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Abstract We sketch a proof of the Hecke orbit conjecture. We also explain several techniques
developed for the Hecke orbit problem, including a generalization of the Serre-Tate coordinates.

§1. Introduction

In this article we give an overview of the proof of a conjecture of F. Oort that every prime-
to-p Hecke orbit in the moduli space A, of principally polarized abelian varieties over E
is dense in the leaf containing it. See 4.1 for a precise statement, 2.4 for the definition of
Hecke orbits, and 3.1 for the definition of a leaf. Roughly speaking, a leaf is the locus in
A, consisting of all points x such that the quasi-polarized Barsotti-Tate group attached to z
belongs to a fixed isomorphism class, while the prime-to-p Hecke orbit of a point = consists of
all points y such that there exists a prime-to-p quasi-isogeny from A, to A, which preserves
the polarizations. Here A, and A, denote the principally polarized abelian varieties attached
to x,y respectively; a prime-to-p quasi-isogeny is the composition of a prime-to-p isogeny
with the inverse of a prime-to-p isogeny.

For clarity in logic, it is convenient to separate the Hecke orbit conjecture into two parts;
the continuous part asserts that the Zariski closure of a prime-to-p Hecke orbit has the
same dimension as the dimension of the leaf containing it, the discrete part asserts that the
prime-to-p Hecke correspondences operate transitively on the set of irreducible components
of every leaf; see 4.1.

The prime-to-p Hecke correspondences on A, form a pretty large family of symmetries
on Ag; this fact leads to the expectation that every prime-to-p Hecke orbit should be “as
large as possible”. The decomposition of A, into the disjoint union of leaves constitutes a
“fine” geometric structure of A,, existing only in characteristic p and called foliation in [22].
The Hecke orbit conjecture says, in particular, that the foliation structure on A, over E is
determined by the Hecke symmetries.

The prime-to-p Hecke orbit HP)(x) of a point z is a countable subset of A,. Experience
indicates that determining the Zariski closure of a countable subset of an algebraic variety in
positive characteristic is often difficult. We developed a number of techniques to deal with
the Hecke orbit problem. They include

(M) the f-adic monodromy of leaves,
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C

the theory of canonical coordinates on leaves,

(C)

(R) a rigidity result for p-divisible formal groups,
(S) splitting at supersingular point,

(H) hypersymmetric points,

and will be described in §5, §7, §8, §11, and §10 respectively. We hope that the above
techniques will also be useful in other situations. Among them, the most significant is perhaps
the theory of canonical coordinates on leaves, which generalizes the Serre-Tate coordinates
for the local moduli space of ordinary abelian varieties. At a non-ordinary closed point x of
A, there is no description of the formal completion Aéw of A, at x comparable to what the
Serre-Tate theory provides. But if we restrict to the leaf C passing through x, then there
is a “good” structural theory of the formal completion C/*. To get an idea, the simplest
situation is when the Barsotti-Tate group A,[p™] is isomorphic to a direct product X x Y,
where XY are isoclinic Barsotti-Tate group of Frobenius slopes Ax, Ay respectively, and
Ax < Ay = 1 —\x. In this case, C/* has a natural structure as an isoclinic p-divisible formal
group of height @, Frobenius slope A\y—\x, and dim(C/*) = (Ay—Ax) - @. Moreover,
there is a natural isomorphism of F-isocrystals
M(C*) ©7 Q = Homf (M(X), M(Y)) ®2 Q,

where M(C/), M(X), M(Y) denote the Cartier-Dieudonné modules of C/*, X, Y respectively,
and the right-hand side of the formula denotes the symmetric part of the internal Hom, with
respect to the involution induced by the principal polarization on A,. In the general case,
C/* is build up by a successive system of fibrations, each fibration has a natural structure as
a torsor for a suitable p-divisible formal group.

The fundamental idea underlying our method is to exploit the action of the local stabilizer
subgroups. Recall that the prime-to-p Hecke correspondences come from the action of the
action of the group SpQQ(A;p )) on the prime-to-p tower of the moduli space A, where Agcp )
denotes the restricted product of Q,’s, where ¢ runs through all primes not equal to p.
Suppose Z C A, is a closed subscheme of 4, which is stable under all prime-to-p Hecke
correspondences. It is clear that for any closed point x € Z(k), the subscheme Z is stable
under the set Stab(x) consisting of all prime-to-p Hecke correspondences having x as a
fixed point. This is an elementary fact, referred to as the local stabilizer principle, to be

transformed into a more usable form below.

The stabilizer Stab(z) comes from the unitary group G, = U(Endg(A4,) ®z Q, *,) at-
tached to the pair (Endg(A,) ®z Q,*,), where x, denotes the Rosati involution on the
semisimple algebra End(A,) ®z Q. The group G,(Z,) of Z,-points of G, is a subgroup of
U(Endg(A.[p™]), %, ); the latter operates naturally on the formal completion AL by defor-
mation theory. Notice that G, has a natural Z-model attached to the Z-lattice Endy(A,) C



Endi(A,) ®z Q, and G,(Z,) is defined using that Z-model. With the help of the weak ap-
proximation theorem, applied to G, the local stabilizer principle then says that the formal

completion Z/* of Z at x, as a closed formal subscheme of Ag””, is stable under the action of
G4(Zy). See §6 for details.

The tools (C), (R), (H) mentioned above allows us to use the local stabilizer principle
effectively. A useful consequence is that, if Z is a closed subscheme of A, stable under
all prime-to-p Hecke correspondences, and x is a split hypersymmetric point in Z, then Z
contains an irreducible component of the leaf passing through x; see Thm. 10.2. Here a
split point in A, is a point y such that A, is isogenous to a product of abelian varieties
where each factor has at most two slopes, while a hypersymmetric point is a point y in A,
such that Endg(A,) ®z Z, = Endy(A,[p>]). It should not come as a surprise that the local
stabilizer principle gives us a lot of information at a hypersymmetric point, where the local
stabilizer subgroup is quite large.

Let © € A,,(k) be a point of A,,. Let H®)(z) be the Zariski closure of the prime-
—0 S

to-p Hecke orbit H®(z) of z, and let H®)(x) H® (z) N C(x).> The conclusion of the
last paragraph tells us that, to show that H® (z) is irreducible, it suffices to show that

——0

H®) (.CE)O contains a split hypersymmetric point. The result that H®) (x) contains a split
hypersymmetric point is accomplished through what we call the Hilbert trick and the splitting
at supersingular points.

The Hilbert trick refers to a special property of A,: Up to an isogeny correspondence,
there exists a Hilbert modular subvariety of maximal dimension passing through any given
IF_p—point of Ay; see §9. To elaborate a bit, let x be a given point of AQ(E). The Hilbert
trick tells us that there exists an isogeny correspondence f, from a g-dimensional Hilbert
modular subvariety Mg C A, to A,, whose image contains z. The Hilbert modular variety
above is attached to a commutative semisimple subalgebra E of Endg(A,) ®z Q, such that
[E : Q] = g and E is fixed by the Rosati involution. There are Hecke correspondences on
M coming from SL(2, F), and SL(2, E) can be regarded as a subgroup of Sp,,. The isogeny
correspondence f above respects the prime-to-p Hecke correspondences. So, among other
things, the Hilbert trick tells us that, for an E—point x of Ay, as above, the Hecke orbit
H®P)(z) contains the f-image of a prime-to-p Hecke orbit Hg) () on the Hilbert modular
variety Mg, where 2 is a pre-image of x under the isogeny correspondence f.

A consequence of the Hilbert trick and the local stabilizer principle, is the following trick
of “splitting at supersingular points”; see 11.1. This “splitting trick” says that, in the interior
of the Zariski closure of a given Hecke orbit, there exists a point y such that A, is a split
abelian variety. The last clause means that A, is isogenous to a product of abelian varieties,
each of which has at most two slopes.

One can formulate the notion of leaves and the Hecke orbit conjecture for Hilbert modular
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varieties. It turns out that the Hecke orbit problem for Hilbert modular varieties is easier to
solve than the Siegel modular varieties, reflecting the fact that the a Hilbert modular variety
comes from a reductive group G over Q such that every Q-simple factor of the adjoint group
G* has Q-rank one. The trick “splitting at infinity” and a standard technique in algebraic
geometry implies that, when one tries to prove the Hecke orbit conjecture, one may assume
that the point = of A, is defined over F, and the abelian variety A, is split. Now we apply
the Hilbert trick to . To simplify the exposition, we will assume, for simplicity, that we have
a Hilbert modular variety Mg in A, passing through the point x, suppressing the isogeny
correspondence f. We will also assume (or “pretend”) that the leaf Cg(z) on Mg passing
through x is the intersection of C(z) with Mpg. (The last assumption is not far from the
truth, if we interpret “intersection” as a suitable fiber product.)

It is easy to see that every leaf in Mg contains a hypersymmetric point y of A,. Moreover
A, is split because A, is split. So if we can prove the Hecke orbit conjecture for Mg, then
we will know that the Zariski closure of the Hecke orbit H®(z) in C(z) contains a split
hypersymmetric point y. Therefore the Hecke orbit conjecture for Hilbert modular varieties
implies the continuous part of the Hecke orbit conjecture for 4,. See also 12.6.1 for a sketch.

The general methods we developed, when applied to M g, produce a proof of the contin-
uous part of the Hecke orbit conjecture for Mg. Thus we are left with the discrete part of
the Hecke orbit conjecture for 4, and the Hilbert modular varieties.

