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1. INTRODUCTION

As usual, we write Z, Q, F,, C for the ring of integers, the field of rational num-
bers, the finite field with p elements and the field of complex numbers respectively.
If Z is a smooth algebraic variety over an algebraically closed field then we write
QY(Z) for the space of differentials of the first kind on Z. If Z is an abelian vari-
ety then we write End(Z) for its ring of (absolute) endomorphisms and End®(Z)
for its endomorphism algebra End(Z) ® Q. If Z is defined over a (not necessarily
algebraically closed) field K then we write Endg (Z) C End(Z) for the (sub)ring of
K-endomorphisms of Z.

Let p be a prime, ¢ = p" an integral power of p, (; € C a primitive gth root of
unity, Q({;) C C the gth cyclotomic field and Z[(,] the ring of integers in Q((,).
If ¢ = 2 then Q(¢,) = Q. It is well-known that if ¢ > 2 then Q((,) is a CM-field of
degree (p — 1)p"~!. Let us put

P, (t) = t:_;f =t .+ 1€ Z[t).

i—1

Clearly, P,(t) = [[/, ®pi(t) where ®,i(t) = t@= VP ... 4" 41 € Z[t]
is the p'th cyclotomic polynomial. In particular, Q[t]/®,:(t)Q[t] = Q((,:) and
Q[t/P,(1)Q[t] = TTi—; Q¢ )-

Let f(x) € Clz] be a polynomial of degree n > 4 without multiple roots. Let
Cy,q be a smooth projective model of the smooth affine curve y? = f(z). The map
(x,y) — (x,(qy) gives rise to a non-trivial birational automorphism d, : C' 4 — Cf 4
of period ¢. The jacobian J(CY ) of Cy 4 is a complex abelian variety. By Albanese
functoriality, d, induces an automorphism of J(C} 4) which we still denote by d,.
One may easily check (see 4.8 below) that 67! 4 ---+ 4,4+ 1 =0 in End(J(Cy)).
This implies that if Q[d,] is the Q-subalgebra of End®(J(C;,)) generated by 4,
then there is the natural surjective homomorphism Qt]/P,(t)Q[t] — Q[d,] that

sends t + Py (t)Q[t] to ;. One may check that this homomorphism is, in fact, an
1
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isomorphism (see [7, p. 149], [8, p. 458]) where the case ¢ = p was treated). This
gives us an embedding Q[t]/P,(1)Q[t] = Q[d,] € End’(J(C},)). Our main result

is the following statement.

Theorem 1.1. Let K be a subfield of C such that f(x) is an irreducible polynomial
in K[x] of degree n > 5 and its Galois group over K is either the full symmetric

group S, or the alternating group A,,. In addition, assume that either p does not

divide n or q | n. Then EndO(J(C’ﬁq)) = Q[d,] = Q[t]/P,()Q[t] =TT, Q(Gpi)-

Remark 1.2. If ¢ is a prime (i.e. ¢ = p) then J(Cyp) is an absolutely simple
abelian variety and End(J(Cy,)) = Z[0,] = Z[(,] [14, 20]. In particular, if p = 2
then Cfy 5 is a hyperelliptic curve, d, is multiplication by —1 and End(J(Cy2)) = Z.

See [19, 22, 18] for a discussion of finite characteristic case.

Examples 1.3. Let n > 5 be an integer, p a prime, r a positive integer, ¢ = p".
Assume also that either n is not divisible by p or ¢ | n.

(1) The polynomial 2™ —z — 1 € Q[z] has Galois group S,, over Q ([11, p. 42]).
Therefore the endomorphism algebra (over C) of the jacobian J(C') of the
curve C': y? = z" —x — 1 is Q[t]/P,(¢)Q[t].

(2) The Galois group of the “truncated exponential”

2 .3 n

x x
expn(x):zl—i—x—}—?—i—z—i—---—l—ﬁEQ[x]

is either S,, or A, [9]. Therefore the endomorphism algebra (over C) of
the jacobian J(C') of the curve C : y? = exp,,(x) is Q[t]/P,(t)Q[t].

Remark 1.4. If f(z) € K[z] then the curve Cy 4 and its jacobian J(Cy,4) are de-
fined over K. Let K, C C be the algebraic closure of K. Clearly, all endomorphisms
of J(Cy,,) are defined over K,. This implies that in order to prove Theorem 1.1, it
suffices to check that Q[d,] coincides with the Q-algebra of K,-endomorphisms of
J(Crq)-

Our main technical tool used in the proof of Theorem 1.1 is a certain modular
representation Vy, of the Galois group of f [3, 17] arising from its action on the
roots of f. In the case of ¢ = p the Galois module V/ , is canonically isomorphic to
the subgroup of d,-invariants in J(C/,) (if ¢, € K) [7, 8]. In the present paper we
construct (assuming that ¢, € K and p does not divide n) an abelian subvariety

Jha < J(Cy,) with multiplication by Z[(,] and prove that V, is canonically
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isomorphic to the subgroup of (,-invariants in J/¢ (Lemma 4.11). (It turns out
that if ¢ = p” then J(Cy ) is isogenous to a product of all JEP with 1 <i < r.)

The paper is organized as follows. In §2 we obtain conditions that guarantee that
the center of the endomorphism algebra of a complex abelian variety is a cyclotomic
field (Corollary 2.2). In §3 we study abelian varieties X over arbitrary fields, whose
endomorphism ring contains a subring isomorphic to the ring O of integers in a
given number field E. We study the Galois action on the A-torsion X of X where
A is a maximal ideal in O. We prove (Theorem 3.8) that if the Galois module X is
very simple in the sense of [15, 21] then the centralizer of E in the algebra End’(X)
of all (absolute) endomorphisms of X either coincides with F or is “very big”. In §4
we study endomorphism algebras of J/*9) using the very simplicity of the Galois
module V , when deg(f) > 5 and the Galois group of f is either the full symmetric
or the alternating group. Theorem 3.8 helps us to prove that in characteristic zero
Q(¢q) is a maximal commutative subalgebra in End’(Jf9). Using Corollary 2.2
and computations with differentials of the first kind (Theorem 3.10 and Remark
4.2), we prove (Theorem 4.16) that the center of End’(J/9) coincides with Q(¢,)
and therefore End®(J79) = Q((,). We finish the proof of Theorem 1.1 in §5.

2. COMPLEX ABELIAN VARIETIES

Let Z be a complex abelian variety of positive dimension. We write € for the
center of the semisimple finite-dimensional Q-algebra End’(Z).

Let E be a subfield of End’(Z) that contains the identity map. Let Xx be the
set of all field embeddings o : £ — C. It is well-known that

Co=E®@p,C=C, Ec=Ew®qC= |] E®e.C= ][] C..

cEXE cEXE

Let Lie(Z) be the tangent space to the origin of Z; it is a dim(Z)-dimensional C-
vector space. By functoriality, End’(Z) and therefore E act on Lie(Z) and therefore
provide Lie(Z) with a natural structure of E ®q C-module. Clearly,

Lie(Z) = €P C,Lie(Z) = @oex,Lie(Z),
cETE
where Lie(Z), := C,Lie(Z) = {x € Lie(Z) | ex = o(e)r Ve € E}. Let us
put n, = ny(Z,E) = dimg, Lie(Z), = dimcLie(Z),. It is well-known that the
natural map Q'(Z) — Homg(Lie(Z),C) is an isomorphism. This allows us to

define via duality the natural homomorphism E — Endc(Home(Lie(Z),C)) =
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Endc(92'(Z)). This provides Q'(Z) with a natural structure of F ®@q C-module in
such a way that Q'(2), := C,Q!(Z) = Homc(Lie(Z),, C). In particular,

ny = dimg(Lie(Z),) = dime(2'(2),) (1).
The following statement is contained in [20, Th. 2.3].

