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Introduction

Let f ∈ Z[t, x1, . . . , xn] be a polynomial with coefficients in the inte-
gers. Consider

f(t, x1, . . . , xn) = 0,

as an equation in the unknowns t, x1, . . . , xn or as an algebraic family of
equations in x1, . . . xn parametrized by t. We are interested in integer
solutions: in their existence and distribution. Sometimes the emphasis
is on individual equations, e.g.,

xn + yn = zn,

sometimes we want to understand a typical equation, i.e., a general
equation in some family. To draw inspiration (and techniques) from
different branches of algebra it is necessary to consider solutions with
values in other rings and fields, most importantly, finite fields Fq, finite
extensions of Q, or the function fields Fp(t) and C(t). While there
is a wealth of ad hoc elementary approaches to individual equations,
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and deep theories focussing on their visible or hidden symmetries, our
primary approach here will be via geometry.

Basic geometric objects are the affine space An and the projective
space Pn = (An+1 \ 0) /Gm, the quotient by the diagonal action of the
multiplicative group. Concretely, affine algebraic varieties Xaffine ⊂ An

are defined by systems of polynomial equations with coefficients in
some base ring R; their solutions with values in R, Xaffine(R), are
called R-integral points. Projective varieties are defined by homoge-
neous equations, and their R-points are equivalence classes of solutions,
with respect to diagonal multiplication by nonzero elements in R. If
F is the fraction field of R, then Xprojective(R) = Xprojective(F ), and
these points are called F -rational points. The geometric advantages
of working with “compact” projective varieties translate to important
technical advantages in the study of equations, and the theory of ra-
tional points is currently much better developed.

The sets X(F ) reflect on the one hand the geometric and algebraic
complexity of X (e.g., the dimension of X), and on the other hand
the structure of the ground field F (e.g., its topology, analytic struc-
ture). It is important to consider the variation of X(F ′), as F ′ runs
over extensions of F , either algebraic extensions, or completions. It is
also important to study projective and birational invariants of X, its
birational models, automorphisms, fibration structures, deformations.
Each point of view contributes its own set of techniques, and it is the
interaction of ideas from a diverse set of mathematical cultures that
makes the subject so appealing and vibrant.

The focus in these notes will be on smooth projective varieties X
defined over Q, with many Q-rational points. Main examples are vari-
eties Q-birational to Pn and hypersurfaces in Pn of low degree. We will
study the relationship between the global geometry of X over C and
the distribution of rational points in Zariski topology and with respect
to heights. Here are the problems we face:

• Existence of solutions: local obstructions, the Hasse principle,
global obstructions;
• Density in various topologies: Zariski density, weak approxima-

tion;
• Distribution with respect to heights: bounds on smallest points,

asymptotics.
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Here is the roadmap of the paper. Section 1 contains a summary
of basic terms from complex algebraic geometry: main invariants of
algebraic varieties, classification schemes, and examples most relevant
to arithmetic in dimension ≥ 2. Section 2 is devoted to the existence
of rational and integral points, including aspects of decidability, effec-
tivity, local and global obstructions. In Section 3 we discuss Lang’s
conjecture and its converse, focussing on varieties with nontrivial en-
domorphisms and fibration structures. Section 4 introduces heights,
counting functions, and height zeta functions. We explain conjectures
of Batyrev, Manin, Peyre and their refinements. The remaining sec-
tions are devoted to geometric and analytic techniques employed in
the proof of these conjectures: universal torsors, harmonic analysis on
adelic groups, p-adic integration and “estimates”.

Acknowledgments. I am very grateful to V. Batyrev, F. Bogomolov,
U. Derenthal, A. Chambert-Loir, J. Franke, J. Harris, B. Hassett, A.
Kresch, Y. Manin, E. Peyre, J. Shalika, M. Strauch and R. Takloo-
Bighash for the many hours of listening and sharing their ideas. Partial
support was provided by National Science Foundation Grants 0554280
and 0602333.

1. Geometry background

We discuss basic notions and techniques of algebraic geometry that
are commonly encountered by number theorists. For most of this sec-
tion, F is an algebraically closed field of characteristic zero. Geom-
etry over algebraically closed fields of positive characteristic, e.g., al-
gebraic closure of a finite field, differs in several aspects: difficulties
arising from inseparable morphisms, “unexpected” maps between alge-
braic varieties, additional symmetries, lack (at present) of resolution of
singularities. Geometry over nonclosed fields, especially number fields,
introduces new phenomena: varieties may have forms, not all construc-
tions descend to the ground field, parameter counts do not suffice. In
practice, it is “equivariant geometry for finite groups”, with Galois-
symmetries acting on all geometric invariants and special loci. The
case of surfaces is addressed in detail in [Has08].

1.1. Basic invariants. Let X be an algebraic variety over F . We may
assume that X is projective and smooth. We seek to isolate invariants
of X that are most relevant for arithmetic investigations.
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There are two natural types of invariants: birational invariants, i.e.,
invariants of the function field F (X), and projective geometry invari-
ants, i.e., those arising from a concrete representation of X as a sub-
variety of Pn. Examples are the dimension dim(X), defined as the
transcendence degree F (X) over F , and the degree of X in the given
projective embedding. For hypersurfaces Xf ⊂ Pn the degree is simply
the degree of the defining homogeneous polynomial. In general, it is
defined via the Hilbert function of the homogeneous ideal, or geomet-
rically, as the number of intersection points with a general hyperplane
of codimension dim(X).

The degree alone is not a sensitive indicator of the complexity of
the variety: Veronese embeddings of P1 ↪→ Pn exhibit it as a curve of
degree n. In general, we may want to consider all possible projective
embeddings of a variety X. Two such embeddings can be “composed”
via the Segre embedding Pn × Pm → PN , where N = nm + n + m.
For example, we have the standard embedding P1 × P1 ↪→ P3, with
image a smooth quadric. In this way, projective embeddings of X
form a “monoid”; the corresponding abelian group is the Picard group
Pic(X). Alternatively, it is the group of isomorphism classes of line
bundles on X. Cohomologically,

Pic(X) = H1
et(X,Gm),

where Gm is the sheaf of invertible functions. Yet another description
is

Pic(X) = Div(X)/ (C(X)∗/C∗) ,
where Div(X) is the free abelian group generated by codimension one
subvarieties of X, and C(X)∗ is the multiplicative group of rational
functions of X, each f ∈ C(X)∗ giving rise to a principal divisor div(f)
(divisor of zeroes and poles of f). Sometimes it is convenient to identify
divisors with their classes in Pic(X). Note that Pic is a contraviariant
functor: a morphism X̃ → X induces a homomorphism of abelian
groups Pic(X)→ Pic(X̃). There is an exact sequence

1→ Pic0(X)→ Pic(X)→ NS(X)→ 1

where Pic0(X) is the connected component of the identity in Pic(X)
and NS(X) is the Néron-Severi group of X. In most applications in
this paper, Pic0(X) is trivial.

Given a projective variety X ⊂ Pn, via an explicit system of homo-
geneous equations, we can easily write down at least one divisor on
X, a hyperplane section L in this embedding. Another divisor, the
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divisor of zeroes of a differential form of top degree on X, can also be
computed from the equations. Its class KX ∈ Pic(X), i.e., the class of

the line bundle Ω
dim(X)
X , is called the canonical class. In general, it is

not known how to write down effectively divisors whose classes are not
proportional to linear combinations of KX and L. This can be done
for some varieties over Q, e.g., smooth cubic surfaces in X3 ⊂ P3 (see
Section 1.9), but is already open for smooth quartics X4 ⊂ P4 (for some
partial results in this direction, see Section 1.10).

Elements in Pic(X) corresponding to projective embeddings generate
the ample cone Λample(X) ⊂ Pic(X)R; ample divisors arise as hyper-
plane sections ofX in a projective embedding. The closure of Λample(X)
in Pic(X)R is called the nef cone. An effective divisor is a sum with
nonnegative coefficients of irreducible subvarieties of codimension one.
Their classes span the effective cone Λeff(X). Divisors giving rise to
embeddings of some Zariski open subset of X form the big cone. To
summarize we have

Λample(X) ⊆ Λnef(X) and Λbig(X) ⊆ Λeff(X) ⊂ Pic(X)R.

These cones and their combinatorial structure encode important geo-
metric information. For example, for all divisors D ∈ Λnef(X) and all
curves C ⊂ X, the intersection number D.C ≥ 0 [Kle66]. Divisors on
the boundary of Λample(X) give rise to fibration structures on X; we
will discuss this in more detail in Section 1.4.

Example 1.1.1. Let X be a smooth projective variety, Y ⊂ X a smooth
subvariety and π : X̃ = BlY (X) → X the blowup of X in Y , i.e., the
complement in X̃ to the exceptional divisor E := π−1(Y ) is isomorphic
to X \ Y , and E itself can be identified with the projectivized tangent
cone to X at Y . Then

Pic(X̃) ' Pic(X)⊕ ZE

and

KX̃ = π∗(KX) +O((codim(Y )− 1)E)

(see [Har77, Exercise 8.5]). Note that

π∗(Λeff(X)) ⊂ Λeff(X̃),

but that pullbacks of ample divisors are not necessarily ample.

Example 1.1.2. Let X ⊂ Pn be a hypersurface of dimension ≥ 3 and
degree d. Then Pic(X) = NS(X) = ZL, generated by the class of the
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hyperplane section, and

Λample(X) = Λeff(X) = R≥0L.

The canonical class is

KX = −(n+ 1− d)L.

Example 1.1.3. If X is a smooth cubic surface over an algebraically
closed field, then Pic(X) = Z7. The anticanonical class is proportional
to the sum of 27 exceptional curves (lines):

−KX =
1

9
(D1 + · · ·+D27).

The effective cone Λeff(X) ⊂ Pic(X)R is spanned by the classes of the
lines.

On the other hand, the effective cone of a minimal resolution of the
singular cubic surface

x0x
2
3 + x2

1x3 + x3
2 = 0

is a simplicial cone (in R7) [HT04].

Example 1.1.4. Let G be a connected solvable linear algebraic group,
e.g., the additive group G = Ga, an algebraic torus G = Gd

m or the
group of upper-triangular matrices. Let X be an equivariant com-
pactification of G, i.e., the action of G on itself extends to X. Using
equivariant resolution of singularieties, if necessary, we may assume
that X is smooth projective and that the boundary

X \G = D = ∪i∈I Di, with Di irreducible,

is a divisor with normal crossings. Every divisor D on X is equivalent
to a divisor with support in the boundary since it can be “moved” there
by the action of G. Thus Pic(X) is generated by the components Di,
and the relations are given by functions with zeroes and poles supported
in D, i.e., by the characters X∗(G). We have an exact sequence

(1.1) 0→ X∗(G)→ ⊕i∈I ZDi
π−→ Pic(X)→ 0

The cone of effective divisors Λeff(X) ⊂ Pic(X)R is the image of the
simplicial cone ⊕i∈I R≥0Di under the projection π. The anticanonical
class is

−KX = ⊕i∈I κiDi, with κi ≥ 1, for all i.

For unipotent G one has κi ≥ 2, for all i [HT99].
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For higher-dimensional varieties without extra symmetries, the com-
putation of the ample and effective cones, and of the position of KX

with respect to these cones, is a difficult problem. A sample of recent
papers on this subject is: [CS06], [Far06], [FG03], [Cas07], [HT03],
[HT02], [GKM02]. However, we have the following fundamental result
(see also Section 1.4):

Theorem 1.1.5. Let X be a smooth projective variety with −KX ∈
Λample(X). Then Λnef(X) is a finitely generated rational cone. If −KX

is big and nef then Λeff(X) is finitely generated.

Finite generation of the nef cone goes back to Mori (see [CKM88]
for an introduction). The result concerning Λeff(X) has been proved in
[Bat92] in dimension ≤ 3, and in higher dimensions in [BCHM06] (see
also [Ara05], [Leh08]).

1.2. Classification schemes. In some arithmetic investigations (e.g.,
Zariski density or rational points) we rely mostly on birational proper-
ties of X; in others (e.g., asymptotics of points of bounded height), we
need to work in a fixed projective embedding.

Among birational invariants, the most important are those arising
from a comparison of X with a projective space:

(1) rationality: there exists a birational isomorphism X ∼ Pn, i.e.,
the is an isomorphisms of function fields F (X) = F (Pn), for
some n ∈ N;

(2) unirationality: there exists a dominant map Pn 99K X;
(3) rational connectedness: for general x1, x2 ∈ X(F ) there exists

a morphism f : P1 → X such that x1, x2 ∈ f(P1).

It is easy to see that
(1)⇒ (2)⇒ (3).

These properties are equivalent in dimension two, but diverge in higher
dimensions. First examples of unirational but not rational threefolds
were constructed in [IM71] and [CG72]. The approach of [IM71] was to
study of the group Bir(X) of birational automorphisms of X; finiteness
of Bir(X), i.e., birational rigidity, implies nonrationality. No examples
of smooth projective rationally connected but not unirational varieties
are known.

Interesting unirational varieties arise as quotients V/G, where V =
An is a representation space for a faithful action of a linear algebraic
group G. For example, the moduli spaceM0,n of n points on P1 is bira-
tional to (P1)n/PGL2. Moduli spaces of degree d hypersurfaces X ⊂ Pn
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are naturally isomorphic to P(Symd(An+1))/PGLn+1. Rationality of
V/G is known as Noether’s problem. It has a positive solution for G
being the symmetric group Sn, the group PGL2 [Kat82], [BK85], and
in many other cases [SB89], [SB88]. Counterexamples for some finite
G were constructed in [Sal84], [Bog87]; nonrationality is detected by
the unramified Brauer group, Brun(V/G), closely related to the Brauer
group of the function field Br(F (V/G)) = H2

et(F (V/G),Gm).
Now we turn to invariants arising from projective geometry, i.e., am-

ple line bundles on X. For smooth curves C, an important invariant is
the genus g(C) := dim(H0(X,KX)). In higher dimensions, one consid-
ers the Kodaira dimension

(1.2) κ(X) := lim sup
log(dim(H0(X,nKX)))

log(n)
,

and the related graded canonical section ring

(1.3) R(X,KX) = ⊕n≥0 H0(X,nKX).

A fundamental theorem is that this ring is finitely generated [BCHM06].
The Kodaira dimension is the dimension of the variety Proj(R(X,KX)),
or equivalently, the dimension of the image of X under the map

X → P(H0(X,nKX)),

for sufficiently large n. For KX ample one has κ(X) = dim(X).
A very rough classification of smooth algebraic varieties is based

on the position of the anticanonical class with respect to the cone of
ample divisors. Numerically, this is reflected in the value of the Kodaira
dimension. There are three main cases:

• Fano: −KX ample;
• general type: KX ample;
• intermediate type: none of the above.

The qualitative behavior of rational points on X mirrors this classifi-
cation (see Section 3). In our arithmetic applications we will mostly
encounter Fano varieties and varieties of intermediate type.

For curves, this classification can be read off from the genus: curves
of genus 0 are of Fano type, of genus 1 of intermediate type, and of
genus ≥ 2 of general type. Other examples of varieties in each group
are:

• Fano: Pn, smooth degree d hypersurfaces Xd ⊂ Pn, with d ≤ n;
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• general type: hypersurfaces Xd ⊂ Pn, with d ≥ n + 2, moduli
spaces of curves of high genus and abelian varieties of high
dimension;
• intermediate type: P2 blown up in 9 points, abelian varieties,

Calabi-Yau varieties.

There are only finitely many families of smooth Fano varieties in each
dimension [KMM92]. On the other hand, the universe of varieties of
general type is boundless and there are many open classification ques-
tions already in dimension 2.

In finer classification schemes such as the Minimal Model Program
(MMP) it is important to take into account fibration structures and
mild singularities (see [KMM87] and [Cam04]). Indeed, recall that
R(X,KX) is finitely generated and put Y = Proj(R(X,KX)). Then
the general fiber of the rational projection

X 99K Y = Proj(R(X,KX)),

is a (possibly singular) Fano variety. For example, a surface of Kodaira
dimension 1 is birational to a Fano fiber space over a curve of genus
≥ 1.

Analogously, in many arithmetic questions, the passage to fibrations
is inevitable (see Section 4.14). These often arise from the section rings

(1.4) R(X,L) = ⊕n≥0 H0(X,nL).

Consequently, one considers the Iitaka dimension

(1.5) κ(X,L) := lim sup
log(dim(H0(X,nL)))

log(n)
.

Finally, a pair (X,D), where X is smooth projective and D is a divisor
in X, gives rise to another set of invariants: the log Kodaira dimen-
sion κ(X,KX + D) and the log canonical ring R(X,KX + D), whose
finite generation is also known in many cases [BCHM06]. Again, one
distinguishes

• log Fano: κ(X,−(KX +D)) = dim(X);
• log general type: κ(X,KX +D) = dim(X);
• log intermediate type: none of the above.

This classification has consequences for the study of integral points on
the open variety X \D.
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1.3. Singularities. Assume that X is Q-Cartier, i.e., there exists an
integer m such that mKX is a Cartier divisor. Let X̃ be a normal
variety and f : X̃ → X a proper birational morphism. Denote by E
the f -exceptional divisor and by e its generic point. Let g = 0 be a
local equation of E. Locally, we can write

f ∗(generator of O(mKX)) = gmd(E)(dy1 ∧ . . . ∧ dyn)m

for some d(E) ∈ Q such that md(E) ∈ Z. If, in addition, KX̃ is a line

bundle (e.g., X̃ is smooth), then mKX̃ is linearly equivalent to

f ∗(mKX) +
∑
i

m · d(Ei)Ei; Ei exceptional,

and numerically

KX̃ ∼ f ∗(KX) +
∑
i

d(Ei)Ei.

The number d(E) is called the discrepancy of X at the exceptional
divisor E. The discrepancy discr(X) of X is

discr(X) := inf{d(E) | all f, E}
If X is smooth then discr(X) = 1. In general,

discr(X) ∈ {−∞} ∪ [−1, 1].

Definition 1.3.1. The singularities of X are called

• terminal if discr(X) > 0 and
• canonical if discr(X) ≥ 0.

It is essential to remember that terminal = smooth in codimension
2 and that for surfaces, canonical means Du Val singularities.

Canonical isolated singularities on surfaces are classified via Dynkin
diagrams: Let f : X̃ → X be the minimal desingularization. Then
the submodule in Pic(X̃) spanned by the classes of exceptional curves
(with the restriction of the intersection form) is isomorphic to the root
lattice of the corresponding Dynkin diagram (exceptional curves give
simple roots).

Canonical singularities don’t influence the expected asymptotic for
rational points on the complement to all exceptional curves: for (sin-
gular) Del Pezzo surfaces X we still expect an asymptotic of points of
bounded anticanonical height of the shape B log(B)9−d, where d is the
degree of X, just like in the smooth case (see Section 4.10). This fails
when the singularities are worse than canonical.
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Example 1.3.2. Let w = (w0, . . . , wn) ∈ Nn, with gcd(w0, . . . , wn) = 1
and let

X = X(w) = P(w0, . . . , wn)

be a weighted projective space, i.e., we have a quotient map

(An+1 \ 0)
Gm−→ X,

where the torus Gm acts by

λ · (x0, . . . , xn+1) 7→ (λw0x0, . . . , λ
wnxn).

For w = (1, . . . , 1) it is the usual projective space, e.g., P2 = P(1, 1, 1).
The weighted projective plane P(1, 1, 2) has a canonical singularity and
the singularity of P(1, 1,m), with m ≥ 3, is worse than canonical.

For a discussion of singularieties on general weighted projective spaces
and so called fake weighted projective spaces see, e.g., [Kas08].

1.4. Minimal Model Program. Here we recall basic notions from
the Minimal Model Program (MMP) (see [CKM88], [KM98], [KMM87],
[Mat02] for more details). The starting point is the following funda-
mental theorem due to Mori [Mor82]:

Theorem 1.4.1. Let X be a smooth Fano variety of dimension n.
Then there exists an integer d ≤ n+1 such that through every geometric
point x of X there passes a rational curve of −KX-degree ≤ d.

These rational curves move in families. Their specializations are
rational curves, which may move again, and again, until one arrives at
“rigid” rational curves.

Theorem 1.4.2 (Cone theorem). Let X be a smooth Fano variety.
Then the closure of the cone of (equivalence classes of) effective curves
in H2(X,R) is finitely generated by classes of rational curves.

The generating rational curves are called extremal rays, they corre-
spond to codimension-1 faces of the dual cone of nef divisors. Mori’s
Minimal Model Program links the convex geometry of the nef cone
Λnef(X) with birational transformations of X. Pick a divisor D on the
face dual to an extremal ray [C]. It is not ample anymore, but it still
defines a map

X → Proj(R(X,D)),

which contracts the curve C to a point. The map is one of the following:

• a fibration over a base of smaller dimension, and the restriction
of D to a general fiber proportional to the anticanonical class
of the fiber, which is a (possibly singular) Fano variety,
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• a birational map contracting a divisor,
• a contraction of a subvariety in codimension ≥ 2 (a small con-

traction).

The image could be singular, as in Example 1.3.2, and one of the most
difficult issues of MMP was to develop a framework which allows to
maneuver between birational models with singularities in a restricted
class, while keeping track of the modifications of the Mori cone of
curves. In arithmetic applications, for example proofs of the existence
of rational points as in, e.g., [CTSSD87a], [CTSSD87b], [CTS89], one
relies on the fibration method and descent, applied to some auxiliary
varieties. Finding the “right” fibration is an art. Mori’s theory gives a
systematic approach to these questions.

A variant of Mori’s theory, the Fujita program, analyzes fibrations
arising from divisors on the boundary of the effective cone Λeff(X). In
this case, the restriction of D to a general fiber is a perturbation of
(some positive rational multiple of) the anticanonical class of the fiber
by a rigid effective divisor. This theory turns up in the analysis of
height zeta functions in Section 6 (see also Section 4.13).

Let X be smooth projective with Pic(X) = NS(X) and a finitely
generated effective cone Λeff(X). For a line bundle L on X define

(1.6) a(L) := min(a | aL+KX ∈ Λeff(X)).

We will also need the notion of the geometric hypersurface of linear
growth:

(1.7) Σgeom
X := {L ∈ NS(X)R | a(L) = 1}

Let b(L) be the maximal codimension of the face of Λeff(X) containing
a(L)L+KX . In particular,

a(−KX) = 1 and b(−KX) = rk Pic(X).

These invariants arise in Manin’s conjecture in Section 4.10 and the
analysis of analytic properties of height zeta functions in Section 6.1.

1.5. Campana’s program. Recently, Campana developed a new ap-
proach to classification of algebraic varieties with the goal of formulat-
ing necessary and sufficient conditions for potential density of rational
points, i.e., Zariski density after a finite extension of the ground field.
The key notions are: the core of an algebraic variety and special vari-
eties. Special varieties include Fano varieties and Calabi–Yau varieties.
They are conjectured to have a potentially dense set of rational points.
This program is explained in [Abr08].
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1.6. Cox rings. Again, we assume that X is a smooth projective va-
riety with Pic(X) = NS(X). Examples are Fano varieties, equivariant
compactifications of algebraic groups and holomorphic symplectic va-
rieties. Fix line bundles L1, . . . , Lr whose classes generate Pic(X). For
ν = (ν1, . . . , νr) ∈ Zr we put

Lν := Lν1
1 ⊗ . . .⊗ Lνrr .