The discrete Hecke orbit problem is equivalent to the statement that every non-supersin-
gular leaf is irreducible, see Thm. 5.1; the same holds for Hilbert modular varieties. Generally
such irreducibility statements do not come by easily; so far there is no unified approach
which works for all modular varieties of PEL-type. Using the techniques (H) and (M), one
can reduce the discrete Hecke orbit conjecture for 4, to the statement that the prime-to-p
Hecke correspondences operates transitively on the set of irreducible components of every
non-supersingular Newton polygon strata in .A,. Happily the results of Oort in [20], [21] can
be applied to settle the latter irreducibility statement; see 13.1.1, [24], and references cited in
13.1.1. The discrete Hecke orbit problem for the Hilbert modular varieties, however, requires
a different approach, based on the Lie-alpha stratification of Hilbert modular varieties, and
the following property of Hilbert modular varieties: For each slope data £ for Mg, there
exists a Lie-alpha stratum N, , C Mg, contained in the Newton stratum in Mg attached to
the given slope data &, and a dense open subset U, , of N, , such that U, , is a leaf in Mpg. A
critical step in the proof of the discrete Hecke orbit problem, due to C.-F. Yu, is constructing
“enough” deformations to analyze the incidence relation of the Lie-alpha stratification; see
13.3.

Details of the proof of the Hecke orbit conjecture will appear in a manuscript with
F. Oort. All unattributed results are due to suitable subsets of {Oort, Yu, CLC}. The
author is responsible for all errors and imprecision.

It is a pleasure to thank F. Oort for many stimulating discussions on the Hecke orbit
problem over the last ten years, and for generously sharing his insights on the foliation
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of 2004. The author thanks both NCTS/TPE-Math and the Department of Mathematics of
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§2. Hecke orbits

, N )
(2.1) Let p be a prime number, fixed throughout this article. Let Z;” = Hf;ﬁp Zy, where {

runs through all prime numbers different from p. Let Agcp )= H; 2 Qe = chp ) ®2 Q be the
ring of prime-to-p finite ideles attached to Q.

Let k£ be an algebraically closed field of characteristic p. Choose and fix an isomorphism
¢ : chp) = chp)(l) over k, i.e. a compatible system of isomorphisms (,, : Z/mZ ~ p,(k),
where m runs through all positive integers which are not divisible by p. For any natural
number ¢ and any integer n > 3 with (n,p) = 1, denote by A,, the moduli space over
k classifying g-dimensional principally polarized abelian varieties with a symplectic level-n
structure with respect to .

(2.2) For any two integers ny,ng > 3, such that (p, ning) = 1 and nq|ns, there is a canonical
map Agn, — Agn,. Denote by Ay ) the resulting projective system of the moduli spaces
A, n, where n runs through all integers n > 3 with (p,n) = 1. By definition, a geometric
point in A, (k) corresponds to a triple (A4, A,n), where A is a g-dimensional principally

polarized abelian variety over k, A is a principal polarization on A, and 7 is a level—chp )

structure on A, i.e. n is a symplectic isomorphism from [], 4p All>] to (chp ))29 , where the

free chp )_module (Z;p 129 is endowed with the standard symplectic pairing.

(2.3) From the definition of A, ) we see that there is a natural action of SpQQ(Zﬁcp)) on
Ayg.(»), operating as covering transformations over the moduli stack A,. Moreover there is
a natural action of the group SpQQ(Agcp )) on Ay ), extending the action of szg(A;p )) and

gives a much larger collection of symmetries on the tower Ay ). The automorphism h., of

Ay (») attached to an element v € SpQQ(A;p )) is characterized by the property that there is a

prime-to-p isogeny «., from the universal abelian variety A to hZA such that
noay(p)] =vyen,

where o, [(p)] denotes the prime-to-p quasi-isogeny induced by ., between the prime-to-p-
divisible groups attached to A and h} A respectively. On each individual moduli space Ay,

the action of SpQQ(A;p )) induces algebraic correspondences to itself; they are the classical
Hecke correspondences on the Siegel moduli spaces.
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(2.4) Definition Let n > 3 be an integer, (n,p) = 1. Let x € A, (k) be a geometric point
of Ay, and let & € Ay (k) be a geometric point of the tower Ay ) above .

(i) The prime-to-p Hecke orbit of x in A, denoted by H)(z), or H(x) for short, is the
image of the subset Sp2g(A§cp Y. 7 of Ay, under the projection map m, : Ay () — Agn.

(ii) Let ¢ be a prime number, ¢ # p. The ¢(-adic Hecke orbit of x in A, ,,, denoted by H,(z),
is the image of Sp,,(Q¢) - ¥ under 7 : Ay ) — Ag .

(2.4.1) Remark (i) It is easy to see that the definition of H,(z) does not depend on the
choice of . One can also use the (-adic tower above A, ,, to define the ¢-adic Hecke orbits.

(ii) Explicitly, the countable set HP) () (resp. Hy(z)) consists of all points y € A, (k)
such that there exists an abelian variety B over k and two prime-to-p isogenies (resp. {-power
isogenies) a : B — A,, 8 : B — A, such that o*(\;) = 8*(A\,).

(iii) The moduli stack A, over k has a natural pro-étale GSp,, (chp ) cover; and the group
GSpQQ(Agcp ) operate on the projective limit. Then for any geometric point = € Ay, (k), we
can define the GSpQQ(A;p))—orbit of z and the GSp,,(Q¢)-orbit of z) as in Def. 2.4 using the

pro-étale GSpQH(Z;p )_tower. Explicitly, the GSpQQ(Agcp ))—orbit of x (resp. the GSp,,(Qy)-orbit
of z) on A, for a geometric point x € A, ,(k) can be explicitly described as follows. It
consists of all points y € A, ,,(k) such that there exists a prime-to-p isogeny (resp. an ¢-power
isogeny) (3 : A, — A, such that 5*(\,) = m();), where m is a prime-to-p positive integer

(resp. a non-negative integer power of ¢.)

(2.4.2) Remark In 2.4 we used the group szg(A;p)) to define the prim-to-p Hecke orbits
of a closed point = in A,,, — Spec(k). Geometrically that means consider the orbit of x
under all prime-to-p symplectic quasi-isogenies. One can also consider the orbit of x under all
symplectic quasi-isogenies, or, as a slight variation, the orbit of x under all quasi-isogenies
which preserve the polarization up to a multiple. The latter was used in [19, 15.A]. We
considered only the prime-to-p Hecke correspondences in this article, since they are finite
étale correspondences on A, ,,, and reflect well the underlying group-theoretic properties.

(2.5) For any totally real number field F' and any integer n > 3, (n, p) = 1, denote by Mp,,
the Hilbert modular variety over k attached to F' as defined in [10]. Just as in the case
of the Siegel modular varieties, the varieties Mp,, form a projective system, with a natural
action by the group SLs(F ®q AE}D )), The prime-to-p Hecke orbit Hg) () and the ¢-adic Hecke
orbit Hp,(x) of a geometric point x € Mg, (k) are, by definition, the image in Mg, (k) of
SLy(F ®q A}p)) - & and SLy(F ®q Qy) - & respectively, where 7 is a k-valued point, lying above
x, of the projective system My, ) := {Mpgy, : (m,p) =1}



(2.5.1) More generally, if E = F} X -+ X F, is a product of totally real number fields, we can
define the Hilbert modular variety Mg over k attached to F, in the same fashion as in [10],
with Op := Op, X--- X Op.. Then we have a canonical isomorphism Mgz = Mg x--- X Mp,.
The notion of Hecke orbits generalizes in the obvious way to the present situation.

(2.5.2) Remark The notion of prime-to-p Hecke orbits can be generalized to other modular
varieties over k of PEL-type in a natural way. Furthermore, one expects that the notion of
prime-to-p Hecke orbits can be generalized to the reduction over k of a Shimura variety X,
with satisfactory properties.

§3. Leaves

In this section we work over an algebraically closed field k& of characteristic p > 0. The
modular varieties A,, and Mg, are considered over the fixed based field k.

(3.1) Theorem (Oort) Letn > 3 be an integer, (n,p) = 1. Let x € A, (k) be a geometric
point of Ag .

(i) There exists a unique reduced constructible subscheme C(x) of Agn, called the leaf
passing through x, characterized by the following property. For every algebraically
closed field K D k, C(x)(K) consists of all elements y € Ay, (K) such that

(Az [pooL )\m[poo]) ><Speck Spec K = (Ay[poo]’ )\y[poob )

where A\, [p>°], A\y[p*>°] are the principal quasi-polarizations induced by the principal po-
larizations Ay, Ay on the abelian varieties A,[p™], A,[p*] respectively.

(ii) The leaf C(z) is a locally closed subscheme of Ay .. Moreover it is smooth over k.

(3.1.1) Remark (i) Thm. 3.1 is proved in [22, 3.3, 3.14]. The statement that the subset
of A, (k) consisting of all geometric points y such that (A4,[p>], A,[p>]) is isomorphic to
(Az[p>], Ax[p™]) is the set of geometric points of a constructible subset of A, ,,, follows from
the following fact, proved in Manin’s thesis [15]: A Barsotti-Tate group over k of a given
height A is determined, up to non-unique isomorphism, by its truncation modulo a sufficiently
high level N > N(h).

(ii) T. Zink showed, in a letter to C.-L. Chai dated May 1, 1999, the following generaliza-
tion of Manin’s result: A crystal M over k is determined, up to non-unique isomorphisms,
by its quotient modulo p?¥, for some suitable N > 0 depending only on the height of M.

(iii) In [22], C(x) is called the central leaf passing through .

(iv) It is clear from the definition that each leaf in A, , is stable under all prime-to-p
Hecke correspondences. In particular, the Hecke orbit H ) (x) is contained in the leaf C(z)
passing through .