Theorem 2.1. If E/Q is Galois, E contains €z and €z # E then there exists a

nontrivial automorphism k : E — E such that ne = ngy for all o € Xg.
The following assertion will be used in the proof of Theorem 4.16.

Corollary 2.2. Suppose that there exist a prime p, a positive integer r, the prime

power ¢ = p" and an integer n > 4 enjoying the following properties:

(i) E=Q(¢) C C where {4 € C is a primitive gth root of unity;
(ii) n is not divisible by p, i.e. n and q are relatively prime:
(i) Let i < q be a positive integer that is not divisible by p and o; : E =
Q(¢q) — C the embedding that sends ¢q to (. Then ng, = [%}

Then €z = Q(¢q).

Proof. If ¢ = 2 then E = Q(¢{2) = Q. Since € is a subfield of F = Q, we conclude
that €z = Q = Q((2). So, further we assume that ¢ > 2.

Clearly, {o;} is the collection ¥ of all embeddings Q({,) — C. By (iii), n,, =0
if and only if 1 <4 < [Z]. Suppose that €z # Q((,). It follows from Theorem 2.1
that there exists a non-trivial field automorphism « : Q[¢,] — Q[{,] such that for
all ¢ € ¥ we have n, = ny,. Clearly, there exists an integer m such that p does
not divide m, 1 <m < g and k((,) = ("

Assume that ¢ < n. In this case the function i — n,, = [%] is strictly increasing
and therefore n,, # ny, while i # j. This implies that o; = ok, i.e. & is the
identity map which is not the case. The obtained contradiction implies that n < gq.
Since n > 4, we have ¢ > 5.

If i is an integer then we write i € Z/qZ for its residue modulo g.

Clearly, n, = 0 if and only if ¢ = o; with 1 <4 < [4]. Since n and ¢ are

relatively prime, [1] = [qn;l] It follows that n,, = 0 if and only if 1 < < [%]

Clearly, the map o — ok permutes the set

-1
{o;]1<i< [q] ,p does not divide i}.
n
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Since k((q) = ¢ and 04k(¢q) = ¢; ™, it follows that if

-1
A:{iEZHSiS [q] <q,pdoesnotdividei}
n

then the multiplication by m in (Z/¢Z)* = Gal(Q({,)/Q) leaves invariant the set
A:={i€Z/qZ |iec A}. Clearly, A contains 1 and therefore m = m -1 € A. Since
1 <m <q,

m:nrlg{qgl} (2).

Let us consider the arithmetic progression consisting of 2m integers

q—1 q—1
1,...
41

| +2m

with difference 1. All its elements lie between [%] +1 and
-1 -1 -1
P}+mng3v}s3q<q—1
n n 4

Clearly, there exist exactly two elements of A say, mc; and mcy;+m that are divisible
by m. Clearly, c; is a positive integer and either ¢; or ¢; + 1 is not divisible by p;
we put ¢ = ¢; in the former case and ¢ = ¢; + 1 in the latter case. However, c is
not divisible by p and

F;l]<nw§[q;1}+mn<q—l (3)-

It follows that mc does not lie in A and therefore ¢ does not lie in A. This implies

that ¢ also does not lie in A and therefore ¢ > [%} Using (3), we conclude that

(m—l)vnl]<2m

and therefore

—1 2 2
1 < Mooy =
n m—1 m—1

If m > 2 then m > 3 and using (2), we conclude that

3<m<

[qg—1] 2
— | <24+ <3
n | m—1

and therefore 3 < 3, which is not true. Hence m = 2 and

(g —17 2
2=m< |2 <o = -4
n | m—

and therefore [%] = 2 or 3. It follows that ¢ > 1+2n > 1+4+2-4 = 9. Since
m = 2 is not divisible by p, we conclude that p > 3 and either A = {1,2} or p >3
and A = {1,2,3}. In both cases 4 = 2-2 = m -2 must lie in A. Contradiction. [
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3. ABELIAN VARIETIES OVER ARBITRARY FIELDS

Let K be a field. Let us fix its algebraic closure K, and denote by Gal(K)
the absolute Galois group Aut(K,/K) of K. If X is an abelian variety of positive
dimension over K, then we write 1x (or even just 1) for the identity automorphism
of X. If Y is (may be another) abelian variety of positive dimension over K,
then we write Hom(X,Y") for the group of all K,-homomorphisms from X to Y.
We write Hom®(X,Y) for the finite-dimensional Q-vector space Hom(X,Y) ® Q.
Clearly, End(X) = Hom(X,X) and End’(X) = End(X) ® Q = Hom’(X, X).
It is well-known that Endo(X ) is a finite-dimensional semisimple Q-algebra and
dimg(End”(X)) does not exceed 4dim(X)? [4, §19, corollary 1 to theorem 3]; the
equality holds if and only if char(K) > 0 and X is a supersingular abelian variety
[14, Lemma 3.1].

Let E be a number field and O C E be the ring of all its algebraic integers. Let

(X,4) be a pair consisting of an abelian variety X over K, and an embedding
i:E < End’(X)

with i(1) = 1x. It is well known [12, Proposition 2 on p. 36] that [E : Q] divides
2dim(X), i.e.,, r = rx := 2dim(X)/E : Q] is a positive integer.

Let us denote by End’(X, i) the centralizer of i(E) in End’(X). Clearly, i(E)
lies in the center of the finite-dimensional Q-algebra EndO(X,i). It follows that
End®(X,4) carries a natural structure of finite-dimensional E-algebra. If Y is (pos-
sibly) another abelian variety over K, and j : E < End°(Y) is an embedding that

sends 1 to the identity automorphism of Y then we write
Hom®((X,4), (Y, ) = {u € Hom®(X,Y) | wi(c) = j(c)u Ve e E}.

Clearly, End’(X, i) = Hom’((X,4), (X,)). By abuse of language, we call elements
of Hom®((X, 1), (Y, j)) E-equivariant homomorphisms from X to Y.

Recall that if ¢ : X — Y is an isogeny then there exist an isogeny ¢ : Y — X
and a positive integer N such that ¢1p = N1x,9¥¢ = N1ly. One may easily check
that if ¢ is F-equivariant then ¢ is also F-equivariant.

If d is a positive integer then we write i() for the composition
E — End’(X) c End’(X?)

of i and the diagonal inclusion End’(X) c End®(X9).
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One may easily check [23, Remark 4.1] that the E-algebra End® (X, i) is semisim-

ple. The following assertion is contained in [23, Theorem 4.2].

