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Introduction

Let X be a smooth projective surface over an algebraic number field &, and
denote by X (k) its set of k-rational points. Let k be an algebraic closure of
k and X = X x k. If Pic(X) is finitely generated and torsion free, Colliot-
Théléne and Sansuc [CT/S1,2] have established a theory of descent, which
associates to X a finite set of auxiliary objects, universal torseurs. These are
simpler arithmetically than X, in that there is no Brauer-Manin obstruction
to the Hasse principle for the algebraic part of the Brauer group of a smooth
compactification of such a universal torseur (see below for more details and
definitions). The images of the rational points of the universal torseurs via
structure morphisms to X give a finite partition of X (k). This works well
in a large number of cases for surfaces of geometric genus zero. For exam-
ple, if X is a surface that becomes birational to the projective plane over
k, the theory has led to a much greater understanding of the arithmetic of
X, and in some examples, an almost complete solution to most diophantine
problems (see e.g. [CT/S/SwD] and [Sk2], §7).

On the other hand, we have little general understanding of the arithmetic of
surfaces of positive geometric genus. In particular, we don’t know very well
the role played by the “transcendental” part of the Brauer group in the ex-
istence and distribution of rational points. Is the Brauer-Manin obstruction
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to the Hasse principle the only one for any geometrically simply connected
surface? If a K3 surface X has a k-rational point, does it have infinitely
many, and is X (k) Zariski dense in X? For a surface X of general type,
are almost all of the rational points in the images of the k-rational points
of finitely many rational maps to X from abelian and rational varieties? If
U denotes the complement of the images of these maps, is U(L) finite for
all number fields L (Bombieri-Lang conjecture)? See e.g. ([HiSi], Part F.5,
Conjectures F.5.2.1 and F.5.2.2) for more precise statements of the conjec-
tures. For K3 surfaces, see [BM] for conjectures on the growth of rational
points of bounded height, and [BT1,2] for some results on the density of
rational points.

The purpose of this paper is to establish a formal framework that we hope
will lead to a better understanding of the arithmetic of a (geometrically) sim-
ply connected surface X of nonzero geometric genus. Our theory associates
to X a conjecturally finite set of auxiliary objects that are not schemes, in
general. Rather, they are gerbes which are bound by the second étale co-
homology group of X with Z/nZ(2)-coefficients. The images of the rational
points of these objects via the structure morphisms to X partition X (k),
and we expect, but cannot show at the moment, that they are “simpler”
than X, in terms of the Brauer-Manin obstruction to the Hasse principle.
We have also not made much progress in describing these gerbes in terms of
explicit “equations,” so that they may be computationally useful. Nonethe-
less, we hope that this note might inspire others to go further, and we believe
that K3 surfaces of geometric Picard number 20 provide a promising class
of varieties for computation. We develop the theory in some detail in this
case below. For surfaces of general type, we hope that our theory might
eventually yield some insight into the Bombieri-Lang conjecture, but this is
probably a long way off.

The exposition here is a bit uneven, in that some proofs are given in quite a
bit of detail, while others are only sketched or omitted. Complete details as
well as more examples will be given elsewhere, but we hope what is written
here will give the reader a good idea of how the theory should work.
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gerbes could be useful in this theory and are reasonable algebro-geometric
objects was inspired by the work of Harari and Skorobogatov (see [HS] and
[Sk2]). Harari [Ha] was also the first person to consider obstructions to the
Hasse principle for the transcendental part of the Brauer group. We thank
E. Peyre and N. Yui for helpful discussions. This paper was completed while
the first author enjoyed the hospitality of Université de Paris-Sud, Institut
Fourier (Grenoble) and Université Denis Diderot (Paris 7). The audience in
the first author’s course on this material in Grenoble listened patiently as
he explained some rather raw material. Finally, we thank B. Poonen and Y.
Tschinkel for organizing and giving us the opportunity to present this work
at this excellent conference, and the American Institute of Mathematics for
providing a very stimulating atmosphere.

