MAHLER MEASURE FOR DYNAMICAL SYSTEMS ON
P! AND INTERSECTION THEORY ON A SINGULAR
ARITHMETIC SURFACE

J. PINEIRO, L. SZPIRO, T. J. TUCKER

ABSTRACT. The Mahler measure formula expresses the height of
an algebraic number as the integral of the log of the absolute value
of its minimal polynomial on the unit circle. The height is in fact
the canonical height associated to the monomial maps ™. We
show in this work that for any rational map ¢(z) the canonical
height of an algebraic number with respect to ¢ can be expressed
as the integral of the log of its equation against the invariant Brolin-
Lyubich measure associated to ¢, with additional adelic terms at
finite places of bad reduction. We give a complete proof of this
theorem using integral models for each iterate of ¢. In the last
chapter, on equidistribution and Julia sets, we give a survey of
results obtained by P. Autissier, M. Baker, R. Rumely, and our-
selves. In particular, our results, when combined with technics of
diophantine approximation, will allow us to compute the integrals
in the generalized Mahler formula by averaging on periodic points.

1. INTRODUCTION

If F is the minimal polynomial over Z for an algebraic number =z,
the formula of Mahler [19] for the usual height h(x) is

deg(F)h(x) =log [] sup(zl.1) = /0 log | F/(¢*™)|d6.

all places v

One can notice the following facts:
(i) the height satisfies the functional equation h(x?) = 2h(x).

(ii) d@ is supported on the unit circle, which is the closure of the set
of roots of unity, each root of unity having height 0. Along with
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the points 0 and oo, the roots of unity are the only points that
have finite forward orbits under iteration of the map x — 2.

We show in this article that these occurrences are general for any
dynamical system on the Riemann sphere given by a rational function
¢ with coefficients in a number field. There is a canonical height h,,
that vanishes at precisely the points that have finite forward orbits
under the iteration of . At each infinite place v, we have an inte-
gral [p, ©,) 108 |F'|,dfty o, where dp, , is the distribution associated to

a canonical metric for ¢ on O}(1) (see Zhang [33]). At each finite v,
we define an integral fpl (Cv)log |F|,dpty, which is constructed via a

limiting process that is analogous to Brolin’s construction ([7]) of the
p-invariant measure at an infinite place, as we explain in Section 5.
Our Theorem 6.1 asserts that

deg(F)hq;(a) = /1[;1 c.) 1Og |F| d:uv N

places v of K

where « is an algebraic point and F' is a minimal polynomial for «
over K. We also show that for finite v we have fpl(cu) log |F'|,dfty,, =0
unless ¢ has bad reduction at v or all the coefficients of F' have nonzero
v-adic valuation. Moreover, we show that » g .. [, ©.) 108 | Flodpty o
can be explicitly bounded in terms of F' and polynomials P and () for
which ¢ = P/Q. In particular, Corollary 6.3 states that

deg(F )< > / log | F|,di,e

v]oo PH(Cy)

if P is monic and F' has coprime coefficients.

We use arithmetic intersection theory on a singular arithmetic sur-
face. We introduce a blow-up associated to a model of ©* to follow
these iterates of ¢ in a coherent manner. We have found it convenient
to work with Cohen-Macaulay surfaces instead of normal surfaces.

Dynamical systems have been studied by many authors; see, for
example, C. T. McMullen [21] and J. Milnor [22]. Recently G. Everest
and T. Ward, in their book [11], have studied algebraic dynamics on
elliptic curves and on products of projective lines. They have pointed
out particular cases of our main theorem (other cases have been studied
by V. Maillot [20]).

In light of work of Szpiro, Ullmo, and Zhang ([27]), it seems natural
to wonder if points with small canonical height h, on P! are equidis-
tributed with respect to dpu, , for v an infinite place. P. Autissier [2]
and M. Baker and R. Rumely [3] have recently shown that such an
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equidistribution result does indeed hold. One might also ask whether
generalized Mahler measure can be computed via equidistribution. We
will discuss conjectures and known results of this sort more precisely
in Section 7.

The organization of the paper is as follows:

1-Introduction.

2-Canonical height, canonical metric, and canonical distribution as-
sociated to a dynamical system.

3-Three examples.

4-The blow-up associated to a model of a rational map from P! to
PL.

5-The integrals at finite places. 5.1-Existence of the integrals at finite
places; 5.2-Invariance of the v-adic integral under change of variables;
5.3-Geometry of the v-adic integrals; 5.4-A remark on the use of integral
notation at finite places.

6-The Mahler formula for dynamical systems.

7-Equidistribution and the Julia set.

A-Appendix: Schematic intersection theory on a Cohen-Macaulay
surface. (This is needed to justify the use of intersections products in
Section 4.)

B-Appendix: Arakelov intersection with the divisor associated to a
rational function. (This is used in Section 6.)

We would like to thank D. Sullivan and S. Zhang for very interest-
ing discussions on the subject of this paper.

2. CANONICAL HEIGHT, CANONICAL METRIC, AND CANONICAL
DISTRIBUTION ASSOCIATED TO A DYNAMICAL SYSTEM

The global theory of canonical heights was started by J. Silverman
and G. Call [8]. Let X be a variety over a number field K. Suppose ¢ is
a finite map of X to itself. Suppose that its degree d is greater than one
and that there is an ample line bundle L on X satisfying ¢*(L) = L®.
Tate’s recipe for the definition of the Néron-Tate height on an abelian
variety carries over to this general case: one has a canonical height
associated to ¢ defined by

(@)
hola) = im —7—.
In this formula, h; is associated with any set of smooth metrics at
places at infinity (cf. [29] and Appendix B).
The canonical height h, satisfies the properties:
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(i) h, satisfies Northcott’s theorem: points over K with bounded
degree and bounded height are finite in number.
(i) hy(p(a)) = dhy(a).
(iii) h,, is a non-negative function.
(iv) hy(o) = 0 if and only if o has a finite forward orbit under
iteration of .
(v) |hy(a) — h(a)| is bounded on P*(Q) for h the usual height.

The canonical height h,, is characterized as the the unique function on

P!(K) that satisfies (ii) and (v).

Definition 2.1. A point is called periodic if it is a fized point of ©F
for some integer k. A point is called preperiodic if its image under o™
s periodic for some integer m. FEquivalently, a point is preperiodic if
and only if it has a finite forward orbit under iteration of .

The periodic points are separated classically into three classes im-
portant for the dynamics:

Definition 2.2. Let f be a differentiable map f : P* — P'. A fized
point x of f* is called repelling (resp. attracting, resp. indifferent) if
((f¥Y ()| > 1 (resp. |(f*)(z)| < 1, resp. |(f*)(z)| = 1). The closure
in PY(C) of the set of repelling periodic points is called the Julia set.
The complement in P1(C) of the Julia set is called the Fatou set of f.

S. Zhang [31, 33] has shown the interest of the local theory of canon-
ical heights. In [33, Section 2], he shows (following Tate) that if a line

bundle L on a projective variety W has a metric || - ||, and there is an
isomorphism 7 : L®4 = p*(L) for some d > 1, then letting ||-|l,0 = |||l
and || - [y p+1 = (T5¢*|| - ||Uyk)1/d, one obtains a limit metric

I lloe = i {]- flok-
—00

The following proposition is due to S. Zhang ([33, Theorems 1.4 and
2.2]).

