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1 Introduction

There are a number of distinct ways in which analytic number theory can be used
to provide information about rational points on algebraic varieties. Conversely,
there are also a number of ways in which hoped-for results on the distribution of
rational points could be used in classical problems from analytic number theory.
Thus the analytic number theorist hopes not only to contribute to the theory
of rational points, but also to get something back in return!

2 Contributions from Analytic Number Theory

The best known application of analytic methods to the distribution of rational
points is the Hardy-Littlewood circle method. We shall not go into this in
detail here, but refer the reader instead to the talk by Trevor Wooley. Given a
projective variety V defined over Q, the goal is to estimate the number N (B) of
rational points on V' which have height at most B. When the method succeeds
it usually establishes an estimate of the form

N(B) ~ 0o [[o» B™, (B — ) (1)

for an appropriate integer exponent m. Here o, is the p-adic density of points on
V, and o, is the corresponding real density. The method tends to work when
the dimension of the variety is reasonably large compared with its degree, and
much of the research on the circle method is designed to weaken this constraint.
The form of the asymptotic formula (1) is closely related to the Hasse Principle.
Indeed one can usually show that the factors o, and o, are all positive when the
variety has points everywhere locally. Under these circumstances the asymptotic
formula (1) shows in particular that there are infinitely many rational points.
Moreover when the circle method works it can usually be adapted to prove a
weak approximation result as well.

It is therefore natural to ask what happens for varieties which do not satisfy
weak approximation. Should we still expect (1) to hold? Since we expect that
whenever we can apply the circle method we can also establish weak approxi-
mation, it follows that we should not expect the circle method to succeed on
such varieties. As a test case consider the variety defined by

L1($1,$2)L2(m17$2) = .Z'% + .Z'i,
5. 5 (2)
L3(x1,x2)La(z1, 22) = 25 + 23,



where the L; are suitable linear forms. It is known that weak approximation
may fail for such varieties, as indeed may the Hasse Principle. None the less we
can still establish an asymptotic formula for N(B), which takes the shape

N(B) ~ koo [[ 0 B*. (3)

The novelty here lies in the factor k. This is a rational number in the range
k € [0,2]. Moreover it is constructed out of p-adic densities for certain “descent
varieties” related to (2). One can show that the Hasse Principle fails exactly
when k = 0. The asymptotic formula (3) is proved essentially by passing to the
“descent varieties” and using a variant of the circle method on these. In fact the
classical circle method does not quite work and a delicate alternative method
has to be used. Full details are given in the author’s work [2].

A second area where discussion of rational points encounters issues in ana-
lytic number theory is in treatments of the Hasse Principle assuming Schinzel’s
Hypothesis. Schinzel’s Hypothesis concerns the representation of primes by
polynomials in one variable. The only instance of the hypothesis which is known
to be true is Dirichlet’s theorem on primes represented as a linear polynomial
aX +b. The classical proof of the Hasse Principle for quadratic forms in 4 vari-
ables uses Dirichlet’s theorem, and one can view more recent developments as an
extension of this idea. Thus Colliot-Théléne and Sansuc [1] used Schinzel’s Hy-
pothesis to prove the following result. Let a4, ..., a, be non-zero rationals, and
let P, ..., P. be irreducible polynomials over Q. Then the system of equations

0#P(t) =2} —aw;, (1<i<r),

satisfies the Hasse Principle, and weak approximation.

In some problems one can use versions of Schinzel’s Hypothesis which refer
to polynomials in 2 or more variables. Here there has been recent progress in
prime number theory, which enables us to handle primes represented by binary
cubic forms, for example. As an application one can show the following, due to
Heath-Brown and Moroz [3].

Theorem Let a and b be coprime rational integers satisfying one of the fol-
lowing congruence conditions:

aorb=+20r £3 (mod9),

or
a==xb (mod9).

Then there is a nontrivial rational point on the surface
x5 + 23 + azs + ba = 0.