(v) Every leaf is contained in an open Newton stratum of A, ,, and every open Newton
stratum is a disjoint union of leaves. Recall that an open Newton stratum Wfo(.Ag,n) in Agp,
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over k is, by definition, the subset of A, such that W¢(A,)(K) consists of all K-points
y of A, such that the Newton polygon of A,[p*>] is equal to &, for all fields K D k. By
Grothendieck-Katz, WQ(Ay,,) is a locally closed subset of Ay ,; see [13] for a proof. There
are infinitely many leaves in A, if ¢ > 2. In particular the decomposition of A,, into a
disjoint union of leaves is not a stratification in the usual sense: There are infinitely many
leaves, and the closure of some leaves contain infinitely many leaves.

(3.1.2) EXAMPLES.

(i) The ordinary locus of A, ,, that is the largest open subscheme of A, ,, over which each
geometric fiber of the universal abelian scheme is an ordinary abelian variety, is a leaf.

(ii) The “almost ordinary” locus of A, ,, or, the locus consisting of all geometric points
such that the maximal étale quotient of the attached Barsotti-Tate group A,[p>] has
height ¢ — 1, is a leaf.

(iii) Every supersingular leaf in A,, is finite over k. Hence there are infinitely many
supersingular leaves in A, if g > 2.

(iv) Consider the open Newton polygon stratum Wg (As,) in Ajs,, where the Newton

polygon ¢ has slopes (3,3). Every leaf C contained in W(As,) is two-dimensional,

while dim(W¢ (As,)) = 3.

(3.2) Proposition Let C be a leaf in A,,,. For each integer N > 1, denote by Alp"] — C
pN-torsion subgroup scheme of the restriction to C of the universal abelian scheme. Then
there exists a finite surjective morphism f : S — C such that (A[pN], A\[p"]) x¢ S is a
constant polarized truncated Barsotti-Tate group over S.

See [22, 1.3] for a proof of 3.2.

(3.2.1) Using Prop. 3.2, one can show that there exist finite surjective isogeny correspon-
dences between any two leaves lying in the same open Newton stratum; see [22, Lemma 3.14].
In particular, any two leaves in the same open Newton stratum have the same dimension.

(3.2.2) Remark In this article we have focused our attention on leaves in A, ,, over k. The
notion of leaves can be extended to other modular varieties of PEL-type in a similar way,
and the basic properties of leaves, including 3.1, 3.2, 3.3, can all be generalized; some of the
generalized statements become a little stronger. It is expected that the notion of leaves can
be defined on reduction over k of a Shimura variety X, with nice properties.

(3.3) Proposition Let C be a leaf in A,,,. Denote by A[p>] — C the Barsotti-Tate group
attached to the restriction to C of the universal abelian scheme. Then there exists a slope
filtration on A[p>] — C. More precisely, there exist Barsotti-Tate subgroups

OZG()CGlCGQC"'CGm:A[pOO]
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of A[p>®] — C owver the leaf C such that G;/G;_1 is a Barsotti-Tate group over C with a single
Frobenius slope p;, 1 =1,...,m, and pg > fto > -+ > [ipy,.

Remark (i) The statement that H; := G;/G;_; has Frobenius slope p; means that there
exists constants ¢, d > 0 such that
N

Ker([ptV#i=el]) C Ker(Frg

7

) € Ker([p!"t)])

for all N > 0.

(ii) The Frobenius slopes measures divisibility property of the Frobenius: A Barsotti-Tate
group X has slope pu if (Fry )™ /p*Y and p*V /(Frx )" are both bounded as N — oo. In the
literature the terminology “slope” is sometimes also used to measure the divisibility of the
Verschiebung, hence we use “Frobenius slope” to avoid possible confusion.

(iii) When all fibers of A[p>] at points of C are completely slope divisible, the existence
of the slope filtration was proved by in [31]; see also [26]. The statement of Prop. 3.3 has
not appeared in the literature, but the following stronger statement can be deduced from
the main results of [31] and [26]: If S — Spec(F,) is an integral noetherian normal scheme
of characteristic p, and G is a Barsotti-Tate group over S which is geometrically fiber-wise
constant, then G — S admits a slope filtration.

(iv) The slope filtration on a leaf holds the key to the theory of canonical coordinates on
a leaf; see §7.

(v) It is clear that on a Barsotti-Tate group over a reduced base scheme S over k, there
exists at most one slope filtration.

(vi) One can construct a Barsotti-Tate group over G a smooth base scheme S over k, for
instance P!, such that G does not have a slope filtration.

(3.4) Denote by IIy(C(x)) the scheme of geometrically irreducible components of C(z), or
equivalently, the set of geometrically connected components of C(z), since C(z) is smooth
over k. The scheme IIy(C(z)) is finite and étale over k; this assertion holds even if the base
field k is not assumed to be algebraically closed.

(3.5) Let E = F} x -+ x F, be the product of totally real fields Fi,..., F,, and let n > 3
be an integer with (n,p) = 1. The notion of leaves can be extended to the Hilbert modular
variety Mg, over k, as follows. Let z € Mg, (k) be a geometric point of the Hilbert
modular variety Mg, (k). The leaf in Mg, passing through z is the smooth locally closed
subscheme Cg(z), characterized by the property that Cg(x)(K) consists of all geometric
points y € Mg ,(K) such that there exists an Op®zZ,-linear isomorphism from A, [p>] to
A,[p*°] compatible with the Og-polarizations, for every algebraically closed field K D k.

(3.5.1) Just as in the case of Siegel modular varieties, each leaf in Mg, is stable under all
prime-to-p Hecke correspondences on Mg,,.



(3.5.2) The slope filtration on the Barsotti-Tate group over a leaf in Mg, takes the follow-
ing form. Let Cg be a leaf in Mg, and denote by G the Barsotti-Tate group attached to
the restriction to Cp of the universal abelian scheme over Cp. Write Op ®z Z, = szl O Eo;»
where each O B, is a complete discrete valuation ring. The natural action of O ®77Z, on G
gives a decomposition

G=G x--xG,,

where each G; is a Barsotti-Tate group over Cg, with action by O By, and the height of

G, is equal to 2 [0 E,; Z,). Moreover, if G; is not isoclinic of slope %, then there exists a

Barsotti-Tate subgroup H; C G over Cg, stable under the action of O o, such that
e the height of Hj is equal to [Op, : Z,],
e both H; and G;/H; are isoclinic, of Frobenius slopes 1, s respectively, and
o pj > pfy and py +pl =1

forj=1,...,s.

54. The Hecke orbit conjecture
Let k be an algebraically closed field of characteristic p, and let n > 3 be an integer,
(n,p) = 1.

(4.1) Conjecture Denote by A,,, the moduli space of g-dimensional principally polarized
abelian varieties over k with symplectic level-n structures as before.

(i) (HO) For any geometric point © of Ay, the Hecke orbit HP)(x) is dense in C(x).

(i) (HO)y For any geometric point x of A, we have dim(H®) (z)) = dim(C(x)), where
H®)(x) denotes the Zariski closure of the countable subset HW(z) in A,,. Equiva-
lently, H®)(x) contains the irreducible component of C(x) passing through x.

(ili) (HO)q. For any geometric point x of A, ., the canonical map

Io(H®(2)") — To(C(z))

is surjective, where H(p)(x)o = H®)(2) NC(x) denotes the Zariski closure of the Hecke
orbit H'P)(x) in the leaf C(x). In other words, the prime-to-p Hecke correspondences op-
erate transitively on the set I1o(C(x)) of geometrically irreducible components of C(x).

(4.1.1) Remark (i) The conjecture (HO) is due to Oort, see [22, 6.2]. It implies Conj.
15.A in [19], which asserts that the orbit of a point = in A, (k) under all Hecke correspon-
dences, including all purely inseparable ones, is Zariski dense in the Newton polygon stratum
containing x.
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(ii) It is clear that the conjecture (HO) is equivalent to the conjunction of (HO). and
(HO)qe. We call (HO)t (resp. (HO)qc) the continuous (resp. discrete) part of the Hecke orbit
conjecture (HO).

(iii) The conjecture (HO)q, is essentially an irreducibility statement; see Thm. 5.1.

(iv) We can also formulate the ¢-adic version of the Hecke orbit conjecture, (HO),, for any
prime number ¢ # p. It asserts that H,(z) is dense in C(x). One can define the continuous
part (HO)y,c, and the discrete part (HO) g of (HO), asin 4.1. Clearly, (HO), <= (HO), ,+
(HO)Z,dC‘

(v) Thm. 5.1 tells us that (HO), ;. <= (HO)4, and (HO), <= (HO). Strictly speaking,
Thm. 5.1 gives the implications when the Hecke orbit in question is not supersingular,
however the supersingular case can be dealt with directly, using the weak approximation
theorem.

(4.1.2) Let E be a finite product of totally real number fields, and let Mg be the Hilbert
modular variety over k attached to E. Then we can formulate the Hecke orbit conjectures
for M,, as in 4.1, and will use (HO)g, (HO)g., and (HO)g 4. to denote the Hecke orbit
conjecture for M,, and its two parts. Remark 4.1.1 (ii), (iii), (iv) hold in the present context.

(4.1.3) Remark The Hecke orbit conjecture(s) can be formulated for other modular vari-
eties of PEL-type, and the reduction over k of any Shimura variety X if one is optimistic. It
should be noted, however, that the statement in 4.1.1 (iii) needs to be modified, using the
Gder(Agcp ))—orbit instead of the G(A(p )_orbit, where G is the connected reductive group over

f
Q in the input data of the Shimura variety X.

(4.2) Theorem The Hecke orbit conjecture (HO) holds for the Siegel modular varieties. In
other words, every prime-to-p Hecke orbit is Zariski dense in the leaf containing it.