1 Notation and Preliminaries

Let k be a field and X a smooth, projective, geometrically connected variety
over k. We denote by k a separable closure of k, by G the absolute Galois
group of k and X = X x; k. We will say that X is geometrically simply
connected if 7"9(X) = {1}. When we assume this condition, we really only
need that the abelianized fundamental group of X is trivial. Let £ be a prime
number different from the characteristic of k. We denote by Z/¢™Z(r) the

étale sheaf Z/¢™Z Tate-twisted r-times.

The notation Br(X) will be used for the cohomological Brauer group, H2 (X, G,).
The Hochschild-Serre spectral sequence:

EY’ = H' (k,H*(X,Gp)) = H (X, Gp,)

gives an exact sequence:

(1.1) Br(k) — ker[Br(X) — Br(X)] 5 H'(k, Pic(X)) — H3(k, Gn).

The group ker[Br(X) — Br(X)] is called the algebraic part of the Brauer
group. If k is a number field, then H3(k,G,,) = 0, and so the map f is

surjective. The image of Br(X) in Br(X) will be called the transcendental
part of the Brauer group. Of course, this is a quotient of Br(X).



For A an abelian group and ¢ a prime number, we denote by A{¢} the /-
primary part of A and A[£"] the subgroup of A of elements killed by ¢". The
{-Tate module of A is lim A[£"] and will be denoted T;(A). If A is either a

n
finitely generated Z;-module or an £-primary torsion module of finite cotype,
we denote by A* the Pontryagin dual of A. We denote by Div the maximal
divisible subgroup of an /-primary torsion module of finite cotype.

If X is smooth and projective over an algebraically closed field, we denote
by NS(X) the group of divisors modulo algebraic equivalence. This is a
finitely generated abelian group. If X is simply connected, then this group
is equal to the Picard group, Pic(X). By the geometric Picard number of X
over an arbitrary field k, we shall mean the rank of the Néron-Severi group
of X. By the geometric genus of a smooth projective surface X over k, we
mean the dimension of the k-vector space of global holomorphic 2-forms on
X.

If k is an algebraic number field of finite degree over Q, we denote places of
k by v, the completion of k at such a place by k, and Ay the ring of adeles
of k. If S is a finite set of places of k, we let Gg denote the Galois group
of a maximal extension of k that is unramified outside S. If X is a variety
over k and we are speaking of the /-adic étale cohomology of X, then S will
always contain the archimedean places, the places above £ and the places of
bad reduction of X.

We shall denote by CH*(X) the group of codimension i-cycles modulo ra-
tional equivalence; when 7 = dim(X), we denote this group by CHy(X) and
by Ag(X) the subgroup of zero-cycles of degree zero.

It will be helpful for the reader to have some familiarity with the theory
of descente of Colliot-Thélene/Sansuc (see [CT/S1,2] and [Sk2]), but in the
next section, we will quickly review their theory.

2 Rapid review of the theory of Colliot-Thélene-
Sansuc

The basic references for this section are [CT/S1,2] and [Sk2]. Let X a

smooth projective surface such that Pic(X) is torsion free, let S be the



Galois module whose group of characters is Pic(X), and put Sx = S x; X.
Recall the fundamental exact sequence of descente (see Théoréme 1.5.1 of
[CT/S2)):

0— H'(k,S) —» H'(X,S) S5 H'(X,S)® & H2(k,S) —» H2(X,S) — ---.

As shown by Harari-Skorobogatov ([HS], Proposition in Appendix B and
[Sk2], Proposition 2.3.1), this can be obtained from the exact sequence of
terms of low degree for the Hochschild-Serre spectral sequence:

H"(k,H*(X,S)) = H""%(X, S).

We have that H'(X,S)¢ = Endg(Pic(X)). A universal torseur is an ele-
ment of H'(X,S) whose image via x is the identity map of Endg(Pic(X)).
The image of the identity map in H?(k, S) via 0 in the exact sequence above
is called the elementary obstruction. It is proved in ([CT/S2], Théoreme
2.1.2(a)) that the Picard group of a smooth compactification 7¢ of a uni-
versal torseur is a permutation module. Hence, by the exact sequence (1.1)
of §1, the algebraic part of the Brauer group is reduced to the image of
the Brauer group of k. Thus there is no Brauer-Manin obstruction to the
Hasse principle for the algebraic part of the Brauer group on 7¢. Colliot-
Théléne/Sansuc also derive explicit equations for the restriction of the uni-
versal torseurs to suitable open subsets of X ([CT/S2], Théoreme 2.3.1 and
[Sk2], §4.2, p. 71 and §4.3), and they interpret the Brauer-Manin obstruction
to the Hasse principle in terms of the universal torseurs ([CT/S2], Théoréme
3.5.1; see also [Sk2], §6.1).

