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1. Introduction

As usual, we write Z,Q,Fp,C for the ring of integers, the field of rational num-

bers, the finite field with p elements and the field of complex numbers respectively.

If Z is a smooth algebraic variety over an algebraically closed field then we write

Ω1(Z) for the space of differentials of the first kind on Z. If Z is an abelian vari-

ety then we write End(Z) for its ring of (absolute) endomorphisms and End0(Z)

for its endomorphism algebra End(Z) ⊗Q. If Z is defined over a (not necessarily

algebraically closed) field K then we write EndK(Z) ⊂ End(Z) for the (sub)ring of

K-endomorphisms of Z.

Let p be a prime, q = pr an integral power of p, ζq ∈ C a primitive qth root of

unity, Q(ζq) ⊂ C the qth cyclotomic field and Z[ζq] the ring of integers in Q(ζq).

If q = 2 then Q(ζq) = Q. It is well-known that if q > 2 then Q(ζq) is a CM-field of

degree (p− 1)pr−1. Let us put

Pq(t) =
tq − 1
t− 1

= tq−1 + · · ·+ 1 ∈ Z[t].

Clearly, Pq(t) =
∏r

i=1 Φpi(t) where Φpi(t) = t(p−1)pi−1
+ · · · + tp

i−1
+ 1 ∈ Z[t]

is the pith cyclotomic polynomial. In particular, Q[t]/Φpi(t)Q[t] = Q(ζpi) and

Q[t]/Pq(t)Q[t] =
∏r

i=1 Q(ζpi).

Let f(x) ∈ C[x] be a polynomial of degree n ≥ 4 without multiple roots. Let

Cf,q be a smooth projective model of the smooth affine curve yq = f(x). The map

(x, y) 7→ (x, ζqy) gives rise to a non-trivial birational automorphism δq : Cf,q → Cf,q

of period q. The jacobian J(Cf,q) of Cf,q is a complex abelian variety. By Albanese

functoriality, δq induces an automorphism of J(Cf,q) which we still denote by δq.

One may easily check (see 4.8 below) that δq−1
q + · · ·+ δq + 1 = 0 in End(J(Cf,q)).

This implies that if Q[δq] is the Q-subalgebra of End0(J(Cf,q)) generated by δq

then there is the natural surjective homomorphism Q[t]/Pq(t)Q[t] � Q[δq] that

sends t + Pq(t)Q[t] to δq. One may check that this homomorphism is, in fact, an
1
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isomorphism (see [7, p. 149], [8, p. 458]) where the case q = p was treated). This

gives us an embedding Q[t]/Pq(t)Q[t] ∼= Q[δq] ⊂ End0(J(Cf,q)). Our main result

is the following statement.

Theorem 1.1. Let K be a subfield of C such that f(x) is an irreducible polynomial

in K[x] of degree n ≥ 5 and its Galois group over K is either the full symmetric

group Sn or the alternating group An. In addition, assume that either p does not

divide n or q | n. Then End0(J(Cf,q)) = Q[δq] ∼= Q[t]/Pq(t)Q[t] =
∏r

i=1 Q(ζpi).

Remark 1.2. If q is a prime (i.e. q = p) then J(Cf,p) is an absolutely simple

abelian variety and End(J(Cf,p)) = Z[δp] ∼= Z[ζp] [14, 20]. In particular, if p = 2

then Cf,2 is a hyperelliptic curve, δ2 is multiplication by −1 and End(J(Cf,2)) = Z.

See [19, 22, 18] for a discussion of finite characteristic case.

Examples 1.3. Let n ≥ 5 be an integer, p a prime, r a positive integer, q = pr.

Assume also that either n is not divisible by p or q | n.

(1) The polynomial xn−x−1 ∈ Q[x] has Galois group Sn over Q ([11, p. 42]).

Therefore the endomorphism algebra (over C) of the jacobian J(C) of the

curve C : yq = xn − x− 1 is Q[t]/Pq(t)Q[t].

(2) The Galois group of the “truncated exponential”

expn(x) := 1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
∈ Q[x]

is either Sn or An [9]. Therefore the endomorphism algebra (over C) of

the jacobian J(C) of the curve C : yq = expn(x) is Q[t]/Pq(t)Q[t].

Remark 1.4. If f(x) ∈ K[x] then the curve Cf,q and its jacobian J(Cf,q) are de-

fined overK. LetKa ⊂ C be the algebraic closure ofK. Clearly, all endomorphisms

of J(Cf,q) are defined over Ka. This implies that in order to prove Theorem 1.1, it

suffices to check that Q[δq] coincides with the Q-algebra of Ka-endomorphisms of

J(Cf,q).

Our main technical tool used in the proof of Theorem 1.1 is a certain modular

representation Vf,p of the Galois group of f [3, 17] arising from its action on the

roots of f . In the case of q = p the Galois module Vf,p is canonically isomorphic to

the subgroup of δp-invariants in J(Cf,p) (if ζp ∈ K) [7, 8]. In the present paper we

construct (assuming that ζq ∈ K and p does not divide n) an abelian subvariety

Jf,q ⊂ J(Cf,q) with multiplication by Z[ζq] and prove that Vf,p is canonically
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isomorphic to the subgroup of ζq-invariants in Jf,q (Lemma 4.11). (It turns out

that if q = pr then J(Cf,q) is isogenous to a product of all Jf,pi

with 1 ≤ i ≤ r.)

The paper is organized as follows. In §2 we obtain conditions that guarantee that

the center of the endomorphism algebra of a complex abelian variety is a cyclotomic

field (Corollary 2.2). In §3 we study abelian varieties X over arbitrary fields, whose

endomorphism ring contains a subring isomorphic to the ring O of integers in a

given number field E. We study the Galois action on the λ-torsion Xλ of X where

λ is a maximal ideal in O. We prove (Theorem 3.8) that if the Galois module Xλ is

very simple in the sense of [15, 21] then the centralizer of E in the algebra End0(X)

of all (absolute) endomorphisms of X either coincides with E or is “very big”. In §4
we study endomorphism algebras of J (f,q), using the very simplicity of the Galois

module Vf,p when deg(f) ≥ 5 and the Galois group of f is either the full symmetric

or the alternating group. Theorem 3.8 helps us to prove that in characteristic zero

Q(ζq) is a maximal commutative subalgebra in End0(Jf,q). Using Corollary 2.2

and computations with differentials of the first kind (Theorem 3.10 and Remark

4.2), we prove (Theorem 4.16) that the center of End0(Jf,q) coincides with Q(ζq)

and therefore End0(Jf,q) = Q(ζq). We finish the proof of Theorem 1.1 in §5.

2. Complex abelian varieties

Let Z be a complex abelian variety of positive dimension. We write CZ for the

center of the semisimple finite-dimensional Q-algebra End0(Z).

Let E be a subfield of End0(Z) that contains the identity map. Let ΣE be the

set of all field embeddings σ : E ↪→ C. It is well-known that

Cσ := E ⊗E,σ C = C, EC = E ⊗Q C =
∏

σ∈ΣE

E ⊗E,σ C =
∏

σ∈ΣE

Cσ.

Let Lie(Z) be the tangent space to the origin of Z; it is a dim(Z)-dimensional C-

vector space. By functoriality, End0(Z) and therefore E act on Lie(Z) and therefore

provide Lie(Z) with a natural structure of E ⊗Q C-module. Clearly,

Lie(Z) =
⊕

σ∈ΣE

CσLie(Z) = ⊕σ∈ΣE
Lie(Z)σ

where Lie(Z)σ := CσLie(Z) = {x ∈ Lie(Z) | ex = σ(e)x ∀e ∈ E}. Let us

put nσ = nσ(Z,E) = dimCσLie(Z)σ = dimCLie(Z)σ. It is well-known that the

natural map Ω1(Z) → HomC(Lie(Z),C) is an isomorphism. This allows us to

define via duality the natural homomorphism E → EndC(HomC(Lie(Z),C)) =
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EndC(Ω1(Z)). This provides Ω1(Z) with a natural structure of E ⊗Q C-module in

such a way that Ω1(Z)σ := CσΩ1(Z) ∼= HomC(Lie(Z)σ,C). In particular,

nσ = dimC(Lie(Z)σ) = dimC(Ω1(Z)σ) (1).