The Cox ring is the multigraded section ring

Cox(X) := ⊕ν∈ZrH
0(X,Lν).

The nonzero graded pieces of Cox(X) are in bijection with effective
divisors of X. The key issue is finite generation of this ring. This has
been proved under quite general assumptions in [BCHM06, Corollary
1.1.9]. Assume that Cox(X) is finitely generated. Then both Λeff(X)
and Λnef(X) are finitely generated polyhedral (see [HK00, Proposition
2.9]). Other important facts are:

• X is a toric variety if and only if Cox(X) is a polynomial ring
[Cox95], [HK00, Corollary 2.10]; Cox rings of some equivariant
compatifications of other semi-simple groups are computed in
[Bri07];
• Cox(X) is multigraded for NS(X), in particular, it carries a

natural action of the dual torus TNS.

1.7. Universal torsors. We continue to work over an algebraically
closed field. Let G be a linear algebraic group and X an algebraic
variety. A G-torsor over X is a principal G-bundle π : TX → X. Ba-
sic examples are GLn-torsors, they arise from vector bundles over X;
for instance, each line bundle L gives rise to a GL1 = Gm-torsor over
X. Up to isomorphism, G-torsors are classified by H1

et(X,G); line bun-
dles are classified by H1

et(X,Gm) = Pic(X). When G is commutative,
H1
et(X,G) is a group.
Let G = Gr

m be an algebraic torus and X∗(G) = Zr its character
lattice. A G-torsor over an algebraic variety X is determined, up to
isomorphism, by a homomorphism

(1.8) χ : X∗(G)→ Pic(X).

Assume that Pic(X) = NS(X) = Zr and that χ is in fact an isomor-
phism. The arising G-torsors are called universal. The introduction of
universal torsors is motivated by the fact that over nonclosed fields they
“untwist” the action of the Galois group on the Picard group of X (see



14 YURI TSCHINKEL

Sections 1.13 and 2.5). The “extra dimensions” and “extra symme-
tries” provided by the torsor add crucial freedom in the analysis of the
geometry and arithmetic of the underlying variety. Examples of appli-
cations to rational points will be presented in Sections 2.5 and 5. This
explains the surge of interest in explicit equations for universal torsors,
the study of their geometry: singularities and fibration structures.

Assume that Cox(X) is finitely generated. Then Spec (Cox(X)) con-
tains a universal torsor TX of X as an open subset. More precisely, let

T X := Spec (Cox(X)).

Fix an ample class Lν ∈ Pic(X) and let χν ∈ X∗(TNS) be the corre-
sponding character. Then

X = Proj(⊕n≥0H0(X,O(nLν))) = T X//TNS,

the geometric invariant theory quotient linearized by χν . The unstable
locus is

Zν := {t ∈ T X | f(t) = 0 ∀f ∈ Cox(X)nν , n > 0}
Let Wν be the set of t ∈ TX such that the orbit of t is not closed in
TX \Zν , or such that t has a positive-dimensional stabilizer. Geometric
invariant theory implies that

T X \Wν =: TX → X

is a geometric quotient, i.e., TX is a TNS-torsor over X.

1.8. Hypersurfaces. We now turn from the general theory to specific
varieties. Let X = Xf ⊂ Pn be a smooth hypersurface of degree d.
We have already described some of its invariants in Example 1.1.2, at
least when dim(X) ≥ 3. In particular, in this case Pic(X) ' Z and
TNS = Gm. The universal torsor is the hypersurface in An+1 \ 0 given
by the vanishing of the defining polynomial f .

In dimension two, there are more possibilities. The most interesting
cases are d = 2, 3, and 4. A quadric X2 is isomorpic to P1 × P1 and
has Picard group Pic(X2) ' Z⊕ Z. A cubic has Picard group of rank
7. These are examples of Del Pezzo surfaces discussed in Section 1.9.
They are birational to P2. A smooth quartic X4 ⊂ P3 is an example
of a K3 surface (see Section 1.10). We have Pic(X4) = Zr, with r
between 1 and 20. They are not rational and, in general, do not admit
nontrivial fibrations.

Cubic and quartic surfaces have a rich geometric structure, with large
“hidden” symmetries. This translates into many intricate arithmetic
issues.
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1.9. Del Pezzo surfaces. A smooth projective surface X with ample
anticanonical class is called a Del Pezzo surface. Standard examples
are P2 and P1 × P1. Over algebraically closed ground fields, all other
Del Pezzo surfaces Xr are obtained as blowups of P2 in r ≤ 8 points in
general position (e.g., no three on a line, no 6 on a conic). The number
d = 9 − r is the anticanonical degree of Xr. Del Pezzo surfaces of low
degree admit the following realizations:

• d = 4: intersection of two quadrics in P4;
• d = 3: hypersurface of degree 3 in P3;
• d = 2: hypersurface of degree 4 in the weighted projective space

P2(1, 1, 1, 2) given by

w2 = f4(x, y, z), with deg(f4) = 4.

• d = 1: hypersurface of degree 6 in P(1, 1, 2, 3) given by

w2 = t3 + f4(x, y)t+ f6(x, y), with deg(fi) = i.

Visually and mathematically most appealing are, perhaps, cubic sur-
faces with d = 3. Note that for d = 1, the anticanonical linear series
has one base point, in particular, X8(F ) 6= ∅, over any field F .

Let us compute the geometric invariants of a Del Pezzo surface of
degree d, expanding the Example 1.1.3. Since Pic(P2) = ZL, the hy-
perplane class, we have

Pic(Xr) = ZL⊕ ZE1 ⊕ · · · ⊕ ZEr,

where Ei are the full preimages of the blown-up points. The canonical
class is computed as in Example 1.1.1

KXr = −3L+ (E1 + · · ·Er).
The intersection pairing defines a quadratic form on Pic(Xr), with
L2 = 1, L ·Ei = 0, Ei ·Ej = 0, for i 6= j, and E2

j = −1. Let Wr be the
subgroup of GLr+1(Z) of elements preserving KXr and the intersection
pairing. For r ≥ 2 there are other classes with square −1, e.g.,

L− (Ei + Ej), 2L− (E1 + · · ·+ E5), etc.

The classes whose intersection with KXr is also −1 are called (classes
of) exceptional curves, these curves are lines in the anticanonical em-
bedding. Their number n(r) can be found in the table below. We
have

−KXr = cr

n(r)∑
j=1

Ej,
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the sum over all exceptional curves, where cr ∈ Q can be easily com-
puted, e.g., c6 = 1/9. The effective cone is spanned by the n(r) classes
of exceptional curves, and the nef cone is the cone dual to Λeff(Xr) with
respect to the intersection pairing on Pic(Xr). Put

(1.9) α(Xr) := vol (Λnef(Xr) ∩ {C | (−KXr , C) = 1}) .

This “volume” of the nef cone has been computed in [Der07a]:

r 1 2 3 4 5 6 7 8
n(r) 1 3 6 10 16 27 56 240
α(Xr) 1/6 1/24 1/72 1/144 1/180 1/120 1/30 1

Given a Del Pezzo surface over a number field, the equations of the
lines can be computed effectively. For example, this is easy to see for
the diagonal cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0.

Writing

x3
i + x3

j =
3∏
r=1

(xi + ζr3xj) = x3
` + x3

k =
3∏
r=1

(x` + ζr3xk)0,

with i, j, k, l ∈ [0, . . . , 3], and permuting indices we get all 27 lines. In
general, equations for the lines can be obtained by solving the corre-
sponding equations on the Grassmannian of lines.

Degenerations of Del Pezzo surfaces are also interesting and impor-
tant. Typically, they arise as special fibers of fibrations, and their
analysis is unavoidable in the theory of models over rings such as Z,
or C[t]. A classification of singular Del Pezzo surfaces can be found
in [BW79], [DP80]. Models of Del Pezzo surfaces over curves are dis-
cussed in [Cor96]. Volumes of nef cones of singular Del Pezzo surfaces
are computed in [DJT08].

We turn to Cox rings of Del Pezzo surfaces. Smooth Del Pezzo sur-
faces of degree d ≥ 6 are toric and their Cox rings are polynomial rings
on 12 − d generators. The generators and relations of the Cox rings
of Del Pezzo surfaces have been computed [BP04], [Der06], [STV06],
[TVAV08], [SX08]. For r ∈ {4, 5, 6, 7} the generators are the nonzero
sections from exceptional curves and the relations are induced by fibra-
tion structures on Xr (rulings). In degree 1 two extra generators are
needed, the independent sections of H0(X8,−KX8).
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It was known for a long time that the (affine cone over the) Grass-
mannian Gr(2, 5) is a universal torsor for the unique (smooth) degree
5 Del Pezzo surface (this was used in [SD72] and [Sko93] to prove that
every Del Pezzo surface of degree 5 has a rational point). Batyrev
conjectured that universal torsors of other Del Pezzo surfaces should
embedd into other Grassmannians, and this is why:

One of the most remarkable facts of the theory of Del Pezzo surfaces
is the “hidden” symmetry of the collection of exceptional curves in the
Picard lattice. Indeed, for r = 3, 4, 5, . . . , 8, the group Wr is the Weyl
group of a root system:

(1.10) Rr ∈ {A1 × A2,A4,D5,E6,E7,E8},

and the root lattice itself is the orthogonal to KXr in Pic(Xr), the
primitive Picard group. Let Gr be the simply-connected Lie group with
the corresponding root system. The embedding Pic(Xr−1) ↪→ Pic(Xr)
induces an embedding of root lattices Rr−1 ↪→ Rr, and identifies a
unique simple root αr in the set of simple roots of Rr, as the complement
of simple roots from Rr−1. This defines a parabolic subgroup Pr ⊂
Gr. Batyrev’s conjecture was that the flag variety Gr/Pr contains a
universal torsor of Xr.

Recent work on Cox rings of Del Pezzo surfaces established this geo-
metric connection between smooth Del Pezzo surfaces and Lie groups
with root systems of the corresponding type: r = 5 was treated in
[Pop01] and r = 6, 7 in [Der07b], via explicit manipulations with
defining equations. The papers [SS07] and [SS08] give conceptual,
representation-theoretic proofs of these results. It would be important
to extend this to singular Del Pezzo surfaces.

Example 1.9.1 (Degree four). Here are some examples of singular degree
four Del Pezzo surfaces X = {Q0 = 0} ∩ {Q = 0} ⊂ P4, where Q0 =
x0x1 + x2

2 and Q is given in the table below. Let X̃ be the minimal
desingularization of X. In all cases below the Cox ring is given by

Cox(X̃) = F [η1, . . . , η9]/(f)

with one relation f [Der07b]. Note that the Cox ring of a smooth
degree 4 Del Pezzo surface has 16 generators and 20 relations (see
Example 5.3.2).
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Singularities Q f
3A1 x2(x1 + x2) + x3x4 η4η5 + η1η6η7 + η8η9

A1 + A3 x2
3 + x4x2 + x2

0 η6η9 + η7η8 + η1η3η
2
4η

3
5

A3 x2
3 + x4x2 + (x0 + x1)2 η5η9 + η1η

2
4η7 + η3η

2
6η8

D4 x2
3 + x4x1 + x2

0 η3η
2
5η8 + η4η

2
6η9 + η2η

2
7

D5 x1x2 + x0x4 + x2
3 η3η

2
7 + η2η

2
6η9 + η4η

2
5η

2
8.

Example 1.9.2 (Cubics). Here are some singular cubic surfaces X ⊂ P3,
given by the vanishing of the corresponding cubic form:

4A1 x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1

2A1 + A2 x0x1x2 = x2
3(x1 + x2 + x3)

2A1 + A3 x0x1x2 = x2
3(x1 + x2)

A1 + 2A2 x0x1x2 = x1x
2
3 + x3

3

A1 + A3 x0x1x2 = (x1 + x2)(x2
3 − x2

1)
A1 + A4 x0x1x2 = x2

3x2 + x3x
2
1

A1 + A5 x0x1x2 = x3
1 − x2

3x2

3A2 x0x1x2 = x3
3

A4 x0x1x2 = x3
2 − x3x

2
1 + x2

3x2

A5 x3
3 = x3

1 + x0x
2
3 − x2

2x3

D4 x1x2x3 = x0(x1 + x2 + x3)2

D5 x0x
2
1 + x1x

2
3 + x2

2x3

E6 x3
3 = x1(x1x0 + x2

2).

Further examples of Cox rings of singular Del Pezzo surfaces can be
found in [Der06] and [DT07]. In practice, most geometric questions are
easier for smooth surfaces, while most arithmetic questions turn out to
be easier in the singular case. For a survey of arithmetic problems on
rational surfaces, see Sections 2.4 and 3.4, as well as [MT86].

Example 1.9.3. In some applications, torsors for subtori of TNS are also
used. Let X be the diagonal cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0.

The following equations were derived in [CTKS87]:

TX :=

{
x11x12x13 + x21x22x23 + x31x32x33 = 0
x11x21x31 + x12x22x32 + x13x23x33 = 0

}
⊂ P8.

This is a torsor for G = G4
m.
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1.10. K3 surfaces. Let X be a smooth projective surface with trivial
canonical class. There are two possibilities: X could be an abelian
surface or a K3 surface. In the latter case, X is simply-connected
and h1(X,OX) = 0. The Picard group Pic(X) of a K3 surface X is a
torsion-free Z-module of rank ≤ 20 and the intersection form on Pic(X)
is even, i.e., the square of every class is an even integer. K3 surfaces of
with polarizations of small degree can be realized as complete intersec-
tions in projective space. The most common examples are K3 surfaces
of degree 2, given explicitly as double covers X → P2 ramified in a
curve of degree 6; or quartic surfaces X ⊂ P3.

Example 1.10.1. The Fermat quartic

x4 + y4 + z4 + w4 = 0

has Picard rank 20 over Q(
√
−1). The surface X given by

xy3 + yz3 + zx3 + w4 = 0

has Pic(XQ) = Z20 (see [Ino78] for more explicit examples). All such
K3 surfaces are classified in [Sch08].

The surface

w(x3 +y3 +z3 +x2z+xw2) = 3x2y2 +4x2yz+x2z2 +xy2z+xyz2 +y2z2

has geometric Picard rank 1, i.e., Pic(XQ̄) = Z [vL07].

Other interesting examples arise from abelian surfaces as follows:
Let

ι : A → A
a 7→ −a

be the standard involution. Its fixed points are the 2-torsion points
of A. The quotient A/ι has 16 singularieties (the images of the fixed
points). The minimal resolution of these singularities is a K3 surface,
called a Kummer surface. There are several other finite group actions
on abelian surfaces such that a similar construction results in a K3
surface, a generalizied Kummer surface (see [Kat87]).

The nef cone of a polarized K3 surface (X, g) admits the following
characterization: h is ample if and only if (h,C) > 0 for each class
C with (g, C) > 0 and (C,C) ≥ −2. The Torelli theorem implies an
intrinsic description of automorphisms: every automorphism of the lat-
tice Pic(X) preserving the nef cone arises from an automorphisms of X.
There is an extensive literature devoted to the classification of possible
automorphism groups [Nik81], [Dol08]. These automorphisms give ex-
amples of interesting algebraic dynamical systems [McM02], [Can01];
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they can be used to propagate rational points and curves [BT00], and
to define canonical heights [Sil91], [Kaw08].

1.11. Threefolds. The classification of smooth Fano threefolds was
a major achievement completed in the works of Iskovskikh [Isk79],
[IP99a], and Mori–Mukai [MM86]. There are more than 100 families.
Among them, for example, cubics X3 ⊂ P4, quartics X4 ⊂ P4 or double
covers of W2 → P3, ramified in a surface of degree 6. Many of these va-
rieties, including the above examples, are not rational. Unirationality
of cubics can be seen directly: projecting from a line on X3 we get a cu-
bic surface fibration, which splits after base change. The nonrationality
of cubics was proved in [CG72] using intermediate Jacobians. Nonra-
tionality of quartics was proved by establishing birational rigidity, i.e.,
showing triviality of the group of birational automorphisms, via an
analysis of maximal singularities of such maps [IM71]. This technique
has been substantially developed within the Minimal Model Program
(see [Isk01], [Puk98], [Puk07], [Che05]). Some quartic threefolds are
also unirational, e.g., the diagonal, Fermat type, quartic

4∑
i=0

x4
i = 0.

It is expected that the general quartic is not unirational. However, it
admits an elliptic fibration: fix a line l ∈ X4 ⊂ P4 and consider a plane
in P4 containing this line, the residual plane curve has degree three
and genus 1. A general double cover W2 does not admit an elliptic or
abelian fibration, even birationally [CP07].

1.12. Holomorphic symplectic varieties. Let X be a smooth pro-
jective simply-connected variety. It is called holomorphic symplectic if
it carries a unique, modulo constants, nondegenerate holomorphic two-
form. Typical examples are K3 surfaces X and their Hilbert schemes
X [n] of zero-dimensional length-n subschemes. Another example is the
variety of lines of a smooth cubic fourfold, it is deformation equivalent
to X [2] of a K3 surface [BD85].

These varieties are interesting for the following reasons:

• The symplectic forms allows to define a quadratic form on Pic(X),
the Beauville–Bogomolov form. The symmetries of the lattice
carry rich geometric information.
• There is a local Torelli theorem, connecting the symmetries of

the Picard lattice with symmetries of the variety.
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• there is a conjectural characterization of the ample cone and of
abelian fibration structures, at least in dimension 4 [HT01].

Using this structure as a compass, one can find a plethora of exam-
ples with (Lagrangian) abelian fibrations over Pn or with infinite endo-
morphisms, resp. birational automorphisms, which are interesting for
arithmetic and algebraic dynamics.

1.13. Nonclosed fields. There is a lot to say: F -rationality, F -uni-
rationality, Galois actions on Pic(XF̄ ), Br(XF̄ ), algebraic points, spe-
cial loci, descent of Galois-invariant structures to the ground field etc.
Here we touch on just one aspect: the effective computation of the
Picard group as a Galois-module, for Del Pezzo and K3 surfaces.

Let X = Xr be a Del Pezzo surface over F . A splitting field is a
normal extension of the ground field over which each exceptional curve
is defined. The action of the Galois group Γ factors through a subgroup
of the group of symmetries of the exceptional curves, i.e., Wr. In our
arithmetic applications we need to know

• Pic(X) as a Galois module, more specifically, the Galois coho-
mology

H1(Γ,Pic(XF̄ )) = Br(X)/Br(F );

this group is an obstruction to F -rationality, and also a source
of obstructions to the Hasse principle and weak approximation
(see Section 2.4);
• the effective cone Λeff(XF ).

For Del Pezzo surfaces, the possible values of H1(Γ,Pic(XF̄ )) have been
computed [SD93], [KST89], [Ura96], [Cor07]. This information alone
does not suffice. Effective Chebotarev theorem [LO77] implies that,
given equations defining an Del Pezzo surface, the Galois action on the
exceptional curves, i.e., the image of the Galois group in the Weylgroup
Wr, can be computed in principle. The cone Λeff(XF ) is spanned by
the Galois orbits on these curves.

It would be useful to have a Magma implementation of an algorithm
computing the Galois representation on Pic(X), for X a Del Pezzo
surface over Q.

Example 1.13.1. The Picard group may be smaller over nonclosed fields:
for X/Q given by

x3
0 + x3

1 + x3
2 + x3

3 = 0
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Pic(XQ) = Z4. It has a basis e1, e2, e3, e4. such that Λeff(X) is spanned
by

e2, e3, 3e1 − 2e3 − e4, 2e1 − e2 − e3 − e4, e1 − e4,

4e1 − 2e2 − 2e3 − e4, e1 − e2, 2e1 − 2e2 − e4, 2e1 − e3

(see [PT01]).

Example 1.13.2 (Maximal Galois action). Let X/Q be the cubic surface

x3 + 2xy2 + 11y3 + 3xz2 + 5y2w + 7zw2 = 0

Then the Galois group acting on the 27 lines is W(E6) [EJ08a] (see
[Eke90], [Ern94], [VAZ08], and [Zar08], for more examples).

No algorithms for computing even the rank, or the geometric rank
of a K3 surface over a number field are known at present. There are
infinitely many possibilities for the Galois action on the Picard lattice.

Example 1.13.3. Let X be a K3 surface over a number field Q. Fix a
model X over Z. For primes p of good reduction we have an injection

Pic(XQ̄) ↪→ Pic(XF̄p).

The rank of Pic(XF̄p) is always even. In some examples, it can be
computed by counting points over Fpr , for several r, and by using the
Weil conjectures.

This local information can sometimes be used to determine the rank
of Pic(XQ̄). Let p, q be distinct primes of good reduction such that the
corresponding local ranks are ≤ 2 and the discriminants of the lattices
Pic(XF̄p), Pic(XF̄q) do not differ by a square of a rational number.
Then the rank of Pic(XQ̄) equals 1. This idea has been used in [vL07].

2. Existence of points

2.1. Projective spaces and their forms. Let F be a field and F̄ an
algebraic closure of F . A projective space over F has many rational
points: they are dense in Zariski topology and in the adelic topology.
Varieties F -birational to a projective space inherit these properties.

Over nonclosed fields F , projective spaces have forms, so called
Brauer–Severi varieties. These are isomorphic to Pn over F̄ but not
necessarily over F . They can be classified via the nonabelian cohomol-
ogy group H1(F,Aut(Pn)), where Aut(Pn) = PGLn+1 is the group of
algebraic automorphisms of Pn. The basic example is a conic C ⊂ P2,
e.g.,

(2.1) ax2 + by2 + cz2 = 0, with a, b, c ∈ Z.
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It is easy to verify solvability of this equation in R and modulo p, for
p - abc. Legendre proved that (2.1) has nontrivial solutions in Z if and
only if it has nontrivial solutions in R and modulo p, for all primes p.
This is an instance of a local-to-global principle that will be discussed
in Section 2.4.

Checking solvability modulo p is a finite problem which gives a finite
procedure to verify solvability in Z. Actually, Legendre’s proof provides
effective bounds for the size of the smallest solution, e.g.,

max(|x|, |y|, |z|) ≤ abc,

which gives another approach to checking solvability - try all x, y, z ∈ N
subject to the inequality. If C(Q) 6= ∅, then the conic is Q-isomorphic
to P1: draw lines through a Q-point in C.

One could also ask about the number N(B) of triples of nonzero
coprime square-free integers

(a, b, c) ∈ Z3, max(|a|, |b|, |c|) ≤ B

such that Equation (2.1) has a nontrivial solution. It is [Guo95]:

N(B) ∼ 9

7 Γ(3
2
)3

∏
p

(
1− 1

p

)3/2(
1 +

3

2p

)
B

log(B)3/2
, B→∞.

In general, forms of Pn over number fields satisfy the local-to-global
principle. Moreover, Brauer–Severi varieties with at least one F -rational
point are split over F , i.e., isomorphic to Pn over F . It would be useful
to have a routine (in Magma) that would check efficiently whether or
not a Brauer–Severi variety of small dimension over Q, presented by
explicit equations, is split, and to find the smallest solution. The fre-
quency of split fibers in families of Brauer–Severi varieties is studied in
[Ser90b].

