

ENDOMORPHISM ALGEBRAS OF SUPERELLIPTIC JACOBIANS

YURI G. ZARHIN

1. INTRODUCTION

As usual, we write \mathbf{Z} , \mathbf{Q} , \mathbf{F}_p , \mathbf{C} for the ring of integers, the field of rational numbers, the finite field with p elements and the field of complex numbers respectively. If Z is a smooth algebraic variety over an algebraically closed field then we write $\Omega^1(Z)$ for the space of differentials of the first kind on Z . If Z is an abelian variety then we write $\text{End}(Z)$ for its ring of (absolute) endomorphisms and $\text{End}^0(Z)$ for its endomorphism algebra $\text{End}(Z) \otimes \mathbf{Q}$. If Z is defined over a (not necessarily algebraically closed) field K then we write $\text{End}_K(Z) \subset \text{End}(Z)$ for the (sub)ring of K -endomorphisms of Z .

Let p be a prime, $q = p^r$ an integral power of p , $\zeta_q \in \mathbf{C}$ a primitive q th root of unity, $\mathbf{Q}(\zeta_q) \subset \mathbf{C}$ the q th cyclotomic field and $\mathbf{Z}[\zeta_q]$ the ring of integers in $\mathbf{Q}(\zeta_q)$. If $q = 2$ then $\mathbf{Q}(\zeta_q) = \mathbf{Q}$. It is well-known that if $q > 2$ then $\mathbf{Q}(\zeta_q)$ is a CM-field of degree $(p-1)p^{r-1}$. Let us put

$$\mathcal{P}_q(t) = \frac{t^q - 1}{t - 1} = t^{q-1} + \cdots + 1 \in \mathbf{Z}[t].$$

Clearly, $\mathcal{P}_q(t) = \prod_{i=1}^r \Phi_{p^i}(t)$ where $\Phi_{p^i}(t) = t^{(p-1)p^{i-1}} + \cdots + t^{p^{i-1}} + 1 \in \mathbf{Z}[t]$ is the p^i th cyclotomic polynomial. In particular, $\mathbf{Q}[t]/\Phi_{p^i}(t)\mathbf{Q}[t] = \mathbf{Q}(\zeta_{p^i})$ and $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] = \prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.

Let $f(x) \in \mathbf{C}[x]$ be a polynomial of degree $n \geq 4$ without multiple roots. Let $C_{f,q}$ be a smooth projective model of the smooth affine curve $y^q = f(x)$. The map $(x, y) \mapsto (x, \zeta_q y)$ gives rise to a non-trivial birational automorphism $\delta_q : C_{f,q} \rightarrow C_{f,q}$ of period q . The jacobian $J(C_{f,q})$ of $C_{f,q}$ is a complex abelian variety. By Albanese functoriality, δ_q induces an automorphism of $J(C_{f,q})$ which we still denote by δ_q . One may easily check (see 4.8 below) that $\delta_q^{q-1} + \cdots + \delta_q + 1 = 0$ in $\text{End}(J(C_{f,q}))$. This implies that if $\mathbf{Q}[\delta_q]$ is the \mathbf{Q} -subalgebra of $\text{End}^0(J(C_{f,q}))$ generated by δ_q then there is the natural surjective homomorphism $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] \rightarrow \mathbf{Q}[\delta_q]$ that sends $t + \mathcal{P}_q(t)\mathbf{Q}[t]$ to δ_q . One may check that this homomorphism is, in fact,

isomorphism (see [7, p. 149], [8, p. 458]) where the case $q = p$ was treated). This gives us an embedding $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] \cong \mathbf{Q}[\delta_q] \subset \text{End}^0(J(C_{f,q}))$. Our main result is the following statement.

Theorem 1.1. *Let K be a subfield of \mathbf{C} such that $f(x)$ is an irreducible polynomial in $K[x]$ of degree $n \geq 5$ and its Galois group over K is either the full symmetric group \mathbf{S}_n or the alternating group \mathbf{A}_n . In addition, assume that either p does not divide n or $q \mid n$. Then $\text{End}^0(J(C_{f,q})) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] = \prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.*

Remark 1.2. If q is a prime (i.e. $q = p$) then $J(C_{f,p})$ is an absolutely simple abelian variety and $\text{End}(J(C_{f,p})) = \mathbf{Z}[\delta_p] \cong \mathbf{Z}[\zeta_p]$ [14, 20]. In particular, if $p = 2$ then $C_{f,2}$ is a hyperelliptic curve, δ_2 is multiplication by -1 and $\text{End}(J(C_{f,2})) = \mathbf{Z}$. See [19, 22, 18] for a discussion of finite characteristic case.

Examples 1.3. Let $n \geq 5$ be an integer, p a prime, r a positive integer, $q = p^r$. Assume also that either n is not divisible by p or $q \mid n$.

(1) The polynomial $x^n - x - 1 \in \mathbf{Q}[x]$ has Galois group \mathbf{S}_n over \mathbf{Q} ([11, p. 42]).

Therefore the endomorphism algebra (over \mathbf{C}) of the jacobian $J(C)$ of the curve $C : y^q = x^n - x - 1$ is $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t]$.

(2) The Galois group of the “truncated exponential”

$$\exp_n(x) := 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots + \frac{x^n}{n!} \in \mathbf{Q}[x]$$

is either \mathbf{S}_n or \mathbf{A}_n [9]. Therefore the endomorphism algebra (over \mathbf{C}) of the jacobian $J(C)$ of the curve $C : y^q = \exp_n(x)$ is $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t]$.

Remark 1.4. If $f(x) \in K[x]$ then the curve $C_{f,q}$ and its jacobian $J(C_{f,q})$ are defined over K . Let $K_a \subset \mathbf{C}$ be the algebraic closure of K . Clearly, all endomorphisms of $J(C_{f,q})$ are defined over K_a . This implies that in order to prove Theorem 1.1, it suffices to check that $\mathbf{Q}[\delta_q]$ coincides with the \mathbf{Q} -algebra of K_a -endomorphisms of $J(C_{f,q})$.

Our main technical tool used in the proof of Theorem 1.1 is a certain modular representation $V_{f,p}$ of the Galois group of f [3, 17] arising from its action on the roots of f . In the case of $q = p$ the Galois module $V_{f,p}$ is canonically isomorphic to the subgroup of δ_p -invariants in $J(C_{f,p})$ (if $\zeta_p \in K$) [7, 8]. In the present paper we construct (assuming that $\zeta_q \in K$ and p does not divide n) an abelian subvariety $J^{f,q} \subset J(C_{f,q})$ with multiplication by $\mathbf{Z}[\zeta_q]$ and prove that $V_{f,p}$ is canonically

isomorphic to the subgroup of ζ_q -invariants in $J^{f,q}$ (Lemma 4.11). (It turns out that if $q = p^r$ then $J(C_{f,q})$ is isogenous to a product of all J^{f,p^i} with $1 \leq i \leq r$.)

The paper is organized as follows. In §2 we obtain conditions that guarantee that the center of the endomorphism algebra of a complex abelian variety is a cyclotomic field (Corollary 2.2). In §3 we study abelian varieties X over arbitrary fields, whose endomorphism ring contains a subring isomorphic to the ring \mathcal{O} of integers in a given number field E . We study the Galois action on the λ -torsion X_λ of X where λ is a maximal ideal in \mathcal{O} . We prove (Theorem 3.8) that if the Galois module X_λ is *very simple* in the sense of [15, 21] then the centralizer of E in the algebra $\text{End}^0(X)$ of all (absolute) endomorphisms of X either coincides with E or is “very big”. In §4 we study endomorphism algebras of $J^{(f,q)}$, using the very simplicity of the Galois module $V_{f,p}$ when $\deg(f) \geq 5$ and the Galois group of f is either the full symmetric or the alternating group. Theorem 3.8 helps us to prove that in characteristic zero $\mathbf{Q}(\zeta_q)$ is a maximal commutative subalgebra in $\text{End}^0(J^{f,q})$. Using Corollary 2.2 and computations with differentials of the first kind (Theorem 3.10 and Remark 4.2), we prove (Theorem 4.16) that the center of $\text{End}^0(J^{f,q})$ coincides with $\mathbf{Q}(\zeta_q)$ and therefore $\text{End}^0(J^{f,q}) = \mathbf{Q}(\zeta_q)$. We finish the proof of Theorem 1.1 in §5.

2. COMPLEX ABELIAN VARIETIES

Let Z be a complex abelian variety of positive dimension. We write \mathfrak{C}_Z for the center of the semisimple finite-dimensional \mathbf{Q} -algebra $\text{End}^0(Z)$.

Let E be a subfield of $\text{End}^0(Z)$ that contains the identity map. Let Σ_E be the set of all field embeddings $\sigma : E \hookrightarrow \mathbf{C}$. It is well-known that

$$\mathbf{C}_\sigma := E \otimes_{E,\sigma} \mathbf{C} = \mathbf{C}, \quad E_{\mathbf{C}} = E \otimes_{\mathbf{Q}} \mathbf{C} = \prod_{\sigma \in \Sigma_E} E \otimes_{E,\sigma} \mathbf{C} = \prod_{\sigma \in \Sigma_E} \mathbf{C}_\sigma.$$

Let $\text{Lie}(Z)$ be the tangent space to the origin of Z ; it is a $\dim(Z)$ -dimensional \mathbf{C} -vector space. By functoriality, $\text{End}^0(Z)$ and therefore E act on $\text{Lie}(Z)$ and therefore provide $\text{Lie}(Z)$ with a natural structure of $E \otimes_{\mathbf{Q}} \mathbf{C}$ -module. Clearly,

$$\text{Lie}(Z) = \bigoplus_{\sigma \in \Sigma_E} \mathbf{C}_\sigma \text{Lie}(Z) = \bigoplus_{\sigma \in \Sigma_E} \text{Lie}(Z)_\sigma$$

where $\text{Lie}(Z)_\sigma := \mathbf{C}_\sigma \text{Lie}(Z) = \{x \in \text{Lie}(Z) \mid ex = \sigma(e)x \quad \forall e \in E\}$. Let us put $n_\sigma = n_\sigma(Z, E) = \dim_{\mathbf{C}_\sigma} \text{Lie}(Z)_\sigma = \dim_{\mathbf{C}} \text{Lie}(Z)_\sigma$. It is well-known that the natural map $\Omega^1(Z) \rightarrow \text{Hom}_{\mathbf{C}}(\text{Lie}(Z), \mathbf{C})$ is an isomorphism. This allows us to define via duality the natural homomorphism $E \rightarrow \text{End}_{\mathbf{C}}(\text{Hom}_{\mathbf{C}}(\text{Lie}(Z), \mathbf{C})) =$

$\text{End}_{\mathbf{C}}(\Omega^1(Z))$. This provides $\Omega^1(Z)$ with a natural structure of $E \otimes_{\mathbf{Q}} \mathbf{C}$ -module in such a way that $\Omega^1(Z)_\sigma := \mathbf{C}_\sigma \Omega^1(Z) \cong \text{Hom}_{\mathbf{C}}(\text{Lie}(Z)_\sigma, \mathbf{C})$. In particular,

$$n_\sigma = \dim_{\mathbf{C}}(\text{Lie}(Z)_\sigma) = \dim_{\mathbf{C}}(\Omega^1(Z)_\sigma) \quad (1).$$

The following statement is contained in [20, Th. 2.3].