If the geometric genus of X is zero, then we have that Pic(X)/n = H%(X,Z/nZ(1))
and S[n] = H%(X,Z/nZ(2)). We in effect take S[n] instead of S as the point

of departure for our theory for surfaces of nonzero geometric genus, because

in this case there is no group-scheme S such that S[n] = H?(X,Z/nZ(2))

for all n. This is the fundamental reason why gerbes are required instead of
torseurs.

It is somewhat tedious but straightforward to verify that we can recover the
theory of [CT/S1,2] for surfaces of geometric genus zero using our theory
below, although for the applications in those papers our theory is much
clumsier.



3 The Homological Algebra of Descent

In this section, we outline the homological algebra needed to set up the
general theory of descent. Let

p: X — Speck
be the structure morphism. If Y is another geometrically integral k-variety,
let:

qg: X x, Y - X

be projection onto the first factor. Consider the Leray spectral sequence:

EY® = H' (X, R°¢,Z/nZ(2)) = H™t*(X %}, Y,Z/nZ(2)).

Assume now that Y is proper over k. Then by the proper base change
theorem, the stalk of R°q,Z/nZ(2) at a geometric point T € X is equal to
the étale cohomology group

H (Y xx %, Z/nZ(2)).

By the smooth and proper base change theorem, this sheaf is locally con-
stant, represented by H*(Y,Z/nZ(2)).
Let

HY (X x1Y,Z/nZ(2))° = ker[HY (X %Y, Z/nZ(2)) — H°(X, R'q.Z/nZ(2))].

Now assume that Y is a smooth, proper, geometrically connected and simply
connected surface over k. Then from the spectral sequence, we get a map:

HY(X x4 Y,Z/nZ(2))° — H*(X, R’q.Z/nZ(2)).
Consider the cycle map:

CH*(X x,Y)/n — H*X % Y,Z/nZ(2));

Let CH2(X x4 Y)? denote the inverse image of H*(X x Y, Z/nZ(2))°. We
denote by ¢z 2 the composite map

coo: CH*(X xx Y)/n — HYX x Y,Z/nZ(2))" — H*(X, R?q.Z/nZ(2))

Now take Y = X in this discussion. Then from the Kiinneth formula (see
e.g. [Mi], Ch. Vi, Lemma 8.7), we get:



Lemma 1
H*(X,R%q,Z/nZ(2)) = End(H*(X,Z/nZ(1))).

Definition 1 A universal n-gerbe is an element of H*(X, R2q.Z/nZ(2)),
which is in the subgroup generated by the image of co2 and the image of
H?(k,R%q,Z/nZ(2)), and whose image in H*(X, R?q,Z/nZ(2)) via the nat-
ural map s the identity endomorphism. A universal £-adic gerbe is an in-
verse system of universal £™-gerbes Gym .

For some basic notions about gerbes, see the Appendix to this paper, and
for more details, see ([Mi], Ch. IV, §2 and [L/MB]|, §3). Note that since X
and Y are geometrically simply connected, the kernel of the map:

H*(X,R?q,Z/nZ(2)) - H*(X, R*q.Z/nZ(2)),

is the image of H?(k, H%(X,Z/nZ(2))). Thus the set of universal n-gerbes is
either empty or a principal homogeneous space under the image of H2(k, H2(X,Z/nZ(2)))
in H2(X, R%q,.Z/nZ(2)).

Let Ger(X,k,n) be the set of universal n-gerbes. If this is nonempty, then
we have a pairing:

X (k) x Ger(X,k,n) — H*(k, H*(X,Z/nZ(2)))

(Pag) l_>gPa

where Gp denotes the pullback of G via the inclusion P — X. We have
that Gp = 0 if and only if P € pgG(k), where pg : G — X is the
structure morphism. Assume there is a universal n-gerbe, G. For a €
H?(k, H*(X,Z/nZ(2))), let G, be the universal n-gerbe whose class in
H?(X,R%q,Z/nZ(2)) is given by [G] — . Then we have:

X(k) = L] PG, Ga(k)-

a€H?(k,H*(X,Z/nZ(2)))

If k is a number field, then this disjoint union should be finite and bounded
independently of n, and we will show this below for K3 surfaces of geometric
Picard number 20.