Proposition 2.3. Let L and the metrics || - ||v, || - [|ogs and || - ||v,p on
L be as above. Then:
(i) the || - |lo converge uniformly to || - ||ve-

(ii) Suppose additionally that W is a curve, v is an infinite place,
and that || - ||, is smooth and semipositive. Then the (normal-
ized) curvatures dpi, , = —mddlog | - |k have a limit dis-
tribution dyu, , such that if s is a meromorphic section of a line
bundle L' with metric |||} atv, then limy_, fPl(CU) log ||s||,dtty &
exists and is equal to f]P’l((Cv) log ||s|%,d v,
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Furthermore, neither || -||,, nor dp, , depends on our choice of smooth
metric || - |-

By convention, all of our metrics at infinity are normalized; that is,
on each stalk of L on X (C,) the metric ||-||, behaves like |- ]LK“:R]
K, is the completion of K at an infinite place v.

We note that canonical heights are the only Arakelov type heights
which are non-negative naturally. The height is an intersection number
in the sense of J. Arakelov [1] as extended by P. Deligne [10] and by
S. Zhang [33] to this limit situation.

where

3. EXAMPLES

1-The squaring map on the multiplicative group and the
naive height.

For the map o(t) = t? on P!, the preperiodic points are zero, infinity,
and the roots of unity. The unit circle is the Julia set (the closure of
the repelling periodic points). The naive height satisfies the required
functional equation to be the canonical height associated to . This
can be verified via the usual definition

1
h([to : t1]) = ——1lo sup(|tol, [t1]o)",
(o0 = eggios TT swnlal
where N, = [K, : Q,] and [to : t;] € P}(K). Thus, the naive height is
the canonical height associated to .

The unit circle is the support of dpu,, (in this case the Haar measure
df on the unit circle). It is the curvature (in the sense of distributions)
of the canonical metric

g Aet bl
(AT + pTh)([a 2 B])|| = sup(al, 1)’

Note that the canonical height and curvature are the same for any
map ¢(t) = t" with n > 2.

2- The Néron-Tate height is associated to multiplication by
two on an elliptic curve.

Let E be an elliptic curve with Weierstrass equation y* = G(t). We
write £ = C/(Z1 + Z7) with 7 in the upper half plane. By passing to
the quotient by [—1], multiplication by 2 on E gives rise to the following
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rational map on P:

_ GP(t) - 8tG()

B 4G(t)

The preperiodic points of ¢ are the images of the torsion points in F.
To see this note first that 2" P = +2* P for n # k implies P is a torsion
point. Conversely, if nP = 0, then writing 2* = gn + r;, with 7, < n,
we see that there must be at least two different indices k& and &’ with
rr. = r hence 28P = 2 P. The fixed points of ¢ are the images of the
inflection points of F, i.e. of the 3-torsion points in E.

The multiplication map [2"] on F is of course étale. The derivative
of this map is 2" everywhere, so the preperiodic points are all repelling.
Hence the Julia set is the entire Riemann sphere. In [23] it is established
that the Haar measure on F gives the curvature of the canonical metric
associated to the Néron-Tate height. Its image on P! is

p i dtAdt
He = () |G
The curvature and canonical height will be the same for ¢ the map on
P! associated to any multiplication by n map on E for n > 2.

o(t)

3-Parallel projection of a conic.

Consider the plane conic C' over Z defined by the equation
Xo X1+ pX3 =0,

where p is an odd prime number. The reduction of C' mod a prime ¢ is
smooth and connected for ¢ # p. The fiber over p is reduced and is the
union of two lines. The arithmetic surface C' is regular. The projection
map from P? to P! defined by

@([XQ : Xl : XQ]) = [XQ —I—Xl : Xg]

is well-defined as a map from C to P!. Projecting from [0 : 1 : 0] yields
an isomorphism between our conic and P*. Composing this with ® gives
rise to a map ¢; the reader may check that this map is p(t) = ﬂT_p.
This example is an illustration of a blowing-up allowing to define the

map ¢ over Z. This will be a systematic approach in the next section.

4. THE BLOW-UP ASSOCIATED TO A MODEL OF A RATIONAL MAP
FROM P! TO P!

Let v be a rational map of degree d from P! to P! defined over the
field of fractions K of a Dedekind domain B. For simplicity we will
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assume that oo is a fixed point of 9. Note that we may also choose
coordinates so that this is the case; hence, our assumption does not
restrict our generality.

Definition 4.1. A model over B of 1 is a map of polynomial rings
V([To : 1)) = [G(To, Th) : H(To, Th)],

where the polynomials G and H are homogeneous of degree d with co-
efficients in B.

The models will allow us to work on arithmetic surfaces when K is
a number field. These surfaces, obtained by blowing up non-regular
centers, will be singular in general.

Let Y be the closed subscheme of X = PL = Proj(B[Ty, T}]) defined
by the vanishing of G and H. We will call I the sheaf of ideals in Ox
defining Y. The choice of G and H as “generators of I” gives rise to a
surjection

Uy O% — 1(d).
The support of the scheme Y is exactly where the map ¢ cannot be
extended to the fibers of the model P}.
Let N denote the projection from Y to Spec B; we call this the bad

reduction of the model. The scheme Y does not meet the generic fiber
Xk.

Definition 4.2. Let 0 : X; — X be the blowing up of Y in X.

By the universal property of the blow-up, the pull-back ¢*1 is locally
generated by elements which are not zero divisors, i.e. there is a positive
Cartier divisor F; on X; such that

O'*[ = OXl(_El)-

One then has a surjective map (which is simply o* of w~1)

0%, = 0" (0x(d)) ® Ox, (~En)
By the universal property characterizing the projective line this gives
rises to a map:
v Xy — X
extending the original rational map 1 on the generic fibers.

Throughout this section we will use the scheme-theoretic intersection
product (-.-), defined in Appendix A.

Proposition 4.3. The two dimensional scheme X, is reduced, irre-
ducible and Cohen-Macaulay. The fiber of X1 over v ¢ N s equal
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to IP)}%. The fiber of X1 over v € N has a finite number of compo-
nents Wy, Cy1, ..., Cyy,, where Wy, is the strict transform of the fiber
of X at v and the C,; are components of the exceptional divisor of o.
Fach C,; is isomorphic to IP’}M where k,; is the residual field of the
closed point image of C.,; in X. The Cyi for i > 0 do not meet each
other. The C,; with i@ > 0 meet W,,. The exceptional divisor E; is a
Cartier divisor equal to Py, and, as a Weil divisor, it can be decom-
posed into ZUEN,Z'>O 7v,iCu.i where the r,; are positive integers equal to
the local lengths of Oy at the local rings of its support. The geometric
self-intersection of C,; is equal to —[ky; : ky|/ryi. One has

10x(1) = 0" (Ox(d)) ® Ox, (= En).

