THE COX RING OF A DEL PEZZO SURFACE
VICTOR V. BATYREV AND OLEG N. POPOV

ABSTRACT. Let X, be a smooth Del Pezzo surface obtained from P? by blow-up of
r < 8 points in general position. It is well known that for r € {3,4,5,6, 7,8} the Picard
group Pic(X,) contains a canonical root system R, € {Az X A1, A4, D5, Fs, E7, Eg}. In
this paper, we prove some general properties of the Cox ring of X, (r > 4) and show its
similarity to the homogeneous coordinate ring of the orbit of the highest weight vector
in some irreducible representation of the algebraic group G associated with the root
system R,.

1. INTRODUCTION

Let X be a projective algebraic variety over a field k. Assume that the Picard group
Pic(X) is a finitely generated abelian group. Consider the vector space

NX)= @ H' X 0D)).
[D]ePic(X)
One wants to make it an k-algebra which is graded by the monoid of effective classes in
Pic(X) such that the algebra structure will be compatible with the natural bilinear map

bp,.n, : HY(X,0(D1)) x H*(X,0(Dy)) — H*(X,0(D; + Dy)).

However, there exist some problems in the realization of this idea. We remark that first
of all there is no any natural isomorphism between HY(X,O(D)) and H°(X,O(D')) if
[D] = [D']. There exists only a canonical bijection between the linear systems |D| 2 |D’|
( |D| denotes a projectivization of of the k-vector space H(X, O(D))). As a consequence,
the bilinear map bp, p, depends not only on the classes [D1], [D2], [D1 + D3] € Pic(X),
but also on their particular representatives. One can easily see that only the morphism

S[Du,[Ds) ¢ D1l X [Da| — [D1 + Do
of the product of two projective spaces |D1| x | D] to another projective space | Dy + Da|
is well-defined. For this reason, it is much more natural to consider the graded set of
projective spaces
P(X):= || D
[D)ePic(X)
together with the all possible morphisms s(p,) p, ([D1], [D2] € Pic(X)).
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Inspired by the paper of Cox on the homogeneous ring of a toric variety [Cox], Hu and
Keel [H-K] suggested a definition of a Cox ring

Cor(X)=R(X,L1,....L;)= @  H'X,0(miLy+-- +m.Ly)
(ma,...,m)EL"

which uses a choice of some Z-basis L1, ..., L, in Pic(X) (e.g. if Pic(X) =X Z" is a free
abelian group). Using such a Z-basis, one obtains a particular representative for each class
in Pic(X) together with a well-defined multiplication so that R(X, L1, ..., L,) becomes a
well-defined k-algebra. If L), ..., L! is another Z-basis of Pic(X), then the corresponding
Cox algebra R(X,L},...,L.) is isomorphic to R(X, L1,...,L,). Unfortunately, we can
not expect to choose a Z-basis of Pic(X) in a natural canonical way. More often one
can choose in a natural way some effective divisors Dy, ..., D, on X such that Pic(X) is
generated by [D1],...,[D,]. If we set

U:=X\(D1U---UDy)

and assume that X is smooth, then Pic(U) = 0 and we obtain the exact sequence
n
1 — k* = k[U]* — @ Z[Di] — Pic(X) — 0.
i=1

Choosing a k-rational point p in U, we can split the monomorphism k* — k[U]*, so
that one has an isomorphism
k[U]" 2k*® G,
where G C k[U]* is a free abelian group of rank n — r. The choice of a k-rational point
p € U allows to give another approach to the graded space I'(X) and to the Cox algebra:

Definition 1.1. Let X,U,p, Dy,..., D, be as above. We consider the graded k-algebra
F(XaUap) = @ HO(XaO(m1D1++mnDn)

(mla---7mn)EZ"

and define
Cox(X,U,p) :=T(X, U;p)G

as the k-subalgebra of all G-invariant elements in T'(X, U, p).

Since Pic(X) = Z"/G, we obtain a natural Pic(X)-grading on Coz(X,U,p). We
expect that the algebra Cox(X,U, p) can de applied to some arithmetic questions about
k-rational points in U C X (e.g. see [9]).

