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Abstract. The Mahler measure formula expresses the height of
an algebraic number as the integral of the log of the absolute value
of its minimal polynomial on the unit circle. The height is in fact
the canonical height associated to the monomial maps x

n. We
show in this work that for any rational map ϕ(x) the canonical
height of an algebraic number with respect to ϕ can be expressed
as the integral of the log of its equation against the invariant Brolin-
Lyubich measure associated to ϕ, with additional adelic terms at
finite places of bad reduction. We give a complete proof of this
theorem using integral models for each iterate of ϕ. In the last
chapter, on equidistribution and Julia sets, we give a survey of
results obtained by P. Autissier, M. Baker, R. Rumely, and our-
selves. In particular, our results, when combined with technics of
diophantine approximation, will allow us to compute the integrals
in the generalized Mahler formula by averaging on periodic points.

1. Introduction

If F is the minimal polynomial over Z for an algebraic number x,
the formula of Mahler [19] for the usual height h(x) is

deg(F )h(x) = log
∏

all places v

sup(|x|v, 1) =

∫ 1

0

log |F (e2πiθ)|dθ.

One can notice the following facts:

(i) the height satisfies the functional equation h(x2) = 2h(x).

(ii) dθ is supported on the unit circle, which is the closure of the set
of roots of unity, each root of unity having height 0. Along with
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the points 0 and ∞, the roots of unity are the only points that
have finite forward orbits under iteration of the map x→ x2.

We show in this article that these occurrences are general for any
dynamical system on the Riemann sphere given by a rational function
ϕ with coefficients in a number field. There is a canonical height hϕ

that vanishes at precisely the points that have finite forward orbits
under the iteration of ϕ. At each infinite place v, we have an inte-
gral

∫

P1(Cv)
log |F |vdµv,ϕ, where dµv,ϕ is the distribution associated to

a canonical metric for ϕ on O1
P(1) (see Zhang [33]). At each finite v,

we define an integral
∫

P1(Cv)
log |F |vdµv,ϕ which is constructed via a

limiting process that is analogous to Brolin’s construction ([7]) of the
ϕ-invariant measure at an infinite place, as we explain in Section 5.
Our Theorem 6.1 asserts that

deg(F )hϕ(α) =
∑

places v of K

∫

P1(Cv)

log |F |vdµv,ϕ,

where α is an algebraic point and F is a minimal polynomial for α
over K. We also show that for finite v we have

∫

P1(Cv)
log |F |vdµv,ϕ = 0

unless ϕ has bad reduction at v or all the coefficients of F have nonzero
v-adic valuation. Moreover, we show that

∑

finite

∫

P1(Cv)
log |F |vdµv,ϕ

can be explicitly bounded in terms of F and polynomials P and Q for
which ϕ = P/Q. In particular, Corollary 6.3 states that

deg(F )hϕ(α) ≤
∑

v|∞

∫

P1(Cv)

log |F |vdµv,ϕ

if P is monic and F has coprime coefficients.
We use arithmetic intersection theory on a singular arithmetic sur-

face. We introduce a blow-up associated to a model of ϕk to follow
these iterates of ϕ in a coherent manner. We have found it convenient
to work with Cohen-Macaulay surfaces instead of normal surfaces.

Dynamical systems have been studied by many authors; see, for
example, C. T. McMullen [21] and J. Milnor [22]. Recently G. Everest
and T. Ward, in their book [11], have studied algebraic dynamics on
elliptic curves and on products of projective lines. They have pointed
out particular cases of our main theorem (other cases have been studied
by V. Maillot [20]).

In light of work of Szpiro, Ullmo, and Zhang ([27]), it seems natural
to wonder if points with small canonical height hϕ on P1 are equidis-
tributed with respect to dµv,ϕ for v an infinite place. P. Autissier [2]
and M. Baker and R. Rumely [3] have recently shown that such an
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equidistribution result does indeed hold. One might also ask whether
generalized Mahler measure can be computed via equidistribution. We
will discuss conjectures and known results of this sort more precisely
in Section 7.

The organization of the paper is as follows:
1-Introduction.
2-Canonical height, canonical metric, and canonical distribution as-

sociated to a dynamical system.
3-Three examples.
4-The blow-up associated to a model of a rational map from P1 to

P1.
5-The integrals at finite places. 5.1-Existence of the integrals at finite

places; 5.2-Invariance of the v-adic integral under change of variables;
5.3-Geometry of the v-adic integrals; 5.4-A remark on the use of integral
notation at finite places.

6-The Mahler formula for dynamical systems.
7-Equidistribution and the Julia set.
A-Appendix: Schematic intersection theory on a Cohen-Macaulay

surface. (This is needed to justify the use of intersections products in
Section 4.)

B-Appendix: Arakelov intersection with the divisor associated to a
rational function. (This is used in Section 6.)

We would like to thank D. Sullivan and S. Zhang for very interest-
ing discussions on the subject of this paper.

2. Canonical height, canonical metric, and canonical

distribution associated to a dynamical system

The global theory of canonical heights was started by J. Silverman
and G. Call [8]. Let X be a variety over a number field K. Suppose ϕ is
a finite map of X to itself. Suppose that its degree d is greater than one
and that there is an ample line bundle L on X satisfying ϕ∗(L) ∼= L⊗d.
Tate’s recipe for the definition of the Néron-Tate height on an abelian
variety carries over to this general case: one has a canonical height
associated to ϕ defined by

hϕ(α) = lim
k→∞

hL(ϕk(α))

dk
.

In this formula, hL is associated with any set of smooth metrics at
places at infinity (cf. [29] and Appendix B).

The canonical height hϕ satisfies the properties:
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(i) hϕ satisfies Northcott’s theorem: points over K̄ with bounded
degree and bounded height are finite in number.

(ii) hϕ(ϕ(α)) = dhϕ(α).
(iii) hϕ is a non-negative function.
(iv) hϕ(α) = 0 if and only if α has a finite forward orbit under

iteration of ϕ.
(v) |hϕ(α) − h(α)| is bounded on P1(Q) for h the usual height.

The canonical height hϕ is characterized as the the unique function on
P1(K̄) that satisfies (ii) and (v).

Definition 2.1. A point is called periodic if it is a fixed point of ϕk

for some integer k. A point is called preperiodic if its image under ϕm

is periodic for some integer m. Equivalently, a point is preperiodic if
and only if it has a finite forward orbit under iteration of ϕ.

The periodic points are separated classically into three classes im-
portant for the dynamics:

Definition 2.2. Let f be a differentiable map f : P1 → P1. A fixed
point x of f k is called repelling (resp. attracting, resp. indifferent) if
|(f k)′(x)| > 1 (resp. |(f k)′(x)| < 1, resp. |(f k)′(x)| = 1). The closure
in P1(C) of the set of repelling periodic points is called the Julia set.
The complement in P1(C) of the Julia set is called the Fatou set of f .

S. Zhang [31, 33] has shown the interest of the local theory of canon-
ical heights. In [33, Section 2], he shows (following Tate) that if a line
bundle L on a projective variety W has a metric ‖ · ‖v and there is an

isomorphism τ : L⊗d ∼
→ ϕ∗(L) for some d > 1, then letting ‖·‖v,0 = ‖·‖v

and ‖ · ‖v,k+1 = (τ ∗ϕ∗‖ · ‖v,k)
1/d, one obtains a limit metric

‖ · ‖v,ϕ = lim
k→∞

‖ · ‖v,k.

The following proposition is due to S. Zhang ([33, Theorems 1.4 and
2.2]).

Proposition 2.3. Let L and the metrics ‖ · ‖v, ‖ · ‖v,k, and ‖ · ‖v,ϕ on
L be as above. Then:

(i) the ‖ · ‖v,k converge uniformly to ‖ · ‖v,ϕ.

