
MORPHISMS TO BRAUER–SEVERI VARIETIES, WITH
APPLICATIONS TO DEL PEZZO SURFACES

CHRISTIAN LIEDTKE

Abstract. We classify morphisms from proper varieties to Brauer–
Severi varieties, which generalizes the classical correspondence between
morphisms to projective space and globally generated invertible sheaves.
As an application, we study del Pezzo surfaces of large degree with a
view towards Brauer–Severi varieties, and recover classical results on
rational points, the Hasse principle, and weak approximation.

1. Introduction

1.1. Overview. The goal of this article is the study of morphisms X → P
from a proper variety X over a field k to a Brauer–Severi variety P over k,
i.e., P is isomorphic to projective space over the algebraic closure k of k,
but not necessarily over k. If X has a k-rational point, then so has P , and
then, P is isomorphic to projective space already over k. In this case, there
exists a well-known description of morphisms X → P in terms of globally
generated invertible sheaves on X. However, if X has no k-rational point,
then we establish in this article a correspondence between globally generated
classes of Pic(X/k)(fppf)(k), whose obstruction to coming from an invertible
sheaf on X is measured by some class β in the Brauer group Br(k), and
morphisms to Brauer–Severi varieties of class β over k.

As an application of this correspondence, we study del Pezzo surfaces
over k in terms of Brauer–Severi varieties, and recover many known results
about their geometry and their arithmetic. If k is a global field, then we
obtain applications to the Hasse principle and weak approximation. Our
approach has the advantage of being elementary, self-contained, and that
we sometimes obtain natural reasons for the existence of k-rational points.

1.2. Morphisms to Brauer–Severi varieties. Let X be a proper variety
over a field k, and let k be the algebraic closure of k. When studying
invertible sheaves on X, there are inclusions and equalities of Abelian groups

Pic(X) ⊆ Pic(X/k)(ét)(k) = Pic(X/k)(fppf)(k) ⊆ Pic(Xk).

On the left (resp. right), we have invertible sheaves on X (resp. Xk) up
to isomorphism, whereas in the middle, we have sections of the sheafified
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relative Picard functor over k (with respect to the étale and fppf topology,
respectively). Moreover, the first inclusion is part of an exact sequence

0 → Pic(X) → Pic(X/k)(ét)(k) δ−→ Br(k),

where Br(k) denotes the Brauer group of the field k, and we refer to Remark
3.3 for explicit descriptions of δ. If X has a k-rational point, then δ is the
zero map, i.e., the first inclusion is a bijection.

By definition, a Brauer–Severi variety is a variety P over k, such that
Pk
∼= PN

k
for some N , i.e., P is a twisted form of projective space. Associated

to P , there exists a Brauer class [P ] ∈ Br(k) and by a theorem of Châtelet,
P is trivial, i.e., isomorphic to projective space over k, if and only if [P ] = 0
if and only if P has a k-rational point. In any case, we have a class OP (1) ∈
Pic(P/k)(fppf)(k), in general not arising from an invertible sheaf on P , which
becomes isomorphic to OPN (1) over k, see Definition 2.17.

In this article, we extend the notion of a linear system to classes in
Pic(X/k)(fppf)(k) that do not necessarily come from invertible sheaves. More
precisely, we extend the notions of being globally generated, ample, and very
ample to such classes, see Definition 3.1. Then, we set up a dictionary be-
tween globally generated classes in Pic(X/k)(fppf)(k) and morphisms from X
to Brauer–Severi varieties over k. In case X has a k-rational point, then we
recover the well-known correspondence between globally generated invert-
ible sheaves and morphisms to projective space. Here is an easy version of
our correspondence and we refer to Theorem 3.4 and Remark 3.5 for details.

Theorem 1.1. Let X be a proper variety over a field k.

(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over
k. If we set L := ϕ∗OP (1) ∈ Pic(X/k)(fppf)(k), then L is a globally
generated class and

δ(L) = [P ] ∈ Br(k).

(2) If L ∈ Pic(X/k)(fppf)(k) is globally generated, then L⊗k k corresponds
to a unique invertible sheaf M on Xk and the morphism associated
to the complete linear system |M| descends to a morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P ].

We note that our result is inspired by a geometric construction of Brauer–
Severi varieties of Grothendieck, see [Gr68, Section (5.4)], and it seems that
it is known to the experts. As immediate corollaries, we recover two classi-
cal theorems about Brauer–Severi varieties due to Châtelet and Kang, see
Corollary 3.6 and Corollary 3.8.
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1.3. Del Pezzo surfaces. In the second part, we apply this machinery to
the geometry and arithmetic of del Pezzo surfaces over arbitrary ground
fields. I would like to stress that most, if not all, of the results of this second
part are well-known. To the best of my knowledge, I have tried to give
the original references. However, our organization of the material and the
hopefully more geometric approach to del Pezzo surfaces via morphisms to
Brauer–Severi varieties is new.

By definition, a del Pezzo surface is a smooth and proper surface X over
a field k, whose anti-canonical invertible sheaf ω−1

X is ample. The degree of
a del Pezzo surface is the self-intersection number of ωX . The classification
of del Pezzo surfaces over k is well-known: the degree d satisfies 1 ≤ d ≤ 9,
and they are isomorphic either to P1×P1 or to the blow-up of P2 in (9− d)
points in general position.

As application of Theorem 1.1, we obtain the following.

(1) If d = 8 and Xk
∼= P1

k
× P1

k
, then there exists an embedding

| − 1
2KX | : X ↪→ P

into a three-dimensional Brauer–Severi threefold P . Moreover, X
is either isomorphic to a product of two Brauer–Severi curves or to
a quadratic twist of the self-product of a Brauer–Severi curve. We
refer to Theorem 5.1 and Proposition 5.2 for details.

(2) If d ≥ 7 and Xk 6∼= P1
k
× P1

k
, then there exists a birational morphism

f : X → P

to a Brauer–Severi surface P over k that is the blow-up in a closed
and zero-dimensional subscheme of length (9 − d) over k. We refer
to Theorem 6.1 for details.

(3) If d = 6, then there exist two finite field extensions k ⊆ K and
k ⊆ L with [K : k]|2 and [L : k]|3 such that there exists a birational
morphism f : X → P to a Brauer–Severi surface P over k that is the
blow-up in a closed and zero-dimensional subscheme of length 3 over
k if and only k = K. There exists a birational morphism X → Y
onto a degree 8 del Pezzo surface Y of product type if and only if
k = L. We refer to Theorem 7.1 for details.

(4) For partial results if d ≤ 5, as well as birationality criteria for when
a del Pezzo surface is birational to a Brauer–Severi surface, we refer
to Section 8.

As further applications, we recover well-known results about rationality,
unirationality, existence of k-rational points, Galois cohomology, the Hasse
principle, and weak approximation for del Pezzo surfaces.
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Notations and Conventions

In this article, k denotes an arbitrary field, k (resp. ksep) its algebraic
(resp. separable) closure, and Gk = Gal(ksep/k) its absolute Galois group.
By a variety over k we mean a scheme X that is of finite type, separated,
and geometrically integral over k. If K is a field extension of k, then we
define XK := X ×Spec k SpecK.

2. Picard functors and Brauer groups

This section, we recall a couple of definitions and general results about the
various relative Picard functors, about Brauer groups of fields and schemes,
as well as Brauer–Severi varieties.

2.1. Relative Picard functors. Let us first recall a couple of generalities
about the several Picard functors. Our main references are [Gr95a], [Gr95b],
as well as the surveys [BLR90, Chapter 8] and [Kl05].

For a scheme X, we define its Picard group Pic(X) to be the Abelian group
of invertible sheaves on X modulo isomorphism. If f : X → S is a separated
morphism of finite type over a Noetherian base scheme S, then we define the
absolute Picard functor to be the functor that associates to each Noetherian
T → S the Abelian group PicX(T ) := Pic(XT ), where XT := X×S T . Now,
as explained, for example in [Kl05, Section 9.2], the absolute Picard functor
is a separated presheaf for the Zariski, étale, and the fppf topologies, but it
is never a sheaf for the Zariski topology. In particular, the absolute Picard
functor is never representable by a scheme or by an algebraic space. This
leads to the introduction of the relative Picard functor PicX/S by setting
PicX/S(T ) := Pic(XT )/Pic(T ), and then, we have the associated sheaves for
the Zariski, étale, and fppf topologies

Pic(X/S)(zar), Pic(X/S)(ét), and Pic(X/S)(fppf).

In many important cases, these sheaves are representable by schemes or
algebraic spaces over S. For our purposes, it suffices to work with the sheaves
so that we will not address representability questions here, but refer the
interested reader to [BLR90, Chapter 8.2] and [Kl05, Chapter 9.4] instead.
Having introduced these sheaves, let us recall the following easy facts, see,
for example, [Kl05, Exercise 9.2.3].

Proposition 2.1. Let X → S be a scheme that is separated and of finite type
over a Noetherian scheme S. Let L be a field with a morphism SpecL→ S.

(1) Then, the following natural maps are isomorphisms:

PicX(L)
∼=−→ PicX/S(L)

∼=−→ Pic(X/S)(zar)(L).
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(2) If L is algebraically closed, then also the following natural maps are
isomorphisms:

PicX(L)
∼=−→ Pic(X/S)(ét)(L)

∼=−→ Pic(X/S)(fppf)(L).

It is important to note that if L is not algebraically closed, then the
natural map PicX(L)→ Pic(X/S)(ét)(L) is usually not an isomorphism, i.e.,
not every section of Pic(X/S)(ét) over L arises from an invertible sheaf on
XL. The following example, taken from [Kl05, Exercise 9.2.4], is crucial to
everything that follows and illustrates this.

Example 2.2. Let X be the smooth plane conic over R defined by

X := {x2
0 + x2

1 + x2
2 = 0 } ⊂ P2

R.

Then, X is not isomorphic to P1
R since X(R) = ∅, but there exists an iso-

morphism ϕ : XC → P1
C. In particular, X is an example of a non-trivial

Brauer–Severi variety, see Definition 2.14. Then, ϕ∗OP1
C
(1) defines an ele-

ment of Pic(X/R)(ét)(R) that does not lie in the image of PicX(R).

In this example, we have X(R) = ∅, i.e., the structure morphism X →
Spec R has no section. Quite generally, we have the following comparison
theorem for the several relative Picard functors, and refer, for example, to
[Kl05, Theorem 9.2.5] for details and proofs.

Theorem 2.3 (Grothendieck). Let f : X → S be a scheme that is separated
and of finite type over a Noetherian scheme S, and assume that OS

∼=−→
f∗OX holds universally.

(1) Then, the natural maps

PicX/S ↪→Pic(X/S)(zar) ↪→Pic(X/S)(ét) ↪→Pic(X/S)(fppf)

are injections.
(2) If f has a section, then all three maps are isomorphisms. If f has a

section locally in the Zariski topology, then the latter two maps are
isomorphisms, and if f has a section locally in the étale topology,
then the last map is an isomorphism.

To understand the obstruction to realizing a section of Pic(X/S)(ét) or
Pic(X/S)(fppf) over S by an invertible sheaf on X in case there is no section
of X → S, we recall the following definition.

Definition 2.4. For a scheme T , the étale cohomology group H2
ét(T,Gm)

is called the cohomological Brauer group, and is denoted Br′(T ). The set of
sheaves of Azumaya algebras on T modulo Brauer equivalence also forms a
group, the Brauer group of T , and is denoted Br(T ).

