proof. Assume first p = 2 (mod 3). It follows from Remark 4.10 that the polynomial P° (Xg,,T)
is even (this is explained by (19) and (20) when n = 4). It is therefore equivalent to prove
PYXp . T)=(1— (—p)"T)"X". We follow the geometric argument of [SK].
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It is well known that Pi(Xw ,T) = 1+ pT?, hence Pi(Xg ,,T) = (1 + pT)*. In other
words, the Frobenius morphism of F2 acts on the middle cohomology of X4 , by multiplication

by —p. By the Kiinneth formula, it acts by multiplication by (—p)? on the middle cohomology of
Xg , x Xg . The proof by induction on n of [SK, Theorem 2.10] then applies and gives that the

Frobenius morphism acts by multiplication by (—p)™ on the middle cohomology of X% .
P

Assume now p =1 (mod 3). The number of points of X*(F,) was computed by Gauss ([ST,
Theorem 4.2]): writing 4p = a* 4 27b* as in the theorem, one has Card(X!(F,)) =p+1+a, i.e.,
Pi(Xg,,T) = 1+aT +pT? =: (1 -wT)(1—-&T). In other words, the eigenvalues of the Frobenius
morphism of F, acting on the first cohomology group are w and w. They are therefore the Jacobi
sums denoted by j(1,2) and j(2,1) in [SK, (3.1)], and also the generators of the prime ideals p
and p in Z[C] (¢ = exp(2im/3)) such that (p) = pp.

The eigenvalues of the Frobenius morphism acting on the primitive middle cohomology of
Xg, are denoted j(a) by Weil, where o runs over the set

U = {(ao, ..., ans1) €{1,2Y"? | ag+ -+ any1 =0 (mod 3)}.

The ideal (j(«)) in Z[C] is invariant under permutations of the «; and its decomposition is com-
puted by Stickelberger ([SK, (3.10)]):

(j(@)) = pH@phe,
with A(a) = LZ’;;I F| and a; = 3 — o,
The elements of 844 are (1,1,1) and (2, 2,2), and the corresponding values of A are 0 and 1.
The eigenvalues are therefore (up to multiplication by a unit of Z[(]), w and @w. By Gauss’ theorem,

we know they are exactly w and @. By induction on n, it then follows from the embeddings [SK,
(2.17)] that

jla) = wA¥GA®,

The elements of 4y are (up to permutations) (1, 1,2,2) and the corresponding value of A is
1. The only eigenvalue is therefore ww = p, with multiplicity (3)

The elements of i3 are (up to permutations) (1,1,1,1,2) and (1,2,2,2,2), and the cor-
responding values of A are 1 and 2. The eigenvalues are therefore w?@ = pw and po, with
multiplicity 5.

The elements of $; are (up to permutations) (1,1,1,1,1,1), (1,1,1,2,2,2),
and (2,2,2,2,2,2), and the corresponding values of A are 1, 2, and 3. The eigenvalues are
therefore pw? and pw?, with multiplicity 1, and p?, with multiplicity (3).

The elements of 5 are (up to permutations) (1,1,1,1,1,2,2) and (1,1,2,2,2,2,2), and
the corresponding values of A are 2 and 3. The eigenvalues are therefore p?w and p%w, with
multiplicity (;) This finishes the proof of the theorem. 0

Corollary 4.12. Let X C Py, be the Fermat cubic threefold with equation x3 + --- + x3 and let
F(X) be its surface of lines. Let p be a prime number other than 3.

The Albanese variety A(F (X)), is isogenous to Ey , where E is the Fermat plane cubic
curve. Moreover,

e if p=2 (mod 3), we have
(1+pT?)°(1 +p°T?)°

ZEe ) = TR — )0+ TP (1 = pT >
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the Picard number of F(X)p, is 25 and that of F(X)r , is 45, and the abelian variety
A(F(X))g, is supersingular;
e ifp=1 (mod 3), we have (with the notation of Theorem 4.11)
(1+ aT + pT*)>(1 + apT + p3T?)®
(= T)(1 — P+ (2 — )T + PT20(1 — T
the Picard and absolute Picard numbers of F'(X)g, are 25, and the abelian variety A(F (X))
18 ordinary.

