

K3 surfaces over number fields with geometric Picard number one

Jordan S. Ellenberg ^{*}
Princeton University
`ellenber@math.princeton.edu`

22 Dec 2002

A long-standing question in the theory of rational points of algebraic surfaces is whether a K3 surface X over a number field K acquires a Zariski-dense set of L -rational points over some finite extension L/K . In this case, we say X has *potential density of rational points*. In case $X_{\mathbb{C}}$ has Picard rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential density of rational points, using the existence of elliptic fibrations on X or large automorphism groups of X . By contrast, we do not know a single example of a K3 surface X/K with geometric Picard number 1 which can be shown to have potential density of rational points; nor is there an example which we can show *not* to have potential density of rational points. In fact, the situation is even worse; the moduli space of polarized K3 surfaces of a given degree contains a countable union of subvarieties, each parametrizing a family of K3 surfaces with geometric Picard number greater than 1. Since $\bar{\mathbb{Q}}$ is countable, it is not *a priori* obvious that these subvarieties don't cover the $\bar{\mathbb{Q}}$ -points of the moduli space. In other words, it is a non-trivial fact that there exists a K3 surface over any number field with geometric Picard number 1!

In this note, we correct this slightly embarrassing situation by proving the following theorem:

Theorem 1. *Let d be an even positive integer. Then there exists a number field K and a polarized K3 surface X/K , of degree d , such that $\text{rank Pic}(X_{\mathbb{C}}) = 1$.*

The main idea is to use an argument of Serre on ℓ -adic groups to reduce the problem to proving the existence of K3 surfaces whose associated mod- n Galois representations have large image for some finite n ; we then use Hilbert's irreducibility theorem and global Torelli for K3's to complete the proof.

Acknowledgment: This note is the result of a conversation between the author, Brendan Hassett, and A.J. de Jong, which took place at the American Institute of Mathematics during the workshop, “Rational and integral points on higher-dimensional varieties.” It should also be pointed out that the main idea, in case $d = 4$, is implicit in the final remark of [3].

We begin by recalling some notations and basic facts regarding K3 surfaces. An element x of an abelian group L is called *primitive* if it is not contained in kL for any integer $k > 1$. Let X be a K3 surface over a number field K , and write \bar{X} for $X \times_K \bar{K}$. The group $H^2(X_{\mathbb{C}}, \mathbb{Z})$ is isomorphic to \mathbb{Z}^{22} ; the cup product on $H^2(X_{\mathbb{C}}, \mathbb{Z})$ is a quadratic form with signature $(3, 19)$, which we denote

^{*}Partially supported by NSA Young Investigator Grant MDA905-02-1-0097.

\langle , \rangle . A *polarized K3 surface* is a pair (X, \mathcal{L}) , where X/K is a K3 surface and \mathcal{L} is an ample line bundle on X . If X is a polarized K3, we let x be the class of \mathcal{L} in $H^2(X_{\mathbb{C}}, \mathbb{Z})$; then the positive even integer $\langle x, x \rangle$ is called the *degree* of X . We denote by L_X the orthogonal complement of x in $H^2(X_{\mathbb{C}}, \mathbb{Z})$. Denote by Γ the group of isometries of $H^2(X_{\mathbb{C}}, \mathbb{Z})$ which fix x and which lie in the identity component of $\text{Aut}(H^2(X_{\mathbb{C}}, \mathbb{R}))$. So Γ is an arithmetic subgroup of $SO(2, 19)(\mathbb{Q})$.

For each prime ℓ we denote by G_{ℓ} the group of linear transformations α of $L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$ such that there exists $\chi(\alpha) \in \mathbb{Z}_{\ell}^*$ satisfying

$$\langle \alpha x, \alpha x \rangle = \chi(\alpha) \langle x, x \rangle$$

for all $x \in L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$. There is a natural inclusion

$$\iota : \Gamma \rightarrow G_{\ell}$$

and we denote by H_{ℓ} the closure, in the ℓ -adic topology, of $\iota(\Gamma)$.

When a polarized K3 surface X is defined over a number field K , the inclusion

$$L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \subset H^2(\bar{X}, \mathbb{Z}_{\ell})$$

induces a $\text{Gal}(\bar{K}/K)$ -module structure on $L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$; we denote by

$$\rho_X : \text{Gal}(\bar{K}/K) \rightarrow G_{\ell}$$

the resulting ℓ -adic Galois representation.

We begin by showing that the desired statement about $\text{Pic } X_{\mathbb{C}}$ follows if the image of ρ_X is large enough.

Lemma 2. *Suppose $\rho_X(\text{Gal}(\bar{K}/K))$ contains a finite-index subgroup of H_{ℓ} . Then $\text{rank } \text{Pic } X_{\mathbb{C}} = 1$.*

Proof. Suppose $\text{rank } \text{Pic}(X_{\mathbb{C}})$ is greater than 1; that is, there is divisor on $X_{\mathbb{C}}$ whose class is linearly independent from the class of the polarization. This divisor can be defined over some finite extension L/K . It follows that $\rho_X(\text{Gal}(\bar{K}/L))$ is contained in the stabilizer of a line in $L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$. But this stabilizer does not contain a finite-index subgroup of H_{ℓ} . \square

We also need a general lemma on linear ℓ -adic groups.