Theorem 2.1. *If E/\mathbf{Q} is Galois, E contains \mathfrak{C}_Z and $\mathfrak{C}_Z \neq E$ then there exists a nontrivial automorphism $\kappa : E \rightarrow E$ such that $n_\sigma = n_{\sigma\kappa}$ for all $\sigma \in \Sigma_E$.*

The following assertion will be used in the proof of Theorem 4.16.

Corollary 2.2. *Suppose that there exist a prime p , a positive integer r , the prime power $q = p^r$ and an integer $n \geq 4$ enjoying the following properties:*

- (i) $E = \mathbf{Q}(\zeta_q) \subset \mathbf{C}$ where $\zeta_q \in \mathbf{C}$ is a primitive q th root of unity;
- (ii) n is not divisible by p , i.e. n and q are relatively prime;
- (iii) Let $i < q$ be a positive integer that is not divisible by p and $\sigma_i : E = \mathbf{Q}(\zeta_q) \hookrightarrow \mathbf{C}$ the embedding that sends ζ_q to ζ_q^{-i} . Then $n_{\sigma_i} = \left[\frac{ni}{q} \right]$.

Then $\mathfrak{C}_Z = \mathbf{Q}(\zeta_q)$.

Proof. If $q = 2$ then $E = \mathbf{Q}(\zeta_2) = \mathbf{Q}$. Since \mathfrak{C}_Z is a subfield of $E = \mathbf{Q}$, we conclude that $\mathfrak{C}_Z = \mathbf{Q} = \mathbf{Q}(\zeta_2)$. So, further we assume that $q > 2$.

Clearly, $\{\sigma_i\}$ is the collection Σ of all embeddings $\mathbf{Q}(\zeta_q) \hookrightarrow \mathbf{C}$. By (iii), $n_{\sigma_i} = 0$ if and only if $1 \leq i \leq \left[\frac{q}{n} \right]$. Suppose that $\mathfrak{C}_Z \neq \mathbf{Q}(\zeta_q)$. It follows from Theorem 2.1 that there exists a non-trivial field automorphism $\kappa : \mathbf{Q}[\zeta_q] \rightarrow \mathbf{Q}[\zeta_q]$ such that for all $\sigma \in \Sigma$ we have $n_\sigma = n_{\sigma\kappa}$. Clearly, there exists an integer m such that p does not divide m , $1 < m < q$ and $\kappa(\zeta_q) = \zeta_q^m$.

Assume that $q < n$. In this case the function $i \mapsto n_{\sigma_i} = \left[\frac{ni}{q} \right]$ is strictly increasing and therefore $n_{\sigma_i} \neq n_{\sigma_j}$ while $i \neq j$. This implies that $\sigma_i = \sigma_i\kappa$, i.e. κ is the identity map which is not the case. The obtained contradiction implies that $n < q$. Since $n \geq 4$, we have $q \geq 5$.

If i is an integer then we write $\bar{i} \in \mathbf{Z}/q\mathbf{Z}$ for its residue modulo q .

Clearly, $n_\sigma = 0$ if and only if $\sigma = \sigma_i$ with $1 \leq i \leq \left[\frac{q}{n} \right]$. Since n and q are relatively prime, $\left[\frac{q}{n} \right] = \left[\frac{q-1}{n} \right]$. It follows that $n_{\sigma_i} = 0$ if and only if $1 \leq i \leq \left[\frac{q-1}{n} \right]$. Clearly, the map $\sigma \mapsto \sigma\kappa$ permutes the set

$$\{\sigma_i \mid 1 \leq i \leq \left[\frac{q-1}{n} \right], p \text{ does not divide } i\}.$$

Since $\kappa(\zeta_q) = \zeta_q^m$ and $\sigma_i \kappa(\zeta_q) = \zeta_q^{-im}$, it follows that if

$$A := \left\{ i \in \mathbf{Z} \mid 1 \leq i \leq \left[\frac{q-1}{n} \right] < q, \text{ } p \text{ does not divide } i \right\}$$

then the multiplication by m in $(\mathbf{Z}/q\mathbf{Z})^* = \text{Gal}(\mathbf{Q}(\zeta_q)/\mathbf{Q})$ leaves invariant the set $\bar{A} := \{\bar{i} \in \mathbf{Z}/q\mathbf{Z} \mid i \in A\}$. Clearly, A contains 1 and therefore $\bar{m} = m \cdot \bar{1} \in \bar{A}$. Since $1 < m < q$,

$$m = m \cdot 1 \leq \left[\frac{q-1}{n} \right] \quad (2).$$

Let us consider the arithmetic progression consisting of $2m$ integers

$$\left[\frac{q-1}{n} \right] + 1, \dots, \left[\frac{q-1}{n} \right] + 2m$$

with difference 1. All its elements lie between $\left[\frac{q-1}{n} \right] + 1$ and

$$\left[\frac{q-1}{n} \right] + 2m \leq 3 \left[\frac{q-1}{n} \right] \leq 3 \frac{q-1}{4} < q-1.$$

Clearly, there exist exactly two elements of A say, mc_1 and mc_1+m that are divisible by m . Clearly, c_1 is a positive integer and either c_1 or c_1+1 is not divisible by p ; we put $c = c_1$ in the former case and $c = c_1+1$ in the latter case. However, c is not divisible by p and

$$\left[\frac{q-1}{n} \right] < mc \leq \left[\frac{q-1}{n} \right] + 2m < q-1 \quad (3).$$

It follows that mc does not lie in A and therefore \bar{mc} does not lie in \bar{A} . This implies that \bar{c} also does not lie in \bar{A} and therefore $c > \left[\frac{q-1}{n} \right]$. Using (3), we conclude that

$$(m-1) \left[\frac{q-1}{n} \right] < 2m$$

and therefore

$$\left[\frac{q-1}{n} \right] < \frac{2m}{m-1} = 2 + \frac{2}{m-1}.$$

If $m > 2$ then $m \geq 3$ and using (2), we conclude that

$$3 \leq m \leq \left[\frac{q-1}{n} \right] < 2 + \frac{2}{m-1} \leq 3$$

and therefore $3 < 3$, which is not true. Hence $m = 2$ and

$$2 = m \leq \left[\frac{q-1}{n} \right] < 2 + \frac{2}{m-1} = 4$$

and therefore $\left[\frac{q-1}{n} \right] = 2$ or 3. It follows that $q \geq 1 + 2n \geq 1 + 2 \cdot 4 = 9$. Since $m = 2$ is not divisible by p , we conclude that $p \geq 3$ and either $\bar{A} = \{\bar{1}, \bar{2}\}$ or $p > 3$ and $A = \{\bar{1}, \bar{2}, \bar{3}\}$. In both cases $\bar{4} = 2 \cdot \bar{2} = m \cdot \bar{2}$ must lie in \bar{A} . Contradiction. \square

3. ABELIAN VARIETIES OVER ARBITRARY FIELDS

Let K be a field. Let us fix its algebraic closure K_a and denote by $\text{Gal}(K)$ the absolute Galois group $\text{Aut}(K_a/K)$ of K . If X is an abelian variety of positive dimension over K_a then we write 1_X (or even just 1) for the identity automorphism of X . If Y is (may be another) abelian variety of positive dimension over K_a then we write $\text{Hom}(X, Y)$ for the group of all K_a -homomorphisms from X to Y . We write $\text{Hom}^0(X, Y)$ for the finite-dimensional \mathbf{Q} -vector space $\text{Hom}(X, Y) \otimes \mathbf{Q}$. Clearly, $\text{End}(X) = \text{Hom}(X, X)$ and $\text{End}^0(X) = \text{End}(X) \otimes \mathbf{Q} = \text{Hom}^0(X, X)$. It is well-known that $\text{End}^0(X)$ is a finite-dimensional semisimple \mathbf{Q} -algebra and $\dim_{\mathbf{Q}}(\text{End}^0(X))$ does not exceed $4\dim(X)^2$ [4, §19, corollary 1 to theorem 3]; the equality holds if and only if $\text{char}(K) > 0$ and X is a supersingular abelian variety [14, Lemma 3.1].

Let E be a number field and $\mathcal{O} \subset E$ be the ring of all its algebraic integers. Let (X, i) be a pair consisting of an abelian variety X over K_a and an embedding

$$i : E \hookrightarrow \text{End}^0(X)$$

with $i(1) = 1_X$. It is well known [12, Proposition 2 on p. 36] that $[E : \mathbf{Q}]$ divides $2\dim(X)$, i.e., $r = r_X := 2\dim(X)/[E : \mathbf{Q}]$ is a positive integer.

Let us denote by $\text{End}^0(X, i)$ the centralizer of $i(E)$ in $\text{End}^0(X)$. Clearly, $i(E)$ lies in the center of the finite-dimensional \mathbf{Q} -algebra $\text{End}^0(X, i)$. It follows that $\text{End}^0(X, i)$ carries a natural structure of finite-dimensional E -algebra. If Y is (possibly) another abelian variety over K_a and $j : E \hookrightarrow \text{End}^0(Y)$ is an embedding that sends 1 to the identity automorphism of Y then we write

$$\text{Hom}^0((X, i), (Y, j)) = \{u \in \text{Hom}^0(X, Y) \mid ui(c) = j(c)u \quad \forall c \in E\}.$$

Clearly, $\text{End}^0(X, i) = \text{Hom}^0((X, i), (X, i))$. By abuse of language, we call elements of $\text{Hom}^0((X, i), (Y, j))$ E -equivariant homomorphisms from X to Y .

Recall that if $\psi : X \rightarrow Y$ is an isogeny then there exist an isogeny $\phi : Y \rightarrow X$ and a positive integer N such that $\phi\psi = N1_X$, $\psi\phi = N1_Y$. One may easily check that if ψ is E -equivariant then ϕ is also E -equivariant.

If d is a positive integer then we write $i^{(d)}$ for the composition

$$E \hookrightarrow \text{End}^0(X) \subset \text{End}^0(X^d)$$

of i and the diagonal inclusion $\text{End}^0(X) \subset \text{End}^0(X^d)$.

One may easily check [23, Remark 4.1] that the E -algebra $\text{End}^0(X, i)$ is semisimple. The following assertion is contained in [23, Theorem 4.2].

Theorem 3.1. (i) *We always have*

$$\dim_E(\text{End}^0((X, i))) \leq \frac{4 \cdot \dim(X)^2}{[E : \mathbf{Q}]^2}.$$

(ii) *Suppose that*

$$\dim_E(\text{End}^0((X, i))) = \frac{4 \cdot \dim(X)^2}{[E : \mathbf{Q}]^2}.$$

Then X is an abelian variety of CM-type isogenous to a self-product of an (absolutely) simple abelian variety. Also $\text{End}^0((X, i))$ is a central simple E -algebra, i.e., E coincides with the center of $\text{End}^0((X, i))$.

