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COUNTING POINTS ON VARIETIES
USING UNIVERSAL TORSORS

Emmanuel Peyre

Abstract. Around 1989, Manin initiated a program toward the understanding of the
asymptotic behaviour of the rational points of bounded height on Fano varieties. This pro-
gram led to the search of new methods to estimate the number of points of bounded height
on various classes of varieties. Methods based on harmonic analysis were very successfull for
compactifications of homogeneous spaces. However, they do not apply to other types of vari-
eties. Universal torsors which were introduced by Colliot-Théléne and Sansuc in connection
with the Hasse principle and the weak approximation turned out to be a useful tool to attack
other varieties. The aim of this short survey is to describe how it has been used in various
simple examples.

1. Introduction

If the rational points of a variety V' over a number field &k are Zariski dense,
it is natural to equip the variety V with a height H and to study asymptoti-
cally the set of points of bounded height on V. In [FMT] and [BM], Batyrev,
Franke, Manin and Tschinkel gave strong evidence supporting conjectures re-
lating the asymptotic behaviour of the number of points of bounded height on
open subsets of V' to geometrical invariants of V. This work motivated the
development of several methods to estimate the number of points of bounded
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height on new classes of varieties. One of the most successfull method was the
use of harmonic analysis on adelic groups. For example, it was used by Batyrev
and Tschinkel in [BT1], [BT2], and [BT4] to handle the case of projective
toric varieties, by Strauch and Tschinkel in [ST1] and [ST2] for toric bundles
over flag varieties, and by Chambert-Loir and Tschinkel in [CLT1], [CLT2],
and [CLT3] for equivariant compactification of vector spaces. However this
type of methods apply only to equivariant compactifications of homogeneous
spaces. One may say that almost all other methods have one step in common,
namely the lifting to universal torsors. Universal torsors have been introduced
by Colliot-Théléne and Sansuc in [CTS1], [CTS2], [CTS3|, and [CTS4] to
study the Hasse principle and the weak approximation. The interest of uni-
versal torsors is that, from an arithmetical point of view, these torsors should
be much simpler that the variety itself. As an example, universal torsors over
smooth projective toric varities are open subsets of an affine space. When the
Fano variety V is a smooth complete intersection of dimension bigger than
three in the projective space, the universal torsor may be described as the cone
above the variety. In that case, if the dimension of the variety is big enough,
the conjectural formula of Manin may be deduced from the formula given by
the classical circle method. This reduction, which is described in [FMT] may
be seen as a particular case of the lifting to the universal torsor. Salberger in
[Sa] was the first to use explicitly universal torsors in relation with points of
bounded height. In particular, he was able to give a new proof of the theorem
of Batyrev and Tschinkel for smooth projective split toric varieties over Q.
This lifting to the universal torsor was then used by de la Bretéche in [Brel]
to give a better estimate for the number of points of bounded height on toric
varieties. The lifting to universal torsors was later used by Salberger and de la
Bretéche (see [Bre2]) to prove the asymptotic formula for the plane blown up
in four points over Q. In a more general setting, the author described in [Pe2]
and [Pe3] how the conjectural asymptotic formula lifts naturally to universal
torsors.

The aim of this short survey is to present in a quite self-contained way the
usefulness of universal torsors for counting points of bounded height. In sec-
tion 2, we describe the heights used throughout this paper, in section 3 we recall
the empiric formula for the number of points on Fano varieties. In section 4 we
give a short list of cases for which this formula holds, in section 5 we describe
the counter-example of Batyrev and Tschinkel. In section 6 we describe briefly
both methods: harmonic analysis and universal torsors. Section 7 is devoted
to the case of an hypersurface in P™. The next section contains the definition
of universal torsors in general. In section 9 we describe Cox’s construction of
universal torsors for toric varieties and explain how Salberger used it and in
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section 10 we turn to the case of the plane blown-up in four points, in which
case the universal torsor was described by Salberger and Skorobogatov. The
last section contains a short description of the generalization of these lifting
arguments to a larger class of varieties.

2. Heights on projective varieties

Definition 2.1. The classical height on the projective space over Q is defined
as follows:

Hy : PY(Q) = Rxo
. T; € Z,
Lo:...:xZN) > sup |z, if
(0 ~) 0<i<pN| il {gcd(wi) =1.
If K is a number field, one generalizes this construction in the following way:
Hy :PY(K) - Ryg

(To:...:xN) — H sup |x;ly
veQy OSISN

where Q0 is the set of places of K and for any = € K., |z|, = |Nk,/q, ()|, if
v | p- Any morphism of varieties ¢ : V — P induces an exponential height

H:V(K) = Rsg
x — Hy(¢(z)).