Lemma 3. *Let H be a closed subgroup of $\text{GL}_m(\mathbb{Z}_{\ell})$. Let $\Gamma_H(\ell^n)$ be the kernel of projection from H to $\text{GL}_m(\mathbb{Z}/\ell^n \mathbb{Z})$. Then there exists an integer N such that no proper closed subgroup of H projects surjectively onto $H/\Gamma(\ell^N)$.*

Proof. Since H is a closed subgroup of $\text{GL}_m(\mathbb{Z}_{\ell})$, it is an analytic subgroup. In particular, there is a subspace $L \subset M_m(\mathbb{Q}_{\ell})$ and a positive integer N such that, for all $n \geq N$, the group $\Gamma_H(\ell^n)$ is precisely the set of matrices $\exp(\lambda)$, where λ ranges over $\ell^n M_m(\mathbb{Z}_{\ell}) \cap L$. Thus, every element of $\Gamma_H(\ell^n)$ can be written as $\exp(\ell\lambda)$ for some $\lambda \in L$; in particular, for every $u \in \Gamma(\ell^n)$ there exists $v \in \Gamma_H(\ell^{n-1})$ with $v^{\ell} = u$. (See [4] for basic facts used here about ℓ -adic Lie groups.) We also require $N \geq 2$.

We now proceed as in [6, IV.3.4, Lemma 3], which proves the lemma in the case $H = \text{SL}_2$. Suppose H_0 is a proper closed subgroup projecting surjectively onto $H/\Gamma_H(\ell^N)$. It suffices to prove that H_0 projects surjectively onto $H/\Gamma_H(\ell^n)$ for all $n > N$. We proceed by induction and assume H_0 projects surjectively onto $H/\Gamma_H(\ell^{n-1})$. We therefore need only show that, for all $x \in \Gamma_H(\ell^{n-1})$, there exists $h \in H_0$ with $h^{-1}x \in \Gamma_H(\ell^n)$. Since $n-1 \geq N$, there exists $y \in \Gamma_H(\ell^{n-2})$ such that

$y^\ell = x$. We may write $y = 1 + \ell^{n-2}Y + \ell^{n-1}M_1$ for matrices $Y, M_1 \in M_m(\mathbb{Z}_\ell)$. By hypothesis, there exists $h' \in H_0$ such that $(h')^{-1}y \in \Gamma_H(\ell^{n-1})$. Then

$$h' = 1 + \ell^{n-2}Y + \ell^{n-1}M_2.$$

for some $M_2 \in \mathrm{GL}_m(\mathbb{Z}_\ell)$. So take

$$h = (h')^\ell = 1 + \ell^{n-1}Y + \ell^n M_2 + (1/2)(\ell)(\ell-1)\ell^{2n-3}Y^2 + \dots$$

which is congruent to $x \pmod{\ell^n}$, since $n > N \geq 2$. \square

The purpose of Lemma 3 is to reduce the problem of showing that an ℓ -adic representation has large image to the corresponding problem for a mod ℓ^N representation. Below we show how to use Hilbert irreducibility to produce K3 surfaces X such that ρ_X has large image mod ℓ^N , where $N > 0$ is an integer to be specified at the end.

Write L_d for the rank-19 lattice $\langle -d \rangle \oplus H \oplus H \oplus E_8 \oplus E_8$. Then L_X is isomorphic to L_d for any polarized K3 of degree d .

By a *level m* structure on a polarized K3 we mean a choice of isometry

$$\phi : L_X/mL_X \cong L_d/mL_d.$$

We denote by $\Gamma(m)$ the kernel of the map $\Gamma \rightarrow \mathrm{GL}(L_d/mL_d)$. Choose a p large enough so that $\Gamma(p)$ is a torsion-free group. (It suffices to choose p larger than the order of any finite-order element of $\mathrm{GL}(L_d)$.) If (X, ϕ) is a polarized K3 with level p structure, any automorphism $\alpha : X \rightarrow X$ preserving the polarization and ϕ must have finite order (because it preserves the polarization) and thus must act trivially on L_X (by the hypothesis on p). But then α is trivial by the Torelli theorem for K3's [5].

Let $\tilde{\mathcal{M}}/\mathbb{Q}$ be the moduli space of pairs (X, ϕ_p) , where X is a polarized K3 surface of degree d and ϕ_p is a level p structure. We can construct this moduli space by GIT, as in the final remark of [1]. The fact that (X, ϕ_p) admits no nontrivial automorphisms implies that $\tilde{\mathcal{M}}$ is a *fine* moduli space. Now let $\tilde{\mathcal{M}}(\ell^N)$ be the space of pairs $(X, \phi_p, \phi_{\ell^N})$, where ϕ_{ℓ^N} is a level ℓ^N structure on X . Note that $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}}(\ell^N)$ are not *a priori* connected.

