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Abstract

We discuss the enumeration of function fields and number fields by discriminant. We show
that Malle’s conjectures agree with heuristics arising naturally from geometric computations on
Hurwitz schemes. These heuristics also suggest further questions in the number field setting.

1 Introduction

The enumeration of number fields subject to various local and global conditions is an old problem,
which has in recent years been the subject of renewed interest (a sampling includes [2], [3], [5],
[7], [10], [12].) For a good survey of recent work, see [1]. We begin by reprising some important
conjectures.

If L/ K is an extension of number fields, we denote by Dy, /i the relative discriminant, an ideal of
K, and by NgDL/K its norm, a positive integer. For X € RT, we set Nk ,,(X) to be the number of
degree-n extensions L/K (up to K-isomorphism) such that Ng Dp/kx < X. It is a classical problem
to understand the asymptotics of Nk ,,(X) as X goes to infinity; in particular, we have the folk
conjecture:

Conjecture 1.1. There is a constant cgx , such that, as X — oo,
NK,n(X) ~ CKﬁnX.

This conjecture is now known for n < 5.

A more general conjecture applies to enumerating extensions with specified Galois group. It is
due to Malle [13] and refines a previous conjecture of Cohen. To describe Malle’s conjecture, we
need to introduce some notation.

Let G < S,, be a transitive subgroup. For g € G, we set ind(g) = n — r, where r is the
number of orbits of g on {1,2,...,n}. Denote by ¢ the set of non-trivial conjugacy classes of
G; then ind descends to a function ind : 4 — Z. The group Gal(K/K) acts on € via g-c =
X9 where g € Gal(K/K),c € ¢ and y : Gal(K/K) — Z* is the cyclotomic character. Set
a(G) = max.c¢ (ind(c) 1), and set bg (G) to be the number of Gal(K /K )-orbits on the set {c € € :
ind(c) = 1/a(G)}.
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Let H be any point stabilizer in the G-action on {1,2,...,n}. For each Galois extension L/K
with Galois group G, let Lo/ K be the degree n subextension of L/K corresponding to the subgroup
H < @G. Since G acts transitively on {1,2,...,n}, the K-isomorphism class of Ly is independent of
the choice of H. We then denote by Ng ¢(X) the number of Galois G-extensions L/K such that
N§ Do/ < X.

Conjecture 1.2. (Malle) There is a nonzero constant Cx (G) such that
Nic.a(X) ~ Cre(G)X ™D (log X)Px(D =1,

This conjecture is known to be correct in certain special cases, including that where G = S5 or
D, (embedded in S3 and Sy respectively) and that where G is abelian. In general, however, little
is known about Malle’s conjecture — and indeed, its difficulty is ensured by the fact that implies a
positive solution to the inverse Galois problem.

A related problem, raised for example in [9], is the question of multiplicity of a fixed discriminant.

Conjecture 1.3. The number of number fields K/Q with degree n and discriminant D is <, D¢.

Conjecture (1.3) is unknown, and seems quite difficult, even for n = 3. In that case it is
intimately related to questions about 3-torsion in class groups of quadratic fields.

The arithmetic of function fields and their covers is often much more approachable than that of
number fields, since one can appeal to the geometry of varieties over finite fields. In particular, one
may replace K by F,(¢) in the above discussion, and ask whether Conjecture 1.1 and 1.2 remain
true (with evident modifications) in this setting. We note that this is known to be the case when
G = S3, by the work of Datskovsky and Wright [7]

We do not know how to prove Conjecture 1.2 even in the function field setting. However, we
will establish in the present paper certain (weak) approximations to Conjecture 1.2. In Lemma 2.4
we show that the upper bound of Malle’s conjecture is nearly valid when ¢ is large relative to |G]|.
Moreover, we prove in Proposition 3.1 a result showing that Malle’s conjecture is compatible with
a heuristic arising from the geometry of Hurwitz spaces. A little more precisely, Prop. 3.1 studies
Malle’s conjecture using the following heuristic:

(A) If X is a geometrically irreducible d-dimensional variety over F,, one has | X (F,)| =
q.

The heuristic (A) can be thought of as an assertion of extremely (indeed, implausibly) strong
cancellation between Frobenius eigenvalues on the cohomology of X. Despite its crudeness, (A)
allows one to recover, in the function field setting, the precise constants a(G) and bk (G) found in
Malle’s conjecture.

This line of reasoning suggests further questions about the distribution of discriminants of num-
ber fields. We discuss these in Section 4. For instance, Section 4.2 gives a heuristic for the number
of icosahedral number forms of conductor < N, and Section 4.3 proposes some still more general
heuristics for number fields with prescribed ramification data.

We note that the approach via (A) is very much in the spirit of that used by Batyrev in
developing precise heuristics for the distribution of rational points on Fano varieties; we thank Yuri
Tschinkel for explaining this to us.