Remark 1.2. If X is a smooth projective toric variety and U C X is the open dense torus
orbit, then the choice of a point p € U defines an isomorphism of U with the algebraic
torus 7', so that the subgroup G C k[U]* can be identified with the character group of
T. In this way, one can show that Cox(X, U, p) is isomorphic to a polynomial ring in n
variables (n is the number of irreducible components of X \ U, cf. [Cox]).

Let X, be a smooth Del Pezzo surface obtained from P? by blow-up of r < 8 points in
general position. It is well known that for r € {3,4,5,6,7,8} the Picard group Pic(X,)
contains a canonical root system R, € {As x Aj, Ay, D5, Fg, E7, Eg}. Moreover, the
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natural embedding Pic(X,_1) < Pic(X,) induces induces the inclusion of root systems
R,_1 — R,. If G(R,) is a connected algebraic group corresponding to the root system R,
then the embedding R,_1 < R, defines a maximal parabolic subgroup P(R,_1) C G(R;).
We expect that for > 4 there should be some relation between a Del Pezzo surface X,
and the GIT-quotient of the homogeneous space G(R,)/P(R,_1) modulo the action of a
maximal torus T, of G(R,).

Our starting observation is the well-known isomorphism X4 = Gr(2,5)//T4 which
follows from an isomorphism between the homogeneous coordinate ring of the Grassma-
niann Gr(3,5) = G(A4)/P(As x A;) C P? and the Cox ring of X4. Another proof of this
fact follows form the identification of X with the moduli space M5 of stable rational
curves with 5 marked points [K].

In this paper, we start an investigation of the Cox ring of Del Pezzo surfaces X,
(r > 4). It is natural to choose the classes of all exceptional curves Ei,...,En, C X,
as a generating set for the Picard group Pic(X,). There is a natural Z>o-grading on
Pic(X,) defined by the intersection with the anticanonical divisor —K.

We prove some general properties of Cox rings of Del Pezzo surfaces X, (r > 4) and
show their similarity to the homogeneous coordinate ring of G(R,)/P(R,_1). We remark
that the homogeneous space G(R,.)/P(R,—1) can be interpreted as the orbit of the highest
weight vector in some natural irreducible representation of G(R;).

Remark 1.3. Some other connections between Del Pezzo surfaces and the corresponding
algebraic groups were considered also by Friedman and Morgan in [F-M]. A similar topic
was considered by Leung in [Le].

In this paper, we show that the Cox ring of a Del Pezzo surface X, is generated by ele-
ments of degree 1. This implies that the homogeneous coordinate ring of G(R,)/P(R,—_1)
is naturally graded by the monoid of effective divisor classes on the surface X, (the same
monoid defines the multigrading of the Cox ring of X,). Moreover, we obtains some
results of the quadratic relations between the generators of the Cox ring of X,.

The authors would like to thank Yu. Tschinkel, A. Skorobogatov, E. S. Golod,
S. M. Lvovski and E. B. Vinberg for useful discussions and encouraging remarks.

2. DEL PEZZO SURFACES

Let us summarize briefly some well-known classical results on Del Pezzo surfaces which
can be found in [Ma, Dem, Na].

One says that r (r < 8) points p1,...,p, in P? are in general position if there are no 3
points on a line, no 6 points on a conic (r > 6) and a cubic having seven points and one
of them double does not have the eighth one (r = 8).

Denote by X, (r > 3) the Del Pezzo surfaces obtained from P? by blowing up of r points
pi,...,pr in general position. If 7 : X, — P? the corresponding projective morphism,
then the Picard group Pic(X,) = Z™+! contains a Z-basis I;, (0 < i < r), lp = [7*O(1)]
and l; := [~ Y(p;)], i = 1,...,7. The intersection form (,*) on Pic(X,) is determined
in the chosen basis by the diagonal matrix: (lo,lp) =1, (l;,l;) = —1 for i > 1, ({;,1;) =0
for i # j,. The anticanonical class of X, equals —K = 3lg — I — -+ — [,. The number
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d:= (K,K)=9—ris called the degree of X,. The anticanonical system | — K| of a Del
Pezzo surface X, is very ample if r < 6, it determines a two-fold covering of P? if r = 7,
and it has one base point, determining a rational map to P! if r = 8. Smooth rational
curves E C X, such that (E,E) = —1 and (F,—K) = 1 are called exceptional curves.

