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Abstract
We define the Kobayashi quotient of a complex variety by identifying
points with vanishing Kobayashi pseudodistance between them and show
that if a compact complex manifold has an automorphism whose order
is infinite, then the fibers of this quotient map are nontrivial. We prove
that the Kobayashi quotients associated to ergodic complex structures on
a compact manifold are isomorphic. We also give a proof of Kobayashi’s
conjecture on the vanishing of the pseudodistance for hyperkähler mani-
folds having Lagrangian fibrations without multiple fibers in codimension
one. For a hyperbolic automorphism of a hyperkähler manifold, we prove
that its cohomology eigenvalues are determined by its Hodge numbers,
compute its dynamical degree and show that its cohomological trace grows
exponentially, giving estimates on the number of its periodic points.
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1 Introduction

Kobayashi conjectured that a compact Kähler manifold with semipositive Ricci
curvature has vanishing Kobayashi pseudometric. In a previous paper ([KLV])
Kamenova-Lu-Verbitsky have proved the conjecture for all K3 surfaces and for
certain hyperkähler manifolds that are deformation equivalent to Lagrangian
fibrations. Here we give an alternative proof of this conjecture for hyperkähler
Lagrangian fibrations without multiple fibers in codimension one, see Section 3.

1Partially supported by an NSERC discovery grant
2Partially supported by RScF grant, project 14-21-00053, 11.08.14.
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Theorem 1.1: Let f : M −→B = CPn be a hyperkähler Lagrangian fibration
without multiple fibers in codimension one over B. Then the Kobayashi pseu-
dometric dM vanishes identically on M and the Royden-Kobayashi pseudonorm
| |M vanishes identically on a Zariski open subset of M .

In Section 4, we explore compact complex manifolds M having an auto-
morphism of infinite order. For such manifolds the Kobayashi pseudometric is
everywhere degenerate. For each point x ∈M we define the subset Mx ⊂M of
points in M whose pseudo-distance to x is zero. Define the relation x ∼ y on
M given by dM (x, y) = 0. There is a well defined set-theoretic quotient map
Ψ : M −→ S = M/∼, called the Kobayashi quotient map. We say that | |M
is Voisin-degenerate at a point x ∈ M if there is a sequence of holomorphic
maps ϕn : Drn

→M such that ϕn(0)→ x, |ϕ′n(0)|h = 1 and rn →∞.

In Section 5, we show that the Kobayashi quotients for ergodic complex
structures are isometric, equipped with the natural quotient pseudometric. This
generalizes the key technical result of [KLV] for the identical vanishing of dM

for ergodic complex structures on hyperkähler manifolds.

Theorem 1.2: Let (M, I) be a compact complex manifold, and (M,J) its
deformation. Assume that the complex structures I and J are both ergodic.
Then the corresponding Kobayashi quotients are isometric.

Finally in Section 6, we prove that the cohomology eigenvalues of a hyper-
bolic automorphism of a hyperkähler manifold are determined by its Hodge
numbers. We compute its dynamical degree in the even cases and give an upper
bound in the odd cases.

Theorem 1.3: Let (M, I) be a hyperkähler manifold, and T a hyperbolic au-
tomorphism acting on cohomology as γ. Denote by α the eigenvalue of γ on
H2(M,R) with |α| > 1. Then all eigenvalues of γ have absolute value which is a
power of α1/2. Moreover, the maximal of these eigenvalues on even cohomology
H2d(M) is equal to αd, and finally, on odd cohomology H2d+1(M) the maximal
eigenvalue of γ is strictly less than α

2d+1
2 .

As a corollary we obtain that the trace Tr(γN ) grows asymptotically as αnN .
We also show that the number of k-periodic points grows as αnk.

The work on this paper started during the Simons Symposium “Geometry
over nonclosed fields” held in March, 2015. The authors are grateful to the
Simons Foundation for providing excellent research conditions.
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2 Preliminaries

Definition 2.1: A hyperkähler (or irreducible holomorphic symplectic) manifold
M is a compact complex Kähler manifold with π1(M) = 0 and H2,0(M) = Cσ
where σ is everywhere non-degenerate.

Recall that a fibration is a connected surjective holomorphic map. On a
hyperkähler manifold the structure of a fibration, if one exists, is limited by
Matsushita’s theorem.