If U C V is an open subset, then we would like to describe and understand
the asymptotic behavior of the counting function

Nyu(B) =#{zx € U(K) | H(z) < B}.
Let us first give a few examples:

Ezample 2.2. IfV = PV (Q), ¢ = id, then an easy Moebius inversion formula
gives that

2N
TV FY)

as B — oo (see figure 1). This result was later generalized by Schanuel in [Sc]
to the projective space over any number field (see figure 2).

Nv.u(B) BN+1
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FIGURE 1. Projective space

FIGURE 2. Projective line over Q(%)

Ezample 2.3. f V = Vi x Vo, H; : V;(K) = Rsg, U; C V; open subsets,
then we have the height H : V — Rs¢ defined by H(x1,22) = H;(z1)Hz(22)
corresponding to Segre embedding. Assume that

Nu,,m;(B) = C;B(log B)"~! 4+ O (B(log B)"7?).
Then, by [FMT, proposition 2]

(ty — Dl(t2 — 1)

! _
NU1XU2,H(B) ~ (t1 - 1)! 0102B(10g B)t1+t2 1



COUNTING POINTS USING UNIVERSAL TORSORS 5

as B = oo. For P! x P!, we get
Npiypi g(B) ~ CB?log B
(see figure 3).

FIGURE 3. Product of two projective lines

Ezample 2.4. Let V — P2(Q) be the blowing up of P2 at P, = (1: 0 : 0),
P,=(0:1:0),and P3=(0:0:1). Then V may be seen as a hypersurface in
P! x P! x P! given by the equation z1zy23 = y1y2y3. We put

H(Py, P>, P3) = Hi(P)H,(P2)H1(Ps)
which defines a height H : V(Q) — Rso.

On V, there are 6 exceptional lines E;; : z; = 0,y; = 0 for ¢ # j. Let
U=V —U,y; Eij. We have

N, ;)1 (B) ~ CB?

Nu.u(B) ! H(l 1)4(1+4+ 1) B(log B)®
v, (B) ~ - = -+ og
6\~ p p P
(see figure 4). We see that Ny,g(B) = o(N(g, ;),z(B)). Thus, in this case, the
dominant term of the asymptotic behaviour of Ny, g (B) is given by the number
of points on the six lines. Therefore it can not reflect the geometry of the whole
of V. One of the basic idea in the interpretation of the asymptotic behaviour
of the number of points of bounded height is that one has to consider open
subsets to be able to get a meaningful geometric interpretation.

and
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FIGURE 4. The plane blown up

In all examples the author knows for which it was possible to give a precise
estimate of the number of points of bounded height, the asymptotic behaviour
is of the form

Ny, (B) ~ CB*(log B)*~!

with C > 0,a>0and b € %Z, b > 1. Thus one wishes to give a geometrical
interpretation of a, b and C.

3. Manin’s principle

We assume that V is a smooth, geometrically integral projective variety of
dimension n over the number field K. We also assume that w‘_,l = A"Ty is
very ample (in particular, V is a Fano variety). We look only at the height
relative to this anticanonical divisor ¢*(fpn~ (1)) = wy;', and we assume that
V(K) is Zariski dense. The following question is a variant of the conjecture C’
in [BM]:

Question 3.1. Does there exist a dense open subset U C V and a constant
C > 0 such that
Ny.u(B) ~ CB(log B)'™!

as B — oo, where t is the rank of the Picard group of V. (Since V is Fano,
PicV is a free Z-module of finite rank.)
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In fact, it is even possible to give a conjectural interpretation of C, but to
describe this conjectural constant, we first need to express the height in terms
of metrics.

Notation 3.2. Let V be a geometrically integral smooth projective variety
and H be the height corresponding to an embedding ¢ : V — PX. Let L be
¢*(Opn~(1)). We denote by sq, ..., sy the pull-backs in T'(V, L) of the sections
Xo,...,Xn of Opn(1). We look at L as a line bundle over V and define for
any place v of K a metric || - ||, : L(K,) = R which is continuous for v-adic
topology by the condition:

s(x)
si(x)

Vz € V(Kv)a Vs € F(Va L): ||8($)||v = 0<in<le
5R6¥0

v

Then the height H may be characterized by
Ve e V(K), VseT(V,L), s(z)#0= H(z)= H |s(2)], "

vEQK

From now on we assume that the above line bundle L is the anticanonical
line bundle w‘_,l. We now define a measure on the adelic space V(A k) which

coincides with the product [[,cq, V(Ky), since V' is projective.

