Weak Approximation on Algebraic Varieties

David Harari

This survey paper consists of two parts. The first one is an intro-
duction to the topic: definitions and first properties, classical examples
and counterexamples. The second one is about cohomological methods :
Brauer-Manin obstruction, descent theory of Colliot-Thélene and Sansuc,
non-abelian descent theory.

In the whole article we let £ be a number field with algebraic closure
k and absolute Galois group I' = Gal (k/k). We denote by Qj the set of
all places of k (including the archimedean places) and k, stands for the
completion of k at the place v. The ring of integers of k (resp. k, for v
finite) is denoted by Oy (resp. O,).

1. Classical results

1.1. Basic facts

Theorem 1.1.1 (Weak Approximation) Let ¥ C Qi be a finite set of
places of k. Let o, € k, for v € . Then there is an a € k which is
arbitrarily close to a, for v € X.

For a complete proof, see [La], Theorem 1 p.35. This result is a re-
finement of the Chinese remainder theorem. One reformulation of it is as
follows: the diagonal embedding k& —» Hueﬂk k, is dense, the product being
equipped with the product of the v-adic topologies.

We have the slight variant: P!(k) is dense in [Tyeq, P!(ky) (here we

have just replaced the affine line A,lc by the projective line P,lc)

Definition 1.1.2 Let X/k be a geometrically integral algebraic variety.
Then X satisfies weak approzimation if given ¥ C € a finite set of places
and M, € X(k,) for v € ¥, there exists a k-rational point M € X (k) which
is arbitrarily close to M, for v € X.

Care must be taken if HUEQk X (ky) is empty; by convention, we will say
that in this case X satisfies weak approximation even though X (k) is empty.
When [],cq, X(ky) # 0 but X(k) = 0, one says that the Hasse principle
fails?!.

! As Swinnerton-Dyer says, this corresponds to weak approximation failing dramati-
cally.




We see that weak approximation is equivalent to the statement that
X (k) is dense in ] X (ky) (equipped with the product of the v-adic
topologies).

’UGQk

Remark 1.1.3 Let X — Spec Oy be a flat model of X over Spec O; denote
by X (A) the set of adelic points of X, that is: the restricted product of the
sets X (k,) (v € Q) with respect to the sets X'(O,) (it is clearly independent
on the choice of X). If X is projective, then X(Ay) = [[,cq, X (kv) and
weak approximation is equivalent to strong approximation, namely, X (k) is
dense in X (A) for the adelic topology.

Remark 1.1.4 Let X, X’ be smooth. Assume that X is k-birational to
X'. Then X satisfies weak approximation if and only if X' satisfies weak
approximation: this an easy consequence of the implicit function theorem
for k, (a reference for this well known result is [Se92], p. 85).

We can therefore speak about weak approximation for a function field
k(X): this means that weak approximation holds for any smooth (projec-
tive) model of X (such a model exists by Hironaka’s Theorem on resolution
of singularities).

Example 1.1.5 It follows immediately from Theorem 1.1.1 that the affine
line, the projective line, and more generally the affine space A} and the pro-
jective space P} satisfy weak approximation, as does any k-rational variety
(see Remark 1.1.4), e.g. a smooth quadric with a k-point.

1.2. More examples

We begin with the most classical example of ”local-global principle”:

Theorem 1.2.1 Let Q C P} be a smooth projective quadric. Then Q sat-
isfies weak approrimation.

Here, we do not assume that there is a k-rational point. This is the
difficult part, proving the Hasse principle, that is: the existence of points
everywhere locally implies the existence of a rational point. In the case
of quadrics, this is the famous Hasse-Minkowski theorem (proven by Hasse
around 1924). A detailed proof of this theorem for k¥ = Q (the general case
works just the same) can be found in Serre’s book [Se70].

Here are some other results for complete intersections in P} :

Example 1.2.2 A smooth intersection of two quadrics X C P} satisfies
weak approximation if n > 8, or if n > 4 and there exists a pair of skew
conjugate lines on X (Colliot-Théléne, Sansuc, Swinnerton-Dyer 1987 [CSS],
Th. 10.1 and Prop. 5.2).