We will not discuss sheaves of Azumaya algebras on schemes in the sequel,
but only remark that these generalize central simple algebras over fields (see
Section 2.3 for the latter), and refer the interested reader to [Mi80, Chapter
IV] for details and references, as well as to [Po] for a survey.
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Using that Gm is a smooth group scheme, Grothendieck [Gr68] showed
that the natural map H2

ét(T,Gm)→ H2
fppf(T,Gm) is an isomorphism, i.e., it

does not matter whether the cohomological Brauer group Br′(T ) is defined
with respect to the étale or the fppf topology. Next, there exists a natural
injective group homomorphism Br(T ) → Br′(T ), whose image is contained
in the torsion subgroup of Br′(T ). If T is the spectrum of a field k, then
this injection is even an isomorphism, i.e., Br(k) = Br′(k), see, for example,
[Gr68], [GS06], and [Mi80, Chapter IV] for details and references.

The connection between Brauer groups, Proposition 2.1, and Theorem
2.3 is as follows, see, for example [BLR90, Chapter 8.1] or [Kl05, Section
9.2].

Proposition 2.5. Let f : X → S be a scheme that is separated and of
finite type over a Noetherian scheme S, and assume that OS

∼=−→ f∗OX
holds universally. Then, for each S-scheme T there exists a canonical exact
sequence

0 → Pic(T ) → Pic(XT ) → Pic(X/S)(fppf)(T ) δ−→ Br′(T ) → Br′(XT ) .

If f has a section, then δ is the zero-map. �

2.2. Varieties and the Amitsur subgroup. By our conventions above,
a variety over a field k is a scheme X that is of finite type, separated, and
geometrically integral over k. In this situation, the conditions of Proposition
2.5 are fulfilled, as the following remark shows.

Remark 2.6. If X is a proper variety over a field k, then

(1) the structure morphism f : X → Spec k is separated, of finite type,
and OSpec k

∼= f∗OX holds universally.
(2) The morphism f has sections locally in the étale topology (see, for

example, [GS06, Appendix A]).
(3) Since the base scheme is a field k, we have Br(k) = Br′(k).

In Remark 3.3, we will give an explicit description of δ in this case.

In Example 2.2, the obstruction to representing the class of L := ϕ∗OP1
C
(1)

in Pic(X/R)(fppf)(R) by an invertible sheaf on X can be explained via δ, which
maps L to the non-zero element of Br(R) ∼= Z/2Z - in terms of Azumaya
algebras (since the base is Spec R, these are central simple R-algebras), this
Brauer class corresponds the R-algebra H of quaternions, but we will not
pursue this point of view in the sequel.

Proposition 2.7. Let X be a proper variety over a field k. Then, there
exist natural isomorphisms of Abelian groups

PicX/k(k
sep)Gk

∼=−→ Pic(X/k)(ét)(k)
∼=−→ Pic(X/k)(fppf)(k),

where the −Gk denotes Galois invariants.
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Proof. The first isomorphism follows from Galois theory and sheaf axioms
and the second isomorphism follows from Theorem 2.3 and Remark 2.6. �

Lemma 2.8. Let X be a proper variety over a field k. Then,

Am(X) := δ(Pic(X/k)(fppf)(k)) ⊆ Br(k)

is a torsion subgroup. Moreover, if there exists a closed point on X, whose
residue field is of degree n over k, then every element of Am(X) has an
order dividing n.

Proof. Since Am(X) is a subgroup of Br(k), it is Abelian and torsion
(see, for example, [GS06, Corollary 4.4.8]). Next, let x ∈ X be a closed
point, say, with residue field K/k that is of degree n over k. Since XK has
a k-rational point, the map δ of XK is identically zero by Proposition 2.5.
Thus, we have an inclusion Am(X) ⊆ Br(K|k) := ker(Br(k) → Br(K)),
where Br(k)→ Br(K) is the restriction homomorphism.

If K is separable over k, then Br(K|k) is contained in the n-torsion of
Br(k), which follows from the fact that the composition of restriction and
corestriction is multiplication by n, see [GS06, Proposition 4.2.10].

If K is a purely inseparable extension of k, generated by pr-th roots, then
Br(K|k) is pr-torsion (which yields even stronger bounds on the torsion than
claimed), see for example, Hochschild’s Theorem [GS06, Theorem 9.1.1] for
an explicit description for this group.

In general, we can factor the extension K/k into a separable and a purely
inseparable extension, and by combining the previous two special cases, the
statement follows. �

Definition 2.9. We call Am(X) the Amitsur subgroup of X in Br(k).

By definition, Am(X) measures the deviation between Pic(X/k)(fppf)(k)
and Pic(X). Using Proposition 2.5, we can give two alternative definitions
of this group. In fact, the birational invariance of this group for Brauer–
Severi varieties is a classical result of Amitsur, probably known to Châtelet
and Witt in some form or another, see also Theorem 2.19 below.

Proposition 2.10. Let X be a smooth and proper variety over k. Then,

Am(X) = ker
(
Br(k) → Br′(X)

)
= ker (Br(k) → Br(k(X))) .

In particular, Am(X) is a birational invariant of smooth and proper varieties
over k.

Proof. The first equality follows from the exact sequence of Proposition
2.5. Since X is smooth over k, the natural map Br′(X) → Br(k(X)) is
injective, see, for example, [Mi80, Example III.2.22], and then, the second
equality follows. From this last description, it is clear that Am(X) is a
birational invariant. �
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Remark 2.11. In [CTKM07, Section 5], the kernel of Br(k) → Br(k(X))
was denoted Br(k(X)/k), and is thus the same as our Am(X) if X is
smooth and proper over k. However, this group should not be confused
with Br(k(X))/Br(k), which is related to another important birational in-
variant that we will introduce in Section 4.2.

IfX has a k-rational point, then Am(X) = 0 by definition and Proposition
2.5. On the other hand, there exist proper varieties X with trivial Amitsur
subgroup without k-rational points (some degree 8 del Pezzo surfaces of
product type with ρ = 1 provide examples, see Proposition 5.4). Let us
recall that a zero-cycle on X is a formal finite sum

∑
i niZi, where the

ni ∈ Z and where the Zi are closed points of X. It is called effective if
ni ≥ 0 for all i. The degree is defined to be deg(Z) :=

∑
i ni[κ(Zi) : k],

where κ(Zi) denotes the residue field of the point Zi.

Corollary 2.12. Let X be a proper variety over a field k. If there exists a
zero cycle of degree 1 on X, then Am(X) = 0. �

If X is a projective variety over k, then Pic(X/k)(ét) and Pic(X/k)(fppf) are
representable by a group scheme PicX/k over k, the Picard scheme. The
connected component of the identity is denoted Pic0

X/k, and the quotient

NSX/k(k) := PicXk/k(k) /Pic0
Xk/k

(k),

the Néron–Severi group, is a finitely generated Abelian group, whose rank
is denoted ρ(Xk). We refer to [BLR90, Section 8.4] for further discussion.
Moreover, if X is smooth over k, then Pic0

X/k is of dimension 1
2b1(X), where

b1 denotes the first `-adic Betti number.

Lemma 2.13. Let X be a smooth and projective variety over a field k with
b1(X) = 0. Then, Pic(X/k)(fppf)(k) is a finitely generated Abelian group,

rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ ρ(Xk),

and Am(X) is a finite Abelian group.

Proof. If b1(X) = 0, then, by the previous discussion, Pic(Xk) is a finitely
generated Abelian group of rank ρ(Xk). Since Pic(X) and Pic(X/k)(fppf)(k)
are contained in Pic(Xk), they are also finitely generated of rank at most
ρ(Xk). Since Am(X) = δ(Pic(X/k)(fppf)(k)) is a torsion subgroup of Br(k),
Proposition 2.5 implies the stated equality of ranks. Moreover, being torsion
and a finitely generated Abelian group, Am(X) is finite. �

2.3. Brauer–Severi varieties. Next, we recall a couple of results about
Brauer–Severi varieties, and refer the interested reader to [GS06, Chapter
5] and the surveys [Ja00], [Po] for details, proofs, and further references.

Definition 2.14. A Brauer–Severi variety over a field k is a proper variety
P over k, such that there exists a finite field extension K of k and an
isomorphism PK ∼= PnK over K.
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In case P is of dimension one (resp. two, resp. three), we will also refer
to it as a Brauer–Severi curve (resp. Brauer–Severi surface, resp. Brauer–
Severi threefold). Any field extension K of k such that PK is isomorphic
to projective space over K is called a splitting field for P , and P is said to
split over K. By a theorem of Châtelet, a Brauer–Severi variety P over k
is trivial, i.e., splits over k, i.e., is k-isomorphic to projective space over k,
if and only if it possesses a k-rational point. Since a geometrically integral
variety over a field k always has points over ksep, it follows that a Brauer–
Severi variety can be split over a finite and separable extension of k, which
we may also assume to be Galois if we want.

For a finite field extension K of k that is Galois with group G, the set
of all Brauer–Severi varieties of dimension n over k that split over K, can
be interpreted as the set of all G-twisted forms of PnK , which is in bijection
to the cohomology group H1(G,Aut(PnK)). Using Aut(Pn) ∼= PGLn+1, and
taking cohomology in the short exact sequence

1 → Gm → GLn+1 → PGLn+1 → 1,

the boundary map associates to the class of a Brauer–Severi variety P of
dimension n in H1(G,PGLn+1(K)) a class in

Br(K|k) := ker (Br(k)→ Br(K)) = ker
(
H2

ét(k,Gm)→ H2
ét(K,Gm)

)
.

Taking the limit over all finite Galois extensions of k, we obtain for every
Brauer–Severi variety P over k a class [P ] ∈ Br(k). This cohomology class
is torsion and its order is called the period of P , denoted per(P ). By a
theorem of Châtelet, a Brauer–Severi variety is trivial if and only if the
class [P ] ∈ Br(k) is zero, i.e., if and only if per(P ) = 1. We will say that
two Brauer–Severi varieties over k are Brauer equivalent if their associated
classes in Br(k) are the same.

To say more about Brauer classes associated to Brauer–Severi varieties,
we will shortly digress on non-commutative k-algebras, and refer to [GS06,
Section 2] and [Ja96] for details: we recall that a central simple k-algebra is
a k-algebra A, whose center is equal to k (i.e., A is central), and whose only
two-sided ideals are (0) and A (i.e., A is simple). If A is moreover finite-
dimensional over k, then by theorems of Noether, Köthe, and Wedderburn,
there exists a finite and separable field extension k ⊆ K that splits A, i.e.,
A⊗k K ∼= Matn×n(K). In particular, the dimension of A over k is always a
square, and we set the degree of A to be deg(A) :=

√
dimk(A). Two central

simple k-algebras A1 and A2 are said to be Brauer equivalent if there exist
integers a1, a2 ≥ 1 such that A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

The connection between central simple algebras and Brauer–Severi vari-
eties is the following dictionary, see [GS06, Theorem 2.4.3].

Theorem 2.15. Let k ⊆ K be a field extension that is Galois with group
G. Then, there is a natural bijection of sets between

(1) Brauer–Severi varieties of dimension n over k that split over K,
(2) H1(G,PGLn+1(K)), and
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(3) central simple k-algebras of degree n+ 1 over k that split over K.

Under this bijection, Brauer equivalence of (1) and (3) coincide.

We also recall that a division algebra is a k-algebra in which every non-zero
element has a two-sided multiplicative inverse. For example, field extensions
of k are division algebras, and a non-commutative example is provided by
the quaternions over R. Given a simple and finite-dimensional k-algebra A,
a theorem of Wedderburn states that there exists a unique division algebra
D over k and a unique integer m ≥ 1 and an isomorphism of k-algebras
A ∼= Matm×m(D), see [GS06, Theorem 2.1.3].

Corollary 2.16. If two Brauer–Severi varieties over k of the same dimen-
sion are Brauer equivalent, then they are isomorphic as schemes over k.