(ii) Suppose additionally that W is a curve, v is an infinite place,
and that ‖ · ‖v is smooth and semipositive. Then the (normal-
ized) curvatures dµv,k = − 1

(2πi)dk dd log ‖ · ‖v,k have a limit dis-

tribution dµv,ϕ such that if s is a meromorphic section of a line
bundle L′ with metric ‖·‖′v at v, then limk→∞

∫

P1(Cv)
log ‖s‖′vdµv,k

exists and is equal to
∫

P1(Cv)
log ‖s‖′vdµv,ϕ.
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Furthermore, neither ‖ ·‖v,ϕ nor dµv,ϕ depends on our choice of smooth
metric ‖ · ‖v.

By convention, all of our metrics at infinity are normalized; that is,

on each stalk of L on X(Cv) the metric ‖·‖v behaves like | · |
[Kv:R]
v where

Kv is the completion of K at an infinite place v.
We note that canonical heights are the only Arakelov type heights

which are non-negative naturally. The height is an intersection number
in the sense of J. Arakelov [1] as extended by P. Deligne [10] and by
S. Zhang [33] to this limit situation.

3. Examples

1-The squaring map on the multiplicative group and the

naive height.

For the map ϕ(t) = t2 on P1, the preperiodic points are zero, infinity,
and the roots of unity. The unit circle is the Julia set (the closure of
the repelling periodic points). The naive height satisfies the required
functional equation to be the canonical height associated to ϕ. This
can be verified via the usual definition

h([t0 : t1]) =
1

[K : Q]
log

∏

places v of K

sup(|t0|v, |t1|v)
Nv ,

where Nv = [Kv : Qv] and [t0 : t1] ∈ P1(K). Thus, the naive height is
the canonical height associated to ϕ.

The unit circle is the support of dµϕ (in this case the Haar measure
dθ on the unit circle). It is the curvature (in the sense of distributions)
of the canonical metric

‖(λT0 + µT1)([a : b])‖ =
|λa+ µb|

sup(|a|, |b|)
.

Note that the canonical height and curvature are the same for any
map φ(t) = tn with n ≥ 2.

2- The Néron-Tate height is associated to multiplication by

two on an elliptic curve.

Let E be an elliptic curve with Weierstrass equation y2 = G(t). We
write E = C/(Z1 + Zτ) with τ in the upper half plane. By passing to
the quotient by [−1], multiplication by 2 on E gives rise to the following
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rational map on P1:

ϕ(t) =
G′2(t) − 8tG(t)

4G(t)
.

The preperiodic points of ϕ are the images of the torsion points in E.
To see this note first that 2nP = ±2kP for n 6= k implies P is a torsion
point. Conversely, if nP = 0, then writing 2k = qn + rk with rk < n,
we see that there must be at least two different indices k and k′ with
rk = rk′ hence 2kP = 2k′

P . The fixed points of ϕ are the images of the
inflection points of E, i.e. of the 3-torsion points in E.

The multiplication map [2n] on E is of course étale. The derivative
of this map is 2n everywhere, so the preperiodic points are all repelling.
Hence the Julia set is the entire Riemann sphere. In [23] it is established
that the Haar measure on E gives the curvature of the canonical metric
associated to the Néron-Tate height. Its image on P1 is

dµϕ =
i

Im(τ)

dt ∧ dt

|G|
.

The curvature and canonical height will be the same for ϕ the map on
P1 associated to any multiplication by n map on E for n ≥ 2.

3-Parallel projection of a conic.

Consider the plane conic C over Z defined by the equation

X0X1 + pX2
2 = 0,

where p is an odd prime number. The reduction of C mod a prime ` is
smooth and connected for ` 6= p. The fiber over p is reduced and is the
union of two lines. The arithmetic surface C is regular. The projection
map from P2 to P1 defined by

Φ([X0 : X1 : X2]) = [X0 +X1 : X2]

is well-defined as a map from C to P1. Projecting from [0 : 1 : 0] yields
an isomorphism between our conic and P1. Composing this with Φ gives

rise to a map ϕ; the reader may check that this map is ϕ(t) = t2−p
t

.
This example is an illustration of a blowing-up allowing to define the
map ϕ over Z. This will be a systematic approach in the next section.

4. The Blow-up associated to a model of a rational map

from P1 to P1

Let ψ be a rational map of degree d from P1 to P1 defined over the
field of fractions K of a Dedekind domain B. For simplicity we will



MAHLER MEASURE FOR DYNAMICAL SYSTEMS ON P1 7

assume that ∞ is a fixed point of ψ. Note that we may also choose
coordinates so that this is the case; hence, our assumption does not
restrict our generality.

Definition 4.1. A model over B of ψ is a map of polynomial rings

ψ([T0 : T1]) = [G(T0, T1) : H(T0, T1)],

where the polynomials G and H are homogeneous of degree d with co-
efficients in B.

The models will allow us to work on arithmetic surfaces when K is
a number field. These surfaces, obtained by blowing up non-regular
centers, will be singular in general.

Let Y be the closed subscheme of X = P1
B = Proj(B[T0, T1]) defined

by the vanishing of G and H. We will call I the sheaf of ideals in OX

defining Y . The choice of G and H as “generators of I” gives rise to a
surjection

ψ̃1 : O2
X � I(d).

The support of the scheme Y is exactly where the map ψ cannot be
extended to the fibers of the model P1

B.
Let N denote the projection from Y to SpecB; we call this the bad

reduction of the model. The scheme Y does not meet the generic fiber
XK.

Definition 4.2. Let σ : X1 → X be the blowing up of Y in X.

By the universal property of the blow-up, the pull-back σ∗I is locally
generated by elements which are not zero divisors, i.e. there is a positive
Cartier divisor E1 on X1 such that

σ∗I = OX1(−E1).

One then has a surjective map (which is simply σ∗ of ψ̃1)

O2
X1

� σ∗(OX(d)) ⊗OX1(−E1)

By the universal property characterizing the projective line this gives
rises to a map:

ψ1 : X1 → X

extending the original rational map ψ on the generic fibers.
Throughout this section we will use the scheme-theoretic intersection

product (·.·), defined in Appendix A.

Proposition 4.3. The two dimensional scheme X1 is reduced, irre-
ducible and Cohen-Macaulay. The fiber of X1 over v /∈ N is equal
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to P1
kv

. The fiber of X1 over v ∈ N has a finite number of compo-
nents Wv, Cv,1, ..., Cv,tv , where Wv is the strict transform of the fiber
of X at v and the Cv,i are components of the exceptional divisor of σ.
Each Cv,i is isomorphic to P1

kv,i
where kv,i is the residual field of the

closed point image of Cv,i in X. The Cv,i for i > 0 do not meet each
other. The Cv,i with i > 0 meet Wv. The exceptional divisor E1 is a
Cartier divisor equal to P1

Y and, as a Weil divisor, it can be decom-
posed into

∑

v∈N,i>0 rv,iCv,i where the rv,i are positive integers equal to
the local lengths of OY at the local rings of its support. The geometric
self-intersection of Cv,i is equal to −[kv,i : kv]/rv,i. One has

ψ∗
1OX(1) = σ∗(OX(d)) ⊗OX1(−E1).

Proof. Since the ideal I is generated by two elements, the scheme
X1 = Proj(

⊕

In) is a closed subscheme of P1
X = Proj(OX [T0, T1]). The

exceptional fiber is then P1
Y . The surface X1 embeds as a local complete

intersection in the regular three-fold P1
X and hence is Cohen-Macaulay.

The Cv,i are Weil divisors that are Q-Cartier because E1 and the total
fibers F ∗

v are Cartier divisors and the Cv,i do not meet. Hence the in-
tersection theory with the Cv,i is as described in the Appendix A. One
sees that the Wv are also Q-Cartier since the total fiber of v is Cartier
and the Cv,i are Q-Cartier. One has OX1(−E1)|E1 = ⊕i,vOP1

Yi,v

(1).

Hence

((−rv,iCv,i).(rv,iCv,i)) = deg(OP1
Yi,v

(1)) = [kv,i,k : kv]rv,i.

This gives the value asserted for the self intersection of the components
Cv,i. The formula for ψ∗

1OX(1) comes from the universal property char-
acterizing the projective line over X. �

Remark. This method of removing the indeterminacies of a map by
blowing up is standard (see Hartshorne [14, p. 168] for example).