The following statement is contained in [20, Th. 2.3].

Theorem 2.1. If E/Q is Galois, E contains CZ and CZ 6= E then there exists a

nontrivial automorphism κ : E → E such that nσ = nσκ for all σ ∈ ΣE.

The following assertion will be used in the proof of Theorem 4.16.

Corollary 2.2. Suppose that there exist a prime p, a positive integer r, the prime

power q = pr and an integer n ≥ 4 enjoying the following properties:

(i) E = Q(ζq) ⊂ C where ζq ∈ C is a primitive qth root of unity;

(ii) n is not divisible by p, i.e. n and q are relatively prime:

(iii) Let i < q be a positive integer that is not divisible by p and σi : E =

Q(ζq) ↪→ C the embedding that sends ζq to ζ−i
q . Then nσi

=
[

ni
q

]
.

Then CZ = Q(ζq).

Proof. If q = 2 then E = Q(ζ2) = Q. Since CZ is a subfield of E = Q, we conclude

that CZ = Q = Q(ζ2). So, further we assume that q > 2.

Clearly, {σi} is the collection Σ of all embeddings Q(ζq) ↪→ C. By (iii), nσi
= 0

if and only if 1 ≤ i ≤ [ q
n ]. Suppose that CZ 6= Q(ζq). It follows from Theorem 2.1

that there exists a non-trivial field automorphism κ : Q[ζq] → Q[ζq] such that for

all σ ∈ Σ we have nσ = nσκ. Clearly, there exists an integer m such that p does

not divide m, 1 < m < q and κ(ζq) = ζm
q .

Assume that q < n. In this case the function i 7→ nσi = [ni
q ] is strictly increasing

and therefore nσi
6= nσj

while i 6= j. This implies that σi = σiκ, i.e. κ is the

identity map which is not the case. The obtained contradiction implies that n < q.

Since n ≥ 4, we have q ≥ 5.

If i is an integer then we write ī ∈ Z/qZ for its residue modulo q.

Clearly, nσ = 0 if and only if σ = σi with 1 ≤ i ≤ [ q
n ]. Since n and q are

relatively prime, [ q
n ] = [ q−1

n ]. It follows that nσi = 0 if and only if 1 ≤ i ≤ [ q−1
n ].

Clearly, the map σ 7→ σκ permutes the set

{σi | 1 ≤ i ≤
[
q − 1
n

]
, p does not divide i}.
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Since κ(ζq) = ζm
q and σiκ(ζq) = ζ−im

q , it follows that if

A :=
{
i ∈ Z | 1 ≤ i ≤

[
q − 1
n

]
< q, p does not divide i

}
then the multiplication by m in (Z/qZ)∗ = Gal(Q(ζq)/Q) leaves invariant the set

Ā := {̄i ∈ Z/qZ | i ∈ A}. Clearly, A contains 1 and therefore m̄ = m · 1̄ ∈ Ā. Since

1 < m < q,

m = m · 1 ≤
[
q − 1
n

]
(2).

Let us consider the arithmetic progression consisting of 2m integers

[
q − 1
n

] + 1, . . . , [
q − 1
n

] + 2m

with difference 1. All its elements lie between [ q−1
n ] + 1 and[

q − 1
n

]
+ 2m ≤ 3

[
q − 1
n

]
≤ 3

q − 1
4

< q − 1.

Clearly, there exist exactly two elements of A say, mc1 andmc1+m that are divisible

by m. Clearly, c1 is a positive integer and either c1 or c1 + 1 is not divisible by p;

we put c = c1 in the former case and c = c1 + 1 in the latter case. However, c is

not divisible by p and[
q − 1
n

]
< mc ≤

[
q − 1
n

]
+ 2m < q − 1 (3).

It follows that mc does not lie in A and therefore mc does not lie in Ā. This implies

that c̄ also does not lie in Ā and therefore c >
[

q−1
n

]
. Using (3), we conclude that

(m− 1)
[
q − 1
n

]
< 2m

and therefore [
q − 1
n

]
<

2m
m− 1

= 2 +
2

m− 1
.

If m > 2 then m ≥ 3 and using (2), we conclude that

3 ≤ m ≤
[
q − 1
n

]
< 2 +

2
m− 1

≤ 3

and therefore 3 < 3, which is not true. Hence m = 2 and

2 = m ≤
[
q − 1
n

]
< 2 +

2
m− 1

= 4

and therefore
[

q−1
n

]
= 2 or 3. It follows that q ≥ 1 + 2n ≥ 1 + 2 · 4 = 9. Since

m = 2 is not divisible by p, we conclude that p ≥ 3 and either Ā = {1̄, 2̄} or p > 3

and A = {1̄, 2̄, 3̄}. In both cases 4̄ = 2 · 2̄ = m · 2̄ must lie in Ā. Contradiction. �
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3. Abelian varieties over arbitrary fields

Let K be a field. Let us fix its algebraic closure Ka and denote by Gal(K)

the absolute Galois group Aut(Ka/K) of K. If X is an abelian variety of positive

dimension over Ka then we write 1X (or even just 1) for the identity automorphism

of X. If Y is (may be another) abelian variety of positive dimension over Ka

then we write Hom(X,Y ) for the group of all Ka-homomorphisms from X to Y .

We write Hom0(X,Y ) for the finite-dimensional Q-vector space Hom(X,Y ) ⊗Q.

Clearly, End(X) = Hom(X,X) and End0(X) = End(X) ⊗ Q = Hom0(X,X).

It is well-known that End0(X) is a finite-dimensional semisimple Q-algebra and

dimQ(End0(X)) does not exceed 4dim(X)2 [4, §19, corollary 1 to theorem 3]; the

equality holds if and only if char(K) > 0 and X is a supersingular abelian variety

[14, Lemma 3.1].

Let E be a number field and O ⊂ E be the ring of all its algebraic integers. Let

(X, i) be a pair consisting of an abelian variety X over Ka and an embedding

i : E ↪→ End0(X)

with i(1) = 1X . It is well known [12, Proposition 2 on p. 36] that [E : Q] divides

2dim(X), i.e., r = rX := 2dim(X)/E : Q] is a positive integer.

Let us denote by End0(X, i) the centralizer of i(E) in End0(X). Clearly, i(E)

lies in the center of the finite-dimensional Q-algebra End0(X, i). It follows that

End0(X, i) carries a natural structure of finite-dimensional E-algebra. If Y is (pos-

sibly) another abelian variety over Ka and j : E ↪→ End0(Y ) is an embedding that

sends 1 to the identity automorphism of Y then we write

Hom0((X, i), (Y, j)) = {u ∈ Hom0(X,Y ) | ui(c) = j(c)u ∀c ∈ E}.

Clearly, End0(X, i) = Hom0((X, i), (X, i)). By abuse of language, we call elements

of Hom0((X, i), (Y, j)) E-equivariant homomorphisms from X to Y .

Recall that if ψ : X → Y is an isogeny then there exist an isogeny φ : Y → X

and a positive integer N such that φψ = N1X , ψφ = N1Y . One may easily check

that if ψ is E-equivariant then φ is also E-equivariant.

If d is a positive integer then we write i(d) for the composition

E ↪→ End0(X) ⊂ End0(Xd)

of i and the diagonal inclusion End0(X) ⊂ End0(Xd).
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One may easily check [23, Remark 4.1] that the E-algebra End0(X, i) is semisim-

ple. The following assertion is contained in [23, Theorem 4.2].

Theorem 3.1. (i) We always have

dimE(End0((X, i)) ≤ 4 · dim(X)2

[E : Q]2
.

(ii) Suppose that

dimE(End0((X, i)) =
4 · dim(X)2

[E : Q]2
.