Z(F(X)p,, T) =

Proof. Theorems 4.1 and 4.11 imply that the characteristic polynomials of the Frobenius mor-
phism acting on H' are the same for the abelian varieties A(F(X))r, and Eg ; they are therefore
isogenous ([Mu, Appendix I, Theorem 2]). The statements about A(F'(X))g, being supersingular
or ordinary follow from the analogous statements about Ey,.

The values of the zeta functions also follow from Theorem 4.1 and 4.11, and the statements
about the Picard numbers from Corollary 4.3. 0

We now restrict ourselves to the Fermat cubic threefold X C Py (n = 3). We parametrize
planes containing the line L := ((1,-1,0,0,0),(0,0,1,—1,0)) C X by the P? defined by z; =
r3 = 0 and determine the discriminant quintic I';, C P? (see Section 4.3).

Lemma 4.13. In the coordinates T, 24, Ts5, the equation of the discriminant quintic I'y C P? is
woxy (T3 + 23 + 422). Therefore,

e in characteristics other than 2 and 3, it is a nodal quintic which is the union of two lines
and an elliptic curve, all defined over the prime field;

e in characteristic 2, it is the union of 5 lines meeting at the point (0,0,1); 3 of them are
defined over Fo, the other 2 over Fy.

Proof. We use the notation of the proof of Proposition 4.5 (although the choice of coordinates
is different). If z = (0, 25,0, 24, 25) € P2, the residual conic C, has equation (in coordinates

(3/1, Y2, 3/3))

1
Z(yg (w21 —y2) 3+ (wayr —ys)’ +yias) = yi(as+ad+a3) = 303y1ys — 303y 1ys + 3125 +3w4y3
In characteristics other than 2 and 3, an equation of I'j, is therefore given by
adtaitad — 322 —342 9 d(z3+a3+x3) 3z2 324 9
7%333 3x2 0 = —T9Xy z3 1 0 | = —$2$4({L‘§ + l‘z + 41‘?)
— 352 0 3x4 4 I?I 0 1 4
274

In characteristic 2, the Jacobian criterion says that the singular points of C, must satisfy y; = 0

1/2 1/2

and Toys + w4y? = x3y2 + 23y = 0. The curve I'y is therefore defined by 2, M, | =0, or
2 4

zoxy(xs + 23) = 0. Tt is therefore the “same” equation reduced modulo 2. U

4.5.2. The Klein threefold. This is the cubic threefold X C P4 defined by the equation
(17) DTy + TaT3 + TaTy + TAT5 + TET.

It has good reduction at every prime p # 11.

It contains the line L' = ((1,0,0,0,0),(0,0,1,0,0)) and we parametrize planes containing
L’ by the P? defined by x; = 23 = 0.

P
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Lemma 4.14. In the coordinates T2, x4, x5, the equation of the discriminant quintic I'r, C P? is
T3 + z4wi — daoxins. Therefore,

e in characteristics other than 2 and 11, it is a geometrically irreducible quintic with a single
singular point, (0,1,0), which is a node;

e in characteristic 2, it is a geometrically irreducible rational quintic with a single singular
point of multiplicity 4, (0,1,0).

Proof. We proceed as in the proof of Lemma 4.13. If x = (0, 22, 0, 4, 5) € P?, the residual conic
C, has equation (in coordinates (y1, ¥z, ys3))

1

" (yawayn + 23y ys + y3ways + TiYTesys + 23yTye) = Yawe + ToYys + Y3Ta + T3YTTs + T3Y1Ys.
1

In characteristic other than 2, an equation of I';, is therefore given by

rirs sxi a3
%mg zy 0 |= Z(Ig + 2475 — AToT575).

2
x5 0 x4

In characteristic 2, one checks that 'z, is defined by the equation x5 + z4z2. In both cases, the
singularities are easily determined. 0

In characteristic 11, Xp,, has a unique singular point, (1,3,3%,33,3%), which has type A,.
The quintic 'y € P2 is still geometrically irreducible with a node at (0,1,0) and an ordinary
cusp (type Ay) at (5,1, 3).