3.1 The elementary obstruction

An obstruction to X having a rational point is it having a universal n-gerbe
for all n. If X has a k-rational point, then the class of the diagonal in
CH?(X Xy X) can be modified by subtracting the class of X x P, where
P € X(k), to give a class in H%(X, R?q.Z/nZ(2)) that gives the identity

map in

H?*(X,R%q,Z/nZ(2)) = End(H*(X,Z/nZ(1))).

The same can be done if X has a zero-cycle of degree one. But it is not true,
in general, that X has a universal n-gerbe, and we call this the elementary
obstruction.

Lemma 2 Fvery section
j: Br(X)[n] — Br(k)[n]
to the natural map:

Br(k)[n] — Br(X)[n]

determines a unique universal n-gerbe G with the property that the image of
G under the map

H*(X,R%q,Z/nZ(2)) — H*(k, R%q,Z/nZ(2))

1s trivial. Conversely, a universal n-gerbe determines such a section.

Unfortunately, we have not been able as of yet to compute the elementary
obstruction very effectively. We believe strongly that it should be described
by the G-extension class of the exact sequence obtained from the Gersten-
Qullen complex:

0 — HY(X,Ks) — @ k(z)* [[K:k(X)/H*(X,K2)] = € Z — CH*(X)
(EEYZ

While it is expected that for & a number field and X geometrically simply

connected over k, C H?(X) = 7Z, this is not known for one single surface of

positive geometric genus. Nonetheless, since A¢(X) is uniquely divisible in

this case (Roitman theorem [Ro]), we have:

— 0.



Ext%(CH*(X),H' (X, Ky)) = Exti(Z, H (X, Ky)),

and so the elementary obstruction should be an element of H?(k, H' (X, Ks)),
which can be regarded as an element of H?(k, H*(X,Q/Z(2)), since

Hl(ya }C2)tors = HQ(Ya Q/Z(Q))

, and the torsion free quotient of H!(X, K3) is uniquely divisible (see [CT/R],
Theorems 2.1 and 2.2 for basic results about the structure of Ka-cohomology).

Note that when X has geometric genus zero and is geometrically connected,
it follows from ([CT/R], Theorem 2.12) that the map:

NS(X) Rz E* — HI(Y, ’CQ)
is injective with uniquely divisible cokernel, and S(k) = NS(X)®k& . Thus

H%(k,S) = H*(k, H (X, K2)),

and our proposal for the elementary obstruction would generalize that of
Colliot-Théléne and Sansuc.

Now suppose the elementary obstruction is trivial everywhere locally. Then
a diagram chase, using the fact that the map:

H?(k, Br(X)(1)) — D H*(ky, Br(X)(1))

is injective ( [J1], Theorem 3d)), would then show:

Proposition 1 Assume the elementary obstruction lies in H?(k, H*(X,Q/Z(2)))

as explained above, and that it vanishes on X, for allv. Then the elementary
obstruction for X lies in the group:

ImfNIma,

where

H2(k, Pic(X) ® Q/Z(1)) & @ H2(ky, Pic(X) ® Q/Z(1))
is the localization map, and

D H' (ky, Br(X)(1)) > @ H’ (k, Pic(X) ® Q/Z(1))



is the boundary map in the Galois cohomology sequence for the exact se-

quence of Gal(ky/ky)-modules:

(¥%) 0 = Pic(X) ® Q/Z(1)) = H*(X,Q/Z(2)) — Br(X)(1) = 0.

Remark 1 It should be possible to reformulate the theory using the group
H}(X,R'q.K2). We should have an injection:

HL(X,R'q.Ks)/n — H*(X,R*q,Z/nZ(2)),

but we have been unable to prove this.