Example 1.2.3 Chatelet surfaces: let V be the affine surface y? — az? =

P(z), where deg P = 4, a € k* — k*2. If P is irreducible, then a smooth and
projective model X of V satisfies weak approximation ([CSS], Th. 8.11).

Example 1.2.4 Let X C P} a smooth cubic hypersurface, then weak ap-
proximation holds if n > 16 (Skinner 1997 [Ski]).

An interesting fact is that the proofs of the three previous results use
different tools. The first statement is proved with the fibration method (see
paragraph 1.3.), the second one with descent theory (see paragraph 2.2.).
To deal with Example 1.2.4 one needs the Hardy-Littlewood circle method,
which is especially efficient when the number of variables is substantially
bigger than the degree. We shall not discuss further this analytic technique
in these notes.

There are also results for linear algebraic groups.

Example 1.2.5 Let K/k be a cyclic field extension. Define the torus T
by the equation with variables z1,...x;: NK/k(zlwl + ..zpwy) = 1, where
(w1,...,wy) is a basis of K/k. Then T satisfies weak approximation (this
follows from [San], Cor. 3.5. (ii)). The Hasse principle for equations
Ngk(z1w1 + ...0rwp) = a,a € k* goes back to Hasse (1924).

Example 1.2.6 If T is a k-torus, and dim7 < 2, then T satisfies weak
approximation because T is k-rational (Voskresenskii, [Vos], IV.9).

Example 1.2.7 If G is a semi-simple, simply connected linear k-group,
then G satisfies weak approximation. This is due to Kneser ([K65], [K66]),
Harder ([Ha]), and Platonov ([P69], [P70]).

We conclude this paragraph by two classical conjectures.

Conjecture 1.2.8 A smooth intersection of 2 quadrics in P™ for n > 5
satisfies weak approximation.

This is known when the variety has a rational point (Salberger and Sko-
robogatov 1991 [SaSk]; the case n > 6, and also n = 5 except a special
situation were treated in [CSS], Th. 3.11). Thus the difficulty is now to
prove the Hasse principle.

Conjecture 1.2.9 A smooth cubic hypersurface (of dimension at least 3)
satisfies weak approximation.

Here the Hasse principle is known for diagonal hypersurfaces if we assume
the finiteness of Tate-Shafarevich groups of elliptic curves (Swinnerton-Dyer
[Sw01]).

We shall see later (paragraph 1.4.) that the similar conjectures for sur-
faces are false.



1.3. The fibration Method

The general idea of this method is quite natural: consider a pencil of varieties
satisfying weak approximation over a base which satisfies also weak approx-
imation. Does this imply that weak approximation holds for the total space
of the fibration ? In general, the answer is no (even for examples for conic
bundles over P}c, see example 1.4.3 below) but with additional assumptions
the result becomes true. Here is a useful statement in this direction:

Theorem 1.3.1 Let p : X — B be a projective, flat surjective morphism
with X smooth. Assume that

1. B is projective and satisfies weak approzimation.
2. Almost all k-fibers of p satisfy weak approzimation.
3. All fibers of p are geometrically integral.

Then X satisfies weak approximation.

(Here almost all means on a Zariski-dense open subset; the hypothesis X
smooth is not essential, but it makes the statement simpler; it is also possible
to weaken the third assumption by replacing ”geometrically integral” with
split” 2).

There are refinements when B is the projective space : you can accept
degenerate fibers on one hyperplane (using the strong approximation theo-
rem for the affine space), see [Sk90].

The idea of this method goes back to the proof of Hasse-Minkowski
Theorem (more precisely, the step consisting of going from four variables to
five). The first subtle application of Theorem 1.3.1 appeared in [CSS] for
intersection of two quadrics in P™: when n > 8 (here the authors used a
fibration in Chatelet surfaces), and also when n > 5 when the intersection
of two quadrics contains a pair of skew conjugate lines (the point is to go
from n =4 ton > 5 by induction). Another example of application consists
of cubic hypersurfaces of dimension > 4 with 3 conjugate singular points
(Colliot-Thélene, Salberger 1989 [CSal)).