Proof. By Theorem 2.15, it suffices to show that two Brauer equivalent
central simple k-algebras A1, A2 of the same dimension are isomorphic.
By Wedderburn’s theorem, there exist division algebras Di and integers
mi ≥ 1 such that Ai ∼= Matmi×mi(Di) for i = 1, 2. By definition of Brauer-
equivalence, there exist integers ai ≥ 1 and an isomorphism of k-algebras

A1 ⊗k Mata1×a1(k) ∼= A2 ⊗k Mata2×a2(k).

Together with the k-algebras isomorphisms

Ai ⊗k Matai×ai(k) ∼= Matmi×mi(Di)⊗k Mata1×a1(k)
∼= Mataimi×aimi(Di)

and the uniqueness part in Wedderburn’s theorem, we conclude D1
∼= D2,

as well as a1 = a2, whence A1
∼= A2, see also [GS06, Remark 2.4.7]. �

We refer to Châtelet’s theorem (Corollary 3.8) for results about Brauer
equivalent Brauer–Severi varieties over k that are of different dimension. We
refer to Amitsur’s conjecture (Remark 2.20) for Brauer–Severi varieties over
k that are of the the same dimension and whose Brauer classes generate the
same cyclic subgroup of Br(k).

For projective space, the degree map deg : Pic(Pnk) → Z, which sends
OPnk (1) to 1, is an isomorphism. Thus, if P is a Brauer–Severi variety over
k and Gk := Gal(ksep/k), then there are isomorphisms

Pic(P/k)(fppf)(k) ∼= Pic(P/k)(ksep)Gk ∼= Pic(P/k)(ksep)
∼= Pic(Pdim(P )

ksep )
deg−→ Z.

The first isomorphism is Proposition 2.7, and the second follows from the fact
that the Gk-action must send the unique ample generator of Pic(P/k)(ksep) to
an ample generator, showing that Gk acts trivially. The third isomorphism
follows from the fact that P splits over a separable extension.

Definition 2.17. For a Brauer–Severi variety P over k, we denote the
unique ample generator of Pic(P/k)(fppf)(k) by OP (1).
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We stress that OP (1) is a class in Pic(P/k)(fppf)(k) that usually does not
come from an invertible sheaf on P - in fact this happens if and only if P is
a trivial Brauer–Severi variety, i.e., split over k. For a Brauer–Severi variety,
the short exact sequence from Proposition 2.5 becomes the following.

Theorem 2.18 (Lichtenbaum). Let P be a Brauer–Severi variety over k.
Then, there exists an exact sequence

0 → Pic(P ) → Pic(P/k)(fppf)(k)︸ ︷︷ ︸
∼= Z

δ−→ Br(k) → Br(k(P )) .

More precisely, we have

δ(OP (1)) = [P ], and
Pic(P ) = OP (per(P )) · Z.

Since ωP ∼= OP (−dim(P )− 1), the period per(P ) divides dim(P ) + 1.

Again, we refer to [GS06, Theorem 5.4.5] for details and proofs. Using
Proposition 2.10, we immediately obtain the following classical result of
Amitsur [Am55] as corollary.

Theorem 2.19 (Amitsur). If P is a Brauer–Severi variety over k, then
Am(P ) ∼= Z/per(P )Z. If two Brauer–Severi varieties are birational over k,
then the have the same Amitsur subgroups inside Br(k) and in particular,
the same period. �

Remark 2.20. In general, it is not true that two Brauer–Severi varieties
of the same dimension and the same Amitsur subgroup are isomorphic. We
refer to Remark 7.2 for an example arising from a Cremona transformation
of Brauer–Severi surfaces. However, Amitsur asked whether two Brauer–
Severi varieties of the same dimension with the same Amitsur subgroup are
birational.

In our applications to del Pezzo surfaces below, we will only need the
following easy and probably well-known corollary.

Corollary 2.21. Let P be a Brauer–Severi variety over k. If there exists a
zero-cycle on P , whose degree is prime to (dim(P ) + 1), then P is is trivial.

Proof. Since Am(P ) ∼= Z/per(P )Z and its order divides (dim(P ) + 1),
Lemma 2.8 and the assumptions imply Am(P ) = 0. Thus, per(P ) = 1, and
then, P is trivial. �

We end this section by mentioning another important invariant of a
Brauer–Severi variety P over k, namely, its index, denoted ind(P ). We
refer to [GS06, Chapter 4.5] for the precise definition and note that it is
equal to the smallest degree of a finite separable field extension K/k such
that PK is trivial, as well as to the greatest common divisor of the degrees
of all finite separable field extensions K/k such that PK is trivial. By a
theorem of Brauer, the period divides the index, and they have the same
prime factors, see [GS06, Proposition 4.5.13].
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3. Morphisms to Brauer–Severi varieties

This section contains Theorem 3.4, the main observation of this article
that describes morphisms from a proper variety X over a field k to Brauer–
Severi varieties in terms of classes in of Pic(X/k)(fppf)(k). We start by ex-
tending classical notions for invertible sheaves to such classes, and then, use
these notions to phrase and prove Theorem 3.4. As immediate corollaries,
we obtain two classical results of Kang and Châtelet on the geometry of
Brauer–Severi varieties.

3.1. Splitting fields, globally generated and ample classes. Before
coming to the main result of this section, we introduce the following.

Definition 3.1. Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).
(1) A splitting field for L is a field extension K/k such that L⊗k K lies

in Pic(XK), i.e., arises from an invertible sheaf on XK .
(2) The class L is called globally generated (resp. ample, resp. very

ample) if there exists a splitting field K for L such that L ⊗k K
is globally generated (resp. ample, resp. very ample) as invertible
sheaf on XK .

From the short exact sequence in Proposition 2.5, it follows that if K is a
splitting field for the class L, then there exists precisely one invertible sheaf
on XK up to isomorphism that corresponds to this class. The following
lemma shows that these notions are independent of the choice of a splitting
field of the class L.

Lemma 3.2. Let X be a proper variety over k and L ∈ Pic(X/k)(fppf)(k).
(1) There exists a splitting field for L that is a finite and separable ex-

tension k, and it can also chosen to be Galois over k.
(2) Let K and K ′ be splitting fields for L. Then L ⊗k K ∈ Pic(XK)

is globally generated (resp. ample, resp. very ample) if and only if
L ⊗k K ′ ∈ Pic(XK′) is globally generated (resp. ample, resp. very
ample).

Proof. To simplify notation in this proof, we set LK := L ⊗k K.
Let K be a finite and separable extension of k, such that δ(L) ∈ Br(k)

lies in Br(K|k), where δ is as in Proposition 2.5. Then, δ(LK) = 0, i.e.,
LK comes from an invertible sheaf on XK . In particular, K is a splitting
field for L, which is a finite and separable extension of k. Passing to the
Galois closure of K/k, we obtain a splitting field for L that is a finite Galois
extension of k. This establishes claim (1).

Claim (2) is a well-known application of flat base change, but let us recall
the arguments for the reader’s convenience: by choosing a field extension of
k that contains both K and K ′, we reduce to the case k ⊆ K ⊆ K ′. We have
H0(XK ,LK) ⊗K K ′ ∼= H0(XK′ ,LK′) by flat base change for cohomology,
from which it is easy to see that LK is globally generated if and only if
LK′ is so. Next, if LK is very ample, then its global sections give rise to a
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closed immersion XK → PnK for some n. Base changing to K ′, we obtain
a closed embedding XK′ → PnK′ which corresponds to the global sections
of LK′ , and so, also LK′ is very ample. Conversely, if LK′ is very ample,
then it is globally generated, and thus, LK is globally generated by what
we just established, and thus, gives rise to a morphism ϕK : XK → PnK . By
assumption and flat base change, ϕK′ is a closed embedding, and thus, ϕK
is a closed embedding, and LK is very ample. From this, it also follows that
LK is ample if and only if LK′ is. �

Remark 3.3. Let X be a proper variety over k and let

δ : Pic(X/k)(fppf)(k) −→ Br(k)

be as in Proposition 2.5. Let us describe δ explicitly.
(1) First, and more abstractly: given a class L ∈ Pic(X/k)(fppf)(k), we

can choose a splitting field K that is a finite extension k. Thus,
Spec K → Spec k is an fppf cover, the class L ⊗k K comes with an
fppf descent datum, and it arises from an invertible sheafM on XK .
The crucial point is that the descent datum is for a class in Pic(XK),
where isomorphism classes of invertible sheaves are identified. In
order to turn this into a descent datum for the invertible sheaf M,
we have to choose isomorphisms, which are only unique up to a
Gm = Aut(M)-action, and we obtain a Gm-gerbe that is of class
δ(L) ∈ H2

fppf(Spec k,Gm) = Br(k). This gerbe is neutral if and only
if δ(L) = 0 if and only if we can extend the descent datum for the
class L ⊗k K to a descent datum for the invertible sheaf M.

(2) Second, and more concretely: given a class L ∈ Pic(X/k)(fppf)(k), we
can choose a splitting fieldK that is a finite Galois extension of k, say
with group G. Thus, the class L⊗kK arises from an invertible sheaf
M on XK and lies in PicX(K)G. Thus, we can choose isomorphisms

ıg : g∗M
∼=−→ M,

which are unique up to a Gm-action. In particular, they may fail
to form a Galois descent datum for M, and the failure of turning
{ıg}g∈G into a Galois descent datum forM gives rise to a cohomology
class δ(L) ∈ H2

ét(Spec k,Gm) = Br(k). More precisely, this class lies
in the subgroup Br(K|k) of Br(k).

The following is an analog for Brauer–Severi varieties of the classical cor-
respondence between morphisms to projective space and globally generated
invertible sheaves as explained, for example, in [Ha77, Theorem II.7.1], see
also Remark 3.5 below.

Theorem 3.4. Let X be a proper variety over a field k.
(1) Let ϕ : X → P be a morphism to a Brauer–Severi variety P over k,

and consider the induced homomorphism of Abelian groups

ϕ∗ : Pic(P/k)(fppf)(k) → Pic(X/k)(fppf)(k).
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Then, L := ϕ∗OP (1) is a globally generated class with

δ(L) = [P ] ∈ Br(k),

where δ is as in Proposition 2.5. If ϕ is a closed immersion, then L
is very ample.

(2) Let L ∈ Pic(X/k)(fppf)(k) be a globally generated class. If K is a split-
ting field, then the morphism to projective space over K associated
to the complete linear system |L⊗kK| descends to morphism over k

|L| : X → P,

where P is a Brauer–Severi variety over k with δ(L) = [P ]. If L is
very ample, then |L| is a closed immersion.

Proof. Let ϕ : X → P and L be as in (1). Then, we have δ(L) =
δ(OP (1)) = [P ] ∈ Br(k), where the first equality follows from functoriality
of the exact sequence in Proposition 2.5, and the second from Theorem 2.18.
Let K be a splitting field for L, and letM be the invertible sheaf correspond-
ing to L⊗kK on XK . Being an invertible sheaf, we have δ(M) = 0 ∈ Br(K),
which implies that the morphism ϕK : XK → PK maps to a Brauer–Severi
variety of class [PK ] = δ(M) = 0, i.e., PK ∼= PnK . By definition and base
change, we obtainM∼= ϕ∗K(OPnK (1)). Thus,M is globally generated (as in-
vertible sheaf), which implies that L ∈ Pic(X/k)(fppf)(k) is globally generated
in the sense of Definition 3.1. Moreover, if ϕ is a closed immersion, then so
is ϕK , which implies thatM∈ Pic(XK) is very ample (as invertible sheaf),
and thus, L ∈ Pic(X/k)(fppf)(k) is very ample in the sense of Definition 3.1.
This establishes claim (1)

To establish claim (2), let L ∈ Pic(X/k)(fppf)(k) be globally generated. By
Lemma 3.2, there exists a splitting field K ′ for L that is a finite Galois
extension of k, say with Galois group G. Thus, L ⊗k K ′ corresponds to an
invertible sheaf M on XK′ , whose isomorphism class lies in PicX(K ′)G, see
Proposition 2.7.