4 The Tate conjecture and the Brauer group

Let X be smooth and projective over a field k£ that is finitely generated over
its prime subfield. Denote by (7}) the statement that the divisor class map:

Pic(X) ®z Q¢ — H*(X, Qe(1))¢

is surjective (the Tate conjecture for divisors). Note that this has been
proved for abelian varieties by Faltings [Fa], and together with the Kuga-
Satake construction ([KS]; see also [De]), this implies that (7}) is true for
any ¢ for K3 surfaces over a field of characteristic 0. Note also that the
statement (T}) is trivial for varieties X for which Br(X) is finite, which is
the case for surfaces of geometric genus zero. This is why (7) does not

figure into the theory of Colliot-Théléne/Sansuc.

Proposition 2 Let X be a geometrically simply connected surface over k
as above, and assume statement (Ty) is true. Then Br(X){¢}/Br(k){{} is
a finite group. If (Ty) is true for every £ and there exists a smooth special-
1zation Y of X modulo a place of k with the same geometric Picard number
as X and for which (Ty) is true for some £ for Y, then the whole group
Br(X)/Br(k) is finite.

Sketch of Proof: This follows easily from the following facts

(i) The simple connectivity of X and the Hochschild-Serre spectral se-
quence give an isomorphism:

H*(X,Qq/Z(1))/H? (k, Qu/Ze(1)) = H*(X, Qu/Ze(1))C.

10



(ii) If (Ty) is true, then Br(X){¢}/Br(k){¢} is the quotient of H?(X, Qy/Z¢(1))¢
by its maximal ¢-divisible subgroup, which is given by the image of
NS(X) ® Qu/Zy.

(iii) The cohomology sequence of the Kummer sequence for the étale topol-
ogy identifies the quotient

[H?(X,Qe/Z(1))/H? (k, Qe/Ze(1))]/NS(X) @ Qu/Zy
with Br(X){¢}/Br(k){¢}.

(iv) If (T}) is true for all £ and there is a smooth specialization Y of X
modulo a place v of k with the same Picard number for which (7})
is true, then Tate has shown ([Ta], Theorem 5.2) that (7}) is true
for every £ # char F,, and the whole prime-to-char F,-part of the
Brauer group of Y is finite. Comparing the fixed modules of Br(X)%
with Br(Y)Gal(Fv/F) yging the Kummer sequence and the smooth and
proper base change theorem and the fact that the (co)-specialization
map:

Br(X) — Br(Y)

is an isogeny on prime to char F,-parts because the Picard numbers
are the same, we get the finiteness of the prime to p = char F,-part of
Br(X)/Br(k). Since (Tp) is true, we get finiteness of Br(X){p}/Br(k){p}-
This completes the proof of the proposition.

Proposition 3 (Shioda-Inose [SI]) Let X be a K3 surface over C of Picard
number 20. Then X is defined over a number field, and may be realized as a
double cover of the Kummer surface associated to the abelian surface E x E',
where E, E' are isogenous elliptic curves with complex multiplication.

Theorem 1 Let X be a K3 surface of geometric Picard number 20 over
a field k that is finitely generated over the prime subfield. Then the group
Br(X)/Br(k) is finite.

Proof: By the Shioda-Inose theorem, there are isogenous CM elliptic curves
E and E’ such that X is a double cover of the Kummer surface Y of E x E'.
Since the Picard numbers and second Betti numbers of Y and X are the
same, the natural map:

11



Br(X) — Br(Y)

is an isogeny, with kernel killed by 2. Since (T%) is true for X, Br(X){2}/Br(k){2}
is finite, and it will then suffice to prove that the prime to 2 part of Br(Y")/Br(k)

is finite. Let K be the CM field of E and let p be a prime ideal of k with
residue field F, for p an odd prime number. Then E and E’ have good
ordinary reductions E, and E{, modulo p. The Picard number of the Kum-

mer surface Y, associated to E, x E'fp is 20, and since this is ordinary, the
Tate conjecture is known (see [Ny] or [NO]). By Proposition 1, we then get
finiteness of Br(Y)/Br(k). This completes the proof.

Remark 2 Using results of Morrison [Mo], some of the results of this sec-
tion can be extended to some K3-surfaces of geometric Picard number 19.