Definition 3.3. For any place v of K, we normalize the Haar measure dz,
on K, by the conditions

— Jp, dzy = 1if v is finite,

— dz,([0,1]) = 1 if K, is isomorphic to R,

— dz, = idzdz = 2dzdy if K, is isomorphic to C.
The measure w, on V(F,) is defined locally by the formula

0 0
Wo=|l=—AA=—| dz1y...dzpe
ox1 0z ||, ’ ’
if (z1,...,2z,) is a local system of coordinates on V(K,) in v-adic topology
and where 6%1 A A % is seen as a section of w(,l. The fact that these

expressions glue together follow from the chosen normalization of the absolute
value. Indeed the formula for a change of variables is given by

Oy;
dy1,p ... dyn,, = |det (8—.7;;) \cicn dzy1,y - .. Az,
1<)%n

(see [We, §2.2.1]).
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Remark 3.4. At any real place this construction is the classical formula to
produce a measure on a differential variety from a continuous section of the
canonical line bundle. At almost all finite places, using ideas of Tamagawa and
Weil, one may prove the following proposition:

Proposition 3.5. For allmost all finite p in Qg,

#V (Fy)
wp(V(Kp)) = (#Fp)di;:n"
where Fy is the residue field at p.

In particular this implies that the product [], w,(V(K})) diverges. There-
fore we have to introduce convergence factors. These factors are suggested by
the Grothendieck-Lefschetz formula.

Definition 3.6. We fix a finite set S of bad places containing all archimedean
places and all places of bad reduction. Let K be an algebraic closure of K and
put V=V xg K. Then one defines

. 1
Ok — S, Ly(s,Pi =
Vp € Ok S, p(S; IC(V)) det(l _ #F;S | PiC(VFp) & Q)

and the global L-function is given by the Euler product

Ls(s,Pic(V) = ] Lo(s,Pic(V)
peQK—S

which converges for Re(s) > 1 and admits a meromorphic continuation to C.
We define the converging factors by

_ L,(1,Pic(V)) if v € Qg — S,
v T .
1 otherwise.

The adelic measure on V(Ag) is then defined by the formula

— 1
wg = lim(s — 1)'Lg(s,Pic(V)) —— A tw,,
s—1 /de \4 vgx

where dg is the absolute value of the discriminant of K.

Remarks 3.7. (i) The convergence of the product [, A, 'wy follows from
Lefschetz formula and Weil’s conjecture about the absolute value of the eigen-
values of the Frobenius operator which was proven by Deligne [Del].

(ii) By definition, the measure wp does not depend on S.

(iii) Note that v/dk is the volume of Ak /K for the measure [] dz,.

vEQK
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To define the conjectural constant it remains to multiply by two rational
factors which are the object of the next definition.

Definition 3.8. Let Cl;:(V) be the cone in Pic(V) ®z C generated by the
classes of the effective divisors and Clz(V)V be the dual cone defined by

Cer(V)" = {y € Pic(V) @z RY | Vz € Ceg(V), (z,9) > 0}

Then
1

- (wy' ) g
o(V) = =y /C o T

where the measure on Pic(V) ®z RY is normalized so that the covolume of the
dual lattice Pic(V)Y is one. We also consider the integer

B(V) = #H' (K, Pic(V)).

Remarks 3.9. (i) The constant a(V) may also be defined as the volume of
the domain

{y € Cea(V)Y [ {y,wy") = 1}

for a suitable measure on the affine hyperplane (y,wy') =1 (see [Pel, §2.2.5]).
Therefore if there exists a finite family (D;)1<igr of effective divisors on V' such
that

Cox(V) =) Rxo[Di]
i=1

then the constant (V') is rational.

(if) The constant S(V') was introduced by Batyrev and Tschinkel in [BT1].

The conjectural constant is then defined as follows
Definition 3.10. We define

0 (V) = a(V)B(V)wr(V(K)),

where V(K) denotes the closure of the rational points in the adelic space
V(Ak).