Theorem 3.1. (i) We always have
. . 4 - dim(X)?
0

< .

dimg(End” ((X,1)) < . QF

(ii) Suppose that

) ) 4 - dim(X)?2
End’((X,i)) = ———rrt—

dimg(End”((X, 1)) QP

Then X is an abelian variety of CM-type isogenous to a self-product of an
(absolutely) simple abelian variety. Also End®((X,i) is a central simple
E-algebra, i.e., E coincides with the center of End®((X,1).

Moreover, if char(K,) = 0 then [E : Q] is even and there exist a @—
dimensional abelian variety Z, an isogeny i : Z" — X and an embedding k :

E < End’(Z) that send 1 to 1z and such that 1) € Hom®((Z", k"), (X,1)).

Remark 3.2. Suppose that

dims (End®((X, 7)) = 4 dim(X )\

[E : Q)2

By 3.1(ii), X is isogenous to a self-product of an absolutely simple abelian variety
B. Tt is proven in [23, §4, Proof of Theorem 4.2] that B is an abelian variety
of CM-type. Recall [12, Prop. 26 on p. 96] that in characteristic zero every
absolutely simple abelian variety of CM type is defined over a number field; in
positive characteristic such a variety is isogenous to an abelian variety defined over

a finite field (a theorem of Grothendieck [5, Th. 1.1]). It follows easily that:
(1) If char(K) = 0 then X is defined over a number field;

(2) If char(K) > 0 then X is isogenous to an abelian variety defined over a
finite field.

Let d be a positive integer that is not divisible by char(K). Suppose that X
is defined over K. We write X for the kernel of multiplication by d in X (K,).
It is known [4, Proposition on p. 64] that the commutative group X, is a free
Z/dZ-module of rank 2dim(X). Clearly, X4 is a Galois submodule in X (K,). We
write pg x : Gal(K) — Autgz/q7(X4) = GL(2dim(X), Z/dZ) for the corresponding

(continuous) homomorphism defining the Galois action on X4. Let us put

Ga,x = pa,x(Gal(K)) C Autz/gz(Xa).
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Clearly, G4 x coincides with the Galois group of the field extension K (X4)/K where
K (X,) is the field of definition of all points on X of order dividing d. In particular,
if a prime ¢ # char(K) then X, is a 2dim(X)-dimensional vector space over the
prime field F;, = Z/¢Z and the inclusion G&X C Autp,(Xy) defines a faithful linear
representation of the group é& x in the vector space X.

Now let us assume that
i(0) C Endg(X).

Let X be a maximal ideal in O. We write k() for the corresponding (finite) residue

field. Let us put
Xy ={r e X(K,) |ile)lr =0 Vee A}

Clearly, if char(k(X)) = £ then A D £- O and therefore X, C X,. Clearly, X, is
a Galois submodule of X,. It is also clear that X, carries a natural structure of

O/ = k(\)-vector space. We write
p~)\7X : Gal(K) — Autk()\) (X)\)

for the corresponding (continuous) homomorphism defining the Galois action on

X». Let us put
é)\7X = é)\ﬂ‘)X = ﬁ)\7x(Gal(K)) C Autk()\) (X)\)

Clearly, G x coincides with the Galois group of the field extension K(Xy)/K
where K (X)) = K(X) ;) is the field of definition of all points in X.

In order to describe py x explicitly, let us assume for the sake of simplicity that
X is the only maximal ideal of O dividing ¢, i.e., £ - O = A\’ where the positive
integer b satisfies [E : Q] = b [k(\) : Fy]. Then O ® Zy = O, where O, is the
completion of O with respect to the A-adic topology. It is well-known that O, is
a local principal ideal domain and its only maximal ideal is AO,. One may easily
check that £- Oy = (AO,)°.

Let us choose an element ¢ € X that does not lie in A\?. Clearly, A\Oy = c - O,.
This implies that there exists a unit u € O% such that ¢ = ucb. It follows from the

unique factorization of ideals in O that A =/¢-0O + ¢- O. It follows readily that
X)\:{IEGX5|CQS:0}CX5.

Let Ty(X) be the f-adic Tate module of X defined as the projective limit of
Galois modules Xym [4, §18]. Recall that T (X) is a free Z,-module of rank 2dim(X)
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provided with the continuous action p, x : Gal(K) — Autg, (T¢(X)) and the natural
embedding [4, §19, theorem 3|

EndK(X) ® 72y C EHd(X) R 2Ly — Endze (TZ(X)) (4)

Clearly, the image of Endg (X) ® Z, commutes with p, x (Gal(K)). In particular,
Ty(X) carries the natural structure of O®Zy, = Ox-module. The following assertion

is a special case of Proposition 2.2.1 on p. 769 in [6].
Lemma 3.3. The Oy-module Ty(X) is free of rank rx.

There is also the natural isomorphism of Galois modules X, = Ty(X) /Ty (X),
which is also an isomorphism of Endg(X) D O-modules. This implies that the
O[Gal(K)]-module X, coincides with

YTy X)) JUT)(X) = 71 TY(X) /PT(X) = Ty(X) /cTo(X) =

Ty (X)/ATo(X) = To(X)/(ANON)Te(X).
Hence

~ 2dim(X)

X =To(X)/(AONT(X) = Ty(X) ®o, k(A), dimgp) Xy =rx = TEQ (5)-

Let us consider the 2dim(X)-dimensional Qg-vector space
Vi(X) = Ty(X) ®z, Qu,

which carries a natural structure of rx-dimensional Fy-vector space. Extending

the embedding (4) by Qg-linearity, we get the natural embedding
E®q Q=08 Q< Endg(X)® Q¢ C End’(X) ®q Q/ — Endq, (Vi(X)).
Further we will identify End’(X) ®q Qg with its image in Endq, (V¢(X)).

Remark 3.4. (1) Clearly, the center €x of End”(X) commutes with i(E) and
therefore lies in End’(X,4). Since €x also commutes with End’(X,4), it
lies in the center of End’(X,1);

(2) Notice that By = E®q Qr = O ® Q¢ = Oy ®z, Q¢ is the field coin-
ciding with the completion of E with respect to A-adic topology. Clearly,
Ve(X) carries a natural structure of rx-dimensional Ey-vector space and
i, (Endg, (Vi(X))) = 3.
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(3) One may easily check that End’(X,i) ®q Q¢ is a E ®q Q/ = Ejx-vector
subspace (even subalgebra) in Endg, (V;(X)). Clearly,

dimp, (End’(X,i) ®q Q) = dimp(End"(X,1)).

(4) Tf End®(X, i) ®q Q/ = Ex\Id then dimg(End”(X,4)) = 1 and, in light of the
inclusion F = i(E) ¢ End’(X, i), we obtain that End’(X,i) = i(E), i.e.,
i(E) = F is a maximal commutative subalgebra in End’(X) and i(0Q) = O
is a maximal commutative subring in End(X). It follows that €x C i(E)
and therefore is isomorphic to a subfield of E. In particular, €x is a field,
ie., End’ (X) is a simple Q-algebra. This means that X is isogenous to a
self-product of an absolutely simple abelian variety;

(5) Suppose that End’(X,i) ®q Q¢ = Endg, (V¢(X)). This implies that
dimp(End’ (X, 1)) = r%.