Moreover, if $\text{char}(K_a) = 0$ then $[E : \mathbf{Q}]$ is even and there exist a $\frac{[E : \mathbf{Q}]}{2}$ -dimensional abelian variety Z , an isogeny $\psi : Z^r \rightarrow X$ and an embedding $k : E \hookrightarrow \text{End}^0(Z)$ that send 1 to 1_Z and such that $\psi \in \text{Hom}^0((Z^r, k^{(r)}), (X, i))$.

Remark 3.2. Suppose that

$$\dim_E(\text{End}^0((X, i))) = \frac{4 \cdot \dim(X)^2}{[E : \mathbf{Q}]^2}.$$

By 3.1(ii), X is isogenous to a self-product of an absolutely simple abelian variety B . It is proven in [23, §4, Proof of Theorem 4.2] that B is an abelian variety of CM-type. Recall [12, Prop. 26 on p. 96] that in characteristic zero every absolutely simple abelian variety of CM type is defined over a number field; in positive characteristic such a variety is isogenous to an abelian variety defined over a finite field (a theorem of Grothendieck [5, Th. 1.1]). It follows easily that:

- (1) If $\text{char}(K) = 0$ then X is defined over a number field;
- (2) If $\text{char}(K) > 0$ then X is isogenous to an abelian variety defined over a finite field.

Let d be a positive integer that is not divisible by $\text{char}(K)$. Suppose that X is defined over K . We write X_d for the kernel of multiplication by d in $X(K_a)$. It is known [4, Proposition on p. 64] that the commutative group X_d is a free $\mathbf{Z}/d\mathbf{Z}$ -module of rank $2\dim(X)$. Clearly, X_d is a Galois submodule in $X(K_a)$. We write $\tilde{\rho}_{d,X} : \text{Gal}(K) \rightarrow \text{Aut}_{\mathbf{Z}/d\mathbf{Z}}(X_d) \cong \text{GL}(2\dim(X), \mathbf{Z}/d\mathbf{Z})$ for the corresponding (continuous) homomorphism defining the Galois action on X_d . Let us put

$$\tilde{G}_{d,X} = \tilde{\rho}_{d,X}(\text{Gal}(K)) \subset \text{Aut}_{\mathbf{Z}/d\mathbf{Z}}(X_d).$$

Clearly, $\tilde{G}_{d,X}$ coincides with the Galois group of the field extension $K(X_d)/K$ where $K(X_d)$ is the field of definition of all points on X of order dividing d . In particular, if a prime $\ell \neq \text{char}(K)$ then X_ℓ is a $2\dim(X)$ -dimensional vector space over the prime field $\mathbf{F}_\ell = \mathbf{Z}/\ell\mathbf{Z}$ and the inclusion $\tilde{G}_{\ell,X} \subset \text{Aut}_{\mathbf{F}_\ell}(X_\ell)$ defines a faithful linear representation of the group $\tilde{G}_{\ell,X}$ in the vector space X_ℓ .

Now let us assume that

$$i(\mathcal{O}) \subset \text{End}_K(X).$$

Let λ be a maximal ideal in \mathcal{O} . We write $k(\lambda)$ for the corresponding (finite) residue field. Let us put

$$X_\lambda := \{x \in X(K_a) \mid i(e)x = 0 \quad \forall e \in \lambda\}.$$

Clearly, if $\text{char}(k(\lambda)) = \ell$ then $\lambda \supset \ell \cdot \mathcal{O}$ and therefore $X_\lambda \subset X_\ell$. Clearly, X_λ is a Galois submodule of X_ℓ . It is also clear that X_λ carries a natural structure of $\mathcal{O}/\lambda = k(\lambda)$ -vector space. We write

$$\tilde{\rho}_{\lambda,X} : \text{Gal}(K) \rightarrow \text{Aut}_{k(\lambda)}(X_\lambda)$$

for the corresponding (continuous) homomorphism defining the Galois action on X_λ . Let us put

$$\tilde{G}_{\lambda,X} = \tilde{G}_{\lambda,i,X} := \tilde{\rho}_{\lambda,X}(\text{Gal}(K)) \subset \text{Aut}_{k(\lambda)}(X_\lambda).$$

Clearly, $\tilde{G}_{\lambda,X}$ coincides with the Galois group of the field extension $K(X_\lambda)/K$ where $K(X_\lambda) = K(X_{\lambda,i})$ is the field of definition of all points in X_λ .

In order to describe $\tilde{\rho}_{\lambda,X}$ explicitly, let us assume for the sake of simplicity that λ is the only maximal ideal of \mathcal{O} dividing ℓ , i.e., $\ell \cdot \mathcal{O} = \lambda^b$ where the positive integer b satisfies $[E : \mathbf{Q}] = b \cdot [k(\lambda) : \mathbf{F}_\ell]$. Then $\mathcal{O} \otimes \mathbf{Z}_\ell = \mathcal{O}_\lambda$ where \mathcal{O}_λ is the completion of \mathcal{O} with respect to the λ -adic topology. It is well-known that \mathcal{O}_λ is a local principal ideal domain and its only maximal ideal is $\lambda\mathcal{O}_\lambda$. One may easily check that $\ell \cdot \mathcal{O}_\lambda = (\lambda\mathcal{O}_\lambda)^b$.

Let us choose an element $c \in \lambda$ that does not lie in λ^2 . Clearly, $\lambda\mathcal{O}_\lambda = c \cdot \mathcal{O}_\lambda$. This implies that there exists a unit $u \in \mathcal{O}_\lambda^*$ such that $\ell = uc^b$. It follows from the unique factorization of ideals in \mathcal{O} that $\lambda = \ell \cdot \mathcal{O} + c \cdot \mathcal{O}$. It follows readily that

$$X_\lambda = \{x \in X_\ell \mid cx = 0\} \subset X_\ell.$$

Let $T_\ell(X)$ be the ℓ -adic Tate module of X defined as the projective limit of Galois modules X_{ℓ^m} [4, §18]. Recall that $T_\ell(X)$ is a free \mathbf{Z}_ℓ -module of rank $2\dim(X)$

provided with the continuous action $\rho_{\ell, X} : \text{Gal}(K) \rightarrow \text{Aut}_{\mathbf{Z}_\ell}(T_\ell(X))$ and the natural embedding [4, §19, theorem 3]

$$\text{End}_K(X) \otimes \mathbf{Z}_\ell \subset \text{End}(X) \otimes \mathbf{Z}_\ell \hookrightarrow \text{End}_{\mathbf{Z}_\ell}(T_\ell(X)) \quad (4).$$

Clearly, the image of $\text{End}_K(X) \otimes \mathbf{Z}_\ell$ commutes with $\rho_{\ell, X}(\text{Gal}(K))$. In particular, $T_\ell(X)$ carries the natural structure of $\mathcal{O} \otimes \mathbf{Z}_\ell = \mathcal{O}_\lambda$ -module. The following assertion is a special case of Proposition 2.2.1 on p. 769 in [6].

Lemma 3.3. *The \mathcal{O}_λ -module $T_\ell(X)$ is free of rank r_X .*

There is also the natural isomorphism of Galois modules $X_\ell = T_\ell(X)/\ell T_\ell(X)$, which is also an isomorphism of $\text{End}_K(X) \supset \mathcal{O}$ -modules. This implies that the $\mathcal{O}[\text{Gal}(K)]$ -module X_λ coincides with

$$c^{-1} \ell T_\ell(X)/\ell T_\ell(X) = c^{b-1} T_\ell(X)/c^b T_\ell(X) = T_\ell(X)/c T_\ell(X) =$$

$$T_\ell(X)/\lambda T_\ell(X) = T_\ell(X)/(\lambda \mathcal{O}_\lambda) T_\ell(X).$$

Hence

$$X_\lambda = T_\ell(X)/(\lambda \mathcal{O}_\lambda) T_\ell(X) = T_\ell(X) \otimes_{\mathcal{O}_\lambda} k(\lambda), \quad \dim_{k(\lambda)} X_\lambda = r_X = \frac{2\dim(X)}{[E : \mathbf{Q}]} \quad (5).$$

Let us consider the $2\dim(X)$ -dimensional \mathbf{Q}_ℓ -vector space

$$V_\ell(X) = T_\ell(X) \otimes_{\mathbf{Z}_\ell} \mathbf{Q}_\ell,$$

which carries a natural structure of r_X -dimensional E_λ -vector space. Extending the embedding (4) by \mathbf{Q}_ℓ -linearity, we get the natural embedding

$$E \otimes_{\mathbf{Q}} \mathbf{Q}_\ell = \mathcal{O} \otimes \mathbf{Q}_\ell \xrightarrow{i} \text{End}_K(X) \otimes \mathbf{Q}_\ell \subset \text{End}^0(X) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell \hookrightarrow \text{End}_{\mathbf{Q}_\ell}(V_\ell(X)).$$

Further we will identify $\text{End}^0(X) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell$ with its image in $\text{End}_{\mathbf{Q}_\ell}(V_\ell(X))$.

Remark 3.4. (1) Clearly, the center \mathfrak{C}_X of $\text{End}^0(X)$ commutes with $i(E)$ and therefore lies in $\text{End}^0(X, i)$. Since \mathfrak{C}_X also commutes with $\text{End}^0(X, i)$, it lies in the center of $\text{End}^0(X, i)$;
 (2) Notice that $E_\lambda = E \otimes_{\mathbf{Q}} \mathbf{Q}_\ell = \mathcal{O} \otimes \mathbf{Q}_\ell = \mathcal{O}_\lambda \otimes_{\mathbf{Z}_\ell} \mathbf{Q}_\ell$ is the field coinciding with the completion of E with respect to λ -adic topology. Clearly, $V_\ell(X)$ carries a natural structure of r_X -dimensional E_λ -vector space and $\dim_{E_\lambda}(\text{End}_{E_\lambda}(V_\ell(X))) = r_X^2$.

(3) One may easily check that $\text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell$ is a $E \otimes_{\mathbf{Q}} \mathbf{Q}_\ell = E_\lambda$ -vector subspace (even subalgebra) in $\text{End}_{E_\lambda}(V_\ell(X))$. Clearly,

$$\dim_{E_\lambda}(\text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell) = \dim_E(\text{End}^0(X, i)).$$

(4) If $\text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell = E_\lambda \text{Id}$ then $\dim_E(\text{End}^0(X, i)) = 1$ and, in light of the inclusion $E \cong i(E) \subset \text{End}^0(X, i)$, we obtain that $\text{End}^0(X, i) = i(E)$, i.e., $i(E) \cong E$ is a maximal commutative subalgebra in $\text{End}^0(X)$ and $i(\mathcal{O}) \cong \mathcal{O}$ is a maximal commutative subring in $\text{End}(X)$. It follows that $\mathfrak{C}_X \subset i(E)$ and therefore is isomorphic to a subfield of E . In particular, \mathfrak{C}_X is a field, i.e., $\text{End}^0(X)$ is a simple \mathbf{Q} -algebra. This means that X is isogenous to a self-product of an absolutely simple abelian variety;

(5) Suppose that $\text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell = \text{End}_{E_\lambda}(V_\ell(X))$. This implies that

$$\dim_E(\text{End}^0(X, i)) = r_X^2.$$

Applying Theorem 3.1, we conclude that X is an abelian variety of CM-type isogenous to a self-product of an (absolutely) simple abelian variety. Also $\text{End}^0((X, i))$ is a central simple E -algebra, i.e., E coincides with the center of $\text{End}^0((X, i))$. Moreover, if $\text{char}(K_a) = 0$ then $[E : \mathbf{Q}]$ is even and there exist a $\frac{[E : \mathbf{Q}]}{2}$ -dimensional abelian variety Z , an isogeny $\psi : Z^r \rightarrow X$ and an embedding $k : E \hookrightarrow \text{End}^0(Z)$ that send 1 to 1_Z and such that $\psi \in \text{Hom}^0((Z^r, k^{(r)}), (X, i))$.