Theorem 2.2: (Matsushita, [Mat1]) Let M be a hyperkähler manifold and
f : M −→B a fibration with 0 < dimB < dimM . Then dimB = 1

2 dimM and
the general fiber of f is a Lagrangian abelian variety. The base B has at worst
Q-factorial log-terminal singularities, has Picard number ρ(B) = 1 and −KB is
ample.

Remark 2.3: B is smooth in all of the known examples. It is conjectured that
B is always smooth.

Theorem 2.4: (Hwang [Hw]) In the settings above, if B is smooth then B is
isomorphic to CPn, where dimCM = 2n.

Definition 2.5: Given a hyperkähler manifold M , there is a non-degenerate
integral quadratic form q on H2(M,Z), called the Beauville-Bogomolov-Fujiki
form (BBK form for short), of signature (3, b2 − 3) and satisfying the Fujiki
relation ∫

M

α2n = c · q(α)n for α ∈ H2(M,Z),

with c > 0 a constant depending on the topological type of M . This form
generalizes the intersection pairing on K3 surfaces. For a detailed description
of the form we refer the reader to [F], [Bea] and [Bo].

Remark 2.6: Given f : M −→ CPn, h the hyperplane class on CPn, and α =
f∗h, then α is nef and q(α) = 0.

Conjecture 2.7: [SYZ] If L is a nontrivial nef line bundle on M with q(L) = 0,
then L induces a Lagrangian fibration, given as above.

Remark 2.8: This conjecture is known for deformations of Hilbert schemes of
points on K3 surfaces (Bayer–Macr̀ı [BM]; Markman [Mar]), and for deforma-
tions of the generalized Kummer varieties Kn(A) (Yoshioka [Y]).

Definition 2.9: The Kobayashi pseudometric on M is the maximal pseudo-
metric dM such that all holomorphic maps f : (D, ρ)−→ (M,dM ) are distance
decreasing, where (D, ρ) is the unit disk with the Poincaré metric.
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Definition 2.10: A manifold M is Kobayashi hyperbolic if dM is a metric,
otherwise it is called Kobayashi non-hyperbolic.

Remark 2.11: In [Ko1], it is asked whether a compact Kähler manifold M
of semipositive Ricci curvature has identically vanishing pseudometric, which
we denote by dM ≡ 0. The question applies to hyperkähler manifolds but
was unknown even for the case of surfaces outside the projective case. But
Kamenova-Lu-Verbitsky (in [KLV]) have recently resolved completely the case
of surfaces with the following affirmative results.

Theorem 2.12: [KLV] Let S be a K3 surface. Then dS ≡ 0.

Theorem 2.13: [KLV] Let M be a hyperkähler manifold of non-maximal Picard
rank and deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.

Theorem 2.14: [KLV] Let M be a hyperkähler manifold with b2(M) ≥ 7
(expected to always hold) and with maximal Picard rank ρ = b2 − 2. Assume
the SYZ conjecture for deformations of M . Then dM ≡ 0.

Remark 2.15: Except for the proof of Theorem 2.14, we indicate briefly a
proof of these theorems below. Theorem 2.14 is proved in [KLV] using the
existence of double Lagrangian fibrations on certain deformations of M . Here
we give a different proof of vanishing of the Kobayashi pseudometric for certain
hyperkähler Lagrangian fibrations without using double fibrations.

Definition 2.16: Let M be a compact complex manifold and Diff0(M) the con-
nected component to identity of its diffeomorphism group. Denote by Comp the
space of complex structures on M , equipped with a structure of Fréchet man-
ifold. The Teichmüller space of M is the quotient Teich := Comp /Diff0(M).
The Teichmüller space is finite-dimensional for M Calabi-Yau ([Cat]). Let
Diff+(M) be the group of orientable diffeomorphisms of a complex manifold
M . The mapping class group Γ := Diff+(M)/Diff0(M) acts on Teich. An
element I ∈ Teich is called ergodic if the orbit Γ · I is dense in Teich, where

Γ · I = {I ′ ∈ Teich : (M, I) ∼ (M, I ′)}.

Theorem 2.17: (Verbitsky, [V4]) If M is hyperkähler and I ∈ Teich, then I is
ergodic if and only if ρ(M, I) < b2 − 2.

Remark 2.18: For a K3 surface (M, I) not satisfying the above condition on
the Picard rank ρ, it is easily seen to admit Lagrangian (elliptic) fibrations over
CP1 without multiple fibers, and it is projective. Then d(M,J) ≡ 0 by Theorem
3.2 below, for example.
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Proposition 2.19: Let (M,J) be a compact complex manifold with d(M,J) ≡ 0.
Let I ∈ Teich be an ergodic complex structure deformation equivalent to J .
Then d(M,I) ≡ 0.