Applying Theorem 3.1, we conclude that X is an abelian variety of CM-
type isogenous to a self-product of an (absolutely) simple abelian variety.
Also End’((X, i) is a central simple E-algebra, i.e., E coincides with the

center of End’((X,4). Moreover, if char(K,) = 0 then [F : Q] is even and
[E:Q]

2
and an embedding k : E — End"(Z) that send 1 to 1z and such that
¢ € Hom’((Z", k"), (X, 4)).

there exist a dimensional abelian variety Z, an isogeny ¢ : 2" — X

Using the inclusion Autg, (7;(X)) C Autq,(Ve(X)), one may view py x as the
l-adic representation py x : Gal(K) — Autz, (T¢(X)) C Autq, (Vi(X)).

Since X is defined over K, one may associate with every v € End(X) and
o € Gal(K) an endomorphism “u € End(X) such that “u(x) = cu(o~tx) for all
x € X(K,). Clearly, “u = v if u € Endg(X). In particular, e = eif e € O
(here we identify O with i(Q)). It follows easily that for each o € Gal(K) the map
u — “u extends by Q-linearity to a certain automorphism of End’ (X). Clearly,

7¢ = e for each e € E and “u € End’(X, i) for each u € End’(X,1).

Remark 3.5. The definition of T;(X) as the projective limit of Galois modules Xym
implies that “u(z) = ps x (o)upe x (o) 1 (x) for all z € T;(X). It follows easily that
u(z) = pox(o)upex (o)~ (z) for all z € Vy(X),u € End’(X),o € Gal(K). This
implies that for each o € Gal(K) we have py x (o) € Autg, (VA(X)) and therefore

pe.x (Gal(K)) C Autg, (Va(X))
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6, pp. 767-768] (sce also [10]). It is also clear that py x (0)upe x (o) ! € End’(X)®q
Qq for all u € End"(X) ®q Q/ and

pg7x(0')upg7x(0')71 € EndO(X, i) ®q Q¢ Yuce EndO(X, i) ®q Q.
We refer to [15, 16, 19, 21] for a discussion of the following definition.

Definition 3.6. Let V' be a vector space over a field F, let G be a group and
p: G — Autg(V) a linear representation of G in V. We say that the G-module V/
is very simple if it enjoys the following property:

If R C Endp(V) is an F-subalgebra containing the identity operator Id such that
p(0)Rp(0)~ C R Vo € G then either R =F -1d or R = Endg(V).

Remarks 3.7. (i) If G’ is a subgroup of G and the G’-module V is very simple
then obviously the G-module V is also very simple.

(ii) Clearly, the G-module V is very simple if and only if the corresponding
p(G)-module V is very simple. This implies easily that if H — G is a
surjective group homomorphism then the G-module V is very simple if and
only if the corresponding H-module V is very simple.

(iii) Let G’ be a normal subgroup of G. If V is a very simple G-module then
either p(G') C Auty (V) consists of scalars (i.e., lies in k - Id) or the G'-
module V is absolutely simple. See [19, Remark 5.2(iv)].

(iv) Suppose F is a discrete valuation field with valuation ring Op, maximal
ideal mp and residue field k = Op/mp. Suppose V a finite-dimensional
F-vector space, pr : G — Autp(Vp) a F-linear representation of G. Sup-
pose T is a G-stable Op-lattice in Vi and the corresponding k[G]-module
T/mpT is isomorphic to V. Assume that the G-module V is very simple.
Then the G-module Vr is also very simple. See [19, Remark 5.2(v)].

Theorem 3.8. Suppose that X is an abelian variety defined over K and i(Q) C
Endg(X). Let £ be a prime different from char(K). Suppose that A is the only
mazimal ideal dividing € in O. Suppose that the natural representation in the k(\)-
vector space Xy is very simple. Then EndO(X,i) enjoys one of the following two
properties:

(1) End®(X,i) = i(E), i.e., i(E) = E is a mazimal commutative subalgebra in
End’(X) and i(O) = O is a mazimal commutative subring in End(X). In
particular, i(E) contains the center of End®(X)

(2) The following two conditions are fulfilled:
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(2a) End’(X,4) is a central simple E-algebra of dimension % and X is an
abelian variety of CM-type over K,.

(2b) Ifchar(K) = 0 then [E : Q] is even and there exist a @-dimensional
abelian variety Z, an isogeny ¥ : Z" — X and an embedding k : £ —
End’(Z) that sends 1 to 15 and such that ¢» € Hom®((Z", k("), (X, 1)).
In addition, X is defined over a number field.

If char(K') > 0 then X is isogenous to an abelian variety defined over
a finite field.

Proof. In light of 3.7(ii), the Gal(K)-module X} is very simple. In light of 3.7(iv)
and Remark 3.5, p¢ x : Gal(K) — Autg, (Vi(X)) is also very simple. Let us put
R = EndO(X, i) ®q Q. It follows from Remark 3.5 that either R = E,Id or
R = Endg, (Ve(X)). Now the result follows readily from Remarks 3.4 and 3.2.

O

Let Y be an abelian variety of positive dimension over K, and u a non-zero

endomorphism of Y. Let us consider the abelian (sub)variety Z = u(Y) C Y.

Remark 3.9. Suppose that Y is defined over K and u € Endg(Y). Clearly, Z and
the inclusion map Z C Y are defined over KSal(K), i.e., Z and Z C Y are defined
over a purely inseparable extension of K. By a Theorem of Chow [2, Th. 5 on p.
26], Z is defined over K. Clearly, the graph of Z C Y is an abelian subvariety of
Z x'Y defined over a purely inseparable extension of K. By the same Theorem of

Chow, this graph is also defined over K and therefore Z C Y is defined over K.

Theorem 3.10. Let Y be an abelian variety of positive dimension over K, and §
an automorphism of Y. Suppose that the induced K,-linear operator §* : Q1Y) —
QYY) is diagonalizable. Let S be the set of eigenvalues of §* and multy : S — Z
the integer-valued function which assigns to each eigenvalue its multiplicity.

Suppose that P(t) is a polynomial with integer coefficients such that uw = P(9) is
a non-zero endomorphism of Y. Let us put Z = u(Y). Clearly, Z is é-invariant
and we write 6z : Z — Z for the corresponding automorphism of Z (i.e., for the
restriction of § to z). Suppose that

dim(Z) = > multy()).
AES,P(N)#0

Then the spectrum of 8 : QY(Z) — QY (Z) coincides with Sp = {\ € S, P()\) # 0}

and the multiplicity of an eigenvalue X of 03 equals multy (N).
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Proof. Clearly, v commutes with 6. We write v for the (surjective) homomorphism
Y — Z induced by u and j for the inclusion map Z C Y. Notice that u:Y — Y

splits into a composition Y ey I, Y, ie., u = jv. Clearly,
dzv =vd € Hom(Y, Z), joz = dj € Hom(Z,Y), u = jv € End(Y), ud = du € End(Y").