Theorem 2.1. [Ma] The exceptional curves on X, are the following:

(1) blown-up points p1,...,pr;

2) lines through pairs of points p;, p;;

3) conics through 5 points from {p1,...,p}(r > 5);

4) cubics, containing 7 points and 1 of them double (r > 7);

5) quartics, containing 8 points and 3 of them double (r = 8);

6) quintics, containing 8 of point and 6 of them double (r = 8);

7) sextics, containing 8 of those points, 7 of them double and 1 triple (r =8).

The number N, of exceptional curves on X, is given by the following table:

r |34 |5]6|7] 8
N, | 6]10 |16 |27 |56 | 240

The root system R, C Pic(X,) is defined as
R, :={a € Pic(X;) : (a,a) = -2, (a,—K) = 0}.

It is easy to show that R, is exactly the set of all classes a = [E;] — [E;] where E; and
E; are two exceptional curves on X, such that E; N E; = (.

The corresponding Weyl group W, is generated by the reflections o : = — z+ (z, o)«
for a« € R,.. There are so called simple roots ay,...,a, such that the corresponding
reflexions o1, ..., 0, form a minimal generating subset of W,.. The set of simple roots can
be chosen as

a1 =11 —lg,a0 =1y —l3,a3 =1y — 11 — I3 — I3,
Oéi:li_l—li, 224

The blow up morphism X, — X,_; determines an isometric embedding of the Picard
lattices Pic(X,_1) < Pic(X,). This induces the embeddings for root systems, simple
roots and Weyl groups W,.. For r > 3, the Dynkin diagram of R, can be considered as
the subgraph on the vertices «; (i < r) of the following graph:

In particular, we obtain Ry = Ay x Ay, Ry = A4, Rs = D5, Rg = Eg, R7 = E7, Rg = Es.

Denote by wi,...,w, the dual basis to the Z-basis —a;,...,—«a,. Each w; is the
highest weight of an irreducible representation of G(R,) which is called a fundamental
representation. We will denote by V(w) the representation space of G(R,) with the
highest weight w.
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Definition 2.2. A dominant weight w is called minuscule if all weights of V(w) are
nonzero and the W,-orbit of the highest weight vector is a k-basis of V(w) [G/P-I]). A
dominant weight w is called quasiminuscule [G/P-I1I], if all nonzero weights of V(w)
have multiplicity 1 and form an W,.-orbit of @ (the zero weight of V(z) may have some
positive multiplicity).

One can see from the explicit description of the root systems R, that w, is minuscule
for 3 <r <7, and wg is quasiminuscule.

The dimension d, of of the irreducible representation V(w,) of G(R,) is given by the
following table:

r| 4156 7| 8
dy | 10 | 16 | 27 | 56 | 248

We will need the following statement:

Proposition 2.3. Let D be a divisor on a Del Pezzo surface X, (2 <r < 8) such that
(D, E) >0 for every exceptional curve E C X,. Then the following statements hold:

(i) the linear system |D| has no base points on any exceptional curve E C X, ;

(ii) if r <7, then the linear system |D| has no base points on X, at all.

Proof. Induction on r. If r = 2, then there exists exactly 3 exceptional curves Ey, F1, Eo,
whose classes in the standard basis are Iy — I3 — l2,11,l2. Moreover [Ey|, [E1] and [Ej3)
form a basis of the Picard lattice Pic(X2). The dual basis w.r.t. the intersection form is
lo,lop — l1,lp — la. Therefore the conditions on D imply that

[D] = nolp + n1(lo — 1) + n2(lo — l2), no,n1,n2 € Lo

So it is sufficient to check that the linear systems with the classes lg,lo — 1,1y — l2 have
no base points. The latter immediately follows from the fact that the first system defines
the birational morphism Xy — P? contracting F; and Fs, the second and third linear
systems define conic bundle fibrations over P!.

For r > 2, we consider a second induction on deg D = (D, —K).