Proof. Since the ideal I is generated by two elements, the scheme
X1 = Proj(@ I") is a closed subscheme of Py = Proj(Ox[Ty, T]). The
exceptional fiber is then P{.. The surface X; embeds as a local complete
intersection in the regular three-fold PY and hence is Cohen-Macaulay.
The C,; are Weil divisors that are Q-Cartier because E; and the total
fibers F; are Cartier divisors and the C,; do not meet. Hence the in-
tersection theory with the (), ; is as described in the Appendix A. One
sees that the W, are also Q-Cartier since the total fiber of v is Cartier
and the C,; are Q-Cartier. One has Ox,(—E1)|E1 = ©,,0p (1)

Hence
((_Tv,icv,i>-(rv,icv,i>> = deg(O]P’%,“)(1>> = [kv,i,k : kv]rv,i-

This gives the value asserted for the self intersection of the components
Cl.i- The formula for 1§ Ox (1) comes from the universal property char-
acterizing the projective line over X. 0

Remark. This method of removing the indeterminacies of a map by
blowing up is standard (see Hartshorne [14, p. 168] for example).

5. THE INTEGRALS AT FINITE PLACES

Let v be a finite place of K. In this section we will: (1) define the v-
adic integral and show that it exists, (2) show that the v-adic integral
does not depend on our choice of polynomials P and () defining a
model for ¢ over O, (3) relate the v-adic integral to the geometry of
the blow-up maps associated to the ¢*, and (4) explain why it makes
sense to think of this integral at the finite place v as a v-adic analogue
of an integral at an archimedean place. We begin by developing some
terminology.
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As before, let ¢ : P}, — PL be a rational map with a fixed point
at 0o. We let Ok denote the ring of integers of a number field K. Let

o([To - Th]) = [P(To, Th) = Q(To, Th)],

where P and @ are homogeneous polynomials of degree d in O[Ty, T,
be a model for ¢ over O, in the terminology of the Section 4. Letting
Py = P and Q1 = @, and recursively defining Py = P(Py, Qx) and
Qr11 = Q(Py, Qk), we obtain models

O[Ty : 1)) = [Pe(To, Th) = Qu(To, Th)),
for iterates ©* of ¢. Recall that 7 must be a factor of each @, since
oo = [1:0] is a fixed point of ¢.
Throughout this section, v will denote a finite valuation on K that

has been extended to the algebraic closure K of K. We let O, denote
the set of all z € K for which v(z) > 0.

For (a,b) € K \ (0,0), we define

(5.0.1)
Sv,k(Pk(a7 b)va(av b))

= min(v(Py(a, b)), v(Qx(a, b)) — min(v(a® ), v(b")).

Note that S, x(Px(a,b), Qx(a,b)) is a finite number, since Py and Q
have no common factor, and that

(502) Sv’k(Pk(CL, b), Qk(a, b)) = Suk(Pk(za, Zb), Qk(Z(Z, Zb))

for any nonzero z € K. It follows that S, x(Px(a,b), Qx(a,b)) is non-

negative, since we may thus assume that min(v(a),v(b)) = 0. We also
define

Ry(Pr, Qi) == sup (Syx(Fr(a,b), Qi(a,b))).

(a,b)eR>\(0,0)

To see that R,(Py, Qx) exists and is finite, we apply the Euclidean
algorithm to Py (75, 1) and Qx(Tp, 1) to obtain

LL’(T(])Pk(To, 1) + y(TQ)Qk(To, 1) =m

with z,y € O,[Ty] and nonzero m € O,. Then, for any (a,b) € Fz\
(0,0), we have
Svk(Pr(a,b),Qrla, b)) < maX(v(m),min(v(Pk(l,O)),U(Qk(l,O)))).

If R,(Py,Qx) > 0, then Py, and @y have a common root modulo the
prime ideal corresponding to v and thus our model for ©* has bad
reduction at v, as explained in Section 4.
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5.1. Existence of the v-adic integral. Let F' be a nonconstant
polynomial in K[t]. Using the coordinates [T : 73] and and letting
t =Ty/Ty, we let [ay : by, ..., [adeg F : bacg 7] De the points in P1(K) at
which F' vanishes.

We will prove the following proposition.

Proposition 5.1. The sequence ( (ziglF S””“(Pk(al’Zi)’Q’“(a"bl))) is in-
k

creasing and is bounded by (deg D)() Ry (P, Q).

This allows us to define the integrals at a finite place v as follows.

Definition 5.2. For a finite place v, we define

(5.2.1)
XS,k (Pelar, be), Qular, b))
log |F|ydpiy,, = — lim vk A" RAE T)y kAT, T log N(v
/m) Pl = = Jim B (v)
B v(Aq)
v(F)log N(v) + (degF)d_ log N(v),

where Sy is given by (5.0.1), P = Zi:l ATITE and v(F) is the
v-adic valuation of the content of F, i.e., v(F) = min;(v(m;)) when
F=Y0%"mt.
Proposition 5.1 will be a simple consequence of the following two
lemmas.
Lemma 5.3. Let (a,b) € K \ (0,0). For all integers k > 1, we have
Sue(Preta(a, b), Qrer(a; b)) = dSyx(Pr(a, ), Qi(a, b))
+ Suk(P(Pe(a, b), Qi(a, b)), Q(Pi(a, b), Qi(a, b))).
Proof. By (5.0.2), we may assume that min(v(a),v(b)) = 0. Then
Sok(Prs1(a,b), Qrir(a, b))
= min(v(P(Fy(a,b), Qi(a, b)), v(Q(Fr(a, b), Qx(a, b))))
= min(v(Py(a, b)*), v(Qx(a, b)) — min(v(Pi(a, b)*), v(Qx(a, b))
+ min(v(P(Fr(a, b), Qr(a,b))), v(Q(Pe(a, b), Qk(a, b))
= dSy(Pr(a,b),Qr(a,b))
+ Suk(P(Pr(a, b), Qk(a, b)), Q(Pi(a, b), Qk(a, b))).

Lemma 5.4. For all integers k > 1, we have

(5.4.1) Ry(Pe, Qi) < Ry(P, Q) (Zd’ H.
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Proof. We proceed by induction. The case k = 1 is obvious. Now, let
a,be K \ (0,0); we may assume by (5.0.2) that min(w(a), w(b)) = 1.
If (5.4.1) holds for k, then applying Lemma 5.3 to the case of k + 1
yields

Sv,k(Pk—i—l(aa b), Qk+1(aa b)) < dRU(ka Qk) + RU(P7 Q)
k k+1

= dR,(P,Q)(Y_d™") + Ry(P,Q) = Ry(P,Q)(>_d"™").

1=1 1=1

Now, we will prove Proposition 5.1.