5. The integrals at finite places

Let v be a finite place of K. In this section we will: (1) define the v-
adic integral and show that it exists, (2) show that the v-adic integral
does not depend on our choice of polynomials P and Q defining a
model for ϕ over OK , (3) relate the v-adic integral to the geometry of
the blow-up maps associated to the ϕk, and (4) explain why it makes
sense to think of this integral at the finite place v as a v-adic analogue
of an integral at an archimedean place. We begin by developing some
terminology.
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As before, let ϕ : P1
K −→ P1

K be a rational map with a fixed point
at ∞. We let OK denote the ring of integers of a number field K. Let

ϕ([T0 : T1]) = [P (T0, T1) : Q(T0, T1)],

where P and Q are homogeneous polynomials of degree d in OK[T0, T1],
be a model for ϕ over OK , in the terminology of the Section 4. Letting
P1 = P and Q1 = Q, and recursively defining Pk+1 = P (Pk, Qk) and
Qk+1 = Q(Pk, Qk), we obtain models

ϕk([T0 : T1]) = [Pk(T0, T1) : Qk(T0, T1)],

for iterates ϕk of ϕ. Recall that T1 must be a factor of each Qk since
∞ = [1 : 0] is a fixed point of ϕk.

Throughout this section, v will denote a finite valuation on K that
has been extended to the algebraic closure K of K. We let Ov denote
the set of all z ∈ K for which v(z) ≥ 0.

For (a, b) ∈ K
2
\ (0, 0), we define

Sv,k(Pk(a, b),Qk(a, b))

:= min(v(Pk(a, b)), v(Qk(a, b))) − min(v(adk

), v(bd
k

)).

(5.0.1)

Note that Sv,k(Pk(a, b), Qk(a, b)) is a finite number, since Pk and Qk

have no common factor, and that

(5.0.2) Sv,k(Pk(a, b), Qk(a, b)) = Sv,k(Pk(za, zb), Qk(za, zb))

for any nonzero z ∈ K. It follows that Sv,k(Pk(a, b), Qk(a, b)) is non-
negative, since we may thus assume that min(v(a), v(b)) = 0. We also
define

Rv(Pk, Qk) := sup
(a,b)∈K

2
\(0,0)

(Sv,k(Pk(a, b), Qk(a, b))).

To see that Rv(Pk, Qk) exists and is finite, we apply the Euclidean
algorithm to Pk(T0, 1) and Qk(T0, 1) to obtain

x(T0)Pk(T0, 1) + y(T0)Qk(T0, 1) = m

with x, y ∈ Ov[T0] and nonzero m ∈ Ov. Then, for any (a, b) ∈ K
2
\

(0, 0), we have

Sv,k(Pk(a, b), Qk(a, b)) ≤ max(v(m),min(v(Pk(1, 0)), v(Qk(1, 0)))
)

.

If Rv(Pk, Qk) > 0, then Pk and Qk have a common root modulo the
prime ideal corresponding to v and thus our model for ϕk has bad
reduction at v, as explained in Section 4.
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5.1. Existence of the v-adic integral. Let F be a nonconstant
polynomial in K[t]. Using the coordinates [T0 : T1] and and letting
t = T0/T1, we let [a1 : b1], . . . , [adeg F : bdeg F ] be the points in P1(K) at
which F vanishes.

We will prove the following proposition.

Proposition 5.1. The sequence
(

∑deg F
`=1

Sv,k(Pk(a`,b`),Qk(a`,b`))

dk

)

k
is in-

creasing and is bounded by (degD)( 1
d−1

)Rv(P,Q).

This allows us to define the integrals at a finite place v as follows.

Definition 5.2. For a finite place v, we define

∫

P1(Cv)

log |F |vdµv,ϕ := − lim
k→∞

deg F
∑

`=1

Sv,k(Pk(a`, b`), Qk(a`, b`))

dk
log N(v)

− v(F ) log N(v) + (degF )
v(Ad)

d− 1
log N(v),

(5.2.1)

where Sv,k is given by (5.0.1), P =
∑d

i=1AiT
i
0T

d−i
1 , and v(F ) is the

v-adic valuation of the content of F , i.e., v(F ) = mini(v(mi)) when

F =
∑deg F

i=1 mit
i.

Proposition 5.1 will be a simple consequence of the following two
lemmas.

Lemma 5.3. Let (a, b) ∈ K
2
\ (0, 0). For all integers k ≥ 1, we have

Sv,k(Pk+1(a, b), Qk+1(a, b)) = dSv,k(Pk(a, b), Qk(a, b))

+ Sv,k(P (Pk(a, b), Qk(a, b)), Q(Pk(a, b), Qk(a, b))).

Proof. By (5.0.2), we may assume that min(v(a), v(b)) = 0. Then

Sv,k(Pk+1(a, b), Qk+1(a, b))

= min(v(P (Pk(a, b), Qk(a, b))), v(Q(Pk(a, b), Qk(a, b))))

= min(v(Pk(a, b)
d), v(Qk(a, b)

d)) − min(v(Pk(a, b)
d), v(Qk(a, b)

d))

+ min(v(P (Pk(a, b), Qk(a, b))), v(Q(Pk(a, b), Qk(a, b))))

= dSv,k(Pk(a, b), Qk(a, b))

+ Sv,k(P (Pk(a, b), Qk(a, b)), Q(Pk(a, b), Qk(a, b))).

�

Lemma 5.4. For all integers k ≥ 1, we have

(5.4.1) Rv(Pk, Qk) ≤ Rv(P,Q)
(

k
∑

i=1

di−1
)

.
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Proof. We proceed by induction. The case k = 1 is obvious. Now, let

a, b ∈ K
2
\ (0, 0); we may assume by (5.0.2) that min(w(a), w(b)) = 1.

If (5.4.1) holds for k, then applying Lemma 5.3 to the case of k + 1
yields

Sv,k(Pk+1(a, b), Qk+1(a, b)) ≤ dRv(Pk, Qk) +Rv(P,Q)

= dRv(P,Q)(
k
∑

i=1

di−1) +Rv(P,Q) = Rv(P,Q)(
k+1
∑

i=1

di−1).

�

Now, we will prove Proposition 5.1.

Proof. (of Proposition 5.1). It follows from Lemma 5.3 that the se-
quence is increasing. By Lemma 5.4, we have

1

dk
(Rv(Pk, Qk)) ≤

1

dk
Rv(P,Q)

(

k
∑

i=1

di−1

)

= Rv(P,Q)

(

k
∑

i=1

di−k−1

)

≤ Rv(P,Q)

(

∞
∑

i=1

1

di

)

= Rv(P,Q)

(

1

d− 1

)

,

which is precisely the bound given in the statement of Proposition
5.1. �

5.2. Invariance of the v-adic integral under change of variables.

Our definition of
∫

P1(Cv)
log |F |vdµv,ϕ in Definition 5.2 involves P and

Q. We can show, however, that the definition depends only on our
choice of the point at infinity. Let τ be a change of variable of the form
τ(T0) = mU0 + nU1, τ(T1) = zU1 (so that τ fixes [1 : 0]). To get a
model from this change of variables, we let τ ∗Q = zQ(τ(T0), U1) and
let

τ ∗P =
zP (τ(T0), U1)

m
−
znQ(τ(T0), U1)

m

where z ∈ OK is chosen so that τ ∗Q and τ ∗P are both in OK [U0, U1].
Note that P is written as it is since τ−1(T0) = U0/m − nU1/m. We
define τ ∗Pk and τ ∗Qk recursively as we did with Pk and Qk. We
also write τ ∗F (u) = F (τ(T0), U1)/U

d
1 where u = U0/U1. Note that

deg τ ∗F = degF .
With this notation we have the following proposition.
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Proposition 5.5. With τ as above, we have

lim
k→∞

deg F
∑

`=1

Sv,k(Pk(a`, b`), Qk(a`, b`))

dk
− (deg F )

v(Ad)

d− 1
+ v(F )

= lim
k→∞

deg F
∑

`=1

Sv,k(τ
∗Pk(a

′
`, b

′
`), τ

∗Qk(a
′
`, b

′
`))

dk
− (degF )

v(τ ∗Ad)

d− 1
+ v(τ ∗F ),

(5.5.1)

where τ ∗Ad is the leading coefficient of τ ∗P and τ(a`T0+b`T1) = a′`U0+
b′`U1. Thus, Definition 5.2 does not depend on our choice of P and Q.