If f : X → Spec k is the structure morphism, then (fK′)∗M is a finite-
dimensional K ′-vector space. By our assumptions on global generation we
obtain a morphism over K ′

|M| : XK′ → P((fK′)∗M).

As explained in Remark 3.3.(2), there exist isomorphisms {ıg : g∗M →
M}g∈G that are unique up to a Gm-action. In particular, we obtain a
well-defined G-action on P((fK′)∗M), and the morphism defined by |M| is
G-equivariant. Taking the quotient by G, we obtain a morphism over k

|L| : X → P.

Since PK is isomorphic P((fK′)∗M), we see that P is a Brauer–Severi variety
over k and, as observed by Grothendieck in [Gr68, Section (5.4)], we have
δ(L) = [P ] in Br(k).
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Finally, let K be an arbitrary splitting field for L. Let ϕ : X → P be the
previously constructed morphism and choose an extension field Ω of k that
contains K and K ′. Then, L ⊗k Ω is an invertible sheaf on XΩ, globally
generated by Lemma 3.2, and since k ⊆ K ′ ⊆ Ω, the morphism associated
to |L ⊗k Ω| is equal to ϕΩ = (ϕK′)Ω : XΩ → PΩ. Since K is a splitting
field for L, it is also a splitting field for PK (see the argument in the proof
of claim (1)), and in particular, PK′ is a trivial Brauer–Severi variety. We
have L ⊗k Ω ∼= ϕ∗ΩOPΩ

(1), from which we deduce L ⊗k K ∼= ϕ∗KOPK (1),
as well as that ϕK is the morphism associated to |L ⊗k K|. In particular,
the morphism associated to |L ⊗k K| descends to ϕ : X → P , where P is a
Brauer–Severi variety of class δ(L). This establishes claim (2). �

Remark 3.5. Let us note the following.
(1) The construction of a Brauer–Severi variety over k from a globally

generated class in Pic(X/k)(fppf)(k) (in our terminology) is due to
Grothendieck in [Gr68, Section (5.4)].

(2) In Theorem 3.4.(2), we only considered complete linear systems. We
leave it to the reader to show the following generalization: given a
class L ∈ Pic(X/k)(fppf)(k), a splitting field K that is finite and Galois
over k with group G, and V ⊆ H0(XK ,L⊗kK) a G-stable K-linear
subspace, whose global sections generate L ⊗k K, we can descend
the morphism XK → P(V ) to a morphism X → P ′, where P ′ is a
Brauer–Severi variety over k of class [P ′] = δ(L) ∈ Br(k).

(3) If X in Theorem 3.4 has a k-rational point, i.e., X(k) 6= ∅, then
we recover the well-known correspondence between morphisms to
projective space and globally generated invertible sheaves:
(a) then, δ ≡ 0 and every class in Pic(X/k)(fppf)(k) comes from an

invertible sheaf on X by Proposition 2.5,
(b) and since every morphism ϕ : X → P gives rise to a k-rational

point on P , i.e., P is a trivial Brauer–Severi variety.

3.2. Two classical results on Brauer–Severi varieties. As our first
corollary and application, we recover the following theorem of Kang [Ka90],
see also [GS06, Theorem 5.2.2], which is a Brauer–Severi variety analog of
Veronese embeddings of projective spaces.

Corollary 3.6 (Kang). Let P be a Brauer–Severi variety of period per(P )
over k. Then, the class of OP (per(P )) arises from a very ample invertible
sheaf on P and gives rise to an embedding

|OP (per(P ))| : P → PNk , where N =
(

dim(P ) + per(P )
per(P )

)
.

After base changing to a splitting field K of P , this embedding becomes the
per(P )-uple Veronese embedding of Pdim(P )

K into PNK .

Proof. If n ≥ 1, then OP (n) is very ample in the sense of Definition 3.1, and
thus, defines an embedding into a Brauer–Severi variety P ′ over k. Over a
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splitting field of P , this embedding becomes the n-uple Veronese embedding.
Since δ(OP (1)) = [P ] ∈ Br(k) and this element of order per(P ), we see that
if per(P ) divides n, then OP (n) is an invertible sheaf on P and P ′ is a trivial
Brauer–Severi variety. �

Example 3.7. Let X be a smooth and proper variety of dimension one
over k. If ω−1

X is ample, then it is a curve of genus g(X) = h0(X,ωX) = 0.
Thus, X is isomorphic to P1 over k, i.e., X is a Brauer–Severi curve. There
exists a unique class L ∈ Pic(X/k)(fppf)(k) with L⊗2 ∼= ω−1

X , and it gives rise
to an isomorphism |L| : X → P , where P is a Brauer–Severi curve with
δ(L) = [P ] ∈ Br(k). Moreover, L⊗2 ∼= ω−1

X is an invertible sheaf on X that
defines an embedding |ω−1

X | : X → P2
k as a plane conic.

A subvariety X ⊆ P of a Brauer–Severi variety P over k is called twisted
linear if Xk is a linear subspace of Pk. As second application, we recover the
following theorem of Châtelet, see [GS06, Section 5.3], and it follows from a
Brauer–Severi variety analog of Segre embeddings of products of projective
spaces.

Corollary 3.8 (Châtelet). Let P1 and P2 be two Brauer–Severi varieties
over k of dimension d1 and d2, respectively.

(1) If P1 is a twisted linear subvariety of P2, then [P1] = [P2] ∈ Br(k).
(2) If [P1] = [P2] ∈ Br(k), then there exists a Brauer–Severi variety

P over k, such that P1 and P2 can be embedded as twisted-linear
subvarieties into P .

Proof. If ϕ : P1↪→P2 is a twisted-linear subvariety, then ϕ∗OP2(1) =
OP1(1) ∈ Pic(P1/k)(fppf)(k). We find [P1] = δ(OP1(1)) = δ(OP2(1)) = [P2] by
functoriality of the exact sequence of Proposition 2.5, and (1) follows.

By Theorem 3.4, there exists an embedding ϕ of P1 × Pd2
k into a Brauer–

Severi variety P of dimension N := (d1 + 1)(d2 + 1) − 1 = d1d2 + d1 + d2

over k associated to the class OP1(1)�OPd2k
(1). Over a splitting field of P1,

this embedding becomes the Segre embedding of Pd1 × Pd2 into PN . If x
is a k-rational point of Pd2

k , then ϕ(P1 × {x}) realizes P1 as twisted-linear
subvariety of P and we have [P ] = [P1] ∈ Br(k) by claim (1). Similarly,
we obtain an embedding of P2 as twisted-linear subvariety into a Brauer–
Severi variety P ′ of dimension N over k of class [P ′] = [P2] ∈ Br(k). Since
[P ] = [P ′] ∈ Br(k) and dim(P ) = dim(P ′), we find P ∼= P ′ by Corollary
2.16 and (2) follows. �

4. Del Pezzo surfaces

For the remainder of this article, we study of del Pezzo surfaces with
a view towards Brauer–Severi varieties. Most, if not all, results of these
sections are known in some form or another to the experts. However, our
more geometric approach, as well as some of the proofs are new.
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Let us first recall some classical results about del Pezzo surfaces, and
refer the reader to [Ma86, Chapter IV] or the surveys [CT99], [Va13], [Po]
for details, proofs, and references. For more results about the classification
of geometrically rational surfaces, we refer to [Ma66] and [Is79].

Definition 4.1. A del Pezzo surface is a smooth and proper variety X
of dimension two over a field k such that ω−1

X is ample. The degree of a
del Pezzo surface is the self-intersection number of ωX .

In arbitrary dimension, smooth and proper varieties X over k with ample
ω−1
X are called Fano varieties. As discussed in Example 3.7, Fano varieties

of dimension one over k are the same as Brauer–Severi curves over k.

4.1. Geometry. The degree d of a del Pezzo surfaceX over a field k satisfies
1 ≤ d ≤ 9. Set X := Xk. We will say that X is of product type if

X ∼= P1
k
× P1

k
,

in which case we have d = 8. If X is not of product type, then there exists
a birational morphism

f : X → P2
k

that is a blow-up of (9−d) closed points P1, ..., P9−d in general position, i.e.,
no 3 of them lie on a line, no 6 of them lie on a conic, and there is no cubic
through all these points having a double point in one of them. In particular,
if d = 9, then f is an isomorphism and X is a Brauer–Severi surface over k.

4.2. Arithmetic. By the previous discussion and Lemma 2.13, the Néron–
Severi rank of a del Pezzo surface X of degree d over k satisfies

1 ≤ ρ(X) := rank Pic(X) = rank Pic(X/k)(fppf)(k) ≤ 10− d,
and ρ(Xk) = 10− d.

The following result about geometrically rational surfaces allows using
methods from Galois theory even if the ground field k is not perfect, which
is particularly useful in proofs, see also the discussion in [Va13, Section 1.4].
In particular, it applies to del Pezzo surfaces.

Theorem 4.2 (Coombes+ε). Let X be a smooth and proper variety over k
such that Xk is birational to P2

k
. Then,

(1) Xksep is birational to P2
ksep via a sequence of blow-ups in points in

ksep-rational points and their inverses.
(2) The natural map PicX(ksep)→ PicX(k) is an isomorphism.

Proof. Assertion (1) is the main result of [Co88]. First, assertion (2) holds
for projective space over any field. Second, let Y be a variety that is smooth
and proper over ksep, let Ỹ → Y be the blow-up of a ksep-rational point, and
let E ⊂ Ỹ be the exceptional divisor. Then, PiceY (K) = PicY (K) ⊕ Z · E
for K = ksep, as well as for K = k. Using (1) and these two observations,
assertion (2) follows. �
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We will also need the following useful observation, due to Lang [La54]
and Nishimura [Ni55], which implies that having a k-rational is a birational
invariant of smooth and proper varieties over k. We refer to [Va13, Section
1.2] for details and proof.

Lemma 4.3 (Lang–Nishimura). Let X 99K Y be a rational map of varieties
over k, such that X is smooth over k, and such that Y is proper over k. If
X has a k-rational point, then so has Y . �

Moreover, we have already seen that a Brauer–Severi variety P over k is
isomorphic to projective space over k if and only if P has a k-rational point,
and we refer the interested reader to [dG06] for an algorithm to decide
whether a Brauer–Severi surface has a k-rational point. In Definition 2.9,
we defined the Amitsur proof and showed its birational invariance in Propo-
sition 2.10. Using Iskovskih’s classification [Is79] of geometrically rational
surfaces, we obtain the following list and refer to [CTKM07, Proposition
5.2] for details and proof.

Theorem 4.4 (Colliot-Thélène–Karpenko–Merkurjev). Let X be a smooth
and proper variety over a perfect field k such that Xk is birational to P2

k
.

Then, Am(X) is one of the following groups

0, Z/2Z, (Z/2Z)2, and Z/3Z.

We will see explicit examples of all these groups arising as Amitsur groups
of del Pezzo surfaces in the next sections.

We now introduce another important invariant. Namely, if Gk denotes
the absolute Galois group of k, and H ⊆ Gk is a closed subgroup, then we
consider for a smooth and projective variety X over k the group cohomology

H1
(
H, PicX/k(k

sep)
)
,

which is an Abelian torsion group. If b1(X) = 0, then PicX/k(ksep) is finitely
generated by Lemma 2.13 and then, H1(H, PicX/k(ksep)) is a finite Abelian
group. Moreover, if Xksep is a rational surface, then Br′(Xksep) = 0 (see, for
example, [Ma86, Theorem 42.8] or [Mi70]) and an appropriate Hochschild–
Serre spectral sequence yields an exact sequence

0 → Br′(X)/Br(k) α−→ H1
(
Gk, PicX/k(k

sep)
)
→ H3(Gk, (ksep)×).