Proof. (of Proposition 5.1). It follows from Lemma 5.3 that the se-
quence is increasing. By Lemma 5.4, we have

%(Rv(Pkan» < %RU(P, Q) (; di‘1> = R,(P,Q) (; di—k—l)

< R(P.Q) <§_Oj di) - n(ra) (7).

which is precisely the bound given in the statement of Proposition
5.1. O

5.2. Invariance of the v-adic integral under change of variables.
Our definition of fpl(cu) log |F'|,dfty, in Definition 5.2 involves P and
. We can show, however, that the definition depends only on our
choice of the point at infinity. Let 7 be a change of variable of the form
7(To) = mUy + nUy, 7(T1) = 2zU; (so that 7 fixes [1 : 0]). To get a
model from this change of variables, we let 7°Q = 2Q(7(1p),U;) and
let

zP(1(To), U)  2nQ(7(1o), Un)

m m

where z € O is chosen so that 7°Q) and 7" P are both in Ok |[Uy, Uy].
Note that P is written as it is since 771(Ty) = Uy/m — nU;/m. We
define 7*P, and 7*Q), recursively as we did with P, and Q. We
also write 7*F(u) = F(7(Ty),U,)/U{ where u = Uy/U;. Note that
deg 7*F' = deg F.

With this notation we have the following proposition.

TP =
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Proposition 5.5. With 7 as above, we have

(5.5.1)
deg F'
: Suk(Pr(ae, be), Qr(ae, be)) v(Ag)
kh_)rglo ; T - (degF)d_ 1 +v(F)
deg F
o Sok(T*Pr(ay, b)), 7*Qr(ay, b)) V(T Ay) .
—]}LIEOZ Jk — (deg F) T 1 +u(T*F),

(=1

where T* Ay is the leading coefficient of TP and T(a,To+b/T1) = a,Us+
byUr. Thus, Definition 5.2 does not depend on our choice of P and Q).

Proof. The proof is a simple computation. We compute

(5.5.2)
N S (Pilar, be), Qulac, be)) SN Sk Pila, 1), 7 Qulaj, 1))
D = Jim > = T
=1 =1
deg F' deg F
deg F')v
+—" (des F)v(z) eg + Z min(v(ay), Z min(v(ay), v(b}))
We also see that
(5.5.3) V(17 Ag) = v(Ag) +v(2) — (d — 1)v(m).
Now, we may choose our a, and b, so that F(t) = [[o3" (bt — ay).
Then 7*F(u) = [[54" m(bju — d}), so that
(5.5.4)
deg F'
v(7*F) = (deg F)v Z min(v(a}), v(b,))
dogF deg F

=v(F) + (deg F)v(m) + Zmln v(ay), me v(ag),v(by)).

Multiplying (5.5.3) by deg F'/(d — 1) and subtracting it from the sum
of (5.5.2) and (5.5.4) gives (5.5.1). O

5.3. Geometry of the v-adic integrals. Let D be a horizontal divi-
sor on X with support away from [1 : 0]. Let [a1 : b1], ..., [@deg D * Ddeg D]
denote the points in X (K) corresponding to D.

Let F' be a polynomial in the inhomogeneous variable ¢ = Ty/T;
obtained by taking a global section of Op:1(n) corresponding to D on the
generic fiber (which will be a homogeneous polynomial of degree n) and



MAHLER MEASURE FOR DYNAMICAL SYSTEMS ON P! 13

dividing through by 77*. When D corresponds to a point o € X (K),
we will call such F' a minimal polynomial for o over K.

Let o4 : Xy — X be the blow-up map associated to our model
(Py, Q1) of ¢* described in Section 4. We will relate the v-adic integral
of F' with the geometry of o;D for D the horizontal divisor on X
corresponding to F'. We write

*
o, D =Dy + E g Zo,i kCoi ks
v 7

where C),;; are components of the exceptional fiber of o, and Dy is
the horizontal divisor corresponding to D on X;. We let £, denote
the field of definition of the closed point on X corresponding to the
component C,; .

We begin by treating the case where D corresponds to a single point
defined over K. Let v(Pk) and v(Qj) be the minimum of the v-adic
valuations of the coefficients of Py and )y respectively.

Lemma 5.6. If D corresponds to a point [a : b] € PY(K), then, for
any nonarchimedean v, we have

Zl’v,i,k = Sv,k(Pk(av b)7 Qk(av b)) - min(U(Pk)v U(Qk))

Proof. We will work locally at a single nonarchimedean place v. Let
OOk - (Xk)(% — X, denote o}, with its base extended to Spec O,.
Since D corresponds to a single rational point, there is at most one
nonzero &, for a fixed v and k. Thus, letting D, be the localization
of D at v, we have o7, (D,) = Dy + fuxCy for some horizontal
divisor D, i, some non-negative integer f,;, and some component C,, j
of the exceptional fiber of oo, .

We may assume that min(v(a),v(b)) = 0. Let I denote the ideal
sheaf of D, in Xo,; then o7, ;I will be the ideal sheaf for a subscheme
of (X’f)ou corresponding to Dy, + fu xCu k- Note that o3, (1©Ox(1))
is generated by (b1p—aT}). Let U be an open subset of X}, o, containing
Supp (D, x+Cyk). We may choose U to be the chart of (Xk)ov on which
T; doesn’t vanish, where j = 0if v(a) = 0 and j = 1 otherwise. Let i be
the choice of {0, 1} that is not equal to j. Let 7 be a generator for the
maximal ideal in O, let k = min(v(Py),v(Qy)), and let Gy = P/7"
and Hy = Qy/7". Then U is isomorphic to

(Ou[T3/T5]) [t ]

(tGk(TmTl) N qu(To,Tﬂ) '

dk dk
T T

Proj
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Since we have O,[1;/T}]/(b(16/T;) — a (11/T;)) = O,, the subscheme
of (Xp) o, determined by the vanishing of o¢, I will be isomorphic to
Proj(O,lt, u]/(tPx(a,b) — uQr(a,b))) = Proj(O,[t, u]/ (7" (£t — mu)))

= Proj((O,/n")[t, u]) U Spec O,,
where r = S, x(Px(a,b), Qr(a,b)) — k, Gi(a,b) = ¢n", and Hy(a,b) =

mm". Since the divisor corresponding to ¢, I is Dy g+ fuxCuir Where
D, . is horizontal and C,; is reduced, this means that we must have

Sok(Pr(a,b), Qr(a,b)) —min(v(Py), Q(Pr)) =7 = for = Z Loifs

as desired. 0

Since blowing up commutes with base extension from Ok to the ring
of integers in a number field over which D splits into points, Lemma
5.6 generalizes easily to the following lemma.

Lemma 5.7. We have
deg F'

Zﬂfv,m[k‘v,i,k k| = Z Sve(Pr(ae, be), Qr(ae, be))

=1
— (deg F')(min(v( Py, Qr)))-
Now, we will show that the contribution of min(v(Py), v(Q%)) can be
controlled.

dk

Proof. We will show that the sequence (W) is bounded and
increasing. Since min(v(FPy), v(Qx)) < Ry (P, @), boundedness follows
immediately from Lemma 5.4. Now, for any k£ > 1, we have

min(v(Pry1), v(Qry1)) = dmin(v(FPr), v(Qr)))

since Pry1 = P(Pg, Qr) and Qrr1 = Q(Pr, Q) so the sequence is in-
creasing. 0

Lemma 5.8. The limat limy,_ o exists.

Let oo denote the horizontal divisor on X corresponding to the point
[1:0] and let ooy denote the horizontal divisor on X}, corresponding
to this point.