It is also clear that the induced map u* : Q1(Y) — QYY) coincides with P(§*). It
follows that u*(Q(Y)) = P(6*)(2(Y)) has dimension
> multy(A) = dim(Y)
AES,P(A)#0

and coincides with ©ycg5 pn)zoWx where W) is the eigenspace of § attached to
eigenvalue \. Since u* = v*j*, we have u*(Q(Y)) = v*5*(QY(Y)) C v*(QY(2)).
Since dim(u*(Q1(Y))) = dim(Y) = dim(Q2(Z)) > dim(v*(2}(Z))), the subspace
w*(QLY)) = v*(Q1(Z)) and v* : QY(Z) — QY(Y). It follows that if we denote
by w the isomorphism v* : Q1(Z) = v*(Q1(Z)) and by v the restriction of 6* to
v*(Q1(Z)) then yw = wé;- and therefore v = wdyw 1. O

4. CYCLIC COVERS AND JACOBIANS

Throughout this paper we fix a prime number p and an integral power ¢ = p”
and assume that K is a field of characteristic different from p. We fix an algebraic
closure K, and write Gal(K) for the absolute Galois group Aut(K,/K). We also
fix in K, a primitive gth root of unity (.

Let f(x) € K|[z] be a separable polynomial of degree n > 4. We write R for the
set of its roots and denote by L = Ly = K (M) C K, the corresponding splitting
field. As usual, the Galois group Gal(L/K) is called the Galois group of f and
denoted by Gal(f). Clearly, Gal(f) permutes elements of 98 and the natural map
of Gal(f) into the group Perm(fy) of all permutations of iy is an embedding.
We will identify Gal(f) with its image and consider it as a permutation group of
Ry. Clearly, Gal(f) is transitive if and only if f is irreducible in K[z]. Further, we
assume that either p does not divide n or ¢ does divide n.

If p does not divide n then we write (as in [17, §3])

R R
Vip = (Fp f)OO = (Fp f)o

for the (n—1)-dimensional F-vector space of functions {¢ : Ry — Fp, >, #() = 0}
provided with a natural action of the permutation group Gal(f) C Perm(R;). It
is the heart over the field F,, of the group Gal(f) acting on the set Ry [3, 17].
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Remark 4.1. If p does not divide n and Gal(f) = S,, or A,, then the Gal(f)-

module Vy, is very simple. See [17, lemma 3.5].

Let C = Cy,4 be the smooth projective model of the smooth affine K-curve
y? = f(x). So C is a smooth projective curve defined over K. The rational
function x € K(C) defines a finite cover 7 : C' — P! of degree p. Let B’ C C(K,)
be the set of ramification points. Clearly, the restriction of = to B’ is an injective
map B’ — P!(K,), whose image is the disjoint union of co and Ry if p does not

divide deg(f) and just PRy if it does. We write
B=1"'R;) = {(a,0) |« € Ry} C B' C C(K,).

Clearly, 7 is ramified at each point of B with ramification index q. We have B’ = B
if n is divisible by ¢. If n is not divisible by p then B’ is the disjoint union of B
and a single point oo’ := 7 !(c0). In addition, the ramification index of 7 at
7 1(c0) is also ¢. Using Hurwitz’s formula, one may easily compute the genus
g = g(C) = g(Cy,q) of C ([1, pp. 401-402], [13, proposition 1 on p. 3359, [7, p.
148]). Namely, g is (¢ —1)(n —1)/2 if p does not divide n and (¢ —1)(n —2)/2 if ¢

does divide n.

Remark 4.2. Assume that p does not divide n and consider the plane triangle

(Newton polygon)
Ang:={(:)[0<j, 0<i, qj+ni<ng}

with the vertices (0,0), (0,q) and (n,0). Let L,, ; be the set of integer points in the
interior of A,, ;. One may easily check that g = (¢ —1)(n —1)/2 coincides with the

number of elements of L, ,. It is also clear that for each (j,4) € L, 4
1<j<n-1; 1<i<qg-1; q(i—-1)+({+1)<n(g—1).
Elementary calculations ([1, theorem 3 on p. 403]) show that
wjg = oI [y = 2y e fy? = 2y T ey

is a differential of the first kind on C for each (j,7) € Ly, 4. This implies easily that
the collection {w; ;}(ji)eL, , is a basis in the space of differentials of the first kind
on C.

There is a non-trivial birational K,-automorphism of C

dq : (z,y) = (2, Cy).
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Clearly, §¢ is the identity map and the set of fixed points of §, coincides with B’.

Remark 4.3. Let us assume that n = deg(f) is divisible by ¢ say, n = gm for
some positive integer m. Let o € K, be a root of f and K; = K(«a) be the
corresponding subfield of K,. We have f(z) = (x — «)f1(x) with fi(x) € K;[z].
Clearly, f1(z) is a separable polynomial over K; of degree gm — 1 =n—1>4. Tt
is also clear that the polynomials h(z) = fi(z + ), hi(z) = 2" 1h(1/2) € Ki[x]
are separable of the same degree gm — 1 = n — 1 > 4. The standard substitution
1 =1/(x —a),y1 = y/(x —a)™ establishes a birational isomorphism between C ),
and a curve C,, : y{ = hi(z1) (see [13, p. 3359]). In particular, the jacobians of C
and Cp, are isomorphic over K, (and even over K7). But deg(hi) = ¢m — 1 is not
divisible by p. Clearly, this isomorphism commutes with the actions of §,. Notice
also that if the Galois group of f over K is S,, (resp. A,,) then the Galois group of
hy over Kj is S,,_1 (resp. A,_1).

Remark 4.4. (i) It is well-known that dimg, (Q'(C(sq)) = 9(Cfq). By
functoriality, d, induces on Q'(C(;s,4)) a certain K,-linear automorphism
or - Q(Crypq) — QC(y,q))- Clearly, if for some positive integer j the
differential w;; = 2/~ 1dx/y?" lies in Q'(C(s,) then it is an eigenvector
of ¢, with eigenvalue ¢t

(ii) Now assume that p does not divide n. It follows from Remark 4.2 that the
collection {w;; = @/~ *dx/y9=" | (i,7) € Ly 4} is an eigenbasis of Q' (C(s,4))-
This implies that the multiplicity of the eigenvalue (% of 4y coincides with
the number of interior integer points in A, , along the corresponding (to
g — 1) horizontal line. Elementary calculations show that this number is
[%} ; in particular, (~¢ is an eigenvalue if and only if [%} > 0. Taking into
account that n > 4 and ¢ = p", we conclude that (* is an eigenvalue of d;
for each integer ¢ with p" —p™ ! < i < p" —1 = ¢q— 1. It also follows easily

that 1 is not an eigenvalue J,. This implies that
PuG) =01 4120

in Endg (Q'(C(s,4)))- In addition, one may easily check that if H(¢) is a
polynomial with rational coefficients such that H(6}) = 0 in Endg (Q'(C(1,¢)))
then H(t) is divisible by P,(t) in Q]t].

Let J(Cyq4) = J(C) = J(Cy4) be the jacobian of C. It is a g-dimensional

abelian variety defined over K and one may view (via Albanese functoriality) o, as
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an element of Aut(C) C Aut(J(C)) C End(J(C)) such that J, # Id but ¢ = Id
where Id is the identity endomorphism of J(C). We write Z[4,] for the subring of
End(J(C)) generated by d,.