If there is an exceptional curve £ C X, with (D, E) = 0, then the invetible sheaf O(D)
is the inverse image of an invertible sheaf O(D’) on the Del Pezzo surface X,_; obtained
by the contraction of E. Since the pull back of any exceptional curve on X,_; under the
birational morphism 7 : X, — X,_1 is again an exceptional curve on X,., we obtain
that D’ satisfy all conditions of the proposition on X,_i. By the induction assumption
(r—1<7), |D’| has no base points on X,_;j. Therefore, |D| = |7}, D’| has no base points
on X,.

If there is no exceptional curve E C X, with (D, E) = 0, then we denote by m the
minimal intersection number (D, F) where E runs over all exceptional curves. Since we
have (E, —K) =1 for all exceptional curves, the divisor D' := D + mK has nonnegative
intersections with all exceptional curves and there exists an exceptional curve £ C X,
with (D', E) = 0. Since deg D' = (D', -K) = (D,-K) —m(K,K) < (D,-K) = deg D,
by the induction assumption, we obtain that |D’| is base point free. If » < 7, then the
anticanonical linear system | — K| has no base points. Therefore, |D| = |D' +m(—K)| is
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also base point free. In the case r = 8, | — K| does have a base point p € Xg. However,
p cannot lie on an exceptional curve F, because the short exact sequence

0 — H%Xg,O(-K — E)) —» H(X3, O(-K)) — H(E,O(-K)|g) — 0

induces an isomorphism H°(Xg, O(-K)) = HY(E,O(—K)|g) (since deg(—K — E) = 0
and H(Xs,O(-K — E)) = 0). O

3. GENERATORS OF Cox(X,)

Let {E1,..., EN,} be the set of all exceptional curves on a Del Pezzo surface X,. We
choose a k-rational point p € U := X\ (Ufi*l E;) and denote the ring Cox(X,, U, p) (see
1.1) simply by Cox(X,).

The ring Coz(X,) is graded by the semigroup Mg (X, ) C Pic(X,) of classes of effective
divisors on X,. There is a coarser grading on Cox(X,) given by

Cox(X,)'= € H(X,,0D)),
(D,—K)=d
with respect to which we shall speak about the degree d = (D, —K) of a divisor D.

Proposition 3.1. The ring Cox(X3) is isomorphic to a polynomial ring in 6 variables
k[z1,...,x¢], where x; are sections defining all 6 exceptional curves on Xs.

Proof. The Del Pezzo surface X3 is a toric variety which can be descrobed as the blown-
up of 3 torus invariant points (1:0:0), (0:1:0) and (0:0:1) on P2, So we can apply a general
result of Cox on toric varieties [Cox]| (see also 1.2). O

Theorem 3.2. For 3 < r <8, the ring Cox(Xy) is generated by elements of degree 1. If
r < 7, then the generators of Cox(Xy) are global sections of invertible sheaves defining
the exceptional curves. If r = 8, then we should add to the above set of generators two
linearly independent global sections of the anticanonical sheaf on Xg.

Proof. Induction on r. The case r = 3 is settled by the previous proposition.

For r > 3 we choose an effective divisor D on X,.. We call a section s € H°(X,., O(D))
a distinguished global section if its support is contained in the union of exceptional
curves of X, (r < 7), or if its support is contained in the union of exceptional curves of
Xg and some anticanonical curves on Xg. Our purpose is to show that the vector space
H°(X,,0(D)) is spanned by all distinguished global sections.

This will be proved by induction on deg D := (D, —K) > 0.

We consider several cases:

e If there exists an exceptional curve E such that (D, E) < 0, then H*(X,., O(D)|g) =
0 and it follows from the exact sequence
HY(X,,0(D)|g) — H'(X,,0(D — E)) — H*(X,,0(D)) — 0
that the multiplication by a non-zero distinguished global section of O(FE) induces
an epimorphism H°(X,,O(D — E)) — HY(X,,O(D)). Since deg(D — E) =
deg D — 1, using the induction assumption for D’ = D — E, we obtain the required
statement for D.
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e If there exists an exceptional curve E such that (D,FE) = 0, then O(D) is
the inverse image of a sheaf O(D’) on the Del Pezzo surface X,_; obtained
by the contraction of E. Therefore we have an isomorphism HY(X,, O(D)) =
H°(X,_1,0(D")) and, by the induction assumption for » — 1, we obtain the re-
quired statement for D, because distinguished global sections of O(D’) lift to

distinguished global sections of O(D).

