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Abstract

We discuss the enumeration of function fields and number fields by discriminant. We show
that Malle’s conjectures agree with heuristics arising naturally from geometric computations on
Hurwitz schemes. These heuristics also suggest further questions in the number field setting.

1 Introduction

The enumeration of number fields subject to various local and global conditions is an old problem,
which has in recent years been the subject of renewed interest (a sampling includes [2], [3], [5],
[7], [10], [12].) For a good survey of recent work, see [1]. We begin by reprising some important
conjectures.

If L/K is an extension of number fields, we denote by DL/K the relative discriminant, an ideal of
K, and by NK

Q DL/K its norm, a positive integer. For X ∈ R+, we set NK,n(X) to be the number of
degree-n extensions L/K (up to K-isomorphism) such that NK

Q DL/K < X. It is a classical problem
to understand the asymptotics of NK,n(X) as X goes to infinity; in particular, we have the folk
conjecture:

Conjecture 1.1. There is a constant cK,n such that, as X →∞,

NK,n(X) ∼ cK,nX.

This conjecture is now known for n ≤ 5.
A more general conjecture applies to enumerating extensions with specified Galois group. It is

due to Malle [13] and refines a previous conjecture of Cohen. To describe Malle’s conjecture, we
need to introduce some notation.

Let G ≤ Sn be a transitive subgroup. For g ∈ G, we set ind(g) = n − r, where r is the
number of orbits of g on {1, 2, . . . , n}. Denote by C the set of non-trivial conjugacy classes of
G; then ind descends to a function ind : C → Z. The group Gal(K̄/K) acts on C via g · c =
cχ(g), where g ∈ Gal(K̄/K), c ∈ C and χ : Gal(K̄/K) → Ẑ∗ is the cyclotomic character. Set
a(G) = maxc∈C (ind(c)−1), and set bK(G) to be the number of Gal(K̄/K)-orbits on the set {c ∈ C :
ind(c) = 1/a(G)}.

∗First author: Department of Mathematics, Princeton University. ellenber@math.princeton.edu Partially
supported by NSF Grant DMS-0401616. Second author: Department of Mathematics, Massachusetts Institute of
Technology. akshayv@math.mit.edu Partially supported by NSF Grant DMS-0245606
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Let H be any point stabilizer in the G-action on {1, 2, . . . , n}. For each Galois extension L/K
with Galois group G, let L0/K be the degree n subextension of L/K corresponding to the subgroup
H ≤ G. Since G acts transitively on {1, 2, . . . , n}, the K-isomorphism class of L0 is independent of
the choice of H. We then denote by NK,G(X) the number of Galois G-extensions L/K such that
NK

Q DL0/K < X.

Conjecture 1.2. (Malle) There is a nonzero constant CK(G) such that

NK,G(X) ∼ CK(G)Xa(G)(log X)bK(G)−1.

This conjecture is known to be correct in certain special cases, including that where G = S3 or
D4 (embedded in S3 and S4 respectively) and that where G is abelian. In general, however, little
is known about Malle’s conjecture – and indeed, its difficulty is ensured by the fact that implies a
positive solution to the inverse Galois problem.

A related problem, raised for example in [9], is the question of multiplicity of a fixed discriminant.

Conjecture 1.3. The number of number fields K/Q with degree n and discriminant D is �ε,n Dε.

Conjecture (1.3) is unknown, and seems quite difficult, even for n = 3. In that case it is
intimately related to questions about 3-torsion in class groups of quadratic fields.

The arithmetic of function fields and their covers is often much more approachable than that of
number fields, since one can appeal to the geometry of varieties over finite fields. In particular, one
may replace K by Fq(t) in the above discussion, and ask whether Conjecture 1.1 and 1.2 remain
true (with evident modifications) in this setting. We note that this is known to be the case when
G = S3, by the work of Datskovsky and Wright [7]

We do not know how to prove Conjecture 1.2 even in the function field setting. However, we
will establish in the present paper certain (weak) approximations to Conjecture 1.2. In Lemma 2.4
we show that the upper bound of Malle’s conjecture is nearly valid when q is large relative to |G|.
Moreover, we prove in Proposition 3.1 a result showing that Malle’s conjecture is compatible with
a heuristic arising from the geometry of Hurwitz spaces. A little more precisely, Prop. 3.1 studies
Malle’s conjecture using the following heuristic:

(A) If X is a geometrically irreducible d-dimensional variety over Fq, one has |X(Fq)| =
qd.

The heuristic (A) can be thought of as an assertion of extremely (indeed, implausibly) strong
cancellation between Frobenius eigenvalues on the cohomology of X. Despite its crudeness, (A)
allows one to recover, in the function field setting, the precise constants a(G) and bK(G) found in
Malle’s conjecture.

This line of reasoning suggests further questions about the distribution of discriminants of num-
ber fields. We discuss these in Section 4. For instance, Section 4.2 gives a heuristic for the number
of icosahedral number forms of conductor ≤ N , and Section 4.3 proposes some still more general
heuristics for number fields with prescribed ramification data.