Then X is an abelian variety of CM-type isogenous to a self-product of an

(absolutely) simple abelian variety. Also End0((X, i) is a central simple

E-algebra, i.e., E coincides with the center of End0((X, i).

Moreover, if char(Ka) = 0 then [E : Q] is even and there exist a [E:Q]
2 -

dimensional abelian variety Z, an isogeny ψ : Zr → X and an embedding k :

E ↪→ End0(Z) that send 1 to 1Z and such that ψ ∈ Hom0((Zr, k(r)), (X, i)).

Remark 3.2. Suppose that

dimE(End0((X, i)) =
4 · dim(X)2

[E : Q]2
.

By 3.1(ii), X is isogenous to a self-product of an absolutely simple abelian variety

B. It is proven in [23, §4, Proof of Theorem 4.2] that B is an abelian variety

of CM-type. Recall [12, Prop. 26 on p. 96] that in characteristic zero every

absolutely simple abelian variety of CM type is defined over a number field; in

positive characteristic such a variety is isogenous to an abelian variety defined over

a finite field (a theorem of Grothendieck [5, Th. 1.1]). It follows easily that:

(1) If char(K) = 0 then X is defined over a number field;

(2) If char(K) > 0 then X is isogenous to an abelian variety defined over a

finite field.

Let d be a positive integer that is not divisible by char(K). Suppose that X

is defined over K. We write Xd for the kernel of multiplication by d in X(Ka).

It is known [4, Proposition on p. 64] that the commutative group Xd is a free

Z/dZ-module of rank 2dim(X). Clearly, Xd is a Galois submodule in X(Ka). We

write ρ̃d,X : Gal(K) → AutZ/dZ(Xd) ∼= GL(2dim(X),Z/dZ) for the corresponding

(continuous) homomorphism defining the Galois action on Xd. Let us put

G̃d,X = ρ̃d,X(Gal(K)) ⊂ AutZ/dZ(Xd).
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Clearly, G̃d,X coincides with the Galois group of the field extensionK(Xd)/K where

K(Xd) is the field of definition of all points on X of order dividing d. In particular,

if a prime ` 6= char(K) then X` is a 2dim(X)-dimensional vector space over the

prime field F` = Z/`Z and the inclusion G̃`,X ⊂ AutF`
(X`) defines a faithful linear

representation of the group G̃`,X in the vector space X`.

Now let us assume that

i(O) ⊂ EndK(X).

Let λ be a maximal ideal in O. We write k(λ) for the corresponding (finite) residue

field. Let us put

Xλ := {x ∈ X(Ka) | i(e)x = 0 ∀e ∈ λ}.

Clearly, if char(k(λ)) = ` then λ ⊃ ` · O and therefore Xλ ⊂ X`. Clearly, Xλ is

a Galois submodule of X`. It is also clear that Xλ carries a natural structure of

O/λ = k(λ)-vector space. We write

ρ̃λ,X : Gal(K) → Autk(λ)(Xλ)

for the corresponding (continuous) homomorphism defining the Galois action on

Xλ. Let us put

G̃λ,X = G̃λ,i,X := ρ̃λ,X(Gal(K)) ⊂ Autk(λ)(Xλ).

Clearly, G̃λ,X coincides with the Galois group of the field extension K(Xλ)/K

where K(Xλ) = K(Xλ,i) is the field of definition of all points in Xλ.

In order to describe ρ̃λ,X explicitly, let us assume for the sake of simplicity that

λ is the only maximal ideal of O dividing `, i.e., ` · O = λb where the positive

integer b satisfies [E : Q] = b · [k(λ) : F`]. Then O ⊗ Z` = Oλ where Oλ is the

completion of O with respect to the λ-adic topology. It is well-known that Oλ is

a local principal ideal domain and its only maximal ideal is λOλ. One may easily

check that ` · Oλ = (λOλ)b.

Let us choose an element c ∈ λ that does not lie in λ2. Clearly, λOλ = c · Oλ.

This implies that there exists a unit u ∈ O∗
λ such that ` = ucb. It follows from the

unique factorization of ideals in O that λ = ` · O + c · O. It follows readily that

Xλ = {x ∈ X` | cx = 0} ⊂ X`.

Let T`(X) be the `-adic Tate module of X defined as the projective limit of

Galois modulesX`m [4, §18]. Recall that T`(X) is a free Z`-module of rank 2dim(X)
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provided with the continuous action ρ`,X : Gal(K) → AutZ`
(T`(X)) and the natural

embedding [4, §19, theorem 3]

EndK(X)⊗ Z` ⊂ End(X)⊗ Z` ↪→ EndZ`
(T`(X)) (4).

Clearly, the image of EndK(X) ⊗ Z` commutes with ρ`,X(Gal(K)). In particular,

T`(X) carries the natural structure of O⊗Z` = Oλ-module. The following assertion

is a special case of Proposition 2.2.1 on p. 769 in [6].

Lemma 3.3. The Oλ-module T`(X) is free of rank rX .

There is also the natural isomorphism of Galois modules X` = T`(X)/`T`(X),

which is also an isomorphism of EndK(X) ⊃ O-modules. This implies that the

O[Gal(K)]-module Xλ coincides with

c−1`T`(X)/`T`(X) = cb−1T`(X)/cbT`(X) = T`(X)/cT`(X) =

T`(X)/λT`(X) = T`(X)/(λOλ)T`(X).

Hence

Xλ = T`(X)/(λOλ)T`(X) = T`(X)⊗Oλ
k(λ), dimk(λ)Xλ = rX =

2dim(X)
[E : Q]

(5).

Let us consider the 2dim(X)-dimensional Q`-vector space

V`(X) = T`(X)⊗Z`
Q`,

which carries a natural structure of rX -dimensional Eλ-vector space. Extending

the embedding (4) by Q`-linearity, we get the natural embedding

E ⊗Q Q` = O ⊗Q`
i
↪→ EndK(X)⊗Q` ⊂ End0(X)⊗Q Q` ↪→ EndQ`

(V`(X)).

Further we will identify End0(X)⊗Q Q` with its image in EndQ`
(V`(X)).

Remark 3.4. (1) Clearly, the center CX of End0(X) commutes with i(E) and

therefore lies in End0(X, i). Since CX also commutes with End0(X, i), it

lies in the center of End0(X, i);

(2) Notice that Eλ = E ⊗Q Q` = O ⊗ Q` = Oλ ⊗Z`
Q` is the field coin-

ciding with the completion of E with respect to λ-adic topology. Clearly,

V`(X) carries a natural structure of rX -dimensional Eλ-vector space and

dimEλ
(EndEλ

(V`(X))) = r2X .
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(3) One may easily check that End0(X, i) ⊗Q Q` is a E ⊗Q Q` = Eλ-vector

subspace (even subalgebra) in EndEλ
(V`(X)). Clearly,

dimEλ
(End0(X, i)⊗Q Q`) = dimE(End0(X, i)).

(4) If End0(X, i)⊗QQ` = EλId then dimE(End0(X, i)) = 1 and, in light of the

inclusion E ∼= i(E) ⊂ End0(X, i), we obtain that End0(X, i) = i(E), i.e.,

i(E) ∼= E is a maximal commutative subalgebra in End0(X) and i(O) ∼= O
is a maximal commutative subring in End(X). It follows that CX ⊂ i(E)

and therefore is isomorphic to a subfield of E. In particular, CX is a field,

i.e., End0(X) is a simple Q-algebra. This means that X is isogenous to a

self-product of an absolutely simple abelian variety;

(5) Suppose that End0(X, i)⊗Q Q` = EndEλ
(V`(X)). This implies that

dimE(End0(X, i)) = r2X .

Applying Theorem 3.1, we conclude that X is an abelian variety of CM-

type isogenous to a self-product of an (absolutely) simple abelian variety.