Using the inclusion $\text{Aut}_{\mathbf{Z}_\ell}(T_\ell(X)) \subset \text{Aut}_{\mathbf{Q}_\ell}(V_\ell(X))$, one may view $\rho_{\ell, X}$ as the ℓ -adic representation $\rho_{\ell, X} : \text{Gal}(K) \rightarrow \text{Aut}_{\mathbf{Z}_\ell}(T_\ell(X)) \subset \text{Aut}_{\mathbf{Q}_\ell}(V_\ell(X))$.

Since X is defined over K , one may associate with every $u \in \text{End}(X)$ and $\sigma \in \text{Gal}(K)$ an endomorphism ${}^\sigma u \in \text{End}(X)$ such that ${}^\sigma u(x) = \sigma u(\sigma^{-1}x)$ for all $x \in X(K_a)$. Clearly, ${}^\sigma u = u$ if $u \in \text{End}_K(X)$. In particular, ${}^\sigma e = e$ if $e \in \mathcal{O}$ (here we identify \mathcal{O} with $i(\mathcal{O})$). It follows easily that for each $\sigma \in \text{Gal}(K)$ the map $u \mapsto {}^\sigma u$ extends by \mathbf{Q} -linearity to a certain automorphism of $\text{End}^0(X)$. Clearly, ${}^\sigma e = e$ for each $e \in E$ and ${}^\sigma u \in \text{End}^0(X, i)$ for each $u \in \text{End}^0(X, i)$.

Remark 3.5. The definition of $T_\ell(X)$ as the projective limit of Galois modules X_{ℓ^m} implies that ${}^\sigma u(x) = \rho_{\ell, X}(\sigma)u\rho_{\ell, X}(\sigma)^{-1}(x)$ for all $x \in T_\ell(X)$. It follows easily that ${}^\sigma u(x) = \rho_{\ell, X}(\sigma)u\rho_{\ell, X}(\sigma)^{-1}(x)$ for all $x \in V_\ell(X)$, $u \in \text{End}^0(X)$, $\sigma \in \text{Gal}(K)$. This implies that for each $\sigma \in \text{Gal}(K)$ we have $\rho_{\ell, X}(\sigma) \in \text{Aut}_{E_\lambda}(V_\lambda(X))$ and therefore

$$\rho_{\ell, X}(\text{Gal}(K)) \subset \text{Aut}_{E_\lambda}(V_\lambda(X))$$

[6, pp. 767–768] (see also [10]). It is also clear that $\rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1} \in \text{End}^0(X) \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ for all $u \in \text{End}^0(X) \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}$ and

$$\rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1} \in \text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell} \quad \forall u \in \text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell}.$$

We refer to [15, 16, 19, 21] for a discussion of the following definition.

Definition 3.6. Let V be a vector space over a field \mathbf{F} , let G be a group and $\rho : G \rightarrow \text{Aut}_{\mathbf{F}}(V)$ a linear representation of G in V . We say that the G -module V is *very simple* if it enjoys the following property:

If $R \subset \text{End}_{\mathbf{F}}(V)$ is an \mathbf{F} -subalgebra containing the identity operator Id such that $\rho(\sigma)R\rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G$ then either $R = \mathbf{F} \cdot \text{Id}$ or $R = \text{End}_{\mathbf{F}}(V)$.

Remarks 3.7.

- (i) If G' is a subgroup of G and the G' -module V is very simple then obviously the G -module V is also very simple.
- (ii) Clearly, the G -module V is very simple if and only if the corresponding $\rho(G)$ -module V is very simple. This implies easily that if $H \twoheadrightarrow G$ is a surjective group homomorphism then the G -module V is very simple if and only if the corresponding H -module V is very simple.
- (iii) Let G' be a normal subgroup of G . If V is a very simple G -module then either $\rho(G') \subset \text{Aut}_k(V)$ consists of scalars (i.e., lies in $k \cdot \text{Id}$) or the G' -module V is absolutely simple. See [19, Remark 5.2(iv)].
- (iv) Suppose F is a discrete valuation field with valuation ring \mathcal{O}_F , maximal ideal m_F and residue field $k = \mathcal{O}_F/m_F$. Suppose V_F a finite-dimensional F -vector space, $\rho_F : G \rightarrow \text{Aut}_F(V_F)$ a F -linear representation of G . Suppose T is a G -stable \mathcal{O}_F -lattice in V_F and the corresponding $k[G]$ -module $T/m_F T$ is isomorphic to V . Assume that the G -module V is very simple. Then the G -module V_F is also very simple. See [19, Remark 5.2(v)].

Theorem 3.8. Suppose that X is an abelian variety defined over K and $i(\mathcal{O}) \subset \text{End}_K(X)$. Let ℓ be a prime different from $\text{char}(K)$. Suppose that λ is the only maximal ideal dividing ℓ in \mathcal{O} . Suppose that the natural representation in the $k(\lambda)$ -vector space X_{λ} is very simple. Then $\text{End}^0(X, i)$ enjoys one of the following two properties:

- (1) $\text{End}^0(X, i) = i(E)$, i.e., $i(E) \cong E$ is a maximal commutative subalgebra in $\text{End}^0(X)$ and $i(\mathcal{O}) \cong \mathcal{O}$ is a maximal commutative subring in $\text{End}(X)$. In particular, $i(E)$ contains the center of $\text{End}^0(X)$
- (2) The following two conditions are fulfilled:

(2a) $\text{End}^0(X, i)$ is a central simple E -algebra of dimension r_X^2 and X is an abelian variety of CM-type over K_a .

(2b) If $\text{char}(K) = 0$ then $[E : \mathbf{Q}]$ is even and there exist a $\frac{[E : \mathbf{Q}]}{2}$ -dimensional abelian variety Z , an isogeny $\psi : Z^r \rightarrow X$ and an embedding $k : E \hookrightarrow \text{End}^0(Z)$ that sends 1 to 1_Z and such that $\psi \in \text{Hom}^0((Z^r, k^{(r)}), (X, i))$. In addition, X is defined over a number field. If $\text{char}(K) > 0$ then X is isogenous to an abelian variety defined over a finite field.

Proof. In light of 3.7(ii), the $\text{Gal}(K)$ -module X_λ is very simple. In light of 3.7(iv) and Remark 3.5, $\rho_{\ell, X} : \text{Gal}(K) \rightarrow \text{Aut}_{E_\lambda}(V_\ell(X))$ is also very simple. Let us put $R = \text{End}^0(X, i) \otimes_{\mathbf{Q}} \mathbf{Q}_\ell$. It follows from Remark 3.5 that either $R = E_\lambda \text{Id}$ or $R = \text{End}_{E_\lambda}(V_\ell(X))$. Now the result follows readily from Remarks 3.4 and 3.2. \square

Let Y be an abelian variety of positive dimension over K_a and u a non-zero endomorphism of Y . Let us consider the abelian (sub)variety $Z = u(Y) \subset Y$.

Remark 3.9. Suppose that Y is defined over K and $u \in \text{End}_K(Y)$. Clearly, Z and the inclusion map $Z \subset Y$ are defined over $K_a^{\text{Gal}(K)}$, i.e., Z and $Z \subset Y$ are defined over a purely inseparable extension of K . By a Theorem of Chow [2, Th. 5 on p. 26], Z is defined over K . Clearly, the graph of $Z \subset Y$ is an abelian subvariety of $Z \times Y$ defined over a purely inseparable extension of K . By the same Theorem of Chow, this graph is also defined over K and therefore $Z \subset Y$ is defined over K .

Theorem 3.10. Let Y be an abelian variety of positive dimension over K_a and δ an automorphism of Y . Suppose that the induced K_a -linear operator $\delta^* : \Omega^1(Y) \rightarrow \Omega^1(Y)$ is diagonalizable. Let S be the set of eigenvalues of δ^* and $\text{mult}_Y : S \rightarrow \mathbf{Z}_+$ the integer-valued function which assigns to each eigenvalue its multiplicity.

Suppose that $P(t)$ is a polynomial with integer coefficients such that $u = P(\delta)$ is a non-zero endomorphism of Y . Let us put $Z = u(Y)$. Clearly, Z is δ -invariant and we write $\delta_Z : Z \rightarrow Z$ for the corresponding automorphism of Z (i.e., for the restriction of δ to Z). Suppose that

$$\dim(Z) = \sum_{\lambda \in S, P(\lambda) \neq 0} \text{mult}_Y(\lambda).$$

Then the spectrum of $\delta_Z^* : \Omega^1(Z) \rightarrow \Omega^1(Z)$ coincides with $S_P = \{\lambda \in S, P(\lambda) \neq 0\}$ and the multiplicity of an eigenvalue λ of δ_Z^* equals $\text{mult}_Y(\lambda)$.

Proof. Clearly, u commutes with δ . We write v for the (surjective) homomorphism $Y \twoheadrightarrow Z$ induced by u and j for the inclusion map $Z \subset Y$. Notice that $u : Y \rightarrow Y$ splits into a composition $Y \xrightarrow{v} Z \xrightarrow{j} Y$, i.e., $u = jv$. Clearly,

$$\delta_Z v = v\delta \in \text{Hom}(Y, Z), \quad j\delta_Z = \delta j \in \text{Hom}(Z, Y), \quad u = jv \in \text{End}(Y), \quad u\delta = \delta u \in \text{End}(Y).$$

It is also clear that the induced map $u^* : \Omega^1(Y) \rightarrow \Omega^1(Y)$ coincides with $P(\delta^*)$. It follows that $u^*(\Omega^1(Y)) = P(\delta^*)(\Omega^1(Y))$ has dimension

$$\sum_{\lambda \in S, P(\lambda) \neq 0} \text{mult}_Y(\lambda) = \dim(Y)$$

and coincides with $\bigoplus_{\lambda \in S, P(\lambda) \neq 0} W_\lambda$ where W_λ is the eigenspace of δ attached to eigenvalue λ . Since $u^* = v^* j^*$, we have $u^*(\Omega^1(Y)) = v^* j^*(\Omega^1(Y)) \subset v^*(\Omega^1(Z))$. Since $\dim(u^*(\Omega^1(Y))) = \dim(Y) = \dim(\Omega^1(Z)) \geq \dim(v^*(\Omega^1(Z)))$, the subspace $u^*(\Omega^1(Y)) = v^*(\Omega^1(Z))$ and $v^* : \Omega^1(Z) \hookrightarrow \Omega^1(Y)$. It follows that if we denote by w the isomorphism $v^* : \Omega^1(Z) \cong v^*(\Omega^1(Z))$ and by γ the restriction of δ^* to $v^*(\Omega^1(Z))$ then $\gamma w = w\delta_Y^*$ and therefore $\gamma = w\delta_Y^* w^{-1}$. \square

4. CYCLIC COVERS AND JACOBIANS

Throughout this paper we fix a prime number p and an integral power $q = p^r$ and assume that K is a field of characteristic different from p . We fix an algebraic closure K_a and write $\text{Gal}(K)$ for the absolute Galois group $\text{Aut}(K_a/K)$. We also fix in K_a a primitive q th root of unity ζ .