Remark 4.5. Assume that p does not divide n. Let Py be one of the d4-invariant

points (i.e., a ramification point for ) of Cf ,(K,). Then
7:Cpq— J(Crq), Prcl((P)—(F))

is an embedding of complex algebraic varieties and it is well-known that the induced
map 7 : Q(J(Ct,q)) — Q*(Cyq) is an isomorphism obviously commuting with the
actions of d,. (Here cl stands for the linear equivalence class.) This implies that
ne, coincides with the dimension of the eigenspace of Q'(C(; ) attached to the
eigenvalue (~* of §7. Applying Remark 4.4, we conclude that if H(t) is a monic
polynomial with integer coefficients such that H(d,) = 0 in End(J/9)) then H(t)
is divisible by Py(t) in Q[t] and therefore in Z[t].

Remark 4.6. Assume that p does not divide n. Clearly, the set S of eigenvalues A
of 63 : QN (J(Cfq)) = Q' (J(Cyq)) with Pgyp(X) # 0 consists of primitive gth roots
of unity (=% (1 <i < ¢, (i,p) = 1) with {%} > 0 and the multiplicity of (=% equals
[%’}, thanks to Remarks 4.5 and 4.4. Let us compute the sum
ni
M = —

Lzl

<i<q,(i,p)=1
of multiplicities of eigenvalues from S.

First, assume that ¢ > 2. Then ¢(q) = (p — 1)p" ! is even and for each (index)

1 the difference ¢ — 7 is also prime to p, lies between 1 and ¢ and
m N {n(qw] I
q q

pl@) _ (n=Dp-1)p"
5 :

Now assume that ¢ = p = 2 and therefore 7 = 1. Then n is odd, Cf 4 = Cyo :

It follows easily that

M=(n-1)

n

y? = f(x) is a hyperelliptic curve of genus g = %1 and Jy is the hyperelliptic
involution (z,y) — (z,—y). It is well-known that the differentials xidf (0<i<
g— 1) constitute a basis of the g-dimensional Q*(J(C},2)). It follows that 03 is just
multiplication by —1. Therefore

n—1 (n—1)(p— l)p’*.

M=q— -
9= 2
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Clearly, if the abelian (sub)variety Z := Pg/,(04)(J(Cf,4)) has dimension M
then the data Y = J(Cy4),6 = 64, P = Py, (t) satisfy the conditions of Theorem
3.10.

Lemma 4.7. Assume that p does not divide n. Let D =), ap(P) be a divisor
on C = Cy ), with degree 0 and support in B. Then D is principal if and only if all

the coefficients ap are divisible by q.

Proof. Suppose D = div(h) where h € K,(C) is a non-zero rational function of
C. Since D is dg-invariant, the rational function d6;h := hd, coincides with c - h
for some non-zero ¢ € K,. It follows easily from the d,-invariance of the splitting
K.(C) = @%7)y" - Ko(x) that h = y* - u(z) for some non-zero rational function
u(z) € Ky(r) and a non-negative integer ¢« < ¢ — 1. It follows easily that all
finite zeros and poles of u(x) lie in B, i.e., there exists an integer-valued function
b on PRy such that u coincides, up to multiplication by a non-zero constant, to
[Toem, (- @)@ Notice that div(y) = 3 pc 5(P) —n(c0). On the other hand, for
each o € Ry, we have P, = (a,0) € B and the corresponding divisor div(z — ) =
q((r,0)) —g(o0) = g(P,)—q(o0) is divisible by ¢. This implies that ap, = ¢-b(a)+i.
Also, since oo is neither zero no pole of h, we get the equality 0 = m’—l—zaemf b(a)g.
Since n and ¢ are relatively prime, ¢ must divide ¢. This implies that ¢ = 0 and
therefore the divisor D = div(u(z)) = div(Hae%f (z — a)*®) is divisible by q.
Conversely, suppose a divisor D = ), pap(P) with ) p.pap = 0 and all ap
are divisible by ¢. Let us put i = []pc 5(z —2(P))*"/9. One may easily check that
D = div(h). O

Lemma 4.8. 1+, + --- + 677! = 0 in End(J(Cyy)). The subring Z[d,] C
End(J(Cy4)) is isomorphic to the ring Z[t]/Py(t)Z[t]. The Q-subalgebra Q[d,] C
End’(J(Cy,4)) = End"(J(Cy,q)) is isomorphic to Q[t]/Py(t)Q[t] = [T;—; Q((pi)-

Proof. If ¢ = p is a prime this assertion is proven in [7, p. 149], [8, p. 458]. So,
further we may assume that ¢ > p. It follows from Remark 4.3 that we may assume
that p does not divide n.

Now we follow arguments of [8, p. 458] (where the case of ¢ = p was treated).
The group J(Cy,4))(K,) is generated by divisor classes of the form (P) — (c0)
where P is a finite point on Cy,. The divisor of the rational function x — z(P) is
(6471 P) + -+ (6,P) + (P) — q(c0). This implies that Py(6,) = 0 € End(J(Cy,q)).
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Applying Remark 4.5(ii), we conclude that P,(¢) is the minimal polynomial of §,
in End(J(Cy,q)). O

Let us define the abelian (sub)variety
JED =Py (00)(J(Cra)) € J(Cra).

Clearly, J9 is a d4-invariant abelian subvariety defined over K((,). In addition,

0y (84)(JVP) = 0.
Remark 4.9. If ¢ = p then P/, (t) = Pi(t) = 1 and therefore JP) = J(Cy,).

Remark 4.10. Since the polynomials ¢, and P/, are relatively prime, the homo-
morphism Py, (dg) : J (£:0) — J(1:9) has finite kernel and therefore is an isogeny. In

particular, it is surjective.

Lemma 4.11. Suppose that p does not divide n. Then

(" —pHn-1)
2

dim(J9) =

and there is an K(¢)-isogeny J(Cyq) — J(Cyq/p) X JED. In addition, if ¢ € K
then the Galois modules Vi, and (JU9)o .= {2 € JSD(K,) | §,(2) = 2} are

isomorphic.

Proof. Clearly, we may assume that ¢ € K. Let us consider the curve Cy,/, :
y(ll/p = f(x1) and a regular surjective map 71 : Crq — Crq/py, 1 = T,y1 = yP.
Clearly, 710, = d4/pm1. By Albanese functoriality, m; induces a certain surjective
homomorphism of jacobians .J(Cy 4) — J(Cf q/p) Which we continue to denote by
7. Clearly, the equality 710, = dq4/,m1 remains true in Hom(J(Cyq), J(Cf q/p))-
By Lemma 4.8, P/, (dq/p) = 0 € End(J(Cy q/p)). It follows from Lemma 4.10 that

71 (J9) = 0 and therefore dim(Jf9)) does not exceed

dim(J(Cf,q))—dim(J(C’f’q/p)) — (pr - 1)(” — 1) _ (pr— — 1)(” — 1) _ (pr - pr— )(n — 1).