Proof: Here we shall reproduce the proof from [KLV]. Consider the diam-
eter function diam : Teich −→ R>0, the maximal distance between two points.
It is upper semi-continuous (Corollary 1.23 in [KLV]). Since the complex struc-
ture J is in the limit set of the orbit of the ergodic structure I, by upper
semi-continuity 0 6 diam(I) 6 diam(J) = 0.

3 (Royden-)Kobayashi pseudometric on Abelian
fibrations

The following lemma is a generalization of Lemma 3.8 in [BL] to the case of
abelian fibrations. The generalization is given for example in the Appendix
of [KLV]. Recall that an abelian fibration is a connected locally projective
surjective Kähler morphism with abelian varieties as fibers.

Lemma 3.1: Let π : T −→ C be an abelian fibration over a non-compact com-
plex curve C which locally has sections and such that not all components of the
fibers are multiple. Then T has an analytic section over C. This is the case if
π has no multiple fibers.

Proof: There is a Neron model N for T and a short exact sequence

F −→O(L)−→O(N)

where L is a vector bundle, F is a sheaf of groups Z2n with degenerations and
O(N) is the sheaf of local sections of N (whose general fibers are abelian vari-
eties). Thus T corresponds to an element θ in H1(C,O(N)). There is an induced
exact sequence of cohomologies: H1(C,O(L))−→H1(C,O(N))−→H2(C,F ).
Note that H1(C,O(L)) = 0 since C is Stein, and H2(C,F ) = 0 since it is topo-
logically one-dimensional. Thus θ = 0 and hence there is an analytic section.
The last part of the lemma is given by Proposition 4.1 of [KLV].

Theorem 3.2: Let f : M −→B = CPn be a hyperkähler Lagrangian fibration
without multiple fibers in codimension one over B. Then dM ≡ 0 and | |M
vanishes on a nonempty Zariski open subset of M .

Proof: The fibers of f are projective, and furthermore, there is a canonical
polarization on them (see [Og1] and [Og2], respectively). This also follows from
[V5], Theorem 1.10, which implies that the given fibration is diffeomorphic to
another fibration f : M ′ −→B with holomorphically the same fibers and the
same base, but with projective total space M ′. Standard argument (via the
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integral lattice in the “local” Neron-Severi group) now shows that f is locally
projective.

By assumption, there are no multiple fibers outside a codimension 2 subset
S ⊂ B whose complement U contains at most the smooth codimension-one part
D0 of the discriminant locus of f where multiplicity of fibers are defined locally
generically. Since the pseudometric is unchanged after removing codimension 2
subsets ([Ko2]), it is enough to restrict the fibration to that over U .

Let C = P1 be a line in B = Pn contained in U (and intersecting D0

transversely). Then f restricts to an abelian fibration X = f−1(C) over C
without multiple fibers and so Lemma 3.1 applies to give a section.

As S is codimension two or higher, we can connect any two points in U by
a chain of such C’s in U . One can thus connect two general points x and y
on M by a chain consisting of fibers and sections over the above C’s. Since
the Kobayashi pseudometric vanishes on each fiber and each such section, the
triangle inequality implies dM (x, y) = 0. Therefore dM vanishes on a dense open
subset of M and hence dM ≡ 0 by the continuity of dM .

The same argument gives the vanishing statement of | |M via Theorem A.2
of [KLV].

Remark 3.3: In the theorem above, it is sufficient to assume that B is nonsin-
gular and that dB ≡ 0, true if B is rationally connected. In fact, if one assumes
further the vanishing of | |B on a nonempty Zariski open, then the same is true
for | |M , generalizing the corresponding theorems in [KLV]. The reader should
have no difficulty to see these by the obvious modifications of the above proof.

4 Automorphisms of infinite order

We first sketch the proof of Kobayashi’s theorem that Kobayashi hyperbolic
manifolds have only finite order automorphisms (Theorem 9.5 in [Ko1]).

Theorem 4.1: Let M be a Kobayashi hyperbolic manifold. Then its group of
birational transformations is finite.

Proof: First, notice that a birational self-map is a composition of a blow-up,
an automorphism and a blow-down. Since M contains no rational curves, any
birational self-map is holomorphic, and we need to prove the finiteness of the
automorphism group.