Sketch of proof of Theorem 1.3.1 : Start with a smooth k,-point
M, for any v € Q on X and fix a finite set of places 3. Project M, to
P, := p(M,) € B(k,). Using weak approximation on B, we can approximate
P, by P € B(k) for v € . Consider the fibre Xp := p~1(P) C X; Then Xp
has a k,-point M, close to M, for v € ¥ by the implicit function theorem.
To apply weak approximation on Xp, it remains to check that Xp(k,) # 0
for each v ¢ 3; this is possible if . is sufficiently large by the Weil estimates :

2 A k-variety is split if it contains a non-empty Zariski open subset which is geometrically
integral. This notion was introduced by Skorobogatov in [Sk96].



here we use that all k-fibers are geometrically irreducible, which implies that
the reduction mod. v of Xp also is for a sufficiently large v (independent of
pP). i

1.4. Some counterexamples

It has been known for a long time that for example elliptic curves do not
satisfy weak approximation (the defect of weak approximation is described
by Cassel’s dual exact sequence [Cas|; see also Theorem 1.4.5 below). It is
more difficult to find counterexamples to weak approximation among ratio-
nal varieties (that is: varieties X such that X := X xy k is k-birational to
the projective space). Here are some examples of this situation:

Example 1.4.1 Cubic surfaces do not satisfy the Hasse principle: the sur-
face 523 +9y% + 1023 + 12w? = 0 is a counterexample (Cassels and Guy 1966
[CG]). The existence of a rational point does not imply weak approximation;
a counterexample is the surface defined in Pg’) by the equation

t(z? +y%) = (4z — Tt)(2* — 2t%)
(Swinnerton-Dyer 1962 [Sw62]).

Example 1.4.2 In general a smooth intersection X of two quadrics in Pi
does not satisfy the Hasse principle, and weak approximation does not hold
even if X (k) # (). For example, the variety defined in P‘é by the equations

zor1 — (25 — 523) = 0

(xo + z1)(z0 + 221) — (x% — 5$2) =0

does not satisfy the Hasse principle (Birch and Swinnerton-Dyer [BSD]) and
the variety X:
Tox1 — (w% + LE%) =0

(4zy — 3zq)(4zg — z1) — (2 +22) =0
is a counterexample to weak approximation with X (Q) # 0 ([CSS], 15.5).
Example 1.4.3 Let us explain how it is possible to construct counterex-

amples to weak approximation among Chatelet surfaces (which are special
cases of conic bundles over P}). Consider the equation

X 9?4 22 = fi(z) fa(z) #0,

deg(f1) = deg(f2) = 2, ged(f1, f2) = 1 over the field & = Q of rational
numbers. Set K = Q(v/—1), K, = K ®q Qu; then there exists a finite set
Yo C Q such that if v & ¥y and M, € X(Q,), then fi1(M,) is a norm of



K,/Qu (use a computation with valuations). If you find vy € ¥ with the
properties:

(i) there exists M,, such that fi(M,,) is not a local norm,

(ii) for v # vg there exists M, such that fi(M,) is a local norm,

then there is no weak approximation thanks to global reciprocity law of
class field theory, namely the exactness of the sequence

Q*/NK* - P Q;/NK; — Z/2
’UEQk

An explicit example of this situation is given by the equation
Y2+ 22 = ((z—2)% = 3)((z +2)> +3).

Here there is an obvious rational point P = (0,0,1) such that f,(P) =1 is
a global norm, hence this gives for any v a local point P, such that fi(P,)
is a local norm. For v = 2 it is easy to construct a local point M, such that
f1(M,) is not a local norm (Take z = 2 and use [Se70], p. 39).

It is even possible to obtain a counterexample to the Hasse principle,
e.g. y2+ 22 = (22 — 2)(3 — z?) (Iskovskih, 1970). In this example, fi(M,)
is always a norm of K, /Q,, except for v = 2, where it cannot be a norm,
hence by the reciprocity law there is no rational point.

Example 1.4.4 The results of Example 1.2.5 cannot be extended to arbi-
trari tori. Let K/k be a biquadratic extension, then there are counterexam-
ples to weak approximation like T' : N /p(z1w1 + -+ + T4ws) = 1, where
wi, ..., wy is a basis of K/k; this holds e.g. for k = Q, K = Q(v—1,v2),
[San], (2.17) p. 237 and Th. 3.3.