We note that the approach via (A) is very much in the spirit of that used by Batyrev in
developing precise heuristics for the distribution of rational points on Fano varieties; we thank Yuri
Tschinkel for explaining this to us.

The authors thank Karim Belabas, Manjul Bhargava, Henri Cohen, and Johan de Jong for many
useful conversations about the topic of this chapter, and the organizers of the Miami Winter School
in Geometric Methods in Algebra and Number Theory for inviting the first author to give the lecture
on which this article is based.

Notation: Throughout this paper, G will be a transitive subgroup of the permutation group
Sn and q will be a prime power that is coprime to |G|.
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2 Counting extensions of function fields

2.1 Hurwitz spaces

In this section, we recall basic facts about Hurwitz spaces, i.e. moduli spaces for covers of P1. We
will make constant use of the fact that the category of finite extensions L/Fq(t), with the morphisms
being field homomorphisms fixing Fq(t), is equivalent to the category of finite (branched) covers of
smooth curves f : Y → P1 defined over Fq, the morphisms being maps of covers over P1. Recall
that q is coprime to |G|, eliminating painful complications concering the residue characteristic.

Let Y be a geometrically connected curve over Fq and f : Y → P1 a Galois covering equipped
with an isomorphism G → Aut(Y/P1). We refer to such a pair (Y, f) as a G-cover. Let H be
a point stabilizer in the G-action on {1, 2, . . . , n}, and let f0 : Y0 → P1 be the degree-n covering
corresponding to the subgroup H ≤ G. We then set r(f) to be the degree of the ramification divisor
of f0. Call qr(f) the discriminant of f .

We denote by Nq,G(X) the number of isomorphism classes of G-covers f : Y → P1/Fq with
qr(f) < X. Note that, by requiring that Y be geometrically connected, we have excused ourselves
from counting extensions of Fq(t) which contain some Fqf /Fq as a subextension. This decision
will not affect the powers of X and log X in the heuristics we compute, though it may change the
constant terms.

The G-covers P1 with discriminant qr are parametrized by a Hurwitz variety Hr. More precisely:

Proposition 2.1. There is a smooth scheme Hr over Z[ 1
|G| ] which is a coarse moduli space for

G-covers of P1 with discriminant r. The natural map

{isomorphism classes of G-covers of P1/Fq} → H(Fq) (2.1)

is surjective, and the fibers have size at most |Z|, where Z is the center of G.

Proof. We refer to [16] for details of the construction of Hr in positive characteristic. Let h be an
Fq-rational point of H. Then the obstruction to h arising from a cover Y → P1 defined over Fq

lies in H2(Fq, Z) where Z is the center of G; since Gal(F̄q/Fq) has cohomological dimension 1, this
obtruction is trivial (see [8, Cor. 3.3] for more discussion of this point.) Further, the isomorphism
classes of covers f parametrized by the point h are indexed by the cohomology group H1(Fq, Z),
which has size at most |Z|.

What’s more, Hr is the union of open and closed subschemes which parametrize G-covers with
specified ramification data. In order to express this decomposition, we need a bit more notation.

We call a multiset c = {c1, . . . , ck} of conjugacy classes of G a Nielsen class, and denote by r(c)
the total index

∑k
i=1 ind(ci). We also write |c| for the number of branch points k. Finally, for each

Nielsen class c we define Σ̃c to be the subset of Gk consisting of all k-tuples (g1, . . . , gk) such that

• The multisets c and {c(gi), . . . , c(gk)} are equal, where c(g) denotes the conjugacy class of g;

• g1g2 . . . gk = 1;

• the gi generate G.

Note that Σ̃c is preserved by the action of G sending (g1, . . . , gk) to (gg1g
−1, . . . , ggkg−1). We denote

by Σc the quotient of Σ̃c by this action.
Let f : Y → P1

F̄q
be a G-cover whose branch locus in P1(F̄q) is {x1, . . . , xk}. By consideration

of the action of tame inertia at x1, . . . , xk, we can associate a Nielsen class c to f which is fixed
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by Gal(K̄/K) and which satisfies r(c) = r(f). [4, 1.2.4]. The set of Nielsen classes inherits a
Gal(F̄q/Fq)-action from the cyclotomic action on C , as described in section 1; we call a Nielsen
class which is fixed by this action an Fq-rational Nielsen class. If f descends to a G-cover Y → P1

Fq
,

it follows that the Nielsen class c is Fq-rational.
Denote by Ck the configuration space of k disjoint points in P1. The (geometric) fundamental

group of Ck is the (spherical) braid group of k-strands. We denote by σk ∈ Ck the braid that pulls
strand i past strand i + 1.

Proposition 2.2. For each Nielsen class c, there is a Hurwitz space Hc/F̄q which is a coarse moduli
space for G-covers f : Y → P1

F̄q
with Nielsen class c. The action of σ ∈ Gal(F̄q/Fq) sends Hc to

Hcσ ; so the Fq-rational connected components of Hr are each contained in Hc for some Fq-rational
c with r(c) = r.