Also End0((X, i) is a central simple E-algebra, i.e., E coincides with the

center of End0((X, i). Moreover, if char(Ka) = 0 then [E : Q] is even and

there exist a [E:Q]
2 -dimensional abelian variety Z, an isogeny ψ : Zr → X

and an embedding k : E ↪→ End0(Z) that send 1 to 1Z and such that

ψ ∈ Hom0((Zr, k(r)), (X, i)).

Using the inclusion AutZ`
(T`(X)) ⊂ AutQ`

(V`(X)), one may view ρ`,X as the

`-adic representation ρ`,X : Gal(K) → AutZ`
(T`(X)) ⊂ AutQ`

(V`(X)).

Since X is defined over K, one may associate with every u ∈ End(X) and

σ ∈ Gal(K) an endomorphism σu ∈ End(X) such that σu(x) = σu(σ−1x) for all

x ∈ X(Ka). Clearly, σu = u if u ∈ EndK(X). In particular, σe = e if e ∈ O
(here we identify O with i(O)). It follows easily that for each σ ∈ Gal(K) the map

u 7→ σu extends by Q-linearity to a certain automorphism of End0(X). Clearly,
σe = e for each e ∈ E and σu ∈ End0(X, i) for each u ∈ End0(X, i).

Remark 3.5. The definition of T`(X) as the projective limit of Galois modulesX`m

implies that σu(x) = ρ`,X(σ)uρ`,X(σ)−1(x) for all x ∈ T`(X). It follows easily that
σu(x) = ρ`,X(σ)uρ`,X(σ)−1(x) for all x ∈ V`(X), u ∈ End0(X), σ ∈ Gal(K). This

implies that for each σ ∈ Gal(K) we have ρ`,X(σ) ∈ AutEλ
(Vλ(X)) and therefore

ρ`,X(Gal(K)) ⊂ AutEλ
(Vλ(X))
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[6, pp. 767–768] (see also [10]). It is also clear that ρ`,X(σ)uρ`,X(σ)−1 ∈ End0(X)⊗Q

Q` for all u ∈ End0(X)⊗Q Q` and

ρ`,X(σ)uρ`,X(σ)−1 ∈ End0(X, i)⊗Q Q` ∀u ∈ End0(X, i)⊗Q Q`.

We refer to [15, 16, 19, 21] for a discussion of the following definition.

Definition 3.6. Let V be a vector space over a field F, let G be a group and

ρ : G→ AutF(V ) a linear representation of G in V . We say that the G-module V

is very simple if it enjoys the following property:

If R ⊂ EndF(V ) is an F-subalgebra containing the identity operator Id such that

ρ(σ)Rρ(σ)−1 ⊂ R ∀σ ∈ G then either R = F · Id or R = EndF(V ).

Remarks 3.7. (i) If G′ is a subgroup of G and the G′-module V is very simple

then obviously the G-module V is also very simple.

(ii) Clearly, the G-module V is very simple if and only if the corresponding

ρ(G)-module V is very simple. This implies easily that if H � G is a

surjective group homomorphism then the G-module V is very simple if and

only if the corresponding H-module V is very simple.

(iii) Let G′ be a normal subgroup of G. If V is a very simple G-module then

either ρ(G′) ⊂ Autk(V ) consists of scalars (i.e., lies in k · Id) or the G′-

module V is absolutely simple. See [19, Remark 5.2(iv)].

(iv) Suppose F is a discrete valuation field with valuation ring OF , maximal

ideal mF and residue field k = OF /mF . Suppose VF a finite-dimensional

F -vector space, ρF : G → AutF (VF ) a F -linear representation of G. Sup-

pose T is a G-stable OF -lattice in VF and the corresponding k[G]-module

T/mFT is isomorphic to V . Assume that the G-module V is very simple.

Then the G-module VF is also very simple. See [19, Remark 5.2(v)].

Theorem 3.8. Suppose that X is an abelian variety defined over K and i(O) ⊂
EndK(X). Let ` be a prime different from char(K). Suppose that λ is the only

maximal ideal dividing ` in O. Suppose that the natural representation in the k(λ)-

vector space Xλ is very simple. Then End0(X, i) enjoys one of the following two

properties:

(1) End0(X, i) = i(E), i.e., i(E) ∼= E is a maximal commutative subalgebra in

End0(X) and i(O) ∼= O is a maximal commutative subring in End(X). In

particular, i(E) contains the center of End0(X)

(2) The following two conditions are fulfilled:
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(2a) End0(X, i) is a central simple E-algebra of dimension r2X and X is an

abelian variety of CM-type over Ka.

(2b) If char(K) = 0 then [E : Q] is even and there exist a [E:Q]
2 -dimensional

abelian variety Z, an isogeny ψ : Zr → X and an embedding k : E ↪→
End0(Z) that sends 1 to 1Z and such that ψ ∈ Hom0((Zr, k(r)), (X, i)).

In addition, X is defined over a number field.

If char(K) > 0 then X is isogenous to an abelian variety defined over

a finite field.

Proof. In light of 3.7(ii), the Gal(K)-module Xλ is very simple. In light of 3.7(iv)

and Remark 3.5, ρ`,X : Gal(K) → AutEλ
(V`(X)) is also very simple. Let us put

R = End0(X, i) ⊗Q Q`. It follows from Remark 3.5 that either R = EλId or

R = EndEλ
(V`(X)). Now the result follows readily from Remarks 3.4 and 3.2.

�

Let Y be an abelian variety of positive dimension over Ka and u a non-zero

endomorphism of Y . Let us consider the abelian (sub)variety Z = u(Y ) ⊂ Y .

Remark 3.9. Suppose that Y is defined over K and u ∈ EndK(Y ). Clearly, Z and

the inclusion map Z ⊂ Y are defined over KGal(K)
a , i.e., Z and Z ⊂ Y are defined

over a purely inseparable extension of K. By a Theorem of Chow [2, Th. 5 on p.

26], Z is defined over K. Clearly, the graph of Z ⊂ Y is an abelian subvariety of

Z × Y defined over a purely inseparable extension of K. By the same Theorem of

Chow, this graph is also defined over K and therefore Z ⊂ Y is defined over K.

Theorem 3.10. Let Y be an abelian variety of positive dimension over Ka and δ

an automorphism of Y . Suppose that the induced Ka-linear operator δ∗ : Ω1(Y ) →
Ω1(Y ) is diagonalizable. Let S be the set of eigenvalues of δ∗ and multY : S → Z+

the integer-valued function which assigns to each eigenvalue its multiplicity.

Suppose that P (t) is a polynomial with integer coefficients such that u = P (δ) is

a non-zero endomorphism of Y . Let us put Z = u(Y ). Clearly, Z is δ-invariant

and we write δZ : Z → Z for the corresponding automorphism of Z (i.e., for the

restriction of δ to z). Suppose that

dim(Z) =
∑

λ∈S,P (λ) 6=0

multY (λ).

Then the spectrum of δ∗Z : Ω1(Z) → Ω1(Z) coincides with SP = {λ ∈ S, P (λ) 6= 0}
and the multiplicity of an eigenvalue λ of δ∗Z equals multY (λ).
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Proof. Clearly, u commutes with δ. We write v for the (surjective) homomorphism

Y � Z induced by u and j for the inclusion map Z ⊂ Y . Notice that u : Y → Y

splits into a composition Y
v
� Z

j
↪→ Y , i.e., u = jv. Clearly,

δZv = vδ ∈ Hom(Y, Z), jδZ = δj ∈ Hom(Z, Y ), u = jv ∈ End(Y ), uδ = δu ∈ End(Y ).

It is also clear that the induced map u∗ : Ω1(Y ) → Ω1(Y ) coincides with P (δ∗). It

follows that u∗(Ω1(Y )) = P (δ∗)(Ω1(Y )) has dimension∑
λ∈S,P (λ) 6=0

multY (λ) = dim(Y )

and coincides with ⊕λ∈S,P (λ) 6=0Wλ where Wλ is the eigenspace of δ attached to

eigenvalue λ. Since u∗ = v∗j∗, we have u∗(Ω1(Y )) = v∗j∗(Ω1(Y )) ⊂ v∗(Ω1(Z)).