Lemma 5.9. We have y,; = v(P(1,0)) — min(v(Py), v(Qk)) where
UZOO = o0k + Zv Zz yv,i,kcv,i,k~ ThUS,

o ek V(A min((P), v(@4)

e T dR T d—1 ek dk
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Proof. Since T} is a factor of @), it is also a factor of @); for every k.
Thus, for each k& we have S, ;(F(1,0), Qx(1,0)) = v(Px(1,0)), so by
Lemma 5.6, we have v, = v(FPx(1,0)) — min(v(Pz),v(Qx)). Since
P(1,0) = A; and for all k£ > 1 we have

Pry1(1,0) = P(Py(1,0),0) = AgP(1,0)".
As in the proof of Lemma 5.4, it follows that

_v(Py(1,0)) Aq)
M kd v(Ad) (Zdz> d—1

U

The following is now an immediate consequence of Definition 5.2 and
Lemmas 5.7, 5.8, and 5.9.

Proposition 5.10. With notation as above, we have

. Lok kv,i,k : kv
(5.10.1) J T e
5.10.1 v

+ (deg F') lim y;’klogN( v) — v(F)log N(v).

log N(v)

5.4. A remark on the use of integral notation at finite places.
Let us now add a few words about why it makes sense to think of
our definition of f]P’l(Cy) log |F|, dp,, as an integral when v is finite.
H. Brolin ([7]) and M. Lyubich ([18]) have shown that if v is an infinite
place and @ is a continuous, bounded function on P*(C,), then for any
¢ € C with an infinite backward orbit under ¢ (i. e. for which the set
U, (0F)71(€) is infinite), one has

) 0(z) /
lim — = 0 dity o,
k=00 Z d P1(Cy) o

plz)=¢

where dp, , is the unique g-invariant measure (see [12]) on P' (which
is the same as our dj,,, as we show in Proposition 7.2).

Our p-adic integrals can be written in a similar way. For example,
suppose D is an irreducible divisor corresponding to a single point [a : b]
such that Py(a,b) # 0. Then the polynomial F'(t) = bt — a defines D.

Writing P, = ny H " 1(Toy — u;Ty), we then have
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Since ¢*(z) = 0 if and only if [z : 1] ~ [u; : 1] for some j, we thus have

log|Pi(a,b)],  log|nkl, log [ F'(2)],
¥ gk + Z k )

@ (2)=0

where the 2z with ¢*(2) = 0 are counted with multiplicities. Similarly,
when @ is not a multiple of X{, we have

log |Qk(a.b)lv _ loglwlo 3 log |F(2)],

dk - dk ar

@k (2)=00
where v, is the leading coefficient of Q. (7o, 1). Taking limits and sub-
tracting off bg'Ad'” , we see that f]P’l(Cv) log | F|,djiy,, is equal to

. log | F'(2)]y log | F'(2)]y

i 5 1S 5 sl
@k (2)=0 Pk (z)=00

More generally, with a bit of diophantine geometry, we can show that

for any point £ € C, that has an infinite backwards orbit under ¢, we

have ‘ ( )|
lOg F(z v
/pl«cv) 8 Flodhioy = I, d*

oF (2)=¢
F(2)#0

We will prove this in a future paper. Thus, our v-adic integrals at finite
places seem quite analogous to our integrals at the infinite places. We
should note, however, that we do not know what classes of functions
we can expect to be able to “integrate” in this way at finite places.

6. THE MAHLER FORMULA FOR DYNAMICAL SYSTEMS

The formula of Mahler for the naive height of a closed point o # oo,

deg(F)h(a):/O log | F'(exp(2im0))|d6,

where F' is the minimal equation for the algebraic point a of the pro-
jective line over Q will be generalized to a dynamical system ¢ and
its canonical height. The original Mahler formula is associated to the
dynamics of the map ¢(t) = t2.

In general, the formula involves some adelic terms with support at
places of bad reduction. Recall our definition of dpu, , for v an infi-
nite place from Section 2 and our definition of fpl ©) log |F'|,dfty , for
v a finite place from Section 5. We give a proof of this theorem using
integral models for each iterate of ¢. It may be possible to give an
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independent proof using adelic metrics (c¢f. [35]). Recall our defini-
tion of dp,,, for v an infinite place from Section 2 and our definition
of fpl(cv) log |F'|,dft,, for v a finite place from Section 5. Our main
theorem is the following:

Theorem 6.1. Let K be a number field, ¢ a rational map from PL to
PL that has at least one K-rational fized point, which we call co. For
infinite v, (resp. finite v), let dp, , for v be defined as in Proposition
2.8 (resp. Definition 5.2). Then, given any point a € PY(K) with
a # 0o and any minimal polynomial F' for o over K one has

6.11)  [K(@): Q@)= 3 /Pl(c)logwnduv,w

places v of K

For finite v, we have f]P’l(Cv) log | F|,djty,, = 0 unless ¢ has bad reduction
at v or all the coefficients of F' have nonzero v-adic valuation. In
particular, fpl(cv) log | F'|,dpiy,, = 0 for all but finitely many v.

Proof. We will compute all our heights by using the Arakelov intersec-
tion product between Weil divisors and metrized line bundles, which is
defined in Appendices A and B.

We can think of F' as a rational function on X; we will then have
divF = D — (deg F)oo + Y pie o V(F) Xy, where D is the horizontal
divisor on X corresponding to a and X, is the fiber of X at v. We
let Fj, = o F and let X, = 0; X, denote the fiber of X}, at the finite
place v. Let Dy be the horizontal divisor on X} corresponding to D
and let oo, be the horizontal divisor on X corresponding to co. We
have

divFy = Dy + > Y 243 xCuix — (deg F)ooy

finite v ¢

— (deg F) Z Zyu,i,ka,i,k+ Z 0(F) Xk,

finite v ¢ finite v

where 07D = Di+Y " > 04ixCp ik and 05,00 = 00k+Y 0 > Y i kCoik,
as in Section 5.

We let L be the line bundle Ox (1). At each infinite place v, let || - ||,
be the metric on L such that for any section s = ugTo+u177, of Op1 (1),
we have ||s([Ty : To))|lo = (JuoTo + usTo|2/(|To|2 + | T3 12) ™% | This
metric is smooth and semipositive (see [32, Section 6]). We denote as
hy, the height function given by [K(«) : Q|hL () = (E,.L)ar, where E,,
is the horizontal divisor on X corresponding to . Note that hp([1 :
0]) = 0. We denote as Ly the line bundle ¢} L endowed with the metric
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@il - |lo- Then (degw a9 T —Lddlog ;|| - ||, converges to a distribution dp,,
as k — oo by Proposition 2.3.