In characteristic 2, the isomorphism (x1, ..., z5) — (2145, xa+ x5, T3+ 25, T4+ 5, T+ T2+
T3+24+x5) maps Xy, to the cyclic cubic with equation 23+ (z1+zo+x3+14)% + 2320+ 2323+ 2374,
Thus Myy,+1(XF,) = 0 for any m > 0 (reasoning as in Example 4.5.1). The computer gives
My (X¥,) = My(X¥,) = 0. Using (8), we find that Xy, contains 5 Fy-lines; they are the line L/
and its images by the cyclic permutations of the coordinates.

By the reciprocity property (5), we obtain
PUF(X)g,,T) = Py(Xg,, T/2) = 1 + 2T

Since this polynomial has simple roots, the Picard number of F(X)g, is 5 (Corollary 4.3). The
eigenvalues of the Frobenius morphism F' are w exp(2ik7n/10), for k € {0,...,9}, where w!® = —2°
hence F'* acts by multiplication by —2°. This implies P (F(X)g,,,,T) = (1 +2°T)". It follows
that F'(X)r,,, has maximal Picard number 45 (Corollary 4.3) and that A(F(X)) is isogenous to
E® over Fayuo, where E is the Fermat plane cubic defined in Section 4.5.1.

We also get Po(F(X)p,,T) = (1 — 2°T5)(1 — 219710)* = (1 — 257%)5(1 + 2°7%)* and
(1 + 25T10)(1 + 215T10)

2R D) = TR I — a1 - BT+ P

Over other small fields, we find, using the Bombieri-Swinnerton-Dyer method (Proposition
4.5) and a computer,

Pi(F(X)p,, T) = 1+31T°+3°T%
P (F(X)p,,T) = 1—57T°45°T"
P(F(X)p,, T) = 14+7°T%
P(F(X)p,,, T) = 1+13°T".
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Note that A(F(X)) is ordinary in the first two cases and supersingular with maximal Picard
number in the other two cases. One can easily compute the Picard numbers and write down the
corresponding zeta functions if desired. We compute the geometric Picard numbers by a different
method. Note that —11 is a square modulo 3 or 5, but not modulo 7 or 13.

Proposition 4.15. Let X C P}, be the Klein cubic threefold with equation (17) and let F(X) be
its surface of lines. Suppose p # 2. If —11 is a square modulo p, the reduction modulo p of F(X)
has geometric Picard number 25, otherwise it has geometric Picard number 45.

Proof. Set v := == and E(, := C/Z[v]. By [A, Corollary 4, p. 138], A(F(X))c is isomorphic
to (Eg)®. By [Si, Appendix A3], the elliptic curve Eg has a model with equation

v +y=a2"—a2>—Tr+10
over Q, which we denote by E’. Since A(F(X))c and Eg are isomorphic, A(F(X)) and E” are

isomorphic over some number field ([Mu, Appendix I, p. 240]).

We use Deuring’s criterion [L, Chapter 13, Theorem 12)]: for odd p # 11, the reduction of
E’ modulo p is supersingular if and only if p is inert or ramified in Z[v]. By classical results in
number theory, an odd prime p # 11 is inert or ramified in Z[v] if and only if —11 is not a square
modulo p. The geometric Picard number of the reduction modulo p of A(F(X)) is therefore 45 if
—11 is not a square modulo p, and 25 otherwise. 0

4.5.3. An implementation of our algorithm. We use the notation of Section 4.3. Let X C P7 be
the cubic threefold with equation

[+ 2174 + 2qo75 + 1127 + 2002475 + 13732,

where
f = zix3— (2 + doy7s + 223),
G = x% + 2x§ + Tox3 + :L‘%,
Qo = x1T9+4xow3+ a:§

It contains the line L given by the equations x; = x9 = x3 = 0.

In characteristics < 31, the cubic X is smooth except in characteristics 2 or 3 and the plane
quintic curve I';, is smooth except in characteristics 2 or 5.