The authors thank Karim Belabas, Manjul Bhargava, Henri Cohen, and Johan de Jong for many
useful conversations about the topic of this chapter, and the organizers of the Miami Winter School
in Geometric Methods in Algebra and Number Theory for inviting the first author to give the lecture
on which this article is based.

Notation: Throughout this paper, G will be a transitive subgroup of the permutation group
Sp and ¢ will be a prime power that is coprime to |G]|.



2 Counting extensions of function fields

2.1 Hurwitz spaces

In this section, we recall basic facts about Hurwitz spaces, i.e. moduli spaces for covers of P!. We
will make constant use of the fact that the category of finite extensions L/F,(t), with the morphisms
being field homomorphisms fixing F,(¢), is equivalent to the category of finite (branched) covers of
smooth curves f : Y — P! defined over F,, the morphisms being maps of covers over P!. Recall
that ¢ is coprime to |G|, eliminating painful complications concering the residue characteristic.

Let Y be a geometrically connected curve over F, and f : Y — P! a Galois covering equipped
with an isomorphism G — Aut(Y/P'). We refer to such a pair (Y, f) as a G-cover. Let H be
a point stabilizer in the G-action on {1,2,...,n}, and let fy : Yo — P! be the degree-n covering
corresponding to the subgroup H < G. We then set 7(f) to be the degree of the ramification divisor
of fo. Call ¢"/) the discriminant of f.

We denote by N, ¢(X) the number of isomorphism classes of G-covers f : Y — P!/F, with
¢"¥) < X. Note that, by requiring that Y be geometrically connected, we have excused ourselves
from counting extensions of FF,(t) which contain some F,s/F, as a subextension. This decision
will not affect the powers of X and log X in the heuristics we compute, though it may change the
constant terms.

The G-covers P! with discriminant ¢” are parametrized by a Hurwitz variety H,.. More precisely:

1

Proposition 2.1. There is a smooth scheme H, over Z[|G\] which is a coarse moduli space for

G-covers of P* with discriminant r. The natural map
{isomorphism classes of G-covers of P*/F,} — H(F,) (2.1)

is surjective, and the fibers have size at most |Z|, where Z is the center of G.

Proof. We refer to [16] for details of the construction of H, in positive characteristic. Let h be an
F,-rational point of H. Then the obstruction to h arising from a cover Y — P! defined over F,
lies in H?(F,, Z) where Z is the center of G; since Gal(F,/F,) has cohomological dimension 1, this
obtruction is trivial (see [8, Cor. 3.3] for more discussion of this point.) Further, the isomorphism
classes of covers f parametrized by the point h are indexed by the cohomology group H(F,, Z),
which has size at most |Z|. O
What’s more, H, is the union of open and closed subschemes which parametrize G-covers with
specified ramification data. In order to express this decomposition, we need a bit more notation.
We call a multiset ¢ = {c1,...,cr} of conjugacy classes of G a Nielsen class, and denote by 7(c)
the total index Zle ind(c;). We also write |¢| for the number of branch points k. Finally, for each
Nielsen class ¢ we define ig to be the subset of G* consisting of all k-tuples (g1, ..., gx) such that

e The multisets ¢ and {c(g;),...,c(gx)} are equal, where ¢(g) denotes the conjugacy class of g;
® gig2...gr = 1;

e the g; generate G.

Note that 3., is preserved by the action of G sending (g1, .., gx) to (9919~ ", - - -, ggrg~"). We denote
by X, the quotient of . by this action.

Let f:Y — ]P’%Fq be a G-cover whose branch locus in P! (F,) is {z1,...,2}. By consideration
of the action of tame inertia at x1,...,xs, we can associate a Nielsen class ¢ to f which is fixed



by Gal(K/K) and which satisfies r(c) = 7(f). [4, 1.2.4]. The set of Nielsen classes inherits a
Gal(F,/F,)-action from the cyclotomic action on ¢, as described in section 1; we call a Nielsen
class which is fixed by this action an IFy-rational Nielsen class. If f descends to a G-cover Y — ]P’]%‘q,
it follows that the Nielsen class ¢ is F,-rational.

Denote by Cj, the configuration space of k disjoint points in P!. The (geometric) fundamental
group of Cy is the (spherical) braid group of k-strands. We denote by o € Cj, the braid that pulls

strand 7 past strand ¢ + 1.

Proposition 2.2. For each Nielsen class ¢, there is a Hurwitz space 'HQ/I_Fq which is a coarse moduli
space for G-covers f : Y — IP’]%,Q with Nielsen class c. The action of o € Gal(F,/F,) sends H,. to
Heo; so the Fy-rational connected components of H, are each contained in H,. for some F4-rational
¢ with ric) =r.