e If D = —K, (or, equivalently, if (D, F) = 1 for every exceptional curve E), then
O(D)|E) is isomorphic to Og(1) and we have H'(X,, O(D)|g) = 0 together with
the exact sequence

0— H(X,,0(D - E)) - H*(X,,0(D)) — H°(X,,O(D)|g) — 0,

where H°(X,., O(D)|g) is 2-dimensional. Since one has deg (D — E) = deg D — 1.
Using the induction assumption for D' = D — E, it remains show that there
exists two linearly independent distinguished global sections of O(D) such that
their restriction to E are two linearly independent global sections of O(D)|g.
We describe these two distinguisched sections explicitly for each value of r €
{4,5,6,7,8}. Without loss of generality we can assume that [E] = .

If r = 4, then we write the anticanonical class —K = 3lg — 1 — -+ — l4 in the
following two ways:

-K = (lo—ll—l2)+(lo—lg—l4)—|—(lo—lz—l3)—|—l2—|—l3
= (lo—lb—=U)+lo—lo—l)+ (lo—1lo—13)+ 12+ 3.
These two decompositions of —K determine two distinguished global sections

of O(—K) with support on 5 exceptional curves. The projections of these sections
under the morphism X4 — P? are shown below in Figure 1.

FIGURE 1. Two distinguished anticanonical classes for r = 4.

The restriction of the first section to E vanishes at the intersection point ¢ of
FE with the exceptional curve with the class g — [ — lo. The restriction of the
second section to E vanishes at the intersection point ¢ of E with the exceptional
curve with the class lp — I; — l3. It is clear that gq; # g2. So the distinguished
anticanonical sections are linearly independent.

If r = 5, then we write the anticanonical class as

K = 3lg—l— 1y
= (lo—li—1l2)+(o—1l3—=1la) + (lo—la—15) + 14
= (lo—ll—l5)+(l0—l2—13)+(l0—13—l4)+l3.
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The corresponding distinguished anticanonical sections vanish at two different
intersection points of E with the exceptional curves belonging to the classes [y —
ll - l2 and lo - ll - l5.

If » = 6, then we write the anticanonical class as
-K = 3lg—l1—---—1g
= (lo—lh—=l)+o—1ls—1l)+ (lo—15—1)
= (lo—1l—1lg)+ (lo—1s —la)+ (lo — I3 — l2).
The corresponding distinguished anticanonical sections vanish at two different

intersection points of E with the exceptional curves belonging to the classes [y —
ll — l2 and lo — ll — l6.

If » = 7, then we write the anticanonical class as

-K = 3lp—-l1—--—1r
= Qlo—l—lo—=Ils—1ls—15)+ (lop—lg —l7)
(2[0—[7—l6—l5—l4—13)+(l0—l2—11).
The corresponding distinguished anticanonical sections vanish at two different

intersection points of E with the exceptional curves belonging to the classes 2ly —
ll—lg—lg—l4—l5 and lg—lg—ll.

If r = 8, then deg D — E = 0. Therefore, H°(Xg, O(D — E)) = 0 (see the proof
of 2.3) and we have an isomorphism

HY(X3,0(D)) = H(Xs,O(D)|p).

So H%(Xs, O(D)|g) is generated by the restrictions of the anticanonical sections
and we’re done.

If (D,FE) > 1 for all exceptional curves E and D # —K, then we denote by m
the minimum of the numbers (D, F) for all exceptional curves. Let Ey be an
exceptional curve such that (D, Ep) = m > 1. We define D' = D — Ej and
D" := D+ mK. By 2.3, |D'| and |D"| have no base points (if » < 7). Moreover,
D" can be seen as zero of a distinguished global section s € H(X,., O(D +mK))
whose support does not contain the exceptional curve Fy (if 7 < 8). We have the
short exact sequence

0— H(X,,0(D")) — H(X,,0(D)) — H*(X,,O(D)|g,) — 0.