We can now give a refined version of the question 3.1:

Empirical formula 3.11. With notation as in question 3.1, there often ez-
ists a dense open subset Uy C V such that for any non-empty subset U of Uy,
one has

(F) Ny, (B) ~ 8 (V)B(log B)* !
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4. Results
The formula (F') is true in the following cases:

— V = G/P, G areductive algebraic group over K, P a parabolic subgroup
of G defined over K. It follows from the work of Langlands on Eisenstein
series [Lan], (see Franke, Manin, Tschinkel [FMT] and [Pel, §6]). We
may take Uy = V. In particular, it is true for any quadric.

— V is a smooth projective toric variety, that is an equivariant compact-
ification of an algebraic torus. (see [Pel, §8-11] for particular cases,
Batyrev and Tschinkel [BT1], [BT2], and [BT4], Salberger [Sa], and
de la Bretéche [Brel]). One may take the open orbit as Up. This case
includes the plane blownup in 1, 2, or 3 points, and Hirzebruch surfaces.

— V is an equivariant compactification of an affine space for the action of
the corresponding vector space (see Chambert-Loir, Tschinkel [CLT1],
[CLT2], and [CLT3]).

~ V =Pg blownup at (1:0:0),(0:1:0),(0:0:1),(1:1:1) (Salberger
for an upper bound, de la Bretéche [Bre2]).

The formula (F) is compatible with:

— the circle method (In particular, it is true if V' C P"™(Q) a hypersurface
of degree d, smooth, if n > 2¢(d — 1) (see Birch [Bir|);

— the product of varieties (see [FMT], [Pel, §4];

— numerical tests on computers for some diagonal cubic surfaces (see [PT1],
[PT2]);

— lower bounds for some cubic surfaces (see Slater and Swinnerton-Dyer
[SSD]). The problem of finding an optimal upper bound for cubic surfaces
is still open.

All these examples support the empirical formula, however there is a counter-
example which is the object of the next section.

5. The counter-example of Batyrev and Tschinkel

Take V C P? x P? defined by zoyd + 71y + 2293 + 2395 = 0. We have
Pic(V) ~ Pic(P? x P?) = Z x Z and wj;' = 6y (3,1). In particular, V is a
Fano variety. We may use the height

H: V(Q) — R>0

(IL'O P .',173), (yo P y3) = H3(.’L')3H3(y)
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If (F) is true for V then there is some open subset U and a constant C' such
that

NU7H(B) ~ CB IOgB

as B — oo. There is a projection onto the first coordinate 71 : V — P3. If
(wo :...:x3) € P3, is such that H?:o x; # 0, 77 (z) is a smooth cubic surface;
if &1 /o, T2 /0, T3 /20 are cubes, then rk Pic(w; *(z)) = 4. If (F) is true for the
fibre

Ny=1(z),z(B) ~ CyB(log B)?

as B — oo, but these fibers are Zariski dense, so the answer to the question 3.1
can not be positive for both V' and the fibers. In fact Batyrev and Tschinkel
prove the following more precise result:

Theorem 5.1 (Batyrev and Tschinkel [BT3]). If K contains a cube root
of unity, then for allU C V, U # 0, (F) does not hold for U.

6. Methods of counting
We now turn back to the methods used to prove the results given in section 4.

Harmonic analysis: Assume that there exists a dense open subset U of V
which is of the form G/H where G is a reductive algebraic group, look at the
height zeta function

(wu(s)= Y Hx) "

zeU(K)

which converges when Res > 0.

The asymptotic behavior of Ny, g (B) is given by the meromorphic properties
of (u,m(s). If U = G, one may use a Poisson formula. If V.= G/P, (y,u(s) is
an Eisenstein series and we may apply the work of Langlands. In both cases
the problem may be handled using harmonic analysis.

This type of method do not apply when the variety does not contain an
homogeneous space. All other case appearing in the list of section 4 have one
preliminary step in common: thay all use a lifting to the universal torsors:

Universal torsors: implicit in the case of a hypersurface in P*(Q), it was
made explicit by Salberger in [Sa] to give a new proof in the case of split toric
varieties over Q; it was then used by Salberger and de la Bretéche for the case
of the plane blownup in 4 points. The end of this survey is devoted to the
description of this preliminary step in those cases.
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7. A basic example

In the case of a hypersurface of large dimension, the principle of Manin fol-
lows from the following deep theorem which is based upon the Hardy-Littlewood
circle method.