Let a € X (k) be a point on the generic fiber corresponding to D.
By the definition of L, we have (Dy.Li)a: = (deg F)hp(p*(a)) and
(0ok.Lg)ar = 0. Using Proposition B.3 and the fact that (Cy;x.Li) =
[ky.ik © Ky (by Proposition 4.3) and (X ,.Ly) = 0 (by Proposition A.8),
we thus obtain

dk Z/ log |F|vduv7k = (le Fk-Lk)Ar

X(Cv)

v]oo

—((deg F)oog-Li)ar + (D-Li)ar + Y (@u,ikCoyin-Li) log N(v)

finite v
+ Z V(F)(Xgo-Li) log N(v) — (deg F) Z (Y0,ikClik-Li) log N(v)
finite v finite v
:[K( ) Q]hL( Z $vzk vzk k]logN( )
finite v
+d Z v(F)logN(v) — (deg F) Z Yv.ik|Kvik ko] logN(v).
finite v finite v

Now, we divide through by d* and take limits. Since

;}E&ZL log\Flduvk—Z/ log | Flud

v]oo v]oo

and limy o, by (¢"(a))/d* = hy(a), applying Proposition 5.10 yields

K(0): > /X log | Fludpen, = 3 w(F)logN(v)

v]oo finite v
. yvzk
_2/1 log | Flodpin, + > / 10g | F| ot -
P finite v
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Remark 6.2. Letting ¢ = P/Q be a model for ¢ and applying Lemma
5.1, we have the bound

—(degF)( 3 W) logN(v) — Y o(F)logN(v)

finite v finite v

< log | F'|,dty,
) / ,

finite v
< (degF) 3 " 106 N(w) — 3 v(F)logN(v).

finite v finite v

where A, is the coefficient of the T term of P, v(F) is the minimum
of the v-adic valuations of the coefficients of F', and R,(P,Q) is the
supremum of min(v(P(a,b)),v(Q(a,b))) over all v-adic integers a and
bin O with (a,b) # (0,0). Note that ) . .. R,(P,Q) is less than or
equal to the resultant of Py(Tp, 1) and Qx(Tp, 1) as polynomials in T
(see Brieskorn and Knérrer [6, p. 279, Proposition 4], for example).

Corollary 6.3. Suppose that ¢ can be written as [P : Q] where P(Tp, 1)
1s monic in Ty and that o has a minimal polynomial F' over K with
coprime coefficients in Ok (as is always the case when K = Q, for
example). Then

631) K@) Q<Y [ R

v]oo
with equality if ¢ has good reduction everywhere.

Ezample 6.4. In general, one cannot expect equality in (6.3.1). Sup-
pose that P(7p, 1) is monic, as in Corollary 6.3. Suppose furthermore

that @« € K has a minimal polynomial F with coprime coefficients
in Og and that Q(a,1) = 0. Then, we have fX(C) log |F|,dpt,, =

—%ﬁ’l))log N(v) for any finite place v. Thus, if v(P(«,1)) > 0 for
some finite place v, then inequality (6.3.1) is strict.

7. EQUIDISTRIBUTION AND JULIA SETS

Let v be an archimedean place. As we have defined it, dp, , is only a
distribution; that is to say, the integral fpl © f dp,, is only defined for
smooth functions f. We will now show that d, , extends to a linear
functional on the space of continuous functions on P*(C) and that this
linear functional is the unique ¢-invariant probability measure on P*(C)
with support on the Julia set of ¢.

Let || - ||, be a metric on OF' (1). Recall the definitions of || - ||, and
dft, 1, from Proposition 2.3.
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Following [18], we define A to be the operator on the space of contin-
uous functions of P'(C) which sends a continuous function f on P'(C)
to

(AN =5 3 ewlw)
p(w)=z

where 2 € P!(C) and e,, is the ramification index of ¢ at w.

Lemma 7.1. Let U be an open set in P*(C). Then

(7.11) [ e = [ A dy
e=1(U) U
for any k > 1.

Proof. Since the set of ramification points of ¢ is finite, it suffices to
show that (7.1.1) holds when U contains no ramification points; since
any open subset can be written as a union of simply connected open
subsets, we may further assume that U is simply connected. We may
then decompose ¢~ 1(U) into d branches V3, 1 < A < d such that ¢ is
bijective on each V) with analytic inverse gpil.

Choose a section s of Opi(1) that does not vanish on U or o= }(U).

Let p = log l1slu.i Then, on U, we have ddp = dji,, and on V, we have

271

dd(p o p) = (deg ) (dpr11.0). By change of variables, we then have

[ s = [ 1@ ditote)
V)\ V)\
=2 [ e ) o)

1 _
:E/Ufogp)\ld,uv,lv

Since (Af)(u) = éZizl f oy (u), we thus obtain

d d
1
fd,uv,k—i-l = / fd,uv,k—i-l = — / fo go;l d,uv,k
1 d
— [ IS roprt = / Af itz

O

An exceptional point £ for o is a point such that p?(£) = £ and ¢?
ramifies completely at £&. An exceptional point £ is an super-attracting
fixed point for ¢? (see J. Milnor [22]).
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Proposition 7.2. The measures dy,  converge to a measure dii,,
that 1s supported on the Julia set. Furthermore, dj,, is the unique
probability measure supported on the Julia set with the property that

/ d,uv,@:/d,uv,@
U) U

for any open subset U C PY(C) such that ¢ is injective on U.

Proof. Let € > 0. We may choose an open set U, containing the excep-
tional points of ¢ for which

€
d,uv,l S .
/ué 2 SupzeIP’l(C)(|f(Z)|v)

Such a set exists since dy,; is a continous form. Let W, = P!(C) \
U.. By Theorem 1 of [18], there is a constant C; such that (A f)(w)
converges uniformly to Cy for w € W,. Thus, there is some M such
that for any & > M, we have

(AR ) (w) = Clo < ¢/2

for all w € W,. Using Lemma 7.1.1 and the fact that fWe dpyy <1, we
then see that for all £ > M we have

/ fd,uv,k - Cf
PL(C) v

/ (A ) dps — C
P1(C)

v

+ |Akf|v d:uv,l
v Ue

< ‘ | @ hydins -

< [ St [ Com (7)) dps

z€P1(C)
<e€/24€/2=¢

Thus, du, , extends to a measure such that
[ i = Jm (e,
P1(C) k—o0

where z is any point in W,. Freir, Lopes, and Mane ([12]) have shown
that the map sending a continuous function f to limy_ (A% f)(2),
where z is a not an exceptional point of ¢, is the unique -invariant
probability measure on P!(C) that is supported on the Julia set of
®. U

P. Autissier [2] has proved the following equidistribution theorem.
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Theorem 7.3. With the same hypothesis as Theorem 6.1, for any
infinite v and any nonrepeating sequence of points (ay,) in P1(K) such
that lim,,_,, h(ay,) = 0, the sequence m Y ocGal Oo(an) Of discrete
measures converges weakly to du,.

M. Baker and R. Rumely ([3]) have given a new proof of this theorem,
using capacity theory. Their proof also gives equidistribution results
at finite places.

One might also ask whether the Mahler measure of this paper should
also be computable by equidistribution; more precisely, we conjecture:

Conjecture 7.4. With the same hypothesis as theorem 7.3, for I the
minimal equation of point o not in the Galois orbit of any o, and v an
infinite place ofK one has

lim log | F(o(an)lv / log | F'|ydty, -
n—o00 | Gal GZGI X(Cy) 4

We can prove COHJ ecture 7.4 in the case that the points « are periodic
points. This generalizes earlier work on “elliptic Mahler measure” by
G. Everest and T. Ward in [11, Theorem 6.18].

APPENDIX A. SCHEMATIC INTERSECTION THEORY ON A
COHEN-MACAULAY SURFACE.