Observe that the automorphisms of a hyperbolic manifold are isometries
of the Kobayashi metric. Also the group of isometries of a compact metric
space is compact with respect to the compact open topology by a theorem
of Dantzig and Van der Waerden, see for example [Ko2, Theorem 5.4.1]. On
the other hand, compact Kobayashi hyperbolic manifolds have no holomorphic
vector fields, because each such vector field gives an orbit which is an entire
curve. This means that the group of holomorphic automorphisms Aut(M) of
M is discrete as it is a complex Lie group in the compact open topology acting
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holomorphically on M by the work of Bochner-Montgomery [BM1, BM2]. Since
Aut(M) is discrete and compact, this means it is finite.

Consider the pseudo-distance function dM : M ×M −→ R, defined by the
Kobayashi pseudo-distance dM (x, y) on pairs (x, y). It is a symmetric continuous
function which is bounded for compactM . Since it is symmetric, we can consider
dM as a function on the symmetric product Sym2M with dM = 0 on the
diagonal.

Lemma 4.2: There is a compact space S with a continuous map Ψ : M −→ S
and there is a distance function dS on S making S into a compact metric space
such that dM = dS ◦ ψ, where ψ : Sym2M −→ Sym2 S is the map induced by
Ψ.

Proof: The subset Mx ⊂M of points y ∈M with dM (x, y) = 0 is compact
and connected. The relation x ∼ y onM given by dM (x, y) = 0 is symmetric and
transitive so that Mx = My if and only if x ∼ y. So there is a well defined set-
theoretic quotient map Ψ : M −→ S = M/∼. Note that the set S is equipped
with a natural metric induced from dM . Indeed, dM (x′, y′) is the same for any
points x′ ∈Mx, y

′ ∈My, and hence dM induces a metric dS on S. This metric
provides a topology on S, and since the set Ux,ε = {y ∈ M | dM (x, y) < ε}
is open, the map Ψ : M −→ S is continuous. Thus the metric space S is also
compact. This completes the proof of the lemma.

Remark 4.3: The natural quotient considered above was already proposed in
[Ko1] albeit little seems to be known about its possible structure. In particular,
it is known that even when M is compact, S may not have the structure of a
complex variety ([Ho]).

Remark 4.4: If there is a holomorphic family of varieties Xt smooth over a
parameter space T of say dimension 1, then the relative construction also works
by considering the problem via that of the total space over small disks in T .
In particular, there is a monodromy action on the resulting family of compact
metric spaces St by isometries over T , c.f. §5.

Let M be a complex manifold and h a hermitian metric on M with its asso-
ciated norm | |h.

Recall that a theorem of Royden says that the Kobayashi pseudo-metric dM

can be obtained by taking the infimum of path-integrals of the infinitesimal
pseudonorm | |M , where

|v|M = inf
{

1
R
| f : DR →M holomorphic, R > 0, f ′(0) = v

}
.

Here DR is the disk of radius R centred at the origin. Recall also that | |M is
upper-semicontinuous [Siu].
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Definition 4.5: We say that | |M is Voisin-degenerate at a point x ∈M if there
is a sequence of holomorphic maps ϕn : Drn

→M such that

ϕn(0)→ x, |ϕ′n(0)|h = 1 and rn →∞.

Observe that the locus ZM of M consisting of points where | |M is Voisin-
degenerate is a closed set. The following theorem and the arguments given are
an elaboration of the original source of Voisin [Vo].

Theorem 4.6: Consider the equivalence relationship x ∼ y on M given by
dM (x, y) = 0 where dM is the Kobayashi pseudo-metric on M . Then every non-
trivial orbit (that is, a non-singleton equivalence class) of this relation consists of
Voisin-degenerate points, and the union of such orbits is a closed set. If, further,
M is compact, then each nontrivial orbit contains the image of a nontrivial
holomorphic map C→M .

Proof: This is [Vo, Proposition 1.19].

We want to exploit the existence of an automorphism of an infinite order for
the analysis of Kobayashi metric. The following general lemma provides with a
necessary argument for a projective manifold.

Lemma 4.7: Let X be a complex projective manifold and [C] an ample class
of curves on X. Let U be an open domain in X and w a nowhere zero volume
form of Kähler metric h on X. Then for a sufficently big n there is a curve
C1 ∈ [nC] with a property that Volh(C ∩U) > (wh(U)/wh(X)− ε) Volh(C) for
arbitary small ε.