We implemented in Sage the algorithm described in Algorithm 1 (see [XX]). Over Fj5, we
get

P (F(X)g,, T) = (1 +5T%)(1 +2T% + 8T% — 6T* + 407" + 507° + 625T").
It follows that A(F(X)g.) is not ordinary and not simple (it contains an elliptic curve).
Over the field F7, we compute that P (F(X)g,,T) is equal to
1+4T +15T% +46 T° + 159 T +460T° + 1 113T° + 2254 T7 + 5145 T° + 9604 T° 4 16 807 T"°.

This polynomial is irreducible over Q; it follows that A(F(X)g,) is ordinary and simple (Sec-
tion 2.4). We can even get more by using a nice criterion from [HZ].

Proposition 4.16. The abelian variety A(F(X)g,) is absolutely simple i.e., it remains simple
over any field extension.
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Proof. We want to apply the criterion [HZ, Proposition 3 (1)] to the abelian variety A :=
A(F(X)r,). Let d > 1. Since the characteristic polynomial @Q1(A,T) (which is also the min-
imal polynomial) of the Frobenius morphism F is not in Z[T?], it is enough to check that, for

any d > 1, there are no dth roots of unity ¢ such that Q(F?¢) C Q(F) and Q(F4,() = Q(F). If
this is the case, Q(() is contained in Q(F'), hence p(d) (where ¢ is the Euler totient function)
divides deg(Q1(A,T)) = 10. This implies d € {2,3,4,6,11,22}. But for these values of d, one

computes that the characteristic polynomial Ql(AF7 ., T) of Fis irreducible (of degree 10), and
this contradicts Q(F?) € Q(F). Thus A is absolutely simple. O
Here are some more computations in “high” characteristics:

P (F(X)F,.,T) = 1421T2-35T3+759T*—890 T5+17457T6—18515T7 4255507 T®+6 436 343 T10,

Fog3»

Pi(F(X)Fo,T) = 14+3T+5T24+15T34+352T4+2828 T°+10208 T6+12615T7+121945T8+2121843T°+20511149 710,

Fog»

PI(F(X)pg,,T) = 142T42T?4+72T34+117T*—812T543627 T6+69 192 T7+59 582 T5+1847 04279428629 151 T'*°.

4.5.4. Smooth cubic threefolds over ¥y, F3, Fy, or F5 with no lines. Using a computer, it is easy
to find many smooth cubic threefolds defined over Fy with no Fa-lines (see Example 4.17). For
example, the cubic threefold X C Pr , defined by the equation

T} + 75 + 15 + 22wy + X573 + X371 + T1X2x3 + 1175 + Taxy + ToTE + T3T5 + 2375
contains no Fs-lines. We also have?
N (X) = 9, No(X) = 81, N3(X) = 657, Ny(X) = 4225, N5(X) = 34049,
hence (see (10) for the definition of M, (X))
M(X) = =3, My(X)=—1,M3(X) =9, My(X) = =9, M5(X) =T7.
The polynomial P (F(X),T) = Ps(X,T/2) = [];2,(1 — w,;T) is then given by

j=1
5
T'I"
exp (Z MT(X)T) L O(T%) = 1— 3T + 4T — 107 + 20T° + O(T°).
r=1

Using the reciprocity property (5), we obtain
Pi(F(X),T)=1-3T +4T% —10T* +207° — 10 - 27° + 4 - 2°T® — 3. 2477 4 2°T1°.
Since this polynomial has no multiple roots, the Picard number of F/(X) is 5 (Corollary 4.3).
We found by random computer search the smooth cubic threefold X’ C P%S with equation
Qx:{’ + 23:2 + x1x§ + x§x4 + 290%3:4 + x%xg) + Tox3Ts + 21 T4x5 + 209X4T5 + 2a:ix5 + 21‘41’% + xg

It contains no Fs-lines and 25 F3-points. Computing directly the number of points on extensions
of F3, as we did above for Fs, takes too much time, and it is quicker to use the Bombieri—
Swinnerton-Dyer method (Proposition 4.5) on Xt , which contains an Fg-line. The result is that
P (F(X")g,,T) is equal to

1 —5T+8T% + 1072 — 124T* + 515T° — 1 116T° 4+ 81077 + 5832T° — 328057 + 59049717,

Using the fact that X’ has 25 F3-points and that the roots of P, (F(X')g,,T) are square roots of
the roots of P(F(X")g,,T), one finds

P(F(X")g,, T) = 1—5T+10T?% — 273 — 36T* 4+ 95T° — 108T° — 1877 4 2707 — 40577 + 243T"°,

3Among smooth cubics in P4F2 with no Fs-lines, the computer found examples whose number of Fy-points is
any odd number between 3 and 13.