Intersection theory has been developed by many authors. We are
in this article very interested in signs and vanishing in an arithmetic
situation. A positive local intersection number appears when it can
be expressed as the length of a tensor product. This appendix uses
material that exists in P. Deligne [10] and in W. Fulton [13, Chapter
20].

For us a surface will be a noetherian, irreducible, and reduced scheme
X of dimension two. In this article, moreover, X will be Cohen-
Macaulay and will be equipped with a flat and often projective, gener-
ically smooth, structural map f : X — Spec B, where B is a Dedekind
domain with field of fractions K. Often K will be a number field or
the field of fractions of a discrete valuation ring V. The geometric (or
schematic) intersection numbers will be rational numbers (the need for

denominators for an intersection theory on a singular scheme was noted
previously in D. Mumford [24] and in C. Peskine and L. Szpiro [25]).

Definition A.1. We define the schematic (or geometric) intersection
number of a Cartier divisor D with a Weil cycle C' when they have no
common components as

(D.C) = length(Op ® O¢) — length(Tor, (Op, O¢)).
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Lemma A.2. If C is of codimension 2, then (D.C') = 0.

Proof. If f is locally the equation of D and [ is the ideal of C' in a local
ring A of X, one has an exact sequence

0 — Tori(A/T, A/f) — AJT L AJT — A)(T + (f)) — 0.

The lemma follows since the four modules in this sequence are of finite
length.
O

Proposition A.3. (bilinearity and symmetry) The pairing (D.C')
we just defined is bilinear and symmetric when both sides are Cartier
divisors.

Proof. 1f C'is a Weil divisor, it is a linear combination with integral
coefficients of reduced and irreducible Weil divisors C; (the coefficient
of C; is equal to length((O¢),,)). The sheaf Op being of Tor dimension
1 the pairing is linear on the right by devissage. To see the linearity
on the left it is enough to look at the case where C' is reduced and
irreducible. The proof will be complete after the reader checks the
following lemma:

Lemma A.4. Let A be a commutative ring, I an ideal in A and f a
non zero divisor in A. Then one has the following exact sequence:

0—- A/l —-A/fl - A/fA—0

Proof. The symmetry is clear when D and C are Cartier divisors with
no common components. O

If " is a Q-Cartier divisor, i.e. a Weil divisor with an integral
multiple nC’ which is Cartier, we will define

(C'.C) = %((nC’).C)

In this article we use only intersection between two Q-Cartier divi-
sors. So, up to an integral multiple, the intersection number is locally
a finite sum of length(A/(f,g)), where A is a local ring of dimension 2
and depth 2 and (f, g) is a regular sequence. The following propositions
are classical:

Proposition A.5. (linear equivalence) If C is a Cohen-Macaulay
projective curve then

(DC) = degc OX (D>|C
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Proof. One needs only to check that the degree of a line bundle is a
well behaved notion on Cohen-Macaulay projective curves. This is the
Riemann-Roch theorem for curves.

If C is a projective curve and L is a line bundle on X a projective
surface one can then speak of (L.C') for L is the difference in Pic(X)
between two very ample line bundles each of them having sections with
no common components with C'. ([l

Corollary A.6. When C is a projective curve and D is a Q-Cartier
divisor, the intersection (D.C) is well-defined by bilinearity and linear
equivalence even when D and C' have a common component.

Corollary A.7. Let F' be a rational function on a reduced, irreducible
surface X that is projective and generically smooth over B. Then for
any Weil divisor C' contained in a fiber over B, we have

(div(F).C) = 0.

Proof. This is clear for the line bundle Ox (div(F)) is equal to Ox and
C'is a projective curve. O

Proposition A.8. (projection formula) Let ¢ : Y — X be a map
between surfaces X and Y that are projective over B. If L is a line
bundle on X and C' closed subscheme of Y one has

(¥"(L).C) = (L.« (C)).

In particular if C' is contracted by o to a subscheme of X of codimension
2 the intersection number (¢*(L).C) is zero.

Proof. By additivity we can suppose C' is a reduced irreducible curve
in X. There are two cases: ¢.(C) is of dimension 1 and ¢.(C) is of
dimension zero. In the first case C' — ¢,(C) is finite and by Lemma
A.4 we have

length(Oc/(fOc)) = length(Ox /(fOx) ® Oc)
= length(Oy /(fOy) ® Oc).

In the second case L can be realized as the line bundle associated to
the difference of two very ample divisors on X each of them having no
intersection with ¢,(C). The reciprocal images of these divisors in Y
do not meet C', so both side of the projection formula vanish as it is
required. [l

The following proposition shows that intersection theory for Q-Cartier
divisors does not change when we pass to the normalization.
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Proposition A.9. (invariance under normalization) Let A be
a Cohen-Macaulay integral domain of dimension 2 and let A be its
integral closure. Let (f,g) a reqular sequence in A then supposing A is
a finitely generated A-module (f, g) is a reqular sequence in A and

length(A/(f, g)) = length(A/(f,g)).

Proof. We shall note that A is finitely generated over A when we are in
a geometric or arithmetic situation. When (f, g) is a regular sequence
in a module M the only non vanishing Tor is the tensor product M ®
A/(f,g). One proves easily by induction that the alternating sum
>-.(=1)"length(Tor;(A/(f, g), M)) is a non negative additive function
on the set of finitely generated A-modules. This sum is is equal to zero
on modules of the form A/h or A/(h,k) for a system of parameters
(h,k) in A and thus is zero on A/p for any prime ideal p containing
h or (h,k) by devissage. Hence, it is equal to zero on any module of
dimension less than or equal to one. Any non-zero prime ideal of A
being of the previous form our assertion of vanishing is proved. The
module A/A being of dimension at most one and (f, g) remaining a
regular sequence in A the proposition follows by additivity. O

The following proposition is proved in P. Deligne [10] with the addi-
tional assumption that X is normal:

Proposition A.10. Let X be a generically smooth, reduced, irreducible
and locally Cohen-Macaulay surface. The geometric intersection prod-
uct on a fiber of X — Spec(B) when X is projective over B, is negative.
Only combination of full fibers have zero self-intersection.

By Proposition A.9, the assumption that X is normal may be re-
placed with the weaker assumption that X is Cohen-Macaulay.
Thus, Proposition A.10 applies to the surfaces used in this paper.

APPENDIX B. ARAKELOV INTERSECTION WITH THE DIVISOR
ASSOCIATED TO A RATIONAL FUNCTION

Let X be as in Appendix A; in this section we specify that the
Dedekind domain B we work with is the ring of integers in a num-
ber field K. Let F' be a meromorphic function on X. We begin by
working with “arithmetico-geometric” intersections; that is to say, if
we intersect a Cartier divisor D and a Weil cycle C' without common
components, their arithmetico-geometric intersection (D.C)g, is taken
to be

(D.C)gn = > (Dy.C)logN(v),

finite places v of B
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where (-.-) is the intersection product from Appendix A, the D, and
C, are the pull-backs of D and C back to the fiber X,, and N(v) is
the cardinality of the residue field k, of our base ring B at v. These
intersections (D.C)s, are thus sums of the geometric intersections of
Appendix A “weighted” by the logarithm of the size of the residue
fields k,,.