Since dim(u∗(Ω1(Y ))) = dim(Y ) = dim(Ω1(Z)) ≥ dim(v∗(Ω1(Z))), the subspace

u∗(Ω1(Y )) = v∗(Ω1(Z)) and v∗ : Ω1(Z) ↪→ Ω1(Y ). It follows that if we denote

by w the isomorphism v∗ : Ω1(Z) ∼= v∗(Ω1(Z)) and by γ the restriction of δ∗ to

v∗(Ω1(Z)) then γw = wδ∗Y and therefore γ = wδ∗Y w
−1. �

4. Cyclic covers and jacobians

Throughout this paper we fix a prime number p and an integral power q = pr

and assume that K is a field of characteristic different from p. We fix an algebraic

closure Ka and write Gal(K) for the absolute Galois group Aut(Ka/K). We also

fix in Ka a primitive qth root of unity ζ.

Let f(x) ∈ K[x] be a separable polynomial of degree n ≥ 4. We write Rf for the

set of its roots and denote by L = Lf = K(Rf ) ⊂ Ka the corresponding splitting

field. As usual, the Galois group Gal(L/K) is called the Galois group of f and

denoted by Gal(f). Clearly, Gal(f) permutes elements of Rf and the natural map

of Gal(f) into the group Perm(Rf ) of all permutations of Rf is an embedding.

We will identify Gal(f) with its image and consider it as a permutation group of

Rf . Clearly, Gal(f) is transitive if and only if f is irreducible in K[x]. Further, we

assume that either p does not divide n or q does divide n.

If p does not divide n then we write (as in [17, §3])

Vf,p := (FRf
p )00 = (FRf

p )0

for the (n−1)-dimensional Fp-vector space of functions {φ : Rf → Fp,
∑

α∈Rf
φ(α) = 0}

provided with a natural action of the permutation group Gal(f) ⊂ Perm(Rf ). It

is the heart over the field Fp of the group Gal(f) acting on the set Rf [3, 17].



14 YURI G. ZARHIN

Remark 4.1. If p does not divide n and Gal(f) = Sn or An then the Gal(f)-

module Vf,p is very simple. See [17, lemma 3.5].

Let C = Cf,q be the smooth projective model of the smooth affine K-curve

yq = f(x). So C is a smooth projective curve defined over K. The rational

function x ∈ K(C) defines a finite cover π : C → P1 of degree p. Let B′ ⊂ C(Ka)

be the set of ramification points. Clearly, the restriction of π to B′ is an injective

map B′ ↪→ P1(Ka), whose image is the disjoint union of ∞ and Rf if p does not

divide deg(f) and just Rf if it does. We write

B = π−1(Rf ) = {(α, 0) | α ∈ Rf} ⊂ B′ ⊂ C(Ka).

Clearly, π is ramified at each point of B with ramification index q. We have B′ = B

if n is divisible by q. If n is not divisible by p then B′ is the disjoint union of B

and a single point ∞′ := π−1(∞). In addition, the ramification index of π at

π−1(∞) is also q. Using Hurwitz’s formula, one may easily compute the genus

g = g(C) = g(Cf,q) of C ([1, pp. 401–402], [13, proposition 1 on p. 3359], [7, p.

148]). Namely, g is (q− 1)(n− 1)/2 if p does not divide n and (q− 1)(n− 2)/2 if q

does divide n.

Remark 4.2. Assume that p does not divide n and consider the plane triangle

(Newton polygon)

∆n,q := {(j, i) | 0 ≤ j, 0 ≤ i, qj + ni ≤ nq}

with the vertices (0, 0), (0, q) and (n, 0). Let Ln,q be the set of integer points in the

interior of ∆n,q. One may easily check that g = (q− 1)(n− 1)/2 coincides with the

number of elements of Ln,q. It is also clear that for each (j, i) ∈ Ln,q

1 ≤ j ≤ n− 1; 1 ≤ i ≤ q − 1; q(j − 1) + (j + 1) ≤ n(q − i).

Elementary calculations ([1, theorem 3 on p. 403]) show that

ωj,i := xj−1dx/yq−i = xj−1yidx/yq = xj−1yi−1dx/yq−1

is a differential of the first kind on C for each (j, i) ∈ Ln,q. This implies easily that

the collection {ωj,i}(j,i)∈Ln,q
is a basis in the space of differentials of the first kind

on C.

There is a non-trivial birational Ka-automorphism of C

δq : (x, y) 7→ (x, ζy).
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Clearly, δq
q is the identity map and the set of fixed points of δq coincides with B′.

Remark 4.3. Let us assume that n = deg(f) is divisible by q say, n = qm for

some positive integer m. Let α ∈ Ka be a root of f and K1 = K(α) be the

corresponding subfield of Ka. We have f(x) = (x − α)f1(x) with f1(x) ∈ K1[x].

Clearly, f1(x) is a separable polynomial over K1 of degree qm− 1 = n− 1 ≥ 4. It

is also clear that the polynomials h(x) = f1(x + α), h1(x) = xn−1h(1/x) ∈ K1[x]

are separable of the same degree qm − 1 = n − 1 ≥ 4. The standard substitution

x1 = 1/(x−α), y1 = y/(x−α)m establishes a birational isomorphism between Cf,p

and a curve Ch1 : yq
1 = h1(x1) (see [13, p. 3359]). In particular, the jacobians of Cf

and Ch1 are isomorphic over Ka (and even over K1). But deg(h1) = qm− 1 is not

divisible by p. Clearly, this isomorphism commutes with the actions of δq. Notice

also that if the Galois group of f over K is Sn (resp. An) then the Galois group of

h1 over K1 is Sn−1 (resp. An−1).

Remark 4.4. (i) It is well-known that dimKa(Ω1(C(f,q))) = g(Cf,q). By

functoriality, δq induces on Ω1(C(f,q)) a certain Ka-linear automorphism

δ∗q : Ω1(C(f,q)) → Ω1(C(f,q)). Clearly, if for some positive integer j the

differential ωj,i = xj−1dx/yq−i lies in Ω1(C(f,q)) then it is an eigenvector

of δ∗q with eigenvalue ζi.

(ii) Now assume that p does not divide n. It follows from Remark 4.2 that the

collection {ωj,i = xj−1dx/yq−i | (i, j) ∈ Ln,q} is an eigenbasis of Ω1(C(f,q)).

This implies that the multiplicity of the eigenvalue ζ−i of δ∗q coincides with

the number of interior integer points in ∆n,q along the corresponding (to

q − i) horizontal line. Elementary calculations show that this number is[
ni
q

]
; in particular, ζ−i is an eigenvalue if and only if

[
ni
q

]
> 0. Taking into

account that n ≥ 4 and q = pr, we conclude that ζi is an eigenvalue of δ∗q
for each integer i with pr − pr−1 ≤ i ≤ pr − 1 = q− 1. It also follows easily

that 1 is not an eigenvalue δ∗q . This implies that

Pq(δ∗q ) = δ∗q
q−1 + · · ·+ δ∗q + 1 = 0

in EndK(Ω1(C(f,q))). In addition, one may easily check that if H(t) is a

polynomial with rational coefficients such thatH(δ∗q ) = 0 in EndK(Ω1(C(f,q)))

then H(t) is divisible by Pq(t) in Q[t].

Let J(Cf,q) = J(C) = J(Cf,q) be the jacobian of C. It is a g-dimensional

abelian variety defined over K and one may view (via Albanese functoriality) δq as
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an element of Aut(C) ⊂ Aut(J(C)) ⊂ End(J(C)) such that δq 6= Id but δq
q = Id

where Id is the identity endomorphism of J(C). We write Z[δq] for the subring of

End(J(C)) generated by δq.