Proof: The result evidently holds for Pn and Fubini-Study metric on Pn

since Pn is homogeneous with respect to the Fubini-Study metric. In this case
it follows from the integral volume formula for the family of projective lines,
parametrized by the Grassmanian which surjects onto Pn. It immediately im-
plies the existence of lines which satisfy the inequality.

Similar formula holds for the family of algebraic curves of any given degree.
In particular we obtain an infinitesimal version of the formula which therefore
holds for any metric on projective space. Using a finite map of an n-dimensional
projective manifold X onto CPn we can derive the same formula for the Kähler
pseudometrics induced from CPn and then use its local nature for any X.

Lemma 4.8: Let f be an automorphism of infinite order on a complex projective
manifold X of dimension n. Assume that there is a domain U in X and a smooth
Riemannian metric g on the closure U ⊂ X (i.e the restriction to U of one on
a neighborhood of U) and positive constants c, c′ such that cg 6 (fm)∗g 6 c′g
for all powers fm of f . Then f is an isometry of (X,h) for some Kähler metric
h on X and hence some power of f is contained in a connected component
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of the group of complex isometries of (X,h). In particular X has a faithful
holomorphic action by an abelian variety.

Proof: Let h be a Kähler metric on X and

Volh(U) =
∫

U

hn = µ

∫
X

hn.

Note that we can assume that ag 6 (fm)∗h 6 a′g on U for some positive
constants a, a′ which are independent of the m. Note that

∫
X

(fm)∗(hn) does
not depend on m since the class of the volume hn maps into itself. Similarly we
have

µ′
∫

X

(fm∗(h)) <
∫

U

(fm∗(h))n < µ

∫
X

(fm∗(h))n

for some µ and µ′. Let [c] be a class of ample curves, i.e. effective curves in
the class are sufficiently movable and in fact a sufficiently big multyple [Nc] of
the class [c] there are curves C ∈ [Nc] with

∫
C

T
U
ĥ > µ(h,C). and similarly

for any m we have
∫

C
T

U
f̂m∗(h′) > µfm∗(h′), C) where (h,C) is a pairing of

homology class C and the class of kahler metric h. Since

a

∫
C

T
U

<

∫
C

T
U

f̂m∗(h′) < a′
∫

C
T

U

ĥ,

we obtain that (fm∗(h), c) is bounded from above by a′(h, c) and from below
by by a(h, c) for any ample class. Since ample classes generate PicX ⊗ R we
obtain that (fm∗(h) as linear functional on PicX⊗R is contained in a bounded
subset and in particular the average of lim

n→∞
1/(2n + 1)Σ−n,n(fm∗(h) is well

defined f -invariant functional h̃ which on ample classes of curves has a property
(ah, c) < (h̃c) < (a′h, c). Thus h̃ corresponds to an f -invariant Kähler class
contained in PicX ⊗ R. Let us show that there exists an integer class with this
property.

Indeed we have an embedding H2(X,Z) ⊂ H2(X,R). and for any element
h ∈ H2(X,R) there define the subspace Rh ⊂ H2(X,R) which contains h as the
intersection of all hyperplanes in H2(X,R) defined by elements in the space of
rational linear functionals on H2(X,Q∗) which are trivial on h. Since f defines
an integral map of H2(X,Z) ⊂ H2(X,R) it maps Rh into Rf∗h. Moreover if h̃
is invariant under f then any element of Reh is also invariant. The intresection
of Reh with Kähler cone is open and hence contains an integer invariant element.
Thus there is an integer class ample divisors which is invariant. Hence f is
induced from a projective action on PN under a map X → PN if H1(X,C) = 0.
If H1(X,C) 6= 0 then we have a map X × Pic0(X) to a projective family of
projective spaces P (Dt) t ∈ Pic0(X) over Pic0(X) and Dt defines an ample
invariant divisor on X ×Pic0(X). Hence f has to be a complex isometry on X
which completes the proof of the result.
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Theorem 4.9: Let M be a compact projective manifold with an automorphism
f of infinite order. Then the Kobayashi pseudo-metric dM is everywhere degen-
erate in the sense that Mx 6= {x} for all x ∈ M . Also the Kobayashi-Royden
pseudo-norm | |M is everywhere Voisin-degenerate. Moreover, every fiber of the
map Ψ : M −→ S constructed above contains a Brody curve and is connected.