2.2. Hypersurfaces. Algebraically, the simplest examples of varieties
are hypersurfaces, defined by a single homogeneous equation f(x) = 0.
Many classical diophantine problems reduce to the study of rational
points on hypersurfaces. Below we give two proofs and one heuristic
argument to motivate the idea that hypersurfaces of low degree should
have many rational points.

Theorem 2.2.1 (Chevalley-Warning, Abh. M. Sem. Hamb. (1936)).
Let X = Xf ⊂ Pn be a hypersurface over a finite field F given by the
equation f(x) = 0. If deg(f) ≤ n then X(F ) 6= ∅.
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Proof. We reproduce a textbook argument [BS66], for F = Fp.
Step 1. Consider the δ-function

p−1∑
x=1

xd =

{
−1 mod p if p− 1 | d
0 mod p if p− 1 - d

Step 2. Apply it to a (not necessarily homogeneous) polynomial φ ∈
Fp[x0, . . . , xn], with deg(φ) ≤ n(p− 1). Then∑

x0,...,xn

φ(x0, . . . , xn) = 0 mod p.

Indeed, for monomials, we have∑
x0,...,xm

xd1
1 · · · xdnn =

∏
(
∑

x
dj
j ), with d0 + . . .+ dn ≤ n(p− 1).

For some j, we have 0 ≤ dj < p− 1.

Step 3. For φ(x) = 1−f(x)p−1 we have deg(φ) ≤ deg(f) · (p−1). Then

N(f) := #{x | f(x) = 0} =
∑

x0,...,xn

φ(x) = 0 mod p,

since deg(f) ≤ n.

Step 4. The equation f(x) = 0 has a trivial solution. It follows that

N(f) > 1 and Xf (Fp) 6= ∅.
�

A far-reaching generalization is the following theorem.

Theorem 2.2.2. [Esn03] If X is a Fano variety over a finite field Fq
then

X(Fq) 6= ∅.

Now we pass to the case in which F = Q. Given a form f ∈
Z[x0, . . . , xn], homogeneous of degree d, we ask how many solutions
x = (x0, . . . , xn) ∈ Zn+1 to the equation f(x) = 0 should we expect?
Primitive solutions with gcd(x0, . . . , xn) = 1, up to diagonal multipli-
cation with ±1, are in bijection to rational points on the hypersurface
Xf ⊂ Pn. We have |f(x)| = O(Bd), for ‖x‖ := maxj(|xj|) ≤ B. We
may argue that f takes values 0, 1, 2, . . . with equal probability, so that
the the probability of f(x) = 0 is B−d. There are Bn+1 “events” with
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‖x‖ ≤ B. In conclusion, we expect Bn+1−d solutions with ‖x‖ ≤ B.
There are three cases:

• n+1 < d: as B→∞ we should have fewer and fewer solutions,
and, eventually, none!
• n + 1 − d: this is the stable regime, we get no information in

the limit B→∞;
• n+ 1− d: the expected number of solutions grows.

We will see many instances when this heuristic reasoning fails. How-
ever, it is reasonable, as a first approximation, at least when

n+ 1− d� 0.

Diagonal hypersurfaces have attracted the attention of computa-
tional number theorists (see http://euler.free.fr). A sample is
given below:

Example 2.2.3.

• There are no rational points (with non-zero coordinates) on the
Fano 5-fold x6

0 =
∑6

j=1 x
6
j with height ≤ 2.6 · 106.

• There are 12 (up to signs and permutations) rational points on
x6

0 =
∑7

j=1 x
6
j of height ≤ 105 (with non-zero coordinates).

• The number of rational points (up to signs, permutations and
with non-zero coordinates) on the Fano 5-fold x6

0+x6
1 =

∑6
j=2 x

6
j

of height ≤ 104 (resp. 2 · 104, 3 · 104) is 12 (resp. 33, 57).

Clearly, it is difficult to generate solutions when the n − d is small.
On the other hand, we have the following theorem:

Theorem 2.2.4. [Bir62] If n ≥ (deg(f)− 1) · 2deg(f), and f is smooth
then the number N(f,B) of solutions x = (xi) with max(|xi|) ≤ B is

N(f,B) ∼
∏
p

τp · τ∞Bn+1−d, as B→∞,

where τp, τ∞ are the p-adic, resp. real, densities. The Euler product
converges provided local solutions exist for all p and in R.

We sketch the method of a proof of this result in Section 4.6.

Now we assume that X = Xf is a hypersurface over a function field
in one variable F = C(t). We have

Theorem 2.2.5. If deg(f) ≤ n then Xf (C(t)) 6= ∅.
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Proof. It suffices to count parameters: Insert xj = xj(t) ∈ C[t], of
degree e, into

f =
∑
J

fJx
J = 0,

with |J | = deg(f). This gives a system of e · deg(f) + const equations
in e(n + 1) variables. This system is solvable for e � 0, provided
deg(f) ≤ n. �

2.3. Decidability. Hilbert’s 10th problem has a negative solution:

Theorem 2.3.1 (see [Mat00], [Mat06]). Let f ∈ Z[t, z1, . . . , xn] be
polynomial. The set of t ∈ Z such that f(t, . . . , xn) = 0 is solvable in
Z is not decidable, i.e., there is no algorithm to decide whether or not
a diophantine equation is solvable in integers.

Theorem 2.3.2. [Cha94] The set of t ∈ Z such that ft = 0 has infin-
itely many primitive solutions is algorithmically random 1.

There are many results concerning indecidability of general diophan-
tine equations over other rings and fields (for a recent survey, see
[Poo08b]). The case of rational points, over a number field, is open;
even for a cubic surface we cannot decide, at present, whether or not
there are rational points.

2.4. Obstructions. As we have just said, there is no hope of finding
an algorithm which would determine the solvability of a diophantine
equation in integers, i.e., there is no algorithm to test for the existence
of integral points on quasi-projective varieties. The corresponding ques-
tion for homogeneous equations, i.e., for rational points, is still open.
It is reasonable to expect that at least for certain classes of algebraic
varieties, for example, for Del Pezzo surfaces, the existence question
can be answered. In this section we survey some recent results in this
direction.

1The author’s abstract: “One normally thinks that everything that is true is true for a

reason. I’ve found mathematical truths that are true for no reason at all. These mathematical

truths are beyond the power of mathematical reasoning because they are accidental and random.

Using software written in Mathematica that runs on an IBM RS/6000 workstation, I constructed

a perverse 200-page algebraic equation with a parameter t and 17,000 unknowns. For each whole-

number value of the parameter t, we ask whether this equation has a finite or an infinite number

of whole number solutions. The answers escape the power of mathematical reason because they

are completely random and accidental.”
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Let XB be a scheme over a base scheme B. We are looking for
obstructions to the existence of points X(B), i.e., sections of the struc-
ture morphism X → B. Each morphism B′ → B gives rise to a
base-change diagram, and each section x : B → X provides a section
x′ : B′ → XB′ .

X

��

XB′
oo

��

X XB′
oo

B B′oo B

x

OO

B′oo

x′

OO

This gives rise to a local obstruction, since it is sometimes easier to
check that XB′(B

′) = ∅. In practice, B could be a curve and B′ a cover,
or an analytic neighborhood of a point on B. In the number-theoretic
context, B = Spec (F ) and B′ = Spec (Fv), where v is a valuation of
the number field F and Fv the v-adic completion of F . One says that
the local-global principle, or the Hasse principle, holds, if the existence
of F -rational points is implied by the existence of v-adic points in all
completions.

Example 2.4.1. The Hasse principle holds for:

(1) smooth quadrics X2 ⊂ Pn;
(2) Brauer–Severi varieties;
(3) Del Pezzo surfaces of degree ≥ 5;
(4) Chatelet surfaces y2−az2 = f(x0, x1), where f is an irreducible

polynomial of degree ≤ 4 [CTSSD87b];
(5) hypersurfaces Xd ⊂ Pn, for n� d (see Theorem 4.6.1).

The Hasse principle may fail for cubic curves, e.g.,

3x3 + 4y3 + 5z3 = 0.

In topology, there is a classical obstruction theory to the existence of
sections. An adaptation to algebraic geometry is formulated as follows:
Let C be a contravariant functor from the category of schemes over a
base scheme B to the category of abelian groups. Applying the functor
C to the diagrams above, we have

C(X) // C(XB′) C(X) //

x

��

C(XB′)

x′

��
C(B) //

OO

C(B′)

OO

C(B) // C(B′)
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If for all sections x′, the image of x′ in C(B′) is nontrivial in the
cokernel of the map C(B) → C(B′), then we have a problem, i.e., an
obstruction to the existence of B-points on X. So far, this is still a
version of a local obstruction. However, a global obstruction may arise,
when we vary B′.

We are interested in the case when B = Spec (F ), for a number field
F , with B′ ranging over all completions Fv. A global obstruction is
possible whenever the map

C(Spec (F ))→
∏
v

C(Spec (Fv))

has a nontrivial cokernel. What are sensible choices for C? Basic
contravariant functors on schemes are C(−) := Hi

et(−,Gm). For i = 1,
we get the Picard functor, introduced in Section 1.1. However, by
Hilbert’s theorem 90,

H1
et(F,Gm) := H1

et(Spec (F ),Gm) = 0,

for all fields F , and this won’t generate an obstruction. For i = 2,
we get the (cohomological) Brauer group Br(X) = H2

et(X,Gm), clas-
sifying sheaves of central simple algebras over X, modulo equivalence
(see [Mil80, Chapter 4]). By class class field theory, we have an exact
sequence

(2.2) 0→ Br(F )→
⊕
v

Br(Fv)
P
v invv−→ Q/Z→ 0,

where invv : Br(Fv)→ Q/Z is the local invariant. We apply it to the
diagram and obtain:

Br(XF ) //

x

��

⊕
v Br(XFv)

(xv)v
��

0 // Br(F ) //
⊕

v Br(Fv)
P
v invv // Q/Z // 0,

Define

(2.3) X(AF )Br := ∩A∈Br(X){(xv)v ∈ X(AF ) |
∑
v

inv(A(xv)) = 0}.

Let X(F ) be the closure of X(F ) in X(AF ), in the adelic topology. One

says that X satisfies weak approximation over F if X(F ) = X(AF ). We
have

X(F ) ⊂ X(F ) ⊆ X(AF )Br ⊆ X(AF ).
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From this we derive the Brauer–Manin obstruction to the Hasse prin-
ciple and weak approximation:

• if X(AF ) 6= ∅ but X(AF )Br = ∅ then X(F ) = ∅, i.e., the Hasse
principle fails;
• if X(AF ) 6= X(AF )Br then weak approximation fails.

Del Pezzo surfaces of degree ≥ 5 satisfy the Hasse principle and weak
approximation. Arithmetically most interesting are Del Pezzo surfaces
of degree 4, 3, and 2: these may fail the Hasse principle:

• deg = 4: z2 + w2 = (x2 − 2y2)(3y2 − x2) [Isk71];
• deg = 3: 5x3 + 12y3 + 9z3 + 10w3 = 0 [CG66];
• deg = 2: w2 = 2x4 − 3y4 − 6z4 [KT04a].

One says that the Brauer–Manin obstruction to the existence of ra-
tional point is the only one, if X(AF )Br 6= ∅ implies that X(F ) 6= ∅.
This holds for:

(1) certain curves of genus ≥ 2 (see, e.g., [Sto07]);
(2) principal homogeneous spaces for a connected linear algebraic

group;
(3) Del Pezzo surfaces of degree ≥ 3 admitting a conic bundle struc-

ture defined over the ground field F ;
(4) conjecturally(!), for all geometrically rational surfaces.

However, the Brauer–Manin obstruction is not the only one, in gen-
eral. Here is a heuristic argument: a smooth hypersurface in P4 has
trivial Br(X)/Br(F ). It is easy to satisfy local local conditions, so
that for a positive proportion of hypersurfaces one has X(AF ) 6= ∅ (see
[PV04]). Consider X of very large degree. Lang’s philosophy (see Con-
jecture 3.1.1) predicts that there are very few rational points over any
finite extension of the ground field. Why should there be points over F?
This was made precise in [SW95]. The first unconditional result in this
direction was [Sko99]: there exist surfaces X with empty Brauer–Manin
obstructions with étale covers X̃ which acquire new Brauer group ele-
ments producing nontrivial obstructions on X̃ and a posteriori on X.
These type of “multiple-descent”, nonabelian, obstructions were sys-
tematically studied in [HS05], [HS02], [Sko01] (see also [Har08], and
[Pey05], [Har04]).

Insuffiency of these nonabelian obstructions for threefolds was es-
tablished in [Poo08a]. The counterexample is a fibration φ : X → C,
defined over Q, such that

• C is a curve of genus ≥ 2 with C(Q) 6= ∅ (e.g., a Fermat curve);
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• every fiber Xc, for c ∈ C(Q), is the counterexample

z2 + w2 = (x2 − 2y2)(3y2 − x2)

from [Isk71], i.e., Xc(AQ) 6= ∅, and Xc(Q) = ∅;
• Br(X) ' Br(C), and the same holds for any base change under

an étale map C̃ → C.

Then X̃(AQ)Br 6= ∅, for every étale cover X̃ → X, while X(Q) = ∅.

2.5. Descent. Let T be an algebraic torus, considered as a group
scheme, and X a smooth projective variety over a number field F .
We assume that Pic(XF̄ ) = NS(XF̄ ). The F -isomorphisms classes of
T -torsors

π : T → X

are parametrized by H1
et(X,T ). A rational point x ∈ X(F ) gives rise

to the specialization homomorphism

σx : H1
et(X,T )→ H1

et(F, T ),

a finite set. Thus the partition:

(2.4) X(F ) = ∪τ∈H1
et(F,T )πτ (Tτ (F )),

exhibiting Tτ as descent varieties.
We now consider the Γ = Gal(F̄ /F )-module NS(XF̄ ) and the dual

torus TNS. The classifying map in Equation 1.8 is now

χ : H1(X,TNS)→ HomΓ(NS(XF̄ ),Pic(XF̄ )),

a TNS-torsor T is called universal if χ([T ]) = Id. These may not exist
over the ground field F . When they do, their F -equivalence classes form
a principal homogeneous space under H1

et(F, T ). The main reasons for
working with universal torsors, rather than other torsors are:

• the Brauer–Manin obstruction on X translates to local obstruc-
tions on universal torsors, i.e.,

X(AF )Br = ∪τ∈H1
et(F,T )πτ (Tτ (AF ));

• the Brauer–Manin obstruction on universal torsors vanishes.

The foundations of the theory are in [CTS87] and in the book [Sko01].
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2.6. Effectivity. In light of the discussion in Section 2.3 it is impor-
tant to know whether or not the Brauer–Manin obstruction can be
computed, effectively in terms of the coefficients of the defining equa-
tions. There is an extensive literature on such computations for curves
(see the recent papers [Fly04], [BBFL07] and references therein) and
for surfaces (e.g., [CTKS87], [BSD04], [Cor07], [KT04b]).

Effective computability of the Brauer-Manin obstruction for all Del
Pezzo surfaces over number fields has been proved in [KT08]. The main
steps are as follows:

(1) Computation of the equations of the exceptional curves and of
the action of the Galois group Γ of a splitting field on these
curves as in Section 1.13. One obtains the exact sequence of
Γ-modules

0→ Relations→ ⊕ZEj → Pic(X)→ 0.

(2) We have

Br(X)/Br(F ) = H1(Γ,Pic(X)).

Using the equations for exceptional curves and functions realiz-
ing relations between the curves classes in the Picard group one
can compute explicitly Azumaya algebras {Ai} representing the
classes of Br(X)/Br(F ).

(3) The local points X(Fv) can be effectively decomposed into a
finite union of subsets such that each Ai is constant on each of
these subsets. This step uses an effective version of the arith-
metic Hilbert Nullstellensatz.

(4) It remains to compute the local invariants.

3. Density of points

3.1. Lang’s conjecture. One of the main principles underlying arith-
metic geometry is the expectation that the trichotomy in the classifi-
cation of algebraic varieties via the Kodaira dimension in Section 1.2
has an arithmetic manifestation. The broadly accepted form of this is

Conjecture 3.1.1 (Lang’s conjecture). Let X be a variety of gen-
eral type, i.e., a smooth projective variety with ample canonical class,
defined over a number field F . Then X(F ) is not Zariski dense.

What about a converse? The obvious necessary condition for Zariski
density of rational points, granted Conjecture 3.1.1, is that X does not
dominate a variety of general type. This condition is not enough, as
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was shown in [CTSSD97]: there exist surfaces which do not dominate
curves of general type but which have étale covers dominating curves
of general type. By the Chevalley–Weil theorem (see, e.g., [Abr08] in
this volume), these covers would have a dense set of rational points,
over some finite extension of the ground field, contradicting Conjec-
ture 3.1.1.

As a first approximation, one expects that rational points are poten-
tially dense on Fano varieties, on rationally connected varieties, and on
Calabi–Yau varieties. Campana formulated precise conjectures char-
acterizing varieties with potentially dense rational points via the no-
tion of special varieties (see Section 1.5). In the following sections we
survey techniques for proving density of rational points and provide
representative examples illustrating these. For a detailed discussion of
geometric aspects related to potential density see [Abr08], and [Has03].

3.2. Zariski density over fixed fields. Here we address Zariski den-
sity of rational points in the “unstable” situation, when the density of
points is governed by subtle number-theoretical properties, rather than
geometric considerations. We have the following fundamental result:

Theorem 3.2.1. Let C be a smooth curve of genus g = g(C) over a
number field F . Then

• if g = 0 and C(F ) 6= ∅ then C(F ) is Zariski dense;
• if g = 1 and C(F ) 6= ∅ then C(F ) is an abelian group (the

Mordell-Weil group) and there is a constant cF (independent of
C) bounding the order of the torsion subgroup C(F )tors of C(F )
[Maz77], [Mer96]; in particular, if there is an F -rational point
of infinite order then C(F ) is Zariski dense;
• if g ≥ 2 then C(F ) is finite [Fal83], [Fal91].

In higher dimensions we have:

Theorem 3.2.2. Let X be an algebraic variety over a number field F .
Assume that X(F ) 6= ∅ and that X is one of the following

• X is a Del Pezzo surface of degree 2 and has a point on the
complement to exceptional curves;
• X is a Del Pezzo surface of degree ≥ 3;
• X is a Brauer-Severi variety.

Then X(F ) is Zariski dense.

The proof of the first claims can be found in [Man86].



VARIETIES WITH MANY RATIONAL POINTS 33

Remark 3.2.3. Let X/F be a Del Pezzo surface of degree 1 (it always
contains an F -rational point, the base point of the anticanonical linear
series) or a conic bundle X → P1, with X(F ) 6= ∅. It is unknown
whether or not X(F ) is Zariski dense.

Theorem 3.2.4. [Elk88] Let X ⊂ P3 be the quartic K3 surface given
by

(3.1) x4
0 + x4

1 + x4
2 = x4

3.

Then X(Q) is Zariski dense.

The trivial solutions (1 : 0 : 0 : 1) etc are easily seen. The smallest
nontrivial solution is

(95 800, 217 519, 414 560, 422 481).

Geometrically, over Q̄, the surface given by (3.1) is a Kummer surface,
with many elliptic fibrations.

Example 3.2.5. [EJ06] Let X ⊂ P3 be the quartic given by

x4 + 2y4 = z4 + 4t4.

The obvious Q-rational points are given by y = t = 0 and x = ±z.
The next smallest solution is

14848014 + 2 · 12031204 = 11694074 + 4 · 11575204.

3.3. Potential density: techniques. Here is a (short) list of possible
strategies to propagate points:

• use the group of automorphisms Aut(X), if it is infinite;
• try to find a dominant map X̃ → X where X̃ satisfies potential

density (for example, try to prove unirationality);
• try to find a fibration structure X → B where the fibers satisfy

potential density in some uniform way (that is, the field exten-
sions needed to insure potential density of the fibers Vb can be
uniformly controlled).

In particular, it is important for us keep track of minimal conditions
which would insure Zariski density of points on varieties. A fundamen-
tal result is

Example 3.3.1. Let π : X → P1 be a conic bundle, defined over a
field F . Then rational points on X are potentially dense. Indeed, by
Tsen’s theorem, π has section s : P1 → X (which is defined over
some finite extension F ′/F ), each fiber has an F ′-rational point and
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it suffices to apply Theorem 3.2.1. Potential density for conic bundles
over higher-dimensional bases is an open problem.

If X is an abelian variety then there exists a finite extension F ′/F
and a point P ∈ X(F ′) such that the cyclic subgroup of X(F ′) gener-
ated by P is Zariski dense.

Example 3.3.2. If π : X → P1 is a Jacobian nonisotrivial elliptic
fibration (π admits a section and the j-invariant is nonconstant), then
potential density follows from a strong form of the Birch/Swinnerton-
Dyer conjecture [GM97], [Man95]. The key problem is to control the
variation of the root number (the sign of the functional equation of the
L-functions of the elliptic curve) (see [GM97]).

On the other hand, rational points on certain elliptic fibration with
multiple fibers are not potentially dense [CTSSD97].

Example 3.3.3. One geometric approach to Zariski density of rational
points on (certain) elliptic fibration can be summarized as follows:

Case 1. Let π : X → B be a Jacobian elliptic fibration and
e : B → X its zero-section. Suppose that we have another section
s which is nontorsion in the Mordell-Weil group of X(F (B)). Then a
specialization argument implies that the restriction of the section to
infinitely many fibers of π gives a nontorsion point in the Mordell-Weil
group of the corresponding fiber (see [Ser90a], 11.1). In particular,
X(F ) is Zariski dense, provided B(F ) is Zariski dense in B.

Case 2. Suppose that π : X → B is an elliptic fibration with a
multisection M (an irreducible curve surjecting onto the base B). After
a basechange X ×BM →M the elliptic fibration acquires the identity
section Id (the image of the diagonal under M ×BM → V ×BM) and
a (rational) section

τM := dId− Tr(M ×B M),

where d is the degree of π : M → B and Tr(M ×B M) is obtained
(over the generic point) by summing all the points of M ×B M . We
will say that M is nontorsion if τM is nontorsion.

If M is nontorsion and if M(F ) is Zariski dense then the same holds
for X(F ) (see [BT99]).

Remark 3.3.4. Similar arguments work for abelian fibrations [HT00b].
The difficulty here is to formulate some simple geometric conditions
insuring that a (multi)section leads to points which are not only of
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infinite order in the Mordell-Weil groups of the corresponding fibers,
but in fact generate Zariski dense subgroups.

3.4. Potential density for surfaces. By Theorem 3.2.1, potential
density holds for curves of genus g ≤ 1. It holds for surfaces which
become rational after a finite extension of the ground field, e.g., for all
Del Pezzo surfaces. The classification theory in dimension 2 gives us
the following list of surfaces of Kodaira dimension 0:

• abelian surfaces;
• bielliptic surfaces;
• Enriques surfaces;
• K3 surfaces.