5 Universal gerbes and the higher Abel-Jacobi map-
ping
Assume that X has a universal n-gerbe, G. Then we can define a map:
6g : CHy(X) — H*(k,H*(X,Z/nZ(2)))

by sending a rational point P € X (L) to corp/Gp, and extending by lin-
earity. Here

corry  H*(L, H*(X,Z/nZ(2))) — H*(k, H*(X,Z/nZ(2)))

is the corestriction map. If we restrict this map to Ag(X), then it is inde-
pendent of the choice of G, since if we chose another one, say G — «, the «
will cancel out after taking the difference between two cycles of the same
degree.

Recall the higher Abel-Jacobi mapping [R]: the Hochschild-Serre spectral
sequence

H"(k,H*(X,Z/nZ(2))) = H""*(X,Z/nZ(2))

and the geometric simple connectivity of X allow us to define a map:

dop: Ao(X) — H?*(k, H*(X,Z/nZ(2))).

12



The proof of the following proposition is hypertechnical, and we will give
it elsewhere. It uses the explicit description of dy, in terms of certain 2-
extensions obtained from the long exact sequence of cohomology of support
in a codimension 2 cycle (see [J2]).

Proposition 4 If X is geometrically simply connected, the map Og, re-
stricted to Ag(X), is the same (up to sign) as the higher Abel-Jacobi mapping
dap.

Now take n = £™, a power of a prime number /. We can then consider the
higher Abel-Jacobi mapping in continuous ¢-adic étale cohomology (see [R]
for this mapping with Qg-coefficients; the geometric simple connectivity of
X allows us to define it with Z-coefficients using the same arguments as
used above for Z/nZ-coefficients):

doe: Ao(X) = H?(k, H* (X, Z(2))).

Proposition 5 The image of day is a finitely generated Zy-module (which
is conjecturally torsion).

Proof: This follows easily from the fact that for a suitable finite set of
places S of k, we can factor dy, through H?(Gg, H*(X,Z(2))) (see §1 for
notation), and this group is a finitely generated Zg-module.

Theorem 2 If X is a K3 surface of geometric Picard number 20 over Q
or K (the CM-field of the elliptic curves in the Shioda-Inose theorem), then
the image of the higher £-adic Abel-Jacobi mapping da 4 is finite for all £ and
zero for almost all £.

Sketch of Proof: As in the proof of the last result, we are reduced to the
case of a Kummer surface X associated to the product A of two isogenous
CM elliptic curves. Now the map

Br(X) — Br(4A)
is an isogeny, with kernel killed by 2, as one can see by comparing the Picard
numbers (4 for A, 20 for X) with the second Betti numbers (6 for A, 22 for
X). Thus it suffices to prove the result for A. In this case, the statement
follows from work of Wiles [W] and Dee [D] on the finiteness of the Selmer
group of the symmetric square of a CM elliptic curve. This completes the
proof of the theorem.

13



6 Geometric interpretation of the Brauer-Manin
obstruction

Let X be a geometrically integral variety over a number field k, and assume
that for every place v of k, X has rational points in k,. If A € Br(X) and
P, € X(ky), let Ap, denote the pullback of A via the morphism:

P, : Speck, - X

determined by the point P,. Let inv, : Br(k,) — Q/Z denote the ho-
momorphism giving the invariant of a central simple algebra, which is an
isomorphism for v non-archimedean and an injection onto the subgroup of
elements of order 2 in Q/Z for v real. Let T be a subgroup of Br(X)
containing Br(k), and let

X(Ap)" ={(P,) e [[ X(ky) :VAE T, inv,Ap, = 0}.
v v
The Brauer-Hasse-Noether theorem implies that:
X (k) C X(Ag)".
If T = Br(X), we will denote this set by X (A)5".

We will say that X is a counterezample to the Hasse principle if X (Ay) # 0,
but X (k) = (), that there is no Brauer-Manin obstruction for T to the Hasse
principle for X if X(A)T # 0, and that X is a counterezample to the Hasse
principle ezxplained by the Brauer-Manin obstruction if X (Az)P" = (.

Theorem 3 Let X be a smooth projective geometrically simply connected
surface over an algebraic number field k. Let £ be a prime number, and
assume

(i) X(Ag) #0
(ii) There is no elementary obstruction to the existence of an ¢-adic gerbe.
(iii) The Tate conjecture for divisors (Ty) is true (see §4).