Theorem 7.1 (Birch [Bir]). Let f € Z[zo,...,znN] be homogeneous of degree
d, and let W C AN*L — {0} be the cone defined by f = 0. Assume that:

(i) W is smooth,

(i) W(R) # 0, and for all primes p, W(Q,) # 0,
(i) N >29(d - 1).
Let

Mw(B) = #{w € ZNTL _ {0} | f(x) =0 and sup |z < B}.
0<iKN

Then there exists an explicit C > 0 and § > 0 such that
Mw(B) — CBN+17d + O(BN+17d76)‘

Let 7 : AN*1 — {0} — PV and let V = (W) be the corresponding projec-
tive hypersurface. Then wy,' = 6y (N + 1 — d), so we may take the height

H(.’L‘) = HN(SIJ)N+1_d
where Hy was defined in section 2. Then

1 f(z) =0,
Nyu(B) = 5# z € ZNT — {0} |{ sup |z V-7 < B,
ged(z;) = 1.

f(z) =0,
sup; |z;|Nt1-4 < B ’

where p: Zsg — {—1,0,1} is the Moebius function. Then

Using Moebius inversion, we get

Nyua(B) = 3 3 (k)# {:c € (k2)™*1 — {0}
k

1 Bl/(N+1-d) 1 w(k
Nea(®) = S uwany (250 Loy b
k k
1 C
- §g(N+1—d)B' =

The idea behind the introduction of universal torsors is to generalize this
simple descent argument to other varieties.
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8. Universal torsors

Let V be a smooth, geometrically integral projective variety over K, where
char K = 0. Assume (for simplicity) that V is Fano, which means that wy,' is
ample. Thus, if K is an algebraic closure of K, and V =V x i K, then Pic(V)
is a free abelian group of finite rank.

Assume K = K first. Let Li,...,L; be line bundles on V such that

[L1],...,[L¢] form a basis of Pic(V) = Pic(V). Let L = L; — zero section.
Consider
71’2Li< XvL; Xv---Xng — V.

On the left we have an action of G¢, this is ‘the’ universal torsor of V.

Proposition 8.1. If K = K, the universal torsor constructed above does not
depend, up to isomorphism, on the chosen basis of the Picard group.

Proof. Let Li,...,L; be line bundles on V so that [Li],...,[L}] form another
basis of the Picard group of V.. Let M = (m; ;) in GL,(Z) be the matrix such
that

[Li] = ij,z'[Lj]-

In other words for each 7 in {1,...,t}, we may fix an isomorphism
t
i s QL™ = L,
j=1
But if Fy,..., E,, are one-dimensional vector spaces and ki, ...,k, integers
there is a canonical map

2 (B —{0}) - ®i-y Efik"
W15 sym) = @ity yP"
where for any vector space E of dimension one, and any non-zero y in E, y®~!

is the unique element of the dual EV of E such that y®~1(y) = 1. In that way,
composing with 1;, we get maps
t
pi: x LY = L'}
i=1
This map is equivariant for the action of G!, in the following sense:
t

t s
Y(er, o 2) € G (K), Yo € X LXK), pil(er,. o 209) = ]| 2P o).
= j=1
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Note that if p} is another map from x%_; L¥ to L' X with the same equivariance
property, then there is a section s € T'(V, G,,) such that

We x LYK, Ai) = srw) )

But, since V' is projective, I'(V, G,,) = K* and p; is unique up to multiplication
by a constant. The maps p; yield a map
t t
p: x LY — x Li”.
i=1 i=1
The matrix M defines a morphism of algebraic groups
M : G, - Gt
t mj i

(z1,-.520) = ([jor 25 " isise

and the map p is equivariant with respect to M:

V2 € GL(K), Vye x LY(K), plzy) = M()ply).

Moreover if p' is another map with the same equivariance property, then there
is z € G! (K) such that p' = z.p. Similarly we may define a map

t % t
T: X L; — X Ll-><
i=1 i=1

which is equivariant with respect to M~'. Thus the composite map
t t
Top: x L;* - x L
i=1 i=1
is equivariant with respect to the identity map and therefore coincides with the
action of an element of G! (K). Thus 7o p and p o 7 are isomorphisms. O

For arbitrary fields, a universal torsor may be described as a K-structure on
the above torsor. Let us define this notion more precisely:

Recall that there is a contravariant equivalence of categories between the
category of algebraic tori, that is algebraic groups T such that T is isomorphic
to G T and the category of Gal(K /K )-lattices, that is Gal(K /K)-modules
which are free abelian groups of finite rank. One functor is T — X*(T) =
Homalg.gp.(T, G.), and contrarily M — Spec(f[M])Gal(K/K).