The map 7 : He — C\¢ that sends a cover f to its ramification divisor is étale. Moreover, the
geometric points of the fiber of m above {x1,...,xr} € Ck are naturally identified with .. The
action of 1 (Cy) on w= ({x1,...,2k}) is given by

oi(gr, - 1) = (91,2 9i9i+19; ' G-+ Gk)

so that the connected components of H. are in bijection with the m (Cy)-orbits on Z..

Proof. For the existence of H,, see [4, §1.2.4]. The description of the connected components of H,.
is due to Fried; see e.g [11, §1.3], and [16, Cor 4.2.3] for the extension of Fried’s results to positive
characteristic prime to |G|. O

2.2  An upper bound on the number of extensions of F(t)

Proposition 2.1 shows that, up to a constant factor, one can reduce the problem of controlling
Nr,(1),a(X) to the problem of controlling the number of F,-rational points on the varieties H,., as r
ranges up to log, X. Bounding the number of Fy-points on a variety of high dimension over a small
finite field is a difficult matter. In the context at hand, we may give a straightforward upper bound,
but the exponent is far from the one appearing in Malle’s conjecture. We carry this out below; to
clarify matters, we fix ¢ and G and consider only the dependence as X — oo.

We will use the following easy lemma to bound various sequences arising in this paper.

Lemma 2.3. Suppose {a,} is a sequence of real numbers with a, = 0 whenever n is not a power

of q, and suppose
o0
PILTE
r=1

considered as a formal power series, is a rational function f(t) of t = ¢°. Let a be a positive real
number. If f(t) has no poles with |t| > q®, then:

X
Z an, < X°.
n=1

If f(t) has a pole of order b at t = q¢* and no other poles with |t| > q%, then:

X
Z an, < X%(log X)>~1

n=1



Here we use the notation A(X) =< B(X) to mean that there are real constants Cy1,Cs > 0 such that
C1A(X) < B(X) < CLA(X).

Proof. Tt follows immediately from the decomposition of f(¢) in partial fractions that

R
r=1

when f(¢) has no poles with |t| > ¢®. Moreover, if f(t) has a pole of order b at t = ¢® and no other
poles with |t| > ¢%, then
R

ZaqT ~ anRRbfl

r=1
for some C' € R. Then the Lemma follows, since ¢l1°% X) < X O

Lemma 2.4. Let g and G be fized. Denote by E(j) the number of elements g of G with ind(g) = 7,
and set e(G) = sup; E(j)*7. Then

) log Ny .q(X) log(2¢(G))
1 o 4N/ _OoN N JJ
Fre logX  — (©) log q

In particular
log N, X log(4n?
lim sup og Ng,s,, (X) < og(4n )

2.2
X —o00 log X - log g (22)

Note that the right-hand-side of the first inequality in Lemma 2.4 approaches Malle’s constant
a(G) when g becomes large relative to |G].

Proof. Define a sequence of integers a,, such that a,r = |H,(F,)| and a, = 0 if n is not a power of
q. So

X
Nya(X) =D an.
n=1

We have seen in Proposition 2.2 that the F,-rational components of H, are the union of Hurwitz
varieties H,/F,. Since H, is a finite cover of degree |S.| of C|. = Pl¢l/F,, we have

|H£(Fq)‘ <q,a |E£|q|§‘

and
aqr Lq,G Z |E£|q|£|.

cr(e)=r

Let f(r) the sum of ¢* over all k-tuples (g1,...,gx) in G satisfying >, ind(g;) = r. (Here, k is
allowed to vary.) Then evidently

Yo 1Bdd < ().

ar(e)=r

Zf(r)qfrs _ (1 o Z(qlfind(g)s))fl'

T geG

On the other hand,



We conclude that

Doagd Kqa (L= (¢ T =1 YT BE(i)g' )T (2.3)

geG j>a(G)~!
It is easy to see that (2.3) has no poles once we have
ja°] > 24"V E(j)"?

for every j. The first part of the proposition now follows from Lemma 2.3.

We now show that, when G = S,,, we have E( j)l/ J < 2n? for all j; this proves the second part
of the lemma.

Any o € S, with ind(c) = j fixes at least n — 2j elements of {1,2,...,n}. Enumerating

such o by their number [ of fixed points, we obtain E(j) < Zn—2j§l§n—1 T < 2jn2. Thus
E(j)M7 < n?(2)Y7 < 2n?. O

Remark 2.5. It is interesting to contrast the “trivial” upper bounds of Lemma 2.4 with what can
be obtained in the number field setting.