LINES ON CUBIC HYPERSURFACES OVER FINITE FIELDS 19
and the numbers of F3--lines in ng, forr € {1,...,5}, are 0, 40, 1455, 5740, 72 800, respectively.

Similarly, the smooth cubic threefold in Pg, with equation
3, .2 3, .2 2 2, .2 2 3, .2 2 2, .3
]+ 2102+ T5+27T3 +UT1 X5+ UT2T3 + U X1T2Ty + T5T4 +UTY + X505 + UT2X3T5 + T3X5 + T3Ts + X,

where u? 4+ u + 1 = 0, contains no F4-lines and 61 F4-points.

Finally, the smooth cubic threefold in P4F5 with equation

3 3 2 2 2 2 2
x] + 225 + 2573 + 3T105 + X]T4 + X109y + T1T3T4 + 3Tox374 + 4X5T4 + ToX)
2 2 2 2 3
+ 4dxzxy + 3575 + 112035 + 3T0T3x5 + 3T124T5 + 3Ty T5 + xo2x5 + 35
contains no Fs-lines and 126 F5-points.

We were unable to find smooth cubic threefolds defined over F, with no Fj-lines for the
remaining values ¢ € {7,8,9} (by Theorem 4.4, there are always F-lines for ¢ > 11).

4.5.5. Nodal cubic threefolds over Fy or F3 with no lines. Regarding cubic threefolds with one
node and no lines, we found the following examples.

The unique singular point of the cubic in P4F2 with equation
3 2 3 2 3 2
Ty + T5x3 + T3 + T1X2xy + T3T4 + Ty + T7T5 + X1T3T5 + ToXyTs

is an ordinary double point at = := (0,1,0,0,1) and this cubic contains no Fy-lines. As we saw
during the proof of Corollary 4.8, the base of the cone T'x ,NX is a smooth genus-4 curve defined
over Fy with no Fy-points. The pencils g3 and hi are defined over Fs,.

The unique singular point of the cubic in Pg , With equation

Qx?{ + 21’%1’2 + xlxg + 2x2x§ + 201224 + T2T324
+ mlxi + Qxi + Tox3T5 + 21’%:55 + xga:g + :zrg
is an ordinary double point at = := (1,0,0,0,1) and this cubic contains no F3-lines. Again, the

base of the cone Tx , N X is a smooth genus-4 curve defined over F3 with no Fy-points, and the
pencils g3 and h} are defined over Fj.

4.6. Average number of lines. Consider the Grassmannian G := Gr(l,P;ijl), the parame-
ter space P = P(HO (P%jl, ﬁpgﬂ(d))) for all degree-d n-folds, and the incidence variety I =
{(L,X) € GxP|LC X}. The first projection I — G is a projective bundle, hence it is easy

to compute the number of F -points of I. The fibers of the second projection I — P are the
varieties of lines. The average number of lines (on all degree-d n-folds) is therefore

Card(G(Fy)) (¢tm®)=d — 1)
qdim(P)+1 -1

Recall that Card(G(Fy)) = Y <;cjcpi1 @7 For cubic 3-folds, we obtain

~ Card (G(F,))g™®) =41,

CHqg+2+2¢ +2¢24+q¢ 3+ ¢

For ¢ = 2, the average number of lines on a cubic threefold is therefore ~ 9.688 (compare with
Example 4.17 below).

Example 4.17 (Computer experiments). For a random sample of 5-10* cubic threefolds defined
over Fy, we computed for each the number of Fy-lines.
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Percentage of cubics
e
1

2 4 6 § 10 12 14 16 18 20 22 24 26
Number of lines

The average number of lines in this sample is ~ 9.651.