(4.2.1) Remark The Hecke orbit conjecture (HO), also holds for A, ,,, for any prime num-
ber ¢ # p. Although (HO), appears to be a stronger statement than (HO), it is essentially
equivalent to it, by Thm. 5.1.

(4.3) In the rest of this note we present an outline of the proof of Thm. 4.2. We have
already seen that Thm. 5.1 on f-adic monodromy groups is helpful in clarifying the discrete
Hecke orbit conjecture, and for the equivalence between (HO), and (HO). The foundation
underlying our approach is the local stabilizer principle, explained in §6; this principle is quite
general and can be applied to all PEL-type modular varieties. We will also use a special
property of the Siegel modular varieties, called the Hilbert trick, explained in §9. That
property holds for modular varieties of PEL-type C, but not for PEL-type A or D. Both
the local stabilizer principle and the Hilbert trick were used in [2]; the former was used not
only for points in the ordinary locus, but also the zero-dimensional cusps and supersingular
points.
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There are several techniques which make the local stabilizer principle more potent. They
include:

(C) the theory of canonical coordinates on leaves, generalizing Serre-Tate parameters for
local moduli space of ordinary abelian varieties,

(R) a rigidity result for p-divisible formal groups,

S) a trick “splitting at supersingular points”, exploiting the action of the local stabilizer
P g p g p p g
subgroup at supersingular points,

(H) a trick of using “hypersymmetric points” on a leaf.

They are explained in §7, §8, §11, §10 respectively. Among them, the methods (C), (R), (H)
can be generalized to all modular varieties of PEL-type, while (S) depends on the Hilbert
trick, therefore applies only to modular varieties of PEL-type C.

(4.4) The Hecke orbit conjecture for the Hilbert modular varieties enters the proof of (HO)s
for A, at an critical point, through the Hilbert trick.

(4.4.1) Theorem The Hecke orbit conjecture holds for Hilbert modular varieties. In other
words, every prime-to-p Hecke orbit in a Hilbert modular variety is Zariski dense in the leaf
containing 1.

See 13.2 and 13.3 for a description of the proof of Thm. 4.4.1.

§b. /-adic monodromy of leaves

Theorem 5.1 below explores the relation between the Hecke symmetries and the ¢-adic mon-
odromy. It asserts that the f-adic monodromy of any non-supersingular leaf on A, is maxi-
mal. A byproduct of 5.1, from group theoretic consideration, is an irreducibility statement.
The irreducibility statement implies that for a non-supersingular leaf C in Ay, the discrete
part (HO)q4. of the Hecke orbit conjecture holds for C if and only if C is irreducible.

(5.1) Theorem Let k be an algebraically closed field of characteristic p. Let n > 3 be a
natural number which is prime to p. Let ¢ be a prime number { fpn. Let Z be a smooth
locally closed subvariety of Ay, over k. Assume that Z is stable under all (-adic Hecke
correspondences coming from Sp,,(Qq), and that the (-adic Hecke correspondences operate
transitively on the set of irreducible components of Z. Let A — Z be the restriction to Z of the
universal abelian scheme. Let Zy be an irreducible component of Z, and let 1 be a geometric
generic point of Zy. Assume that Ay is not supersingular. Then the image p, ,(71(Zo,7)) of
the (-adic monodromy representation of A — Zy is equal to Sp(Ty, {, )¢) = Spyy(Zy), where
To = To(Ay) =lim A["](77) denotes the (-adic Tate module of Az. Moreover Z = Zy, i.e.
Z 1is irreducible, and Z is stable under all prime-to-p Hecke correspondences on A, ,,.
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(5.1.1) Remark (i) Theorem 5.1 is handy when one tries to prove the irreducibility of
certain subvarieties of A,.

(ii) The proof of 5.1 can be generalized to other modular varieties of PEL-type, but one
has to make suitable modification of the statement if the derived group of G is not simply
connected.

(iii) The proof of Thm. 5.1 is mostly group-theoretic; the algebro-geometric input is the
semisimplicity of the ¢-adic monodromy group.

§6. The action of the local stabilizer subgroup

(6.1) Let k£ be an algebraically closed field of characteristic p. Let n > 3 be an integer,
(n,p) = 1. Let ¢ be a prime number, ¢ # p. Let Z C A,, be a reduced closed subscheme
stable under all /-adic Hecke correspondences. In other words, Z is a union of ¢-adic Hecke
orbits. Let x = ([A;, A\;]) € Z(k) be a closed point of Z. Let E = End(A4,) ®z Q,, and let
x be the Rosati involution of F induced by the principal polarization \,. Let

H={ue E*lu-uv"=u"-u=1}

be the unitary group attached to the pair (£ ®q Q,,*). Let U, := H N Endg(A,[p>])*,
called the local stabilizer subgroup at x € A, (k).

Similarly, let £ := Endy(A,[p™]) ®2, Q,, and let % be the involution on F induced by \,.
Denote by H the unitary group attached to the pair (£, ), and let U, = HNEnd,(A,[p>])*.
The group U, operates naturally on Aéfcn by deformation theory. Since there is a natural
inclusion U, — Ux, the subgroup U, inherits an action on Aéfcn.

(6.2) Proposition (local stabilizer principle) Notation as above. Then the closed for-
mal subscheme Z/* of Aé,xn is stable under the action of the local stabilizer subgroup U, on

ALt

SKETCH OF PROOF. Let U be the unitary group attached to the pair (F,x*), a reductive
linear algebraic group over Q. In particular the weak approximation theorem holds for

U. Choose and fix a “standard embedding” U (A;p )) — SpQQ(Agcp )) coming from a choice

)

of symplectic level—chp structure of A,. Then every element of the subgroup U (A;p )) of

Spgg(A;p )) gives rise to a prime-to-p Hecke correspondence having x as a fixed point. For
any given element 7, € U,, choose an element v € U(Q) close to 7, in U(Q,). Note that
the image of v in U (Agcp )) gives rise to a prime-to-p Hecke correspondence, which has x as a
fixed point and sends the formal subscheme Z/% of .Ag/,fn to Z/% itself. Interpreted in terms of
deformation theory, the last assertion implies that a formal neighborhood Spec ((9 /e /MY ) of

x in Z/*, as a formal subscheme of A{fn, is stable under the natural action of +,, where m,, is
the maximal ideal of O /., and N = N(v,,7) depends on how close 7 is to 7, N(7,,7) — o0
as 7 — 7,. Taking the limit as  goes to v,, we see that Z/* is stable under the action of

Tp- 1
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(6.2.1) Remark (i) The action of the local stabilizer subgroup on the deformation space
goes back to Lubin and Tate in [14].

(ii) In [2], the local stabilizer principle was applied to the zero-dimensional cusps of
Ay, and also to points of A,, defined over finite fields. The calculation in [2] at the
zero-dimensional cusps is a bit complicated, and can be avoided, using “Larsen’s example”
instead.

(iii) The bigger the local stabilizer subgroup U,, the more information the action of U,
on Afn contains. The size of U is maximal when the abelian variety A, is supersingular.
If x is supersingular point, then U is an inner twist of Spy,, so in some sense almost all
information about the prime-to-p Hecke correspondences on A, ,, are encoded in the action
of U, on Aéfcn. The challenge, however, is to dig the buried information out of this action.

§7. Canonical coordinates for leaves

(7.1) Let k be an algebraically closed field of characteristic p. Let C be a leaf on A, ,,, where
n > 3 is a natural number relatively prime to p. Let x € C(k) be a closed point of C. Recall
that the leaf C is defined by a point-wise property, namely, a point y € C(k) is in C = C(x) if
and only if the quasi-polarized Barsotti-Tate groups (A,[p™], A\,[p™]) and (A [p>], Az[p™])
are isomorphic. One can also use the same point-wise property to define leaves (on the base
scheme) for a (quasi-polarized) Barsotti-Tate group over a Noetherian integral base scheme
over k; see [22].

From the definition it is not immediately clear how to “compute” the formal completion
C/® of the leaf C at 2. However this turns out to be possible, and the resulting theory is
a generalization of the classical Serre-Tate theory for the local moduli of ordinary abelian
varieties. Some highlights of the description of C/* will be explained in this section. More
details can be found in [5], [6].

(7.2) Recall that the deformation theory of (A;, \;) is the same as that of the associated
quasi-polarized Barsotti-Tate group (A, [p™], Az[p™]). Let

0=GyCG CGyC - CGy=Acp™]

be the slope filtration of the restriction to C of the Barsotti-Tate group attached to the
universal abelian scheme, so that each G;/G;_; is a Barsotti-Tate group over C with slope
Wiyt =1,2,...,m,and u; > ps > -+ > U,,. Moreover, each subquotient G;/G;_1 is constant
over the formal completion C/* of C at x.

Let Def(A,) = Def(A.[p™]) be the local deformation space of A, over k, or equiva-
lently the local deformation space of A.[p™] over k; it is a g?-dimensional smooth formal
scheme over k. A basic phenomenon here is that C/* is determined by the slope filtration on
A[p>®] — C/*. More precisely, the formal subscheme C/* C Aéf{"n C Def(A,) is contained in
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the “extension part” MDE(A,[p™]) of Def(A,), where MDE(A,[p™]) is the maximal closed
formal subscheme of the local deformation space Def(A,) = Def(A,[p>]) such that the re-
striction to MDD E(A,[p>°]) of the universal Barsotti-Tate group is a successive extension of
constant Barsotti-Tate groups G;/G;_1, extending the slope filtration of A,[p*>°]. For each
Artinian local k-algebra R, IMDE(R) is the set of isomorphism classes of tuples

(O:é’océlC---Cém;al,...,am;ﬁl,...,ﬁm>,

such that

e G, is a Barsotti-Tate group over R for each i,

e cach quotient Gi/éi_l is a Barsotti-Tate group over R, 1 =1,...,m,
e (; is an isomorphism from G; Xgpec(R) OPeck to Gy, for i =1,...,m,
e (3; is an isomorphism from éi/éi_l to G;/G;_q, fori=1,...,m,

e the isomorphisms o, ..., q,, are compatible with the inclusion maps G; — G, and
Gi — Gizq,1=1,...,m—1, and

e the isomorphisms f(y,..., (3, are compatible with aq, ..., a,,.