The upper bounds of Lemma 2.4 used explicit knowledge of the fundamental group of a punctured
P!, In the number field setting, such tools are unavailable. Nevertheless in [10] an upper bound
for N, (X) was derived, similar to (2.2), with the exponent log(n) is replaced by a quantity of the

form eV1°8(")  The proof was considerably more complicated, but nevertheless geometric: the key
idea is to find in each number field K a small set {x1,22,..., 2} of algebraic integers which are
“nondegenerate” in the sense that they do not satisfy an algebraic relation of low degree, and then
to show that an appropriate set of traces Tr(z{" ...x9") suffice to determine K.

Further, let N, (S;“LI(X ) denote the number of Galois extensions of IF’]%q of degree n and discriminant
log(2n)

less than X. Lemma 2.4 implies that NZ2/(X) <gn X7t Tos) | Again, a result of a similar flavor
was shown in [10], where it was shown that NS2/(X) <« X*/8 if n > 3. Again, the proof in the
number field case was more elaborate and in fact relied on the classification of finite simple groups;
the main idea is to prove the theorem using a low-degree permutation representation of G when G
is simple, and to proceed by induction on a composition series otherwise.

3 Counting points on Hurwitz spaces under heuristic (A)

Lemma 2.4 asserts, at least, that the upper bound of Malle’s conjecture is close to valid when
q is large compared to |G|. Beyond Lemma 2.4, we can do no more than speculate about the
exact number of Fy-points on H,. The situation improves somewhat if we are willing to assume
the heuristic (A) from the introduction: that is, we suppose that a geometrically irreducible d-
dimensional variety over F, has q? points. This heuristic reduces the problem of estimating |H,, (F)l
to the substantially simpler problem of computing the number of geometric connected components
of the spaces H, and their fields of definition.

Let h(g,r) be the sum of ¢4 ¢ over all geometrically connected components C' of H,. which are

defined over F,. Denote by br, (G) the number of Gal(FF,/IF,)-orbits on the set {c € ¢ : ind(c) =

1/a(G)}.
We shall prove:

Proposition 3.1.



Proposition 3.1 amounts, roughly speaking, to the assertion that Malle’s conjectures are com-
patible with naive dimension computations for Hurwitz spaces. The proof is more difficult than
that of Lemma 2.4 but is still elementary.

The problem here is that the decomposition of H,. into geometrically connected components is
somewhat subtle. Let h'(q,7) be the sum of ¢l¢! over all F,-rational Nielsen classes ¢ with r(c) = r.
If H, were a non-empty geometrically connected variety for every IF,-rational Nielsen class ¢ with
r(c) = r, we would have h'(¢q,r) = h(g,r). (We remark that, in many cases, H, is known to be
geometrically connected by the theorem of Conway and Parker [11, Appendix].) In the following
proposition we show that h’ is a reasonable approximation to h, at least on average.

Proposition 3.2. Under the assumption on q in Proposition 3.1, there exist constants m,Cy,Cs,
depending only on G, such that

Ch Z h'(q,r) < Z h(g,r) < Cs Z h'(g,r) (3.4)

r<R—m r<R r<R
for all R > 0.

Proof. Recall that X, consists of (g1, ...,gx) € G¥ such that the multiset {c(g;), ..., c(gr)} equals
G 91, .-, 9k generate G; and g1gz ... gr = 1. Write n(c) for the number of orbits of the braid group
m1(C)¢|) on E.. The right-hand inequality above thus follows immediately from the following lemma.

Lemma 3.3. There exists a constant Cy such that n(c) < Cy for all c.

Proof. 1f g = (g1,...,9x) and ¢’ = (¢}, ..., g,) are two elements of G*, we write g ~ g’ when g and
g are in the same orbit of the action of the braid group on G*. We shall need a simple fact about
the action of the braid group on G*: suppose g=1(91,---,0%) € G* with g;...gr = 1. Then, for
any 1 < j <k, there exists (g],...,9,_;) € GF~1 such that

(917"'7gk)N(glla"'?g;c—lﬁgj)' (35)

Moreover, one knows (see, e.g., [17, Cor. 9.4]) that

(99197 ", 9929 " ... g9k ") ~ (91, - -+ Gk) (3.6)

whenever g belongs to the subgroup generated by (g1, ..., gx)-

We show that n(c) < |G||G‘2. This is clear if [c| < |G|?.

Suppose k = |c| > |G|?. Then any k-tuple (g1, g2, - .,gx) in flg contains an element gy € G with
multiplicity at least |G|+ 1. Let g, be any element in G conjugate to go. Thus, applying the braid
operations (3.5) and (3.6) above, we deduce

(91792, e agk?) ~ (gllﬂgl2? v 7927|G‘71790;907 e ago) ~ (gi/’gé/’g;qlfmﬂflmgé?géa s 7g(l)) (37)

for certain g}, g/ € G, where both go and gy occur |G| + 1 times at the end of each expression.