Moreover, if k is a global field, then the term on the right is zero by a
theorem of Tate (see, for example, [NSW08, Chapter VIII.3]), thus, α is an
isomorphism, and we obtain an interpretation of this cohomology group in
terms of Brauer groups, see [Va13, Section 3.4].

Lemma 4.5. If P is a Brauer–Severi variety over k, then

H1
(
H, PicP/k(k

sep)
)

= 0

for all closed subgroups H ⊆ Gk.
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Proof. Since PicP/k(ksep) ∼= Z · OP (1) and since Gk acts trivially on the
class OP (1), the desired H1 is isomorphic to Hom(H,Z), see [Br82, Chapter
III.1, Exercise 2], for example. This is zero since H is a profinite group and
the homomorphisms to Z are required to be continuous. �

In Proposition 2.10, we established birational invariance of Am(X). The
following result of Manin [Ma86, Section 1 of Appendix] shows that also the
above group cohomology groups are a birational invariants.

Theorem 4.6 (Manin). For every closed subgroup H ⊆ Gk, the group

H1
(
H, PicX/k(k

sep)
)

is a birational invariant of smooth and projective varieties over k. �

Remark 4.7. Every birational map between smooth and projective surfaces
can be factored into a sequence of blow-ups in closed points, see [Ma86,
Chapter III]. Using this, one can give very explicit proofs of Proposition
2.10 and Theorem 4.6 in dimension 2. (For the latter proposition, this is
the proof of [Ma86, Theorem 29.1].)

4.3. Hasse principle and weak approximation. For a global field K,
i.e., a finite extension of Q or of Fp(t), we denote by ΩK the set of its places,
including the infinite ones if K is of characteristic zero. A class C of varieties
over K satisfies

(1) the Hasse principle, if for every X ∈ C we have X(K) 6= ∅ if and
only if X(Kν) 6= ∅ for all ν ∈ ΩK . Moreover, C satisfies

(2) weak approximation, if the diagonal embedding

X(K)→
∏
ν∈ΩK

X(Kν)

is dense for the product of the ν-adic topologies.
If C satisfies weak approximation, then it obviously also satisfies the Hasse
principle, but the converse may not hold. For example, Brauer–Severi va-
rieties over K satisfies the Hasse principle by a theorem of Châtelet [Ch44]
and weak approximation. However, both properties may fail for del Pezzo
surfaces over K, and we refer to [Va13] for an introduction to this topic. We
end this section by noting that the obstruction to a class Pic(X/K)(fppf)(K)
coming from PicX(K) satisfies the Hasse principle.

Lemma 4.8. Let X a proper variety over a global field K and let L ∈
Pic(X/K)(fppf)(K). Then, the following are equivalent

(1) 0 = δ(L) ∈ Br(K) , and
(2) 0 = δ(L ⊗K Kν) ∈ Br(Kν) for all ν ∈ ΩK .

Proof. A class in Br(K) is zero if and only if its image in Br(Kν) is zero
for all ν ∈ ΩK by the Hasse principle for the Brauer group. From this,
and functoriality of the exact sequence from Proposition 2.5, the assertion
follows. �
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For example, if X(Kν) 6= ∅ for all ν ∈ ΩX , then δ is the zero map by
Proposition 2.5 and this lemma. In this case, every class in Pic(X/K)(fppf)(K)
comes from an invertible sheaf on X.

5. Del Pezzo surfaces of product type

In this section, we classify degree 8 del Pezzo surfaces of product type
over k, i.e., surfaces X over k with Xk

∼= P1
k
×P1

k
, in terms of Brauer–Severi

varieties.
First, for P1

k × P1
k, the anti-canonical embedding can be written as com-

position of Veronese- and Segre-maps as follows

| −KP1
k×P1

k
| : P1

k × P1
k

ν2×ν2−→ P2
k × P2

k
σ−→ P8

k .

Next, the invertible sheaf ω−1
P1
k×P1

k
is uniquely 2-divisible in the Picard group,

and we obtain an embedding as a smooth quadric

|− 1
2
KP1

k×P1
k
| : P1

k × P1
k

σ−→ P3
k .

Now, let X be a degree 8 del Pezzo surface of product type over k. Then,
the anti-canonical linear system yields an embedding of X as a surface of
degree 8 into P8

k. However, the “half-anti-canonical linear system” exists in
general only as a morphism to a Brauer–Severi threefold as the following
result shows.

Theorem 5.1. Let X be a degree 8 del Pezzo surface of product type over
a field k. Then, there exists a unique class L ∈ Pic(X/k)(fppf)(k) with L⊗2 ∼=
ω−1
X and an embedding

|L| : X ↪→ P

into a Brauer–Severi threefold P over k with Brauer class

δ(L) = [P ] ∈ Br(k),

and such that Xk is a smooth quadric in Pk
∼= P3

k
. Moreover, X is rational

if and only if X has a k-rational point. In this case, we have P ∼= P3
k.

Proof. To simplify notation, set L := ksep. We have X(L) 6= ∅, for
example, by [GS06, Proposition A.1.1], as well as Pic(XL) ∼= Pic(Xk) ∼= Z2

by Theorem 4.2. The classes (1, 0) and (0, 1) of Pic(XL) give rise to two
morphisms XL → P1

L, and we obtain an isomorphism XL
∼= P1

L × P1
L. By

abuse of notation, we re-define X to be XL. Next, the absolute Galois group
Gk acts trivially on the canonical class (−2,−2), and thus, the Gk-action
on Z(1, 1) ⊂ Z2 is trivial. By Proposition 2.7, we have PicX/k(K)Gk ∼=
Pic(X/k)(fppf)(k), and since (1, 1) ∈ Z2 is Gk-invariant, the unique invertible
sheaf L onX with L⊗2 ∼= ω−1

X
descends to a class in Pic(X/k)(fppf)(k). Over L,

the class L is very ample and defines an embedding of X as smooth quadric
surface into P3

L. Thus, by Theorem 3.4, we obtain an embedding |L| : X↪→P ,
where P is a Brauer–Severi threefold over k with δ(L) = [P ] ∈ Br(k).
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Finally, if X is rational, then it has a k-rational point, and then, also P
has a k-rational point, i.e., P ∼= P3

k. Conversely, if there exists a k-rational
point x ∈ X, then X is a quadric in P3

k, and projection away from x induces
a birational map X 99K P2

k. �

Next, we establish an explicit classification of degree 8 del Pezzo surfaces
of product type in terms of the Néron–Severi rank ρ and Brauer–Severi
curves.

Proposition 5.2. Let X and X ⊂ P be as in Theorem 5.1.
(1) if ρ(X) = 2, then

X ∼= P ′ × P ′′,
where P ′ and P ′′ are Brauer–Severi curves over k, whose Brauer
classes satisfy [P ] = [P ′] + [P ′′] ∈ Br(k). In particular, P ∼= P3

k if
and only if P ′ ∼= P ′′.

(2) If ρ(X) = 1, then there exists a Brauer–Severi curve P ′ over k and
a finite Galois extension K/k with group H := Z/2Z, such that X
arises as twisted self-product

X ∼= SpecK ∧H (P ′ × P ′) := (P ′ × P ′)K/H,
where the H-action permutes the factors of P ′K × P ′K . Moreover,
P ∼= P3

k and P ′ is a hyperplane section of X ⊂ P3
k.

Proof. We keep the notations and assumptions from the proof of Theorem
5.1. The Gk-action fixes the class (1, 1). Since the Gk-action preserves
the intersection pairing on PicX/k(ksep), it follows that Gk acts on Z(1,−1)
either trivially, or by sign changes. We have ρ(X) = 2 in the first case, and
ρ(X) = 1 in the latter.

First, assume that ρ(X) = 2. By Theorem 3.4, the classes (1, 0) and (0, 1)
give rise to morphisms to Brauer–Severi curves X → P ′ and X → P ′′ of
class [P ′] = δ((1, 0)) and [P ′′] = δ((0, 1)) in Br(k), respectively. Thus, we
obtain a morphism X → P ′ × P ′′, which is an isomorphism since it is one
over ksep. Since δ is a homomorphism, we find [P ] = δ(L) = δ((1, 1)) =
δ((1, 0)) + δ((0, 1)) = [P ′] + [P ′′]. Using that P ′ and P ′′ are of period 2,
we find that P ∼= P3

k if and only if [P ] = 0 if and only if [P ′] = [P ′′]. By
Corollary 2.16, the latter is equivalent to P ′ ∼= P ′′.

Second, assume that ρ(X) = 1. Then, the Gk-action permutes (0, 1)
and (1, 0), i.e., it permutes the factors of P1

ksep × P1
ksep . Thus, there exists a

unique quadratic Galois extension K/k, such that Gal(ksep/K) acts trivially
on PicX/k(ksep) and by the previous analysis we have XK := Q′′×Q′′′ for two
Brauer–Severi curves Q′′, Q′′′ over K. Using these and the H := Gal(K/k)-
action, we obtain a H-stable diagonal embedding Q′ ⊂ XK of a Brauer–
Severi curve over K, and then, the two projections induce isomorphisms
Q′ ∼= Q′′ and Q′ ∼= Q′′′ over K. Taking the quotient by H, we obtain a
Brauer–Severi curve P ′ := Q′/H ⊂ X over k. Clearly, P ′K ∼= Q′ and we
obtain the description of X as twisted self-product. On X, the curve P ′
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is a section of the class (1, 1), which implies that this class comes from an
invertible sheaf, and thus, 0 = δ((1, 1)) ∈ Br(k) by Proposition 2.5. Since
δ((1, 1)) = [P ], we conclude P ∼= P3

k. �

Remark 5.3. In the case of quadrics in P3, similar results were already
established in [CTS93]. A related, but somewhat different view on degree 8
del Pezzo surfaces of product type was taken in (the proof of) [CTKM07,
Proposition 5.2]: if X is such a surface, then there exists a quadratic Ga-
lois extension K/k and a Brauer–Severi curve C over K, such that X ∼=
ResK/kC, where ResK/k denotes Weil restriction, see also [Po].

Corollary 5.4. Let X be as in Theorem 5.1. Then,

H1
(
H, PicX/k(k

sep)
)

= 0

for all closed subgroups H ⊆ Gk, and

Am(X) ∼=

 0 if ρ = 1 or if X ∼= P1
k × P1

k,
(Z/2Z)2 if ρ = 2 and P1

k 6∼= P ′ 6∼= P ′′ 6∼= P1
k,

(Z/2Z) in the remaining ρ = 2-cases.

Proof. Set H1(H) := H1(H, PicX/k(ksep)). If ρ = 2, then the Gk-action
on PicX/k(ksep) is trivial, and we find H1(H) = 0 as in the proof of Lemma
4.5. Moreover, Am(X) is generated by δ((0, 1) and δ((1, 0)), i.e., by [P ′] and
[P ′′] in Br(k). From this, the assertions on Am(X) follow in case ρ = 2.

If ρ = 1, then there exists an isomorphism PicX/k(ksep) ∼= Z2, such that
the Gk-action factors through a surjective homomorphism Gk → Z/2Z and
acts on Z2 via (a, b) 7→ (b, a). In particular, we find H1(Z/2Z,Z2) = 0 with
respect to this action, see, for example, [Br82, Chapter III.1, Example 2].
From this, we deduce H1(H) = 0 using inflation maps. Moreover, Am(X) is
generated by δ((1, 1)), which is zero, since (1, 1) is the class of an invertible
sheaf. �

Corollary 5.5. If X is as in Theorem 5.1, then the following are equivalent
(1) X is birational to a Brauer–Severi surface,
(2) X is rational,
(3) X has a k-rational point, and
(4) X is isomorphic to

X ∼= P1
k × P1

k or to X ∼= SpecK ∧ (P1
k × P1

k).