By the induction assumption, the space H°(X,,O(D’)) is generated by dis-
tinguished global sections. It remains to show that there exist distinguished
global sections of O(D) such that their restriction to Ey generate the space
H°(X,,0(D)|g,). Since (—mK, Ey) = (D, Ey) = m, the space H’(X,., O(D)|g,)
is isomorphic to H°(X,, O(—mK)|g,). Since (D", Ey) = 0 the distinguished
global section s € HY(X,,O(D + mK)) nowhere vanish on Ey. Therefore the
multiplication by the distinguished global section s defines a homomorphism

H(X,,0(—mK)) — H°(X,,0(D))
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whose restriction to Fy is an isomorphism
H°(X;, O(=mK)|g,) = H*(X;, O(D)|g,-

Therefore, it is enough to show that restrictions of the distinguished global sec-
tions of O(—mK) to Ey generate the space H°(X,,O(—-mK)|g,). Our previ-
ous considerations have shown this for m = 1. The general case m > 1 fol-
lows now immediately from the fact that the homomorphism H°(X,., O(-K)) —
HY(Ey, O, (1)) is surjective and the space H(Ey, O,(m)) is spanned by tensor
products of m elements from H°(Ey, Og,(1)). O

Corollary 3.3. The semigroup Meg(X,) C Pic(X,) of classes of effective divisors on a
Del Pezzo surfaces X, (2 < r < X,) is generated by elements of degree 1. These elements
are exactly the classes of exceptional curves if r < 7 and the classes of exceptional curves
together with the anticanoncal class for r = 8.

Proposition 3.4. If D is an effective divisor of degree > 2 on Xg, then the vector space
HY(Xs,0(D)) is spanned by distinguished global sections of O(D) with supports only on
exceptional curves.

Proof. By 3.2 and 3.3, it is sufficient to check the statement for D = —2K and for
D = —K + FE for any exceptional curve. The latter case immediately follows from 3.2,
because D = —K + E is the pull back of the anticanonical sheaf on X7 obtained by the
contraction of E. In the case D = —2K, we obtain 120 distinguished global sections of
O(D) from 120 pairs of exceptional curves E;, E; such that (E;, E;) = 3:

—2K=6l0—2l1—...—2l8:l1+(6l0—3l1—2l2...—2l8).
O

Remark 3.5. Since H(X,, O(E)) is 1-dimensional for each exceptional curve E C X,.,
we can choose a nonzero section xg € H(X,, O(F)) which is determined up to multipli-
cation by a nonzero scalar. Therefore the affine algebraic variety A(X,) := SpecCox(X,)
is embedded into the affine space AN on which the maximal torus 7, C G(R,) acts in
a canonical way such that the space AN can identified with the representation space
V (wy) of the algebraic group G(R,) (if r < 7).

In the case r = 8, all 240 exceptional curves on Xg can be similarly identified with all
non-zero weights of the adjoint representation of G(Eg) in V(ws). The space V (twg) con-
tains the weight-0 subspace of dimension 8, but the ring Cox(X,) has only 2-dimensional
space of anticanonical sections. Thus, there is no any identification of degree-1 homoge-
neous component of Cox(Xs) with the representation space V(wsg) of G(Es).

4. QUADRATIC RELATIONS IN Cox(X;)

Let us denote P(X,) := Proj Cox(X,). If 4 < r < 7, then P(X,) is canonically
embedded into the projective space PN*~1 (' N, is the number of exceptional curves on
X,.). For any exceptional curve £ C X, we consider the open chart Uy C PN*~! defined
by the condition xr # 0. Thus, we obtain an open covering of P(X,) by N, affine subsets
Urp N P(X,). We denote by A(X,) C AN" the affine cone over P(X,.).
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Proposition 4.1. The ring Cox(Xy) is isomorphic to the subring of all 3 X 3-minors of
a generic 3 X b-matriz. In particular, the projective variety P(Xy) is isomorphic to the
Grassmannian Gr(3,5).

Proof. To describe the multiplication in R(X5), one needs to choose a basis in Pic(X5).
We choose the basis lg,...,l4, as in Section 2. We choose a divisor in each basis class:
ly being the preimage of the line at infinity w.r.t. a blow-down on P2, I; the exceptional
fibers of this blow-down. We identify the representatives of each Picard class with the
subsheaves O(>_ ¢;l;) of the constant sheaf k(X5). Then the multiplication in the ring is
just the multiplication of the corresponding functions in the function field k(X5) of X5.