Proof: The map f : M −→M commutes with the projection onto S, and
hence induces an isometry on S. Since the action of f has infinite order on
S, there is a sequence of powers fNi which converges to the identity on S by
the compactness of the group Isom(S) of isometries of S (in the compact open
topology) and by setting Ni = ni − ni−1 for a convergent subsequence fni in
Isom(S). We assume arguing by contradiction that dM is non-degenerate at a
point x ∈M . Let U be the maximal subset in M where Ψ is a local isomorphism.
Since the subsets Mx are connected, then U is exactly the subset where Ψ is an
embedding. The set U is invariant under f and is open by Theorem 4.6. Hence
fNi converges to the trivial action on U . The boundary dU is compact subset
in M with dU 6= U and dM (x,DU) > 0 for any point x ∈ U . Thus a compact
subset Uε which consists of points x ∈ U, dM (x,DU) > ε is f invariant the
restriction of dM on Uε is a metric. It is also invariant under f and by theorem
of Royden ([R, Theorem 2] [H. Royden LNM 185 p. 125-137]- add to references!)
we know that there are smooth Riemanian metrics g, g′ on Uε with a property
that g′ > dM > g. By applying previous lemma we obtain that f is an isometry
on X with respect to some kahler metric. Thus either X has a nontrivial action
of connected algebraic group and hence trivial Kobayshi metric or f is of finite
order which contradicts our assumption. Thus we obtain a conradiction also
with our initial assertion that dM is metric on some open subset in X.

Note that a limit of Brody curves is again a nontrivial Brody curve by initial
argument of Brody. By Theorem 4.6, this implies that the map dM : X → S is
everywhere degenerate, as it is degenerate in complementary on an everywhere
dense open subset.

Remark 4.10: In [Cam, Conjecture 9.16], F. Campana conjectured that the
Kobayashi quotient map of a manifold M should coincide (in birational cate-
gory) with the “core map” of M , with fibers which are “special” and the base
which is a “general type” orbifold. Then Theorem 4.9 would just follow, because
the automorphism group of a general type variety is finite. Then a general fiber
of the Kobayashi quotient map contains infinitely many points, hence its fibers
are positively dimensional.

5 Metric geometry of Kobayashi quotients

Definition 5.1: Let M be a complex manifold, and dM its Kobayashi pseu-
dometric. Define the Kobayashi quotient MK of M as the space of all
equivalence classes {x ∼ y | dM (x, y) = 0} equipped with the metric induced
from dM .
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The main result of this section is the following theorem.

Theorem 5.2: Let (M, I) be a compact complex manifold, and (M,J) its
deformation. Assume that the complex structures I and J are both ergodic.
Then the corresponding Kobayashi quotients are isometric.

Proof: Consider the limit lim νi(I) = J , where νi is a sequence of diffeomor-
phisms of M . For each point x ∈ (M, I), choose a limiting point ν(x) ∈ (M,J)
of the sequence νi(x). Fix a dense countable subset M0 ⊂ M and replace the
sequence νi by its subsequence in such a way that ν(m) := lim νi(m) is well
defined for all m ∈M0.

By the upper-semicontinuity of the Kobayashi pseudometric, we have

d(M,J)(ν(x), ν(y)) > d(M,I)(x, y). (5.1)

Let C0 be the union of all ν(x) for all x ∈M0. Define a map ψ : C0 −→ (M, I)
mapping z = ν(x) to x (if there are several choices of such x, choose one in
arbitrary way). By (5.1), the map ψ is 1-Lipschitz with respect to the Kobayashi
pseudometric. We extend it to a Lipschitz map on the closure C of C0. For any
x ∈ (M,J), the Kobayashi distance between x and ψ(ν(x)) is equal zero, also
by (5.1). Therefore, ψ defines a surjective map on Kobayashi quotients: Ψ :
CK −→ (M, I)K . Exchanging I and J , we obtain a 1-Lipshitz surjective map
Φ : C ′K −→ (M,J)K , where C ′K is a subset of (M, I)K . Taking a composition
of Ψ and Φ, we obtain a 1-Lipschitz, surjective map from a subset of (M, I)K

to (M, I)K . The following proposition shows that such a map is always an
isometry, finishing the proof of Theorem 5.2.

Proposition 5.3: Let M be a compact metric space, C ⊂ M a subset, and
f : C −→M a surjective 1-Lipschitz map. Then C = M and f is an isometry.

Proposition 5.3 is implied by the following three lemmas, some which are
exercises found in [BBI].

Lemma 5.4: Let M be a compact metric space, C ⊂ M a subset, and f :
C −→M a surjective 1-Lipschitz map. Then M is the closure of C.