Definition 8.2. Let the Neron-Severi torus, Tns, be the torus corresponding
to the Gal(K /K)-lattice Pic V.

If G is an algebraic group over K, then a G-torsor is a faithfully flat map
m: T — V with an action of G on 7T such that locally for the faithfully flat
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topology, T xy U ~ G x U, where the isomorphism is compatible with the
action of G. (In another language, these are principal homogeneous spaces.)

A Tng-torsor 7 — V is said to be universal if T — V is isomorphic as a
torsor to LY xy --- xy Ly = V.

Why are these universal torsors interesting? The following facts are due to
Colliot-Théléne and Sansuc, who introduced the notion of universal torsor.

Proposition 8.3 (Colliot-Théléne, Sansuc). With notations as above,

— For all x € V(K), there ezists a unique (up to isomorphism) universal
torsor w: T — V such that z € 7(T (K)).

— If K is a number field, there exist up to isomorphism only finitely many
uniwversal torsors w: T — V such that T(K) # 0.

This proposition gives us a nice decomposition of the set of rational points

VE)= || m(Ti(K)).

1<i<m

Slogan 8.4. From an arithmetical point of view, universal torsors should be
much simpler than the variety V.

A slogan does not need to be true, but we may justify this one with the
following statement:

Proposition 8.5 (Colliot-Théléne, Sansuc). If T¢ is a smooth projective
compactification of a universal torsor T — V, then T¢(Ak)B" = T¢(Ak). In
other words, there are no Brauer-Manin obstruction to the Hasse principle and
the weak approximation.

Exzample 8.6. Let V C PV a hypersurface over Q, dimV > 3, degV = d,
and N+1—d > 0, then the cone W C AN+ —{0} above V is up to isomorphism
the only universal torsor over V.

9. Toric varieties

The following construction is due to Cox. Let T' be an algebraic torus and
V be a smooth projective equivariant compactification of 7. This means that
there is an action of T on V', an open subset U C V, and an isomorphism from
U to T compatible with the actions of T'.
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Denote by ¥(1) the set of orbits of codimension 1 in V. Then there is an
exact sequence of Gal(K /K )-modules
0— X*(T) 2% "M 4 Pie(V) - 0
es — [Dy]
where D,, is the closure of the orbit ¢ in V, which is an irreducible divisor of
V. Moreover we have
w\jl = Z [Do]-

g€X(1)
By duality we get an exact sequence of tori
1—)TN5—>TE(1) l)T—)].

But T C V and we want to extend the map 7 to get a torsor over V. We do
this in the following way: We consider the affine space

A2(1) = SpeC((K[Xa]aezu))Gal(K/K))
and a closed subset F' C Ayy;), defined over K as a union of affine subspaces,

F= (ﬂ(x,:o)).

I1c=(1) g€l
Noer Do=0

Note that F is stable under the action of the Galois group, so it is defined over
K, sowetake T = Ay — F.
Claim 9.1. For all x € T(K), the map
TE(l) - T
tw(t) -z
extends to a map T — V sending 1 € Tx 1) to x.
Theorem 9.2 (Colliot-Théléne, Sansuc, Salberger, Madore)

The above construction gives a bijection between T(K)/Tx1)(K) and iso-
morphism classes of universal torsors over V.

We return now to the problem of counting points. We assume that K = Q,
that the action of Gal(Q/Q) on X*(T) and ¥(1) are trivial, and that wy,' is
generated by global sections.

Then we consider

M ={m € Z=W | VYo € £(1), my > 0 and p(m) = wy,' € PicV}.



COUNTING POINTS USING UNIVERSAL TORSORS 17

For all m € ., let X™ € Q[X,],ex1) be the corresponding monomial. We
lift the height to the universal torsor by

H((ya)UEE(l)) = Ssup |Xm((y<r)062(1))|‘
meA

Theorem 9.3 (Salberger [Sa|). There erists a height H relative to wy,* such
that Ny, (B) = N(B)/24mT~s  where N(B) is the number of (ys)sex1) in
Z=W) such that

H(y) < B,

VICX(1), ) Dy =0= ged(y,) =1.
oel oel

To prove Manin’s conjecture in that case one may then proceed as follows:
By use of a Moebius inversion formula, reduce to give an estimate

#{Wo)oen) € (@ - {0)"V | H(y) < B}.
and prove that, when B goes to +o0o this is equivalent to
~vol({Wo)senr) € RZM | H(y) < BY) ~ CB(log BV,

which proves the Manin conjecture in this case.