The map π : Hc → C|c| that sends a cover f to its ramification divisor is étale. Moreover, the
geometric points of the fiber of π above {x1, . . . , xk} ∈ Ck are naturally identified with Σc. The
action of π1(Ck) on π−1({x1, . . . , xk}) is given by

σi(g1, . . . , gk) = (g1, . . . , gigi+1g
−1
i , gi, . . . , gk)

so that the connected components of Hc are in bijection with the π1(Ck)-orbits on Σc.

Proof. For the existence of Hc, see [4, §1.2.4]. The description of the connected components of Hc

is due to Fried; see e.g [11, §1.3], and [16, Cor 4.2.3] for the extension of Fried’s results to positive
characteristic prime to |G|.

2.2 An upper bound on the number of extensions of Fq(t)

Proposition 2.1 shows that, up to a constant factor, one can reduce the problem of controlling
NFq(t),G(X) to the problem of controlling the number of Fq-rational points on the varieties Hr, as r
ranges up to logq X. Bounding the number of Fq-points on a variety of high dimension over a small
finite field is a difficult matter. In the context at hand, we may give a straightforward upper bound,
but the exponent is far from the one appearing in Malle’s conjecture. We carry this out below; to
clarify matters, we fix q and G and consider only the dependence as X →∞.

We will use the following easy lemma to bound various sequences arising in this paper.

Lemma 2.3. Suppose {an} is a sequence of real numbers with an = 0 whenever n is not a power
of q, and suppose

∞∑
r=1

aqrq−rs,

considered as a formal power series, is a rational function f(t) of t = qs. Let a be a positive real
number. If f(t) has no poles with |t| ≥ qa, then:

X∑
n=1

an � Xa.

If f(t) has a pole of order b at t = qa and no other poles with |t| ≥ qa, then:

X∑
n=1

an � Xa(log X)b−1
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Here we use the notation A(X) � B(X) to mean that there are real constants C1, C2 > 0 such that
C1A(X) ≤ B(X) ≤ C2A(X).

Proof. It follows immediately from the decomposition of f(t) in partial fractions that

R∑
r=1

aqr � qaR

when f(t) has no poles with |t| > qa. Moreover, if f(t) has a pole of order b at t = qa and no other
poles with |t| ≥ qa, then

R∑
r=1

aqr ∼ CqaRRb−1

for some C ∈ R. Then the Lemma follows, since qblogq Xc � X.

Lemma 2.4. Let q and G be fixed. Denote by E(j) the number of elements g of G with ind(g) = j,
and set e(G) = supj E(j)1/j. Then

lim sup
X→∞

log Nq,G(X)
log X

≤ a(G) +
log(2e(G))

log q

In particular

lim sup
X→∞

log Nq,Sn
(X)

log X
≤ 1 +

log(4n2)
log q

. (2.2)

Note that the right-hand-side of the first inequality in Lemma 2.4 approaches Malle’s constant
a(G) when q becomes large relative to |G|.

Proof. Define a sequence of integers an such that aqr = |Hr(Fq)| and an = 0 if n is not a power of
q. So

Nq,G(X) �
X∑

n=1

an.

We have seen in Proposition 2.2 that the Fq-rational components of Hr are the union of Hurwitz
varieties Hc/Fq. Since Hc is a finite cover of degree |Σc| of C|c| ∼= P|c|/Fq, we have

|Hc(Fq)| �q,G |Σc|q|c|

and
aqr �q,G

∑
c:r(c)=r

|Σc|q|c|.

Let f(r) the sum of qk over all k-tuples (g1, . . . , gk) in G satisfying
∑

i ind(gi) = r. (Here, k is
allowed to vary.) Then evidently ∑

c:r(c)=r

|Σc|q|c| ≤ f(r).

On the other hand, ∑
r

f(r)q−rs = (1−
∑
g∈G

(q1−ind(g)s))−1.
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We conclude that∑
r

aqrq−rs �q,G (1−
∑
g∈G

(q1−ind(g)s))−1 = (1−
∑

j≥a(G)−1

E(j)q1−js)−1 (2.3)

It is easy to see that (2.3) has no poles once we have

|qs| > 2qa(G)E(j)1/j

for every j. The first part of the proposition now follows from Lemma 2.3.
We now show that, when G = Sn, we have E(j)1/j < 2n2 for all j; this proves the second part

of the lemma.
Any σ ∈ Sn with ind(σ) = j fixes at least n − 2j elements of {1, 2, . . . , n}. Enumerating

such σ by their number l of fixed points, we obtain E(j) ≤
∑

n−2j≤l≤n−1
n!
l! < 2jn2j . Thus

E(j)1/j < n2(2j)1/j ≤ 2n2.

Remark 2.5. It is interesting to contrast the “trivial” upper bounds of Lemma 2.4 with what can
be obtained in the number field setting.