2 2 2

By definition of J:@, for each divisor D = pep ap(P) the linear equivalence
class of $p" 1D = 3" .5 p" tap(P) lies in (JUDYa ¢ JED(K,) C J(Cyq)(Ka).
It follows from Lemma 4.7 that the class of p"~!'D is zero if and only if all p" lap
are divisible by ¢ = p", i.e. all ap are divisible by p. This implies that the set of
linear equivalence classes of p"~' D is a Galois submodule isomorphic to Vy,,. We

want to prove that (J(/ @)% =V} .
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Recall that J(/'9) is §,-invariant and the restriction of &, to J(/'9) satisfies the
gth cyclotomic polynomial. This allows us to define the homomorphism Z[¢,] —
End(J(f’q)) that sends 1 to the identity map and ¢, to J,. Let us put £ =
Q(¢y), 0 = Z[¢) C Q(¢) = E. It is well-known that O is the ring of integers
in E, the ideal A = (1 — (;)Z[¢,] = (1 — {;)O is maximal in O with O/A = F,
and O ® Z, = Zp[(,] is the ring of integers in the field Q,(¢,). Notice also that
O ® Z, coincides with the completion Oy of O with respect to the A-adic topology
and Ox/AO\ = O/A =F,,.

It follows from Lemma 3.3 that

2dim(J59)  2dim(J9)
TTEa o

is a positive integer, the Z,-Tate module T}, (J/9) is a free Oy-module of rank d.

Using the displayed formula (5) from §3, we conclude that
(D)% = fu € JINE,) | (L= 6)(w) = 0} = I = T,(77) 90, F,

is a d-dimensional F,-vector space. Since (J/*9)% contains (n — 1)-dimensional

F,-vector space Vf,, we have d > n — 1. This implies that
2dim(JV9) =d(p" —p" ) = (n—1)(p" —p" )

and therefore
r— 1)

ey s (oD@ —p
dim(JY?) > 5

But we have already seen that

T r—1
. (£:0)) < (n—=1)(p" —p" ")
dim(J ) < 5 .

This implies that

dim(J(f7Q)) _ (n— 1)(p27' _pr—l).

It follows that d = n — 1 and therefore (J/ @)% = V; . Dimension arguments
imply that J9 coincides with the identity component of ker(m;) and therefore
there is an isogeny between J(Cy ) and J(Cy /) x JS9. O

Corollary 4.12. If p does not divide n then there is a K((,)-isogeny J(C;q4) —
J(Crp) x Ty JUP) =TT1_, JUPD.

Proof. Combine Corollary 4.11(ii) and Remark 4.9 with easy induction on r. O
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Remark 4.13. Suppose that p does not divide n and consider the induced linear
operator d; : QY (JUD) — QY (JUD). Tt follows from Theorem 3.10 combined with
Remark 4.6 that its spectrum consists of primitive gth roots of unity (~¢ (1 < i < q)
with [ni/q] > 0 and the multiplicity of (=% equals [ni/q].

Theorem 4.14. Suppose that n > 5 is an integer. Let p be a prime, r > 1
an integer and q = p". Suppose that p does not divide n. Suppose that K is
a field of characteristic different from p containing a primitive qth root of unity
¢. Let f(x) € K[x] be a separable polynomial of degree n and Gal(f) its Galois
group. Suppose that the Gal(f)-module Vy, is very simple. Then the image O of
Z[6,] — End(JYD) is isomorphic to Z[(,] and enjoys one of the following two

properties.

(i) O is a mazimal commutative subring in End(J9);

(ii) char(K) > 0 and the centralizer of O @ Q = Q((,) in End’(J9) is q
central simple (n — 1)2-dimensional Q((,)-algebra. In addition, J9 is
an abelian variety of CM-type isogenous to a self-product of an absolutely
simple abelian variety. Also J9 is isogenous to an abelian variety defined

over a finite field.

Proof. Clearly, O is isomorphic to Z[(,]. Let us put A = (1 — {;)Z[{,;]. By Lemma
4.11(iii), the Galois module (J/ @)% = Jif’q) is isomorphic to V. Applying The-
orem 3.8, we conclude that either (ii) holds true or one of the following conditions

hold:

(a) O is a maximal commutative subring in End(J9) ;
(b) char(K) = 0 and there exist a ¢(g)/2-dimensional abelian variety Z over
K,, an embedding Q(¢,) — End"(Z) that sends 1 to 1z and a Q(¢,)-

equivariant isogeny v : Z"~1 — J(5:9),
Clearly, if (a) is fulfilled then we are done. Also if ¢ = 2 then ¢(q)/2 = 1/2 is
not an integer and therefore (b) is not fulfilled, i.e. (a) is fulfilled.
So further we assume that ¢ > 2 and (b) holds true. In particular, char(K) = 0.
We need to arrive to a contradiction.
Since char(K) = 0, the isogeny 1) induces an isomorphism * : Q! ((J(/9))) =
QY(Z"~1) that commutes with the actions of Q((,). Since

dim(Q'(2)) = dim(2) = @,
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the linear operator in 2!(Z) induced by ¢, € Q({,) has, at most, ¢(q)/2 distinct
eigenvalues. It follows that the linear operator in Q!(Z"~1) = Q}(Z)"~! induced
by (, also has, at most, ¢(q)/2 distinct eigenvalues. This implies that the linear
operator 6 in Q'((J(/9))) also has, at most, ¢(q)/2 distinct eigenvalues. Recall

that the eigenvalues of §; are primitive gth roots of unity ¢ —% with
ni
1<i<gq,(i,p)=1, [] > 0.
q

Clearly, the inequality [ni/q] > 0 means that ¢ > ¢/n, since (n,q) = (n,p") = 1.
So, in order to get a desired contradiction, it suffices to check that the cardinality

of the set
B::{z‘eZ|%<z‘<q=p’“,(i,p)=1}
is strictly greater than (p — 1)p™~!/2. Since p > 2,n > 5 and ¢/n is not an integer,

we have

Corollary 4.15. Suppose that n > 5 is an integer. Let p be a prime, r > 1 an
integer and ¢ = p". Assume in addition that either p does not divide n or q | n and
(n,q) # (5,5). Let K be a field of characteristic different from p. Let f(x) € K|[z]
be an irreducible separable polynomial of degree n such that Gal(f) = S, or A,,.
Then the image O of Z[5,] — End(JY9)) is isomorphic to Z[(,] and enjoys one of

the following two properties.

(i) O is a mazimal commutative subring in End(J9));

(ii) char(K) > 0 and the centralizer of O ® Q = Q((,) in End’(J9) is a
central simple (n — 1)2-dimensional Q((,)-algebra. In addition, J? is
an abelian variety of CM-type isogenous to a self-product of an absolutely

simple abelian variety.

Proof. If p divides n then n > 5 and therefore n — 1 > 5. By Remark 4.3, we may
assume that p does not divide n. If we replace K by K(({) then still Gal(f) = S,
or A,. By Remark 4.1 if Gal(f) = S,, or A,, then the Gal(f)-module V;, is very
simple. One has only to apply Theorem 4.14. (I
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Theorem 4.16. Suppose n > 4 and p does not divide n. Assume also that
char(K) = 0 and Q[8,] is a mazimal commutative subalgebra in End®(J9). Then
End’(JU9) = Q[5,] = Q(¢,) and therefore End(JY9) = Z[5,] = Z[¢,]. In par-

ticular, J9 is an absolutely simple abelian variety.

Proof. Let € = € (s be the center of End’(J/»)). Since Q[f,] is a maximal
commutative subalgebra, € C Q[d,].