On the other hand ggG| = 1. Thus, if (¢1,92,...,9x) € ¢, then (g7, ... ’ggf|G|71796) belongs to
Yo where ¢’ is ¢ with |G| copies of the conjugacy class of go removed. So n(c) < n(c). If || > |G|?
we may apply the procedure that led to (3.7) again; indeed, repeatedly applying (3.7) we can bring
elements of . to a “standard form.” We see in particular that n(c) < n(c') for some |¢’| < |G|?.

The result now follows.
O



We now turn to the left-hand inequality in (3.4). Here we will make use of the theorem of
Conway and Parker [11, Appendix] in order to show that H. has geometric components defined
over F, for many choices of c.

We first show that . is nonempty for many choices of c.

Let N C G be the normal subgroup consisting of all products ¢; ... gr, where the Nielsen class
of (g1,...,9x) is Fyrational. We claim that for every element g € N there exists, for some k, a
k-tuple (g1, ..., gr) such that

® g1..-9k = G;
o the Nielsen class of (g1, ..., gx) is Fy-rational;
e the g; generate G.

Tt suffices to show that this assertion holds for g = 1; for if we have (g1, ... gr) satisfying the last two
conditions and having product 1, we can concatenate it with (gxy1,...,g¢) having product g and
representing an F-rational Nielsen class. To see that the assertion holds for g = 1, merely choose
(gl,gfl,...,gk,gk_l) where (g1,...,9x) is a generating set for G which represents a Fg-rational
Nielsen class.

Now let d;,...,dy be a finite set of F,-rational Nielsen classes such that, for each g € N, there
exists (g1,...,gr) representing some d; which generates G and has product g.

If ¢ and d are two Nielsen classes, we denote their concatenation by ¢ + d.

For each [F-rational Nielsen class ¢, choose a representative (g1, ..., gx). By the discussion above
there exists an m-tuple (g1,..., gk, gk+1,- -, gm) Which is contained in ¥4 for some i. It follows
that Hyq, is nonempty for some i.

We now need to show that there are many Hurwitz spaces which are not only non-empty but
which possess a geometric component defined over F,. Our main tool is the following assertion,
which follows immediately from Proposition 1 and Lemma 2 of [11]:

Lemma 3.4. There exists a group é, a surjective homomorphism G — G, and a constant C5(G)
such that, for any Nielsen class ¢ of G which contains at least C3(G) copies of each nontrivial
conjugacy class of G, the Hurwitz space Hz is geometrically connected.

By the argument prior to Lemma 3.4, applied to G instead of G, there exists a finite set of Fo-
rational Nielsen classes &,,..., € such that, for every F,-rational Nielsen class ¢ of G, the Hurwitz
scheme Hz4z is nonempty.

Now cangider an F,-rational Nielsen class ¢ of G. We want to find an F,-rational Nielsen class ¢
of G which “approximately” projects to ¢. For each Gal(F,/F,)-orbit & on the nontrivial conjugacy
classes in €, let & be a Gal(F,/F,)-orbit of conjugacy classes in G which projects to &. We note
that the projection of the multiset 0 to G will be some multiple ks & of &, where kg > 1. We know
that ¢ can be expressed as

Z Cﬁ’ﬁ
o

for some set of integers {cs}. Then the Nielsen class

:Z[im

4

oY

is Fy-rational; moreover, the projection of ¢ to G can be written as ¢+ ¢/, where ¢ is drawn from a
finite list of Fy-rational Nielsen classes ¢/, ..., c},.



Now we fix, once and for all, a F,-rational Nielsen class &’ for G, containing at least C3(G)
copies of each conjugacy class of G. We know already that, for some 4, the Hurwitz space attached
to ¢+’ + ¢, is nonempty; what’s more, it is F,-rational, and by Lemma 3.4 it is geometrically
connected.

The projection of ¢+ &’ + €;, under the map G — G, can be written as ¢ + d; + n;1, where d;,
is drawn from some finite list d;,...,dy, and n;1 refers to n; copies of the trivial conjugacy class.

We claim that H.iq, has an Fg-rational geometrically connected component. Indeed, to any
G-cover Y — P! with Nielsen class ¢ + &’ + &, there is canonically associated a G-cover of P! with
Nielsen class ¢ + d;; namely, take the quotient of Y by ker(G — G).

The associated map Hzyz7+z, — Heta, has as its image is a geometrically connected Fg-rational
component of Heyq. .

For notational convenience, define h(g, ¢) to be the number of F,-rational geometric components
of H, multiplied by ¢!¢/. By the discussion above, h(q,c+ d;) > ¢l<*4l for some 1.