We choose the functions that represent zg’s in the following way: let = : y : z be the
homogeneous coordinates on P? and let (x; : y; : 2;), i = 1,...,4, be the coordinates of
the blown-up points. Consider the matrix

T Ty T3 T4 x/Z
M= v vy ys va y/z
Z1 29 23 24 1
Let My for I C [1,5],]I| = 3, denote the maximal minor of M consisting of the columns
with numbers in I, taken in the natural order. Then we set @, := My 4\ 4} for i € [1,4],
Ty —;—1; 2= My j 5y for 1 <i < j < 4. All these functions lie in the corresponding O(D)’s
and are non-zero because the points are in general position.

It is known that the generators of the homogeneous coordinate ring of G(3,5) are
naturally identified with the maximal minors of a generic 3 x 5-matrix. We send these
generic minors into the corresponding minors of the matrix above. This determines
a homomorphism of the homogeneous coordinate ring of G(3,5) to Cox(Xs), as the
equations of the Grassmann variety, being the relations between generic minors, hold for
any particular minors. As R(X5) is generated by zg’s, it is surjective.

This homomorphism respects the Picard grading. Therefore this homomorphism re-
spects the Z-grading. As it is surjective, it induces a closed embedding of P(X5) into
G(3,5). As both varieties are irreducible of dimension 6 (because ), it is an isomorphism of
varieties, therefore they coincide as subvarieties in PY, therefore we have an isomorphism
of rings. And we see that Cox(X5) is defined by quadratic relations, as the homogeneous
coordinate ring of G(3,5) is.

O

The article [G/P-I] describes a k-basis for the homogeneous coordinate ring of G/P in
the case, when P is a maximal parabolic subgroup containing a Borel subgroup B such
that the fundamental weight w corresponding to P is minuscule (see 2.2). It also shows
that this ring is defined by quadratic relations.

A way to write explicitly the quadratic relations for the orbit of the highest weight
vector for any representation of a semisimple Lie group is given in [Li]. A more geometric
approach to these quadratic equations is contained in the proof of Theorem 1.1 in [L-T}:

Proposition 4.2. The orbit G/ P of the highest weight vector in the projective space
PV (w) is the intersection of the second Veronese embedding of PV (w) with the subrepre-
sentation V (2w) of the symmetric square S*V (w). Moreover, these quadratic relations
generate the ideal of G/Py C PV (w).
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We expect that the following statement is true:

Conjecture 4.3. The ideal of relations between the degree-1 gemerators of Cox(X,) is
generated by quadrics for all 4 < r < 8.

Proposition 4.4. Let X,_1 the Del Pezzo surface obtained by the contraction of E on
X,. Then there exist an isomorphism

UpNP(X,) 2 A(X,_1).

Proof. The coordinate ring of the affine variety Ug N P(X,) consists of all fractions
f/298P such that f € HO(X,,O(D)). Let 7z : X, — X,_1 be the contraction of E.
Then any divisor class [D] € Pic(X,) can be uniquely represented as sum [D'] + k[E]
where [D'] = 7}, (Pic(X,—-1)).

Such a fraction is a meromorphic section over D — (deg D)E with possible poles at
E, and two such fractions are equal exactly when they determine the same section (zg
is evidently a nonzerodivisor from the definition of the multiplication), so the affine
coordinate ring is

P H'XNEOD)= B H(X, 0\ 7p(E),r0(D)),
DePic(X,) DEePic(X,\E)
deg D=0
where 7 : X,, — X,._1 is the blow-down of F, because the condition deg D = 0 determines
a unique extension of each divisor from X, \ E to X, and the blow-down is an isomorphism
outside E. Now, in the last sum one needn’t exclude wg(FE) because it is a point on a
normal surface X, _1, so the last sum is just our ring Cox(X,_1) for a Del Pezzo surface
X,_1 with r one smaller, i.e. the affine coordinate ring of A(X,_1). O

Corollary 4.5. The singular locus of the algebraic varieties P(X,) and A(X,) has codi-
menston 7.