The upper bounds of Lemma 2.4 used explicit knowledge of the fundamental group of a punctured
P1. In the number field setting, such tools are unavailable. Nevertheless in [10] an upper bound
for Nn(X) was derived, similar to (2.2), with the exponent log(n) is replaced by a quantity of the
form e

√
log(n). The proof was considerably more complicated, but nevertheless geometric: the key

idea is to find in each number field K a small set {x1, x2, . . . , xr} of algebraic integers which are
“nondegenerate” in the sense that they do not satisfy an algebraic relation of low degree, and then
to show that an appropriate set of traces Tr(xg1

1 . . . xgr
r ) suffice to determine K.

Further, let NGal
q,n (X) denote the number of Galois extensions of P1

Fq
of degree n and discriminant

less than X. Lemma 2.4 implies that NGal
q,n (X) �q,n X

2
n +

log(2n)
log(q) . Again, a result of a similar flavor

was shown in [10], where it was shown that NGal
q,n (X) � X3/8 if n ≥ 3. Again, the proof in the

number field case was more elaborate and in fact relied on the classification of finite simple groups;
the main idea is to prove the theorem using a low-degree permutation representation of G when G
is simple, and to proceed by induction on a composition series otherwise.

3 Counting points on Hurwitz spaces under heuristic (A)

Lemma 2.4 asserts, at least, that the upper bound of Malle’s conjecture is close to valid when
q is large compared to |G|. Beyond Lemma 2.4, we can do no more than speculate about the
exact number of Fq-points on Hr. The situation improves somewhat if we are willing to assume
the heuristic (A) from the introduction: that is, we suppose that a geometrically irreducible d-
dimensional variety over Fq has qd points. This heuristic reduces the problem of estimating |Hr(Fq)|
to the substantially simpler problem of computing the number of geometric connected components
of the spaces Hr and their fields of definition.

Let h(q, r) be the sum of qdim C over all geometrically connected components C of Hr which are
defined over Fq. Denote by bFq (G) the number of Gal(F̄q/Fq)-orbits on the set {c ∈ C : ind(c) =
1/a(G)}.

We shall prove:

Proposition 3.1. ∑
qr≤X

h(q, r) � Xa(G) log(X)bFq (G)−1
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Proposition 3.1 amounts, roughly speaking, to the assertion that Malle’s conjectures are com-
patible with naive dimension computations for Hurwitz spaces. The proof is more difficult than
that of Lemma 2.4 but is still elementary.

The problem here is that the decomposition of Hr into geometrically connected components is
somewhat subtle. Let h′(q, r) be the sum of q|c| over all Fq-rational Nielsen classes c with r(c) = r.
If Hc were a non-empty geometrically connected variety for every Fq-rational Nielsen class c with
r(c) = r, we would have h′(q, r) = h(q, r). (We remark that, in many cases, Hc is known to be
geometrically connected by the theorem of Conway and Parker [11, Appendix].) In the following
proposition we show that h′ is a reasonable approximation to h, at least on average.

Proposition 3.2. Under the assumption on q in Proposition 3.1, there exist constants m,C1, C2,
depending only on G, such that

C1

∑
r<R−m

h′(q, r) <
∑
r<R

h(q, r) < C2

∑
r<R

h′(q, r) (3.4)

for all R � 0.

Proof. Recall that Σ̃c consists of (g1, . . . , gk) ∈ Gk such that the multiset {c(gi), . . . , c(gk)} equals
c; g1, . . . , gk generate G; and g1g2 . . . gk = 1. Write n(c) for the number of orbits of the braid group
π1(C|c|) on Σ̃c. The right-hand inequality above thus follows immediately from the following lemma.

Lemma 3.3. There exists a constant C2 such that n(c) < C2 for all c.

Proof. If g = (g1, . . . , gk) and g′ = (g′1, . . . , g
′
k) are two elements of Gk, we write g ∼ g′ when g and

g′ are in the same orbit of the action of the braid group on Gk. We shall need a simple fact about
the action of the braid group on Gk: suppose g = (g1, . . . , gk) ∈ Gk with g1 . . . gk = 1. Then, for
any 1 ≤ j ≤ k, there exists (g′1, . . . , g

′
k−1) ∈ Gk−1 such that

(g1, . . . , gk) ∼ (g′1, . . . , g
′
k−1, gj). (3.5)

Moreover, one knows (see, e.g., [17, Cor. 9.4]) that

(gg1g
−1, gg2g

−1, . . . , ggkg−1) ∼ (g1, . . . , gk) (3.6)

whenever g belongs to the subgroup generated by (g1, . . . , gk).
We show that n(c) ≤ |G||G|2 . This is clear if |c| ≤ |G|2.
Suppose k = |c| > |G|2. Then any k-tuple (g1, g2, . . . , gk) in Σ̃c contains an element g0 ∈ G with

multiplicity at least |G|+ 1. Let g′0 be any element in G conjugate to g0. Thus, applying the braid
operations (3.5) and (3.6) above, we deduce

(g1, g2, . . . , gk) ∼ (g′1, g
′
2, . . . , g

′
k−|G|−1, g0, g0, . . . , g0) ∼ (g′′1 , g′′2 , g′′k−|G|−1, g

′
0, g

′
0, . . . , g

′
0) (3.7)

for certain g′j , g
′′
j ∈ G, where both g0 and g′0 occur |G|+ 1 times at the end of each expression.