Replacing, if necessary, K by its subfield (finitely) generated over Q by all the
coefficients of f, we may assume that K (and therefore K,) is isomorphic to a
subfield of C. So, K C K, C C. We may also assume that ( = (, and consider
J19) as complex abelian variety. Let ¥ = X be the set of all field embeddings
o: E=Q[j,] — C. We are going to apply Corollary 2.2 to Z = J9) and E =
Q[d4]. In order to do that we need to get some information about the multiplicities
Ny =ny(Z,E) = n, (JD Q[s,]). The displayed formula (1) in §2 allows us to do
it, using the action of Q[d,] on Q' (J/@). Namely, since §, generates the field F
(over Q), each Q(J(/9), is the eigenspace corresponding to the eigenvalue o (6,)
of 6,4 and n, is the multiplicity of the eigenvalue o(d;).

Let ¢ < ¢ be a positive integer that is not divisible by p and o; : Q[d,] — C be
the embedding which sends §, to (~%. Clearly, for each o there exists precisely one
i such that o = o;. Clearly, Q'(J/9)),. is the eigenspace of Q'(J/9)) attached
to the eigenvalue (% of 6,. Therefore n,, coincides with the multiplicity of the

eigenvalue ¢ ~%. It follows from Remark 4.13 that

7]
Ng, = | —| -
q

Now the assertion of the Theorem follows from Corollary 2.2 applied to E = Q[d,] =
Q(Cq)-

O

Theorem 4.17. Let p be a prime, T a positive integer, ¢ = p" and K a field of
characteristic zero. Suppose that f(x) € K[x] is an irreducible polynomial of degree
n >5 and Gal(f) = S, or A,,. Assume also that either p does not divide n or q
divides n. Then End®(J9) = Q[d,] = Q(,) and therefore End(JV9)) = Z[§,] =

Z[(,). In particular, JED s an absolutely simple abelian variety.

Proof. If (n,q) # (5,5) then the assertion follows from Corollary 4.15 combined
with Corollary 4.16. The case (n,q) = (5,5) is contained in [20, theorem 4.2]. O

Corollary 4.18. Let p be a prime and K a field of characteristic zero. Suppose
that f(x) € K[x] is an irreducible polynomial of degree n > 5 and Gal(f) = S,, or
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A,,. Let r and s be distinct positive integers. Assume also that either p does not

divide n or both p" and p°* divide n. Then Hom(JP") J(p7)) =,

Proof. Tt follows from Theorem 4.17 that J"?") and J/?") are absolutely simple
abelian varieties, whose endomorphism algebras Q(¢,-) and Q((,+) are not isomor-
phic. Therefore these abelian varieties are not isogenous. Since they are absolutely

simple, every homomorphism between them is zero. ([
Combining Theorem 4.16 and Corollary 4.14, we obtain the following statement.

Theorem 4.19. Let p be a prime, r a positive integer, ¢ = p". Suppose that
K is a field of characteristic zero containing a primitive qth root of unity. Let
f(z) € K[z] be a polynomial of degree n > 5. Assume also that p does not divide
n and the Gal(f)-module V;,, is very simple. Then End’(J/9) = Q[5,] = Q(¢,)
and therefore End(J9) = Z[5,] = Z[¢,]. In particular, JF9 is an absolutely

simple abelian variety.

Corollary 4.20. Let p be a prime, and K a field of characteristic zero. Let f(x) €
Klz] be a polynomial of degree n > 5. Assume also that p does not divide n and the
Gal(f)-module Vy, is very simple. If r and s are distinct positive integers such that

K contains primitive p"th and p®th roots of unity then Horn(J(f’pT)7 J(f’ps)) =0.

Proof. Tt follows from Theorem 4.19 that J*") and JZ*") are absolutely simple
abelian varieties, whose endomorphism algebras Q((,r) and Q((,=) are not isomor-
phic. Therefore these abelian varieties are not isogenous. Since they are absolutely

simple, every homomorphism between them is zero. O

5. JACOBIANS AND THEIR ENDOMORPHISM RINGS

Throughout this section we assume that K is a field of characteristic zero. Recall
that K, is an algebraic closure of K and ( € K, is a primitive gth root of unity.
Suppose f(xz) € KJz] is a polynomial of degree n > 5 without multiple roots,
MRy C K, is the set of its roots, K (M) is its splitting field. Let us put Gal(f) =
Gal(K(Ry)/K) C Perm(fRy). Let r be a positive integer. Recall (Corollary 4.12)
that if p does not divide n then there is a K ((pr)-isogeny J(Cypr) — [T, JU,
Applying Theorem 4.19 and Corollary 4.20 to all ¢ = p’, we obtain the following

assertion.

T

Theorem 5.1. Let p be a prime, v a positive integer, ¢ = p". Suppose that

K is a field of characteristic zero containing a primitive p"th root of unity. Let
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f(x) € K[z] be an polynomial of degree n > 5. Assume also that p does not di-
vide n and the Gal(f)-module Vy,, is very simple. Then End’(J(C}q)) = Q[d,] =

Q[t]/Py(1)QIt] = TTi=1 QG)-
The next statement obviously generalizes Theorem 1.1.

Theorem 5.2. Let p be a prime, r a positive integer and K a field of characteristic
zero. Suppose that f(x) € Klz] is an irreducible polynomial of degree n > 5 and
Gal(f) = S, or A,. Assume also that either p does not divide n or q | n. Then

End’(J(Cyq)) = Qlog] = Q[t]/Py(H)QIt] = [Ti—; Q(¢p)-

Proof. The existence of the isogeny J(Cy4) — [[_; JV ") combined with Theorem
4.17 and Corollary 4.18 implies that the assertion holds true if p does not divide n.

If ¢ divides n then Remark 4.3 allows us to reduce this case to the already proven

case when p does not divide n — 1. O
Example 5.3. Suppose L = C(z1,- - ,2,) is the field of rational functions in n
independent variables z1, - - - , 2, with constant field C and K = LS~ is the subfield

n

of symmetric functions. Then K, = L, and f(z) = [[;_;(z — z;) € K[z] is an
irreducible polynomial over K with Galois group S,,. Let Let ¢ = p" be a power of
a prime p. Let C be a smooth projective model of the K-curve y? = f(z) and J(C)
its jacobian. It follows from Theorem 5.2 that if n > 5 and either p does not divide

n or q divides n then the algebra of L,-endomorphisms of J(C) is [];_; Q(¢pi)-

Example 5.4. Let h(z) € Clx] be a Morse polynomial of degree n > 5. This
means that the derivative h'(z) of h(x) has n — 1 distinct roots S, Bp—1 and
h(B;) # h(B;) while ¢ # j. (For example, 2" — x is a Morse polynomial.) If
K = C(z) then a theorem of Hilbert ([11, theorem 4.4.5, p. 41]) asserts that the
Galois group of h(zx) — z over K is S,,. Let ¢ = p" be a power of a prime p. Let C
be a smooth projective model of the K-curve y? = h(z) — z and J(C) its jacobian.
It follows from Theorem 5.2 that if either p does not divide n or g divides n then
the algebra of K,-endomorphisms of J(C) is [T,_; Q({pi).
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