Proof. Since A(X3) =2 A%, we obtain that P(X}) is a smooth variety covered by 10 affine
charts which are isomorphic to A®. Using the isomorphism P(X4) 2 Gr(3,5) (see 4.1 ),
we obtain that A(X,) has an isolated singularity at 0. Therefore, the singular locus of
P(X5) consists of 16 isolated points. The singular locus of P(Xg) is 1-dimensional and
the singular locus of P(X7) is 2-dimensional. O

Definition 4.6. A divisor class D of a sum of two exceptional curves intersecting with
multiplicity 1, or, equivalently, satisfying (D, D) =0, (D,—K) = 2, is called a ruling, as
the corresponding invertible sheaf determines a conic bundle X, — P!,

Lemma 5.3 of [F-M] says that the Weyl group acts transitively on rulings.

Let D be a sum of two exceptional curves which meet each other. Then it has several
such decompositions which determine several monomials from I'(D). One can see that for
r > 4 there are more such monomials than the dimension of this space, so they are linearly
dependent and it determines quadratic relations between the generators of Cox(X,). If
the curves coincide or do not intersect, then the first case in the proof of Proposition 3.2
shows that the decomposition is unique and there are no relations. Because of the Picard
grading one has to look only at such homogeneous relations, living over one divisor.
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The expectations are that the ring is defined by these relations, and for » = 3,4 this
follows from Lemma 3.1 and Proposition 4.1, but in general we have proved only a weaker
result:

Theorem 4.7. For 4 <r <7, the ring Cox(X,) is defined by quadratic relations up to
radical.

Proof. Let us look more closely at the relations for » = 4,5,6. A sum D of two intersecting
exceptional curves can be written as [y — [; in a suitable basis, so the global sections of
O(D) correspond to linear homogeneous polynomials on P2 that vanish at the point [y,
therefore dimI'(D) = 2, so there is a linear relation between any three monomials over
D (but not between two, as they have different divisors). For r < 6 the exceptional
curves have only simple intersections, so if E+ F = E’+ F’ are two such decompositions,
then 0 = (E,E + F) = (E,E' + F') requires (E,E’) = (F,F') = 0 as the last two
intersection numbers are nonnegative. We see that D =1y — 13 =1; + (lo — 11 — 1;),i > 2
admits r — 1 such decompositions, so for r = 4,5,6 every monomial zgxp, (E, F) # 0
is equal to a polynomial in some zg/, (E', E) = 0, i.e. the affine coordinate ring of the
quadratic variety in the affine chart g # 0 is generated by {xr/xg|(E, F) = 0}, i.e. by
the variables corresponding to a blow-down of E.

To show the italicized feature for = 7 one has in addition to express the xps /2 g with
(E,E') =2 in terms of xp/xp, (F, F) < 1, because then the variables zp/zp, (E,F) =1
can be reduced to those with intersection zero, as we’ve just shown.

But F + E' = —K and a basis of sections over it was described in the proof of the
proposition 3.2, namely, let F7 be a point, Es and F3 two lines through it, then xg,x E!
is the basis (one can see from [Ma, 26.9] that VEJ'E'(E, E") = 2, so the involution -’ is
well-defined). If E is another point (which it without loss of generality is), then writing
rprgp in terms of this basis one obtains the desired result.

The quadratic relations determine another variety in the same projective space, which
contains the torsor. We need to show that these varieties coincide, and it suffices to show
it in every affine chart. Let U = {xg # 0} be this chart, X,_; the blowdown of E. Let
R,(X,—1) be the ring defined by quadratic relations for X, 1, R;(X4)y the coordinate
ring of the quadratic variety for r in our affine chart, R(X4)y = R(X,—1) the coordinate
ring of P(X,) in the chart = the homogeneous coordinate ring of P(X,_1). Then it follows
from the italicized feature that one has surjections R,(X,_1) — Rq¢(X;)v — R(X,)v,
because the relations that we had for X,_; hold for the lifts of the sections to X,. Now
by induction on r, the basis being » = 3 and no relations at all, we can assume that
in a chart the map between the rings Rq(X,_1) — R(X,—1) is the factorization modulo
radical, so the varieties coincide in a chart, as we need. O
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