Remark 4.5. Assume that p does not divide n. Let P0 be one of the δq-invariant

points (i.e., a ramification point for π) of Cf,p(Ka). Then

τ : Cf,q → J(Cf,q), P 7→ cl((P )− (P0))

is an embedding of complex algebraic varieties and it is well-known that the induced

map τ∗ : Ω1(J(Cf,q)) → Ω1(Cf,q) is an isomorphism obviously commuting with the

actions of δq. (Here cl stands for the linear equivalence class.) This implies that

nσi
coincides with the dimension of the eigenspace of Ω1(C(f,q)) attached to the

eigenvalue ζ−i of δ∗q . Applying Remark 4.4, we conclude that if H(t) is a monic

polynomial with integer coefficients such that H(δq) = 0 in End(J (f,q)) then H(t)

is divisible by Pq(t) in Q[t] and therefore in Z[t].

Remark 4.6. Assume that p does not divide n. Clearly, the set S of eigenvalues λ

of δ∗q : Ω1(J(Cf,q)) → Ω1(J(Cf,q)) with Pq/p(λ) 6= 0 consists of primitive qth roots

of unity ζ−i (1 ≤ i < q, (i, p) = 1) with
[

ni
q

]
> 0 and the multiplicity of ζ−i equals[

ni
q

]
, thanks to Remarks 4.5 and 4.4. Let us compute the sum

M =
∑

1≤i<q,(i,p)=1

[
ni

q

]
of multiplicities of eigenvalues from S.

First, assume that q > 2. Then ϕ(q) = (p− 1)pr−1 is even and for each (index)

i the difference q − i is also prime to p, lies between 1 and q and[
ni

q

]
+

[
n(q − i)

q

]
= n− 1.

It follows easily that

M = (n− 1)
ϕ(q)

2
=

(n− 1)(p− 1)pr−1

2
.

Now assume that q = p = 2 and therefore r = 1. Then n is odd, Cf,q = Cf,2 :

y2 = f(x) is a hyperelliptic curve of genus g = n−1
2 and δ2 is the hyperelliptic

involution (x, y) 7→ (x,−y). It is well-known that the differentials xi dx
y (0 ≤ i ≤

g− 1) constitute a basis of the g-dimensional Ω1(J(Cf,2)). It follows that δ∗2 is just

multiplication by −1. Therefore

M = g =
n− 1

2
=

(n− 1)(p− 1)pr−1

2
.
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Clearly, if the abelian (sub)variety Z := Pq/p(δq)(J(Cf,q)) has dimension M

then the data Y = J(Cf,q), δ = δq, P = Pq/p(t) satisfy the conditions of Theorem

3.10.

Lemma 4.7. Assume that p does not divide n. Let D =
∑

P∈B aP (P ) be a divisor

on C = Cf,p with degree 0 and support in B. Then D is principal if and only if all

the coefficients aP are divisible by q.

Proof. Suppose D = div(h) where h ∈ Ka(C) is a non-zero rational function of

C. Since D is δq-invariant, the rational function δ∗qh := hδq coincides with c · h
for some non-zero c ∈ Ka. It follows easily from the δq-invariance of the splitting

Ka(C) = ⊕q−1
i=0 y

i · Ka(x) that h = yi · u(x) for some non-zero rational function

u(x) ∈ Ka(x) and a non-negative integer i ≤ q − 1. It follows easily that all

finite zeros and poles of u(x) lie in B, i.e., there exists an integer-valued function

b on Rf such that u coincides, up to multiplication by a non-zero constant, to∏
α∈Rf

(x−α)b(α). Notice that div(y) =
∑

P∈B(P )−n(∞). On the other hand, for

each α ∈ Rf , we have Pα = (α, 0) ∈ B and the corresponding divisor div(x− α) =

q((α, 0))−q(∞) = q(Pα)−q(∞) is divisible by q. This implies that aPα = q ·b(α)+i.

Also, since∞ is neither zero no pole of h, we get the equality 0 = ni+
∑

α∈Rf
b(α)q.

Since n and q are relatively prime, i must divide q. This implies that i = 0 and

therefore the divisor D = div(u(x)) = div(
∏

α∈Rf
(x− α)b(α)) is divisible by q.

Conversely, suppose a divisor D =
∑

P∈B aP (P ) with
∑

P∈B aP = 0 and all aP

are divisible by q. Let us put h =
∏

P∈B(x−x(P ))aP /q. One may easily check that

D = div(h). �

Lemma 4.8. 1 + δq + · · · + δq−1
q = 0 in End(J(Cf,q)). The subring Z[δq] ⊂

End(J(Cf,q)) is isomorphic to the ring Z[t]/Pq(t)Z[t]. The Q-subalgebra Q[δq] ⊂
End0(J(Cf,q)) = End0(J(Cf,q)) is isomorphic to Q[t]/Pq(t)Q[t] =

∏r
i=1 Q(ζpi).

Proof. If q = p is a prime this assertion is proven in [7, p. 149], [8, p. 458]. So,

further we may assume that q > p. It follows from Remark 4.3 that we may assume

that p does not divide n.

Now we follow arguments of [8, p. 458] (where the case of q = p was treated).

The group J(Cf,q))(Ka) is generated by divisor classes of the form (P ) − (∞)

where P is a finite point on Cf,p. The divisor of the rational function x− x(P ) is

(δq−1
q P ) + · · ·+ (δqP ) + (P )− q(∞). This implies that Pq(δq) = 0 ∈ End(J(Cf,q)).
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Applying Remark 4.5(ii), we conclude that Pq(t) is the minimal polynomial of δq

in End(J(Cf,q)). �

Let us define the abelian (sub)variety

J (f,q) := Pq/p(δq)(J(Cf,q)) ⊂ J(Cf,q).

Clearly, J (f,q) is a δq-invariant abelian subvariety defined over K(ζq). In addition,

Φq(δq)(J (f,q)) = 0.

Remark 4.9. If q = p then Pq/p(t) = P1(t) = 1 and therefore J (f,p) = J(Cf,p).

Remark 4.10. Since the polynomials Φq and Pq/p are relatively prime, the homo-

morphism Pq/p(δq) : J (f,q) → J (f,q) has finite kernel and therefore is an isogeny. In

particular, it is surjective.

Lemma 4.11. Suppose that p does not divide n. Then

dim(J (f,q)) =
(pr − pr−1)(n− 1)

2

and there is an K(ζ)-isogeny J(Cf,q) → J(Cf,q/p) × J (f,q). In addition, if ζ ∈ K

then the Galois modules Vf,p and (J (f,q))δq := {z ∈ J (f,q)(Ka) | δq(z) = z} are

isomorphic.

Proof. Clearly, we may assume that ζ ∈ K. Let us consider the curve Cf,q/p :

y
q/p
1 = f(x1) and a regular surjective map π1 : Cf,q → Cf,q/p, x1 = x, y1 = yp.

Clearly, π1δq = δq/pπ1. By Albanese functoriality, π1 induces a certain surjective

homomorphism of jacobians J(Cf,q) � J(Cf,q/p) which we continue to denote by

π1. Clearly, the equality π1δq = δq/pπ1 remains true in Hom(J(Cf,q), J(Cf,q/p)).

By Lemma 4.8, Pq/p(δq/p) = 0 ∈ End(J(Cf,q/p)). It follows from Lemma 4.10 that

π1(J (f,q)) = 0 and therefore dim(J (f,q)) does not exceed

dim(J(Cf,q))−dim(J(Cf,q/p)) =
(pr − 1)(n− 1)

2
− (pr−1 − 1)(n− 1)

2
=

(pr − pr−1)(n− 1)
2

.

By definition of J (f,q), for each divisor D =
∑

P∈B aP (P ) the linear equivalence

class of $pr−1D =
∑

P∈B p
r−1aP (P ) lies in (J (f,q))δq ⊂ J (f,q)(Ka) ⊂ J(Cf,q)(Ka).