Smooth cubic threfolds contain less lines: here is the distribution of the numbers of F»-lines
for a random sample of 5 - 10* smooth cubic threfolds defined over Fs.

10

Percentage of smooth cubics

I I_IIII- - B

ol oo by by by s s by s e by by by by s s b by | NN EFETITES AT
0 2 4 6 8 1820222426
Number of lmes

The average number of lines in this sample is ~ 6.963.

5. CUBIC FOURFOLDS

We now examine cubic fourfolds over F,. We expect them to contain “more” lines than cubic
threefolds (indeed, all the examples we computed do contain F -lines). Unfortunately, we cannot
just take F,-hyperplane sections and apply our results from Section 4, because these results only
concern mildly singular cubic threefolds, and there is no a prior: reason why there would exist a
hyperplane section defined over F, with these suitable singularities.

We follow the same path as in Section 4. Recall that for any field k, the scheme F(X) of
lines contained in a cubic fourfold X C Pj with finite singular set is a geometrically connected
local complete intersection fourfold (Section 2.3) with trivial canonical sheaf ([AK, Proposition

(L8))).
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5.1. The zeta function of the fourfold of lines. Let X C P%q be a smooth cubic hypersurface
defined over F,. Its Betti numbers are 1, 0, 1, 0, 23, 0, 1, 0, 1 and the eigenvalues of the Frobenius
morphism acting on H*(X, Q,) are all divisible by ¢ as algebraic integers ([K, Remark 5.1]). We

write
23

T 3r Ar T T
N(X)=14+q+¢"+¢" +q > uj,
j=1
where the complex algebraic integers w; (and all their conjugates) have modulus ¢, with ws3 = ¢
(it corresponds to the part of the cohomology that comes from H*(P%-,Qy)). The trace formula
(3) reads

200T) = (T = = PT = FT = TR
where
(18) P)(X,T) = ]i‘*(_Lq’;; = 12__2[1(1 — quw;T).
If we set B
(19) M) = - (V) = (L4 + 0 + " + ") = >
we obtain 7
(20) PY(X,T) = exp (Z M, (X) (q?r).

Theorem 5.1. Let X C P% be a smooth cubic hypersurface defined over ¥, and let F(X) b
the smooth fourfold of lines contained in X. With the notation above, we hcwe P(F(X),T) =
for i odd and

Py(F(X),T) = Ps(F(X),T/¢®) = Py(X,T/q) = H (1 —wT)
1<5<23
P(F(X),T) = [ (1-wwd),
1<j<k<23
where the complexr numbers w; have modulus ¢ and w3 = q, and
1

(21) ZFX).T)= (1 =T)(1 = ¢*T) [T1<jcos (1 = wT)(1 = ¢?w;T)) 1) <jcpens(l — wjrT)

Proof. The various methods of proof described in the proof of Theorem 4.1 are still valid here.
For example, one may deduce the theorem from the isomorphisms

HY(X,Q) = H*(F(X),Qu(1)) and Sym® H*(F(X),Q/) = H'(F(X), Q)

obtained from the Galkin-Shinder relation (7) ([GS, Example 6.4]) or the analogous (known)
statements in characteristic 0. We leave the details to the reader. O



22 O. DEBARRE, A. LAFACE, AND XAVIER ROULLEAU

5.2. Existence of lines over large finite fields. As we did for cubic threefolds, we use the
Deligne-Weil estimates to find a lower bound for the number of F, -lines on a smooth cubic
fourfold defined over F,.

Theorem 5.2. Let X be a smooth cubic fourfold defined over Fy and let N1(F (X)) be the number
of Fy-lines contained in X. For ¢ > 23, we have

Ni(F(X)) > ¢* — 21¢° +210¢* — 21q + 1

and, for smaller values of q,

q 5 7 8 9 11 13 16 17 19
Ni(F(X))>] 26 638 1337 2350 5930 12338 29937 38438 61010

In particular, X always contains an F,-line when ¢ > 5.