We thus have, on the one hand,

Yo hlgc+d) = D getE> N w (g0

i,cir(c)<R cr(c)<R cr(c)<R

and on the other,

Yo hlge+d) <N D hlge).

i,eir(e)<R cr(c)<R+r(d;)

This finishes the proof of the proposition, taking Cy to be 1/N and m to be the supremum of r(d;).
O

We are now in a position to prove Prop. 3.1:

Proof. (of Prop. 3.1). By definition Y .- h'(q,7)qg" " = zqu@q_"@s7 the sum being taken over
all F-rational Nielsen classes ¢. This sum factorizes as a product indexed by the Gal(F,)-orbits €
of conjugacy classes of G:

Z h'(q,r)q_rs — H(l _ q|i)’\(1—ind(f)’)s))—1 (38)
r=0

o

Here by ind(€’) we mean the ramification index of any representative of the orbit ¢, and by || the
number of conjugacy classes in 0.

Now (3.8) implies, via Lemma 2.3, that 3 . h'(q,7) < XD Jog(X)?a (G~ where a(@), br, (G)
are as in Malle’s conjecture. The claim of Proposition 3.1 now follows at once from this and Propo-
sition 3.2. O

4 Further conjectures

In this section, we discuss first (Section 4.1) some further questions in the function field case.
The heuristics used for Proposition 3.1 also suggest certain “refined” heuristics for extensions of
number fields; we discuss some of these in Section 4.2. Finally in Section 4.3 we discuss some more
speculative questions about the enumeration of higher-dimensional varieties.

We note by way of caution that there is little numerical evidence to suggest that some of the
questions posed below have an affirmative answer.



4.1 More questions about function fields.
The following question was raised by N. Katz and J. de Jong.

Question 4.1. Let ¢ be fixed. Is it true that there is a constant ¢ := ¢(¢) such that the number of
isomorphism classes of genus g curves over I, is less than ¢4, for all g > 17

The emphasis of this question is on the case where ¢ is fixed and ¢ — oo. The upper bound
c9198(9) was established by Katz and de Jong in unpublished work. In a certain sense this bound
is analogous to Lemma 2.4. Note that this problem, again, amounts to counting the number of F,
points on a variety (namely the moduli space 9;) of high dimension. One difficulty in using, e.g.,
the Lefshetz fixed point formula, is that the Betti numbers of 9, grow very rapidly with g.

Returning to the distribution of discriminants, one may also study the properties of certain zeta
functions; this serves to one may smooth out the irregularity in the distribution of discriminants.
For instance, consider the function £, ¢(s) :== >, DZ/SFQ( 1 where L varies over degree n extensions
of F,(¢) with Galois group G, and Dy, is the discriminant of L. A “geometric” variant of §, ¢ is the
zeta function:

Ca(s) = Z [Hr(Fq)lg™". (4.9)
r=0

Question 4.2. What are the analytic properties of {; ¢(s)? In particular, is it the case that {4 c(s)
has an analytic continuation to the left of s = 1/a(G), with a pole of order bp, (G) at s = 1/a(G)?

4.2 Questions about number fields.

The discriminant of a number field K/Q may be regarded as a measure of ramification, where each
ramified prime is weighted according to the conjugacy class of tame inertia. In the present section,
we discuss first (sections 4.2.1 and 4.2.2) generalizations of Malle’s conjecture that allow for varying
this weighting. In section 4.2.3 we take up the question of multiplicity of discriminants, already
raised in Conjecture 1.3. As an example of these heuristics, we give heuristics for the number of
icosahedral modular forms with conductor < N (Ex. 4.4).

The questions proposed in this section are interrelated. In particular, the upper bounds implicit
in Question (4.5), Question (4.3), and Conjecture 1.3 are close to equivalent (see Remark 4.7.) In
fact, these weak upper bounds seem on considerably safer ground then the general questions, as
they do not presuppose a positive solution to the inverse Galois problem.

4.2.1 Malle’s conjecture with modified weights

Set K = Q and let other notations be as described prior to Conjecture 1.2. Let f : ¢ — Z>o be
invariant under the Gal(Q/Q)-action and such that

f(g) =0<+=g={id}.

We call such an f a rational class function. Set a(f) = maX.ce cxgiayf(c)”". Let bg(f) be the
number of Gal(Q/Q)-orbits on the set {c € € : f(c) = a(f)"'}.

If L/Q is a Galois extension with group G and p is a prime not dividing |G|, let ¢, € € be the
image of a generator of tame inertia at p. Now we define the f-discriminant of L to be:

Dy(L) = [] p/¢. (4.10)
PG|
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For instance, if f = ind, then Dy (L) is the prime-to-|G| part of Dy, notations being as prior to
Conjecture 1.2, taking K = Q.

Let Ng,f(X) (or, when the group is clear from context, just Ny(X)) be the number of Galois
extensions L/Q with Galois group G and D¢(L) < X.

Question 4.3. Is it true that Ng, ;(X) ~ cX ) (log X)be(H)=1?