It follows from Lemma 4.7 that the class of pr−1D is zero if and only if all pr−1aP

are divisible by q = pr, i.e. all aP are divisible by p. This implies that the set of

linear equivalence classes of pr−1D is a Galois submodule isomorphic to Vf,p. We

want to prove that (J (f,q))δq = Vf,p.
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Recall that J (f,q) is δq-invariant and the restriction of δq to J (f,q) satisfies the

qth cyclotomic polynomial. This allows us to define the homomorphism Z[ζq] →
End(J (f,q)) that sends 1 to the identity map and ζq to δq. Let us put E =

Q(ζq),O = Z[ζq] ⊂ Q(ζq) = E. It is well-known that O is the ring of integers

in E, the ideal λ = (1 − ζq)Z[ζq] = (1 − ζq)O is maximal in O with O/λ = Fp

and O ⊗ Zp = Zp[ζq] is the ring of integers in the field Qp(ζq). Notice also that

O⊗Zp coincides with the completion Oλ of O with respect to the λ-adic topology

and Oλ/λOλ = O/λ = Fp.

It follows from Lemma 3.3 that

d =
2dim(J (f,q))

[E : Q]
=

2dim(J (f,q))
pr − pr−1

is a positive integer, the Zp-Tate module Tp(J (f,q)) is a free Oλ-module of rank d.

Using the displayed formula (5) from §3, we conclude that

(J (f,q))δq = {u ∈ J (f,q)(Ka) | (1− δq)(u) = 0} = Jf,q
λ = Tp(Jf,q)⊗Oλ

Fp

is a d-dimensional Fp-vector space. Since (J (f,q))δq contains (n − 1)-dimensional

Fp-vector space Vf,p, we have d ≥ n− 1. This implies that

2dim(J (f,q)) = d(pr − pr−1) ≥ (n− 1)(pr − pr−1)

and therefore

dim(J (f,q)) ≥ (n− 1)(pr − pr−1)
2

.

But we have already seen that

dim(J (f,q)) ≤ (n− 1)(pr − pr−1)
2

.

This implies that

dim(J (f,q)) =
(n− 1)(pr − pr−1)

2
.

It follows that d = n − 1 and therefore (J (f,q))δq = Vf,p. Dimension arguments

imply that J (f,q) coincides with the identity component of ker(π1) and therefore

there is an isogeny between J(Cf,q) and J(Cf,q/p)× J (f,q). �

Corollary 4.12. If p does not divide n then there is a K(ζq)-isogeny J(Cf,q) →
J(Cf,p)×

∏r
i=2 J

(f,pi) =
∏r

i=1 J
(f,pi).

Proof. Combine Corollary 4.11(ii) and Remark 4.9 with easy induction on r. �
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Remark 4.13. Suppose that p does not divide n and consider the induced linear

operator δ∗q : Ω1(J (f,q)) → Ω1(J (f,q)). It follows from Theorem 3.10 combined with

Remark 4.6 that its spectrum consists of primitive qth roots of unity ζ−i (1 ≤ i < q)

with [ni/q] > 0 and the multiplicity of ζ−i equals [ni/q].

Theorem 4.14. Suppose that n ≥ 5 is an integer. Let p be a prime, r ≥ 1

an integer and q = pr. Suppose that p does not divide n. Suppose that K is

a field of characteristic different from p containing a primitive qth root of unity

ζ. Let f(x) ∈ K[x] be a separable polynomial of degree n and Gal(f) its Galois

group. Suppose that the Gal(f)-module Vf,p is very simple. Then the image O of

Z[δq] → End(J (f,q)) is isomorphic to Z[ζq] and enjoys one of the following two

properties.

(i) O is a maximal commutative subring in End(J (f,q));

(ii) char(K) > 0 and the centralizer of O ⊗ Q ∼= Q(ζq) in End0(J (f,q)) is a

central simple (n − 1)2-dimensional Q(ζq)-algebra. In addition, J (f,q) is

an abelian variety of CM-type isogenous to a self-product of an absolutely

simple abelian variety. Also J (f,q) is isogenous to an abelian variety defined

over a finite field.

Proof. Clearly, O is isomorphic to Z[ζq]. Let us put λ = (1− ζq)Z[ζq]. By Lemma

4.11(iii), the Galois module (J (f,q))δq = J
(f,q)
λ is isomorphic to Vf,p. Applying The-

orem 3.8, we conclude that either (ii) holds true or one of the following conditions

hold:

(a) O is a maximal commutative subring in End(J (f,q)) ;

(b) char(K) = 0 and there exist a ϕ(q)/2-dimensional abelian variety Z over

Ka, an embedding Q(ζq) ↪→ End0(Z) that sends 1 to 1Z and a Q(ζq)-

equivariant isogeny ψ : Zn−1 → J (f,q).

Clearly, if (a) is fulfilled then we are done. Also if q = 2 then ϕ(q)/2 = 1/2 is

not an integer and therefore (b) is not fulfilled, i.e. (a) is fulfilled.

So further we assume that q > 2 and (b) holds true. In particular, char(K) = 0.

We need to arrive to a contradiction.

Since char(K) = 0, the isogeny ψ induces an isomorphism ψ∗ : Ω1((J (f,q))) ∼=
Ω1(Zn−1) that commutes with the actions of Q(ζq). Since

dim(Ω1(Z)) = dim(Z) =
ϕ(q)

2
,
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the linear operator in Ω1(Z) induced by ζq ∈ Q(ζq) has, at most, ϕ(q)/2 distinct

eigenvalues. It follows that the linear operator in Ω1(Zn−1) = Ω1(Z)n−1 induced

by ζq also has, at most, ϕ(q)/2 distinct eigenvalues. This implies that the linear

operator δ∗q in Ω1((J (f,q))) also has, at most, ϕ(q)/2 distinct eigenvalues. Recall

that the eigenvalues of δ∗q are primitive qth roots of unity ζ−i with

1 ≤ i < q, (i, p) = 1,
[
ni

q

]
> 0.

Clearly, the inequality [ni/q] > 0 means that i > q/n, since (n, q) = (n, pr) = 1.

So, in order to get a desired contradiction, it suffices to check that the cardinality

of the set

B :=
{
i ∈ Z | q

n
< i < q = pr, (i, p) = 1

}
is strictly greater than (p− 1)pr−1/2. Since p ≥ 2, n ≥ 5 and q/n is not an integer,

we have
p

n
≤ p

5
<
p− 1

2
and

#(B) > ϕ(q)− q

n
= (p− 1)pr−1 − pr−1p

n
≥

(
p− 1− p

5

)
pr−1 >

p− 1
2

pr−1.

�

Corollary 4.15. Suppose that n ≥ 5 is an integer. Let p be a prime, r ≥ 1 an

integer and q = pr. Assume in addition that either p does not divide n or q | n and

(n, q) 6= (5, 5). Let K be a field of characteristic different from p. Let f(x) ∈ K[x]

be an irreducible separable polynomial of degree n such that Gal(f) = Sn or An.

Then the image O of Z[δq] → End(J (f,q)) is isomorphic to Z[ζq] and enjoys one of

the following two properties.

(i) O is a maximal commutative subring in End(J (f,q));

(ii) char(K) > 0 and the centralizer of O ⊗ Q ∼= Q(ζq) in End0(J (f,q)) is a

central simple (n − 1)2-dimensional Q(ζq)-algebra. In addition, J (f,q) is

an abelian variety of CM-type isogenous to a self-product of an absolutely

simple abelian variety.

Proof. If p divides n then n > 5 and therefore n− 1 ≥ 5. By Remark 4.3, we may

assume that p does not divide n. If we replace K by K(ζ) then still Gal(f) = Sn

or An. By Remark 4.1 if Gal(f) = Sn or An then the Gal(f)-module Vf,p is very

simple. One has only to apply Theorem 4.14. �
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Theorem 4.16. Suppose n ≥ 4 and p does not divide n. Assume also that

char(K) = 0 and Q[δq] is a maximal commutative subalgebra in End0(J (f,q)). Then

End0(J (f,q)) = Q[δq] ∼= Q(ζq) and therefore End(J (f,q)) = Z[δq] ∼= Z[ζq]. In par-

ticular, J (f,q) is an absolutely simple abelian variety.