All the previous counterexamples are related to reciprocity laws in global
class field theory. In paragraph 2.2. we will describe a general framework
for these, namely the Brauer-Manin obstruction.

We conclude this section with the following negative result ([Min]):

Theorem 1.4.5 (Minchev 1989) Let X be a projective and smooth k-
variety, assume that the geometric fundamental étale group m1(X) is not
trivial, where X = X ® k. Suppose that X (k) # 0, then X does not satisfy

weak approzimation.

Proof (sketch of) :  Enlarge the situation over Spec Oy 5, where ¥
is a finite set of places. By assumption, there is a nontrivial geometrically
connected covering Y — X, which for models gives Y — X. Take an
arbitrary M € X (k), then the fibre Y3, can be written as Y = Spec L where
L is an étale algebra L = ky x --- X k;; each k; is unramified outside Xy,
hence only finitely many k; are possible (by Hermite’s Theorem, cf. [Lal,



Theorem 5 p.121). Find v ¢ ¥y with v totally split for each k; (such a v
does exist by Cebotarev density Theorem, [La] Theorem 10 p. 169); find
M, such that the fibre of Y at M, is not (this is possible because Y is
geometrically connected, via a ”geometric” Cebotarev-like Theorem as in
[Ek], Lemma 1.2). Then M, cannot be approximated by a rational point M
(use Krasner’s Lemma, [La], Proposition 3 p. 43). O

Here the obstruction to weak approximation cannot always be related to
a reciprocity law as above. See paragraph 2.5. and [H00].

2. Cohomological Methods

Let X be a smooth and geometrically integral variety over k. From now on
suppose that X is projective. We denote by X (k) the closure of X (k) in

Hveﬂk X(ky) = X(Ag).
Here our aim is to: (i) explain the counterexamples to weak approxima-

tion; (ii) find ‘intermediate’ sets E between X (k) and X (Ay); (iii) in some

cases, prove that £ = X (k).

2.1. General setting

Let G /k be an algebraic group (usually linear, but not necessarily connected,
e.g. G finite). If G is commutative, define the étale cohomology groups
H'(X,G) (i = 1,2; the cohomological dimension of a non archimedean local
field is two, making the higher cohomology groups uninteresting). In general,
we have only the pointed set H'(X, G) (defined by Cech cocycles for the étale
topology). If X = Speck, H'(X,G) = H'(T',G(k)). If G is linear, then
H'(X, Q) corresponds to G-torsors (i.e. G-principal homogeneous spaces)
over X up to isomorphism (cf. [Mil], IT1.4 and [SkO1], Chapter 2).

Take f € H'(X,G), and define

X(Ay) = {(M,) € X(Ap) : (f(M,)) € Im [H'(k,G) — H H'(k,,G)]}.
vEQ

Obviously X (k) C X (Ag)/. We will see that in many cases X (k) C X (Ag)7.

Example 2.1.1 Let BrX = H?(X,G,,) be the (cohomological) Brauer
group of X; define the Brauer-Manin set of X

XA = (] X&)
feBrX

Then X (k) C X(Ax)®". Indeed X is projective and Br O, = 0 for each
finite place v ([Mil], IV.2.13), hence for each o € Br X there exists a finite
set of places Xy (the places of bad reduction for X or «) such that for any



v &€ ¥ and any M, € X(k,), we have a(M,) = 0. Let (P,) € X(Ag); if
P € X (k) is sufficiently close to P, for v € £, then a(P) = a(P,) for any
v € Q, thus 3, o jv(a(Fy)) = 0 because P is rational.

Manin ([Ma]) showed in 1970 that for a genus one curve with finite
Tate-Shafarevich group, the condition X (A;)B" # (0 implies the existence
of a rational point. The similar statement for abelian varieties is true and
there is also an analogue about weak approximation ([Wal).

Example 2.1.2 TLet f : Y — X be a Galois, geometrically connected,
nontrivial étale covering with group G. We can view f as an element of
H'(X,Q), where G is considered as a constant group scheme. Essentially
the proof of Minchev’s result (Theorem 1.4.5) consists of showing X (k) C
X (Ay)f (this is the step which uses Hermite’s Theorem), then to find (M,) ¢
X (A)f thanks to a geometric Cebotarev Theorem.