Proof. The proof is a simple computation. We compute

lim
k→∞

deg F
∑

`=1

Sv,k(Pk(a`, b`), Qk(a`, b`))

dk
= lim

k→∞

deg F
∑

`=1

Sv,k(τ
∗Pk(a

′
`, b

′
`), τ

∗Qk(a
′
`, b

′
`))

dk

+
(degF )v(z)

d− 1
+

deg F
∑

`=1

min(v(a`), v(b`)) −

deg F
∑

`=1

min(v(a′`), v(b
′
`))

(5.5.2)

We also see that

(5.5.3) v(τ ∗Ad) = v(Ad) + v(z) − (d− 1)v(m).

Now, we may choose our a` and b` so that F (t) =
∏deg F

`=1 (b`t − a`).

Then τ ∗F (u) =
∏deg F

`=1 m(b′`u− a′`), so that

v(τ ∗F ) = (degF )v(m) +

deg F
∑

`=1

min(v(a′`), v(b
′
`))

= v(F ) + (degF )v(m) +

deg F
∑

`=1

min(v(a′`), v(b
′
`)) −

deg F
∑

`=1

min(v(a`), v(b`)).

(5.5.4)

Multiplying (5.5.3) by degF/(d − 1) and subtracting it from the sum
of (5.5.2) and (5.5.4) gives (5.5.1). �

5.3. Geometry of the v-adic integrals. Let D be a horizontal divi-
sor onX with support away from [1 : 0]. Let [a1 : b1], . . . , [adeg D : bdeg D]
denote the points in X(K) corresponding to D.

Let F be a polynomial in the inhomogeneous variable t = T0/T1

obtained by taking a global section of OP1(n) corresponding toD on the
generic fiber (which will be a homogeneous polynomial of degree n) and
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dividing through by T n
1 . When D corresponds to a point α ∈ X(K),

we will call such F a minimal polynomial for α over K.
Let σk : Xk −→ X be the blow-up map associated to our model

(Pk, Qk) of ϕk described in Section 4. We will relate the v-adic integral
of F with the geometry of σ∗

kD for D the horizontal divisor on X
corresponding to F . We write

σ∗
kD = Dk +

∑

v

∑

i

xv,i,kCv,i,k,

where Cv,i,k are components of the exceptional fiber of σk and Dk is
the horizontal divisor corresponding to D on Xk. We let kv,i,k denote
the field of definition of the closed point on Xk corresponding to the
component Cv,i,k.

We begin by treating the case where D corresponds to a single point
defined over K. Let v(PK) and v(Qk) be the minimum of the v-adic
valuations of the coefficients of PK and Qk respectively.

Lemma 5.6. If D corresponds to a point [a : b] ∈ P1(K), then, for
any nonarchimedean v, we have

∑

i

xv,i,k = Sv,k(Pk(a, b), Qk(a, b)) − min(v(Pk), v(Qk)).

Proof. We will work locally at a single nonarchimedean place v. Let
σOv ,k :

(

Xk

)

Ov
−→ XOv

denote σk with its base extended to SpecOv.

Since D corresponds to a single rational point, there is at most one
nonzero xv,i,k for a fixed v and k. Thus, letting Dv be the localization
of D at v, we have σ∗

Ov ,k(Dv) = Dv,k + fv,kCv,k for some horizontal
divisor Dv,k, some non-negative integer fv,k, and some component Cv,k

of the exceptional fiber of σOv ,k.
We may assume that min(v(a), v(b)) = 0. Let I denote the ideal

sheaf of Dv in XOv
; then σ∗

Ov ,kI will be the ideal sheaf for a subscheme

of
(

Xk

)

Ov
corresponding to Dv,k +fv,kCv,k. Note that σ∗

Ov ,k(I⊗OX(1))

is generated by (bT0−aT1). Let U be an open subset of Xk,Ov
containing

Supp(Dv,k+Cv,k). We may choose U to be the chart of
(

Xk

)

Ov
on which

Tj doesn’t vanish, where j = 0 if v(a) = 0 and j = 1 otherwise. Let i be
the choice of {0, 1} that is not equal to j. Let π be a generator for the
maximal ideal in Ov, let κ = min(v(Pk), v(Qk)), and let Gk = Pk/π

κ

and Hk = Qk/π
κ. Then U is isomorphic to

Proj
(Ov[Ti/Tj]) [t, u]

(

tGk(T0,T1)

T dk

j

− uHk(T0,T1)

T dk

j

) .
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Since we have Ov[Ti/Tj]/(b (T0/Tj) − a (T1/Tj)) ∼= Ov, the subscheme
of
(

Xk

)

Ov
determined by the vanishing of σ∗

Ov ,kI will be isomorphic to

Proj(Ov[t, u]/(tPk(a, b) − uQk(a, b))) ∼= Proj(Ov[t, u]/(π
r(`t−mu)))

∼= Proj((Ov/π
r)[t, u]) ∪ SpecOv,

where r = Sv,k(Pk(a, b), Qk(a, b)) − κ, Gk(a, b) = `πr, and Hk(a, b) =
mπr. Since the divisor corresponding to σ∗

Ov ,kI is Dv,k +fv,kCv,i,k where
Dv,k is horizontal and Cv,i,k is reduced, this means that we must have

Sv,k(Pk(a, b), Qk(a, b)) − min(v(Pk), Q(Pk)) = r = fv,k =
∑

i

xv,i,k,

as desired. �

Since blowing up commutes with base extension from OK to the ring
of integers in a number field over which D splits into points, Lemma
5.6 generalizes easily to the following lemma.

Lemma 5.7. We have

∑

i

xv,i,k[kv,i,k : k] =

deg F
∑

`=1

Sv,k(Pk(a`, b`), Qk(a`, b`))

− (deg F )(min(v(Pk, Qk))).

Now, we will show that the contribution of min(v(Pk), v(Qk)) can be
controlled.

Lemma 5.8. The limit limk→∞
min(v(Pk),v(Qk))

dk exists.

Proof. We will show that the sequence
(

min(v(Pk),v(Qk))
dk

)

is bounded and
increasing. Since min(v(Pk), v(Qk)) ≤ Rv(Pk, Qk), boundedness follows
immediately from Lemma 5.4. Now, for any k ≥ 1, we have

min(v(Pk+1), v(Qk+1)) ≥ dmin(v(Pk), v(Qk)))

since Pk+1 = P (Pk, Qk) and Qk+1 = Q(Pk, Qk) so the sequence is in-
creasing. �

Let ∞ denote the horizontal divisor on X corresponding to the point
[1 : 0] and let ∞k denote the horizontal divisor on Xk corresponding
to this point.

Lemma 5.9. We have yv,i,k = v(Pk(1, 0)) − min(v(Pk), v(Qk)) where
σ∗

k∞ = ∞k +
∑

v

∑

i yv,i,kCv,i,k. Thus,

lim
k→∞

yv,i,k

dk
=
v(Ad)

d− 1
− lim

k→∞

min(v(Pk), v(Qk))

dk
.
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Proof. Since T1 is a factor of Q, it is also a factor of Qk for every k.
Thus, for each k we have Sv,k(Pk(1, 0), Qk(1, 0)) = v(Pk(1, 0)), so by
Lemma 5.6, we have yv,i,k = v(Pk(1, 0)) − min(v(Pk), v(Qk)). Since
P (1, 0) = Ad and for all k ≥ 1 we have

Pk+1(1, 0) = P (Pk(1, 0), 0) = AdPk(1, 0)d.

As in the proof of Lemma 5.4, it follows that

lim
k→∞

v(Pk(1, 0))

dk
= v(Ad)

(

∞
∑

i=1

1

di

)

=
v(Ad)

d− 1
.

�

The following is now an immediate consequence of Definition 5.2 and
Lemmas 5.7, 5.8, and 5.9.