Potential density for the first two classes follows from Theorem 3.2.2.
The classification of Enriques surfaces X implies that either Aut(X)
is infinite or X is dominated by a K3 surface X̃ with Aut(X̃) infinite
[Kon86]. Thus we are reduced to the study of K3 surfaces.

Theorem 3.4.1. [BT00] Let X be a K3 surface over any field of char-
acteristic zero. If X is elliptic or admits an infinite group of automor-
phisms then rational points on X are potentially dense.

Sketch of the proof. One needs to find sufficiently nondegenerate ratio-
nal or elliptic multisections of the elliptic fibration X → P1. These
are produced using deformation theory. One starts with special K3
surfaces which have rational curves Ct ⊂ Xt in the desired homology
class (for example, Kummer surfaces) and then deforms the pair. This
deformation technique has to be applied to twists of the original elliptic
surface. �

Example 3.4.2. A smooth hypersurface X ⊂ P1 × P1 × P1 of bi-degree
(2, 2, 2) is a K3 surface with Aut(X) infinite.

Example 3.4.3. Every smooth quartic surface S4 ⊂ P3 which contains
a line is an elliptic K3 surface. Indeed, let M be this line and assume
that both S4 and M are defined over a number field F . Consider the 1-
parameter family of planes P2

t ⊂ P3 containing M . The residual curve
in the intersection P2

t ∩ S4 is a plane cubic intersecting M in 3 points.
This gives a fibration π : S4 → P1 with a rational tri-section M .

To apply the strategy of Section 6.1 we need to insure that M is
nontorsion. A sufficient condition, satisfied for generic quartics S4, is
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that the restriction of π to M ramifies in a smooth fiber of π : X → P1.
Under this condition X(F ) is Zariski dense.

Theorem 3.4.4. [HT00a] Let X ⊂ P3 be a quartic K3 surface con-
taining a line defined over a field F . If X is general, then X(F ) is
Zariski dense. In all cases, there exists a finite extension F ′/F such
that X(F ′) is Zariski dense.

Theorem 3.4.5. [BT00] Let X be an elliptic K3 surface over a field
F . Then rational points are potentially dense.

Remark 3.4.6. No examples of K3 surfaces X over Q with geometric
Picard number 1, X(Q) 6= ∅ and X(Q) not Zariski dense are known at
present.

3.5. Potential density in dimension ≥ 3. Potential density holds
for unirational varieties. Classification of (smooth) Fano threefolds and
the detailed study of occuring families implies unirationality for all but
three cases:

• X4: quartics in P4;
• V1: double covers of a cone over the Veronese surface in P5

famified in a surface of degree 6;
• W2: double covers of P3 ramified in a surface of degree 6.

We now sketch the proof of potential density for quartics from [HT00a],
the case of V1 is treated by similar techniques in [BT99].

The threefold X4 contains a 1-parameter family of lines. Choose a
line M (defined over some extension of the ground field, if necessary)
and consider the 1-parameter family of hyperplanes P3

t ⊂ P4 containing
M . The generic hyperplane section St := P3

t ∩X4 is a quartic surface
with a line. Now we would like to argue as in the Example 3.4.3.
We need to make sure that M is nontorsion in St for a dense set of
t ∈ P1. This will be the case for general X4 and M . The analysis of all
exceptional cases requires care.

Remark 3.5.1. It would be interesting to have further (nontrivial)
examples of birationally rigid Fano varieties. Examples of Calabi–Yau
varieties over functions fields of curves, with geometric Picard number
one and dense sets of rational points have been constructed in [HT08];
no nontrivial examples Calabi-Yau threefolds with a potentially dense
set of rational points are known at present.
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Theorem 3.5.2. [HT00b] Let X be a K3 surface over a field F , of
degree 2(n− 1). Then rational points on X [n] are potentially dense.

The proof relies on the existence of an abelian fibration

Y := X [n] → Pn,
with a nontorsion multisection which has a potentially dense set of
rational points. Numerically, such fibrations are predicted by square-
zero classes in the Picard group Pic(Y ), with respect to the Beauville–
Bogomolov form (see Section 1.12). Geometrically, the fibration is the
degree n Jacobian fibration associated to hyperplane sections of X.

Theorem 3.5.3. [AV07] Let Y be the Fano variety of lines on a general
cubic fourfold X3 ⊂ P5 over a field of characteristic zero. Then rational
points on Y are potentially dense.

Sketch of proof. The key tool is a rational endomorphism φ : Y → Y
analyzed in [Voi04]: let l on X3 ⊂ P5 be a general line and P2

l ⊂ P5 the
unique plane everywhere tangent to l. Let [l] ∈ Y be the corresponding
point and put φ([l]) := [l′], where l′ is the residual line in X3.

Generically, one can expect that the orbit {φn([l])}n∈N is Zariski
dense in Y . This was proved by Amerik and Campana in [AC08], over
uncountable ground fields. Over countable fields, one faces the diffi-
culty that the countably many exceptional loci could cover all algebraic
points of Y . Amerik and Voisin were able to overcome this obstacle over
number fields. Rather than proving density of {φn([l])}n∈N they find
surfaces Σ ⊂ Y , birational to abelian surfaces, whose orbits are dense
in Y . The main effort goes into showing that one can choose sufficiently
general Σ defined over Q̄, provided that Y is sufficiently general and
still defined over a number field. In particular, Y has geometric Picard
number one. A case by case geometric analysis excludes the possibility
that the Zariski closure of {φn(Σ)}n∈N is a proper subvariety of F . �

Theorem 3.5.4. [HT] Let Y be the variety of lines of a cubic fourfold
X3 ⊂ P5 which contains a cubic scroll T . Assume that the hyperplane
section of X3 containing T has exactly 6 double points in linear general
position and that X3 does not contain a plane. If X3 and T are defined
over a field F then Y (F ) is Zariski dense.

Remark 3.5.5. In higher dimensions, (smooth) hypersurfaces Xd ⊂
Pn of degree d represent a major challenge. The circle method works
well when

n� 2d
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while the geometric methods for proving unirationality require at least
a super-exponential growth of n (see [HMP98] for a contruction of a
unirational parametrization).

3.6. Approximation. Let X be smooth and projective. Assume that
X(F ) is dense in each X(Fv). A natural question is whether or not
X(F ) is dense in the adeles X(AF ). This weak approximation may be
obstructed globally, by the Brauer–Manin obstruction, as explained in
Section 2.4. There are examples of such obstructions for Del Pezzo
surfaces in degree ≤ 4, for conic bundles over P2 [Har96], and for K3
surfaces as in the following example.

Example 3.6.1. [Wit04] Let E → P1 be the elliptic fibration given by

y2 = x(x− g)(x− h) where g(t) = 3(t− 1)3(t+ 3) and h = g(−t).

Its minimal proper regular model X is an elliptic K3 surface that
fails weak approximation. The obstruction comes from transcenden-
tal classes in the Brauer group of X.

The theory is parallel to the theory of the Brauer–Manin obstruction
to the Hasse principle, up to a certain point. The principal new feature
is:

Theorem 3.6.2. [Min89] Let X be a smooth projective variety over
a number field with a nontrivial geometric fundamental group. Then
weak approximation fails for X.

This applies to Enriques surfaces [HS05].

Among open questions, of particular interest are varieties which are
unirational over the ground field F . For example, weak approximation
is unknown for the diagonal cubic surface

x3 + y3 + z3 + dt3 = 0, d ∈ F,

even for F = C(B), the function field of a curve. Other natural exam-
ples are quotients V/G, where G is a group and V a G-representation,
discussed in Section 1.2.

4. Counting problems

Here we consider projective algebraic varieties X ⊂ Pn defined over
a number field F . We assume that X(F ) is Zariski dense. We seek to
understand the distribution of rational points with respect to heights.



VARIETIES WITH MANY RATIONAL POINTS 39

4.1. Heights. First we assume that F = Q. Then we can define a
height integral (respectively rational points) on the affine (respectively
projective space) as follows

Haffine : An(Z) = Zn → R≥0

x = (x1, . . . , xn) 7→ maxj(|xj|)
H : Pn(Q) = (Zn+1

prim \ 0)/± → R>0

x = (x0, . . . , xn) 7→ maxj(|xj|).
This induces heights on points of subvarieties of affine or projective
spaces. In some problems it is useful to work with equivalent norms,

e.g.,
√∑

x2
j instead of maxj(|xj|). Such choices are referred to as a

change of metrization. A more conceptual definition of heights and
adelic metrizations is given in Section 4.8

4.2. Counting functions. For a subvariety X ⊂ Pn put

N(X,B) := #{x ∈ X(Q) |H(x) ≤ B}.

What can be said about

N(X,B), for B→∞ ?

Main questions here concern:

• (uniform) upper bounds,
• asymptotic formulas,
• geometric interpretation of the asymptotics.

By the very definition, N(X,B) depends on the projective embedding
of X. For X = Pn over Q, with the standard embedding via the line
bundle O(1), we get

N(Pn,B) ∼ 1

ζ(n+ 1)
· τ∞ · Bn+1, B →∞.

But we may also consider the Veronese re-embedding

Pn → PN
x 7→ xI , |I| = d,

e.g.,
P1 → P2

(x0 : x1) 7→ (x2
0 : x0x1 : x2

1)

The image y0y2 = y2
1 has ∼ B points of height ≤ B. Similarly, the

number of rational points on height ≤ B in the O(d) embedding of Pn
will be ∼ B(n+1)/d.
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More generally, if F/Q is a finite extension, put

Pn(F ) → R>0

x 7→
∏

v max(|xj|v).

Theorem 4.2.1. [Sch79]

(4.1) N(Pn(F ),B) ∼ hFRF (n+ 1)r1+r2−1

wF ζF (n+ 1)

(
2r1(2π)r2√

disc(F )

)n+1

Bn+1,

where

• hF is the class number of F ;
• RF the regulator;
• r1 (resp. r2) the number of real (resp. pairs of complex) embed-

dings of F ,
• disc(F ) the discriminant;
• wF the number of roots of 1 in F ;
• ζF the zeta function of F .

With this starting point, one may try to prove asymptotic formulas of
similar precision for arbitrary projective algebraic varieties X, at least
under some natural geometric conditions. This program was initiated
in [FMT89] and it has rapidly grown in recent years.

4.3. Upper bounds. A first step in understanding growth rates of
rational points of bounded height is to obtain uniform upper and lower
bounds, with effective control of error terms. Results of this type are
quite valuable in arguments using fibration structures. Here is a sam-
ple:

• [BP89], [Pil96]: Let X ⊂ A2 be a geometrically irreducible
affine curve. Then

#{x ∈ X(Z) |H(x) ≤ B} �deg(X) B
1

deg(X) log(B)2deg(X)+3.

• [EV05]: Let X ⊂ P2 be a geometrically irreducible curve of
genus ≥ 1. Then there is a δ > 0 such that

N(X(Q),B)�deg(X),δ B
2

deg(X)
−δ.

Fibering and using estimates for lower dimensional varieties, one has:

Theorem 4.3.1. [Pil95] Let X ⊂ Pn be a geometrically irreducible
variety, and ε > 0. Then

N(X(Q),B)�deg(X),dim(X),ε Bdim(X)+ 1
deg(X)

+ε
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The next breakthrough was accomplished in [HB02]; further refine-
ments combined with algebro-geometric tools lead to

Theorem 4.3.2 ([BHBS06], [Sal07]). Let X ⊂ Pn be a geometrically
irreducible variety, and ε > 0. Then

N(X(Q),B)�deg(X),dim(X),ε


B

dim(X)− 3
4

+ 5
3
√

3
+ε

deg(X) = 3

B
dim(X)− 2

3
+ 3

2
√

deg(X)
+ε

deg(X) = 4, 5
Bdim(X)+ε deg(X) ≥ 6

A survey of results on upper bounds, with detailed proofs, is in
[HB06].

4.4. Lower bounds. Let X be a projective variety over a number
field F and let L be a very ample line bundle on X. This gives an
embedding X ↪→ Pn. We fix a height H on Pn(F ) and consider the
counting function

N(X(F ),−KX ,B) := #{x ∈ X(F ) |HL(x) ≤ B},
with respect to the induced height HL (see Section 4.8 for more expla-
nations on heights).

Lemma 4.4.1. Let X be a smooth Fano variety over a number field
F and Y := BlZ(X) a blowup in a smooth subvariety Z = ZF of
codimension ≥ 2. If N(X◦(F ),−KX ,B) � B1, for all dense Zariski
open X◦ ⊂ X then the same holds for Y :

N(Y ◦(F ),−KY ,B)� B1.

Proof. Let π : Y → X be the blowup. We have

−KY = π∗(−KX)−D
with supp(D) ⊂ E, the exceptional divisor. It remains to use the fact
that HD(x) is uniformly bounded from below on (X \D)(F ) (see, e.g.,
[BG06, Proposition 2.3.9]), so that

N(π−1(X◦)(F ),−KY ,B) ≥ c · N(X◦(F ),−KX ,B),

for some constant c > 0 and an appropriate Zariski open X◦ ⊂ X. �

In particular, split Del Pezzo surfaces Xr satisfy the lower bound of
Conjecture 4.10.1

N(Xr(F ),−KXr ,B)� B1.

Finer lower bounds, in some nonsplit cases have been proved in [SSD98]:

N(X◦6 (F ),−KX6 ,B)� B1 log(B)r−1,



42 YURI TSCHINKEL

if X6 is a cubic surface with at least two skew lines defined over F . This
gives support to Conjecture 4.10.2. The following theorem provides
evidence for Conjecture 4.10.1 in dimension 3.

Theorem 4.4.2. [Man93] Let X be a Fano threefold over a number
field F0. For every Zariski open subset X◦ ⊂ X there exists a finite
extension F/F0 such that

N(X(F ),−KX ,B)� B1

This relies on the classification of Fano threefolds (cf. [IP99b], [MM82],
[MM86]). One case was missing from the classification when [Man93]
was published; the Fano threefold obtained as a blowup of P1×P1×P1 is
a curve of tri-degree (1, 1, 3) [MM03]. Lemma 4.4.1 proves the expected
lower bound in this case as well.

4.5. Finer issues. At the next level of precision we need to take into
account more refined arithmetic and geometric data. Specifically, we
need to analyze the possible sources of failure of the heuristic N(B) ∼
Bn+1−d in Section 2.2:

• Local or global obstructions : as in
x2

0 + x2
1 + x2

2 = 0 or x3
0 + 4x3

1 + 10x3
2 + 25x3

3 = 0;
• Singularities : the surface x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
1 = x0x1x2x3 has

∼ B3/2 points of height ≤ B, on every Zariski open subset, too
many!
• Accumulating subvarieties : On x3

0 + x3
1 + x3

2 + x3
3 = 0 there are

∼ B2 points on Q-lines and and provably O(B4/3+ε) points in
the complement [HB97]. The expectation is B log(B)3, over Q.
Similar effects persist in higher dimensions. A quartic X4 ⊂
P4 contains a 1-parameter family of lines, each contributing
∼ B2 to the asymptotic, while the expectation is ∼ B. Lines
on a cubic X3 ⊂ P4 are parametrized by a surface, which is of
general type. We expect ∼ B2 points of height ≤ B on the cubic
threefold, and on each line. In [BG06, Theorem 11.10.11] it is
shown that

Nlines(B) ∼ cB2, as B→∞,
where the count is over F -rational points on lines defined over
F , and the constant c is a converging sum of leading terms of
contributions from each line of the type (4.1). In particular,
each line contributes a positive density to the main term. On
the other hand, one expects the same asymptotic ∼ B2 on the
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complement of lines, with the leading term a product of local
densities. How to reconcile this? The forced compromise is
to discard such accumulating subvarieties and to hope that for
some Zariski open subset X◦ ⊂ X, the asymptotic of points of
bounded height does reflect the geometry of X.

These finer issues are particularly striking in the case of K3 surfaces.
They may have local and global obtructions to the existence of rational
points, they may fail the heuristic asymptotic, and they may have
accumulating subvarieties, even infinitely many:

Conjecture 4.5.1. Let X be a K3 surface over a number field F . Let
L be a polarization, ε > 0 and Y = Y (ε, L) be the union of all F -
rational curves C ⊂ X (i.e., curves that are isomorphic to P1 over F )
and have L-degree ≤ 2/ε. Then

N(X,L,B) = N(Y, L,B) +O(Bε), as B →∞.

Theorem 4.5.2. [McK00] Let X → P1×P1 be a double cover ramified
over a curve of bidegree (4, 4). Then there exists an open cone Λ ⊂
Λample(X) such that for every L ∈ Λ there exists a δ > 0 such that

N(X,L,B) = N(Y, L,B) +O(B2/d−δ), as B→∞,

where d is the minimal L-degree of a rational curve on X and Y is the
union of all F -rational curves of degree d.

This theorem exhibits the first layer of an arithmetic stratification
predicted in Conjecture 4.5.1.

4.6. The circle method. Let f ∈ Z[x0, . . . , xn] be a homogeneous
polynomial of degree d such that the hypersurface Xf ⊂ Pn is nonsin-
gular. Let

Nf (B) := #{x ∈ Zn | f(x) = 0 ‖x‖ ≤ B}
be the counting function. In this section we sketch a proof of the
following

Theorem 4.6.1. [Bir62] Assume that n ≥ 2d(d+ 1). Then

(4.2) Nf (B) = Θ · Bn+1−d(1 + o(1)) B→∞,

where

Θ =
∏
p

τp · τ∞ > 0,

provided f(x) = 0 is solvable in Zp, for all p, and in R.
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The constants τp and τ∞ admit an interpretation as local densitities;
these are explained in a more conceptual framework in Section 4.12.

Substantial efforts have been put into reducing the number of vari-
ables, especially for low degrees. Another direction is the extension of
the method to systems of equations [Sch85] or to more general number
fields [Ski97].

We now outline the main steps of the proof of the asymptotic for-
mula 4.2. The first step is the introduction of a “delta”-function: for
x ∈ Z we have ∫ 1

0

e2πiαxdα =

{
0 if x 6= 0
1 otherwise

Now we can write

(4.3) Nf (B) =

∫ 1

0

S(α)dα

where

S(α) :=
∑

x∈Zn+1, ‖x‖≤B

e2πiαf(x).

The function S(α) is wildly oscillating (see Figure 4.6), with peaks at
α = a/q, with small q. Indeed, the probability that f(x) is divisible by
q is higher for small q, and each such term contributes 1 to S(α). The
idea of the circle method is to analyze the asymptotic of the integral
in equation 4.3, for B→∞, by extracting the contributions of α close
to rational numbers a/q with small q, and finding appropriate bounds
for integrals over the remaining intervals.

More precisely, one introduces the major arcs

M :=
⋃

(a,q)=1, q≤B∆

Ma,q,

where ∆ > 0 is a parameter to be specified, and

Ma,q := {α | |α− a

q
| ≤ B−d+δ}.

The minor arcs are the complement:

m := [0, 1] \M.

The goal is to prove the bound

(4.4)

∫
m

S(α)dα = O(Bn−d−ε), for some ε > 0,
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Figure 1. Oscillations of S(α)

and the asymptotic

(4.5)

∫
M

S(α)dα ∼
∏
p

τp · τ∞ · Bn+1−d for B→∞.

Remark 4.6.2. Modern refinements employ “smoothed out” intervals,
i.e., the delta function of an interval in the major arcts is replaced by
a smooth bell curve with support in this interval. In Fourier analysis,
“rough edges” translate into bad bounds on the dual side, and should
be avoided. An implementation of this idea, leading to savings in the
number of variables can be found in [HB83].

There are various approaches to proving upper bounds in equa-
tion 4.4; most are a variant or refinement of Weyl’s bounds (1916)
[Wey16]. Weyl considered the following exponential sums

s(α) :=
∑

0≤x≤B

e2πiαxd ,
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The main observation is that |s(α)| is “small”, when |α− a/q| “large”.
This is easy to see when d = 1; summing the geometric series we get

|s(α)| = |1− e
2πiα(B+1)

1− e2πiα
| � 1

〈〈α〉〉
,

where 〈〈α〉〉 is the distance to the nearest integer. In general, Weyl’s
differencing technique is applied to reduce the degree, to eventually
arrive at a geometric series.

We turn to major arcs. Let

α =
a

q
+ β

with β very small, and getting smaller as a function of B. Here we will
assume that |β| ≤ B−d+δ′ , for some small δ′ > 0. We put x = qy + z,
with z the corresponding residue class modulo q, and obtain

S(α) =
∑

x∈Zn+1, ‖x‖≤B

e2πia
q
f(x)e2πiβf(x)

=
∑
‖x‖≤B

e2πia
q
f(qy+z)e2πiβf(x)

=
∑
z

e2πia
q
f(z)(

∑
‖y‖≤B/q

e2πiβf(x))

=
∑
z

e2πia
q
f(z)

∫
‖y‖≤B/q

e2πiβf(x)dy

=
∑
z

e2πia
q
f(z)

qn+1

∫
‖x‖≤B

e2πiβf(x)dx,

where dy = qn+1dx. The passage
∑
7→
∫

is justified for our choice of
small β - the difference will be adsorbed in the error term in (4.2). We
have obtained∫ 1

0

S(α)dα ∼
∑
a,q

∑
z

e2πia
q
f(z)

qn+1
·
∫
|β|≤B−d+δ

∫
‖x‖≤B

e2πiβf(x)dxdβ.

We first deal with the integral on the right, called the singular integral.
Put β′ = βBd and x′ = x/B. The change of variables leads to∫
|β|≤ 1

Bd−δ

dβ

∫
‖x‖≤B

e2πiβBdf(x
B

)Bn+1d(
x

B
) = Bn+1−d

∫
|β′|≤Bδ

∫
‖x′‖≤1

e2πiβ′f(x′)d(x′).
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We see the appearance of the main term Bn−d and the density

τ∞ :=

∫ 1

0

dβ′
∫
‖x‖≤1

e2πiβ′f(x′)dx′.

Now we analyze the singular integral

σQ :=
∑
a,q

∑
z

e2πia
q
f(z)

qn
,

where the outer sum runs over positive coprime integers a, q, a < q and
q < Q, and the inner sum over residue classes z ∈ (Z/q)n+1. This sum
has the following properties

(1) multiplicativity in q, in particular we have

σ :=
∏
p

(
∞∑
i=0

A(pi)).

with σQ → σ, for Q→∞, (with small error term),
(2)

k∑
i=0

A(pi)

pi(n+1)
=
%(f, pk)

pkn
,

where

%(f, pk) := #{ z mod pk | f(z) = 0 mod pk }.

Here, a discrete version of equation (4.3) comes into play:

#{solutions mod pk} =
1

pk

pk−1∑
a=0

∑
z

e
2πi

af(z)

pk
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However, our sums run over a with (a, p) = 1. A rearranging of terms
leads to

%(f, pk)

pkn
=

k∑
i=0

∑
(a,pk)=pi

∑
z

1

pk(n+1)
e

2πi a
pk
f(z)

=
k∑
i=0

∑
( a
pi
,pk−i)=1

∑
z

1

pk(n+1)
e

2πi
a/pi

pk−i
f(z) · p(n+1)i

=
k∑
i=0

1

p(n+1)(k−i)

∑
(a,pk−i)=1

∑
z

e
2πi a

pk−i
f(z)

=
k∑
i=0

1

p(n+1)(k−i) · A(pk−i).