On the other hand g
′|G|
0 = 1. Thus, if (g1, g2, . . . , gk) ∈ Σc, then (g′′1 , . . . , g′′k−|G|−1, g

′
0) belongs to

Σc′ where c′ is c with |G| copies of the conjugacy class of g0 removed. So n(c) ≤ n(c′). If |c′| > |G|2
we may apply the procedure that led to (3.7) again; indeed, repeatedly applying (3.7) we can bring
elements of Σc to a “standard form.” We see in particular that n(c) ≤ n(c′) for some |c′| ≤ |G|2.
The result now follows.
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We now turn to the left-hand inequality in (3.4). Here we will make use of the theorem of
Conway and Parker [11, Appendix] in order to show that Hc has geometric components defined
over Fq for many choices of c.

We first show that Hc is nonempty for many choices of c.
Let N ⊂ G be the normal subgroup consisting of all products g1 . . . gk, where the Nielsen class

of (g1, . . . , gk) is Fq-rational. We claim that for every element g ∈ N there exists, for some k, a
k-tuple (g1, . . . , gk) such that

• g1 . . . gk = g;

• the Nielsen class of (g1, . . . , gk) is Fq-rational;

• the gi generate G.

It suffices to show that this assertion holds for g = 1; for if we have (g1, . . . gk) satisfying the last two
conditions and having product 1, we can concatenate it with (gk+1, . . . , g`) having product g and
representing an Fq-rational Nielsen class. To see that the assertion holds for g = 1, merely choose
(g1, g

−1
1 , . . . , gk, g−1

k ) where (g1, . . . , gk) is a generating set for G which represents a Fq-rational
Nielsen class.

Now let d1, . . . , dK be a finite set of Fq-rational Nielsen classes such that, for each g ∈ N , there
exists (g1, . . . , gk) representing some di which generates G and has product g.

If c and d are two Nielsen classes, we denote their concatenation by c + d.
For each Fq-rational Nielsen class c, choose a representative (g1, . . . , gk). By the discussion above

there exists an m-tuple (g1, . . . , gk, gk+1, . . . , gm) which is contained in Σc+di
for some i. It follows

that Hc+di
is nonempty for some i.

We now need to show that there are many Hurwitz spaces which are not only non-empty but
which possess a geometric component defined over Fq. Our main tool is the following assertion,
which follows immediately from Proposition 1 and Lemma 2 of [11]:

Lemma 3.4. There exists a group G̃, a surjective homomorphism G̃ → G, and a constant C3(G)
such that, for any Nielsen class c̃ of G̃ which contains at least C3(G) copies of each nontrivial
conjugacy class of G̃, the Hurwitz space Hc̃ is geometrically connected.

By the argument prior to Lemma 3.4, applied to G̃ instead of G, there exists a finite set of Fq-
rational Nielsen classes ẽ1, . . . , ẽL such that, for every Fq-rational Nielsen class c̃ of G̃, the Hurwitz
scheme Hc̃+ẽi

is nonempty.
Now consider an Fq-rational Nielsen class c of G. We want to find an Fq-rational Nielsen class c̃

of G̃ which “approximately” projects to c. For each Gal(F̄q/Fq)-orbit O on the nontrivial conjugacy
classes in C , let Õ be a Gal(F̄q/Fq)-orbit of conjugacy classes in G̃ which projects to O. We note
that the projection of the multiset Õ to G will be some multiple kOO of O, where kO ≥ 1. We know
that c can be expressed as ∑

O

cOO

for some set of integers {cO}. Then the Nielsen class

c̃ =
∑
O

d cO

kO
eÕ

is Fq-rational; moreover, the projection of c̃ to G can be written as c + c′, where c′ is drawn from a
finite list of Fq-rational Nielsen classes c′1, . . . , c

′
M .
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Now we fix, once and for all, a Fq-rational Nielsen class c̃′′ for G̃, containing at least C3(G)
copies of each conjugacy class of G̃. We know already that, for some i, the Hurwitz space attached
to c̃ + c̃′′ + ẽi is nonempty; what’s more, it is Fq-rational, and by Lemma 3.4 it is geometrically
connected.

The projection of c̃ + c̃′′ + ẽi, under the map G̃ → G, can be written as c + di + ni1, where di

is drawn from some finite list d1, . . . , dN , and ni1 refers to ni copies of the trivial conjugacy class.
We claim that Hc+di

has an Fq-rational geometrically connected component. Indeed, to any
G̃-cover Y → P1 with Nielsen class c̃ + c̃′′ + ẽi, there is canonically associated a G-cover of P1 with
Nielsen class c + di; namely, take the quotient of Y by ker(G̃ → G).

The associated map Hc̃+c̃′′+ẽi
→ Hc+di

has as its image is a geometrically connected Fq-rational
component of Hc+di

.
For notational convenience, define h(q, c) to be the number of Fq-rational geometric components

of Hc multiplied by q|c|. By the discussion above, h(q, c + di) ≥ q|c+di| for some i.
We thus have, on the one hand,∑

i,c:r(c)<R

h(q, c + di) ≥
∑

c:r(c)<R

q|c+di| ≥
∑

c:r(c)<R

h′(q, c)

and on the other, ∑
i,c:r(c)<R

h(q, c + di) ≤ N
∑

c:r(c)<R+r(di)

h(q, c).