This is one of the few completely unconditional results in the area. The proof
depends on a result of Satgé [4, Proposition 3.3] which states that the curve

zd + 223 = pZ3

has a non-trivial rational point for any prime p = 2 (mod 9). Satgé’s argument
uses a Heegner point construction. For the result above it therefore suffices



to show that the binary form az3 + bz3 takes a prime value p = 2 (mod 9).
Progress in prime number theory is such that this has now been established.
With the above congruence constraints on a and b there are always suitable
rational values of z» and z3, with denominators 1 or 3. Indeed we can find
infinitely many primes of the required form, although the application requires
only one such prime.

3 Potential Applications to Analytic Number
Theory

When analytic number theorists attack problems on rational points they often
run into other, related, questions. Consider the counting function
N(F;B) =#{x € Z": F(x) =0 max |z;| < B}.
1<i<n
For the diagonal cubic hypersurface corresponding to F(x) = a123 + ...+ a, x5
we can give an asymptotic formula for N(F; B) as soon as n > 8, thanks to
work on the circle method by Vaughan [5]. However we would like to handle

smaller values of n. To deal with the case n = 7 it would suffice to prove the
following conjecture.

Conjecture We have
N(Fo; B) < B?

for some constant 0 < 7/2, where
Fo(x) = a3 + 23 + 23 — 2} — 2} — 7}.

This estimate is known to hold for any 6 > 7/2, by a classical result of Hua,
and is believed to hold for any 6§ > 3. From a geometrical viewpoint there is no
obvious reason why the form Fj should be related to F. Nor is it immediately
apparent from a geometric viewpoint how an upper estimate for N(Fp; B) can
lead to an asymptotic formula for N(F; B). However these relationships are
quite simple from the viewpoint of the circle method, which is what makes it
such a distinctive and useful tool.
One may also ask what happens for the form

Fy(x) :mf+wg+x§—wf—mg—mg.
Again we conjecture that any 8 > 3 is admissible. In fact one can take § =
04 < 7/2 if d is large enough, but attempts to reduce the permissible size of
d encounter some purely geometric questions. Typical of these is—what low
degree curves are contained in the variety Fp(x) = 0? For example when d > 5
the only lines are those that lie in trivial planes of the type 1 = 4,22 =
x5, x3 = xg. It would be good, for example, to know that there were no curves
of degree at most 4, other than those lying in such planes. We should remark
that a resolution of the problems described by Salberger in his lecture would
also result in significant progress in reducing the exponent 6.
As an example of a potential application to other areas of the subject, con-
sider the variety V (k,s) C P2*~! defined by the equations

ol =yl o4yl <<k



This is a cone with vertex (1,...,1). The counting function N(B) for this
variety is the subject of Vinogradov’s Mean Value Theorem. Upper bounds for
N (B) have various applications in analytic number theory, to the estimation of
exponential sums in the first instance, and thence to bounds on the Riemann
Zeta-function and the error term in the Prime Number Theorem. A great
deal of effort has gone into improving the original upper bounds established by
Vinogradov. It is not hard to show that

N(B) > max{B®, B> k(k+1)/2}

for all s,k > 1. Moreover, if s < k then all points have x1, ..., xs; a permutation
of y1,...,Yk, so that N(B) ~ c(k,s)B?® in this case. Moreover Vaughan and
Wooley [6] have established the same asymptotic formula for s = k + 1. On the
other hand we know that

N(B) ~ C(k,s)B2s_k(k+1)/2

for
s> so(k) = k*(log k + 2loglog k + O(1))

(see Wooley [7]). It would be good to know how N(B) behaves for values
of s of intermediate size. It seems likely that a better understanding of the
geometry of V(k,s) would help. As an example, when & = 4 and s = 6 we
ask the following. Let L be a linear space of projective dimension I, and C
an irreducible component of V(4,6) N L. Assume that C is not contained in

the ‘diagonal’ set where (z1,...,%¢) is a permutation of (y1,...,ys). Then is
dimC < (20 -1)/3?
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