Remark 2.1.3 If X is rational, then Br X/Brk = H'(k,Pic X) is finite,
where X = X xy k. Since for a constant element f of Br X (i.e. an element
coming from Brk) we obviously have X (A;) = X (Ax)/, we obtain that in
this case X (Ay)B" is (at least in theory) ‘computable’.

Theorem 2.1.4 (Harari, Skorobogatov) Let X be a projective, smooth

and geometrically integral k-variety. Let G be a linear k-group and f €
HY(X,G); then X (k) C X(Ar)? (and X(Ay)! is “computable”).

The idea of the proof is to apply Borel-Serre finiteness Theorem ([Se94],
I11.4.6) instead of Hermite’s Theorem. See [HS02] (Th. 4.7) or [Sk01] (5.3)
for the details.

2.2. Abelian descent theory

This was developed by Colliot-Théléene and Sansuc [CSan|, and recently
completed by Skorobogatov [Sk99]. Recall that a group of multiplicative
type S over k is a commutative linear k-group which is an extension of a
finite group by a torus. The module of characters of S is the abelian group
S = Hom(S, Gy,,), equipped with the action of the Galois group I', where

S =8 X k. One of the main results of the theory consists of the following

Theorem 2.2.1 Let X be a projective, smooth, and geometrically integral
k-variety. Define

X&) = (] X(Aw)
feEBr1 X

where Br1X = Ker (Br X — Br X). Assume further that X (Ag )BTt # 0.
Then:



1. We have

X (Ay)Prt = N X (Ar)’.

feH'(X,S)
S of multiplicative type

2. Assume further that PicX is of finite type, let So be the group of
multiplicative type with module of characters Pic X; then there exists
a torsor fo:Y — X under Sy (a universal torsor), such that

X (8g)P"t = X (Ay)P0.

Intutitively, universal means ”as nontrivial as possible”; in particular if
there exists a universal torsor fo : Y — X, then for any torsor f : Z — X
under Sy there exists a unique morphism of X-torsors ¢ : Y — Z such
that fo = f o . See [Sk01], 2.3.3. for more details about the definition of
universals torsors (this notion is due to Colliot-Théléne and Sansuc [CSan]).

Theorem 2.2.1 is difficult, see Skorobogatov’s book [Sk01] for a complete
account on the subject. One of the ideas is to recover the Brauer group of
X (mod. Brk) making cup-products [Y] U a, where a € H'(k, Sp) and [Y]
is the class of Y in H*(X, Sp). Another step (which is long to achieve) is to
show that the condition X (A;)B't # () implies the existence of a universal
torsor.

Now assume that X is a rational variety, so X (A)B" = X (A )BTt (since
BrX = 0). Assume X (A;)B" # (. Consider a universal torsor f : Y — X.
If o € H'(k, Sp), one can define the twisted torsor f7: Y7 — X where

[Y7]=[Y] -0 € H'Y(X,S)).
Then

xa)'= U o).

ccH1(k,So)

The universal torsors are precisely the torsors Y7, 0 € H'(k,Sp). If you
can prove that they satisfy weak approximation, then X (k) = X (Ag)/ =
X (Ag)P", which means that the Brauer-Manin obstruction to weak approx-
imation is the only one for X. In practice it is important to obtain ezplicit
equations for the universal torsors (this is done in [CSan] Th. 2.3.1, see also
[Sk01], 4.3.1.). Once the universal torsors are described by these equations,
one can hope to prove (e.g. using fibration methods) that weak approxima-
tion holds for them because their Brauer group is trivial (that is: consists of
constant elements), hence the Brauer-Manin obstruction vanishes for them.
Here are some examples where this approach works completely:



Example 2.2.2 Consider a Chatelet surface: y? —az? = P(z), a € k*/k*?,
deg P = 4. Colliot-Théléne, Sansuc, Swinnerton-Dyer showed in [CSS]
(Th. 8.11) that for a projective and smooth model X, the equality X (k) =
X (At )BT holds. Here weak approximation on universal torsors follows from
the similar statement for intersection of two quadrics in P} (n > 4) with a
pair of skew conjugate lines (cf. Example 1.2.2).