Our theory of canonical coordinates provides description of the closed formal subscheme C/*
of MDE(A,[p™]) in terms of the structure of MDE(A,[p™]), independent of the notion of
leaves. If the abelian variety A, is ordinary, then m = 1, G is toric, G1 /G is étale, and the
theory reduces to the classical Serre-Tate coordinates.

(7.3) The computation of C/* can be reduced to the following two “essential cases”. In both
cases we have two p-Barsotti-Tate groups X and Y over k; X has slope p, , while Y has slope
iy We assume that p, < p,. Let Spf(R) be the equi-characteristic deformation space of
X xY. Let G — Spf(R) be the universal deformation of X x Y. For each n > 1, since G[p"]
is a finite locally free group scheme over Spf(R), it is the formal completion of a unique finite
locally free group scheme over Spec(R), denoted by G,, — Spec(R). The inductive system
of finite locally free group schemes G,, — Spec(R) form a Barsotti-Tate group over Spec(R),
denoted by G — Spec(R), abusing the notation.

e (unpolarized case) In this case, our goal is to compute the leaf passing through the
closed point for the Barsotti-Tate group G — Spec(R). This leaf will be denoted by
Cly-

e (polarized case) Suppose that A is a principal quasi-polarization on X x Y. This
assumption implies that p, +p, = 1. The equi-characteristic deformation space of
(X xY,\) is a closed formal subscheme Spf(R/I) of Spf(R). We would like to compute

the leaf passing through the closed point for the polarized Barsotti-Tate group G —
Spec(R/I); denote this leaf by C".
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(7.3.1) Our starting point in the computation of Cl/lf.f and C/* is the following observation.
There is a closed formal subscheme D€E(X,Y’) of the deformation space Spf(R), maximal
with respect to the property that the restriction to D&(X,Y') of the universal deformation of
X x Y is an extension of the constant Barsotti-Tate group X by the constant Barsotti-Tate
group Y. It is not difficult to see that ®&(X,Y) is formally smooth over k. The existence
of the canonical filtration of the restriction of G to the leaves implies that both C, and C"
are closed formal subschemes of ®€(X,Y). On the other hand, the Baer sum for extensions
produced a group law on DE(X,Y), so that ®D&(X,Y) has a natural structure as a smooth
formal group over k.

(7.4) Theorem Notation as in 7.3.

(i) In the unpolarized case, the leaf C]/l\p 15 naturally isomorphic to the maximal p-divisible
formal subgroup DE(X,Y),-aiv of DE(X,Y). The p-divisible group DE(X,Y),-aiv has
slope f, — i .

(ii) In the polarized case, the principal quasi-polarization A on X X Y induces an involu-
tion on DE(X,Y),-aiy, and C" is equal to the fiver subgroup DE(X,Y )"y under the
involution. Again, DE(X, Y);}:gliv 15 a p-divisible formal group with slope i, — i, .

(7.4.1) Remark Thm. 7.4 gives a structural characterization of the leaves lep and C" in
the formal subscheme D&(X,Y) of the deformation space Spf(R) of X x Y. In Thm. 7.6.3
and Prop. 7.6.4, we will see a structural characterization of a leaf C(Def(G)) in the equi-
characteristic deformation space Def(G) of a general Barsotti-Tate group G over k, in a
similar spirit. The above characterization deals with the differential property of leaves, and

complements the global point-wise definition of leaves.

(7.5) Theorem Let M(X),M(Y) be the covariant Dieudonné module of X,Y respectively.
Let B(k) be the fraction field of W (k). The B(k)-vector space

Homyy ) (M(X), M(Y')) @w x) B(k)
has a natural structure as a V -isocrystal.

(i) Let M(DE(X,Y),-aiv) be the covariant Diedonné module of Cjy, = DE(X,Y )p-aiv. Then
there exists a natural isomorphism of V -isocrystals

M(@@(X, Y)p—div) ®W(k) B(k) l> HomW(k) (M(X), M(Y)) ®W(k) B(k) .

(ii) Suppose that X\ is a principal quasi-polarization X on X X Y. Let ¢ be the involution on
Homyy () (M(X), M(Y')) @w ) B(k) induced by A. Let M(DE(X,Y )" 4,) be the covari-
ant Diedonné module of C" = DE(X,Y) V¥ . Then there exists a natural isomorphism
of V -isocrystals

M(DE(X,Y)25,) @way Bk) = Hom (M(X), M(Y)) ®@way B(k),

p-div
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where the right-hand side is the subspace of Homyy ) (M(X), M(Y)) ®wu) B(k) fived
under the involution ¢.

(7.5.1) Remark (i) Thm. 7.5 can be regarded as a generalization of the appendix of [17].
The method is a generalization of Mumford’s seminal paper [16]. It also gives an explicit
description of the Cartier-Dieudonné module of MDE(X,Y). See [6] for details.

(ii) A key ingredient of [6] is the set Cart,(k[[t]]) of all formal curves in the functor of
reduced Cartier ring for algebras over Z. It has a natural (Cart,(k), Cart,(k))-bimodule
structure because Cart,(k) is a subring of Cart,(k[[t]]). Moreover Cart,(k[[t]]) has another
Cart,(k)-module structure, compatible with the above bimodule structure.

(iii) We do not know a convenient characterization of the the p-divisible formal group
DE(X,Y),qaiv inside its isogeny class, in terms of the Dieudonneé modules M(X), M(Y").
When both X and Y are minimal in the sense of [23], i.e. the endomorphism algebra of X, Y
are maximal orders, we expect that D€E(X,Y), 4 is also maximal. It is easy to check that
this conjectural statement holds when the denominators of the Brauer invariant of X and Y
are relatively prime.

(7.5.2) Corollary Let h(X),h(Y) be the height of X,Y respectively.

(i) In the unpolarized case, the height of DE(X,Y ) -aiv is equal to h(X)-h(Y), and
dim(DE(X, Y )p-aiv) = (py —px) - B(X) - h(Y).
(ii) In the polarized case, we have h(X) = h(Y'), the height of DE(X,Y))VY is equal to
MEREEIED and dim(DE(X, Y)IE,) = 51y — ) -A(X)-(h(X) + 1).
(7.5.3) Remark (1) Except for the factor p, — p,, the formulae (i), (ii) in Cor. 7.5.2 is
quite similar to the formulae for the dimension of the deformation space of an h-dimensional
abelian variety and the dimension of A;, respectively.
(2) The theory of canonical coordinates inspires a conjectural group-theoretic formula for
the dimension of leaves in the reduction over k of a Shimura variety. That formula will be
explained in a future article with C.-F. Yu, and verified for modular varieties of PEL-type.

(7.6) We go back to the general case and reset the notation similar to 7.2. Denote by
C(Def(A.[p™])) the leaf in the deformation space Def(A,[p™]) of the Barsotti-Tate group
A, [p™]. Just as in Prop. 3.3, there exists a slope filtration

0=GyC Gy C- - CGn = Acmeiaip=)) P

on the universal Barsotti-Tate group over C(Def(A,[p>])), where each G;/G;_; is an isoclinic
Barsotti-Tate group over C(Def(A.[p>])) with slope u;, g > -+ > py,. Therefore the
leaf C(Def(A,[p™])) is contained in MDE(A,[p>]), the maximal closed formal subscheme
of Def(A,[p>]) such that the restriction to IMDE(A,[p™]) of the universal Barsotti-Tate
group has a slope filtration extending the slope filtration of A,[p>*]. We would like to
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have a structural description of the leaf C(Def(A.[p™])) as a closed formal subscheme of
MDE(A,[p™]), independent of the “point-wise” definition of the leaf. This will be achieved
in an inductive way, allowing us to understand how C(Def(A.[p™])) is “built up” from the
p-divisible formal groups ®€(G;/Gi—1,G;/Gj-1)p-aiv, 1 < j <i < m.

(7.6.1) For each Barsotti-Tate group G over k, we can consider the leaf C(Def(G)) in the
deformation space Def(G) over k, and we know that C(Def(G)) is contained in MDE(G),
the maximal closed formal subscheme of Def(G) such that the restriction to MDD E(G) of the
universal Barsotti-Tate group has a slope filtration extending the slope filtration of G.

(7.6.2) Let 0 = Gy C Gy C --- C Gy, be the slope filtration of a Barsotti-Tate group G over
k. Suppose that 0 < j; < J5 < 19 < 43 < m. Then there exists a natural formally smooth
morphism

Mja i), [g1,81] - gﬁ@e(Gll/Gh> - mI@@(Gw/GJz) .
These morphisms form a finite projective system, that is
T3 ia),[j2si2] © Tljasiz),[j1,i1] = T lja,ial, 1]

if 0 < g1 <o < g3 <13 <ip <4 < m. Moreover, using the theory of biextensions of
Mumford and Grothendieck in [16] and [12], one can show that the morphism

ﬂJt@@(GZ/GJ) — IMD @(Gz_l/Gj) XZUI@@(Gi—l/GjJrl) E)ﬁ@@(GZ/GJH)
attached to the pair of morphisms (7;;—1,(;, T[j+1,,j,i]) has a natural structure as a torsor
for the formal group ®€(G,/Gi_1,G;/Gj_1).
(7.6.3) Theorem Notation as in 7.6.2.