Proof. Let C = CJ(f,p) be the center of End0(J (f,p)). Since Q[δq] is a maximal

commutative subalgebra, C ⊂ Q[δq].

Replacing, if necessary, K by its subfield (finitely) generated over Q by all the

coefficients of f , we may assume that K (and therefore Ka) is isomorphic to a

subfield of C. So, K ⊂ Ka ⊂ C. We may also assume that ζ = ζq and consider

J (f,q) as complex abelian variety. Let Σ = ΣE be the set of all field embeddings

σ : E = Q[δq] ↪→ C. We are going to apply Corollary 2.2 to Z = J (f,q) and E =

Q[δq]. In order to do that we need to get some information about the multiplicities

nσ = nσ(Z,E) = nσ(J (f,q),Q[δq]). The displayed formula (1) in §2 allows us to do

it, using the action of Q[δq] on Ω1(J (f,q)). Namely, since δq generates the field E

(over Q), each Ω1(J (f,q))σ is the eigenspace corresponding to the eigenvalue σ(δq)

of δq and nσ is the multiplicity of the eigenvalue σ(δq).

Let i < q be a positive integer that is not divisible by p and σi : Q[δq] ↪→ C be

the embedding which sends δq to ζ−i. Clearly, for each σ there exists precisely one

i such that σ = σi. Clearly, Ω1(J (f,q))σi is the eigenspace of Ω1(J (f,q)) attached

to the eigenvalue ζ−i of δq. Therefore nσi coincides with the multiplicity of the

eigenvalue ζ−i. It follows from Remark 4.13 that

nσi
=

[
ni

q

]
.

Now the assertion of the Theorem follows from Corollary 2.2 applied to E = Q[δq] ∼=
Q(ζq). �

Theorem 4.17. Let p be a prime, r a positive integer, q = pr and K a field of

characteristic zero. Suppose that f(x) ∈ K[x] is an irreducible polynomial of degree

n ≥ 5 and Gal(f) = Sn or An. Assume also that either p does not divide n or q

divides n. Then End0(J (f,q)) = Q[δq] ∼= Q(ζq) and therefore End(J (f,q)) = Z[δq] ∼=
Z[ζq]. In particular, J (f,q) is an absolutely simple abelian variety.

Proof. If (n, q) 6= (5, 5) then the assertion follows from Corollary 4.15 combined

with Corollary 4.16. The case (n, q) = (5, 5) is contained in [20, theorem 4.2]. �

Corollary 4.18. Let p be a prime and K a field of characteristic zero. Suppose

that f(x) ∈ K[x] is an irreducible polynomial of degree n ≥ 5 and Gal(f) = Sn or
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An. Let r and s be distinct positive integers. Assume also that either p does not

divide n or both pr and ps divide n. Then Hom(J (f,pr), J (f,ps)) = 0.

Proof. It follows from Theorem 4.17 that J (f,pr) and J (f,ps) are absolutely simple

abelian varieties, whose endomorphism algebras Q(ζpr ) and Q(ζps) are not isomor-

phic. Therefore these abelian varieties are not isogenous. Since they are absolutely

simple, every homomorphism between them is zero. �

Combining Theorem 4.16 and Corollary 4.14, we obtain the following statement.

Theorem 4.19. Let p be a prime, r a positive integer, q = pr. Suppose that

K is a field of characteristic zero containing a primitive qth root of unity. Let

f(x) ∈ K[x] be a polynomial of degree n ≥ 5. Assume also that p does not divide

n and the Gal(f)-module Vf,p is very simple. Then End0(J (f,q)) = Q[δq] ∼= Q(ζq)

and therefore End(J (f,q)) = Z[δq] ∼= Z[ζq]. In particular, J (f,q) is an absolutely

simple abelian variety.

Corollary 4.20. Let p be a prime, and K a field of characteristic zero. Let f(x) ∈
K[x] be a polynomial of degree n ≥ 5. Assume also that p does not divide n and the

Gal(f)-module Vf,p is very simple. If r and s are distinct positive integers such that

K contains primitive prth and psth roots of unity then Hom(J (f,pr), J (f,ps)) = 0.

Proof. It follows from Theorem 4.19 that J (f,pr) and J (f,ps) are absolutely simple

abelian varieties, whose endomorphism algebras Q(ζpr ) and Q(ζps) are not isomor-

phic. Therefore these abelian varieties are not isogenous. Since they are absolutely

simple, every homomorphism between them is zero. �

5. Jacobians and their endomorphism rings

Throughout this section we assume that K is a field of characteristic zero. Recall

that Ka is an algebraic closure of K and ζ ∈ Ka is a primitive qth root of unity.

Suppose f(x) ∈ K[x] is a polynomial of degree n ≥ 5 without multiple roots,

Rf ⊂ Ka is the set of its roots, K(Rf ) is its splitting field. Let us put Gal(f) =

Gal(K(Rf )/K) ⊂ Perm(Rf ). Let r be a positive integer. Recall (Corollary 4.12)

that if p does not divide n then there is a K(ζpr )-isogeny J(Cf,pr ) →
∏r

i=1 J
(f,pi).

Applying Theorem 4.19 and Corollary 4.20 to all q = pi, we obtain the following

assertion.

Theorem 5.1. Let p be a prime, r a positive integer, q = pr. Suppose that

K is a field of characteristic zero containing a primitive prth root of unity. Let
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f(x) ∈ K[x] be an polynomial of degree n ≥ 5. Assume also that p does not di-

vide n and the Gal(f)-module Vf,p is very simple. Then End0(J(Cf,q)) = Q[δq] ∼=
Q[t]/Pq(t)Q[t] =

∏r
i=1 Q(ζpi).

The next statement obviously generalizes Theorem 1.1.

Theorem 5.2. Let p be a prime, r a positive integer and K a field of characteristic

zero. Suppose that f(x) ∈ K[x] is an irreducible polynomial of degree n ≥ 5 and

Gal(f) = Sn or An. Assume also that either p does not divide n or q | n. Then

End0(J(Cf,q)) = Q[δq] ∼= Q[t]/Pq(t)Q[t] =
∏r

i=1 Q(ζpi).

Proof. The existence of the isogeny J(Cf,q) →
∏r

i=1 J
(f,pi) combined with Theorem

4.17 and Corollary 4.18 implies that the assertion holds true if p does not divide n.

If q divides n then Remark 4.3 allows us to reduce this case to the already proven

case when p does not divide n− 1. �

Example 5.3. Suppose L = C(z1, · · · , zn) is the field of rational functions in n

independent variables z1, · · · , zn with constant field C and K = LSn is the subfield

of symmetric functions. Then Ka = La and f(x) =
∏n

i=1(x − zi) ∈ K[x] is an

irreducible polynomial over K with Galois group Sn. Let Let q = pr be a power of

a prime p. Let C be a smooth projective model of the K-curve yq = f(x) and J(C)

its jacobian. It follows from Theorem 5.2 that if n ≥ 5 and either p does not divide

n or q divides n then the algebra of La-endomorphisms of J(C) is
∏r

i=1 Q(ζpi).

Example 5.4. Let h(x) ∈ C[x] be a Morse polynomial of degree n ≥ 5. This

means that the derivative h′(x) of h(x) has n − 1 distinct roots β1, · · ·βn−1 and

h(βi) 6= h(βj) while i 6= j. (For example, xn − x is a Morse polynomial.) If

K = C(z) then a theorem of Hilbert ([11, theorem 4.4.5, p. 41]) asserts that the

Galois group of h(x)− z over K is Sn. Let q = pr be a power of a prime p. Let C

be a smooth projective model of the K-curve yq = h(x)− z and J(C) its jacobian.

It follows from Theorem 5.2 that if either p does not divide n or q divides n then

the algebra of Ka-endomorphisms of J(C) is
∏r

i=1 Q(ζpi).
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