In conclusion,

(4.6) σ =
∏
p

τp, where τp = lim
k→∞

%(f, pk)

pnk
.

As soon as there is at least one (nonsingular) solution f(z) = 0 mod p,
τp 6= 0, and in fact, for almost all p,

%(f, pk)

pnk
=
%(f, p)

pn
,

by Hensel’s lemma. Moreover, if τp 6= 0 for all p, the Euler product in
equation (4.6) converges.

Let us illustrate this in the example of Fermat type equations

f(x) = a0x
d + · · ·+ anx

d
n = 0.

Using properties of Jacobi sums one can show that

%(f, p) = pn + E, with E = O((p− 1)p(n−1)/2),

so that ∣∣∣∣%(f, p)

pn−1
− 1

∣∣∣∣ ≤ C

p(n+1)/2
.

The corresponding Euler product∏
p

%(f, p)

pn
�
∏
p

(1 +
C

p(n+1)/2
)

is convergent.
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Some historical background: the circle method was firmly established
in the series of papers of Hardy and Littlewood Partitio numerum.
They comment: “A method of great power and wide scope, applicable
to almost any problem concerning the decomposition of integers into
parts of a particular kind, and to many against which it is difficult to
suggest any other obvious method of attack.”

4.7. Function fields: heuristics. Here we present Batyrev’s heuris-
tic arguments from 1987, which lead to Conjecture 4.10.4.

Let p be a prime and put q = pn. Let Λ be a convex n-dimensional
cone in Rn with vertex at 0. Let

f1, f2 : Rn → R
be two linear functions such that

• fi(Zn) ⊂ Z;
• f2(x) > 0 for all x ∈ Λ \ {0};
• there exists an x ∈ Λ \ {0} such that f(x) > 0.

Put
M = ∪λMλ, λ ∈ Zn ∩ Λ

and
|Mλ| := qmax(0,f1(λ)), ϕ(m) := qf2(λ), for m ∈Mλ.

Then the series

F (s) =
∑

λ∈Λ∩Zn

|Mλ|
qsf2(λ)

converges for
<(s) > a := max

x∈Λ
(f1(x)/f2(x)) > 0.

What happens around s = a? Choose an ε > 0 and decompose the
cone

Λ := Λ+
ε ∪ Λ−ε ,

where
Λ+
ε := {x ∈ Λ | f1(x)/f2(x) ≥ a− ε}

Λ−ε := {x ∈ Λ | f1(x)/f2(x) < a− ε}
Therefore,

F (s) = F+
ε + F−ε ,

where F−ε converges absolutely for <(s) > a− ε.
Now we make some assumptions concerning Λ: suppose that for all

ε ∈ Q>0, the cone Λ+
ε is a rational finitely generated polyhedral cone.

Then
Λa
ε := {x | f1(x)/f2(x) = a}
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is a face of Λ+
ε , and thus also finitely generated polyhedral.

Lemma 4.7.1. There exists a function Gε(s), holomorphic for <(s) >
a− ε, such that

Fε(s) =
Gε(s)

(s− a)b
,

where b is the dimension of the face Λa
ε .

Proof. For y ∈ Q>0 we put

P (y) := {x |x ∈ Λ, f2(x) = y}.

Consider the expansion

F (s) =
∑
y∈N

∑
λ∈P (y)∩Zn

qf1(λ)−sf2(λ).

Replacing by the integral, we obtain (with w = yz)

=

∫ ∞
0

dy

(∫
P (y)

qf1(w)−sf2(w)dw

)
=

∫ ∞
0

dy

(∫
P (1)

yn−1qf1(w)−sf2(y)dz

)
=

∫
P (1)

dz

∫ ∞
0

yn−1q(f1(w)−s)ydy

=

∫
P (1)

dz
1

(s− f1(z))n

∫ ∞
0

un−1q−udu

=
Γ(n)

(log(q))n

∫
P (1)

1

(s− f1(z))n
dz.

(4.7)

It is already clear that we get a singularity at s = max(f1(z)) on P (1),
which is a. In general, let f be a linear function and

Φ(s) :=

∫
∆

(s− f(x))−ndΩ

where ∆ is a polytope of dimension n−1. Then Φ is a rational function
in s, with an asymptotic at s = a given by

volf,a
(b− 1)!

(n− 1)!
(s− a)−b,

where ∆f,a is the polytope ∆ ∩ {f(x) = a}, volf,a is its volume and
b = 1 + dim(∆f,a). �
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Let C be a curve of genus g over the finite field Fq and F its function
field. Let X be a variety over Fq of dimension n. Then V := X × S is
a variety over F . Every F -rational point x of V gives rise to a section
x̃ of the map V → S. We have a pairing

A1(V )× An(V )→ Z
between the groups of (numerical) equivalence classes of codimension
1-cycles and codimension n-cycles. We have

An(V ) = An(X)⊗ A1(S)⊕ An−1(X)⊗ A0(S)

and
A1 = A1(X)⊕ Z
L = (LX , `)
−KV = (−KX , 2− 2g).

Let L be a very ample line bundle on V . Then

q(L,x̃)

is the height of the point x with respect to L. The height zeta function
takes the form

Z(s) =
∑

x∈V (F )

q−(L,x̃)s

=
∑

y∈An(X)

Ñ(q)a−[(LX ,y)+`]s,

where
Ñ(q) := #{x ∈ V (F ) | cl(x) = y}.

We proceed to give some heuristic(!) bound on Ñ(q). The cycles in a
given class y are parametrized by an algebraic variety My and

dim(My(x̃)) ≥ χ(NV |x̃)
(the Euler characteristic of the normal bundle). More precisely, the
local ring on the moduli space is the quotient of a powerseries ring
with h0(NV |x̃) generators by h1(NV |x̃) relations. Our main heuristic
assumption is that

Ñ(q) ∼ qdim(My) ∼ qχ(NV |x̃).

This assumption fails, for example, for points contained in “excep-
tional” (accumulating) subvarieties.

By the short exact sequence

0→ Tx̃ → TV |x̃ → NV |x̃ → 0
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we have
χ(TV |x̃) = (−KV , x̃) + (n+ 1)χ(Ox̃)
χ(NV |x̃) = (−KX , cl(x)) + nχ(Ox̃)

From now on we consider a modified height zeta function

Zmod(s) :=
∑

qχ(NV |x̃)−(L,x̃)s.

We observe that its analytic properties are determined by the ratio
between two linear functions

(−KX , ·) and (L, ·).
The relevant cone Λ is the cone spanned by classes of (maximally mov-
ing) effective curves. The finite generation of this cone for Fano vari-
eties is one of the main results of Mori’s theory. We conclude that

N(X◦, L,B) ∼ Ba(log(B))b−1,

where
a = a(L) = max

z∈Λ
((−KX , z)/(L, z))

and b = b(L) is the dimension of the face of the cone where this maxi-
mum is achieved.

4.8. Metrizations of line bundles. In this section we discuss a re-
fined theory of height functions, based on the notion of an adelically
metrized line bundle.

Let F be a number field and disc(F ) the discriminant of F (over Q).
The set of places of F will be denoted by Val(F ). We shall write v|∞
if v is archimedean and v - ∞ if v is nonarchimedean. For any place
v of F we denote by Fv the completion of F at v and by ov the ring
of v-adic integers (for v - ∞). Let qv be the cardinality of the residue
field Fv of Fv for nonarchimedean valuations. The local absolute value
| · |v on Fv is the multiplier of the Haar measure, i.e., d(axv) = |a|vdxv
for some Haar measure dxv on Fv. We denote by A = AF =

∏′
v Fv the

adele ring of F . We have the product formula∏
v∈Val(F )

|a|v = 1, for all a ∈ F ∗.

Definition 4.8.1. Let X be an algebraic variety over F and L a line
bundle on X. A v-adic metric on L is a family (‖ · ‖x)x∈X(Fv) of v-adic
Banach norms on the fibers Lx such that for all Zariski open subsets
X◦ ⊂ X and every section f ∈ H0(X◦, L) the map

X◦(Fv)→ R, x 7→ ‖f‖x,
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is continuous in the v-adic topology on X◦(Fv).

Example 4.8.2. Assume that L is generated by global sections. Choose
a basis (fj)j∈[0,...,n] of H0(X,L) (over F ). If f is a section such that
f(x) 6= 0 then define

‖f‖x := max
0≤j≤n

(| fj
f

(x)|v)−1,

otherwise ‖0‖x := 0. This defines a v-adic metric on L. Of course, this
metric depends on the choice of (fj)j∈[0,...,n].

Definition 4.8.3. Assume that L is generated by global sections. An
adelic metric on L is a collection of v-adic metrics, for every v ∈ Val(F ),
such that for all but finitely many v ∈ Val(F ) the v-adic metric on L
is defined by means of some fixed basis (fj)j∈[0,...,n] of H0(X,L).

We shall write ‖ · ‖A := (‖ · ‖v) for an adelic metric on L and call
a pair L = (L, ‖ · ‖A) an adelically metrized line bundle. Metrizations
extend naturally to tensor products and duals of metrized line bundles,
which allows to define adelic metrizations on arbitrary line bundles L
(on projective X): represent L as L = L1⊗L−1

2 with very ample L1 and
L2. Assume that L1, L2 are adelically metrized. An adelic metrization
of L is any metrization which for all but finitely many v is induced
from the metrizations on L1, L2.

Definition 4.8.4. Let L = (L, ‖ · ‖A) be an adelically metrized line
bundle on X and f an F -rational section of L. Let X◦ ⊂ X be the
maximal Zariski open subset of X where f is defined and does not
vanish. For all x = (xv)v ∈ X◦(A) we define the local

HL,f,v(xv) := ‖f‖−1
xv

and the global height function

HL(x) :=
∏

v∈Val(F )

HL,f,v(xv).

By the product formula, the restriction of the global height to X◦(F )
does not depend on the choice of f.

Example 4.8.5. For X = P1 = (x0 : x1) one has Pic(X) = Z, spanned
by the class L = [(1 : 0)]. For all f = x0/x1 ∈ Ga(A) we define

HL,f,v(xv) = max(1, |f|v).
The restriction of HL =

∏
vHL,f,v to Ga(F ) ⊂ P1 is the usual height

on P1 (with respect to the usual metrization of L = O(1)).
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Example 4.8.6. Let X be an equivariant compactification of a unipotent
group G and L a very ample line bundle on X. The space H0(X,L), a
representation space for G, has a unique G-invariant section f, modulo
scalars. Indeed, if we had two nonproportional sections, their quotient
would be a character of G, which are trivial.

Fix such a section. We have f(gv) 6= 0, for all gv ∈ G(Fv). Put

HL,f,v(gv) = ‖f(gv)‖−1 and HL,f =
∏
v

HL,f,v.

By the product formula, the global height is independent of the choice
of f.

4.9. Height zeta functions. Let X be an algebraic variety over a
global field F , L = (L, ‖ · ‖A) an adelically metrized ample line bundle
on X, HL a height function associated to L, X◦ a subvariety of X,
aX◦(L) the convergence abscissa of the height zeta function

ZX◦(L, s) :=
∑

x∈X◦(F )

HL(x)−s.

Proposition 4.9.1.

(1) The value of aX◦(L) depends only on the class of L in NS(X).
(2) Either 0 ≤ aX◦(L) <∞, or aX◦(L) = −∞, the latter possibility

corresponding to the case of finite X◦(F ). If aX◦(L) > 0 for one
ample L then this is so for every ample L.

(3) aX◦(Lm) = 1
m
aX◦(L). In general, aX◦(L) extends uniquely to

a continuous function on Λnef(X)◦, which is inverse linear on
each half-line unless it identically vanishes.

Proof. All statements follow directly from the standard properties of
heights. In particular,

aX◦(L) ≤ a(Pn(F ),O(m)) =
n+ 1

m

for some n,m. If ZX◦(L, s) converges at some negative s, then it must
be a finite sum. Since for two ample heights H,H′ we have

cHm < H′ < c′Hn, c, c′,m, n > 0,

the value of a can only be simultaneously positive or zero. Finally, if L
and L′ are close in the (real) topology of NS(V )R, then L−L′ is a linear
combination of ample classes with small coefficients, and so aX◦(L) is
close to aX◦(L′). �
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Notation 4.9.2. By Property (1) of Proposition 4.9.1, we may write
aX◦(L) = aX◦(L).

Example 4.9.3. For an abelian variety X and ample line bundle L we
have

HL(x) = exp(q(x) + l(x) +O(1)),

where q is a positive definite quadratic form on X(F ) ⊗ Q and l is a
linear form. It follows that aX(L) = 0, although X(F ) may well be
Zariski dense in X. Also

N(X,L,B) ∼ log(B)r/2

where r = rkX(F ). Hence for a = 0, the power of log(B) in principle
cannot be calculated geometrically: it depends on the arithmetic of X
and F . The hope is that for a > 0 the situation is more stable.

Definition 4.9.4. The arithmetic hypersurface of linear growth is

Σarith
X◦ := {L ∈ NS(X)R | aX◦(L) = 1}.

Proposition 4.9.5.

• If aX◦(L) > 0 for some L, then Σarith
X◦ is nonempty and inter-

sects each half-line in Λeff(X)◦ in exactly one point.
• Σ<

X◦ := {L | aX◦(L) < 1} is convex.

Proof. The first statement is clear. The second follows from the Hölder
inequality: if

0 < σ, σ′ ≤ 1 and σ + σ′ = 1

then

H−σL (x)Hσ′

L (x) ≤ σHL(x)−1 + σ′HL(x)−1

so that from L,L′ ∈ Σ<
X◦ it follows that σL+ σ′L′ ∈ Σ<

X◦ . �

When rk NS(X) = 1, ΣX◦ is either empty, or consists of one point.
Schanuel’s theorem 4.2.1 implies that for Pn(F ), this point is the anti-
canonical class.

Definition 4.9.6. A subvariety Y ⊂ X◦ ⊂ X is called point accumu-
lating, or simply accumulating (in X◦ with respect to L), if

aX◦(L) = aY (L) > aX◦\Y (L).

It is called weakly accumulating, if

aX◦(L) = aY (L) = aX◦\Y (L).
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Example 4.9.7. If we blow up an F -point of an abelian variety X, the
exceptional divisor will be an accumulating subvariety in the resulting
variety, although to prove this we must analyze the height with respect
to the exceptional divisor, which is not quite obvious.

If X := Pn1 × · · · × Pnk , with nj > 0, then every fiber of a partial
projection is weakly accumulating with respect to the anticanonical
class.

The role of accumulating subvarieties is different for various classes
of varieties, but we will generally try to pinpoint them in a geomet-
ric way. For example, on Fano varieties we need to to remove the
−KX-accumulating subvarieties to ensure stable effects, e.g., the lin-
ear growth conjecture. Weakly accumulating subvarieties sometimes
allow to obtain lower bounds for the growth rate of X(F ) by analyzing
subvarieties of smaller dimension (as in Theorem 4.4.2).

4.10. Manin’s conjecture. The following picture emerged from the
analysis of examples such as Pn, flag varieties, complete intersections
of small degree [FMT89], [BM90].

Let X be a smooth projective variety with ample anticanonical class
over a number field F0. The conjectures below describe the asymptotic
of rational points of bounded height in a stable situation, i.e., after
a sufficiently large finite extension F/F0 and passing to a sufficiently
small Zariski dense subset X◦ ⊂ X.

Conjecture 4.10.1 (Linear growth conjecture). One has

(4.8) B1 � N(X◦(F ),−KX ,B)� B1+ε.

Conjecture 4.10.2 (The power of log).

(4.9) N(X◦(F ),−KX ,B) ∼ B1 log(B)r−1,

where r = rk Pic(XF ).

Conjecture 4.10.3 (General polarizations / linear growth). Every
smooth projective X with −KX ∈ Λbig(X) has a dense Zariski open
subset X◦ such that

Σarith
X◦ = Σgeom

X ,

(see Definitions 4.9.4, (1.7)).

The next level of precision requires that Λeff(X) is a finitely generated
polyhedral cone. By Theorem 1.1.5, this holds when X is Fano.



VARIETIES WITH MANY RATIONAL POINTS 57

Conjecture 4.10.4 (General polarizations / power of log). Let L be an
ample line bundle and a(L), b(L) the constants defined in Section 1.4.
Then

(4.10) N(X◦(F ), L,B) ∼ Ba(L) log(B)b(L)−1, B→∞.

4.11. Counterexamples. At present, no counterexamples to Conjec-
ture 4.10.1 are known. However, Conjecture 4.10.2 fails in dimension
3. The geometric reason for this failure comes from Mori fiber spaces,
more specifially from “unexpected” jumps in the rank of the Picard
group in fibrations.

Let X ⊂ Pn be a smooth hypersurface. We know, by Lefschetz, that
Pic(X) = Pic(Pn) = Z, for n ≥ 4. However, this may fail when X has
dimension 2. Moreover, the variation of the rank of the Picard group in
a family of surfaces Xt over a number field F may be nontrivial, even
when geometrically, i.e., over the algebraic closure F̄ of F , the rank is
constant.

Concretely, consider a hypersurface X ⊂ P3
x× P3

y given by a form of
bidegree (1,3):

3∑
j=0

xjy
3
j = 0.

By Lefschetz, the Picard group Pic(X) = Z2, with the basis of hyper-
plane sections of P3

x, resp. P3
y, and the anticanonical class is computed

as in Example 1.1.2

−KX = (3, 1).

Projection onto P3
y exhibits X as a P2-fibration over P3. The second

Mori fiber space structure on X is given by projection to P3
x, with fibers

diagonal cubic surfaces. The restriction of −KX to each (smooth) fiber
Xx is the anticanonical class of the fiber.

The rank rk Pic(Xx) varies between 1 and 7. For example, if F
contains

√
−3, then the rk Pic(Xx) = 7 whenever all xj are cubes in

F . The lower bounds in Section 4.4 show that

N(X◦x,−KXx ,B) ∼ B log(B)3

for all such fibers, all dense Zariski open subsets X◦x and all F . On the
other hand, Conjecture 4.10.2 implies that

N(X◦,−KX ,B) ∼ B log(B),

for some Zariski open X◦ ⊂ X, over a sufficiently large number field F .
However, every Zariski open subset X◦ ⊂ X intersects infinitely many
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fibers Xx with rk Pic(Xx) = 7 in a dense Zariski open subset. This is
a contradiction.

4.12. Peyre’s refinement. The refinement concerns the conjectured
asymptotic formula (4.9). Fix a metrization of −KX = (−KX , ‖ · ‖A).
The expectation is that

N(X◦(F ),−KX ,B) = c(−KX) ·B1 log(B)r−1(1 + o(1)), as B→∞,

with r = rk Pic(X). Peyre’s achievement was to give a conceptual
interpretation of the constant c(−KX). Here we explain the key steps
of his construction.

Let F be a number field and Fv its v-adic completion. Let X be
a smooth algebraic variety over F of dimension d equipped with an
adelically metrized line bundle K = KX = (KX , ‖ · ‖A). Fix a point
x ∈ X(Fv) and let x1, . . . , xd be local analytic coordinates in an analytic
neighborhood Ux of x giving a homeomorphism

φ : U
∼−→ F d

v .

Let dy1 ∧ . . . ∧ dyd be the standard differential form on F d
v and f :=

φ∗(dy1 ∧ . . . ∧ dyd) its pullback to U . Note that f is a local section of
the canonical sheaf KX and that a v-adic metric ‖ · ‖v on KX gives rise
to a norm ‖f(u)‖v ∈ R>0, for each u ∈ Ux. Let dµv = dy1 · · · dyd be the
standard Haar measure, normalized by∫

odv

dµv =
1

dv
d/2
,

where dv is the local different (which equals 1 for almost all v).
Define the local v-adic measure ω̃K,v on Ux via∫

W

ω̃K,v =

∫
φ(W )

‖f(φ−1(y))‖vdµv,

for every open W ⊂ Ux. This local measure glues to a measure ω̃K,v on
X(Fv).

Let X be a model of X over the integers oF and let v be a place of
good reduction. Let Fv = ov/mv be the corresponding finite field and
put qv = #Fv. Since X is projective, we have

X(Fv) = X (ov)→ X (Fv).
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We have∫
X(Fv)

ω̃K,v =
∑

x̄v∈X(Fv)

∫
ω̃K,v

=
X(Fv)
qdv

= 1 +
Trv(H

2d−1
et (XF̄v))√
qv

+
Trv(H

2d−2
et (XF̄v))

qv
+ · · ·+ 1

qdv
,

where Trv is the trace of the v-Frobenius on the `-adic cohomology of
X. Trying to integrate the product measure over X(A) is problematic,
since the Euler product ∏

v

X(Fv)
qdv

diverges. In all examples of interest to us, the cohomology group
H2d−1
et (XF̄v ,Q`) vanishes. For instance, this holds if the anticanonical

class is ample. Still the product diverges, since the 1/qv term does not
vanish, for projective X. There is a standard regularization procedure:
Choose a finite set S ⊂ Val(F ), including all v | ∞ and all places of
bad reduction. Put

λv =

{
Lv(1,Pic(XQ̄)) v /∈ S

1 v ∈ S ,

where Lv(s,Pic(XQ̄)) is the local factor of the Artin L-function associ-
ated to the Galois representation on the geometric Picard group. Define
the regularized Tamagawa measure

ωK,v := λ−1
v ω̃K,v.

Write ωK,S :=
∏

v ωK,v and define

(4.11) τ(−KX) := L∗S(1,Pic(XQ̄)) ·
∫
X(F )

ωK,S,

where
L∗S(1,Pic(XQ̄)) := lim

s→1
(s− 1)rL∗S(s,Pic(XQ̄))

and r is the rank of Pic(XF ).

Example 4.12.1. Let G be a linear algebraic group over F . It carries
an F -rational d-form ω, where d = dim(G). This form is unique,
modulo multiplication by nonzero constants. Fixing ω, we obtain an
isomorphism KX ' OG, the structure sheaf, which carries a natural
adelic metrization (‖ · ‖A).
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Let (A,Λ) be a pair consisting of a lattice and a strictly convex
(closed) cone in AR: Λ ∩−Λ = 0. Let (Ǎ, Λ̌) the pair consisting of the
dual lattice and the dual cone defined by

Λ̌ := {λ̌ ∈ ǍR | 〈λ′, λ̌〉 ≥ 0, ∀λ′ ∈ Λ}.

The lattice Ǎ determines the normalization of the Lebesgue measure
dǎ on ǍR (covolume =1). For a ∈ AC define

(4.12) XΛ(a) :=

∫
Λ̌

e−〈a,ǎ〉dǎ.

The integral converges absolutely and uniformly for <(a) in compacts
contained in the interior Λ◦ of Λ.

Definition 4.12.2. Assume that X is smooth, NS(X) = Pic(X) and
that −KX is in the interior of Λeff(X). We define

α(X) := XΛeff(X)(−KX).