This finishes the proof of the proposition, taking C1 to be 1/N and m to be the supremum of r(di).

We are now in a position to prove Prop. 3.1:

Proof. (of Prop. 3.1). By definition
∑∞

r=0 h′(q, r)q−rs =
∑

c q|c|q−r(c)s, the sum being taken over
all Fq-rational Nielsen classes c. This sum factorizes as a product indexed by the Gal(Fq)-orbits O
of conjugacy classes of G:

∞∑
r=0

h′(q, r)q−rs =
∏
O

(1− q|O|(1−ind(O)s))−1 (3.8)

Here by ind(O) we mean the ramification index of any representative of the orbit O, and by |O| the
number of conjugacy classes in O.

Now (3.8) implies, via Lemma 2.3, that
∑

qr<X h′(q, r) � Xa(G) log(X)bFq (G)−1, where a(G), bFq
(G)

are as in Malle’s conjecture. The claim of Proposition 3.1 now follows at once from this and Propo-
sition 3.2.

4 Further conjectures

In this section, we discuss first (Section 4.1) some further questions in the function field case.
The heuristics used for Proposition 3.1 also suggest certain “refined” heuristics for extensions of
number fields; we discuss some of these in Section 4.2. Finally in Section 4.3 we discuss some more
speculative questions about the enumeration of higher-dimensional varieties.

We note by way of caution that there is little numerical evidence to suggest that some of the
questions posed below have an affirmative answer.
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4.1 More questions about function fields.

The following question was raised by N. Katz and J. de Jong.

Question 4.1. Let q be fixed. Is it true that there is a constant c := c(q) such that the number of
isomorphism classes of genus g curves over Fq is less than cg, for all g ≥ 1?

The emphasis of this question is on the case where q is fixed and g → ∞. The upper bound
cg log(g) was established by Katz and de Jong in unpublished work. In a certain sense this bound
is analogous to Lemma 2.4. Note that this problem, again, amounts to counting the number of Fq

points on a variety (namely the moduli space Mg) of high dimension. One difficulty in using, e.g.,
the Lefshetz fixed point formula, is that the Betti numbers of Mg grow very rapidly with g.

Returning to the distribution of discriminants, one may also study the properties of certain zeta
functions; this serves to one may smooth out the irregularity in the distribution of discriminants.
For instance, consider the function ξq,G(s) :=

∑
L D−s

L/Fq(t), where L varies over degree n extensions
of Fq(t) with Galois group G, and DL is the discriminant of L. A “geometric” variant of ξq,G is the
zeta function:

ζq,G(s) =
∞∑

r=0

|Hr(Fq)|q−rs. (4.9)

Question 4.2. What are the analytic properties of ζq,G(s)? In particular, is it the case that ζq,G(s)
has an analytic continuation to the left of <s = 1/a(G), with a pole of order bFq

(G) at s = 1/a(G)?

4.2 Questions about number fields.

The discriminant of a number field K/Q may be regarded as a measure of ramification, where each
ramified prime is weighted according to the conjugacy class of tame inertia. In the present section,
we discuss first (sections 4.2.1 and 4.2.2) generalizations of Malle’s conjecture that allow for varying
this weighting. In section 4.2.3 we take up the question of multiplicity of discriminants, already
raised in Conjecture 1.3. As an example of these heuristics, we give heuristics for the number of
icosahedral modular forms with conductor ≤ N (Ex. 4.4).

The questions proposed in this section are interrelated. In particular, the upper bounds implicit
in Question (4.5), Question (4.3), and Conjecture 1.3 are close to equivalent (see Remark 4.7.) In
fact, these weak upper bounds seem on considerably safer ground then the general questions, as
they do not presuppose a positive solution to the inverse Galois problem.

4.2.1 Malle’s conjecture with modified weights

Set K = Q and let other notations be as described prior to Conjecture 1.2. Let f : C → Z≥0 be
invariant under the Gal(Q̄/Q)-action and such that

f(g) = 0 ⇐⇒ g = {id}.

We call such an f a rational class function. Set a(f) = maxc∈C ,c6={id}f(c)−1. Let bQ(f) be the
number of Gal(Q̄/Q)-orbits on the set {c ∈ C : f(c) = a(f)−1}.

If L/Q is a Galois extension with group G and p is a prime not dividing |G|, let cp ∈ C be the
image of a generator of tame inertia at p. Now we define the f -discriminant of L to be:

Df (L) =
∏

p6| |G|

pf(cp). (4.10)
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For instance, if f = ind, then Df (L) is the prime-to-|G| part of DL0 , notations being as prior to
Conjecture 1.2, taking K = Q.

Let NG,f (X) (or, when the group is clear from context, just Nf (X)) be the number of Galois
extensions L/Q with Galois group G and Df (L) < X.