(i) Suppose that 1 < i < m — 1. Then C(Def(Git1/Gi-1)) is a torsor for the p-divisible
formal group DE(Gi11/Gi, Gi/Gi1)p-div-

(ii) Suppose that 0 < ji < jo < iy < i3 < m. Then the restriction of T, i) (1]
to the closed formal subscheme C(Def(Gi,/Gj,)) of MDE(G,, /G;,) factors through
C(Def(Gi,/Gjy)) — MDE(G,,/Gy,), and induces a formally smooth morphism

Tlsial i) : C(Def(Giy /Gy ) — C(Def(Giy /Gy)) -
(i) Suppose that 1 < i,j <m, i > j+ 2. Then the morphism
C(Def(Gi/Gj)) — C(Def(Gi—1/G;)) Xe®ef(Gi1/Gy21)) C(Def(Gi/Gj41))

attached to the pair of morphisms (T ;—1),[jis Tj+1,4,5.4) 45 @ torsor for the p-divisible
formal group DE(G,;/Gi_1,Gj/Gi-1)p-aiv, respecting the DE(G;/Gi1,G;/Gj-1)-torsor
structure of

SﬁQG(Gl/GJ) — IMND G(szl/Gj) Xmg@(gi_l/cj+1) W@@(Gl/Gﬁl)
at the end of 7.6.2.
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(7.6.4) Proposition The properties (i), (ii), (iii) in Thm. 7.6.3 determine uniquely the fam-
ily of formal schemes {C(®Def(G;/G;)) : 0 < j <i < m}, where each member C(Def(G;/G;))
of the family is considered as a closed formal subscheme of Def(G;/G;).

(7.6.5) Remark It is actually possible to do better than what was stated in Prop. 7.6.4.
Namely, one can actually construct closed subschemes IMDE(G;/G;)p-aiv of MDE(G;/G5),
satisfying the properties (i), (ii), (iii) in Thm. 7.6.3, using structural properties of the formal
schemes MDE(G,/G;), without the concept of leaves, in an inductive way. An important
ingredient of the construction uses the theory of biextensions due to Mumford [16] and
Grothendieck [12]. Of course, MDE(G;/G;)p-aiv is canonically isomorphic to C(Def(G;/G;))
by Prop. 7.6.4. However that construction is a bit complicated, so we do not give further
indication here.

(7.6.6) Corollary Notation as in Thm. 7.6.5. Then
dim(C(Def(@))) = Y (mi—py) - hi-hy,

1<j<i<m

where p; is the slope of G;/Gi_1 and h; is the height of G;/G;_1, fori=1,...,m.

(7.7) Proposition Let G be a Barsotti-Tate group over k, with a principal quasi-polariza-
tion \. Then X induces an involution on MDE(G)p-aiv- Denote by MDE(G))VY, the mazimal
closed subscheme of MDE(G)p-aiv which is fized by the involution. Then MDE(G)} Y, is the
largest closed formal subscheme of MDE(G)p-aiv Such that X extends to a quasi-polarization
on the restriction to MDE(G)) 5, of the universal Barsotti-Tate group over MDE(G)p-aiy C
Def(G). If (G, N) = (AL[p™], \u[p™]) for some point x € A, ,(k), then there is a natural
isomorphism of formal schemes from MDE(G )V to C/%, where C is the leaf in A,,, passing

p-div
through x.

(7.7.1) Proposition Let A, be a g-dimensional principally polarized abelian variety over
k. Suppose that A,[p™| has Frobenius slopes p; < po < -+ < fym, S0 that p; + fym—iy1 = 1
fori=1,...,m. Let h; be the multiplicity of p1;, so that h; = hy,—i41 for all i, Y 1", h; = 2g,
Sy hip; = g. Then

1

(€)= 5 S () by + 5 3 (U 2 bl £ 1),

1<j,i+j#1 2i<m

Remark Prop. 7.7.1 follows from Prop. 7.7 and Cor. 7.5.2; see [6].

(7.7.2) Remark Historically, the formula for the dimension of a leaf C(x) in A,,, and for
the dimension of the leaf C(Def(G)) in the deformation space of a Barsotti-Tate group G
were first conjectured by Oort, in terms of the number of lattice points inside suitable regions
attached to the Newton polygon of A, and G, after suggestions by B. Poonen. See [5] for
the original proofs of 7.6.6 and 7.7.1, which depend on the following fact, proved in [23]: If
G1, Gy are Barsotti-Tate group over k, GG is minimal, and G1[p] is isomorphic to Ga[p], then
(55 is isomorphic to Gj.
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§8. A rigidity result for p-divisible formal groups

(8.1) Let k be an algebraically closed field of characteristic p. Let X be a p-divisible formal
group over k. Then End(X) ®z, Q, is a semisimple algebra of finite dimension over Q,, and
Endy(X) is an order in End,(X) ®z, Q,. Let H be a connected reductive linear algebraic
group over Q,. Let p: H(Q,) — (Endi(X) ®z, Q,)* be a rational representation of H, i.e.
p comes from a Q,-homomorphism of linear algebraic groups. Let U C H(Q,) be an open
subgroup of H(Q,) such that p(U) C End(X)*, so that U operates on X via p.

(8.2) Theorem Notation as above. Let Z be an irreducible closed formal subscheme of X
which is stable under the action of U. We assume that the composition r o p of p with the
left reqular representation v of (Endy(X) ®z, Q,)* on Endy(X) ®z, Q, does not contain
the trivial representation of H as a subquotient. Then Z is a p-divisible formal subgroup of
X.

(8.2.1) Remark Thm. 8.2 is a considerable strengthening of [2, §4, Prop. 4], in several
aspects. There, the p-divisible formal group is a formal torus, and the formal subvariety is
assumed to be formally smooth. The most significant part is that, in [2, §4, Prop. 4], the
symmetry group (‘)g1 X -+ x OF has about the same size as the formal torus

(05 8) x5 (04 80

in some sense, while the symmetry group H in Thm. 8.2 can be quite small compared with
the p-divisible formal group X. A typical special case is to take H = G,,, U = Z,', and each
u € Z, operates as [u]x on X, the map “multiplication by u” on X.

89. The Hilbert trick

(9.1) Let n > 3 be an integer prime to p. Let z € A, ,(F,) be an F,-point of A,,. Let
B = EndE(Ax) ®zQ, and let * be the involution of B induced by \,. Let £ = F} x---x F,,
be a product of totally real fields contained in B, fixed under the involution *, such that
dimg(E) =g. Let Op = Op X -+ x Op,,. Let G; be the linear algebraic group over Q such
that G;(Q) = SLo(Fj), j = 1,...,m, and denote by G the product group G = G1 X - - - X Gy,.
There exists a “standard embedding” h : G — Sp,,, well-defined up to conjugation.

(9.1.1) We will use the following variant of the definition of Hilbert modular varieties in [30],
slightly different from the definition in [10]. Denote by Mg, the Hilbert modular scheme
attached to O, such that for every F,-scheme S, M ,(S) is the set of isomorphism classes
of (A — S, A\, t,n), where A — S is an abelian scheme, ¢ : Op — Endg(A) is a injective ring
homomorphism, A is an Og-linear principal polarization of A — S of degree prime to p, and
n is a level-n structure on A — S. See [30, §5]. The modular scheme Mg, is locally of finite
type over k, and every irreducible component of Mg, is of finite type over IETD. There is a
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set of algebraic correspondences on Mg ,,, coming from the adelic group G (Agcp )), called the
prime-to-p Hecke correspondences on the Hilbert modular scheme Mg,,.

(9.2) Proposition Notation as above. Then there exists
e a non-empty open-and-closed subscheme My of Mg, for some m,
e a finite morphism My — Mg,
e a point yo € M(F,), and
e a finite morphism f: My — A,
such that

(i) fly) ==,

(ii) f is compatible with the prime-to-p Hecke correspondences on My and A, ., coming
from the embedding h : G — Spy,, and

(iii) the pull-back by f of the universal abelian scheme over A, ,, is isogenous to the universal
abelian scheme over M.

(9.2.1) The idea of the proof of Prop. 9.2 is as follows. It is well-known that every abelian
variety defined over a finite field has “sufficiently many complex multiplication”. Hence every
maximal commutative semisimple subalgebra L of B stable under the Rosati involution * is
a product of CM-fields, and the subalgebra of L fixed under x is a product of totally real
fields. In particular this shows the existence of subalgebras E with the required properties
in 9.1. If EndE(Ax) contains O, then we obtain a natural morphism Mg, — A, , passing

through = = [(A, Ay, n2)] € Agn(F,). In general EN EndE(Ax) is an order of O, and we
have to use an isogeny correspondence to conclude the proof of 9.2.

(9.2.2) Remark The local stabilizer principle and Thm. 8.2, applied to a point y of a
Hilbert modular variety Mg, over IF,,, implies that there are only a finite number of possi-

bilities of HE,n(y)/y, as a closed formal subscheme of Mg, over k, where Hg,(y) denotes
the prime-to-p Hecke orbit of y in Mg,. The possibilities are parametrized by non-empty
subsets of the finite set of maximal ideals of Og containing p. The above phenomenon makes
it relatively easy to verify the Hecke orbit conjecture for the Hilbert modular varieties. It also
makes the Hilbert trick an effective tool for the Hecke orbit problem for the Siegel modular
varieties A, ,, as well as other modular varieties of PEL-type.
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(9.3) In this section the base field is E, because every abelian variety over IET;,, has sufficiently
many complex multiplications. So it seems that if we use the Hilbert trick, one can would be
able to deal with the Hecke orbit conjecture (HO) “only” in the case when the algebraically
closed base field k is equal to I[Tp. However every closed subvariety of A, , over k is finitely
presented over k, and a standard argument in algebraic geometry shows that the validity of

(HO) over F, implies the validity of (HO) over every algebraically closed field k. See the
beginning of §3 of [2] for details.