Proposition 5.10. With notation as above, we have
∫

P1(Cv)

log |F |vdµv,ϕ = − lim
k→∞

xv,i,k[kv,i,k : kv]

dk
log N(v)

+ (degF ) lim
k→∞

yv,i,k

dk
log N(v) − v(F ) logN(v).

(5.10.1)

5.4. A remark on the use of integral notation at finite places.

Let us now add a few words about why it makes sense to think of
our definition of

∫

P1(Cv)
log |F |v dµv,ϕ as an integral when v is finite.

H. Brolin ([7]) and M. Lyubich ([18]) have shown that if v is an infinite
place and θ is a continuous, bounded function on P1(Cv), then for any
ξ ∈ C with an infinite backward orbit under ϕ (i. e. for which the set
∪∞

k=1(ϕ
k)−1(ξ) is infinite), one has

lim
k→∞

∑

ϕ(z)=ξ

θ(z)

dk
=

∫

P1(Cv)

θ dµv,ϕ,

where dµv,ϕ is the unique ϕ-invariant measure (see [12]) on P1 (which
is the same as our dµv,ϕ, as we show in Proposition 7.2).

Our p-adic integrals can be written in a similar way. For example,
supposeD is an irreducible divisor corresponding to a single point [a : b]
such that Pk(a, b) 6= 0. Then the polynomial F (t) = bt − a defines D.

Writing Pk = ηk

∏dk

j=1(T0 − ujT1), we then have

Pk(a, b) = ηk

dk
∏

j=1

(b− uja) = ηk

dk
∏

j=1

F (uj).
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Since ϕk(z) = 0 if and only if [z : 1] ∼ [uj : 1] for some j, we thus have

log |Pk(a, b)|v
dk

=
log |ηk|v
dk

+
∑

ϕk(z)=0

log |F (z)|v
dk

,

where the z with ϕk(z) = 0 are counted with multiplicities. Similarly,
when Q is not a multiple of Xd

1 , we have

log |Qk(a, b)|v
dk

=
log |γk|v
dk

+
∑

ϕk(z)=∞

log |F (z)|v
dk

,

where γk is the leading coefficient of Qk(T0, 1). Taking limits and sub-

tracting off log |Ad|v
d−1

, we see that
∫

P1(Cv)
log |F |vdµv,ϕ is equal to

lim
k→∞

max





∑

ϕk(z)=0

log |F (z)|v
dk

,
∑

ϕk(z)=∞

log |F (z)|v
dk



 .

More generally, with a bit of diophantine geometry, we can show that
for any point ξ ∈ Cv that has an infinite backwards orbit under ϕ, we
have

∫

P1(Cv)

log |F |vdµv,ϕ = lim
k→∞

∑

ϕk(z)=ξ
F (z)6=0

log |F (z)|v
dk

.

We will prove this in a future paper. Thus, our v-adic integrals at finite
places seem quite analogous to our integrals at the infinite places. We
should note, however, that we do not know what classes of functions
we can expect to be able to “integrate” in this way at finite places.

6. The Mahler formula for dynamical systems

The formula of Mahler for the naive height of a closed point α 6= ∞,

deg(F )h(α) =

∫ 1

0

log |F (exp(2iπθ))|dθ,

where F is the minimal equation for the algebraic point α of the pro-
jective line over Q will be generalized to a dynamical system ϕ and
its canonical height. The original Mahler formula is associated to the
dynamics of the map ϕ(t) = t2.

In general, the formula involves some adelic terms with support at
places of bad reduction. Recall our definition of dµv,ϕ for v an infi-
nite place from Section 2 and our definition of

∫

P1(Cv)
log |F |vdµv,ϕ for

v a finite place from Section 5. We give a proof of this theorem using
integral models for each iterate of ϕ. It may be possible to give an
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independent proof using adelic metrics (cf . [35]). Recall our defini-
tion of dµv,ϕ for v an infinite place from Section 2 and our definition
of
∫

P1(Cv)
log |F |vdµv,ϕ for v a finite place from Section 5. Our main

theorem is the following:

Theorem 6.1. Let K be a number field, ϕ a rational map from P1
K to

P1
K that has at least one K-rational fixed point, which we call ∞. For

infinite v, (resp. finite v), let dµv,ϕ for v be defined as in Proposition
2.3 (resp. Definition 5.2). Then, given any point α ∈ P1(K̄) with
α 6= ∞ and any minimal polynomial F for α over K one has

(6.1.1) [K(α) : Q]hϕ(α) =
∑

places v of K

∫

P1(Cv)

log |F |vdµv,ϕ.

For finite v, we have
∫

P1(Cv)
log |F |vdµv,ϕ = 0 unless ϕ has bad reduction

at v or all the coefficients of F have nonzero v-adic valuation. In
particular,

∫

P1(Cv)
log |F |vdµv,ϕ = 0 for all but finitely many v.

Proof. We will compute all our heights by using the Arakelov intersec-
tion product between Weil divisors and metrized line bundles, which is
defined in Appendices A and B.

We can think of F as a rational function on X; we will then have
divF = D − (deg F )∞ +

∑

finite v v(F )Xv, where D is the horizontal
divisor on X corresponding to α and Xv is the fiber of X at v. We
let Fk = σ∗

kF and let Xk,v = σ∗
kXv denote the fiber of Xk at the finite

place v. Let Dk be the horizontal divisor on Xk corresponding to D
and let ∞k be the horizontal divisor on Xk corresponding to ∞. We
have

div Fk = Dk +
∑

finite v

∑

i

xv,i,kCv,i,k − (degF )∞k

− (deg F )
∑

finite v

∑

i

yv,i,kCv,i,k +
∑

finite v

v(F )Xk,v,

where σ∗
kD = Dk+

∑

v

∑

i xv,i,kCv,i,k and σ∗
k∞ = ∞k+

∑

v

∑

i yv,i,kCv,i,k,
as in Section 5.

We let L be the line bundle OX(1). At each infinite place v, let ‖ · ‖v

be the metric on L such that for any section s = u0T0+u1T1, of OP1(1),

we have ‖s([T0 : T1])‖v = (|u0T0 + u1T1|
2
v/(|T0|

2
v + |T1|

2
v))

[Kv:R]/2
. This

metric is smooth and semipositive (see [32, Section 6]). We denote as
hL the height function given by [K(α) : Q]hL(α) = (Eα.L)Ar, where Eα

is the horizontal divisor on X corresponding to α. Note that hL([1 :
0]) = 0. We denote as Lk the line bundle ϕ∗

kL endowed with the metric
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ϕ∗
k‖ · ‖v. Then 1

(deg ϕ)k
−1
2πi
dd logϕ∗

k‖ · ‖v converges to a distribution dµv,ϕ

as k → ∞ by Proposition 2.3.
Let α ∈ X(k̄) be a point on the generic fiber corresponding to D.

By the definition of Lk, we have (Dk.Lk)Ar = (degF )hL(ϕk(α)) and
(∞k.Lk)Ar = 0. Using Proposition B.3 and the fact that (Cv,i,k.Lk) =
[kv,i,k : kv] (by Proposition 4.3) and (Xk,v.Lk) = 0 (by Proposition A.8),
we thus obtain

dk
∑

v|∞

∫

X(Cv)

log |F |vdµv,k = (div Fk.Lk)Ar

= −((deg F )∞k.Lk)Ar + (Dk.Lk)Ar +
∑

finite v

(xv,i,kCv,i,k.Lk) log N(v)

+
∑

finite v

v(F )(Xk,v.Lk) log N(v) − (degF )
∑

finite v

(yv,i,kCv,i,k.Lk) log N(v)

= [K(α) : Q]hL(ϕk(α)) +
∑

finite v

xv,i,k[kv,i,k : kv] log N(v)

+ dk
∑

finite v

v(F ) logN(v) − (degF )
∑

finite v

yv,i,k[kv,i,k : kv] log N(v).