In practice, we will be computing our intersections between rational
functions and reduced irreducible horizontal divisors Spec R. Thus, for
R an order in a number field K and f a nonzero element of the field of
fractions of R, we define #(R/f) follows: Let S denote the primes P
in R for which f € Rp and let T denote the primes Q in R for which
[t e Rg. We let

_ lpes#(Rp/fRp)
#(R/fR> B HQ:TS#(RQ/f_lRQ).

Lemma B.1. Let Eg be an irreducible horizontal divisor on X corre-

sponding to the Galois orbit of the point f € X(Q). Then

deg 8

(le FEﬁ)ﬁn == Z Z Nv IOg |F(ﬁ1[)l])|va

vljoo =1

where 61[}] are the conjugates of 5 in X(C,), the primes v | oo are the
set of infinite places of K, each extended to an infinite place on the
field of fractions of R, and N, is the local degree [K, : R].

Proof. The divisor E3 determines a closed immersion i3 : Spec R —
X for an order R, so I’ pulls back to an element i3F" of the field of
fractions of R. By our definition of arithmetic intersection, we have
(div F.Eg)an = log #(R/i5F). Since #(R/ijF) = Normg q(i5F) (see
28, Section II1.4], for example), the product formula over @ and the
definition of the norm gives

deg 8

log #(R/isF) = > Y " Nylog |[F()], = 0.

v]joo =1

O

Now, let L be a line bundle on X endowed with a smooth metric
| - ||o at each infinite place v of K. We will not require the metric
on L to have any special properties, since we will not need the sort of
adjunction formula that is used, for example, in P. Vojta [30] or S. Lang
[17, Chapter IV]. Let s be a section of L such that div s and div F" have
no common horizontal components. Let v be an infinite place of K
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and let F, and s, denote the pull-backs of F' and s to X¢,. We write
div F, = Y mya and divs, = ) ngl where all of the o and 3 are in
X(C,).

Proposition B.2. With notation as above, we have
1

o= log |F'|,, ddlog ||s],
271 X (Cy)

=3 maloglis(a)ll. — 3 N, nglog |[F(B)]..
a B

Proof. We follow the proof of S. Lang [17, Lemma 2.1.1, pp. 22-23]
closely. Since log |F[, is harmonic away from the support of div F,, we
have ddlog|F|, = 0 away from the points a; thus

log |F'|,ddlog |s]|, = log |F'[} ddlog ||s||, — log ||s|l.dd log | '],

away from the o and 3. Since dn A dy = dy A dn for any smooth
functions n and v (see [17, p. 22]), we therefore have

log | F'|,ddlog |||, — log ||s||,dd1og |F|,
= d(log |F|,d||s||, — log ||s|ludlog | F|,)

away from the o and f3.
Now, let let Y(a) be the complement of the circles C'(a,a) and
C(B,a) of radius a around all of the « and 5 and let

w = log |F|, dlog||s|l, — log||s||. dlog | F'..

By Stokes theorem, we have

(B.2.1) / 1og|F|vda||s||v=—< / Wt / w)
Y (a) Za: C(a,a) zﬁ: C(B,a)

(the minus sign here comes from the fact that applying Stokes theorem
to the outside of a circle gives a negative orientation). Now, it is easy
to see that when a is small we have

/ log | F|,@1og |5, = O(aloga),
C(a,a)

SO

lim log |F|,dlog s, = 0.
a—0 C(a,a)

Similarly, we have

lim/ log ||s]|, @log |F, = 0.
=0 Jc(B.a)
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To evaluate lim,_,q fc(a o 108 | F l,dlog ||s||, we switch to polar coordi-
nates r, #; we then have

oog sl ,

dlog 5], = r==%

Since a1 N
08llsll _ Nums | oo g tiom
or r

for small r, we thus obtain

lin% log | F|, dlog ||s||, = (2mi) N, nglog |F ()]s
e~ JC(Ba)

A similar calculation shows that
i [ log s log | Fl, = (2ni)m log ().
=Y JC(,a)

Taking the limit of (B.2.1) as a — 0, thus gives

]_ _
lim—,/ log | '], ddlog ||s||.
t Jy(a)

_<Zanﬁlog\F e = 3 malog (5 Hv>-
B

O

Now, let us define the Arakelov intersection (D.L)a, of a metrized
line bundle L with a Weil divisor. We begin by defining the Arakelov
degree deg,, M of a metrized line bundle M over an order R as in
J. Silverman [26]. A metrized line bundle M over an order R is a free
R-module of rank one with a nonzero metric || - ||, on the completion
M, for each archimedean place w € R, on the field of fractions of
R. As with our metrized line bundles on X, the metrics at infinity are
normalized so that they behave like |-|N* where |-| is the usual absolute
value on C and N, is the local degree of R, over R. Let m # 0 be an
element of M; then

(B.2.2) degp, M =log#(M/Rm) — Z log ||m|| -
WE Roo
Note that this definition does not depend on our choice of m by the
product formula.
If L is a metrized line bundle and Ej3 is a horizontal divisor on X,
then L pulls back to a metrized line bundle ¢ L over the order R where
Ej is ig(Spec R) and we define

(Ep.L)ar = degp, ijL.
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If s is a section of L such that Supp s doesn’t meet E3 on the generic
fiber, this gives

deg 8

(Eg.L)ar = log #(M/R(ifs)) = > > log (8

vljoo =1

where @[f] are the conjugates of # in X(C,).

If D is a reduced irreducible divisor contained in a finite fiber X,
then we define (D.L)a, = (D.L)gs, = deg(L|p) log N(v).

Write div s = Dyer + Dhor Where D, is vertical and Dy, is horizon-
tal. For each Galois orbit of points 5 in X(C,) as above, we pick a
representative 3. Then we can write Dy, = Y ng Eg, where Ej is an
irreducible horizontal divisor on X corresponding to the Galois orbit
of the point 3’ € X(Q) and ng = ng for each 8 € X(C,) in the orbit
of 3. We also pick representatives o’ of each Galois orbit of points «
and write the horizontal part of div F' as Y my E, where E, is the
irreducible horizontal divisor corresponding to the Galois orbit of the
point o/ € X(Q).

We recall our definition of the curvature dpu, of a smoothly metrized
line bundle L. If s is a section of L, then away from the support of s,
we have dyu, = —5=ddlog ||s]|,.

Proposition B.3. We have the formula

(div F.L) Z/ log | F |ud,

v]oo

Proof. We have (div F.Dy) = 0 by Corollary A.7 (since each compo-

nent of Dy, is projective), so letting (3 "l denote the conjugates of 3’ in
X(C,), we have

deg o/

(div F.L)ar = (div F.Eg)gn — D 3 > ma log | s(al)]],

vfoo o i=1

deg 3’ deg o’

—ZZZN ng log |F (5} [Z] ZZZma log || s( ozﬂ)Hv

vlco B =1 vloo o i=1
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by Lemma B.1. Applying Proposition B.2 at each v | oo and summing
over v gives

1 _
(div F.L)ar = — —,/ log ||, ddlog |||,
% 27TZ X(Cy)

= [ gl
X(Cy)

v]oo
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