§10. Hypersymmetric points

Let k£ be an algebraically closed field of characteristic p as before.
(10.1) Definition An abelian variety A over k is hypersymmetric if the natural map
End,(A) ®z Z, — End;(A[p™])
is an isomorphism. An equivalent condition is that the canonical map
Endy(A4) ®z Qp — Endi(A[p™]) ®z, Qp

is an isomorphism.

(10.1.1) Remark It is clear from the definition that the abelian variety A, has sufficiently
many complex multiplication for any hypersymmetric point x. Therefore a theorem of
Grothendieck tells us that A, is isogenous to an abelian variety defined over F,; see [18]
for a proof of Grothendieck’s theorem.

(10.1.2) EXAMPLES. (i) A g-dimensional ordinary abelian variety over k is hypersymmetric
if and only if it is isogenous to a g-fold self-product E x --- x E, where E is an ordinary
elliptic curve defined over F,,.

(i) Let A be a abelian variety over k such that A[p®] has exactly two slopes, g = dim(A).
Then A is hypersymmetric if and only if Endy(A) ®z Q is a central simple algebra over an
imaginary quadratic field, and dimg(Endy(A) ®z Q) = 2¢%.

The assertions in the two examples can be verified using Honda-Tate theory for abelian
varieties over finite fields. See [28] and [29] for the Honda-Tate theory.

(10.1.3) In every given Newton polygon stratum T/Vg0 in A,, over k, there exists a hyper-

symmetric point x € Wg(k;) This statement follows easily from the Honda-Tate theory; see
[25] for a proof.
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(10.1.4) Let E = F} x --- X F, be a totally real number field such that there is only one
place of F; above p for ¢ =1,...,r. Let Mg be the Hilbert modular variety over k attached
to Mg. Then there exists a hypersymmetric point in every given Newton stratum of Mg.
Similarly, there exists a hypersymmetric point in every given leaf of Mpg. This statement
can be derived from the Honda-Tate theory and the “folation structure” on Mg.

(10.2) Theorem Let [(Az, A;)] be a point of Ay(k) such that
e A, is hypersymmetric, and

o A, is split, i.e. A, is isomorphic to a product By X --- X B,,, where each B; is an
abelian variety over k, and each B; has at most two slopes.

Then Zariski closure in A, of the the prime-to-p Hecke orbit HP)(z) contains the irreducible
component of the leaf C(x) passing through x.

(10.2.1) Remark A special case of Thm. 10.2 is an example of M. Larsen; see [2, §1].

(10.2.2) The proof of Thm. 10.2 uses Prop. 6.2, Thm. 8.2 and the theory of canonical
coordinates. Here we sketch a proof of the special case when A,[p™] is isomorphic to a
product X xY', where X, Y are isoclinic Barsotti-Tate group of height g, with slopes p1, < .,
p+it, = 1. The principal polarization A, induces an isomorphism between X and the Serre
dual of Y. The theory of canonical coordinates tells us that Aéfn is isomorphic to the maximal
subgroup DE(X, Y) "5 of the Barsotti-Tate group D€(X, Y),-q;v fixed under the involution
induced by the principal polarization A,. Let Z(z) be the Zariski closure of the Hecke orbit
H(z), and let Z(x)/® be the formal completion of Z(x) at z. The local stabilizer principle
says that the subgroup Z (x)/ ¥ is stable under the natural action of the local stabilizer U,.
By Thm. 8.2, Z(x)/" is a Barsotti-Tate subgroup of the Barsotti-Tate group D€E(X,Y) % .

Now we are ready to use Dieudonné theory and translate the last assertion into a state-
ment in linear algebra. Let Vx = M(X) ®@wu) B(k), Vv = M(Y) @wx) B(k). The prin-
cipal polarization A, induces a duality pairing between Vy and Vy. Thm. 7.5 tells us that
M(DE(X,Y)paiv) @ww B(k) is naturally isomorphic to Hompg, (Vx, Vy), the symmetric
part of the internal Hom. The group U, operates naturally on M(X) ®w k) B(k) and
M(Y) ®w) B(k). One checks that, after passing to the algebraic closure B(k) of B(k),
the Zariski closure of U, operating on Vy ®px) B (k) is isomorphic to the standard repre-
sentation of GLg, and the Zariski closure of U, operating on Vx ®@p) W is isomorphic to
the dual of the standard representation of GL,. So the action of the Zariski closure of U, on
Homg(rz)(VX, W) @B W is isomorphic to the second symmetric product of the standard
representation of GL,. The last representation is absolutely irreducible; in fact it is one of
the fundamental representations. Since M(Z(z)/®) ®@w ) B(k) is a non-trivial subrepresen-

tation of the absolutely irreducible representation Hom?g(fg)(vx, Vy) of U,, we conclude that

M(Z(x)/*) @w k) B(k) is equal to Hom g, (Vx, Vy), therefore Z(x)/" = At a
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(10.3) Proposition Let C* be an irreducible component of a leaf C in A, ,,, and let Wg be
the open Newton stratum in A, containing C*. Assume that Wg 1s 1rreducible. Then for
every point y € WQ(k), there exists a point v € C* (k) such that there exists an isogeny from
A, to Ay, which respects the polarizations.

IDEA OF PROOF. Prop. 10.3 is an immediate consequence of the “almost product structure”
on each irreducible component of a Newton polygon stratum WJ; see [22, Thm. 5.3]. We
sketch the proof below.

Using Prop. 3.2, one constructs a finite surjective morphism f : S — C*, a scheme T
over k, and a morphism g : S Xgpeck T — W such that

(i) For any s1,s9 € S(k), t1,t2 € T(k), if f(s1) = f(s2), then there exists an isogeny from
Agsitr) 10 Ag(sy,tz), Which respects the polarizations up to a multiple.

(ii) The image of g, in the naive sense, is a union of irreducible components of Wg .

So far we have not used the assumption that W§0 is irreducible. The irreducibility of Wg
implies that f is surjective. Prop. 10.3 follows.

(10.4) Proposition Let C be a leaf in Ay, and let WY be the open Newton stratum in Ay,
containing C. Assume that I/Vf0 1s 1rreducible. Then the prime-to-p Hecke correspondences
operate transitively on mo(C). Consequently C is irreducible if VV§0 18 not the supersingular

locus of Ay ..

IDEA OF PROOF. Let y be a hypersymmetric point in Wg; such a point exists by 10.1.3. By
Prop. 10.3, in each irreducible component C}“ of C, there exists a hypersymmetric point z;
in C;r, related to y by a (possibly inseparable) isogeny which preserves the polarizations up
to a multiple. Using the weak approximation theorem, one sees that the z;’s are related by
suitable prime-to-p Hecke correspondences. This shows that the prime-to-p Hecke correspon-
dences operate transitively on the irreducible components of the leaf C. The last statement
follows from 5.1.

(10.5) We would like to discuss an emerging picture about the leaves and the hypersym-
metric points. In many ways each non-supersingular leaf in A, , has properties similar to
the modular variety A, ,, in characteristic 0. The Hecke orbit conjecture (HO) is an example
of this phenomenon, so is Thm. 5.1. Borrowing an idea from Hindu mythology, one might
want to think of the decomposition of A, , into leaves as Indra-inspired.

(10.5.1) For a leaf C in A,,, the hypersymmetric points on C serve as an analogue of
the notion of special points (or CM points) on a Shimura variety in characteristic 0. The
following is an analogue of the André-Oort conjecture in characteristic p. Let C be a leaf of
A, over k, and let Z be a closed irreducible subvariety in C. Assume that there is a subset
S C Z(k) such that S is dense in Z, and every point of S is hypersymmetric. Then there
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is a closed subvariety X C A,, which is the reduction over k of a Shimura subvariety such
that Z is an irreducible component of CN X. This conjecture seems to be more difficult than
the André-Oort conjecture.

(10.5.2) In another direction, one expects that the p-adic monodromy of a subvariety Z in
a leaf C C A, can be described in terms of the canonical coordinates and the naive p-adic
monodromy of Z. The case when C is the ordinary locus of A, has been considered in
[4], and one expects that the general phenomenon is similar. In particular, there should be
a more global theory of canonical coordinates on a leaf, and we hope to carry out such a
project in the recent future.

§11. Splitting at supersingular points

(11.1) Proposition Let k be an algebraically closed field of characteristic p. Let x be a
point of Ay, over k, and let H®P)(z) be the prime-to-p Hecke orbit of x. Then there exists
a point zy in the Zariski closure of H) () such that A, is a supersingular abelian variety
over k.

(11.1.1) Remark (i) Similarly, every prime-to-p Hecke orbit in a Hilbert modular variety
has a supersingular point in its closure.

(ii) One can replace “prime-to-p” by “f-adic” in 11.1, and also in (i) above.

(iii) See [2, Prop. 6] for a proof of 11.1 and (i), (ii) above. A key ingredient is the fact
that every Ekedahl-Oort stratum in A, , is quasi-affine; see [21].

(11.2) Theorem Let v € A, ,(F,) be an F,-point of A,,. Let Z be the Zariski closure in
Ay of the prime-to-p Hecke orbit H'P)(z) of x, and let Z° be the intersection of Z with the
leaf C(x) passing through x. Then there exists

e a pointy € Z°(F,),
e totally real fields Ly, ..., L, and
e an injective ring homomorphism [ : Ly x --- x Ly — Endg(A4,) ®z Q
such that
(i) [Lr: QI+ +[L:: Q] =g,
(i) B(L1 x -++ x L) is fived by the Rosati involution on Endg (A,) ®z Q induced by Ay,

and
(iii) there is only one mawimal ideal in Or, which contains p, for j =1,...,s.
In particular, there exists a point y € ZO(E) and abelian varieties By, ..., By over IFTP such
that A, is isogenous to By X --- x By, and each B; has at most two slopes, j =1,...,s.
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(11.2.1) Remark Thm. 11.2 depends crucially on the fact that x is an E—ra‘cionﬂ point.
However we have seen in Rem. 9.3 that we may assume that the base field k is F, when
considering the Hecke orbit conjecture (HO).