Let $f(x) \in K[x]$ be a separable polynomial of degree $n \geq 4$. We write \mathfrak{R}_f for the set of its roots and denote by $L = L_f = K(\mathfrak{R}_f) \subset K_a$ the corresponding splitting field. As usual, the Galois group $\text{Gal}(L/K)$ is called the Galois group of f and denoted by $\text{Gal}(f)$. Clearly, $\text{Gal}(f)$ permutes elements of \mathfrak{R}_f and the natural map of $\text{Gal}(f)$ into the group $\text{Perm}(\mathfrak{R}_f)$ of all permutations of \mathfrak{R}_f is an embedding. We will identify $\text{Gal}(f)$ with its image and consider it as a permutation group of \mathfrak{R}_f . Clearly, $\text{Gal}(f)$ is transitive if and only if f is irreducible in $K[x]$. Further, we assume that either p does not divide n or q does divide n .

If p does not divide n then we write (as in [17, §3])

$$V_{f,p} := (\mathbf{F}_p^{\mathfrak{R}_f})^{00} = (\mathbf{F}_p^{\mathfrak{R}_f})^0$$

for the $(n-1)$ -dimensional \mathbf{F}_p -vector space of functions $\{\phi : \mathfrak{R}_f \rightarrow \mathbf{F}_p, \sum_{\alpha \in \mathfrak{R}_f} \phi(\alpha) = 0\}$ provided with a natural action of the permutation group $\text{Gal}(f) \subset \text{Perm}(\mathfrak{R}_f)$. It is the *heart* over the field \mathbf{F}_p of the group $\text{Gal}(f)$ acting on the set \mathfrak{R}_f [3, 17].

Remark 4.1. If p does not divide n and $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n then the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. See [17, lemma 3.5].

Let $C = C_{f,q}$ be the smooth projective model of the smooth affine K -curve $y^q = f(x)$. So C is a smooth projective curve defined over K . The rational function $x \in K(C)$ defines a finite cover $\pi : C \rightarrow \mathbf{P}^1$ of degree p . Let $B' \subset C(K_a)$ be the set of ramification points. Clearly, the restriction of π to B' is an injective map $B' \hookrightarrow \mathbf{P}^1(K_a)$, whose image is the disjoint union of ∞ and \mathfrak{R}_f if p does not divide $\deg(f)$ and just \mathfrak{R}_f if it does. We write

$$B = \pi^{-1}(\mathfrak{R}_f) = \{(\alpha, 0) \mid \alpha \in \mathfrak{R}_f\} \subset B' \subset C(K_a).$$

Clearly, π is ramified at each point of B with ramification index q . We have $B' = B$ if n is divisible by q . If n is not divisible by p then B' is the disjoint union of B and a single point $\infty' := \pi^{-1}(\infty)$. In addition, the ramification index of π at $\pi^{-1}(\infty)$ is also q . Using Hurwitz's formula, one may easily compute the genus $g = g(C) = g(C_{f,q})$ of C ([1, pp. 401–402], [13, proposition 1 on p. 3359], [7, p. 148]). Namely, g is $(q-1)(n-1)/2$ if p does not divide n and $(q-1)(n-2)/2$ if q divides n .

Remark 4.2. Assume that p does not divide n and consider the plane triangle (Newton polygon)

$$\Delta_{n,q} := \{(j, i) \mid 0 \leq j, \quad 0 \leq i, \quad qj + ni \leq nq\}$$

with the vertices $(0, 0)$, $(0, q)$ and $(n, 0)$. Let $L_{n,q}$ be the set of integer points in the interior of $\Delta_{n,q}$. One may easily check that $g = (q-1)(n-1)/2$ coincides with the number of elements of $L_{n,q}$. It is also clear that for each $(j, i) \in L_{n,q}$

$$1 \leq j \leq n-1; \quad 1 \leq i \leq q-1; \quad q(j-1) + (j+1) \leq n(q-i).$$

Elementary calculations ([1, theorem 3 on p. 403]) show that

$$\omega_{j,i} := x^{j-1}dx/y^{q-i} = x^{j-1}y^i dx/y^q = x^{j-1}y^{i-1}dx/y^{q-1}$$

is a differential of the first kind on C for each $(j, i) \in L_{n,q}$. This implies easily that the collection $\{\omega_{j,i}\}_{(j,i) \in L_{n,q}}$ is a basis in the space of differentials of the first kind on C .

There is a non-trivial birational K_a -automorphism of C

$$\delta_q : (x, y) \mapsto (x, \zeta y).$$

Clearly, δ_q^q is the identity map and the set of fixed points of δ_q coincides with B' .

Remark 4.3. Let us assume that $n = \deg(f)$ is divisible by q say, $n = qm$ for some positive integer m . Let $\alpha \in K_a$ be a root of f and $K_1 = K(\alpha)$ be the corresponding subfield of K_a . We have $f(x) = (x - \alpha)f_1(x)$ with $f_1(x) \in K_1[x]$. Clearly, $f_1(x)$ is a separable polynomial over K_1 of degree $qm - 1 = n - 1 \geq 4$. It is also clear that the polynomials $h(x) = f_1(x + \alpha), h_1(x) = x^{n-1}h(1/x) \in K_1[x]$ are separable of the same degree $qm - 1 = n - 1 \geq 4$. The standard substitution $x_1 = 1/(x - \alpha), y_1 = y/(x - \alpha)^m$ establishes a birational isomorphism between $C_{f,p}$ and a curve $C_{h_1} : y_1^q = h_1(x_1)$ (see [13, p. 3359]). In particular, the jacobians of C_f and C_{h_1} are isomorphic over K_a (and even over K_1). But $\deg(h_1) = qm - 1$ is not divisible by p . Clearly, this isomorphism commutes with the actions of δ_q . Notice also that if the Galois group of f over K is \mathbf{S}_n (resp. \mathbf{A}_n) then the Galois group of h_1 over K_1 is \mathbf{S}_{n-1} (resp. \mathbf{A}_{n-1}).

Remark 4.4. (i) It is well-known that $\dim_{K_a}(\Omega^1(C_{(f,q)})) = g(C_{f,q})$. By functoriality, δ_q induces on $\Omega^1(C_{(f,q)})$ a certain K_a -linear automorphism $\delta_q^* : \Omega^1(C_{(f,q)}) \rightarrow \Omega^1(C_{(f,q)})$. Clearly, if for some positive integer j the differential $\omega_{j,i} = x^{j-1}dx/y^{q-i}$ lies in $\Omega^1(C_{(f,q)})$ then it is an eigenvector of δ_q^* with eigenvalue ζ^i .

(ii) Now assume that p does not divide n . It follows from Remark 4.2 that the collection $\{\omega_{j,i} = x^{j-1}dx/y^{q-i} \mid (i, j) \in L_{n,q}\}$ is an eigenbasis of $\Omega^1(C_{(f,q)})$. This implies that the multiplicity of the eigenvalue ζ^{-i} of δ_q^* coincides with the number of interior integer points in $\Delta_{n,q}$ along the corresponding (to $q - i$) horizontal line. Elementary calculations show that this number is $\left[\frac{ni}{q} \right]$; in particular, ζ^{-i} is an eigenvalue if and only if $\left[\frac{ni}{q} \right] > 0$. Taking into account that $n \geq 4$ and $q = p^r$, we conclude that ζ^i is an eigenvalue of δ_q^* for each integer i with $p^r - p^{r-1} \leq i \leq p^r - 1 = q - 1$. It also follows easily that 1 is not an eigenvalue of δ_q^* . This implies that

$$\mathcal{P}_q(\delta_q^*) = \delta_q^{*q-1} + \cdots + \delta_q^* + 1 = 0$$

in $\text{End}_K(\Omega^1(C_{(f,q)}))$. In addition, one may easily check that if $\mathcal{H}(t)$ is a polynomial with rational coefficients such that $\mathcal{H}(\delta_q^*) = 0$ in $\text{End}_K(\Omega^1(C_{(f,q)}))$ then $\mathcal{H}(t)$ is divisible by $\mathcal{P}_q(t)$ in $\mathbf{Q}[t]$.

Let $J(C_{f,q}) = J(C) = J(C_{f,q})$ be the jacobian of C . It is a g -dimensional abelian variety defined over K and one may view (via Albanese functoriality) δ_q as

an element of $\text{Aut}(C) \subset \text{Aut}(J(C)) \subset \text{End}(J(C))$ such that $\delta_q \neq \text{Id}$ but $\delta_q^q = \text{Id}$ where Id is the identity endomorphism of $J(C)$. We write $\mathbf{Z}[\delta_q]$ for the subring of $\text{End}(J(C))$ generated by δ_q .

Remark 4.5. Assume that p does not divide n . Let P_0 be one of the δ_q -invariant points (i.e., a ramification point for π) of $C_{f,p}(K_a)$. Then

$$\tau : C_{f,q} \rightarrow J(C_{f,q}), \quad P \mapsto \text{cl}((P) - (P_0))$$

is an embedding of complex algebraic varieties and it is well-known that the induced map $\tau^* : \Omega^1(J(C_{f,q})) \rightarrow \Omega^1(C_{f,q})$ is an isomorphism obviously commuting with the actions of δ_q . (Here cl stands for the linear equivalence class.) This implies that n_{σ_i} coincides with the dimension of the eigenspace of $\Omega^1(C_{(f,q)})$ attached to the eigenvalue ζ^{-i} of δ_q^* . Applying Remark 4.4, we conclude that if $\mathcal{H}(t)$ is a monic polynomial with integer coefficients such that $\mathcal{H}(\delta_q) = 0$ in $\text{End}(J^{(f,q)})$ then $\mathcal{H}(t)$ is divisible by $\mathcal{P}_q(t)$ in $\mathbf{Q}[t]$ and therefore in $\mathbf{Z}[t]$.