Question 4.3. Is it true that NG,f (X) ∼ cXa(f)(log X)bQ(f)−1?

We note that this type of generalization is already, in some sense, anticipated in Malle’s conjec-
ture. A given G can be equipped with many different embeddings into symmetric groups; Malle’s
conjecture already predicts an asymptotic for Nf (X) when f is the index function corresponding
to any such embedding.

Example 4.4. Let ρ : G → GL(V ) be a complex representation. Then g ∈ G 7→ codimV g, the
codimension of the invariant space, defines a rational class function. If L/Q has Galois group G,
Df (L) is the prime-to-|G| part of the Artin conductor of the Galois representation associated to L.

For example, we may take G to be the finite subgroup of order 240 in GL2(C) whose image
in PGL2(C) is isomorphic to A5. For this group, there is a unique conjugacy class (the conjugacy
class of non-central involutions) which has f(c) = 1. Subject to Artin’s conjecture, the holomorphic
modular forms of weight 1, conductor N , quadratic Dirichlet character, and icosahedral type are
in bijection with the Galois extensions with group G and Artin conductor N such that complex
conjugation is sent to a non-central involution.

Question 4.3 then suggests that, if s(N) is the number of icosahedral holomorphic weight-1
modular forms with quadratic character and conductor at most N , then

s(N) ∼ cN

for some constant c. The best upper bound at present is s(N) �ε N13/7+ε due to Michel and the
second author [14]. Serre [15] speculated that the number of such forms with conductor exactly N
is �ε N ε.

4.2.2 Multidiscriminants

One can use the function field heuristics described here to produce even more refined (i.e. optimistic!)
heuristics for counting number fields, in which we attach to each field not just an element of R≥0

but an element of Rk
≥0 for some k > 1. We could call such a map a “multidiscriminant.”

Let G be a finite group, and let the orbits of the nontrivial conjugacy classes under the action
of Gal(Q̄/Q) be denoted O1,O2, . . . Om. Given a Galois G-extension L/Q, set DOi(L) to be the
product of all primes p 6 |G such that the image in G of tame inertia at p is conjugate to Oi; the
map L 7→ (DOi

(L))1≤i≤m can be regarded as a multidiscriminant. Set NG(X1, . . . , Xn) to be the
number of L/Q such that DOi

(L) < Xi for all i. We can then ask:

Question 4.5. Is it true that, if Xj →∞ for all 1 ≤ j ≤ n, then the ratio

NG(X1, . . . , Xm)
X1 . . . Xm

(4.11)

approaches a fixed limit c = c(G)?

As before, (4.11) can be heuristically justified by dimension computations over finite fields.
Indeed, let notation be as above but let {Oi} now denote the orbits of the conjugacy classes in
G under the cyclotomic character of Gal(F̄q/Fq). Let NG,q(X1, . . . , Xm) be the number of Galois
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G-covers f : Y → P1/Fq such that the number of branch points of f in P1 with monodromy in Oi

is less than ai = b log(Xi)
log(q) c. Such covers are parametrized (as usual, up to uniformly bounded finite

ambiguity arising from descent problems) by the Fq-points of a variety, whose largest-dimensional
connected component is a Hurwitz space of dimension about

∑
i ai. So our usual heuristic suggests

that this variety has about
∏

i qai , or X1 . . . Xm points.

Lemma 4.6. An affirmative answer to Question (4.5) implies an affirmative answer to Question
(4.3).

The proof of the Lemma is straightforward but tedious.

4.2.3 The multiplicity of discriminants

A problem of a rather different flavor is to count the extensions L/Q with Galois group G whose
discriminant is exactly X. One can show, e.g. by genus theory, that this number can grow as fast
as Xc/ log log(X). On the other hand Conjecture 1.3 asserts that this multiplicty is �ε,G Xε.

Conjecture (1.3) implies that the l-torsion part of the class group of a number field K/Q is
�l,[K:Q] Dε

K/Q. (This follows immediately from class field theory, as l-torsion in the class group of
K would give rise to unramified extensions of degree l.)
Remark 4.7. The following conjectures are equivalent:

1. Conjecture (1.3),

2. The upper bound NG,f (X) �ε,G,f Xa(f)+ε in Question 4.3,

3. The upper bound NG(X1, . . . , Xn) � (X1X2 . . . Xn)1+ε in Question (4.5).

The implications (1) =⇒ (3) =⇒ (2) are trivial. We show the remaining implication in the
following Proposition.

Proposition 4.8. An affirmative answer to Question (4.3) – or even the weaker assumption

NG,f (X) �ε,G,f Xa(f)+ε, (4.12)

implies Conjecture 1.3.

Proof. Let aG(X) be the number of extensions L/Q with Galois group G and with discriminant
X. Clearly it will suffice to show aG(X) �ε,G Xε. The main idea will be to apply (4.12) with G
replaced by Gk and some of its subgroups.

Fix k > 0 an integer. We write an element of Gk as a k-tuple (g1, g2, . . . , gk). Let F be the class
function on Gk that is identically 1, i.e. F (c1, . . . , ck) = 1 for all conjugacy classes cj of G.