When ¢ = 2, we will see in Corollary 5.4 that X always contains an Fa-line. These leaves
only the cases ¢ = 3 or 4 open (see Section 5.4.3).

Proof. Write the roots of Qo(F(X),T) as ¢ (with multiplicity a), —¢ (with multiplicity b),
Wi, ooy Wey W1,y - -+, We, With a4+ b4 2¢ = 23. The r; := w; + ; are then real numbers in [—2¢, 2¢]
and, by (2) and Theorem 5.1, we have

N(F(X) = 14+¢'+ > wwt+(l+¢) > w

1<j<k<23 1<;<23
1
= 1+¢*+ <§(a(a+ 1)+ b(b+ 1)) —ab)q2 + (a —b)q Z T
1<j<e
+cq? + Z riry + (1 + q2)<(a —b)g+ Z rj)
1<j<k<c 1<j<c

= 1+¢"+ %((a— b)* +23)¢* + (1 + ¢°)(a — b)g

+ Z rire + (14 ¢* 4 (a— b)q) Z T

1<j<k<c 1<j<c

Since a + b = 23 — 2¢ is odd, it is enough to study the cases a = 1 and b = 0, or a = 0 and
b = 1, since we can always consider pairs ¢, q, or —q, —q, as w,w. We then have ¢ = 22 and we
set e:=a—be{-1,1}.

As in the proof of Theorem 4.4, we note that this last expression G (r) is linear in each
variable, hence its minimum is reached a point on the boundary, when the r; are all equal to £2¢.
At such a point r; (with [ positive coordinates), we compute

Go(r) =14 ¢" +12¢° + eq(1 + ¢°) + 2¢°((20 — 11)* — 11) + 2(20 — 11)q(1 + ¢* + eq).

Since q is always an eigenvalue, we must have ¢ = 1 when [ = 0. As a function of [/, the minimum

is reached for 21 — 11 = —%;Eq. For ¢ > 23, the allowable values for which G;(r;) is smallest

are [ = 0 and € = 1, and the minimum is ¢* — 21¢> + 210¢*> — 21¢ + 1 > 0.

For ¢ < 19, the numbers in the table follow from a longish comparison of the various
functions G‘Z. ]



LINES ON CUBIC HYPERSURFACES OVER FINITE FIELDS 23

5.3. Existence of lines over some finite fields. The cohomology of the structure sheaf of the
fourfold F'(X) is particularly simple and this can be used to prove congruences for its number of
F,-points by using the Katz formula (6).

Proposition 5.3 (Altman—Kleiman). Let X C P} be a cubic hypersurface defined over a field k,
with finite singular set. We have

h(F(X), Op(x)) = W (F(X), Opx)) = h*(F(X), Opx)) = 1
W (F(X), Orx)) = h*(F(X), Orx)) = 0.
Proof. The scheme F(X) is the zero scheme of a section of the rank-4 vector bundle &Y :=
Sym®.#" on G := Gr(1,P}) and the Koszul complex
(22) 0> AN'E - NE - NE—E— Og — Opxy — 0
is exact. By [AK, Theorem (5.1)], the only non-zero cohomology groups of \"& are
H3(G,\'&) ~ HY(G, \*&) ~ k.

Chasing through the cohomology sequences associated with (22), we obtain H*(F(X), Op(x)) =
H*(F(X), Op(x)) = 0 and

H'(F(X),0rx) ~ H(G,O0g),

H*(F(X), Orx)) HY G, N\*&),

HY(F(X), Opx)) HY G, \'&).
This proves the proposition. ([l

12

12

Since wp(x) is trivial, the multiplication product
(23) H*(F(X), Op(x)) ® H*(F(X), Or(x)) — HYF(X), Orx))
is the Serre duality pairing. It is therefore an isomorphism.

Corollary 5.4. Let X C P%q be a cubic hypersurface with finite singular set, defined over F,. If
q =2 (mod 3), the hypersurface X contains an F,-line.