Remark 4.6. Assume that p does not divide n . Clearly, the set S of eigenvalues λ of $\delta_q^* : \Omega^1(J(C_{f,q})) \rightarrow \Omega^1(J(C_{f,q}))$ with $\mathcal{P}_{q/p}(\lambda) \neq 0$ consists of primitive q th roots of unity ζ^{-i} ($1 \leq i < q$, $(i, p) = 1$) with $\left[\frac{ni}{q} \right] > 0$ and the multiplicity of ζ^{-i} equals $\left[\frac{ni}{q} \right]$, thanks to Remarks 4.5 and 4.4. Let us compute the sum

$$M = \sum_{1 \leq i < q, (i, p) = 1} \left[\frac{ni}{q} \right]$$

of multiplicities of eigenvalues from S .

First, assume that $q > 2$. Then $\varphi(q) = (p-1)p^{r-1}$ is even and for each (index) i the difference $q - i$ is also prime to p , lies between 1 and q and

$$\left[\frac{ni}{q} \right] + \left[\frac{n(q-i)}{q} \right] = n-1.$$

It follows easily that

$$M = (n-1) \frac{\varphi(q)}{2} = \frac{(n-1)(p-1)p^{r-1}}{2}.$$

Now assume that $q = p = 2$ and therefore $r = 1$. Then n is odd, $C_{f,q} = C_{f,2} : y^2 = f(x)$ is a hyperelliptic curve of genus $g = \frac{n-1}{2}$ and δ_2 is the hyperelliptic involution $(x, y) \mapsto (x, -y)$. It is well-known that the differentials $x^i \frac{dx}{y}$ ($0 \leq i \leq g-1$) constitute a basis of the g -dimensional $\Omega^1(J(C_{f,2}))$. It follows that δ_2^* is just multiplication by -1 . Therefore

$$M = g = \frac{n-1}{2} = \frac{(n-1)(p-1)p^{r-1}}{2}.$$

Clearly, if the abelian (sub)variety $Z := \mathcal{P}_{q/p}(\delta_q)(J(C_{f,q}))$ has dimension M then the data $Y = J(C_{f,q}), \delta = \delta_q, P = \mathcal{P}_{q/p}(t)$ satisfy the conditions of Theorem 3.10.

Lemma 4.7. *Assume that p does not divide n . Let $D = \sum_{P \in B} a_P(P)$ be a divisor on $C = C_{f,p}$ with degree 0 and support in B . Then D is principal if and only if all the coefficients a_P are divisible by q .*

Proof. Suppose $D = \text{div}(h)$ where $h \in K_a(C)$ is a non-zero rational function of C . Since D is δ_q -invariant, the rational function $\delta_q^*h := h\delta_q$ coincides with $c \cdot h$ for some non-zero $c \in K_a$. It follows easily from the δ_q -invariance of the splitting $K_a(C) = \bigoplus_{i=0}^{q-1} y^i \cdot K_a(x)$ that $h = y^i \cdot u(x)$ for some non-zero rational function $u(x) \in K_a(x)$ and a non-negative integer $i \leq q-1$. It follows easily that all finite zeros and poles of $u(x)$ lie in B , i.e., there exists an integer-valued function b on \mathfrak{R}_f such that u coincides, up to multiplication by a non-zero constant, to $\prod_{\alpha \in \mathfrak{R}_f} (x - \alpha)^{b(\alpha)}$. Notice that $\text{div}(y) = \sum_{P \in B} (P) - n(\infty)$. On the other hand, for each $\alpha \in \mathfrak{R}_f$, we have $P_\alpha = (\alpha, 0) \in B$ and the corresponding divisor $\text{div}(x - \alpha) = q((\alpha, 0)) - q(\infty) = q(P_\alpha) - q(\infty)$ is divisible by q . This implies that $a_{P_\alpha} = q \cdot b(\alpha) + i$. Also, since ∞ is neither zero nor pole of h , we get the equality $0 = ni + \sum_{\alpha \in \mathfrak{R}_f} b(\alpha)q$. Since n and q are relatively prime, i must divide q . This implies that $i = 0$ and therefore the divisor $D = \text{div}(u(x)) = \text{div}(\prod_{\alpha \in \mathfrak{R}_f} (x - \alpha)^{b(\alpha)})$ is divisible by q .

Conversely, suppose a divisor $D = \sum_{P \in B} a_P(P)$ with $\sum_{P \in B} a_P = 0$ and all a_P are divisible by q . Let us put $h = \prod_{P \in B} (x - x(P))^{a_P/q}$. One may easily check that $D = \text{div}(h)$. \square

Lemma 4.8. $1 + \delta_q + \cdots + \delta_q^{q-1} = 0$ in $\text{End}(J(C_{f,q}))$. The subring $\mathbf{Z}[\delta_q] \subset \text{End}(J(C_{f,q}))$ is isomorphic to the ring $\mathbf{Z}[t]/\mathcal{P}_q(t)\mathbf{Z}[t]$. The \mathbf{Q} -subalgebra $\mathbf{Q}[\delta_q] \subset \text{End}^0(J(C_{f,q})) = \text{End}^0(J(C_{f,q}))$ is isomorphic to $\mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] = \prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.

Proof. If $q = p$ is a prime this assertion is proven in [7, p. 149], [8, p. 458]. So, further we may assume that $q > p$. It follows from Remark 4.3 that we may assume that p does not divide n .

Now we follow arguments of [8, p. 458] (where the case of $q = p$ was treated). The group $J(C_{f,q})(K_a)$ is generated by divisor classes of the form $(P) - (\infty)$ where P is a finite point on $C_{f,p}$. The divisor of the rational function $x - x(P)$ is $(\delta_q^{q-1}P) + \cdots + (\delta_q P) + (P) - q(\infty)$. This implies that $\mathcal{P}_q(\delta_q) = 0 \in \text{End}(J(C_{f,q}))$.

Applying Remark 4.5(ii), we conclude that $\mathcal{P}_q(t)$ is the minimal polynomial of δ_q in $\text{End}(J(C_{f,q}))$. \square

Let us define the abelian (sub)variety

$$J^{(f,q)} := \mathcal{P}_{q/p}(\delta_q)(J(C_{f,q})) \subset J(C_{f,q}).$$

Clearly, $J^{(f,q)}$ is a δ_q -invariant abelian subvariety defined over $K(\zeta_q)$. In addition, $\Phi_q(\delta_q)(J^{(f,q)}) = 0$.

Remark 4.9. If $q = p$ then $\mathcal{P}_{q/p}(t) = \mathcal{P}_1(t) = 1$ and therefore $J^{(f,p)} = J(C_{f,p})$.

Remark 4.10. Since the polynomials Φ_q and $\mathcal{P}_{q/p}$ are relatively prime, the homomorphism $\mathcal{P}_{q/p}(\delta_q) : J^{(f,q)} \rightarrow J^{(f,q)}$ has finite kernel and therefore is an isogeny. In particular, it is surjective.

Lemma 4.11. *Suppose that p does not divide n . Then*

$$\dim(J^{(f,q)}) = \frac{(p^r - p^{r-1})(n-1)}{2}$$

and there is an $K(\zeta)$ -isogeny $J(C_{f,q}) \rightarrow J(C_{f,q/p}) \times J^{(f,q)}$. In addition, if $\zeta \in K$ then the Galois modules $V_{f,p}$ and $(J^{(f,q)})^{\delta_q} := \{z \in J^{(f,q)}(K_a) \mid \delta_q(z) = z\}$ are isomorphic.

Proof. Clearly, we may assume that $\zeta \in K$. Let us consider the curve $C_{f,q/p} : y_1^{q/p} = f(x_1)$ and a regular surjective map $\pi_1 : C_{f,q} \rightarrow C_{f,q/p}$, $x_1 = x, y_1 = y^p$. Clearly, $\pi_1 \delta_q = \delta_{q/p} \pi_1$. By Albanese functoriality, π_1 induces a certain surjective homomorphism of jacobians $J(C_{f,q}) \rightarrow J(C_{f,q/p})$ which we continue to denote by π_1 . Clearly, the equality $\pi_1 \delta_q = \delta_{q/p} \pi_1$ remains true in $\text{Hom}(J(C_{f,q}), J(C_{f,q/p}))$. By Lemma 4.8, $\mathcal{P}_{q/p}(\delta_{q/p}) = 0 \in \text{End}(J(C_{f,q/p}))$. It follows from Lemma 4.10 that $\pi_1(J^{(f,q)}) = 0$ and therefore $\dim(J^{(f,q)})$ does not exceed

$$\dim(J(C_{f,q})) - \dim(J(C_{f,q/p})) = \frac{(p^r - 1)(n-1)}{2} - \frac{(p^{r-1} - 1)(n-1)}{2} = \frac{(p^r - p^{r-1})(n-1)}{2}.$$

By definition of $J^{(f,q)}$, for each divisor $D = \sum_{P \in B} a_P(P)$ the linear equivalence class of $\$p^{r-1}D = \sum_{P \in B} p^{r-1}a_P(P)$ lies in $(J^{(f,q)})^{\delta_q} \subset J^{(f,q)}(K_a) \subset J(C_{f,q})(K_a)$. It follows from Lemma 4.7 that the class of $p^{r-1}D$ is zero if and only if all $p^{r-1}a_P$ are divisible by $q = p^r$, i.e. all a_P are divisible by p . This implies that the set of linear equivalence classes of $p^{r-1}D$ is a Galois submodule isomorphic to $V_{f,p}$. We want to prove that $(J^{(f,q)})^{\delta_q} = V_{f,p}$.

Recall that $J^{(f,q)}$ is δ_q -invariant and the restriction of δ_q to $J^{(f,q)}$ satisfies the q th cyclotomic polynomial. This allows us to define the homomorphism $\mathbf{Z}[\zeta_q] \rightarrow \text{End}(J^{(f,q)})$ that sends 1 to the identity map and ζ_q to δ_q . Let us put $E = \mathbf{Q}(\zeta_q)$, $\mathcal{O} = \mathbf{Z}[\zeta_q] \subset \mathbf{Q}(\zeta_q) = E$. It is well-known that \mathcal{O} is the ring of integers in E , the ideal $\lambda = (1 - \zeta_q)\mathbf{Z}[\zeta_q] = (1 - \zeta_q)\mathcal{O}$ is maximal in \mathcal{O} with $\mathcal{O}/\lambda = \mathbf{F}_p$ and $\mathcal{O} \otimes \mathbf{Z}_p = \mathbf{Z}_p[\zeta_q]$ is the ring of integers in the field $\mathbf{Q}_p(\zeta_q)$. Notice also that $\mathcal{O} \otimes \mathbf{Z}_p$ coincides with the completion \mathcal{O}_λ of \mathcal{O} with respect to the λ -adic topology and $\mathcal{O}_\lambda/\lambda\mathcal{O}_\lambda = \mathcal{O}/\lambda = \mathbf{F}_p$.