Now, we divide through by dk and take limits. Since

lim
k→∞

∑

v|∞

∫

X(Cv)

log |F |vdµv,k =
∑

v|∞

∫

X(Cv)

log |F |vdµv,ϕ

and limk→∞ hL(ϕk(α))/dk = hϕ(α), applying Proposition 5.10 yields

[K(α) : Q]hϕ(α) =
∑

v|∞

∫

X(Cv)

log |F |vdµv,ϕ −
∑

finite v

v(F ) logN(v)

− lim
k→∞

1

dk

∑

finite v

xv,i,k[kv,i,k : kv] log N(v) + (degF ) lim
k→∞

yv,i,k

dk
log N(v)

=
∑

v|∞

∫

P1(Cv)

log |F |vdµv,ϕ +
∑

finite v

∫

P1(Cv)

log |F |vdµv,ϕ.

�
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Remark 6.2. Letting ϕ = P/Q be a model for ϕ and applying Lemma
5.1, we have the bound

−(deg F )
(

∑

finite v

Rv(P,Q)

d− 1

)

log N(v) −
∑

finite v

v(F ) log N(v)

≤
∑

finite v

∫

P1(Cv)

log |F |vdµv,ϕ

≤ (degF )
∑

finite v

v(Ad)

d− 1
log N(v) −

∑

finite v

v(F ) logN(v),

where Ad is the coefficient of the T d
0 term of P , v(F ) is the minimum

of the v-adic valuations of the coefficients of F , and Rv(P,Q) is the
supremum of min(v(P (a, b)), v(Q(a, b))) over all v-adic integers a and
b in OK with (a, b) 6= (0, 0). Note that

∑

finite v Rv(P,Q) is less than or
equal to the resultant of Pk(T0, 1) and Qk(T0, 1) as polynomials in T0

(see Brieskorn and Knörrer [6, p. 279, Proposition 4], for example).

Corollary 6.3. Suppose that ϕ can be written as [P : Q] where P (T0, 1)
is monic in T0 and that α has a minimal polynomial F over K with
coprime coefficients in OK (as is always the case when K = Q, for
example). Then

(6.3.1) [K(α) : Q]hϕ(α) ≤
∑

v|∞

∫

X(C)

log |F |vdµv,ϕ,

with equality if ϕ has good reduction everywhere.

Example 6.4. In general, one cannot expect equality in (6.3.1). Sup-
pose that P (T0, 1) is monic, as in Corollary 6.3. Suppose furthermore
that α ∈ K has a minimal polynomial F with coprime coefficients
in OK and that Q(α, 1) = 0. Then, we have

∫

X(C)
log |F |vdµv,ϕ =

−v(P (α,1))
d

log N(v) for any finite place v. Thus, if v(P (α, 1)) > 0 for
some finite place v, then inequality (6.3.1) is strict.

7. Equidistribution and Julia sets

Let v be an archimedean place. As we have defined it, dµv,ϕ is only a
distribution; that is to say, the integral

∫

P1(C)
f dµv,ϕ is only defined for

smooth functions f . We will now show that dµv,ϕ extends to a linear
functional on the space of continuous functions on P1(C) and that this
linear functional is the unique ϕ-invariant probability measure on P1(C)
with support on the Julia set of ϕ.

Let ‖ · ‖v be a metric on OP1
(1). Recall the definitions of ‖ · ‖v,k and

dµv,k from Proposition 2.3.
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Following [18], we define A to be the operator on the space of contin-
uous functions of P1(C) which sends a continuous function f on P1(C)
to

(Af)(z) :=
1

d

∑

ϕ(w)=z

ewf(w),

where z ∈ P1(C) and ew is the ramification index of ϕ at w.

Lemma 7.1. Let U be an open set in P1(C). Then

(7.1.1)

∫

ϕ−1(U)

f dµv,k+1 =

∫

U

Af dµv,k

for any k ≥ 1.

Proof. Since the set of ramification points of ϕ is finite, it suffices to
show that (7.1.1) holds when U contains no ramification points; since
any open subset can be written as a union of simply connected open
subsets, we may further assume that U is simply connected. We may
then decompose ϕ−1(U) into d branches Vλ, 1 ≤ λ ≤ d such that ϕ is
bijective on each Vλ with analytic inverse ϕ−1

λ .
Choose a section s of OP1(1) that does not vanish on U or ϕ−1(U).

Let ρ =
log ‖s‖v,k

2πi
. Then, on U , we have ddρ = dµv,k and on Vλ, we have

dd(ρ ◦ ϕ) = (degϕ)(dµk+1,v). By change of variables, we then have
∫

Vλ

f dµv,k+1 =
1

d

∫

Vλ

f(z) dd(ρ(ϕ(z)))

=
1

d

∫

U

f(ϕ−1
λ (u)) dd(ρ(u))

=
1

d

∫

U

f ◦ ϕ−1
λ dµv,k.

Since (Af)(u) = 1
d

∑d
λ=1 f ◦ ϕ−1

λ (u), we thus obtain

∫

ϕ−1(U)

f dµv,k+1 =

d
∑

λ=1

∫

Vλ

f dµv,k+1 =
1

d

d
∑

λ=1

∫

U

f ◦ ϕ−1
λ dµv,k

=

∫

U

1

d

d
∑

λ=1

f ◦ ϕ−1
λ dµv,k =

∫

U

Af dµv,k.

�

An exceptional point ξ for ϕ is a point such that ϕ2(ξ) = ξ and ϕ2

ramifies completely at ξ. An exceptional point ξ is an super-attracting
fixed point for ϕ2 (see J. Milnor [22]).
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Proposition 7.2. The measures dµv,k converge to a measure dµv,ϕ

that is supported on the Julia set. Furthermore, dµv,ϕ is the unique
probability measure supported on the Julia set with the property that

∫

ϕ(U)

dµv,ϕ =

∫

U

dµv,ϕ

for any open subset U ⊂ P1(C) such that ϕ is injective on U .

Proof. Let ε > 0. We may choose an open set Uε containing the excep-
tional points of ϕ for which

∫

uε

dµv,1 ≤
ε

2 supz∈P1(C)(|f(z)|v)
.

Such a set exists since dµv,1 is a continous form. Let Wε = P1(C) \
Uε. By Theorem 1 of [18], there is a constant Cf such that (Akf)(w)
converges uniformly to Cf for w ∈ Wε. Thus, there is some M such
that for any k ≥M , we have

|(Akf)(w) − Cf |v < ε/2

for all w ∈ Wε. Using Lemma 7.1.1 and the fact that
∫

Wε
dµv,1 ≤ 1, we

then see that for all k ≥M we have
∣

∣

∣

∣

∫

P1(C)

f dµv,k − Cf

∣

∣

∣

∣

v

=

∣

∣

∣

∣

∫

P1(C)

(Akf) dµv,1 − Cf

∣

∣

∣

∣

v

≤

∣

∣

∣

∣

∫

Wε

(Akf) dµv,1 − Cf

∣

∣

∣

∣

v

+

∫

Uε

|Akf |v dµv,1

≤

∫

Wε

ε

2
dµv,1 +

∫

Uε

( sup
z∈P1(C)

(|f(z)|v)) dµv,1

≤ ε/2 + ε/2 = ε.

Thus, dµv,ϕ extends to a measure such that
∫

P1(C)

f dµv,ϕ = lim
k→∞

(Akf)(z),

where z is any point in Wε. Freir, Lopes, and Mane ([12]) have shown
that the map sending a continuous function f to limk→∞(Akf)(z),
where z is a not an exceptional point of ϕ, is the unique ϕ-invariant
probability measure on P1(C) that is supported on the Julia set of
ϕ. �

P. Autissier [2] has proved the following equidistribution theorem.
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Theorem 7.3. With the same hypothesis as Theorem 6.1, for any
infinite v and any nonrepeating sequence of points (αn) in P1(K) such
that limn→∞ h(αn) = 0, the sequence 1

|Gal(αn)|

∑

σ∈Gal δσ(αn) of discrete

measures converges weakly to dµϕ.

M. Baker and R. Rumely ([3]) have given a new proof of this theorem,
using capacity theory. Their proof also gives equidistribution results
at finite places.