We note that this type of generalization is already, in some sense, anticipated in Malle’s conjec-
ture. A given G can be equipped with many different embeddings into symmetric groups; Malle’s
conjecture already predicts an asymptotic for Ny(X) when f is the index function corresponding
to any such embedding.

Example 4.4. Let p : G — GL(V) be a complex representation. Then g € G — codimV¥, the
codimension of the invariant space, defines a rational class function. If L/Q has Galois group G,
D¢ (L) is the prime-to-|G| part of the Artin conductor of the Galois representation associated to L.

For example, we may take G to be the finite subgroup of order 240 in GLs(C) whose image
in PGL2(C) is isomorphic to As. For this group, there is a unique conjugacy class (the conjugacy
class of non-central involutions) which has f(c) = 1. Subject to Artin’s conjecture, the holomorphic
modular forms of weight 1, conductor N, quadratic Dirichlet character, and icosahedral type are
in bijection with the Galois extensions with group G and Artin conductor N such that complex
conjugation is sent to a non-central involution.

Question 4.3 then suggests that, if s(IN) is the number of icosahedral holomorphic weight-1
modular forms with quadratic character and conductor at most N, then

s(N) ~cN

for some constant ¢. The best upper bound at present is s(N) <. N'3/7*+¢ due to Michel and the
second author [14]. Serre [15] speculated that the number of such forms with conductor ezactly N
is < N°.

4.2.2 Multidiscriminants

One can use the function field heuristics described here to produce even more refined (i.e. optimistic!)
heuristics for counting number fields, in which we attach to each field not just an element of R
but an element of R% ) for some & > 1. We could call such a map a “multidiscriminant.”

Let G be a finite group, and let the orbits of the nontrivial conjugacy classes under the action
of Gal(Q/Q) be denoted Oy, 0s,...0,,. Given a Galois G-extension L/Q, set Dy, (L) to be the
product of all primes p [G such that the image in G of tame inertia at p is conjugate to &;; the
map L — (Dg,(L))1<i<m can be regarded as a multidiscriminant. Set Ng(Xi,...,X,) to be the
number of L/Q such that Dy, (L) < X; for all i. We can then ask:

Question 4.5. Is it true that, if X; — oo for all 1 < j < n, then the ratio

Ne(X1,..., X )
X, .. X,

(4.11)

approaches a fixed limit ¢ = ¢(G)?

As before, (4.11) can be heuristically justified by dimension computations over finite fields.
Indeed, let notation be as above but let {£;} now denote the orbits of the conjugacy classes in

G under the cyclotomic character of Gal(F,/F,). Let Ng 4(X1,...,Xm) be the number of Galois
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G-covers f : Y — P!/F, such that the number of branch points of f in P! with monodromy in &;
log(X;)
log(q)
ambiguity arising from descent problems) by the F,-points of a variety, whose largest-dimensional
connected component is a Hurwitz space of dimension about ). a;. So our usual heuristic suggests

that this variety has about [[, ¢®, or X; ... X,, points.

is less than a; = | |. Such covers are parametrized (as usual, up to uniformly bounded finite

Lemma 4.6. An affirmative answer to Question (4.5) implies an affirmative answer to Question
(4.3).

The proof of the Lemma is straightforward but tedious.

4.2.3 The multiplicity of discriminants

A problem of a rather different flavor is to count the extensions L/Q with Galois group G whose
discriminant is exzactly X. One can show, e.g. by genus theory, that this number can grow as fast
as X¢/1°8108(X) " On the other hand Conjecture 1.3 asserts that this multiplicty is <. g X¢.

Conjecture (1.3) implies that the I-torsion part of the class group of a number field K/Q is
<, k:q Dy /0" (This follows immediately from class field theory, as I-torsion in the class group of
K would give rise to unramified extensions of degree [.)

Remark 4.7. The following conjectures are equivalent:
1. Conjecture (1.3),
2. The upper bound Ng ;(X) <c.q.; X in Question 4.3,
3. The upper bound Ng(X1,...,X,) < (X1X2...X,,) ¢ in Question (4.5).

The implications (1) = (3) == (2) are trivial. We show the remaining implication in the
following Proposition.

Proposition 4.8. An affirmative answer to Question (4.3) — or even the weaker assumption
Ne,#(X) €eg,p XD, (4.12)
implies Conjecture 1.3.

Proof. Let ag(X) be the number of extensions L/Q with Galois group G and with discriminant
X. Clearly it will suffice to show ag(X) <,¢ X¢. The main idea will be to apply (4.12) with G
replaced by G* and some of its subgroups.

Fix k > 0 an integer. We write an element of G* as a k-tuple (g1, g2, ...,gx). Let F be the class
function on G* that is identically 1, i.e. F(ci,...,cx) =1 for all conjugacy classes ¢; of G.