Proof. The implications (2) ⇒ (1) and (2) ⇒ (3) are trivial, and we
established (3) ⇒ (2) in Theorem 5.1. Moreover, if X is birational to a
Brauer–Severi surface P , then Am(P ) = Am(X) is cyclic of order 1 or 3
by Lemma 4.5 and Theorem 4.6. Together with Corollary 5.4, we conclude
Am(P ) = Am(X) = 0, i.e., P ∼= P2

k, which establishes (1)⇒ (2).
Since (4) ⇒ (3) is trivial, it remains to establish (3) ⇒ (4). Thus, we

assume X(k) 6= ∅. If ρ = 2, then X ∼= P ′ × P ′′ and both Brauer–Severi
curves P ′ and P ′′ have k-rational points, i.e., X ∼= P1

k × P1
k. If ρ = 1, we
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have an embedding X ⊂ P3
k and X ∼= SpecK ∧ (P ′ × P ′). Since X(k) 6= ∅,

we have X(K) 6= ∅, which yields P ′(K) 6= ∅, and thus P ′K ∼= P1
K . A k-

rational point on X gives rise to a K-rational and Gal(K/k)-stable point on
XK
∼= P1

K × P1
K . In particular, this point lies on some diagonal P1

K ⊂ XK ,
and thus, lies on some diagonal P ′′ ⊆ X with X ∼= Spec K ∧ (P ′′ × P ′′).
Since P ′′(k) 6= ∅, we find P ′′ ∼= P1

k. �

We refer to Section 6.1 for more applications of these results to the arith-
metic and geometry of these surfaces.

6. Del Pezzo surfaces of large degree

Let X be a del Pezzo surface of degree d over a field k that is not of
product type. Then, there exists a birational morphism

f : X → P2
k

that is a blow-up in (9 − d) closed points P1, ..., P9−d in general position.
We set H := f

∗OP2
k
(1), we let Ei := f

−1(Pi) be the exceptional divisors of

f , and then, there exists an isomorphism of Abelian groups

Pic(X) ∼= ZH ⊕
⊕9−d

i=1 ZEi.

The (−1)-curves of X consist of the Ei, of preimages under f of lines through
two distinct points Pi, of preimages under f of quadrics through five distinct
points Pi,... and we refer to [Ma86, Theorem 26.2] for details. Let KX be
the canonical divisor class of X, and let Ẽ be the sum of all (−1)-curves on
X. We leave it to the reader to verify the following table.

d class of Ẽ in Pic(X) relations
9 0 3H = −KX

8 E1 3H = −KX + Ẽ

7 H H = Ẽ

6 3H −
∑3

i=1Ei 0 = −KX - Ẽ

5 6H − 2
∑4

i=1Ei 0 = −2KX - Ẽ

4 12H − 4
∑5

i=1Ei 0 = −4KX - Ẽ

3 27H − 9
∑6

i=1Ei 0 = −9KX - Ẽ

2 84H − 28
∑7

i=1Ei 0 = −28KX - Ẽ

1 720H − 240
∑8

i=1Ei 0 = −240KX - Ẽ

Together with Theorem 3.4, we obtain the following result.

Theorem 6.1. Let X be a del Pezzo surface of degree d ≥ 7 over a field k
that is not of product type. Then, f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P over k, where

δ(H) = [P ] ∈ Br(k) and Am(X) ∼= Z/per(P )Z.
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Moreover, X is rational if and only if P ∼= P2
k if and only if X has a k-

rational point.

Proof. By Theorem 4.2, the invertible sheaf H on Xk defining f already lies
in PicX(ksep), i.e., f descends to ksep, and by abuse of notation, we re-define
X to be Xksep . Clearly, the canonical divisor class KX is Gk-invariant, and
since Gk permutes the (−1)-curves of X, also the class of Ẽ is Gk-invariant.
In particular, KX and Ẽ define classes in PicX/k(ksep)Gk ∼= Pic(X/k)(fppf)(k).
If d ≥ 7, then the above table shows that there exist positive multiples of H
that are integral linear combinations of KX and Ẽ. Thus, H ∈ PicX/k(ksep)
descends to a class in Pic(X/k)(fppf)(k). By Theorem 3.4, f descends to a
birational morphism f : X → P , where P is a Brauer–Severi surface of class
δ(H) ∈ Br(k). The assertion on Am(X) follows from Proposition 2.10 and
Theorem 2.19.

If X has a k-rational point, then so has P , and then P ∼= P2
k. Since f

is a birational morphism, P ∼= P2
k implies that X is rational. And if X is

rational, then it has a k-rational point by Lemma 4.3. �

As an immediate consequence, we obtain rationality and the existence of
k-rational points in some cases.

Corollary 6.2. Let X be as in Theorem 6.1. If d ∈ {7, 8}, then X has a
k-rational point and f descends to a birational morphism f : X → P2

k.

Proof. By Theorem 6.1, there exists a birational morphism X → P that is
a blow-up in a closed subscheme Z ⊂ P of length (9 − d). By Corollary
2.21, we have P ∼= P2

k if 3 and (9 − d) are coprime. In particular, we have
X(k) 6= ∅ in these cases by Theorem 6.1 and Lemma 4.3. �

Since a del Pezzo surface of degree 9 is a Brauer–Severi surface, it has
rational points if and only if it is trivial. In particular, Corollary 6.2 does
not hold for d = 9.

6.1. Applications to arithmetic geometry. We now give a couple of
applications of the just established results. Again, we stress that most if not
all of these applications are well-known, and merely illustrate the usefulness
of studying varieties via Brauer–Severi varieties.

Corollary 6.3. If X is a del Pezzo surface of degree ≥ 7 over k, then

H1
(
H, PicX/k(ksep)

)
= 0.

for all closed subgroups H ⊆ Gk
Proof. If X is not of product type, then it is birational to a Brauer–Severi
surface P by Theorem 6.1, and then the statement follows from Theorem
4.6 and Lemma 4.5. If X is of product type, then this is Corollary 5.4. �

For the next application, let us recall that a surface is called rational if it
is birational to P2

k, and that it is called unirational if there exists a dominant
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and rational map from P2
k onto it. The following result is a special case of

[Ma86, Theorem 29.4].

Corollary 6.4. Let X be a del Pezzo surface of degree ≥ 7 over a field k.
Then, the following are equivalent:

(1) X is rational,
(2) X is unirational, and
(3) X has a k-rational point.

Proof. Clearly, we have (1)⇒ (2)⇒ (3), whereas (3)⇒ (1) follows from
Corollary 5.5 and Theorem 6.1. �

This leads us to the question whether a del Pezzo surface necessarily has
a k-rational point. Over finite fields, this follows from the Weil conjectures,
which we will recall in Theorem 8.1 below. By a theorem of Wedderburn,
finite fields have trivial Brauer groups, and then, we have the following.

Corollary 6.5. Let X be a del Pezzo surface of degree degree ≥ 7 over a
field k with Br(k) = 0. Then, X has a k-rational point, and thus, is rational.

Proof. If X is not of product type, then there exists a birational morphism
f : X → P to a Brauer–Severi surface by Theorem 6.1. Since Br(k) = 0, we
have P ∼= P2

k, and Theorem 6.1 gives X(k) 6= ∅.
Thus, let X be of product type. By Proposition 5.2, X is a product of

Brauer–Severi curves (ρ = 2), or contains at least a Brauer–Severi curve
(ρ = 1). Since Br(k) = 0, all Brauer–Severi curves are isomorphic to P1

k,
and thus, contain k-rational points. In particular, we find X(k) 6= ∅. �

In Section 4.3, we discussed the Hasse principle and weak approximation
for varieties over global fields. Here, we establish the following.

Corollary 6.6. Del Pezzo surfaces of degree degree ≥ 7 over global fields
satisfy weak approximation and the Hasse principle.

Proof. If X is not of product type, then it is birational to a Brauer–Severi
surface by Theorem 6.1, and since the two claimed properties are preserved
under birational maps and hold for Brauer–Severi varieties, the assertion
follows in this case.

If X is of product type, then there are two cases by Proposition 5.2. If
ρ = 2, then X is a product of two Brauer–Severi curves, and we conclude as
before.

Thus, we may assume ρ = 1. Let us first establish the Hasse principle:
there exists a quadratic Galois extension L/K, such that ρ(XL) = 2. From
X(Kν) 6= ∅ for all ν ∈ ΩK , we find XLµ

∼= P1
Lµ
× P1

Lµ
for all µ ∈ ΩL, and

thus, XL
∼= P1

L × P1
L by the Hasse principle for Brauer–Severi curves. As in

the proof of Corollary 5.5, we exhibit X as twisted self-product of P1
k, which

has a k-rational point and establishes the Hasse principle. Thus, to establish
weak approximation, we may assume that X has a k-rational point. But
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then, X is rational by Corollary 5.5, and since weak approximation is a
birational invariant, the assertion follows. �

7. Del Pezzo surfaces of degree 6

In the previous sections, we have seen a close connection between Brauer–
Severi varieties and del Pezzo surfaces of degree ≥ 7. In this section, we
discuss del Pezzo surfaces of degree 6, which are not so directly linked to
Brauer–Severi varieties.

For the geometry and the arithmetic of these surfaces, we refer the inter-
ested reader to [CT72], [Ma86], and the survey [Va13, Section 2.4]. We keep
the notations introduced in Section 6: if X is a degree 6 del Pezzo surface
over a field k, then there exists a blow-up fk : X → P2

k
in three points

in general position with exceptional (−1)-curves E1, E2, and E3. Then,
there are six (−1)-curves on X, namely the three exceptional curves Ei,
i = 1, 2, 3 of f , as well as the three curves E′i := H − Ej − Ek, i = 1, 2, 3
where {j, k} = {1, 2, 3}\{i} and where H = f

∗OP2(1) as in Section 6. These
curves intersect in a hexagon as follows

E1

E′
2

??
??

??
?

E′
3

�������

E2 ??
??

??
?

E′
1

E3

�������

The absolute Galois group Gk acts on these six (−1)-curves on Xksep , and
assocated to this action, we have following field extensions of k.

(1) Since Gk acts on the two sets {E1, E2, E3} and {E′1, E′2, E′3}, there
is a group homomorphism

ϕ1 : Gk → S2
∼= Z/2Z.

The fixed field of either of the two sets is a finite separable extension
k ⊆ K with [K : k]|2, and k 6= K if and only if ϕ1 is surjective.

(2) Since Gk acts on the three sets {Ei, E′i}, i = 1, 2, 3, there is a group
homomorphism

ϕ2 : Gk → S3.

There exists a finite separable extension k ⊆ L with [L : k]|3, unique
up to conjugation in ksep, over which at least one of these three sets
is defined. We have k 6= L if and only if 3 divides the order of
ϕ2(Gk). Next, there exists a finite and separable extension L ⊆ M
with [M : L]|2, over which all three sets are defined.

Combining ϕ1 and ϕ2, we obtain a group homomorphism

Gk
ϕ1×ϕ2−→ Z/2Z× S3

∼= D2·6,
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where D2·6 denotes the dihedral group of order 12, i.e., the automorphism
group of the hexagon. Using these field extensions, we obtain the following
classification, which uses and slightly extends a classical result of Manin
from [Ma86] in case (3).

Theorem 7.1. Let X be a del Pezzo surface of degree 6 over a field k.
(1) The morphism f descends to a birational morphism

f : X → P

to a Brauer–Severi surface P if and only if k = K. In this case,
ρ(X) ≥ 2 and Am(X) = Am(P ).