Proof: Suppose that M is not the closure C of C. Take q ∈ M\C, and let
ε = d(q, C). Define pi inductively, p0 = q, f(pi+1) = pi. Let p ∈ C be any limit
point of the sequence {pi}, with limi pni

= p. Since fm(pn) ∈ C for any m < n,
one has fm(p) ∈ C.

Clearly, fni(pni
) = q. Take ni such that d(p, pni

) < ε. Then d(fni(p), q) < ε.
This is a contradiction, because fn(p) ∈ C and ε = d(q, C).

Lemma 5.5: Let M be a compact metric space, and f : M −→M an isometric
embedding. Then f is bijective.
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Proof: Follows from Lemma 5.4 directly.

Lemma 5.6: LetM be a compact metric space, and f : M −→M a 1-Lipschitz,
surjective map. Then f is an isometry.

Proof: Let d be the diameter of M , and let K be the space of all 1-Lipschitz
functions µ : M −→ [0, d] with the sup-metric. By the Arzela-Ascoli theorem,
K is compact. Now, f∗ defines an isometry from K to itself, µ−→ µ ◦ f . For
any z ∈ M , the function dz(x) = d(x, z) belongs to K. However, df(z) does
not belong to the image of f∗ unless d(z, x) = d(f(z), f(x)) for all x, because if
d(z, x) < d(f(z), f(x)), one has (f∗)−1(df(z))(f(x)) = d(z, x) > d(f(z), f(x)),
hence (f∗)−1(df(z)) cannot be Lipschitz. This is impossible by Lemma 5.5,
because an isometry from K to itself must be bijective. Therefore, the map
f : M −→M is an isometry.

The proof of Proposition 5.3 easily follows from Lemma 5.6 and Lemma 5.4.
Indeed, by Lemma 5.4, f is a surjective, 1-Lipschitz map from M to itself, and
by Lemma 5.6 it is an isometry.

6 Eigenvalues and periodic points of hyperbolic
automorphisms

The following proposition follows from a simple linear-algebraic observation.

Proposition 6.1: Let T be a holomorphic automorphism of a hyperkähler
manifold (M, I), and γ : H2(M)−→H2(M) the corresponding isometry of
H2(M). Then γ has at most 1 eigenvalue α with |α| > 1, and such α is real.

Proof: Since T is holomorphic, γ preserves the Hodge decomposition

H2(M,R) = H(2,0)+(0,2)(M,R)⊕H1,1(M,R).

Since the BBF form is positive definite on H(2,0)+(0,2)(M,R), the eigenvalues
of γ are |αi| = 1 on this space. On H1,1(M,R), the BBF form has signature
(+,−,−, ...,−), hence γ can be considered as an element of O(1, n). However,
it is well known that any element of SO(1, n) has at most 1 eigenvalue α with
|α| > 1, and such α is real.

Definition 6.2: An automorphism of a hyperkähler manifold (M, I) or an
automorphism of its cohomology algebra preserving the Hodge type is called
hyperbolic if it acts with an eigenvalue α, |α| > 1 on H2(M,R).

In holomorphic dynamics, there are many uses for the d-th dynamical
degree of an automorphism, which is defined as follows. Given an automor-
phism T of a manifold M , we consider the corresponding action on Hd(M,R),
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and d-th dynamical degree is logarithm of the maximal absolute value of its
eigenvalues. In [Og3], K. Oguiso has shown that the dynamical degree of a
hyperbolic automorphism is positive for all even d, and computed it explicitly
for automorphisms of Hilbert schemes of K3 which come from automorphisms
of K3. For 3-dimensional Kähler manifolds, dynamical degree was computed by
F. Lo Bianco ([L]).

We compute the dynamical degree and the maximal eigenvalue of the auto-
morphism action on cohomology for all even d and give an upper bound for odd
ones. We also compute asymptotical growth of the trace of the action of TN in
cohomology, which could allow one to prove that the number of quasi-periodic
points grows polynomially as the period grows. One needs to be careful here,
because there could be periodic and fixed subvarieties, and their contribution
to the Lefschetz fixed point formula should be calculated separately.

Theorem 6.3: Let (M, I) be a hyperkähler manifold, and T a hyperbolic au-
tomorphism acting on cohomology as γ. Denote by α the eigenvalue of γ on
H2(M,R) with |α| > 1. Then all eigenvalues of γ have absolute value which is a
power of α1/2. Moreover, the maximal of these eigenvalues on even cohomology
H2d(M) is equal to αd, and finally, on odd cohomology H2d+1(M) the maximal
eigenvalue of γ is strictly less than α

2d+1
2 .