Remark 4.12.3. This constant measures the volume of the polytope
obtained by intersecting the affine hyperplane (−KX , ·) = 1 with the
dual to the cone of effective divisors Λeff(X) in the dual to the Néron-
Severi group. The explicit determination of α(X) can be a serious
problem. For Del Pezzo surfaces, these volumes are given in Section 1.9.
For example, let X be the moduli space M̄0,6 (see Example ??). The
dual to the cone Λeff(X) has 3905 generators (in a 16-dimensional vector
space), forming 25 orbits under the action of the symmetric group S6.

Conjecture 4.12.4 (Leading constant). Let X be a Fano variety over
a number field F with an adelically metrized anticanonical line bundle
−KX = (−KX , ‖ ·‖A). Assume that X(F ) is Zariski dense. Then there
exists a Zariski open subset X◦ ⊂ X such that

(4.13) N(X◦(F ),−KX ,B) ∼ c(−KX)B1 log(B)r−1,

where r = rk Pic(XF ) and

(4.14) c(−KX) = α(X)β(X)τ(−KX),

with β(X) := Br(X)/Br(F ), and τ(−KX) the constant defined in equa-
tion 4.11.

4.13. General polarizations. I follow closely the exposition in [BT98].
Let E/F be some finite Galois extension such that all of the follow-
ing constructions are defined over E. Let (X,L) be a smooth quasi-
projective d-dimensional variety together with a metrized very ample
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line bundle L which embeds X in some projective space Pn. We de-

note by X
L

the normalization of the projective closure of X ⊂ Pn. In

general, X
L

is singular. We will introduce several notions relying on a
resolution of singularities

ρ : X → X
L
.

Naturally, the defined objects will be independent of the choice of the
resolution.

For Λ ⊂ NS(X)R we define

a(Λ,L) := a(Λ, ρ∗L).

We will always assume that a(Λeff(X),L) > 0.

Definition 4.13.1. A pair (X,L) is called primitive if a(Λeff(X),L) ∈
Q>0 and if there exists a resolution of singularities

ρ : X → X
L

such that for some k ∈ N
((ρ∗L)⊗a(Λeff(X),L) ⊗KX)⊗k = O(D),

where D is a rigid effective divisor (h0(X,O(νD)) = 1 for all ν � 0).

Example 4.13.2. of a primitive pair: (X,−KX), where X is a smooth
projective Fano variety and −KX is a metrized anticanonical line bun-
dle.

Let k ∈ N be such that a(Λ,L)k ∈ N and consider

R(Λ,L) := ⊕ν≥0H0(X, (((ρ∗L)a(Λ,L) ⊗KX)⊗k)⊗ν).

In both cases (Λ = Λample or Λ = Λeff ) it is expected that R(Λ,L) is
finitely generated and that we have a fibration

π = πL : X → Y L,

where Y L = Proj(R(L,Λ)). For Λ = Λeff(X) the generic fiber of π is
(expected to be) a primitive variety in the sense of Definition 4.13.1.
More precisely, there should be a diagram:

ρ : X → X
L ⊃ X

↓
Y L

such that:
• dim(Y L) < dim(X);
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• there exists a Zariski open U ⊂ Y L such that for all y ∈ U(C)
the pair (Xy,Ly) is primitive (here Xy = π−1(y) ∩ X and Ly is the
restriction of L to Xy);
• for all y ∈ U(C) we have a(Λeff(X),L) = a(Λeff(Xy),Ly);
• For all k ∈ N such that a(Λeff(X),L)k ∈ N the vector bundle

Lk := R0π∗(((ρ
∗L)⊗a(Λeff(X),L) ⊗KX)⊗k)

is in fact an ample line bundle on Y L.
Such a fibration will be called an L-primitive fibration. A variety

may admit several primitive fibrations.

Example 4.13.3. Let X ⊂ Pn1 × Pn2 (n ≥ 2) be a hypersurface given by
a bi-homogeneous form of bi-degree (d1, d2). Both projections X → Pn1
andX → Pn2 are L-primitive, for appropriate L. In particular, for n = 3
and (d1, d2) = (1, 3) there are two distinct −KX-primitive fibrations:
one onto a point and another onto P3

1.

4.14. Tamagawa numbers. For smooth projective Fano varieties X
with an adelically metrized anticanonical line bundle Peyre defined in
[Pey95] a Tamagawa number, generalizing the classical construction for
linear algebraic groups (see Section 4.12). We need to further generalize
this to primitive pairs.

Abbreviate a(L) = a(Λeff(X),L) and let (X,L) be a primitive pair
such that

O(D) := ((ρ∗L)⊗a(L) ⊗KX)⊗k,

where k is such that a(L)k ∈ N and D is a rigid effective divisor as in
Definition 4.13.1. Choose an F -rational section g ∈ H0(X,O(D)); it is
unique up to multiplication by F ∗. Choose local analytic coordinates
x1,v, . . . , xd,v in a neighborhood Ux of x ∈ X(Fv). In Ux the section g
has a representation

g = fka(L)(dx1,v ∧ . . . ∧ dxd,v)k,
where f is a local section of L. This defines a local v-adic measure in
Ux by

ωL,g,v := ‖f‖a(L)
xv dx1,v · · · dxd,v,

where dx1,v · · · dxd,v is the Haar measure on F d
v normalized by vol(odv) =

1. A standard argument shows that ωL,g,v glues to a v-adic measure on
X(Fv). The restriction of this measure to X(Fv) does not depend on
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the choice of the resolution ρ : X → X
L
. Thus we have a measure on

X(Fv).
Denote by (Dj)j∈J the irreducible components of the support of D

and by
Pic(X,L) := Pic(X \ ∪j∈JDj).

The Galois group Γ acts on Pic(X,L). Let S be a finite set of places
of bad reduction for the data (ρ,Dj, etc.), including the archimedean
places. Put λv = 1 for v ∈ S, λv = Lv(1,Pic(X,L)) (for v 6∈ S) and

ωL := L∗S(1,Pic(X,L))|disc(F )|−d/2
∏
v

λ−1
v ωL,g,v.

(Here Lv is the local factor of the Artin L-function associated to the
Γ-module Pic(X,L) and L∗S(1,Pic(X,L)) is the residue at s = 1 of the
partial Artin L-function.) By the product formula, the measure does
not depend on the choice of the F -rational section g. Define

τL(X) :=

∫
X(F )

ωL,

where X(F ) ⊂ X(A) is the closure of X(F ) in the direct product
topology. The convergence of the Euler product follows from

h1(X,OX) = h2(X,OX) = 0.

We have a map

ρ̃ : Pic(X)R → Pic(X,L)R

and we denote by

Λeff(X,L) := ρ̃(Λeff(X)) ⊂ Pic(X,L)R.

Definition 4.14.1. Let (X,L) be a primitive pair as above. Define

c(X,L) := XΛeff(X,L)(ρ̃(−KX)) · |H1(Γ,Pic(X,L))| · τL(X).

If (X,L) is not primitive then some Zariski open subset U ⊂ X
admits a primitive fibration: there is a diagram

X → X
L

↓
Y L

such that for all y ∈ Y L(F ) the pair (Uy,Ly) is primitive. Then

(4.15) c(U,L) :=
∑
y∈Y 0

c(Uy,Ly),
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where the right side is a (possibly infinite, conjecturally converging (!))
sum over the subset Y 0 ⊂ Y L(F ) of all those fibers Uy where

a(L) = a(Ly) and rk Pic(X,L)Ga = rk Pic(Xy,Ly)Ga .

In Section 4.1 we will see that even if we start with pairs (X,L)
where X is a smooth projective variety and L is a very ample adelically
metrized line bundle on X we still need to consider singular varieties.

4.15. Tamagawa number as a height. Why does the right side of
Formula (4.15) converge? The natural idea is to interpret it as a height
zeta function, i.e., to think of the Tamagawa numbers of the fibers of
an L-primitive fibration as “heights”. One problem with this guess is
that the “functorial” properties of these notions under field extensions
are quite different: Let Uy be a fiber defined over the ground field.
The local and global heights of Uy don’t change under extensions. The
local Tamagawa factors, however, take into account information about
Fq-points of Uy, i.e., the density

τv = #Uy(Fqv)/qdim(Uy)
v ,

for almost all v, which may vary nontrivially.
In absence of conclusive arguments, let us look at examples. For

a ∈ P3(Q), let Xa ⊂ P3 be the diagonal cubic surface fibration

(4.16) a0x
3
0 + a1x

3
1 + a2x

3
2 + a3x

3
3 = 0,

considered in Section 4.11. Let H : P3(Q) → R>0 be the standard
height as in Section 4.1.

Theorem 4.15.1. [EJ08b] For all ε > 0 there exists a constant c = c(ε)
such that

1

τ(Xa)
≥ c H

(
1

a0

: . . . :
1

a3

)1/3−ε

In particular, we have the following fundamental finiteness property:
for B > 0 there are finitely many a ∈ P3(Q) such that τ(Sa) > B.

A similar result holds for 3 dimensional quartics.

Theorem 4.15.2. [EJ07] Let Xa be the family of quartic threefolds

a0x
4
0 + a1x

4
1 + a2x

4
2 + a3x

4
3 + a4x

4
4 = 0,
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with a0 < 0 and a1, . . . , a4 > 0, ai ∈ Z. For all ε > 0 there exists a
constant c = c(ε) such that

1

τ(Xa)
≥ c H

(
1

a0

: . . . :
1

a4

)1/4−ε

.

4.16. Smallest points. Let X be a smooth Fano variety over a num-
ber field F . What is the smallest height Hmin(X(F )) of an F -rational
points on X? For a general discussion of bounds of diophantine equa-
tions in terms of the height of the equation, see [Mas02]. A sample
result in this direction is [Pit71], [NP89]: Let

(4.17)
n∑
i=0

aix
d
i = 0,

with d odd and let a = (a0, . . . , an) ∈ Zn+1 be a vector with nonzero
coordinates. For n� d (e.g., n = 2d + 1) and any ε > 0 there exists a
constant c such that (4.17) has a solution x with

n∑
i=0

|aixdi | < c
∏
|ai|d+ε.

For d ≥ 12, one can work with n ∼ 4d2 log(d). There have been a
several improvements of this result for specific values of d, e.g. [Cas55],
[Die03] for quadrics and [Bak89], [Brü94] for d = 3.

In our setup, the expectation

N(X◦(F ),−KX ,B) ∼ αβτ(−KX)B1 log(B)r−1

where r = rk Pic(X), and the hope that the points are equidistributed
with respect to the height lead to the guess that Hmin(X(F )) is inversely
related to τ(−KX), rather than the height of the defining equations.
The figure shows the distribution of smallest points in comparison with
the Tamagawa number on a sample of smooth quartic threefolds of the
form

ax4 = by4 + z4 + u4 + w4, a, b = 1, . . . , 1000.

On the other hand, there is the following result:

Theorem 4.16.1. [EJ07], [EJ08b] Let Xa ⊂ P4 be the quartic threefold
given by

ax4 = x4
1 + x4

2 + x4
3 + x4

4, a ∈ N.
Then there exist no constant c such that

Hmin(X(Q)) <
c

τ(−KXa)
.
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Figure 2. Smallest point versus the Tamagawa number

Let Xa ⊂ P3 be the cubic surface given by

ax3
0 + 4x3

1 + 2x3
2 + x3

3 = 0, a ∈ N.
Assume the Generalized Riemann Hypothesis. Then there does not exist
a constant c > 0 such that

H(Xa(Q)) ≤ c

τ(−KXa)
,

for all a ∈ Z.

It may still be the case that

Hmin(X(F )) ∼ c(ε)

τ(−KX)1+ε
.

5. Counting points via universal torsors

5.1. The formalism. We explain the basic elements of the point count-
ing technique on universal torsors developed in [Pey04], [Sal98]. The
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prototype is the projective space:

An+1 \ 0
Gm−→ Pn.

The bound H(x) ≤ B translates to a bound on An+1(Z), it remains
to replace the lattice point count on An+1(Z) by the volume of the
domain. The coprimality on the coordinates leads to the product of
local densities formula

N(B) ∼ 1

ζ(n+ 1)
· τ∞ · Bn+1, B→∞,

where τ∞ is the volume of the unit ball with respect to the norm at
infinity.

The lift of points in Pn(Q) to primitive integral vectors in Zn+1 \ 0,
modulo ±1 admits a generalization to the context of torsors

TX
TNS−→ X.

Points in X(Q) can be lifted to certain integral points on TX , uniquely,
modulo the action of TNS(Z) (the analog of the action by ±1). The
height bound on X(Q) lifts to a bound on TX(Z). The issue then is to
prove, for B→∞, that

# lattice points ∼ volume of the domain .

The setup for the generalization is as follows. Let X be a smooth
projective variety over a number field F . We assume that

• Hi(X,OX) = 0, for i = 1, 2;
• Pic(XF̄ ) = NS(XF̄ ) is torsion free;
• Λeff(X) is a finitely generated rational cone;
• −KX is in the interior of Λeff(X);
• X(F ) is Zariski dense;
• there is a Zariski open subset without strongly or weakly accu-

mulating subvarieties;
• all universal torsors over X satisfy the Hasse principle and weak

approximation.

For simplicity of exposition we will first ignore the Galois actions
and assume that NS(XF ) = NS(XF̄ ). Fix a line bundle L on X and
consider the map

Z → NS(X)
1 7→ [L]

By duality, we get a homomorphism φL : TNS → Gm and the diagram
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T
ψL //

��

L∗

��
X X

compatible with the TNS-action (where L∗ = L \ 0). Fix a point t0 ∈
T (F ) and an adelic metrization L = (L, ‖ · ‖v) of L. For each v, we get
a map

HL,T ,v : T (Fv) −→ R>0

tv 7→ ‖ψL(t)‖v/‖ψL(t0)‖v

Fix an adelic height system H =
∏

v Hv on X as in Section 4.8, i.e., a
basis L1, . . . , Lr of Pic(X) and adelic metrizations of these line bundles.
This determines compatible adelic metrizations on all L ∈ Pic(X).
Define

THv(ov) := {t ∈ T (Fv) |,HL,T ,v(t) ≤ 1 ∀L ∈ Λeff(X)}.
Let

TH(A) :=
∏
v

T (Fv)

be the restricted product with respect to the collection

{THv(ov)}v.
This space does not depend on the choice of the points t0 or on the
choice of adelic metrizations.

The next step is the definition of local Tamagawa measures on T (Fv),
whose product becomes a global Tamagawa measure on TH(A). The
main insight is that

• locally, in v-adic topology, T (Fv) = X(Fv)× TNS(Fv);
• both factors carry a local Tamagawa measure (defined by the

metrizations of the corresponding canonical line bundles);
• the regularizing factor (needed to globalize the measure to the

adeles, see Equation 4.11) on X(Fv) is λv = Lv(1,Pic(XF̄ ), for
almost all v, and the regularizing factor on TNS(Fv) is λ−1

v ;
• the regularizing factors cancel and the product measure is inte-

grable over the adelic space TH(AF ).

One chooses a fundamental domain for the action of units TNS(o)/W
(where W is the group of torsion elements), establishes a bijection
between the set of rational points X(F ) and certain integral points on
T (integral with respect to the unstable locus for the action of TNS)
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in this domain and compares a lattice point count, over these integral
points, with the adelic integral, over the space TH(A). If the difference
between these counts goes into the error term, then Conjecture 4.12.4
holds.

5.2. Toric Del Pezzo surfaces. Notation and terminology regarding
toric varieties are explained in Section 6.5.

Example 5.2.1. Let X = BlY (P2) be the blowup of the projective plane
in the subscheme

Y := (1 : 0 : 0) ∪ (0 : 1 : 0) ∪ (0 : 0 : 1),

a toric Del Pezzo surface of degree 6. We can realize it as a subvariety
X ⊂ P1

x × P1
y × P1

z given by x0y0z0 = x1y1z1. The anticanonical height
is given by

max(|x0|, |x1|)×max(|y0|, |y1|)×max(|z0|, |z1|).

There are six exceptional curves: the preimages of the 3 points and the
preimages of lines joining two of these points.

Example 5.2.2 (Degree four). There are 3 toric Del Pezzo surfaces of
degree 4, given by X = {Q0 = 0}∩{Q = 0} ⊂ P4, with Q0 = x0x1 +x2

2

and Q as in the table below.

Singularities Q
4A1 x3x4 + x2

2

2A1 + A2 x1x2 + x3x4

2A1 + A3 x2
0 + x3x4

Example 5.2.3 (Degree three). The unique toric cubic surface is given
by

xyz = w3.

The corresponding fan is spanned in Z2 by (1, 1), (1,−2), (−2, 1). Let
X◦ be the complement to lines, i.e., the locus with w 6= 0. The asymp-
totic

N(X◦(F ),B) = cB1 log(B)6(1 + o(1)), B→∞,
has been established in [BT98] using harmonic analysis (see Section 6.5)
and in [?], [?], [?] using the torsor approach.

Example 5.2.4. The toric quartic surface

x2yz = w4
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is given by the fan (2,−1), (0, 1), (−2,−1). Let X◦ be the complement
to w = 0. By Theorem ??, we have

N(X◦(F ),B) = cB1 log(B)5(1 + o(1)), B→∞.
This is more than suggested by the naive heuristic in Section 2.2.

The torsor approach has been successfully implemented for toric va-
rieties over Q in [?] and [?].

5.3. Torsors over Del Pezzo surfaces.

Example 5.3.1. A quartic Del Pezzo surface X with two singularities
of type A1 can be realized as a blow-up of the following points

p1 = (0 : 0 : 1)
p2 = (1 : 0 : 0)
p3 = (0 : 1 : 0)
p4 = (1 : 0 : 1)
p5 = (0 : 1 : 1)

in P2 = (x0 : x1 : x2). The anticanonical line bundle embedds X into
P4:

(x2
0x1 : x0x

2
1 : x0x1x2 : x0x2(x0 + x1 − x2) : x1x2(x0 + x1 − x2)).

The Picard group is spanned by

Pic(X) = 〈L,E1, · · · , E5〉
and Λeff(X) by

E1, · · · , E5

L− E2 − E3, L− E3 − E4, L− E4 − E5, L− E2 − E5

L− E1 − E3 − E5, L− E1 − E2− E4.

The universal torsor is given by the following equations

(23)(3)− (1)(124)(4) + (25)(5) = 0
(23)(2)− (1)(135)(5) + (34)(4) = 0
(124)(1)(2)− (34)(3) + (45)(5) = 0
(25)(2)− (135)(1)(3) + (45)(4) = 0

(23)(45) + (34)(25)− (1)2(124)(135) = 0.

(with variables labeled by the corresponding exceptional curves). In-
troducing additional variables

(24)′ := (1)(124), (35)′ := (1)(135)

we see that the above equations define a P1-bundle over a codimension
one subvariety of the Grassmannian Gr(2, 5).
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We need to estimate the number of 11-tuples of nonzero integers,
satisfying the equations above and subject to the inequalities:

|(135)(124)(23)(1)(2)(3)| ≤ B
|(135)(124)(34)(1)(3)(4)| ≤ B

· · ·

By symmetry, we can assume that |(2)| ≥ |(4)| and write (2) = (2)′(4)+
r2. Now we weaken the first inequality to

|(135)(124)(23)(1)(4)(2)′(3)| ≤ B.

There are O(B log(B)6) 7-tuples of integers satisfying this inequality.

Step 1. Use equation (23)(3) − (1)(124)(4) + (25)(5) to reconstruct
(25), (5) with ambiguity O(log(B)).

Step 2. Use (25)(2) − (135)(1)(3) + (45)(4) = 0 to reconstruct the
residue r2 modulo (4). Notice that (25) and (4) are “almost” coprime
since the corresponding exceptional curves are disjoint.

Step 3. Reconstruct (2) and (45).

Step 4. Use (23)(2)− (1)(135)(5) + (34)(4) to reconstruct (34).

In conclusion, if X◦ ⊂ X is the complement to exceptional curves
then

N(X◦,−KX ,B) = O(B log(B)7).

We expect that

N(X◦,−KX ,B) = B log(B)5(1 + o(1))

as B →∞, where is the constant defined in Chapter ??.

Example 5.3.2. The universal torsor of a smooth quartic Del Pezzo
surface, given as a blow up of the five points

p1 = (1 : 0 : 0)
p2 = (0 : 1 : 0)
p3 = (0 : 0 : 1)
p4 = (1 : 1 : 1)
p5 = (1 : a2 : a3),
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assumed to be in general position, is given by the vanishing of

(14)(23) + (12)(34) − (13)(24) (00)(05)− (12)(34) + (13)(24)− (14)(23)

(00)(05) + a3(a2 − 1)(12)(34) − a2(a3 − 1)(13)(24)

(23)(03) + (24)(04) − (12)(01) (12)(01)− (23)(03) + (24)(04)− (25)(05)
a2(23)(03) + (25)(05) − (12)(01)

(12)(35) − (13)(25) + (15)(23) (00)(04)− (12)(35) + (13)(25)− (15)(23)
(a2 − 1)(12)(35) + (00)(04) − (a3 − 1)(13)(25)

(12)(45) + (14)(25) − (15)(24) (00)(03)− (12)(45) + (14)(25)− (15)(24)
(00)(03) + a3(14)(25) − (15)(24)

(13)(45) + (14)(35) − (15)(34) (00)(02)− (13)(45) + (14)(35)− (15)(34)
(00)(02) + a2(14)(35) − (15)(34)

(23)(45) + (24)(35) − (25)(34) (00)(01)− (23)(45) + (24)(35)− 25)(34)
(00)(01) + a2(24)(35) − a3(25)(34)

(04)(34) + (02)(23) − (01)(13) (13)(01)− (23)(02) + (34)(04) + 35)(05)

(05)(35) + a3(02)(23) − (01)(13)

(a2 − 1)(03)(34) + (05)(45) − (a3 − 1)(02)(24) (14)(01)− (24)(02) + (34)(03)− (45)(05)

(03)(34) + (01)(14) − (02)(24)

(04)(14) + (03)(13) − (02)(12) (12)(02)− (13)(03) + (14)(04)− (15)(05)

(05)(15) + a2(03)(13) − a3(02)(12)

a3(02)(25) − a2(03)(35) − (01)(15) (15)(01)− (25)(02) + (35)(03)− (45)(04)

(a3 − 1)(02)(25) − (a2 − 1)(03)(35) − (04)(45)

Connection to the D5-Grassmannian

Example 5.3.3. The Cayley cubic is the unique cubic hypersurface in
X ⊂ P3 with 4 double points (A1-singularities), the maximal number
of double points on a cubic surface. It can be given by the equation

y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3 = 0.

The double points correspond to

(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1).