10. The plane blownup in 4 Points

The construction is due to Salberger and Skorobogatov. We consider in this
section the blowing up 7 : V. - P2 of P, = (1:0:0), P» = (0:1:0),
P;=(0:0:1), and P, = (1 : 1:1). The exceptional divisors on V are
E;5 = 7 Y(P;) and E; j, the strict pullback of the line through Pj, and P if
{i,7,k,1} = {1,2,3,4}. Then E; ; N Ex; = 0 if and only if {i,j} N {k,1} # 0.
Then we consider the Grassmannian variety Gr(2,5) of the planes in Q%; we
may imbed it into P(A2Q®). The cone above it, W C A%2Q?® is given by the
Pliicker relations:

X12X34 = X13Xo4+X14X23 =
X1,2X35 — X13X95 + X15X53
X12Xa5 — X1,4Xo5 + X15X04
X1,3Xa5 — X1,4X35 + X1,5X34
Xo3Xys5 — XoaXzs+ Xo5X34 =

Il
coooo
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Indeed the vector space A?Q® has dimension 10, with basis e; A e; if i # j,
giving coordinates X; ;. We consider the closed subset F' C W given by

F= |J ((Xij=0)n(Xge=0)
{1,530 {k,£}#0
and define 7 = W — F. There is an action G, C GL5(Q) on T, and T/G?,

is isomorphic to V and 7 — V is up to isomorphism the only universal torsor.
We put

M = {(mi’j) e Zliiti#i ‘ Zmi,jEi,j _ w‘_,l}

and for m € .4, X™ € Q[X; ;]iz;. Then we may lift the height using

H((yi;)) = sup [X™(y)|.
meH

Proposition 10.1 (Salberger). There is a height H relative to w;' such
that Ny,g(B) = N(B)/24mINs where N(B) is the number of (y; ;) in W(Z)
such that

H(yi;) < B,
{7’3.7} n {k7l} ;é @ = ng(y’i,jayk,l) =1

This description, which was made by Salberger to get an upper bound on
the number of points of bounded height, was the first step of the proof of the
empirical formula (F) which was given by de la Bretéche in [Bre2].

11. Generalization

As was shown in [Pe2]| and [Pe3], it is possible to generalize the lifting
described in sections 7, 9, and 10 to a more general setting. The first remark
which enables this generalization is the fact that universal torsors are equipped
with a gauge form:

Proposition 11.1. If V is a Fano variety over K, and T a universal torsor
over 'V, then

— the canonical bundle wr is trivial,
- I(T,Gp) = K*.

As usual, a gauge form yields a measure:
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Definition 11.2. Up to a constant, there exists a unique non-vanishing sec-
tion of the canonical line bundle. Let &7 be such a section. This section defines
for any place v of K a measure w7, on 7 (K,) which is locally defined by

0 o
Wroy={=— A A=—,07 )| dr1 ... dTNy
’ ox1 ornN ’ ’
where (z1,...,zn) is an analytic local system of coordinates on 7(K,) for
v-adic topology. We then define a canonical measure on [[,cq, 7 (Ky) by
1
wrT = T —amT H WT v
VdK " vEQK

Remarks 11.3. (i) If V is a hypersurface in P”, the measure w, coincides
with the classical Leray measure on T (K,).

(ii) The measure w7 does not depend on the choice of the section w7

(iii) The volume w7 ([],cq, 7 (X)) is infinite, but if S C Qk is a finite set
of places containing the archimedean ones and J a model of T over the ring
of S-integers s, then the product [[,cq, _swW7T,:(Z(0y)) converges.

Let 71,...,7, be torsors representing all isomorphism classes of universal
torsors over V having a rational point. It is then possible to construct families
of integrable functions ¥; ; g : [[,cq, 7 (Ks) = R such that upper bounds
for the difference

> Uisnly) - / U ;8y)wr
V) L T
yield an upper bound for the difference
|Nu,i(B) — 0r(V)B(log B)* ™.

The liftings described in the previous sections may be seen as particular case
of this descent argument.

I am very grateful to John Voight who typed the notes of my talks at the american
Institute of Mathematics on which this survey is based.
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