Let S be the class of subgroups of Gk which project surjectively onto each copy of G; for each
H ∈ S we also write F for the rational class function on H that is identically 1. Then the k-tuples
of G-extensions L1, . . . , Lk are in bijection with the H-extensions L/Q, where H ranges over S . We
denote by [L1, . . . , Lk] the H-extension associated to a k-tuple in this way, and by DF ([L1, . . . , Lk])
the F -discriminant of this extension, given by the formula (4.10).

DF ([L1, . . . , Lk]) is, away from primes dividing |G|, the squarefree part of the product
∏k

j=1DLj/Q.
Thus DF ([L1, . . . , Lk]) is (relatively) large whenever the DLi have few common factors with each
other. On the other hand, if DL1/Q = DL2/Q = · · · = DLk/Q = X, it follows that DF ([L1, . . . , Lk]) ≤
X. In particular, ∑

H∈S

NH,F (X) ≥ aG(X)k (4.13)
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Combining (4.13) and (4.12), and noting the exponent a of (4.12) equals 1 whenever (G, f) is
replaced by (H,F ) as above, we see that aG(X)k �G,k X1+ε. The result follows, k being arbitrary.

4.3 The scarceness of arithmetic objects with prescribed bad reduction

We have discussed in previous sections heuristics for counting function fields, number fields, and
Galois representations. In a certain sense all of these can be regarded as “0-dimensional” arithmetic
objects. We now briefly discuss a plausible statement in higher dimensions, at least as regards upper
bounds.

By way of motivation, we note that Conjecture 1.3 may be regarded as saying that there are
very few number fields with very little bad reduction. If one replaces “number field” with “proper
smooth variety,” very little is known; however, it is generally believed that there are “relatively
few” proper smooth varieties V over Z. There are a few evident examples: one may take for V
e.g. a flag variety associated to a Chevalley group over Z. Further, one may blow up such a variety
along an appropriate locus. However, as Jason Starr and Johan de Jong pointed out to us, all such
varieties are rational, and it there seems to be no non-rational example known. A beautiful result
of Fontaine states that there exist no abelian varieties over Z.

The question we state aims to quantify this scarceness. For a finite set S of primes set N(S) =∏
p∈S p. For concreteness and to avoid any technical hypotheses, we have phrased the question in

terms of modular Galois representations.

Question 4.9. Fix a Hodge-Tate type π (i.e. a set of Hodge-Tate weights), positive integers n, d,
and a prime l. Let GR(π, S) be the set of modular Galois representations ρl : Gal(Q/Q) → GLn(Ql)
with Hodge-Tate weights π and good reduction outside S. Here “modular” means “attached to an
automorphic form on GLn.” Let GRd(π, S) ⊂ GR(π, S) be the subset consisting of ρl whose
Frobenius traces lie in a field extension of Q with degree ≤ d.

Is it true that |GRd(π, S)| �ε,d,n,π N(S)ε?

We can ask a similar question with a more “motivic” flavor; of course, one may expect that
under suitable modularity conjectures the questions above and below are equivalent.

Question 4.10. Fix K ∈ N and let S be a finite set of primes. Consider the set V(K, S) of proper
smooth varieties V over SpecZ[ 1

N(S) ] such that dim(V ) ≤ K and dim Hi(VC, C) ≤ K for each
0 ≤ i ≤ 2K. To each variety V ∈ V(K, S) associate the sequence #(V (Fp))p/∈S , indexed by the
primes not in S. Then the number of distinct such sequences is �K N(S)ε.

An affirmative answer to Question 4.9 would imply Conjecture 1.3. It would also imply that the
number of elliptic curves over Q of conductor N is �ε N ε.

Note that even the finiteness of GR(π, S) would not be clear without the hypothesis of modular-
ity! Using modularity, one may probably show that |GR(π, S)| is bounded by a polyomial in N(S).
The content of the assertion is then that |GRd(π, S)| is much smaller. A related phenomenon is
well-known in the context of holomorphic forms: fix k ≥ 2 and consider the space Sk(N) of holo-
morphic forms of level N and weight k. Although dimSk(N) ∼ const ·N as N →∞, the number of
Hecke eigenforms whose coefficient field has degree ≤ d seems to grow much more slowly with N .

One can enunciate a corresponding question in the function field case; it also seems quite difficult.
Remark 4.11. It is interesting to note the contrast between the number field and function field
contexts. In the number field setting, the ability to average seems to make counting objects of
conductor up to N much easier than counting objects of conductor exactly N . In the function field
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setting, on the other hand, counting objects of conductor up to N means counting covers of P1

whose ramification locus varies among all divisors of P1 of degree less than logq N , while counting
covers with a fixed conductor amounts to studying the arithmetic (in the case of finite covers, the
étale fundamental group) of a single open curve inside P1, which might in some ways be easier. One
way to express the contrast is to observe that our understanding of the étale fundamental group of
an open subset of P1

Fq
, though very far from complete, is much greater than our understanding of

the maximal Galois extension of Q unramified away from a fixed finite set of primes.
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