(2) There exists a birational morphism X → Y onto a degree 8 del Pezzo
surface Y of product type if and only if k = L. In this case,

ρ(X) Y
k 6= M 3 SpecM ∧ (P1

k × P1
k)

k = M 4 P1
k × P1

k

X has a k-rational point, and Am(X) = 0.
(3) If k 6= K and k 6= L, then ρ(X) = 1, Am(X) = 0, and the following

are equivalent.
(a) X is birational to a Brauer–Severi surface,
(b) X is birational to a product of two Brauer–Severi curves,
(c) X is rational, and
(d) X has a k-rational point.

Proof. Let us first show (1). If k = K, then F := E1 +E2 +E3 descends
to a class in Pic(Xksep)Gk = Pic(X/k)(fppf)(k) and we find ρ(X) ≥ 2. Thus,
also H = 1

3(−KX + F ) descends to a class in Pic(X/k)(fppf)(k), and by The-
orem 3.4, we obtain a birational morphism |H| : X → P to a Brauer–Severi
surface, which coincides with f over k. Conversely, if f descends to a bira-
tional morphism f : X → P , then the exceptional divisor of f is of class F
or E′1 +E′2 +E′3, and we find k = K. Moreover, we have Am(X) = Am(P )
by Theorem 4.6.

If k = L, then, say E1+E′1, descends to a class in Pic(Xksep)Gk . Moreover,
we find that the classes 1

2(−KX + E1 + E′1) = 2H − E2 − E3 as well as
1
2(−KX − E1 − E′1) = H − E1, and thus, the classes H, E1, and E′1 =
H − E2 − E3 lie in Pic(Xksep)Gk . The Gk-action is trivial on H and E1,
whereas it is either trivial on the set {E2, E3} (if k = M) or by permuting
the two (if k 6= M). Since the class of E1 is Gk-invariant, and there is a
unique effective divisor in this linear system, we find that P1

k
∼= E1 ⊂ X. In

particular, X has a k-rational point and Am(X) = 0. Using Theorem 3.4
and the fact that X has a k-rational point, we obtain a birational morphism

|1
2

(−KX + E1 + E′1)| : X → Y ⊂ P3
k

onto a smooth quadric Y with a k-rational point. In particular, Y is a degree
8 del Pezzo surface of product type. Over ksep, this morphism contracts E1
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and E′1 and thus, we find

Pic(Yksep) ∼=

(
ZH ⊕

3⊕
i=1

ZEi

)
/〈E1, E

′
1〉 ∼= ZE2 ⊕ ZE3.

The Gk-action on it is either trivial (k = M) or via permuting the two
summands (k 6= M). Using Y (k) 6= ∅ and Corollary 5.5 we find ρ(X) = 4
and Y ∼= P1

k×P1
k in the first case, and ρ(X) = 3 and Y ∼= SpecM ∧(P1

k×P1
k)

in the latter. Conversely, if there exists a birational morphism X → Y onto
a degree 8 del Pezzo surface of product type, then the exceptional divisor is
of class Ei + E′i for some i, and thus, k = L. This establishes (2).

Finally, assume that k 6= K and k 6= L. Then, ϕ1 is surjective, and
ϕ2(Gk) contains all 3-cycles of S3. From this, it is not difficult to see that
Pic(Xk)

Gk is of rank 1 and generated by the class of KX . Since this latter
class is an invertible sheaf, we find Am(X) = 0. Thus, if X is birational
to a Brauer–Severi surface P , then Am(X) = 0 together with Lemma 4.5
and Theorem 4.6 implies that P ∼= P2

k. Similarly, if X is birational to the
product P ′ × P ′′ of two Brauer–Severi curves, then P ′ ∼= P ′′ ∼= P1

k. From
this, we obtain the implications (a) ⇔ (b) ⇔ (c) ⇒ (d). The implication
(d)⇒ (c) is due to Manin [Ma86, Theorem 29.4]. �

Remark 7.2. In case (1) of the above Theorem it is important to note that
P need not be unique, but that Am(P ) is well-defined. More precisely, if we
set F := E1 + E2 + E3 and F ′ = E′1 + E′2 + E′3, then Theorem 3.4 provides
us with two morphisms to Brauer–Severi surfaces P1 and P2

|H| = |13(−KX + F )| : X → P1

|H ′| := |13(−KX + F ′)| : X → P2

Since H +H ′ = −KX and δ(KX) = 0, we find

[P1] = δ(H) = δ(−KX −H ′) = −δ(H ′) = −[P2] ∈ Br(k),

and thus, P1
∼= P2 if and only if both are isomorphic to P2

k. On the other
hand, P1 and P2 are birational, since we have birational morphisms

P1
|H|←− X

|H′|−→ P2 .

Over k, this becomes the blow-up of three closed points Z followed by the
blow-down of the three (−1)-curves that that are the strict transforms of
lines through any two of the points in Z - this is an example of a Cremona
transformation.

We remark that a surface of case (3) and without k-rational points is nei-
ther birational to a Brauer–Severi surface nor to the product of two Brauer–
Severi curves. For finer and more detailed classification results for degree
6 del Pezzo surfaces, we refer the interested reader to [Co05], [Bl10], and
[CTKM07]. Finally, the sum Ẽ of all (−1)-curves on Xksep is a Gk-invariant
divisor, and thus, descends to a curve on X. By [Ma86, Theorem 30.3.1], the
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complement X\Ẽ is isomorphic to a torsor under a two-dimensional torus
over k, which can be used to study the arithmetic and geometry of these
surfaces, see also [Sk01].

8. Del Pezzo surfaces of small degree

For the remainder of this article, our results will be less complete and less
self-contained. We will circle around questions of birationality of a del Pezzo
surface X of degree ≤ 5 to Brauer–Severi surfaces, and about descending
the morphism f : X → P2

k
to k.

8.1. Birationality to Brauer–Severi surfaces. Let k = Fq be a finite
field of characteristic p, and let X be a smooth and projective surface over k
such that Xk is birational to P2. Then, it follows from the Weil conjectures
(in this case already a theorem of Weil himself) that the number of k-rational
points is congruent to 1 modulo q, see [Ma86, Chapter IV.27]. In particular,
we obtain that

Theorem 8.1 (Weil). If X is a del Pezzo surface over a finite field Fq, then
X has a Fq-rational point.

Since Br(Fq) = 0 by a theorem of Wedderburn, there are no non-trivial
Brauer–Severi varieties over Fq.

Remark 8.2. Let X be a del Pezzo surface of degree ≥ 5 over a field
k. Manin [Ma86, Theorem 29.4] showed that X is rational if and only if
it contains a k-rational point. Even if X has no k-rational point, Manin
[Ma86, Theorem 29.3] showed that

H1
(
H, Pic(X/k)(fppf)(k

sep)
)

= 0

for all closed subgroups H ⊆ Gk. We refer to [CTS87, Théorème 2.B.1] for
a general principle explaining this vanishing of cohomology.

In this section, we give a partial generalization to birational maps to
Brauer–Severi surfaces.

Lemma 8.3. Let X be a degree d del Pezzo surface over k. Then,
(1) There exists an effective zero-cycle Z of degree d on X. If d 6= 2

or if char(k) 6= 2, then there exists a Z, whose closed points have
residue fields that are separable over k.

(2) The Abelian group Am(X) is finite and every element has an order
dividing d.

Proof. If d ≥ 3, then ω−1
X is very ample, and |ω−1

X | embeds X as a surface
of degree d into Pdk. Intersecting X with a linear subspace of codimension
2, we obtain an effective zero-cycle Z of degree d on X. The closed points
of Z have automatically separable residue fields if k is finite. Otherwise,
k is infinite, and then, the intersection with a generic linear subspace of
codimension 2 yields a Z that is smooth over k by [Jo83, Théorème I.6.3].
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Thus, in any case, we obtain a Z, whose closed points have residue fields that
are separable over k. If d = 2, then |ω−1

X | defines a double cover X → P2
k,

and the pre-image of a k-rational point yields an effective zero-cycle Z of
degree 2 on X. If char(k) 6= 2, then residue fields of closed points of Z are
separable over k. If d = 1, then | − KX | has a unique-base point, and in
particular, X has a k-rational point. This establishes (1). Since b1(X) = 0,
the group Am(X) is finite by Lemma 2.13. Then, assertion (2) follows from
Corollary 2.8. �

Corollary 8.4. Let X be a del Pezzo surface of degree d over a field k.
(1) If d ∈ {1, 2, 4, 5, 7, 8} and X is birational to a Brauer–Severi surface

P , then P ∼= P2
k and X has a k-rational point.

(2) If d ∈ {1, 3, 5, 7, 9} and X is birational to a product P ′ × P ′′ of two
Brauer–Severi curves, then P ′ ∼= P ′′ ∼= P1

k and X has a k-rational
point.

Proof. Let X and d be as in (1). Then, every element of Am(X) is of
order dividing d by Lemma 8.3, but also of order dividing 3 by Theorem 4.6
and Theorem 2.18. By our assumptions on d, we find Am(P ) = 0, and thus,
P ∼= P2

k. Since the latter has a k-rational point, so has X by Lemma 4.3.
This shows (1), and we leave (2) to the reader. �

Combining this with a result of Coray [Co77], we obtain the following.

Theorem 8.5. Let X be a del Pezzo surface of degree d ∈ {5, 7, 8} over a
perfect field k. Then, the following are equivalent

(1) There exists a dominant and rational map P 99K X from a Brauer–
Severi surface P over k,

(2) X is birational to a Brauer–Severi surface,
(3) X is rational, and
(4) X has a k-rational point.

Proof. The implications (3)⇒ (2)⇒ (1) are trivial.
Let ϕ : P 99K X be as in (1). By Lemma 8.3, there exists a zero-cycle

of degree 9 on P , and another one of degree d on X. Using ϕ, we obtain a
zero-cycle of degree dividing 9 on X. By assumption, d is coprime to 9, and
thus, there exists a zero-cycle of degree 1 on X, and thus, X has a k-rational
point by [Co77], which establishes (1)⇒ (4).

The implication (3) ⇒ (4) follows from Lemma 4.3, and (3) ⇒ (4) is a
result of Manin [Ma86, Theorem 29.4] (see Corollary 6.4). �

Now, if a del Pezzo surface X over a field k is birational to a Brauer–Severi
surface, then H1(H,PicX/k(ksep)) = 0 for all closed subgroups H ⊆ Gk by
Theorem 4.6. Moreover, this vanishing holds for all del Pezzo surfaces of
degree ≥ 5, see Remark 8.2. However, for del Pezzo surfaces of degree ≤ 4,
these cohomology groups may be non-zero, see [Ma86, Section 31], [SD93],
[KT04], and [Va08]. In particular, del Pezzo surfaces of degree ≤ 4 are in
general not birational to Brauer–Severi surfaces.
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For further information concerning geometrically rational surfaces, uni-
rationality, central simple algebras, and to connections with cohomological
dimension, we refer the interested reader to [CTKM07].

8.2. Del Pezzo surfaces of degree 5. In order to decide whether a bi-
rational map fk : Xk → P2

k
as in Section 6 descends to k for a degree 5

del Pezzo surface X over k, we introduce the following notion.

Definition 8.6. Let X be a del Pezzo surface over a field k. A conic on X
is a geometrically integral curve C on X with C2 = 0 and −KX ·C = 2. An
element L ∈ Pic(X/k)(fppf)(k) is called a conic class if L ⊗k k ∼= OXk(C) for
some conic C on Xk.

The following is an anolog of Theorem 6.1 for degree 5 del Pezzo surfaces.

Theorem 8.7. Let X be a del Pezzo surface of degree 5 over a field k.
Then, the following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi
surface, such that fk is the blow-up of 4 points in general position.

(2) There exists a birational morphism f : X → P2
k, such that fk is the

blow-up of 4 points in general position.
(3) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX(E1 + E2 + E3 + E4),

where the Ei are disjoint (−1)-curves on X.
(4) There exists a conic class in Pic(X/k)(fppf)(k).