One might also ask whether the Mahler measure of this paper should
also be computable by equidistribution; more precisely, we conjecture:

Conjecture 7.4. With the same hypothesis as theorem 7.3, for F the
minimal equation of point α not in the Galois orbit of any αn and v an
infinite place of K, one has

lim
n→∞

1

|Gal(αn)|

∑

σ∈Gal

log |F (σ(αn)|v =

∫

X(Cv)

log |F |vdµv,ϕ.

We can prove Conjecture 7.4 in the case that the points α are periodic
points. This generalizes earlier work on “elliptic Mahler measure” by
G. Everest and T. Ward in [11, Theorem 6.18].

Appendix A. Schematic Intersection theory on a

Cohen-Macaulay surface.

Intersection theory has been developed by many authors. We are
in this article very interested in signs and vanishing in an arithmetic
situation. A positive local intersection number appears when it can
be expressed as the length of a tensor product. This appendix uses
material that exists in P. Deligne [10] and in W. Fulton [13, Chapter
20].

For us a surface will be a noetherian, irreducible, and reduced scheme
X of dimension two. In this article, moreover, X will be Cohen-
Macaulay and will be equipped with a flat and often projective, gener-
ically smooth, structural map f : X → SpecB, where B is a Dedekind
domain with field of fractions K. Often K will be a number field or
the field of fractions of a discrete valuation ring V . The geometric (or
schematic) intersection numbers will be rational numbers (the need for
denominators for an intersection theory on a singular scheme was noted
previously in D. Mumford [24] and in C. Peskine and L. Szpiro [25]).

Definition A.1. We define the schematic (or geometric) intersection
number of a Cartier divisor D with a Weil cycle C when they have no
common components as

(D.C) = length(OD ⊗OC) − length(Tor1(OD,OC)).
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Lemma A.2. If C is of codimension 2, then (D.C) = 0.

Proof. If f is locally the equation of D and I is the ideal of C in a local
ring A of X, one has an exact sequence

0 → Tor1(A/I, A/f) → A/I
f
→ A/I → A/(I + (f)) → 0.

The lemma follows since the four modules in this sequence are of finite
length.

�

Proposition A.3. (bilinearity and symmetry) The pairing (D.C)
we just defined is bilinear and symmetric when both sides are Cartier
divisors.

Proof. If C is a Weil divisor, it is a linear combination with integral
coefficients of reduced and irreducible Weil divisors Ci (the coefficient
of Ci is equal to length((OC)℘i

)). The sheaf OD being of Tor dimension
1 the pairing is linear on the right by devissage. To see the linearity
on the left it is enough to look at the case where C is reduced and
irreducible. The proof will be complete after the reader checks the
following lemma:

Lemma A.4. Let A be a commutative ring, I an ideal in A and f a
non zero divisor in A. Then one has the following exact sequence:

0 → A/I → A/fI → A/fA→ 0

Proof. The symmetry is clear when D and C are Cartier divisors with
no common components. �

If C ′ is a Q-Cartier divisor, i.e. a Weil divisor with an integral
multiple nC ′ which is Cartier, we will define

(C ′.C) =
1

n
((nC ′).C)

In this article we use only intersection between two Q-Cartier divi-
sors. So, up to an integral multiple, the intersection number is locally
a finite sum of length(A/(f, g)), where A is a local ring of dimension 2
and depth 2 and (f, g) is a regular sequence. The following propositions
are classical:

Proposition A.5. (linear equivalence) If C is a Cohen-Macaulay
projective curve then

(D.C) = degC OX(D)|C.
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Proof. One needs only to check that the degree of a line bundle is a
well behaved notion on Cohen-Macaulay projective curves. This is the
Riemann-Roch theorem for curves.

If C is a projective curve and L is a line bundle on X a projective
surface one can then speak of (L.C) for L is the difference in Pic(X)
between two very ample line bundles each of them having sections with
no common components with C. �

Corollary A.6. When C is a projective curve and D is a Q-Cartier
divisor, the intersection (D.C) is well-defined by bilinearity and linear
equivalence even when D and C have a common component.

Corollary A.7. Let F be a rational function on a reduced, irreducible
surface X that is projective and generically smooth over B. Then for
any Weil divisor C contained in a fiber over B, we have

(div(F ).C) = 0.

Proof. This is clear for the line bundle OX(div(F )) is equal to OX and
C is a projective curve. �

Proposition A.8. (projection formula) Let ϕ : Y → X be a map
between surfaces X and Y that are projective over B. If L is a line
bundle on X and C closed subscheme of Y one has

(ϕ∗(L).C) = (L.ϕ∗(C)).

In particular if C is contracted by ϕ to a subscheme of X of codimension
2 the intersection number (ϕ∗(L).C) is zero.

Proof. By additivity we can suppose C is a reduced irreducible curve
in X. There are two cases: ϕ∗(C) is of dimension 1 and ϕ∗(C) is of
dimension zero. In the first case C → ϕ∗(C) is finite and by Lemma
A.4 we have

length(OC/(fOC)) = length(OX/(fOX) ⊗OC)

= length(OY /(fOY ) ⊗OC).

In the second case L can be realized as the line bundle associated to
the difference of two very ample divisors on X each of them having no
intersection with ϕ∗(C). The reciprocal images of these divisors in Y
do not meet C, so both side of the projection formula vanish as it is
required. �

The following proposition shows that intersection theory for Q-Cartier
divisors does not change when we pass to the normalization.
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Proposition A.9. (invariance under normalization) Let A be

a Cohen-Macaulay integral domain of dimension 2 and let Ã be its
integral closure. Let (f, g) a regular sequence in A then supposing Ã is
a finitely generated A-module (f, g) is a regular sequence in Ã and

length(A/(f, g)) = length(Ã/(f, g)).

Proof. We shall note that Ã is finitely generated over A when we are in
a geometric or arithmetic situation. When (f, g) is a regular sequence
in a module M the only non vanishing Tor is the tensor product M ⊗
A/(f, g). One proves easily by induction that the alternating sum
∑

i(−1)i length(Tori(A/(f, g),M)) is a non negative additive function
on the set of finitely generated A-modules. This sum is is equal to zero
on modules of the form A/h or A/(h, k) for a system of parameters
(h, k) in A and thus is zero on A/℘ for any prime ideal ℘ containing
h or (h, k) by devissage. Hence, it is equal to zero on any module of
dimension less than or equal to one. Any non-zero prime ideal of A
being of the previous form our assertion of vanishing is proved. The
module Ã/A being of dimension at most one and (f, g) remaining a
regular sequence in Ã the proposition follows by additivity. �

The following proposition is proved in P. Deligne [10] with the addi-
tional assumption that X is normal:

Proposition A.10. Let X be a generically smooth, reduced, irreducible
and locally Cohen-Macaulay surface. The geometric intersection prod-
uct on a fiber of X → Spec(B) when X is projective over B, is negative.
Only combination of full fibers have zero self-intersection.

By Proposition A.9, the assumption that X is normal may be re-
placed with the weaker assumption that X is Cohen-Macaulay.

Thus, Proposition A.10 applies to the surfaces used in this paper.

Appendix B. Arakelov intersection with the divisor

associated to a rational function

Let X be as in Appendix A; in this section we specify that the
Dedekind domain B we work with is the ring of integers in a num-
ber field K. Let F be a meromorphic function on X. We begin by
working with “arithmetico-geometric” intersections; that is to say, if
we intersect a Cartier divisor D and a Weil cycle C without common
components, their arithmetico-geometric intersection (D.C)fin is taken
to be

(D.C)fin =
∑

finite places v of B

(Dv.Cv) log N(v),
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where (·.·) is the intersection product from Appendix A, the Dv and
Cv are the pull-backs of D and C back to the fiber Xv, and N(v) is
the cardinality of the residue field kv of our base ring B at v. These
intersections (D.C)fin are thus sums of the geometric intersections of
Appendix A “weighted” by the logarithm of the size of the residue
fields kv.