Remark 6.4: Since the Kähler cone of M is fixed by γ, α is positive; see e. g.
[Can].

Remark 6.5: From Theorem 6.3, it follows immediately that Tr(γN ) grows
asymptotically as αnN .

We prove Theorem 6.3 at the end of this section.

Recall that the Hodge decomposition defines multiplicative action of U(1)
on cohomology H∗(M), with t ∈ U(1) ⊂ C acting on Hp,q(M) as tp−q. In
[V1], the group generated by U(1) for all complex structures on a hyperkähler
manifold was computed explicitly, and it was found that it is isomorphic G =
Spin+(H2(M,R), q) (with center acting trivially on even-dimensional forms and
as -1 on odd-dimensional forms; see [V2]). Here Spin+ denotes the connected
component.

In [V3], it was shown that the connected component of the group of au-
tomorphisms of H∗(M) is mapped to G surjectively and with compact kernel
([V3, Theorem 3.5]). Therefore, to study the eigenvalues of automorphisms of
H∗(M), we may always assume that they belong to G.

Now, the eigenvalues of g ∈ G on its irreducible representations can al-
ways be computed using the Weyl character formula. The computation is time-
consuming, and instead of using Weyl character formula, we use the following
simple observation.
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Claim 6.6: Let G be a group, and V its representation. Then the eigenvalues
of g and xgx−1 are equal for all x, g ∈ G.

To prove Theorem 6.3, we replace one-parametric group containing the hy-
perbolic automorphism by another one-parametric group adjoint to it in G, and
describe this second one-parametric group in terms of the Hodge decomposition.

Proposition 6.7: Let (M, I) be a hyperkähler manifold, and γ an automor-
phism of the ring H∗(M). Assume that γ acts on H2(M) with an eigenvalue
α > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H2d(M) is
equal to αd (with eigenspace of dimension 1), and on odd cohomology H2d+1(M)
it is strictly less than α

2d+1
2 .

Proof: Denote by G the group of automorphisms of H∗(M). As shown
above, its Lie algebra is (so)(3, b2(M) − 3), hence the connected component of
G is a simple Lie group.

Write the polar decomposition γ = γ1 ◦ β, where γ1 ∈ G has eigenvalues
α, α−1, 1, 1, ..., 1, β belongs to the maximal compact subgroup, and they com-
mute. Clearly, the eigenvalues of β on V are of absolute value 1, and absolute
values of eigenvalues of γ and γ1 are equal. Therefore, we can without restricting
generality assume that γ = γ1 has eigenvalues α, α−1, 1, 1, ..., 1.

Consider now the following one-parametric subgroup of the complexification
GC ⊂ Aut(H∗(M,C)): ρ(t) acts on Hp,q as tp−q, t ∈ R. The corresponding
element of the Lie algebra has only two non-zero real eigenvalues in adjoint
action. Clearly, all one-parametric subgroups of GC = Spin(H2(M,C)) with
this property are conjugate. This implies that γ is conjugate to an element
ρ(α).

By Claim 6.6, γ and ρ(α) have the same eigenvalues, and ρ(α) clearly has
eigenvalues α

d−i
2 , α

d−i−1
2 , ...α

i−d
2 on Hd(M).

Corollary 6.8:

lim
n−→∞

log Tr(fn)
∣∣∣
H∗(M)

n
= d logα,

where 2d = dimCM . In particular, the number of k-periodic points grows as
αnk, assuming that they are isolated.

Remark 6.9: The case when f admits non-isolated periodic points is treated
in [DNT], who prove that the number of isolated k-periodic points still grows
no faster than αnk; the lower bound is still unknown.

The same argument as in Proposition 6.7 also proves the following theorem.

Theorem 6.10: Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an
automorphism of cohomology algebra preserving the Hodge decomposition and
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acting on H1,1(M) hyperbolically. Denote by α the eigenvalue of γ on H2(M,R)
with |α| > 1. Replacing γ by γ2 if necessary, we may assume that α > 1. Then
all eigenvalues of γ have absolute value which is a power of α1/2. Moreover, the
eigenspace of eigenvalue αk/2 on Hd(M) is isomorphic to H

(d+k)
2 ,

(d−k)
2 (M).
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