(11.3) We sketch a proof of 11.2, which uses the action of the local stabilizer subgroup at
a supersingular point in the closure of C and the Hilbert trick.

We may and do assume that there exists a product F = F; x --- x F,. of totally real
fields, [E : Q] = g, such that there exists an embedding ¢ : Op — EndE(Ax) of rings, and
t(Op) is fixed under the Rosati involution. This means that we have a natural morphism
f: Mg, — A,y passing through x, compatible with the Hecke correspondences, for some
m prime to p, such that for every geometric point v € Mg, (F ) the map induced by f on
the strict henselizations

FO s M, — AGD

E.m

is a closed embedding. Here Mg)m denotes the strict henselization of Mg, at u, and
AN ) denotes the strict henselization of Ay at f(u). Let W be the Zariski closure of the
prime-to-p Hecke orbit H%) () in Mg,.

By 11.1.1 (i), there exists a supersingular point z € W (k). The local stabilizer principle
tells us that the formal subscheme Z/* C A, ., is stable under the natural action of the local
stabilizer subgroup U, attached to z. Recall that U, is a subgroup of EndE(AZ [p>])*
definition.

One checks that there exists an element v € U, such that the subring

Ad(7)(E ®q Qp) =7+ (E ®q Qp)"yil

of Endg(A.) ®z Qp is equal to the Q-linear span of

— (Ad()(B) €4 @) N (Endg (4.) €7 Q) |

and E' is a product of totally real fields Ly x --- x Lg, such that there is only one maximal
ideal in O, above p for j =1,...,s

Denote by 7/# the automorphism of Aé,zn attached to 7. The fact that o/*(W/?) C Z/
tells us, in the case when Ad(v)(Op ®z7Z,) C Endg (A.[p*]) = Endg;(A,) ®z Z,, that there
is a natural finite morphism

fl : ME’,m B Ag,n
with the following properties:

(1) There exists a point 2; € Mpr,,(F,) such that fi(21) = z.

(2) For every point u € Mg ,,(F,), the morphism f; induces a closed embedding, from
the henselization ./\/l(“,{m of Mg, at u, to the henselization AE,{}L(“)) of Ay, at fi(u).
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(3) AW € 17 (M) n 2t

Hence the fiber product Mg, X 4, Z° is not empty. Pick an F,-point § of Mg, X 4,.,, Z°,
and let y be the image of § in Z°(F,). It is easy to see that y has the property stated in

Prop. 11.2, and we are done. In general (Ad(y)(Or ®z Z,))N (EndE(AZ) ®z Zp> is of finite

index in Ad(7)(Og ®z Q,) and may not be equal to Ad(7)(Or ®z Z,), and we have to use
an isogeny correspondence to conclude the proof.

(11.3.1) Remark (i) The last sentence in the statement of Thm. 11.2 follows from the
properties (i), (ii), (iil) of A, stated in the 11.2.

(ii) The local stabilizer subgroup U, at a supersingular point x of A, ,, is a compact open
subgroup of the group of Q,-points of an inner form of Sp,,, and the prime-to-p Hecke orbit

H®)(x) on A,, is finite. Hence the action of U, on Aéfn for such a supersingular point z
contains a tremendous amount of information about the prime-to-p Hecke correspondences.

However it is not always easy to mine this source of information; the success stories include
Thm. 11.2, and [2, §5, Prop. 7].

§12. Logical interdependencies

Let k be an algebraically closed field of characteristic p as before. We summarize the logical
interdependencies of various statements.

(12.1) We have seen that

(HO) <= (HO), + (HO)q4,

(12.2) Suppose that z € Ay(k) is not supersingular. Then Thm. 5.1 shows that

(HO)ge for x <= C(x) is irreducible

(12.3) Suppose that z,y € A,(k), and there is an isogeny from A, to A, which preserves

the polarizations up to multiples. Then

(HO), forx < (HO), fory

This is a consequence of 3.2.1, which depends on Prop. 3.2.
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(12.4) Suppose that =,y € A,(k), and there is an isogeny from A, to A, which preserves

the polarizations up to multiples. Then

(HO),, for x <= (HO), fory

The proof of the above statement is similar to the argument of Prop. 10.4, using hypersym-
metric points.

(12.5) Let W¢ be a non-supersingular Newton polygon stratum on A,, and let C be a leaf
in We. Then
We is irreducible == C is irreducible.

See Prop. 10.4.

(12.6) The implication

(HO) for Hilbert modular varieties = (HO),,
holds.

(12.6.1) Here is a sketch of the proof of 12.6. Assume the Hecke orbit conjecture for Hilbert
modular varieties. As remarked in 9.3, we may and do assume that the base field is [,

Apply the trick “splitting at supersingular points” to get a point y in A, ,,(IF,) contained in
H®) () NC(z) as in Thm. 11.2. The Hilbert trick and the Hecke orbit conjecture for Hilbert

modular varieties show that there exists a point y, € (H(P) ()N C(:C)) (F,) such that A,, is

hypersymmetric and split. Here we used 10.1.4 on the existence of hypersymmetric points
on every leaf of the Hilbert modular subvariety in A, ,, passing through the point y. Apply
Thm. 10.2; the continuous part of the Hecke orbit conjecture for a Siegel modular variety
A, ., follows.

§13. QOutline of the proof of the Hecke orbit conjecture
(13.1) Proor oF (HO)qe.

(13.1.1) Theorem Ewvery non-supersingular Newton polygon stratum in A, ,, is irreducible.

See [24] for a proof of Thm. 13.1.1. The proof of uses Thm. 5.1 and the results in [20],
8], [21].

(13.1.2) We have seen in Prop. 10.4 and 12.5 that (HO)g4. follows from Thm. 13.1.1. We
are left with the continuous part (HO). of the Hecke orbit conjecture.

28



(13.2) (HO) FOR HILBERT MODULAR VARIETIES.

The continuous part (HO). of the Hecke orbit conjecture for Hilbert modular varieties
uses Thm. 8.2 and the argument in [4, §8]; the latter depends on the main result of [7]
by de Jong. It is also possible to avoid de Jong’s theorem in [7], using instead the local
stabilizer principle at a supersingular point, similar to the argument of [2, §5, Prop. 7]. But
the argument will not be as clean.

By 12.6, to complete the proof of the Hecke orbit conjecture for the Siegel modular
varieties A, ,,, it suffices to prove the discrete part of the Hecke orbit conjecture for Hilbert
modular varieties.

(13.3) (HO)q. FOR HILBERT MODULAR VARIETIES.

The proof of the discrete part of the Hecke orbit conjecture for Hilbert modular varieties
uses the Lie-alpha stratification on Hilbert modular varieties. See [30] for some properties
of the Lie-alpha stratification; see also [11] for the case when p is unramified in the totally
real field, and [1] for the case when p is totally ramified in the totally real field. The starting
point is the fact that for each given Newton polygon stratum W on a given Hilbert modular
variety Mg, there exists a leaf C contained in W which is an open subset of some Lie-alpha
stratum of Mp. A standard degeneration argument shows that it suffices to prove that the
closure of every Lie-alpha stratum contains a superspecial point of a specific type. This
observation allows us to bring in deformation theory. The last and the most crucial step
was done by C.-F. Yu, who constructed enough deformations to facilitate an induction on
the partially ordering on the family of irreducible components of Lie-alpha strata induced
by the incidence relation.

§14. p-adic monodromy of leaves

In the last section we mention a maximality property of the naive p-adic monodromy group.
The notion of hypersymmetric points plays an important role in the proof of 14.1.

(14.1) Theorem Let x be a hypersymmetric point such that Endg(A.[p>]) is a mazimal
order of Endy(A;[p>]) ®z, Q,. Then the naive p-adic monodromy group of the leaf C(x) is
mazimal. In other words, if we use x as the base point, then the image of the naive p-adic
monodromy group is equal to the intersection of Aut(A,[p*>]) with the unitary group attached
to the pair (Endy, (A, [p™])®z,Qp, *), where x denotes the involution on the semisimple algebra
Endy(A[p™]) ®z, Q, over Q, induced by the principal polarization A, on A,.

(14.1.1) Remark A Barsotti-Tate group G over an algebraically closed field k of charac-
teristic p such that End,(G) is a maximal order in Endi(G) ®z, Q, is called a minimal
Barsotti-Tate group in [23].
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(14.2) Corollary Let x € Ay, (k) be a closed point of A, such that Endg(A,[p™]) is a
maximal order of End,(A;[p™]) ®z, Qp. Then the naive p-adic monodromy group of the leaf
C(z) is mazimal.

(14.3) The idea of the proof of Thm. 14.1 is the following. First we prove an analogous
statement for the naive p-adic monodromy group using Ribet’s method in [27], [9]. Use
a hypersymmetric point z with the properties in the statement of Thm. 14.1 as the base
point for computing the p-adic monodromy group. This allows us to overcome the usual
sticky issues related to different choices of base points, and reduce Thm. 14.1 to showing
that the conjugates of the p-adic monodromy group of a leaf in a Hilbert modular subvariety
already generates the target group of the naive p-adic monodromy representation. The last
group-theoretic statement is elementary and can be verified directly.
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