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A long-standing question in the theory of rational points of algebraic surfaces is whether a K3
surface X over a number field K acquires a Zariski-dense set of L-rational points over some finite
extension L/ K. In this case, we say X has potential density of rational points. In case X¢ has Picard
rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential
density of rational points, using the existence of elliptic fibrations on X or large automorphism
groups of X. By contrast, we do not know a single example of a K3 surface X/K with geometric
Picard number 1 which can be shown to have potential density of rational points; nor is there an
example which we can show mnot to have potential density of rational points. In fact, the situation
is even worse; the moduli space of polarized K3 surfaces of a given degree contains a countable
union of subvarieties, each parametrizing a family of K3 surfaces with geometric Picard number
greater than 1. Since Q is countable, it is not a priori obvious that these subvarieties don’t cover
the Q-points of the moduli space. In other words, it is a non-trivial fact that there exists a K3
surface over any number field with geometric Picard number 1!

In this note, we correct this slightly embarrassing situation by proving the following theorem:

Theorem 1. Let d be an even positive integer. Then there exists a number field K and a polarized
K3 surface X/K, of degree d, such that rank Pic(X¢) = 1.

The main idea is to use an argument of Serre on ¢-adic groups to reduce the problem to proving
the existence of K3 surfaces whose associated mod-n Galois representations have large image for
some finite n; we then use Hilbert’s irreducibility theorem and global Torelli for K3’s to complete
the proof.

Acknowledgment: This note is the result of a conversation between the author, Brendan
Hassett, and A.J. de Jong, which took place at the American Institute of Mathematics during the
workshop, “Rational and integral points on higher-dimensional varieties.” It should also be pointed
out that the main idea, in case d = 4, is implicit in the final remark of [3].

We begin by recalling some notations and basic facts regarding K3 surfaces. An element z of
an abelian group L is called primitive if it is not contained in kL for any integer &k > 1. Let X be a
K3 surface over a number field K, and write X for X xx K. The group H?(X¢,Z) is isomorphic
to Z?2; the cup product on H?(Xc¢,Z) is a quadratic form with signature (3,19), which we denote
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(,)- A polarized K3 surface is a pair (X, L), where X/K is a K3 surface and £ is an ample line
bundle on X. If X is a polarized K3, we let = be the class of £ in H?(X¢,Z); then the positive
even integer (z,x) is called the degree of X. We denote by Lx the orthogonal complement of z
in H%(Xc,Z). Denote by I the group of isometries of H?(Xc,Z) which fix  and which lie in the
identity component of Aut(H?(Xc,R)). So I is an arithmetic subgroup of SO(2,19)(Q).

For each prime ¢ we denote by G, the group of linear transformations a of Lx ®z Z, such that
there exists x(a) € Zj satisfying

(az, az) = x(a)(z, )

for all x € Lx ®z Zy. There is a natural inclusion
: =G ¢

and we denote by H, the closure, in the £-adic topology, of +(T').
When a polarized K3 surface X is defined over a number field K, the inclusion

Lx ®zZ¢C H*(X,Zy)
induces a Gal(K /K)-module structure on Ly ®z Zg; we denote by
px : Gal(K/K) — G,

the resulting f-adic Galois representation.
We begin by showing that the desired statement about Pic X¢ follows if the image of px is large
enough.

Lemma 2. Suppose px(Gal(K/K)) contains a finite-index subgroup of Hy,. Then rank Pic X¢ = 1.

Proof. Suppose rank Pic(X¢) is greater than 1; that is, there is divisor on X¢ whose class is linearly
independent from the class of the polarization. This divisor can be defined over some finite extension
L/K. Tt follows that px(Gal(K/L)) is contained in the stabilizer of a line in Lx ®z Z;. But this
stabilizer does not contain a finite-index subgroup of H,. O

We also need a general lemma on linear ¢-adic groups.

Lemma 3. Let H be a closed subgroup of GLy,(Zg). Let T g (€") be the kernel of projection from H
to GL,(Z /¢™Z). Then there exists an integer N such that no proper closed subgroup of H projects
surjectively onto H/T (V).

Proof. Since H is a closed subgroup of GL,,(Z,), it is an analytic subgroup. In particular, there
is a subspace L C M,,(Q;) and a positive integer N such that, for all n > N, the group I'y(£™)
is precisely the set of matrices exp()\), where A ranges over £"M,,(Z,) N L. Thus, every element of
Ta(f™) can be written as exp(¢A) for some A € L; in particular, for every u € I'(£") there exists
v € Tg(f™1) with v = u. (See [4] for basic facts used here about f-adic Lie groups.) We also
require N > 2.