Proof. The Fg-linear map §, defined in Section 2.2 acts on the one-dimensional F,-vector space
H*(F(X), Op(x)) (Proposition 5.3) by multiplication by some A € F; since (23) is an isomor-
phism, §, acts on H*(F(X), Or(x)) by multiplication by A?. It then follows from the Katz formula
(6) that we have
M(F(X))-1p,=14+X+X inF,

F14+XA+M= Og,, we have A3 = lg,. Since 3 { ¢ — 1, there are no elements of order 3 in F,
hence the morphism F* — Ff, = — 2? is injective. Therefore, \ = lp,, hence 3 - 1p, = 1f,, but
this contradicts our hypothesis.

We thus have 1+ X + A? # Op,, hence N (F(X)) is not divisible by the characteristic of Fy
and the corollary is proved. O

5.4. Examples of cubic fourfolds.

5.4.1. Fermat cubics. If X C P%p is the Fermat fourfold, it is a simple exercise to write down

the zeta function of F'(X) using Theorem 4.11 and Theorem 5.1, as we did in dimension 3 in
Corollary 4.12.
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5.4.2. Clubic fourfolds over Fo with only one line. Smooth cubic fourfolds defined over Fy always
contain an Fs-line by Corollary 5.4. Random computer searches produce examples with exactly
one Fy-line: for example, the only Fs-line contained in the smooth cubic fourfold with equation

a:i’ + :13%’ + atg + xf@ + x%ml + x§x1 + 11073 + xlxi + x%m + xgwg + .ZU%I’{,
+ l’i$5 + x4$§ + xgx?j + x§x6 + xixg + mx% + :ngg + ZE5$§ + T4T576
is the line ((0,0,0,0,1,1),(0,0,0,1,0,1)); it contains 13 Fy-points.

5.4.3. Cubic fourfolds over F3 or F4. Our results say nothing about the existence of lines in
smooth cubic fourfolds defined over F3 or Fs. Our computer searches only produced fourfolds
containing lines (and over F3, both cases Ni(F(X)) =0 or 1 (mod 3) do occur), leading us to
suspect that all (smooth) cubic fourfolds defined over F3 or Fy should contain lines.

6. CUBICS OF DIMENSIONS 5 OR MORE

In higher dimensions, the existence of lines is easy to settle.

Theorem 6.1. Any cubic hypersurface X C Pf{:l of dimension n > 6 defined over ¥, contains
F,-points and through any such point, there is an F,-line contained in X.

Proof. This is an immediate consequence of the Chevalley-Warning theorem: X (F,) is non-empty
because n + 2 > 3 and given x € X(F,), lines through x and contained in X are parametrized
by a subscheme of Py defined by equations of degrees 1, 2, and 3 and coefficients in F,. Since
n+1> 142+ 3, this subscheme contains an F,-point. [l

The Chevalley—Warning theorem implies Ny (X) > qn;l_ L When n > 6, we obtain from the
theorem Np(F(X)) > qz;izl; when X (hence also F/(X)) is smooth, the Deligne-Weil estimates

for F(X) provide better bounds.

When n > 5, we may also use the fact that the scheme of lines contained in a smooth cubic
hypersurface is a Fano variety (its anticanonical bundle &'(4 — n) is ample).

Theorem 6.2. Assumen > 5 and let X C P%jl be any cubic hypersurface defined over F,. The
number of F-lines contained in X is =1 (mod q).

Proof. When X is smooth, the variety F'(X) is also smooth, connected, and a Fano variety. The
result then follows from [E, Corollary 1.3].

To prove the result in general, we consider as in Remark 4.6 the parameter space P for all
cubic n-folds and the incidence variety I = {(L, X) € G x P | L C X}. The latter is smooth and
geometrically irreducible; the projection pr : I — P is dominant and its geometric generic fiber is
a (smooth connected) Fano variety ([AK, Theorem (3.3)(ii), Proposition (1.8), Corollary (1.12),
Theorem (1.16)(i)]). It follows from [FR, Corollary 1.2] that for any = € P(F,) (corresponding
to a cubic hypersurface X C PEH defined over F,), one has Card(pr~*(z)) =1 (mod g). Since

pr(z) = F(X), this proves the theorem. O
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