It can be realized as the blow-up of P2 = (x1 : x2 : x3) in the points

q1 = (1 : 0 : 0), q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), q4 = (1 : −1 : 0), q5 = (1 : 0 : −1), q6 = (0 : 1 : −1)

The points lie on a rigid configuration of 7 lines

x1 = 0 (12)(13)(14)(1)

x2 = 0 (12)(23)(24)(2)
x3 = 0 (13)(23)(34)(3)

x4 = x1 + x2 + x3 (14)(24)(34)(4)

x1 + x3 = 0 (13)(24)(13, 24)

x2 + x3 = 0 (23)(14)(14, 23)
x1 + x2 = 0 (12)(34)(12, 34).
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The proper transform of the line xj is the (−2)-curve corresponding
to (j). The curves corresponding to (ij), (ij, kl) are (−1)-curves. The
accumulating subvarieties are exceptional curves. The (anticanonical)
embeddding X ↪→ P3 is given by the linear system:

s1 = x1x2x3

s2 = x2x3x4

s3 = x1x3x4

s4 = x1x2x4

The counting problem is: estimate

N(B) = #{(x1, x2, x3) ∈ Z3
prim/±, | max i(|si|)/ gcd(si) ≤ B},

where the triple xj is subject to the conditions

xi 6= 0, (i = 1, . . . , 4) xj + xi 6= 0(1 ≤ i < j ≤ 3).

We expect ∼ B log(B)6 solutions. After dividing by the coordinates by
their gcd, we obtain

s′1 = (1)(2)(3)(12)(13)(23)
s′2 = (2)(3)(4)(23)(24)(34)
s′3 = (1)(3)(4)(13)(14)(34)
s′4 = (1)(2)(4)(12)(14)(24)

(These are special sections in the anticanonical series, other decompos-
able sections are: (1)(2)(12)2(12, 34) and (12, 34)(13, 24)(14, 23), for
example.) The conic bundles on X produce the following equations for
the universal torsor:

I (1)(13)(14) + (2)(23)(24) = (34)(12, 34)

II (1)(12)(14) + (3)(23)(34) = (24)(13, 24)

III (2)(12)(24) + (3)(13)(34) = (14)(14, 23)
IV −(3)(13)(23) + (4)(14)(24) = (12)(12, 34)

V −(2)(12)(23) + (4)(14)(34) = (13)(13, 24)

VI −(1)(12)(1) + (4)(24)(34) = (23)(14, 23)
VII (2)(4)(24)2 + (1)(3)(13)2 = (12, 34)(14, 23)

VIII −(1)(2)(12)2 + (3)(4)(34)2 = (13, 24)(14, 23)

IX (1)(4)(14)2 − (2)(3)(23)2 = (12, 34)(13, 24)

The counting problem is to estimate the number of 13-tuples of nonzero
integers, satisfying the equations above and subject to the inequality
maxi{|s′i|} ≤ B. Heath-Brown proved in [HB03] that there exists con-
stants 0 < c < c′ such that

cB log(B)6 ≤ N(B) ≤ c′B log(B)6.

Example 5.3.4 (The 2A2 + A3 cubic surface). The equation

x0x1x2 = x2
3(x1 + x2)



74 YURI TSCHINKEL

Figure 3. The 5332 rational points of height ≤ 100 on

x0x1x2 = x2
3(x1 + x2)

defines a cubic surface X with singularities of indicated type. It con-
tains 5 lines. The Cox ring has the following presentation

Cox(X) = F [η1, . . . , η9]/(η4η
2
6η10 + η1η2η

2
7 + η8η9)

The figure shows some rational points on this surface. 2 The expected
asymptotic

N(X◦(Q),B) ∼ B1 log(B)6

on the complement of the 5 lines has not been proved, yet.

5.4. Torsors over the Segre cubic threefold. In this section we
work over Q. The threefold X = M̄0,6 can be realized as the blow-up
of P3 in the points

x0 x1 x2 x3

q1 1 0 0 0
q2 0 1 0 0
q3 0 0 1 0
q4 0 0 0 1
q5 1 1 1 1

2 I am grateful to U. Derenthal for allowing me include it here.
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and in the proper transforms of lines joining two of these points. The
Segre cubic is given as the image of X in P4 under the linear system
2L− (E1 + · · ·E5) (quadrics passing through the 5 points):

s1 = (x2 − x3)x1

s2 = x3(x0 − x1)
s3 = x0(x1 − x3)
s4 = (x0 − x1)x2

s5 = (x1 − x2)(x0 − x3)

It can be realized in P5 = (y0 : . . . : y5) as

S3 := {
5∑
i=0

y3
i =

5∑
i=0

yi = 0}

(exhibiting the S6-symmetry.) It contains 15 planes, given by the S6-
orbit of

y0 + y3 = y1 + y4 = y3 + y5 = 0,

and 10 singular double points, given by the S6-orbit of

(1 : 1 : 1 : −1 : −1 : −1).

This is the maximal number of nodes on a cubic threefold and S3 is the
unique cubic with this property. The hyperplane sections S3∩{yi = 0}
are Clebsch diagonal cubic surfaces (unique cubic surfaces with S5 as
symmetry group. The hyperplane sections S3 ∩ {yi = 0} are Clebsch
cubics, a unique cubic surface with S5-symmetry. The hyperplane
sections S3∩{yi−yj = 0} are Cayley cubic surfaces (see Example 5.3.3).
The geometry and symmetry of these and similar varieties are described
in detail in [Hun96].

The counting problem on S3 is: find the number N(B) of all 4-tupels
of (x0, x1, x2, x3) ∈ Z4/± such that

• gcd(x0, x1, x2, x3) = 1;
• maxj=1,...,5(|sj|)/| gcd(s1, . . . , s5) ≤ B;
• xi 6= 0 and xi − xj 6= 0 for all i, j 6= i.

The last condition is excluding rational points contained in accumulat-
ing subvarieties (there are B3 rational points on planes P2 ⊂ P4, with
respect to the O(1)-height). The second condition is the bound on the
height.

First we need to determine

a(L) = inf{a | aL+KX ∈ Λeff(X)},
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where L is the line bundle giving the map to P4. We claim that a(L) =
2. This follows from the fact that∑

i,j

(ij)

is on the boundary of Λeff(X) (where (ij) is the class in Pic(X) of the
preimage in X of the line lij ⊂ P4 through qi, qj.

Therefore, we expect

N(B) = O(B2+ε)

as B → ∞. In fact, it was shown in [BT98] that b(L) = 6. Conse-
quently, one expects

N(B) ∼ cB2 log(B)5, as B→∞.

Remark 5.4.1. The difficult part is to keep track of gcd(s1, . . . , s5).
Indeed, if we knew that this gcd = 1 we could easily prove the bound
O(B2+ε) by observing that there are O(B1+ε) pairs of (positive) integers
(x2 − x3, x1) (resp. (x0 − x1, x2)) satisfying (x2 − x3)x1 ≤ B (resp.
(x0 − x1)x2 ≤ B). Then we could reconstruct the quadruple

(x2 − x3, x1, x0 − x1, x2)

and consequently

(x0, x1, x2, x3)

up to O(B2+ε).

Thus it is necessary to introduce gcd between xj, etc. Again, we use
the symbols (i), (ij), (ijk) for variables on the torsor for X correspond-
ing to the classes of the preimages of points, lines, planes resp. Once
we fix a point (x0, x1, x2, x3) ∈ Z4 (such that gcd(x0, x1, x2, x3) = 1),
the values of these coordinates over the corresponding point on X can
be expressed as greatest common divisors. For example, we can write

x3 = (123)(12)(13)(23)(1)(2)(3),

a product of integers (neglecting the sign of x3; in the torsor language,
we are looking at the orbit of TNS(Z)). Here is a self-explanatory list:
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(123) x3 (12) x2, x3

(124) x2 (13) x1, x3

(125) x2 − x3 (14) x1, x2

(134) x1 (15) x1 − x3, x1 − x2

(135) x1 − x3 (23) x3, x0 − x3

(145) x1 − x2 (24) x2, x0

(234) x0 (25) x3 − x2, x0 − x3

(235) x0 − x3 (34) x1, x0

(245) x0 − x2 (35) x1 − x3, x0 − x1

(345) x0 − x1 (45) x1 − x2, x0 − x1.

After dividing sj by the gcd, we get

s′1 = (125)(134)(12)(15)(25)(13)(14)(34)(1)
s′2 = (123)(245)(12)(13)(23)(24)(25)(45)(2)
s′3 = (234)(135)(23)(24)(34)(13)(15)(35)(3)
s′4 = (345)(124)(34)(35)(45)(12)(14)(24)(4)
s′5 = (145)(235)(14)(15)(45)(23)(35)(25)(5)

(observe the symmetry with respect to the permutation (12345)). We
claim that gcd(s′1, . . . , s

′
5) = 1. One can check this directly using the

definitions of (i), (ij), (ijk)’s as gcd’s. For example, let us check that
nontrivial divisors d 6= 1 of (1) cannot divide any other s′j. Such a
d must divide (123) or (12) or (13) (see s′2). Assume it divides (12).
Then it doesn’t divide (13), (14) and (15) (the corresponding divisors
are disjoint). Therefore, d divides (135) (by s′3) and (235) (by s′5).
Contradiction (indeed, (135) and (235) correspond to disjoint divisors).
Assume that d divides (123). Then it has to divide either (13) or (15)
(from s′3) and either (12) or (14) (from s′4). Contradiction.

The integers (i), (ij), (ijk) satisfy a system of relations (these are
equations for the torsor induced from fibrations of M̄0,6 over P1):

I x0 x1 x0 − x1

II x0 x2 x0 − x2

III x0 x3 x0 − x3

IV x1 x2 x1 − x2

V x1 x3 x1 − x3

VI x2 x3 x2 − x3

VII x0 − x1 x0 − x2 x1 − x2

VIII x0 − x1 x0 − x3 x1 − x3

IX x1 − x2 x1 − x3 x2 − x3

X x2 − x3 x0 − x3 x0 − x2
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which translates to
I (234)(23)(24)(2)− (134)(13)(14)(1) = (345)(45)(35)(5)

II (234)(23)(34)(3)− (124)(12)(14)(1) = (245)(25)(45)(5)
III (234)(24)(34)(4)− (123)(12)(13)(1) = (235)(25)(35)(5)

IV (134)(13)(34)(3)− (124)(12)(24)(2) = (145)(15)(45)(5)

V (134)(14)(34)(4)− (123)(12)(23)(2) = (135)(15)(35)(5)
VI (124)(14)(24)(4)− (123)(13)(23)(3) = (125)(15)(25)(5)

VII (345)(34)(35)(3)− (245)(24)(25)(2) = −(145)(14)(15)(1)

VIII (345)(34)(45)(4)− (235)(23)(25)(2) = −(135)(13)(15)(1)
IX (145)(14)(45)(4)− (135)(13)(35)(3) = −(125)(12)(25)(2)

X (125)(12)(15)(1) + (235)(23)(35)(3) = −(245)(24)(45)(4)

The counting problem now becomes: find all 25-tuples of nonzero
integers satisfying the equations I−X and the inequality max(|s′j|) ≤ B.

Remark 5.4.2. Note the analogy to the the case of M̄0,5 (the unique
split Del Pezzo surface of degree 5): the variety defined by the above
equations is the Grassmannian Gr(2, 6) (in its Plücker embedding into
P24).

In [VW95] it is shown that there exist constants c, c′ > 0 such that

cB2 log(B)5 ≤ N(B) ≤ c′B2 log(B)5.

This uses a different (an intermediate) torsor over X - the determinan-
tal variety given by

det(xij)3×3 = 0.

Theorem 5.4.3. [dlB07]

N(B) =
1

24
τ∞
∏
p

τp · B2 log(B)5

(
1 +O

((log logB)1/3

(logB)1/3

))
,

where τ∞ is the real density of points on X, and

τp =
(

1− 1

p

)6(
1 +

6

p
+

6

p2
+

1

p3

)
is the p-adic density of points.

The proof of this result uses the Grassmannian Gr(2, 6).

5.5. Flag varieties and torsors. We have seen that for a Del Pezzo
surface of degree 5 and for the Segre cubic threefold the universal tor-
sors are flag varieties; and that lifting the count of rational points to
these flag variety yields the expected asymptotic results.

More generally, let G be a semi-simple algebraic group, P ⊂ G a
parabolic subgroup. The flag variety P\G admits an action by any
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subtorus of the maximal torus in G on the right. Choosing a lineariza-
tion for this action and passing to the quotient we obtain a plethora
of examples of nonhomogeneous varieties X whose torsors carry ad-
ditional symmetries. These may be helpful in the counting rational
points on X.

Example 5.5.1. A flag variety for the group G2 is the quadric hypersur-
face

v1u1 + v2u2 + v3u3 + z2 = 0,

where the torus G2
m ⊂ G2 acts as

vj 7→ λjvj, j = 1, 2 v3 7→ (λ1λ2)−1v3

uj 7→ λ−1
j uj, j = 1, 2 u3 7→ λ1λ2u3.

The quotient by G2
m is a subvariety in the weighted projective space

P(1, 2, 2, 2, 3, 3) = (z : x1 : x2 : x3 : y1 : y2) with the equations

x0 + x1 + x2 + z2 = 0 and x1x2x3 = y1y2.

6. Height zeta functions

Consider the variety X ⊂ P5 over Q given by

x0x1 − x2x3 + x4x5 = 0.

It is visibly a quadric hypersurface and we could apply the circle
method as in Section 4.6. It is also the Grassmannian variety Gr(2, 4)
and an equivariant compactification of G4

a. We could count points us-
ing any of the structures. In this section we explain counting strategies
based on group actions and harmonic analysis.

6.1. Tools from analysis. Here we collect technical results from com-
plex and harmonic analysis which will be used in the treatment of
height zeta functions.

For U ⊂ Rn let
TU := {s ∈ C | <(s) ∈ U}

be the tube domain over U .

Theorem 6.1.1 (Convexity principle). Let U ⊂ Rn be a connected
open subset and Ū the convex envelope of U , i.e., the smallest convex
open set containing U . Let Z(s) be a function holomorphic in TU . Then
Z(s) is holomorphic in TŪ .

Theorem 6.1.2 (Phragmen-Lindelöf principle). Let φ be a holomor-
phic function for <(s) ∈ [σ1, σ2]. Assume that in this domain φ satisfies
the following bounds
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• |φ(s)| = O(eε|t|), for all ε > 0;
• |φ(σ1 + it)| = O(|t|k1) and |φ(σs + it) = |O(|t|k2).

Then, for all σ ∈ [σ1, σ2] one has

|φ(σ + it)| = O(|t|k), where
k − k1

σ − σ1

=
k2 − k1

σ2 − σ1

.

Using the functional equation and known bounds for Γ(s) in vertical
strips one derives the convexity bound

(6.1) |ζ(
1

2
+ it)| = O(|t|1/4+ε).

More generally, we have the following

Proposition 6.1.3. Let χ be an unramified character of Gm(AF )/Gm(F ),
i.e., χv is trivial on G(ov), for all v - ∞. For all ε > 0 there exists a
δ > 0 such that

(6.2) |L(s, χ)| � (1 + |=(χ)|+ |=(s)|)ε, for <(s) > 1− δ.

Here =(χ) ∈ ⊕v|∞Gm(Fv)/Gm(ov) ' Rr1+r2−1, with r1, r2 the number
of real, resp. pairs of complex embeddings of F .

Theorem 6.1.4 (Tauberian theorem). Let {λn} be an increasing se-
quences of positive real numbers, with limn→∞ λn = ∞. Let {an} be
another sequence of positive real numbers and put

Z(s) :=
∑
n≥1

an
λsn
.

Assume that this series converges absolutely and uniformly to a homo-
morphic function in the tube domain T>a ⊂ C, for some a > 0, and
that it admits a representation

Z(s) =
h(s)

(s− a)b
,

where h is holomorphic in T>a−ε, for some ε > 0, with h(a) = c > 0,
and b ∈ N. Then

N(B) :=
∑
λn≤B

an ∼
c

a(b− 1)!
Ba log(B)b−1, for B →∞.

A frequently employed result in analytic number theory is

Theorem 6.1.5 (Poisson formula). Let G be a locally compact abelian

group with Haar measure dg and H ⊂ G a closed subgroup. Let Ĝ be
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the Pontryagin dual of G, i.e., the group of characters, i.e., continuous
homomorphisms,

χ : G→ S1 ⊂ C∗

into the unit circle. Let f : G→ C be a function, satisfying some mild
assumptions (integrability, continuity) and let

f̂(χ) :=

∫
G

f(g) · χ(g)dg

be its Fourier transform. Then there exist Haar measures dh on H and
dh⊥ on H⊥, the subgroup of characters trivial on H, such that

(6.3)

∫
H

fdh =

∫
H⊥

f̂dh⊥.

A standard application is to H = Z ⊂ R = G. In this case H⊥ =
H = Z, and the formula reads∑

n∈Z

f(n) =
∑
n∈Z

f̂(n).

This is a powerful identity which is used, e.g., to prove the functional
equation and meromorphic continuation of the Riemann zeta function.
We will apply Equation (6.3) in the case when G is the group of adelic
points of an algebraic torus or an additive group, and H is the sub-
group of rational points. This will allow us to establish a meromorphic
continuation of height zeta functions for equivariant compactifications
of these groups.

Another application of the Poisson formula arises as follows: Let A
be a lattice and Λ a convex cone in AR. Let dǎ be the Lebesgue measure
on the dual space ǍR normalized by the dual lattice Ǎ). Let

XΛ(s) :=

∫
Λ̌

e−〈s,ǎ〉dǎ, <(s) ∈ Λ◦.

be the Laplace transform of the set-theoretic characteristic function of
the dual cone Λ̌.

Let π : (A,Λ) → (Ã, Λ̃) be a homomorphism, with finite cokernel
A′ and kernel B ⊂ A. Normalize db : vol(BR/B) = 1. Then

XΛ̃(π(s)) =
1

(2π)k−k̃
1

|A′|

∫
BR

XΛ(s + ib)db.

In particular,

XΛ(s) =
1

(2π)d

∫
MR

n∏
j=1

1

(sj + imj)
dm.
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6.2. Compactifications of groups and homogeneous spaces. As
already mentioned in Section 3, an easy way to generate examples
of algebraic varieties with many rational points is to use actions of
algebraic groups. Here we discuss the geometric properties of groups
and their compactifications.

Let G be a linear algebraic group over a field F , and

% : G→ PGLn+1

an algebraic representation over F . Let x ∈ Pn(F ) be a point. The
orbit %(G) · x ⊂ Pn inherits rational points from G(F ). Let H ⊂ G be
the stabilizer of x. In general, we have an exact sequence

1→ H(F )→ G(F )→ G/H(F )→ H1(F,H)→ · · ·

We will only consider examples when (G/H)(F ) = G(F )/H(F ).
By construction, the Zariski closure X of %(G)·x is geometrically iso-

morphic to an equivariant compactification of the homogeneous space
G/H. We have a dictionary

(%, x ∈ Pn)⇔
{

equivariant compactification X ⊃ G/H,
G-linearized very ample line bundle L on X.

Representations of semi-simple groups do not deform, and can be char-
acterized by combinatorial data: lattices, polytopes etc. Note, how-
ever, that the choice of the initial point x ∈ Pn can still give rise to
moduli. On the other hand, the classification of representations of
unipotent groups is a wild problem, already for G = G2

a. In this case,
understanding the moduli of representations of a fixed dimension is
equivalent to classifying pairs of commuting matrices, up to conjugacy
(see [GP69]).

6.3. Basic principles. Here we explain some common features in the
study of height zeta functions of compactifications of groups and ho-
mogeneous spaces.

In all examples, we have Pic(X) = NS(X), a torsion-free abelian
group. Choose a basis L1, . . . , Lr of Pic(X) and metrizations Lj =
(Lj, ‖ · ‖v). We obtain a height system:

Hj : X(F )→ R>0, for j = 1, . . . , r,

which can be extend to Pic(X)C, by linearity:

(6.4)
H : X(F )× Pic(X)C → R>0

(x, s) 7→
∏r

j=1 HLj(x)sj ,
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where s :=
∑r

j=1 sjLj. For each j, the 1-parameter zeta function

ZX(Lj, s) =
∑

x∈X(F )

HL(s)−s

converges absolutely to a holomorphic function, for <(s) � 0 (see
Remark ??). It follows that

ZX(s) :=
∑

x∈X(F )

H(s, x)−1

converges absolutely to a holomorphic function for <(s) contained some
cone in Pic(X)R.

Step 1. One introduces a generalized height height pairing

(6.5) H =
∏
v

Hv : G(A)× Pic(X)C → C,

such that the restriction of H to Pic(X) × G(F ) coincides with the
pairing in (6.4). Since X is projective, the height zeta function

(6.6) Z(g, s) :=
∑

γ∈G(F )

H(γg, s)−1

converges to a function which is continuous in g and holomorphic in s
for <(s) contained in some cone Λ ⊂ Pic(X)R. The standard height
zeta function is obtained by setting g = e, the identity in G(A). Our
goal is to obtain a meromorphic continuation to the tube domain T
over an open neighborhood of [−KX ] = κ ∈ Pic(X)R and to identify
the poles of Z in this domain.

Step 2. It turns out that

Z(g, s) ∈ L2(G(F )\G(A)),

for <(s) � 0. This is immediate in the cocompact case, e.g., for
G unipotent or semi-simple anisotropic, and requires an argument in
other cases. The L2-space decomposes into unitary irreducible repre-
sentations for the natural action of G(A). We get a formal identity

(6.7) Z(g, s) =
∑
%

Z%(g, s),

where the summation is over all irreducible unitary representations
(%,H%) of G(A) occuring in the right regular representation of G(A) in
L2(G(F )\G(A)).
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Step 3. In many cases, the leading pole of Z(g, s) arises from the
trivial representation, i.e., from the integral

(6.8)

∫
G(AF )

H(g, s)−1dg =
∏
v

∫
G(Fv)

Hv(gv, s)−1dgv,

where dgv is a Haar measure on G(Fv). To simplify the exposition we
assume that

X \G = D = ∪i∈IDi,

where D is a divisor with normal crossings whose components Di are
geometrically irreducible.

We choose integral models for X and Di and observe

G(Fv) ⊂ X(Fv)
∼−→ X(Ov)→ X(Fq) = ∪I⊂ID◦I (Fq),

where

DI := ∩i∈IDi, D
◦
I := DI \ ∪I′)IDI′ .

Write s =
∑

i siDi and For almost all v, we have:
(6.9)∫

G(Fv)

Hv(gv, s)−1dgv = τv(G)−1

(∑
I⊂I

#D◦I (Fq)
qdim(X)

∏
i∈I

q − 1

qsi−κi+1 − 1

)
,

where τv(G) is the local Tamagawa number of G and κi is the order of
the pole of the (unique modulo constants) top-degree differential form
on G along Di. The height integrals are geometric versions of Igusa’s
integrals. They are closely related to “motivic” integrals of Batyrev,
Kontsevich, Denef and Loeser (see [?], [?] and [?]).

This allows to regularize explicitely this adelic integral. For example,
for unipotent G we have

(6.10)

∫
G(AF )

H(g, s)−1dg =
∏
i

ζF (si − κi + 1) · Φ(s),

with Φ(s) holomorphic and absolutely bounded for <(si) > κi − δ, for
all i.

Step 4. Next, one has to identify the leading poles of Z%(g, s), and to
obtain bounds which are sufficiently uniform in % to yield a meromor-
phic continuation of the right side of (6.15). This is nontrivial already
for abelian groups G (see Section 6.4 for the case when G = Gn

a).
Moreover, will need to show pointwise convergence of the series, as a
function of g ∈ G(A).