Let .# be the class of subgroups of G* which project surjectively onto each copy of G for each
H € . we also write F for the rational class function on H that is identically 1. Then the k-tuples
of G-extensions Ly, ..., Ly are in bijection with the H-extensions L/Q, where H ranges over .. We
denote by [Ly,..., Lx] the H-extension associated to a k-tuple in this way, and by Dr([L1, ..., Lk])
the F-discriminant of this extension, given by the formula (4.10).

Dr([L1, ..., L)) is, away from primes dividing |G|, the squarefree part of the product H§:1 Dy, /q-

Thus Dp([L1,...,Lg]) is (relatively) large whenever the Dy, have few common factors with each
other. On the other hand, if Dy, ;o = Dr,/9 = --- = D, /o = X, it follows that Dp([L1, ..., L]) <
X. In particular,
> Nup(X) > ag(X)* (4.13)
Hey
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Combining (4.13) and (4.12), and noting the exponent a of (4.12) equals 1 whenever (G, f) is
replaced by (H, F) as above, we see that ag(X)* <g x X'T¢. The result follows, k being arbitrary.
O

4.3 The scarceness of arithmetic objects with prescribed bad reduction

We have discussed in previous sections heuristics for counting function fields, number fields, and
Galois representations. In a certain sense all of these can be regarded as “0O-dimensional” arithmetic
objects. We now briefly discuss a plausible statement in higher dimensions, at least as regards upper
bounds.

By way of motivation, we note that Conjecture 1.3 may be regarded as saying that there are
very few number fields with very little bad reduction. If one replaces “number field” with “proper
smooth variety,” very little is known; however, it is generally believed that there are “relatively
few” proper smooth varieties V over Z. There are a few evident examples: one may take for V
e.g. a flag variety associated to a Chevalley group over Z. Further, one may blow up such a variety
along an appropriate locus. However, as Jason Starr and Johan de Jong pointed out to us, all such
varieties are rational, and it there seems to be no non-rational example known. A beautiful result
of Fontaine states that there exist no abelian varieties over Z.

The question we state aims to quantify this scarceness. For a finite set S of primes set N(S) =
Hpe ¢ p. For concreteness and to avoid any technical hypotheses, we have phrased the question in
terms of modular Galois representations.

Question 4.9. Fix a Hodge-Tate type 7 (i.e. a set of Hodge-Tate weights), positive integers n, d,
and a prime [. Let GR(7, S) be the set of modular Galois representations p; : Gal(Q/Q) — GL,(Q;)
with Hodge-Tate weights m and good reduction outside S. Here “modular” means “attached to an
automorphic form on GL,.” Let GRg4(w,S) C GR(m, S) be the subset consisting of p; whose
Frobenius traces lie in a field extension of Q with degree < d.

Is it true that | GRg(7, 9)| <e,dn.x N(S)?

We can ask a similar question with a more “motivic” flavor; of course, one may expect that
under suitable modularity conjectures the questions above and below are equivalent.

Question 4.10. Fix K € N and let S be a finite set of primes. Consider the set V(K, S) of proper
smooth varieties V over Specl[ﬁ] such that dim(V) < K and dim H!(V¢,C) < K for each
0 < i < 2K. To each variety V' € V(K,S) associate the sequence #(V (F,)),¢s, indexed by the

primes not in S. Then the number of distinct such sequences is < x N(S)¢.

An affirmative answer to Question 4.9 would imply Conjecture 1.3. It would also imply that the
number of elliptic curves over Q of conductor N is <. N€.

Note that even the finiteness of GR(w, S) would not be clear without the hypothesis of modular-
ity! Using modularity, one may probably show that | GR(7, S)| is bounded by a polyomial in N(.5).
The content of the assertion is then that | GRg(m, S)| is much smaller. A related phenomenon is
well-known in the context of holomorphic forms: fix k£ > 2 and consider the space Sx(N) of holo-
morphic forms of level N and weight k. Although dimSy(N) ~ const- N as N — oo, the number of
Hecke eigenforms whose coeflicient field has degree < d seems to grow much more slowly with V.

One can enunciate a corresponding question in the function field case; it also seems quite difficult.

Remark 4.11. It is interesting to note the contrast between the number field and function field
contexts. In the number field setting, the ability to average seems to make counting objects of
conductor up to N much easier than counting objects of conductor exactly V. In the function field
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setting, on the other hand, counting objects of conductor up to N means counting covers of P!
whose ramification locus varies among all divisors of P! of degree less than log, IV, while counting
covers with a fized conductor amounts to studying the arithmetic (in the case of finite covers, the
étale fundamental group) of a single open curve inside P!, which might in some ways be easier. One
way to express the contrast is to observe that our understanding of the étale fundamental group of
an open subset of ]P’]%Tq, though very far from complete, is much greater than our understanding of
the maximal Galois extension of Q unramified away from a fixed finite set of primes.
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