It follows from Lemma 3.3 that

$$d = \frac{2\dim(J^{(f,q)})}{[E : \mathbf{Q}]} = \frac{2\dim(J^{(f,q)})}{p^r - p^{r-1}}$$

is a positive integer, the \mathbf{Z}_p -Tate module $T_p(J^{(f,q)})$ is a free \mathcal{O}_λ -module of rank d . Using the displayed formula (5) from §3, we conclude that

$$(J^{(f,q)})^{\delta_q} = \{u \in J^{(f,q)}(K_a) \mid (1 - \delta_q)(u) = 0\} = J_\lambda^{f,q} = T_p(J^{f,q}) \otimes_{\mathcal{O}_\lambda} \mathbf{F}_p$$

is a d -dimensional \mathbf{F}_p -vector space. Since $(J^{(f,q)})^{\delta_q}$ contains $(n - 1)$ -dimensional \mathbf{F}_p -vector space $V_{f,p}$, we have $d \geq n - 1$. This implies that

$$2\dim(J^{(f,q)}) = d(p^r - p^{r-1}) \geq (n - 1)(p^r - p^{r-1})$$

and therefore

$$\dim(J^{(f,q)}) \geq \frac{(n - 1)(p^r - p^{r-1})}{2}.$$

But we have already seen that

$$\dim(J^{(f,q)}) \leq \frac{(n - 1)(p^r - p^{r-1})}{2}.$$

This implies that

$$\dim(J^{(f,q)}) = \frac{(n - 1)(p^r - p^{r-1})}{2}.$$

It follows that $d = n - 1$ and therefore $(J^{(f,q)})^{\delta_q} = V_{f,p}$. Dimension arguments imply that $J^{(f,q)}$ coincides with the identity component of $\ker(\pi_1)$ and therefore there is an isogeny between $J(C_{f,q})$ and $J(C_{f,q/p}) \times J^{(f,q)}$. \square

Corollary 4.12. *If p does not divide n then there is a $K(\zeta_q)$ -isogeny $J(C_{f,q}) \rightarrow J(C_{f,p}) \times \prod_{i=2}^r J^{(f,p^i)} = \prod_{i=1}^r J^{(f,p^i)}$.*

Proof. Combine Corollary 4.11(ii) and Remark 4.9 with easy induction on r . \square

Remark 4.13. Suppose that p does not divide n and consider the induced linear operator $\delta_q^* : \Omega^1(J^{(f,q)}) \rightarrow \Omega^1(J^{(f,q)})$. It follows from Theorem 3.10 combined with Remark 4.6 that its spectrum consists of primitive q th roots of unity ζ^{-i} ($1 \leq i < q$) with $[ni/q] > 0$ and the multiplicity of ζ^{-i} equals $[ni/q]$.

Theorem 4.14. Suppose that $n \geq 5$ is an integer. Let p be a prime, $r \geq 1$ an integer and $q = p^r$. Suppose that p does not divide n . Suppose that K is a field of characteristic different from p containing a primitive q th root of unity ζ . Let $f(x) \in K[x]$ be a separable polynomial of degree n and $\text{Gal}(f)$ its Galois group. Suppose that the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. Then the image \mathcal{O} of $\mathbf{Z}[\delta_q] \rightarrow \text{End}(J^{(f,q)})$ is isomorphic to $\mathbf{Z}[\zeta_q]$ and enjoys one of the following two properties.

- (i) \mathcal{O} is a maximal commutative subring in $\text{End}(J^{(f,q)})$;
- (ii) $\text{char}(K) > 0$ and the centralizer of $\mathcal{O} \otimes \mathbf{Q} \cong \mathbf{Q}(\zeta_q)$ in $\text{End}^0(J^{(f,q)})$ is a central simple $(n-1)^2$ -dimensional $\mathbf{Q}(\zeta_q)$ -algebra. In addition, $J^{(f,q)}$ is an abelian variety of CM-type isogenous to a self-product of an absolutely simple abelian variety. Also $J^{(f,q)}$ is isogenous to an abelian variety defined over a finite field.

Proof. Clearly, \mathcal{O} is isomorphic to $\mathbf{Z}[\zeta_q]$. Let us put $\lambda = (1 - \zeta_q)\mathbf{Z}[\zeta_q]$. By Lemma 4.11(iii), the Galois module $(J^{(f,q)})^{\delta_q} = J_\lambda^{(f,q)}$ is isomorphic to $V_{f,p}$. Applying Theorem 3.8, we conclude that either (ii) holds true or one of the following conditions hold:

- (a) \mathcal{O} is a maximal commutative subring in $\text{End}(J^{(f,q)})$;
- (b) $\text{char}(K) = 0$ and there exist a $\varphi(q)/2$ -dimensional abelian variety Z over K_a , an embedding $\mathbf{Q}(\zeta_q) \hookrightarrow \text{End}^0(Z)$ that sends 1 to 1_Z and a $\mathbf{Q}(\zeta_q)$ -equivariant isogeny $\psi : Z^{n-1} \rightarrow J^{(f,q)}$.

Clearly, if (a) is fulfilled then we are done. Also if $q = 2$ then $\varphi(q)/2 = 1/2$ is not an integer and therefore (b) is not fulfilled, i.e. (a) is fulfilled.

So further we assume that $q > 2$ and (b) holds true. In particular, $\text{char}(K) = 0$. We need to arrive to a contradiction.

Since $\text{char}(K) = 0$, the isogeny ψ induces an isomorphism $\psi^* : \Omega^1((J^{(f,q)})) \cong \Omega^1(Z^{n-1})$ that commutes with the actions of $\mathbf{Q}(\zeta_q)$. Since

$$\dim(\Omega^1(Z)) = \dim(Z) = \frac{\varphi(q)}{2},$$

the linear operator in $\Omega^1(Z)$ induced by $\zeta_q \in \mathbf{Q}(\zeta_q)$ has, at most, $\varphi(q)/2$ distinct eigenvalues. It follows that the linear operator in $\Omega^1(Z^{n-1}) = \Omega^1(Z)^{n-1}$ induced by ζ_q also has, at most, $\varphi(q)/2$ distinct eigenvalues. This implies that the linear operator δ_q^* in $\Omega^1((J^{(f,q)}))$ also has, at most, $\varphi(q)/2$ distinct eigenvalues. Recall that the eigenvalues of δ_q^* are primitive q th roots of unity ζ^{-i} with

$$1 \leq i < q, (i, p) = 1, \left[\frac{ni}{q} \right] > 0.$$

Clearly, the inequality $[ni/q] > 0$ means that $i > q/n$, since $(n, q) = (n, p^r) = 1$. So, in order to get a desired contradiction, it suffices to check that the cardinality of the set

$$B := \left\{ i \in \mathbf{Z} \mid \frac{q}{n} < i < q = p^r, (i, p) = 1 \right\}$$

is strictly greater than $(p-1)p^{r-1}/2$. Since $p \geq 2, n \geq 5$ and q/n is not an integer, we have

$$\frac{p}{n} \leq \frac{p}{5} < \frac{p-1}{2}$$

and

$$\#(B) > \varphi(q) - \frac{q}{n} = (p-1)p^{r-1} - \frac{p^{r-1}p}{n} \geq \left(p-1 - \frac{p}{5} \right) p^{r-1} > \frac{p-1}{2} p^{r-1}.$$

□

Corollary 4.15. *Suppose that $n \geq 5$ is an integer. Let p be a prime, $r \geq 1$ an integer and $q = p^r$. Assume in addition that either p does not divide n or $q \mid n$ and $(n, q) \neq (5, 5)$. Let K be a field of characteristic different from p . Let $f(x) \in K[x]$ be an irreducible separable polynomial of degree n such that $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n . Then the image \mathcal{O} of $\mathbf{Z}[\delta_q] \rightarrow \text{End}(J^{(f,q)})$ is isomorphic to $\mathbf{Z}[\zeta_q]$ and enjoys one of the following two properties.*

- (i) \mathcal{O} is a maximal commutative subring in $\text{End}(J^{(f,q)})$;
- (ii) $\text{char}(K) > 0$ and the centralizer of $\mathcal{O} \otimes \mathbf{Q} \cong \mathbf{Q}(\zeta_q)$ in $\text{End}^0(J^{(f,q)})$ is a central simple $(n-1)^2$ -dimensional $\mathbf{Q}(\zeta_q)$ -algebra. In addition, $J^{(f,q)}$ is an abelian variety of CM-type isogenous to a self-product of an absolutely simple abelian variety.

Proof. If p divides n then $n > 5$ and therefore $n-1 \geq 5$. By Remark 4.3, we may assume that p does not divide n . If we replace K by $K(\zeta)$ then still $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n . By Remark 4.1 if $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n then the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. One has only to apply Theorem 4.14. □

Theorem 4.16. *Suppose $n \geq 4$ and p does not divide n . Assume also that $\text{char}(K) = 0$ and $\mathbf{Q}[\delta_q]$ is a maximal commutative subalgebra in $\text{End}^0(J^{(f,q)})$. Then $\text{End}^0(J^{(f,q)}) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}(\zeta_q)$ and therefore $\text{End}(J^{(f,q)}) = \mathbf{Z}[\delta_q] \cong \mathbf{Z}[\zeta_q]$. In particular, $J^{(f,q)}$ is an absolutely simple abelian variety.*

Proof. Let $\mathfrak{C} = \mathfrak{C}_{J^{(f,p)}}$ be the center of $\text{End}^0(J^{(f,p)})$. Since $\mathbf{Q}[\delta_q]$ is a maximal commutative subalgebra, $\mathfrak{C} \subset \mathbf{Q}[\delta_q]$.

Replacing, if necessary, K by its subfield (finitely) generated over \mathbf{Q} by all the coefficients of f , we may assume that K (and therefore K_a) is isomorphic to a subfield of \mathbf{C} . So, $K \subset K_a \subset \mathbf{C}$. We may also assume that $\zeta = \zeta_q$ and consider $J^{(f,q)}$ as complex abelian variety. Let $\Sigma = \Sigma_E$ be the set of all field embeddings $\sigma : E = \mathbf{Q}[\delta_q] \hookrightarrow \mathbf{C}$. We are going to apply Corollary 2.2 to $Z = J^{(f,q)}$ and $E = \mathbf{Q}[\delta_q]$. In order to do that we need to get some information about the multiplicities $n_\sigma = n_\sigma(Z, E) = n_\sigma(J^{(f,q)}, \mathbf{Q}[\delta_q])$. The displayed formula (1) in §2 allows us to do it, using the action of $\mathbf{Q}[\delta_q]$ on $\Omega^1(J^{(f,q)})$. Namely, since δ_q generates the field E (over \mathbf{Q}), each $\Omega^1(J^{(f,q)})_\sigma$ is the eigenspace corresponding to the eigenvalue $\sigma(\delta_q)$ of δ_q and n_σ is the multiplicity of the eigenvalue $\sigma(\delta_q)$.