Using again the Torelli theorem for K3 surfaces, we know that the analytic moduli space of polarized K3 surfaces of degree d is a quotient $\Gamma \backslash \Omega$, where Ω is a certain connected 19-dimensional domain of periods. (See [1, §3], noting that our Γ is an index-2 subgroup of Beauville's Γ_q .) It follows that $\Gamma(p) \backslash \Omega$ is a connected component of the analytification $\tilde{\mathcal{M}}^{an}$ of $\tilde{\mathcal{M}}$, and $\Gamma(p\ell^N) \backslash \Omega$ is a connected component of $\tilde{\mathcal{M}}(\ell^N)^{an}$. Denote by \mathcal{M} and $\mathcal{M}(\ell^N)$ the connected components of $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}}(\ell^N)$ corresponding to the quotients above; then, for some number field K , the map $\pi : \mathcal{M}(\ell^N) \rightarrow \mathcal{M}$ is a Galois cover of varieties over K with Galois group $\Gamma(p)/\Gamma(p\ell^N)$. Denote this finite group by $\bar{\Gamma}$.

Now let $p : \mathcal{M} \rightarrow \mathbb{P}^{19}$ be a generically finite map of degree n . Then the composition $p \circ \pi$ expresses the function field $K(\mathcal{M}(\ell^d))$ as a finite extension of $K(\mathbb{P}^{19})$. Let U be a Galois cover of \mathbb{P}^{19} whose function field is the Galois closure of $K(\mathcal{M}(\ell^d))/K(\mathbb{P}^{19})$. Then the Galois group G of $K(U)/K(\mathbb{P}^{19})$ is naturally contained in the wreath product W of $\bar{\Gamma}$ with S_n . The group W fits in an exact sequence

$$1 \rightarrow \bar{\Gamma}^n \rightarrow W \rightarrow S_n \rightarrow 1$$

and the intersection of G with a Cartesian factor of $\bar{\Gamma}^n$ is the full group $\bar{\Gamma}$, since $\bar{\Gamma}$ is the Galois group of the cover π .

Now, by the Hilbert irreducibility theorem, there is a Zariski-dense subset of $\mathbb{P}^{19}(K)$ consisting of points x such that the Galois group of $(p \circ \pi)^{-1}(x)$ over x is the full group G . Let x be such a point, and let y be a $\bar{\mathbb{Q}}$ -point of \mathcal{M} lying over x . Then $Y \in \mathcal{M}(L)$ for some number field L , and the Galois group of $\pi^{-1}(y)$ over u is the full group $\bar{\Gamma}$. If X/L is the K3 surface corresponding to the point y , the map

$$\text{Gal}(\bar{\mathbb{Q}}/L) \rightarrow GL_2(L_X \otimes_{\mathbb{Z}} (\mathbb{Z}/\ell^N \mathbb{Z}))$$

given by the Galois action on $H_{et}^2(X, \mathbb{Z}/\ell^N \mathbb{Z})$ has image $\bar{\Gamma}$. Now apply Lemma 3, taking H to be the closure in the ℓ -adic topology of the image of $\Gamma(p)$ in $GL_2(L_X \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell})$. We conclude that, having chosen N large enough, we can find a degree d polarized K3 surface X over a number field L such that the image of ρ_X contains H , which is a finite-index subgroup of H_{ℓ} . Now X has geometric Picard number 1 by Lemma 2.

Remark 4. Lemmas 2 and 3, in principle, should allow one to write down a K3 of any desired degree which has geometric Picard number 1. One would first compute suitable values of ℓ and N , as Lemma 3 guarantees we can. It remains to write down a K3 surface X such that the representation of Galois on $H_{et}^2(X, \mathbb{Z}/\ell^N \mathbb{Z})$ is as large as possible. In case $d = 4$, this computation is precisely the one suggested in the final remark of [3]. In order to make this computation more tractable, it might be a good idea to restrict to a family of quartic surfaces whose monodromy group Γ_0 is smaller than Γ , but which still doesn't have any stabilizers of points in L_X as finite-index subgroups.

References

- [1] Beauville, A. Application aux espaces de modules. Geometry of K3 surfaces: moduli and periods (Palaiseau, 1981/1982). Astérisque No. 126 (1985), 141–152.
- [2] Bogomolov, F. and Tschinkel, Y. Density of rational points on elliptic K3 surfaces. Asian J. Math. 4 (2000), no. 2, 351–368.
- [3] T. Ekedahl. An effective version of Hilbert's irreducibility theorem. In *Séminaire de Théorie des Nombres, Paris 1988–1989*, Progr. Math. 91, pages 241–249. Birkhäuser Boston, Boston, 1990.
- [4] Hooke, R. Linear p -adic groups and their Lie algebras. Ann. of Math. (2) 43, (1942). 641–655.
- [5] Looijenga, E. and Peters, C. Torelli theorems for Kähler K3 surfaces. Compositio Math. 42 (1980/81), no. 2, 145–186.
- [6] Serre, J.-P. Abelian ℓ -adic representations and elliptic curves. Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989