In practice, we will be computing our intersections between rational
functions and reduced irreducible horizontal divisors SpecR. Thus, for
R an order in a number field K and f a nonzero element of the field of
fractions of R, we define #(R/f) follows: Let S denote the primes P
in R for which f ∈ RP and let T denote the primes Q in R for which
f−1 ∈ RQ. We let

#(R/fR) =

∏

P∈S #(RP/fRP)
∏

Q∈T #(RQ/f−1RQ)
.

Lemma B.1. Let Eβ be an irreducible horizontal divisor on X corre-
sponding to the Galois orbit of the point β ∈ X(Q̄). Then

(divF.Eβ)fin =
∑

v|∞

deg β
∑

i=1

Nv log |F (β [i]
v )|v,

where β
[i]
v are the conjugates of β in X(Cv), the primes v | ∞ are the

set of infinite places of K, each extended to an infinite place on the
field of fractions of R, and Nv is the local degree [Kv : R].

Proof. The divisor Eβ determines a closed immersion iβ : SpecR −→
X for an order R, so F pulls back to an element i∗βF of the field of
fractions of R. By our definition of arithmetic intersection, we have
(divF.Eβ)fin = log #(R/i∗βF ). Since #(R/i∗βF ) = NormK/Q(i∗βF ) (see
[28, Section III.4], for example), the product formula over Q and the
definition of the norm gives

log #(R/i∗βF ) −
∑

v|∞

deg β
∑

i=1

Nv log |F (β [i]
v )|v = 0.

�

Now, let L be a line bundle on X endowed with a smooth metric
‖ · ‖v at each infinite place v of K. We will not require the metric
on L to have any special properties, since we will not need the sort of
adjunction formula that is used, for example, in P. Vojta [30] or S. Lang
[17, Chapter IV]. Let s be a section of L such that div s and div F have
no common horizontal components. Let v be an infinite place of K
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and let Fv and sv denote the pull-backs of F and s to XCv
. We write

divFv =
∑

mαα and div sv =
∑

nββ where all of the α and β are in
X(Cv).

Proposition B.2. With notation as above, we have

1

2πi

∫

X(Cv)

log |F |v dd log ‖s‖v

=
∑

α

mα log ‖s(α)‖v −
∑

β

Nv nβ log |F (β)|v.

Proof. We follow the proof of S. Lang [17, Lemma 2.1.1, pp. 22-23]
closely. Since log |F |v is harmonic away from the support of divFv, we
have dd log |F |v = 0 away from the points α; thus

log |F |vdd log ‖s‖v = log |F |2v dd log ‖s‖v − log ‖s‖vdd log |F |v

away from the α and β. Since dη ∧ dγ = dγ ∧ dη for any smooth
functions η and γ (see [17, p. 22]), we therefore have

log |F |vdd log ‖s‖v − log ‖s‖vdd log |F |v

= d(log |F |vd‖s‖v − log ‖s‖vd log |F |v)

away from the α and β.
Now, let let Y (a) be the complement of the circles C(α, a) and

C(β, a) of radius a around all of the α and β and let

ω = log |F |v d log ‖s‖v − log ‖s‖v d log |F |v.

By Stokes theorem, we have

(B.2.1)

∫

Y (a)

log |F |v dd‖s‖v = −

(

∑

α

∫

C(α,a)

ω +
∑

β

∫

C(β,a)

ω

)

(the minus sign here comes from the fact that applying Stokes theorem
to the outside of a circle gives a negative orientation). Now, it is easy
to see that when a is small we have

∫

C(α,a)

log |F |vd log ‖s‖v = O(a log a),

so

lim
a→0

∫

C(α,a)

log |F |vd log ‖s‖v = 0.

Similarly, we have

lim
a→0

∫

C(β,a)

log ‖s‖v d log |F |v = 0.
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To evaluate lima→0

∫

C(α,a)
log |F |vd log ‖s‖, we switch to polar coordi-

nates r, θ; we then have

d log ‖s‖v = r
∂ log ‖s‖v

∂r
dθ.

Since
∂ log ‖s‖v

∂r
=

Nv nβ

r
+ C∞-function

for small r, we thus obtain

lim
a→0

∫

C(β,a)

log |F |v d log ‖s‖v = (2πi) Nv nβ log |F (β)|v.

A similar calculation shows that

lim
a→0

∫

C(α,a)

log ‖s‖vd log |F |v = (2πi)mα log ‖s(α)‖v.

Taking the limit of (B.2.1) as a→ 0, thus gives

lim
a→0

1

2πi

∫

Y (a)

log |F |v dd log ‖s‖v

= −

(

∑

β

Nv nβ log |F (β)|v −
∑

α

mα log ‖s(β)‖v

)

.

�

Now, let us define the Arakelov intersection (D.L)Ar of a metrized
line bundle L with a Weil divisor. We begin by defining the Arakelov
degree degAr M of a metrized line bundle M over an order R as in
J. Silverman [26]. A metrized line bundle M over an order R is a free
R-module of rank one with a nonzero metric ‖ · ‖w on the completion
Mw for each archimedean place w ∈ R∞ on the field of fractions of
R. As with our metrized line bundles on X, the metrics at infinity are
normalized so that they behave like |·|Nw where |·| is the usual absolute
value on C and Nw is the local degree of Rw over R. Let m 6= 0 be an
element of M ; then

(B.2.2) degArM = log #(M/Rm) −
∑

w∈R∞

log ‖m‖w.

Note that this definition does not depend on our choice of m by the
product formula.

If L is a metrized line bundle and Eβ is a horizontal divisor on X,
then L pulls back to a metrized line bundle i∗βL over the order R where
Eβ is iβ(SpecR) and we define

(Eβ.L)Ar = degAr i
∗
βL.
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If s is a section of L such that Supp s doesn’t meet Eβ on the generic
fiber, this gives

(Eβ.L)Ar = log #(M/R(i∗βs)) −
∑

v|∞

deg β
∑

i=1

log ‖s(β [i]
v )‖v,

where β
[i]
v are the conjugates of β in X(Cv).

If D is a reduced irreducible divisor contained in a finite fiber Xv,
then we define (D.L)Ar = (D.L)fin = deg(L|D) log N(v).

Write div s = Dver +Dhor where Dver is vertical and Dhor is horizon-
tal. For each Galois orbit of points β in X(Cv) as above, we pick a
representative β ′. Then we can write Dhor =

∑

nβ′Eβ′, where Eβ is an
irreducible horizontal divisor on X corresponding to the Galois orbit
of the point β ′ ∈ X(Q̄) and nβ′ = nβ for each β ∈ X(Cv) in the orbit
of β ′. We also pick representatives α′ of each Galois orbit of points α
and write the horizontal part of div F as

∑

mα′Eα′ where Eα′ is the
irreducible horizontal divisor corresponding to the Galois orbit of the
point α′ ∈ X(Q̄).

We recall our definition of the curvature dµv of a smoothly metrized
line bundle L. If s is a section of L, then away from the support of s,
we have dµv = − 1

2πi
dd log ‖s‖v.

Proposition B.3. We have the formula

(divF.L)Ar =
∑

v|∞

∫

X(Cv)

log |F |vdµv.

Proof. We have (div F.Dver) = 0 by Corollary A.7 (since each compo-

nent of Dver is projective), so letting β
[i]
v denote the conjugates of β ′ in

X(Cv), we have

(div F.L)Ar = (divF.Eβ)fin −
∑

v|∞

∑

α′

deg α′

∑

i=1

mα′ log ‖s(α[i]
v )‖v

=
∑

v|∞

∑

β′

deg β′

∑

i=1

Nv nβ′ log |F (β [i]
v )|v −

∑

v|∞

∑

α′

deg α′

∑

i=1

mα′ log ‖s(α[i]
v )‖v
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by Lemma B.1. Applying Proposition B.2 at each v | ∞ and summing
over v gives

(div F.L)Ar = −
∑

v|∞

1

2πi

∫

X(Cv)

log |F |v dd log ‖s‖v

=
∑

v|∞

∫

X(Cv)

log |F |vdµv.

�
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[20] V. Maillot, Géométrie d’Arakelov des Variétés Toriques et fibrés en droites
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[28] L. Szpiro, Cours de géométrie arithmétique, Orsay preprint.
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