VARIETIES WITH MANY RATIONAL POINTS 85

ForG abelian, e.g., an algebraic torus, all unitary representation have
dimension one, and equation (6.15) is nothing but the usual Fourier
expansion of a “periodic” function. The adelic Fourier coefficient is an
Euler product, and the local integrals can be evaluated explicitly.

For other groups, it is important to have some sort of parametrization
of representations occurring on the right side of the spectral expansion.
For example, for unipotent groups such a representation is provided by
Kirillov’s orbit method (see Section 6.6). For semi-simple groups one
has to appeal to Langland’s theory of automorphic representations.

6.4. Additive groups. Let X be an equivariant compactification of
an additive group G = Gn

a . For example, any blowup X = BlY (Pn),
with Y ⊂ Pn−1 ⊂ Pn, can be equipped with a structure of an equi-
variant compactification of Gn

a . In particular, the Hilbert schemes of
all algebraic subvarieties of Pn−1 appear in the moduli of equivariant
compactifications X as above. Some features of the geometry of such
compactifications have been explored in [HT99]. The analysis of height
zeta functions has to capture this geometric complexity. In this section
we present an approach to height zeta functions developed in [CLT99],
[CLT00], and [CLT02].

The Poisson formula yields

Z(s) =
∑

x∈G(F )

H(x, s)−1

=

∫
G(AF )

H(x, s)−1dx +
∑
ψ 6=ψ0

Ĥ(ψ, s),

where the sum runs over all nontrivial characters ψ ∈ (G(AF )/G(F ))∗

and

Ĥ(ψ, s) =

∫
G(AF )

H(x, s)−1ψ(x)dx

is the Fourier transform, with an appropriately normalized Haar mea-
sure dx.

Example 6.4.1. The simplest case is G = Ga = A1 ⊂ P1, over F = Q,
with the standard height

Hp(x) = max(1, |x|p), H∞(x) =
√

1 + x2.

We have

(6.11) Z(s) =
∑
x∈Q

H(x)−s =

∫
AQ

H(x)−sdx+
∑
ψ

Ĥ(ψ, s).
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The local Haar measure dxp is normalized by vol(Zp) = 1 so that

vol(|x|p = pj) = pj(1− 1

p
).

We have∫
Qp

Hp(x)−sdxp =

∫
Zp

Hp(x)−sdxp +
∑
j≥1

∫
|x|p=pj

Hp(x)−sdxp

= 1 +
∑
j≥1

p−jsvol(|x|p = pj) =
1− p−s

1− p−(s−1)∫
R
(1 + x2)−s/2dx =

Γ((s− 1)/2)

Γ(s/2)
.

Now we analyze the contributions from nontrivial characters. Each
such character ψ decomposes as a product of local characters, defined
as follows:

ψp = ψp,ap : xp 7→ e2πiap·xp , ap ∈ Qp,

ψ∞ = ψ∞,a∞ : x 7→ e2πia∞·x, a ∈ R.

A character is unramified at p if it is trivial on Zp, i.e., ap ∈ Zp.
Then ψ = ψa, with a ∈ AQ. A character ψ = ψa is unramified for

all p iff a ∈ Z. Pontryagin duality identifies Q̂p = Qp, R̂ = R, and
(AQ/Q)∗ = Q.

Since Hp is invariant under the translation action by Zp, the local

Fourier transform Ĥp(ψap) vanishes unless ψp is unramified at p. In par-
ticular, only unramified characters are present in the expansion (6.11),
i.e., we may assume that ψ = ψa with a ∈ Z \ 0. For p - a, we compute

Ĥp(s, ψa) = 1 +
∑
j≥1

p−sj
∫
|x|p=pj

ψa(xp)dxp = 1− p−s.

Putting together we obtain

Z(s) =
ζ(s− 1)

ζ(s)
· Γ((s− 1)/2)

Γ(s/2)

+
∑
a∈Z

∏
p-a

1

ζp(s)
·
∏
p|a

Ĥp(xp)
−sdxp ·

∫
R
(1 + x2)−s/2 · e2πiaxdx
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For <(s) > 2− δ, we have the upper bounds

|
∏
p|a

Ĥp(xp)
−sdxp| � |

∏
p|a

∫
Qp

Hp(xp)
−sdxp � |a|ε(6.12)

|
∫

R
(1 + x2)−s/2 · e2πiaxdx| �N

1

(1 + |a|)N
, for any N ∈ N,(6.13)

where the second inequality is proved via repeated integration by parts.
This gives a meromorphic continuation of Z(s) and its pole at s = 2

(corresponding to −KX = 2L ∈ Z = Pic(P1)). The leading coefficient
at this pole is the Tamagawa number defined by Peyre.

Now we turn to the general case.

• Pic(X) = ⊕iZDi

• −KX =
∑

i κiDi, with κi ≥ 2
• Λeff(X) = ⊕iR≥0Di

Local and global heights are given by

HDi,v(x) := ‖fi(x)‖−1
v and HDi(x) =

∏
v

HDi,v(x),

where fi is the unique G-invariant section of H0(X,Di). We get a height
pairing:

H : G(AF )× Pic(X)C → C
(x,
∑

i siDi) 7→
∏

i HDi(x)si

Similarly, obtain characters of Gn
a(AF ).

A character is determined by a “linear form” 〈a, ·〉 = fa, on Gn
a ,

which gives a rational function fa ∈ F (X)∗. We have

div(fa) = Ea −
∑
i

di(fa)Di

with di ≥ 0, for all i.
Define:

• S(a) ⊂ Val(F )
• I0(a) := {i | di(fa) = 0} ( I

We have

Ĥ(ψa, s) =
∏

i∈I0(a)

ζF (si − κi + 1) · Φa(s) ·
∫
G(A∞)

H∞(x, s)−1ψa,∞(x)dx

with Φa(s) holomorphic for <(si) > κi− δ and bounded by (1 + ‖a‖)ε.
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Z(s) =
∫
G(AF )

H(x, s)−1dx+
∑
I0(I

∑
ψa : I0(a)=I Ĥ(ψa, s)

=
∏

i∈I ζF (si − κi + 1) · Φ(s)

+
∑

I⊂I
∏

i∈I ζF (si − κi + 1) · Φ̃I(s)

To be completed.

6.5. Toric varieties. Analytic properties of height zeta functions of
toric varieties have been established in [BT95], [BT98], and [?].

An algebraic torus is a linear algebraic groups T over a field F such
that

TE ' Gd
m,E

for some finite Galois extension E/F . Such an extension is called a
splitting field of T . A torus is split if T ' Gd

m,F . The group of algebraic
characters

M := X∗(T ) = Hom(T, K̄∗)

is a torsion free Γ := Gal(E/F )-module. The standard notation for
its dual, the cocharacters is N := X∗(T ). There is an equivalence of
categories: d− dimensional integral

Γ− representations,
up to equivalence

⇔
 d− dimensional

algebraic tori, split over E,
up to isomorphism


The local and global theory of tori can be summarized as follows: The
local Galois groups Γv := Gal(Ew/Fv) ⊂ Γ act on Mv := MΓv , the
characters of T (Fv). Let Nv be the lattice of local cocharacters. Write
T (ov) ⊂ T (Fv) for a maximal compact subgroup (after choosing an
integral model, it is indeed the group of ov-valued points of T , for
almost all v). Then

T (Fv)/T (ov) ↪→ Nv = NΓv ,

an isomorphism for v unramified in E/F . Adelically, we have

T (AF ) ⊃ T 1(AF ) = {t |
∏
v

|m(tv)|v = 1 ∀m ∈MΓ}

and
T (F ) ↪→ T 1(AF ).

Let KT :=
∏

v T (ov) be the maximal compact subgroup of T (AF ).

Theorem 6.5.1. We have
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• T (AF )/T 1(AF ) = NΓ
R ;

• T 1(AF )/T (F ) compact;
• KT ∩ T (F ) finite;
• the map (T (AF )/KT · T (F ))∗ → ⊕v|∞Mv ⊗ R has finite ker-

nel (analogs of roots of 1) and maps the characters to a lattice
⊕MΓ

R .

Over algebraically closed fields, complete toric varieties, i.e., equi-
variant compactifications of algebraic tori, are described and classified
by a combinatorial structure (M,N,Σ), where

• M is the free abelian group of finite rank (the algebraic char-
acters of the torus T ),
• N := Hom(M,Z) is the dual group of cocharacters, and
• Σ = {σ} is a fan, i.e., a collection of strictly convex cones in
NR such that
(1) 0 ∈ σ for all σ ∈ Σ,
(2) NR = ∪σ∈Σσ,
(3) every face τ ⊂ σ is in Σ
(4) σ ∩ σ′ ∈ Σ and is face of σ, σ′.

A fan Σ is called regular if the generators of every σ ∈ Σ form part of a
basis of N . In this case, the corresponding toric variety XΣ is smooth.
The toric variety is constructed as follows:

XΣ := ∪σUσ where Uσ := Spec(F [M ∩ σ̌]),

and σ̌ ⊂ MR is the cone dual to σ ⊂ NR. The fan Σ encodes all
geometric information about XΣ. For example, 1-dimensional genera-
tors e1, . . . , en of Σ correspond to boundary divisors D1, . . . , Dn, i.e.,
the irreducible components of XΣ \T . There is an explicit criterion for
projectivity and a description of the cohomology ring, cellular structure
etc.

Example 6.5.2. The simplest toric variety is X = P1. We have three
distinguished Zariski open subsets:

• P1 ⊃ Gm = Spec(F [x, x−1]) = Spec(F [xZ])
• P1 ⊃ A1 = Spec(F [x]) = Spec(F [xZ≥0 ]),
• P1 ⊃ A1 = Spec(F [x−1]) = Spec(F [xZ≤0 ])

They correspond to the semi-groups:

• Z dual to 0,
• Z≥0 dual to Z≥0,
• Z≤0 dual to Z≤0.
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Over nonclosed ground fields F one has to account for the action of
the Galois group of a splitting field E/F . The necessary modifications
can be described as follows. The Galois group Γ acts on M,N,Σ. A
fan Σ is called Γ-invariant if γ · σ ∈ Σ, for all γ ∈ Γ, σ ∈ Σ. If Σ is a
complete regular Γ-invariant fan such that, over the splitting field, the
resulting toric variety XΣ,E is projective, then it can be descended to
a complete algebraic variety XΣ,F over the groundfield F such that

XΣ,E ' XΣ,F ⊗Spec(F ) Spec(E),

as E-varieties with Γ-action.
Picard group
The split case

PL(Σ) - piecewise linear Z-valued functions ϕ on Σ
determined by M ⊃ {mσ,ϕ}σ∈Σ, i.e., by its values sj := ϕ(ej), j =
1, . . . , n.

0→M → PL(Σ)
π−→ Pic(XΣ)→ 0

• every divisor is equivalent to a linear combination of bound-
ary divisors D1, . . . , Dn, and ϕ is determined by its values on
e1, . . . , en
• relations come from characters of T

The nonsplit case

0→MΓ → PL(Σ)Γ π−→ Pic(XΣ)Γ → H1(Γ,M)→ 0

Λeff(XΣ) = π(R≥0D1 + . . .+ R≥0Dn)
−KΣ = π(D1 + . . .+Dn)

Example 6.5.3. P1 = {x = (x0 : x1)} ⊃ Gm

Hv(x) :=

{
|x0

x1
|v if |x0|v ≥ |x1|v

|x1

x0
|v otherwise

H(x) :=
∏
v

Hv(x)

In general, T (Fv)/T (Ov) ↪→ Nv. For ϕ ∈ PL(Σ) put

HΣ,v(x, ϕ) := qϕ(x̄v)
v HΣ(x, ϕ) :=

∏
v

HΣ,v(x, ϕ),

with qv = e, for v | ∞. This height has the following properties:
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• it gives a pairing T (AF )× PL(Σ)C → C;
• the restriction to T (F ) × PL(Σ)C descends to a well-defined

pairing

T (F )× Pic(XΣ)C → C;

• T (Ov)-invariance, for all v

Height zeta function:

ZΣ(s) :=
∑

x∈T (F )

HΣ(x, ϕs)
−1

Poisson formula

ZΣ(s) :=

∫
(T (AF )/KT ·T (F ))∗

ĤΣ(χ, s)dχ

ĤΣ(χ, s) :=

∫
T (AF )

HΣ(x,−ϕs)χ(x)dx

• for χ nontrivial on KT we have ĤΣ = 0
• converges absolutely for <(sj) > 1 (for all j)
• Haar measures on T (Fv) normalized by T (Ov)

Example 6.5.4. Consider the projective line P1 over Q. We have

0→M → PL(Σ)→ Pic(P1)→ 0

with M = Z and PL(Σ) = Z2 The Fourier transforms of local heights
can be computed as follows:

Ĥp(χ0, s) = 1 +
∑
n≥1

p−s1−im +
∑
n≥1

p−s1+im =
ζp(s1 + im)ζp(s2 − im)

ζp(s1 + s2)
,

Ĥ∞(χ0, s) =

∫ ∞
0

e(−s1−im)xdx+

∫ ∞
0

e(−s2+im)xdx =
1

s1 + im
+

1

s2 − im
.

We obtain

ZP1(s1, s2) =

∫
R
ζ(s1 + im)ζ(s2 − im) ·

(
1

s1 + im
+

1

s2 − im

)
dm.

The integral converges for <(s1),<(s2) > 1, absolutely and uniformly
on compact subsets. It remains to establish its meromorphically con-
tinuation. This can be achieved by shifting the contour of integration
and computing the resulting residues.

It is helpful to compare this approach with the analysis of P1 as an
additive variety in Example 6.4.1.
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The Fourier transforms of local height functions in the case of Gd
m

over Q are given by:

• v -∞:

ĤΣ,v(χv,−s) =
d∑

k=1

∑
σ∈Σ(k)

(−1)k
∏
ej∈σ

1

1− q−(sj+i〈ej ,m〉)
v

• v | ∞

ĤΣ,v(χv,−s) =
∑
σ∈Σ(d)

∏
ej∈σ

1

(sj + i〈ej,m〉)

where χ = χm is the character corresponding to m ∈MR. The general
case of nonsplit tori over number fields requires more care. We have
an exact sequence of Γ-modules:

0→M → PL(Σ)→ Pic(XΣ)→ 0,

with PL(Σ) a permutation module. Duality gives a sequence of groups:

0→ TPic(AF )→ TPL(AF )→ T (AF )

with

TPL(AF ) =
k∏
j=1

RFj/FGm(AF ) (restriction of scalars)

We get a map

(T (AF )/KT · T (F ))∗ →
∏k

j=1

(
Gm(AFj)/Gm(Fj)

)∗
χ 7→ (χ1, . . . , χk)

This map has finite kernel. Assembling local computations, we have

(6.14) ĤΣ(χ, s) =

∏k
j=1 L(sj, χj)

QΣ(χ, s)
ζΣ,∞(s, χ),

where QΣ(χ, s) bounded uniformly in χ, in compact subsets in <(sj) >
1/2 + δ, δ > 0, and

|ζΣ,∞(s, χ)| � 1

(1 + ‖m‖)d+1
· 1

(1 + ‖χ‖)d′+1
.

This implies that

ZΣ(s) =

∫
MΓ

R

fΣ(s + im)dm,
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where

fΣ(s) :=
∑

χ∈(T 1(AF )/KT ·T (F ))∗

ĤΣ(χ, s)

We have

(1) (s1 − 1) · . . . · (sk − 1)fΣ(s) is homolorphic for <(sj) > 1− δ;
(2) fΣ satisfies growth conditions in vertical strips (this follows by

applying the Phragmen-Lindelöf principle 6.1.2 to bound L-
functions appearing in equation (6.14));

(3) limsj→1 fΣ(s) = c(fΣ) 6= 0.

The Convexity principle 6.1.1 implies a meromorphic continuation
of Z(s) to a tubular neighborhood of the shifted cone Λeff(XΣ). The
identification of the remaining factors β and τ requires another appli-
cation of the Poisson formula. Other line bundles require a version of
the technical theorem above.

6.6. Unipotent groups. Let X ⊃ G be an equivariant compactifica-
tion of a unipotent group over a number field F and

X \G = D = ∪i∈IDi.

Throughout, we will assume that G acts on X on both sides, i.e., that
X is a compactification of G × G/G, or a bi-equvariant compactifica-
tion. We also assume that D is a divisor with normal crossings and
its components Di are geometrically irreducible. The main geometric
invariants of X have been computed in Example 1.1.4: The Picard
group is freely generated by the classes of Di, the effective cone is
simplicial, and the anticanonical class is sum of boundary components
with nonnegative coefficients.

Local and global heights have been defined in Example 4.8.6:

HDi,v(x) := ‖fi(x)‖−1
v and HDi(x) =

∏
v

HDi,v(x),

where fi is the unique G-invariant section of H0(X,Di). We get a height
pairing:

H : G(AF )× Pic(X)C → C

as in Section 6.3. The bi-equivariance of X implies that H is invariant
under the action on both sides of a compact open subgroup K of the
finite adeles. Moreover, we can arrange that Hv is smooth in gv for
archimedean v.
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The height zeta function

Z(s, g) :=
∑

γ∈G(F )

H(s, g)−1

is holomorphic in s, for <(s) � 0. As a function of g it is continu-
ous and in L2(G((F )\G(AF )), for these s. We proceed to analyze its
spectral decomposition. We get a formal identity

(6.15) Z(s; g) =
∑
%

Z%(s; g),

where the sum is over all irreducible unitary representations (%,H%)
of G(AF ) occuring in the right regular representation of G(AF ) in
L2(G(F )\G(AF )). They are parametrized by F -rational orbits O = O%
under the coadjoint action of G on the dual of its Lie algebra g∗. The
relevant orbits are integral - there exists a lattice in g∗(F ) such that
Z%(s; g) = 0 unless the intersection of O with this lattice is nonempty.
The pole of highest order is contributed by the trivial representation
and integrality insures that this representation is “isolated”.

Let % be an integral representation as above. It has the following
explicit realization: There exists an F -rational subgroup M ⊂ G such
that

% = IndGM(ψ),

where ψ is a certain character of M(AF ). In particular, for the trivial
representation, M = G and ψ is the trivial character. Further, there
exists a finite set of valuations S = S% such that dim(%v) = 1 for v /∈ S
and consequently

(6.16) Z%(s; g′) = ZS(s; g′) · ZS(s; g′).

It turns out that

ZS(s; g′) :=
∏
v/∈S

∫
M(Fv)

Hv(s; gvg
′
v)
−1ψ(gv)dgv,

with an appropriately normalized Haar measure dgv on M(Fv). The
function ZS is the projection of Z to ⊗v∈S%v.

The first key result is the explicit computation of height integrals:∫
M(Fv)

Hv(s; gvg
′
v)
−1ψ(gv)dgv



VARIETIES WITH MANY RATIONAL POINTS 95

for almost all v. This has been done in [?] for equivariant compact-
ifications of additive groups Gn

a (see Section 6.4); the same approach
works here too. The contribution from the trivial representation can
be computed using the formula of Denef-Loeser, as in (6.10):∫

G(AF )

H(s; g)−1dg =
∏
i

ζF (si − κi + 1) · Φ(s),

where Φ(s) is holomorphic for <(s) ∈ T−KX−ε, for some ε > 0, and
−KX =

∑
i κiDi. As in the case of additive groups in Section 6.4, this

term gives the “correct” pole at −KX . The analysis of 1-dimensional
representations, with M = G, is similar to the additive case. New
difficulties arise from infinite-dimensional % on the right side of the
expansion (6.15).

Next we need to estimate dim(%v) and the local integrals for nonar-
chimedean v ∈ S%. The key result here is that the contribition to
the Euler product from these places is a holomorphic function which
can be bounded from above by a polynomial in the coordinates of %,
for <(s) ∈ T−KX−ε. The uniform convergence of the spectral expan-
sion comes from estimates at the archimedean places: for every (left
or right) G-invariant differential operator ∂ (and s ∈ T) there exists a
constant c(∂) such that

(6.17)

∫
G(Fv)

|∂Hv(s; gv)
−1dgv|v ≤ c(∂).

Let v be real. It is known that %v can be modeled in L2(Rr), where
2r = dim(O). More precisely, there exists an isometry

j : (πv, L
2(Rr))→ (%v,Hv)

(an analog of the Θ-distribution). Moreover, the universal enveloping
algebra U(g) surjects onto the Weyl algebra of differential operators
with polynomial coefficients acting on the smooth vectors C∞(Rr) ⊂
L2(Rr). In particular, we can find an operator ∆ acting as the (r-
dimensional) harmonic oscillator

r∏
j=1

(
∂2

∂x2
j

− ajx2
j

)
,
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with aj > 0. We choose an orthonormal basis of L2(Rr) consisting of
∆-eigenfunctions {ω̃λ} (which are well known) and analyze∫

G(Fv)

Hv(s; gv)
−1ωλ(gv)dgv,

where ωλ = j−1(ω̃λ). Using integration by parts we find that for s ∈ T
and any N ∈ N there is a constant c(N,∆) such that this integral is
bounded by

(6.18) (1 + |λ|)−Nc(N,∆).

This estimate suffices to conclude that for each % the function ZS% is
holomorphic in T.

Now the issue is to prove the convergence of the sum in (6.15). Using
any element ∂ ∈ U(g) acting in H% by a scalar λ(∂) 6= 0 (for example,
any element in the center of U(g)) we can improve the bound (6.18) to

(1 + |λ|)−N1λ(∂)−N2c(N1, N2,∆, ∂)

(for any N1, N2 ∈ N). However, we have to insure the uniformity of
such estimates over the set of all %. This relies on a parametrization
of coadjoint orbits. There is a finite set {Σd} of “packets” of coadjoint
orbits, each parametrized by a locally closed subvariety Zd ⊂ g∗, and
for each d a finite set of F -rational polynomials {Pd,r} on g∗ such that
the restriction of each Pd,r to Zd is invariant under the coadjoint action.
Consequenty, the corresponding derivatives

∂d,r ∈ U(g)

act in H% by multiplication by the scalar

λ%,r = Pd,r(O).

There is a similar uniform construction of the “harmonic oscillator” ∆d

for each d. Combining the resulting estimates we obtain the uniform
convergence of the right hand side in (6.15).

The last technical point is to prove that both expressions (6.6) and
(6.15) for Z(s; g) define continuous functions on G(F )\G(AF ). Then
(6.15) gives the desired meromorphic continuation of Z(s; e).

Background material on representation theory of unipotent groups
can be found in the books [CG66], [Dix96] and the papers [Moo65],
[Kir99].
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[Dix96] J. Dixmier – Algèbres enveloppantes, Les Grands Classiques
Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques
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vol. 226, Birkhäuser Boston, Boston, MA, 2004, p. 149–173.

[HT08] , “Potential density of rational points for K3 surfaces over
function fields”, 2008, to appear in Amer. Journ. of Math.

[Hun96] B. Hunt – The geometry of some special arithmetic quotients, Lecture
Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996.

[IM71] V. A. Iskovskih and Y. I. Manin – “Three-dimensional quar-
tics and counterexamples to the Lüroth problem”, Mat. Sb. (N.S.)
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cubic surfaces. I”, Astérisque (1998), no. 251, p. 1–12, Nombre et
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