We now proceed as in [6, IV.3.4, Lemma 3], which proves the lemma in the case H = SL,.
Suppose Hj is a proper closed subgroup projecting surjectively onto H/T g (¢V). Tt suffices to prove
that Hy projects surjectively onto H/T g(£") for all n > N. We proceed by induction and assume
H, projects surjectively onto H/T g (£"~1). We therefore need only show that, for all z € Ty (£771),
there exists h € Hy with h='xz € T (£"). Since n — 1 > N, there exists y € T (£"~2) such that



yt = 2. We may write y = 1 +£7~2Y + ("1 M, for matrices Y, M1 € M,,(Z;). By hypothesis, there
exists h' € Hy such that (h')~'y € Ty (£*~1). Then

B =1+0"2Y + "1 M.
for some My € GLy,(Zyg). So take
h= () =140 + "My + (1/2)(0)(£ — 1) 3Y2 4 ..
which is congruent to £ mod £", since n > N > 2. O

The purpose of Lemma 3 is to reduce the problem of showing that an f-adic representation has
large image to the corresponding problem for a mod ¢~ representation. Below we show how to use
Hilbert irreducibility to produce K3 surfaces X such that px has large image mod ¢V, where N > 0
is an integer to be specified at the end.

Write L, for the rank-19 lattice (—d) @ H @ H @ Es ® Eg. Then Lx is isomorphic to Ly for any
polarized K3 of degree d.

By a level m structure on a polarized K3 we mean a choice of isometry

¢ : Lx/mLX = Ld/de.

We denote by I'(m) the kernel of the map I' - GL(L4/mLg). Choose a p large enough so that
T'(p) is a torsion-free group. (It suffices to choose p larger than the order of any finite-order element
of GL(Ly).) If (X, ¢) is a polarized K3 with level p structure, any automorphism a : X — X
preserving the polarization and ¢ must have finite order (because it preserves the polarization) and
thus must act trivially on Lx (by the hypothesis on p). But then « is trivial by the Torelli theorem
for K3’s [5].

Let M /Q be the moduli space of pairs (X, ¢,), where X is a polarized K3 surface of degree d
and ¢, is a level p structure. We can construct this moduli space by GIT, as in the final remark
of [1]. The fact that (X, $,) admits no nontrivial automorphisms implies that M is a fine moduli
space. Now let /\;I(EN ) be the space of pairs (X, ¢p, #ev), where ¢y~ is a level ¢V structure on X.
Note that M and M(¢N) are not a priori connected.

Using again the Torelli theorem for K3 surfaces, we know that the analytic moduli space of
polarized K3 surfaces of degree d is a quotient I'\§2, where Q is a certain connected 19-dimensional
domain of periods. (See [1, §3], noting that our I' is an index-2 subgroup of Beauville’s T';.) It
follows that T'(p)\Q is a connected component of the analytification M®"* of M, and T'(p¢N)\Q
is a connected component of M (V)" Denote by M and M(¢Y) the connected components of
M and M(EN ) corresponding to the quotients above; then, for some number field K, the map
7 M(EN) - M is a Galois cover of varieties over K with Galois group I'(p)/T(p¢"¥). Denote this
finite group by .

Now let p : M — P! be a generically finite map of degree n. Then the composition p o 7
expresses the function field K (M (¢9)) as a finite extension of K (P'?). Let U be a Galois cover of
P! whose function field is the Galois closure of K (M (£?))/K(P'?). Then the Galois group G of
K(U)/K(P'?) is naturally contained in the wreath product W of T with S,,. The group W fits in
an exact sequence

1-T"sW oS, o1

and the intersection of G with a Cartesian factor of I'" is the full group T, since T is the Galois
group of the cover 7.



Now, by the Hilbert irreducibility theorem, there is a Zariski-dense subset of P19(K) consisting
of points z such that the Galois group of (p o 7)~!(z) over z is the full group G. Let = be such a
point, and let y be a Q-point of M lying over z. Then Y € M(L) for some number field L, and the
Galois group of m—!(y) over u is the full group I. If X/L is the K3 surface corresponding to the
point y, the map
Gal(Q/L) —» GLy(Lx ®z (Z/t"T))

given by the Galois action on H2(X,Z/¢N7) has image T. Now apply Lemma 3, taking H to be
the closure in the £-adic topology of the image of T'(p) in GLy(Lx ®zZ4). We conclude that, having
chosen N large enough, we can find a degree d polarized K3 surface X over a number field L such
that the image of px contains H, which is a finite-index subgroup of H,. Now X has geometric
Picard number 1 by Lemma 2.

Remark 4. Lemmas 2 and 3, in principle, should allow one to write down a K3 of any desired degree
which has geometric Picard number 1. One would first compute suitable values of £ and N, as
Lemma 3 guarantees we can. It remains to write down a K3 surface X such that the representation
of Galois on H%(X,Z /¢NZ) is as large as possible. In case d = 4, this computation is precisely the
one suggested in the final remark of [3]. In order to make this computation more tractable, it might
be a good idea to restrict to a family of quartic surfaces whose monodromy group I'y is smaller than
T, but which still doesn’t have any stabilizers of points in Lx as finite-index subgroups.
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