Let $i < q$ be a positive integer that is not divisible by p and $\sigma_i : \mathbf{Q}[\delta_q] \hookrightarrow \mathbf{C}$ be the embedding which sends δ_q to ζ^{-i} . Clearly, for each σ there exists precisely one i such that $\sigma = \sigma_i$. Clearly, $\Omega^1(J^{(f,q)})_{\sigma_i}$ is the eigenspace of $\Omega^1(J^{(f,q)})$ attached to the eigenvalue ζ^{-i} of δ_q . Therefore n_{σ_i} coincides with the multiplicity of the eigenvalue ζ^{-i} . It follows from Remark 4.13 that

$$n_{\sigma_i} = \left[\frac{ni}{q} \right].$$

Now the assertion of the Theorem follows from Corollary 2.2 applied to $E = \mathbf{Q}[\delta_q] \cong \mathbf{Q}(\zeta_q)$. \square

Theorem 4.17. *Let p be a prime, r a positive integer, $q = p^r$ and K a field of characteristic zero. Suppose that $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n . Assume also that either p does not divide n or q divides n . Then $\text{End}^0(J^{(f,q)}) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}(\zeta_q)$ and therefore $\text{End}(J^{(f,q)}) = \mathbf{Z}[\delta_q] \cong \mathbf{Z}[\zeta_q]$. In particular, $J^{(f,q)}$ is an absolutely simple abelian variety.*

Proof. If $(n, q) \neq (5, 5)$ then the assertion follows from Corollary 4.15 combined with Corollary 4.16. The case $(n, q) = (5, 5)$ is contained in [20, theorem 4.2]. \square

Corollary 4.18. *Let p be a prime and K a field of characteristic zero. Suppose that $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = \mathbf{S}_n$ or*

A_n. Let r and s be distinct positive integers. Assume also that either p does not divide n or both p^r and p^s divide n . Then $\text{Hom}(J^{(f,p^r)}, J^{(f,p^s)}) = 0$.

Proof. It follows from Theorem 4.17 that $J^{(f,p^r)}$ and $J^{(f,p^s)}$ are absolutely simple abelian varieties, whose endomorphism algebras $\mathbf{Q}(\zeta_{p^r})$ and $\mathbf{Q}(\zeta_{p^s})$ are not isomorphic. Therefore these abelian varieties are not isogenous. Since they are absolutely simple, every homomorphism between them is zero. \square

Combining Theorem 4.16 and Corollary 4.14, we obtain the following statement.

Theorem 4.19. Let p be a prime, r a positive integer, $q = p^r$. Suppose that K is a field of characteristic zero containing a primitive q th root of unity. Let $f(x) \in K[x]$ be a polynomial of degree $n \geq 5$. Assume also that p does not divide n and the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. Then $\text{End}^0(J^{(f,q)}) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}(\zeta_q)$ and therefore $\text{End}(J^{(f,q)}) = \mathbf{Z}[\delta_q] \cong \mathbf{Z}[\zeta_q]$. In particular, $J^{(f,q)}$ is an absolutely simple abelian variety.

Corollary 4.20. Let p be a prime, and K a field of characteristic zero. Let $f(x) \in K[x]$ be a polynomial of degree $n \geq 5$. Assume also that p does not divide n and the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. If r and s are distinct positive integers such that K contains primitive p^r th and p^s th roots of unity then $\text{Hom}(J^{(f,p^r)}, J^{(f,p^s)}) = 0$.

Proof. It follows from Theorem 4.19 that $J^{(f,p^r)}$ and $J^{(f,p^s)}$ are absolutely simple abelian varieties, whose endomorphism algebras $\mathbf{Q}(\zeta_{p^r})$ and $\mathbf{Q}(\zeta_{p^s})$ are not isomorphic. Therefore these abelian varieties are not isogenous. Since they are absolutely simple, every homomorphism between them is zero. \square

5. JACOBIANS AND THEIR ENDOMORPHISM RINGS

Throughout this section we assume that K is a field of characteristic zero. Recall that K_a is an algebraic closure of K and $\zeta \in K_a$ is a primitive q th root of unity. Suppose $f(x) \in K[x]$ is a polynomial of degree $n \geq 5$ without multiple roots, $\mathfrak{R}_f \subset K_a$ is the set of its roots, $K(\mathfrak{R}_f)$ is its splitting field. Let us put $\text{Gal}(f) = \text{Gal}(K(\mathfrak{R}_f)/K) \subset \text{Perm}(\mathfrak{R}_f)$. Let r be a positive integer. Recall (Corollary 4.12) that if p does not divide n then there is a $K(\zeta_{p^r})$ -isogeny $J(C_{f,p^r}) \rightarrow \prod_{i=1}^r J^{(f,p^i)}$. Applying Theorem 4.19 and Corollary 4.20 to all $q = p^i$, we obtain the following assertion.

Theorem 5.1. Let p be a prime, r a positive integer, $q = p^r$. Suppose that K is a field of characteristic zero containing a primitive p^r th root of unity. Let

$f(x) \in K[x]$ be an polynomial of degree $n \geq 5$. Assume also that p does not divide n and the $\text{Gal}(f)$ -module $V_{f,p}$ is very simple. Then $\text{End}^0(J(C_{f,q})) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] = \prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.

The next statement obviously generalizes Theorem 1.1.

Theorem 5.2. *Let p be a prime, r a positive integer and K a field of characteristic zero. Suppose that $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = \mathbf{S}_n$ or \mathbf{A}_n . Assume also that either p does not divide n or $q \mid n$. Then $\text{End}^0(J(C_{f,q})) = \mathbf{Q}[\delta_q] \cong \mathbf{Q}[t]/\mathcal{P}_q(t)\mathbf{Q}[t] = \prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.*

Proof. The existence of the isogeny $J(C_{f,q}) \rightarrow \prod_{i=1}^r J^{(f,p^i)}$ combined with Theorem 4.17 and Corollary 4.18 implies that the assertion holds true if p does not divide n . If q divides n then Remark 4.3 allows us to reduce this case to the already proven case when p does not divide $n - 1$. \square

Example 5.3. Suppose $L = \mathbf{C}(z_1, \dots, z_n)$ is the field of rational functions in n independent variables z_1, \dots, z_n with constant field \mathbf{C} and $K = L^{\mathbf{S}_n}$ is the subfield of symmetric functions. Then $K_a = L_a$ and $f(x) = \prod_{i=1}^n (x - z_i) \in K[x]$ is an irreducible polynomial over K with Galois group \mathbf{S}_n . Let $q = p^r$ be a power of a prime p . Let C be a smooth projective model of the K -curve $y^q = f(x)$ and $J(C)$ its jacobian. It follows from Theorem 5.2 that if $n \geq 5$ and either p does not divide n or q divides n then the algebra of L_a -endomorphisms of $J(C)$ is $\prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.

Example 5.4. Let $h(x) \in \mathbf{C}[x]$ be a Morse polynomial of degree $n \geq 5$. This means that the derivative $h'(x)$ of $h(x)$ has $n - 1$ distinct roots $\beta_1, \dots, \beta_{n-1}$ and $h(\beta_i) \neq h(\beta_j)$ while $i \neq j$. (For example, $x^n - x$ is a Morse polynomial.) If $K = \mathbf{C}(z)$ then a theorem of Hilbert ([11, theorem 4.4.5, p. 41]) asserts that the Galois group of $h(x) - z$ over K is \mathbf{S}_n . Let $q = p^r$ be a power of a prime p . Let C be a smooth projective model of the K -curve $y^q = h(x) - z$ and $J(C)$ its jacobian. It follows from Theorem 5.2 that if either p does not divide n or q divides n then the algebra of K_a -endomorphisms of $J(C)$ is $\prod_{i=1}^r \mathbf{Q}(\zeta_{p^i})$.

REFERENCES

- [1] J. K. Koo, *On holomorphic differentials of some algebraic function field of one variable over* C. Bull. Austral. Math. Soc. **43** (1991), 399–405.
- [2] S. Lang, *Abelian varieties*, 2nd edition, Springer Verlag, 1983.
- [3] B. Mortimer, *The modular permutation representations of the known doubly transitive groups*. Proc. London Math. Soc. (3) **41** (1980), 1–20.

- [4] D. Mumford, *Abelian varieties*, 2nd edition, Oxford University Press, 1974.
- [5] F. Oort, *The isogeny class of a CM-abelian variety is defined over a finite extension of the prime field*. J. Pure Applied Algebra **3** (1973), 399–408.
- [6] K. Ribet, *Galois action on division points of Abelian varieties with real multiplications*. Amer. J. Math. **98** (1976), 751–804.
- [7] B. Poonen and E. Schaefer, *Explicit descent for Jacobians of cyclic covers of the projective line*. J. reine angew. Math. **488** (1997), 141–188.
- [8] E. Schaefer, *Computing a Selmer group of a Jacobian using functions on the curve*. Math. Ann. **310** (1998), 447–471.
- [9] I. Schur, *Gleichungen ohne Affect*. Sitz. Preuss. Akad. Wiss. 1930, Physik-Math. Klasse 443–449 (=Ges. Abh. III, 191–197).
- [10] J.-P. Serre, *Abelian ℓ -adic representations and elliptic curves*, 3rd edition. AK Peters, Wellesley, 1998.
- [11] J.-P. Serre, *Topics in Galois Theory*, Jones and Bartlett Publishers, 1992.
- [12] G. Shimura, *Abelian varieties with complex multiplication and modular functions*, Princeton University Press, Princeton, 1997.
- [13] C. Towse, *Weierstrass points on cyclic covers of the projective line*. Trans. Amer. Math. Soc. **348** (1996), 3355–3377.
- [14] Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication*. Math. Res. Letters **7** (2000), 123–132.
- [15] Yu. G. Zarhin, *Hyperelliptic jacobians and modular representations*. In: *Moduli of abelian varieties* (eds. C. Faber, G. van der Geer and F. Oort). *Progress in Math.*, vol. **195** (Birkhäuser, 2001), pp. 473–490.
- [16] Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication in positive characteristic*. Math. Res. Letters **8** (2001), 429–435.
- [17] Yu. G. Zarhin, *Cyclic covers of the projective line, their jacobians and endomorphisms*. J. reine angew. Math. **544** (2002), 91–110.
- [18] Yu. G. Zarhin, *Endomorphism rings of certain jacobians in finite characteristic*. Matem. Sbornik **193** (2002), issue 8, 39–48; Sbornik Math., 2002, **193** (8), 1139–1149.
- [19] Yu. G. Zarhin, *Very simple 2-adic representations and hyperelliptic jacobians*. Moscow Math. J. **2** (2002), issue 2, 403–431.
- [20] Yu. G. Zarhin, *The endomorphism rings of jacobians of cyclic covers of the projective line*. Math. Proc. Cambridge Philos. Soc. **136** (2004), 257–267.
- [21] Yu. G. Zarhin, *Very simple representations: variations on a theme of Clifford*. In: *Progress in Galois Theory Conference* (H. Völklein, T. Shaska eds.), Kluwer Academic Publishers, 2004, pp. 151–168.
- [22] Yu. G. Zarhin, *Non-supersingular hyperelliptic jacobians*. Bull. Soc. Math. France, to appear.
- [23] Yu. G. Zarhin, *Homomorphisms of abelian varieties*. e-print: <http://arXiv.org/abs/math/0406273>; to appear in: *Proceedings of the “Arithmetic, Geometry and Coding Theory - 9” conference*.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA
16802, USA

E-mail address: `zarhin@math.psu.edu`