If these equivalent conditions hold, then X has a k-rational point.

Proof. If f is as in (1), then X has a k-rational point by Corollary 8.4.
Thus, P ∼= P2

k, and we obtain (1)⇒ (2).
If f is as in (2), then the exceptional divisor of f is a class F as stated in

(3), and we obtain (2)⇒ (3).
If f is as in (3), then, using Theorem 3.4, there exists a birational mor-

phism |13(−KX −F )| : X → P to a Brauer–Severi surface P as in (1), which
establishes (3)⇒ (1).

If f is as in (2), let Z ⊂ P2
k be the degree 4 cycle blown up by f . Then

f∗(OP2
k
(2)(−Z)), i.e., the pullback of the pencil of conics through Z, is a

conic class on X and establishes (2)⇒ (4).
Finally, if C is a conic class on X, then, using Theorem 3.4, there exists

a birational morphism | −KX + C| : X → P to a Brauer–Severi surface P
as in (1), which establishes (4)⇒ (1). �

Remark 8.8. By theorems of Enriques, Swinnerton-Dyer, Skorobogatov,
Shepherd-Barron, Kollár, and Hassett (see [Va13, Theorem 2.5] for precise
references and overview), a degree 5 del Pezzo X over a field k always has a
k-rational point. Thus, X is rational by [Ma86, Theorem 29.4], and we have

Am(X) = 0, as well as H1(H,PicX/k(k
sep)) = 0
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for every closed subgroup H ⊆ Gk by Corollay 2.12, Theorem 4.6, and
Lemma 4.5.

8.3. Del Pezzo surfaces of degree 4. A classical theorem of Manin
[Ma86, Theorem 29.4] states that a del Pezzo surface of degree 4 over a
sufficiently large field k is unirational if and only if it contains a k-rational
point. Here, we have the following analog in our setting.

Proposition 8.9. Let X be a del Pezzo surface of degree 4 over a perfect
field k. Then, the following are equivalent

(1) There exists a dominant rational map P 99K X from a Brauer–Severi
surface P over k.

(2) X is unirational,
(3) X has a k-rational point,

Proof. The implications (2)⇒ (1) is trivial and (2)⇒ (3) is Lemma 4.3.
The implication (3) ⇒ (2) is shown in [Ma86, Theorem 29.4] and [Ma86,
Theorem 30.1] if k has at least 23 elements and in [Kn13, Theorem 2.1] and
[Pi12, Proposition 5.19] for the remaining cases. To show (1) ⇒ (3), we
argue as in the proof of Theorem 8.5 and leave the details to the reader. �

If a field k is finite or perfect of characteristic 2, then a degree 4 del Pezzo
surface over k always has a k-rational point, see [Ma86, Theorem 27.1] and
[DD15]. In this case, we also have Am(X) = 0. From Lemma 8.3, we infer
that Am(X) is at most 4-torsion for degree 4 del Pezzo surfaces. For the
possibilties of H1(Gk,PicX/k(ksep)), see [SD93].

The following is an anolog of Theorem 6.1 for degree 4 del Pezzo surfaces.

Theorem 8.10. Let X be a del Pezzo surface of degree 4 over a field k.
Then, the following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi
surface, such that fk is the blow-up of 5 points in general position.

(2) There exists a birational morphism f : X → P2
k, such that fk is the

blow-up of 5 points in general position.
(3) There exists a curve P1

k
∼= E ⊂ X with E2 = −1.

(4) There exists a class E ∈ Pic(X/k)(fppf)(k) with E2 = KX · E = −1.
If these equivalent conditions hold, then X has a k-rational point.

Proof. The implication (2)⇒ (1) is trivial. If f is as in (1), then X has a
k-rational point by Corollary 8.4. Thus, P ∼= P2

k, and we obtain (1)⇒ (2).
If f is as in (2), let Z ⊂ P2

k be the degree 5 cycle blown up by f . Then
f∗(OP2

k
(2)(−Z)), i.e., the pullback of the class of the unique conic through

Z, is a class E as stated in (4) on X and establishes (2)⇒ (4).
If E is a class as in (4), then, using Theorem 3.4, there exists a birational

morphism | − KX − E| : X → P to a Brauer–Severi surface P as in (1),
which establishes (4)⇒ (1).

The implication (3) ⇒ (4) is trivial, and if E is a class as in (4), then
there exists a unique section of the associated invertible sheaf on ksep. This
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is necessarily Gk-invariant, thus, descends to a curve on X, and establishes
(4)⇒ (3). �

Remark 8.11. In [Sk10], Skorobogatov called del Pezzo surfaces of degree
4 that satisfy condition (3) above quasi-split.

Before proceeding, let us recall a couple of classical results on the geometry
of degree 4 del Pezzo surfaces, and refer the interested reader to [Sk10] and
[Do12, Chapter 8.6] for details. The anti-canonical linear system embeds
X as a complete intersection of two quadrics in P4

k, i.e., X is given by
Q0 = Q1 = 0, where Q0 and Q1 are two quadratic forms in five variables
over k. The degeneracy locus of this pencil of quadrics

DegX := { det(t0Q0 + t1Q1) = 0 } ⊂ P1
k = Proj k[t0, t1]

is a zero-dimensional subscheme, which is étale and of length 5 over k. Over
k, its points correspond to the singular quadrics containing X, all of which
are cones over smooth quadric surfaces. Let ν2 : P1

k → P2
k be the 2-uple

Veronese embedding and set

Z := ν2(DegX) ⊂ C := ν2(P1
k) ⊂ P2

k.

If X contains a k-rational (−1)-curve, i.e., if X is quasi-split, then X is the
blow-up of P2

k in Z, see Theorem 8.10 and [Sk10, Theorem 2.3].

Proposition 8.12. Let X be a del Pezzo surface of degree 4 over a field
k of characteristic 6= 2 with at least 5 elements. Then, the following are
equivalent:

(1) The degeneracy scheme DegX has a k-rational point.
(2) There exists a finite morphism ψ : X → S of degree 2, where S is a

del Pezzo surface of degree 8 of product type.
Moreover, if ψ is as in (2), then S is isomorphic to a quadric in P3

k.

Proof. To show (1) ⇒ (2), assume that DegX has a k-rational point.
Thus, there exists degenerate quadric Q with X ⊂ Q ⊂ P4

k. As explained
in the proof of [Do12, Theorem 8.6.8], Q is a cone over a smooth quadric
surface, and the projection away from its vertex P4

k 99K P3
k induces a mor-

phism X → P3
k that is finite of degree 2 onto a smooth quadric surface S.

In particular, S is a del Pezzo surface of degree 8 of product type.
To show (2)⇒ (1), let ψ : X → S be as in the statement. Then, we have

a short exact sequence (which even splits since char(k) 6= 2)

0 → OS → ψ∗OX → L−1 → 0,

where L is an invertible sheaf on S, which is of type (1, 1) on Sk ∼= P1
k
×P1

k
. In

particular, |L| defines an embedding ı : S → P3
k as quadric, and establishes

the final assertion. Now, ı◦ψ arises from a 4-dimensional subspace V inside
the linear system (ı◦ψ)∗OP3

k
(1) ∼= ω−1

X . Thus, ı◦ψ is the composition of the
anti-canonical embedding X → P4

k followed by a projection P4
k 99K P3

k. As
explained in the proof of [Do12, Theorem 8.6.8], such a projection induces a
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degree 2 morphism onto a quadric if and only if the point of projection is the
vertex of a singular quadric in P4

k containing X. In particular, this vertex
and the corresponding quadric are defined over k, giving rise to a k-rational
point of DegX . �

In order to refine Proposition 8.12, we will use conic classes introduced in
Definition 8.6.

Proposition 8.13. Let X be a del Pezzo surface of degree 4 over a field k.
Then, the following are equivalent:

(1) There exists a conic class in Pic(X/k)(fppf)(k).
(2) There exists a finite morphism ψ : X → P ′ × P ′′ of degree 2, where

P ′ and P ′′ are a Brauer–Severi curves over k.
Moreover, if ψ is as in (2), then P ′ ∼= P ′′.

Proof. Let L ∈ Pic(X/k)(fppf)(k) be a conic class. By Theorem 3.4, there
exist morphisms |L| : X → P ′ and |ω−1

X ⊗ L−1| : X → P ′′, where P ′ and
P ′′ are Brauer–Severi curves over k. Combining them, we obtain a finite
morphism X → P ′ × P ′′ of degree 2. As in the proof of (2) ⇒ (1) of
Proposition 8.12 we find that P ′×P ′′ embeds into P3, and thus, 0 = [P3

k] =
[P ′] + [P ′′] ∈ Br(k) by Proposition 5.2. This implies [P ′] = [P ′′] since these
classes are 2-torsion, and thus, P ′ ∼= P ′′ by Corollary 2.16. This establishes
(1)⇒ (2).

Conversely, let ψ : X → P ′×P ′′ be as in (2). Then, ψ∗(OP ′(1)�OP ′′(1))
is a conic class, and (1) follows. �

8.4. Del Pezzo surfaces of degree 3. For these surfaces, we have the
following analog of Theorem 6.1.

Theorem 8.14. Let X be a del Pezzo surface of degree 3 over a field k.
Then, the following are equivalent:

(1) There exists a birational morphism f : X → P to a Brauer–Severi
surface, such that fk is the blow-up of 6 points in general position.

(2) There exists a class F ∈ Pic(X/k)(fppf)(k) such that

Fk
∼= OX(E1 + E2 + E3 + E4 + E5 + E6),

where the Ei are disjoint (−1)-curves on X.

Proof. The proof is analogous to that of Theorem 8.7, and we leave the
details to the reader. �

Note that if the equivalent conditions of this theorem are fulfilled, then
X is not minimal. But the converse does not hold in general: if Y is a
unirational, but not rational del Pezzo surface of degree 4 over k, and y ∈ Y
is a k-rational point not lying on an exceptional curve, then the blow-up
X → Y in y is a non-minimal degree 3 del Pezzo surface over k with k-
rational points that is not birational to a Brauer–Severi surface over k.
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By [Ma86, Theorem 28.1], a degree 3 del Pezzo surface X is minimal if
and only if ρ(X) = 1 if and only if Pic(X/k)(fppf)(k) = Z ·ωX . In this case, we
have Am(X) = 0. In particular, if such a surface is birational to a Brauer–
Severi surface P , then P ∼= P2

k by Proposition 2.10 and Theorem 2.19. In
particular, X is rational and has a k-rational point in this case.

8.5. Del Pezzo surfaces of degree 2. Arguing as in the proof of Theorem
8.5, it follows that if there exists a dominant and rational map P 99K X from
a Brauer–Severi surface P onto a degree 2 del Pezzo surface over a perfect
field k, then X has a k-rational point, and thus Am(X) = 0. In particular,
if X is birational to a Brauer–Severi surface, then it is rational, see also
Corollary 8.4.

By work of Manin [Ma86, Theorem 29.4], a degree 2 del Pezzo surface over
a field k is unirational if it has a k-rational point not lying on an exceptional
curve. Together with non-trivial refinements of [STV14] and [FvL16], such
surfaces over finite fields are always unirational.

By Lemma 8.3, we have that Am(X) is at most 2-torsion for degree 2
del Pezzo surfaces. For the possibilties of H1(Gk,PicX/k(ksep)), as well as
further information concerning arithmetic questions, we refer to [KT04].

8.6. Del Pezzo surfaces of degree 1. If X is a del Pezzo surface of degree
1, then it has a k-rational point, namely the unique base point of | −KX |.
Thus, we have Am(X) = 0, and there are no morphisms or rational maps
to non-trivial Brauer–Severi varieties.
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