If P is irreducible, then Br X/Brk = 0, so X satisfies weak approxima-
tion. It is worth noting that it seems impossible to deal with this special case
without using descent, even though the Brauer-Manin obstruction already
vanishes on X.

If P is reducible, we can have a counterexample to weak approximation,
cf. Example 1.4.3. Here the obstruction is given by the Hilbert symbol
f = (a, f1). This reinterpretes the reciprocity obstruction explained in Ex-
ample 1.4.3 as a special case of the Brauer-Manin obstruction.

Example 2.2.3 Let X be a conic bundle surface over P! with at most 5
degenerate fibres. Then X (k) = X (A;)B". Works by Salberger ([Sal]) and
Colliot-Théléne ([Col]) covered at most 4 degenerate fibres via the descent
method. Salberger and Skorobogatov ([SaSk]|) treated the case of 5 bad
fibres, using descent and K-theory. It is widely believed that the Brauer-
Manin obstruction to weak approximation is the only one for a conic bundle
over P! with an arbitrary number of bad fibres. This was proved by Serre
(unpublished) under Schinzel’s hypothesis ® in 1992. Another proof and
several extensions of his result (in particular an unconditionnal zero-cycle
version) can be found in [CSw].

We conclude this paragraph by the following general result about alge-
braic groups ([San]):

Theorem 2.2.4 (Sansuc, 1981) Let G be a linear connected algebraic k-
group and X a smooth compactification of G. Then the Brauer-Manin ob-
struction to weak approzimation on X is the only one:

X (k) = X (Ag)"".

2.3. Open descent

In the last paragraph, we have considered descent over projective varieties.
But the general results of the theory still hold over a geometrically integral
variety U as soon as the only invertible functions on U are constant; this is
often useful to obtain torsors described by nice equations. Descent over an
open subset U of a projective variety X was introduced in 2000 by Colliot-
Théléne and Skorobogatov. In particular they showed ([CSk], Prop. 1.1):

3Schinzel’s hypothesis is a (rather wild) generalization of Dirichlet’s Theorem on primes
in an arithmetic progression, see [CSw].
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Proposition 2.3.1 Let X be a smooth, proper and geometrically integral
k-variety. Let U be a non-empty Zariski open subset of X. Assume that
BrU/Brk is of finite indezx in Br X/Brk.

Then U(Ay,)B" is dense in X (Ag )BT for the adelic topology.

Note that elements of BrU do not necessarily belong to Br X. This
proposition is a consequence of the "formal lemma” ([H94], 2.6.1; see also
next paragraph). With the help of Proposition 2.3.1, it is sometimes possible
to prove that X (k) = X (A;)B" with a descent over a well chosen U instead
of the whole X; this works for example for certain varieties fibred over the
projective line ([CSk], Th. A and B).

Another application of the open descent is the following recent result
([HBS]); a new tool is to use the circle method to prove that universal

torsors over U satisfy weak approximation.

Theorem 2.3.2 (Heath-Brown, Skorobogatov 2001) Take K/Q a fi-
nite field extension. Consider the affine variety V, defined by an equation
of norm type

t"(1 - )" = Ng/p(101 + - Zrwy)

where (w1, ...,wr) is a basis of K/Q, ag,a1 are two coprime integers, and
t,x1, ...,z are variables. Then the Brauer-Manin obstruction to weak ap-
prozimation is the only one for a smooth and projective model X of V.

2.4. Back to fibration methods

If p: X — B is a fibration, we saw that if the base and the fibres sat-
isfy weak approximation, under certain circumstances then X satisfies weak
approximation.

Here we consider p : X — P, a projective, surjective morphism (and
the generic fibre X, is smooth). Assume also that X, has a k(n)-point (this
technical condition is satisfied in most applications, e.g. if X, is geometri-
cally rationnally connected by a recent result of Graber, Harris and Starr
[GHS]). A natural question is the following: If Xp(k) = Xp(Ag)B" for al-

most all fibres Xp, P € P!(k), can you prove that X (k) = X (A;)B" ? The
following result ([H94], [H97]) gives a partial answer to this question.

Theorem 2.4.1 Under the notation and assumptions as above, we have
X (k) = X(Ag)P if we assume that:

1. Pic X, is torsion-free, where X, = X, xx K, K = k(n); e.9. X,
rational, or smooth complete intersection of dimension at least three.

2. BrX,, is finite.

3. Either all fibres but one are geometrically integral, or X, has a k(n)-
point.
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Here again it is possible to replace ”geometrically integral” by ”split” in
the third condition 4.

If we compare the proof of Theorem 2.4.1 with the proof of Theo-
rem 1.3.1, there are two additional ingredients:

1. Show that the specialization map Br X, /Br K — Br Xp/Brk is an
isomorphism for many k-fibres Xp (‘many’ in the sense of Hilbert’s

irreducibility theorem). This is a consequence of assumptions 1. and
2. ([H94], 3.5.1. and [H97], 2.3.1.).

2. If ay,...,q, are elements of Br X, which generate BrX, /Brk(n),
choose an open subset U C X such that o; € BrU. Then apply
the following ‘formal lemma’ ([H94], 2.6.1.): Let (M,) € X(Ag)Pr,
M, € U, and % a finite set of places; then there exists (P,) € X (Ag),
P, € U, and X D ¥ finite such that:

(a) P, =M, for v € Xy;

(b) > pes do(@i(Py)) = 0 for 1 <4 < r, where 5, : Brk, — Q/Z is
the local invariant.

This formal lemma, is a consequence of

Theorem 2.4.2 ([H94], 2.1.1.) Let a € BrU, suppose o ¢ Br X.
Then there exist infinitely many places v of k such that the image of
the evaluation map [U(ky) — Brk,, M, — a(M,)] is not zero.

Theorem 2.4.1 has several applications:

Example 2.4.3 We can recover Sansuc’s result just knowing the case of a
torus (which essentially goes back to [Vos]). Here we apply Theorem 2.4.1
in a situation when X, has a k(n)-point, [H94], 5.3.1.

Example 2.4.4 If X(k) = X(A)B" for any smooth projective cubic sur-
face (this is a widely-believed conjecture), then by induction the same holds
for hypersurfaces ([H94], 5.2.2.); therefore if dim X > 3, then X satisfies
weak approximation (The Brauer group of smooth hypersurfaces of dimen-
sion at least 3 is trivial).

It is also possible to cross open descent with the fibration method to
obtain generalizations of Theorem 2.4.1 when at most 2 (or 3 in very special
cases) fibres are degenerate. See [HS03].

4This refinement is especially useful if we have to deal with a non projective morphism
because the ”split” condition remains valid after compactification of the morphism. See
[H97], Proof of Prop. 3.1.1.
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2.5. Nonabelian descent

In the last few years it has become apparent that the Brauer-Manin ob-
struction can be refined if we consider non-abelian cohomology. In partic-
ular if G/k is a finite but not commutative k-group, it may happen that
for f € HY(X,G), X(Ax) 2 X(Ag)B". The following result was the first
unconditional counterexample to the Hasse principle not accounted for by
the Brauer-Manin obstruction ([Sk99]).

Theorem 2.5.1 (Skorobogatov) There exists a bielliptic surface X over
Q such that X(Q) =0, X(Aq)B # 0.

Actually one can show ([HS02], 5.1) that X(Aq)/ = 0 for some f €
H'(X,G), where G is a finite k-group satisfying G(Q) = (Z/4Z)? x Z/2Z.
There are similar statements for weak approximation ([H00])), e.g. take

X/k any bielliptic surface, X (k) # 0, then X (k) C X (A )5".
Nevertheless the Brauer-Manin condition is quite strong, as shows the
following result ([H02]; compare Th. 2.2.1 above):

Theorem 2.5.2 Let X be a projective, smooth, and geometrically integral
k-variety. Then:

1. If G/k is a linear connected k-group, f € HY(X, @), then
X(Ar)®" C X (Ag)?.
2. If G is any commutative k-group, f € H*(X,G), then

X (A)BT c X(Ar).

Let us conclude with an open question : is the first part of this theorem
still true for a (non-commutative) G which is an extension of a finite abelian
group by a connected linear group (e.g. a torus) ? My guess is "no”.

Acknowledgements. This paper is an expanded version of two talks
given at the workshop Rational and integral points on higher-dimensional
varieties (Palo-Alto, December 2002). The author thanks the AIM and the
organizers of this conference for their warm hospitality.
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