Then there is no Brauer-Manin obstruction for Br(X){£} if and only if there
exists a universal £-adic gerbe with rational points in every k.

14



Proof: This proof is similar in outline to the one in ([CT/S2], Théoréme
3.5.1), except we replace Tate-Nakayama duality with Poitou-Tate duality.
By Poincaré duality, we have a nondegenerate pairing:

H*(X,Z4(2)) x H*(X,Qu/Z¢(1)) = H*(X,Qu/Ze(3)) = Qu/Ze(1).

By Lemma 2, the vanishing of the elementary obstruction gives us a section
of the natural map Br(k) — Br(X) and a universal gerbe, G, that is trivial
on that section.

Let S be a finite set of places of k including the archimedean places, the
places above £ and the bad reduction places of X. By the Poitou-Tate global
duality theorem, we have an exact sequence:

- HY(Gs, HA(X,2,(2))) = [[ H*(Go, H*(X,Z,(2))) & H(Gs, HX(X,Qe/Z4(1)))* — 0.
vES

The map p is derived from the perfect pairings:

H? (ky, H*(X, Z(2))) x H° (ky, H*(X, Qe/Z4(1))) — H? (kv, Qe/Ze (1))
by taking the sum of the invariants. Consider the following diagram:
[Tves X (kv) x [lves Br(Xy) —  Br(ky)
\ T
Moes H?(ko, H*(X,Z¢(2))) % Tloes H(ko, H(X,Qe/Ze(1)))  — Br(ky).

The map on the left is given by g, (see §5), where G was fixed at the
beginning of the proof here. The map on the right is the surjection

H*(X,Qu/Z(1))% & H*(Xy, Qe/Ze(1))/H? (ko, Qe/Ze(1)) — Br(X,){£}/Br(k,){¢}

explained in the proof of Proposition 1, followed by the map

Br(X,){¢}/Br(k,){£} = Br(X,){¢}

that we get from the universal £-adic gerbe, G, and Lemma 2. This diagram
is commutative.
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Now suppose there is no Brauer-Manin obstruction for Br(X){¢}, and let
(Py,) be a family of points such that

Z invy Ap, =0
v

for all A € Br(X){¢}. Since Br(X){¢}/Br(k){£} is finite, by enlarg-

ing S, if necessary, we may assume that there is a smooth proper model

Xs of X over the ring of S-integers of k¥ and a surjection Br(Xs){¢} —
Br(X){¢}/Br(k){¢}. Then the Poitou-Tate exact sequence above and com-
mutativity of the diagram show that the family (6g, (P,)) € [T,es H*(Gv, HA(X, Z¢(2)))
comes from an element o of H?(Gg, H?(X,Z¢(2))). Let G be the universal

/-adic gerbe that was fixed at the beginning of the proof and let o be the

image of o in H?(k, H*(X,Z(2))) Then the universal gerbe G,/ with class

G — ' has the property that (G, P,) = 0 for all v, so that G, has points
everywhere locally, as desired.

For the other direction, if there is a universal gerbe G 4 X with points every-
where locally, then choosing a family (P,) € G,(k,), we have 0g(q(P,)) =0,
so this element pairs to zero with any A € Br(X). Thus (P,) € X (Ay)5 {8,
This completes the proof of the theorem.

Remark 3 (i) Theorem 3 is a much weaker analogue of Proposition 3.3.2
and Théoréme 3.5.1 of [CT/S2], which prove the result without assum-
ing the existence of a universal £-adic gerbe (universal torseur in their
situation). We hope to be able to remove this assumption, but we have
had trouble expressing the elementary obstruction (see §2.1 above) in
terms of other computable cohomological invariants.

(1i) We hope that this theorem may lead to other obstructions to the Hasse
principle. For the theorem effectively allows one to replace the Brauer-
Mamnin obstruction by the existence of an auziliary algebro-geometric
object that must have rational points everywhere locally. Using ana-
logues of the homological algebra developed in §1 above, one can define
other auxiliary objects associated to higher cohomology groups of va-
rieties of higher dimension. For example, let X be a threefold in P*.
Then since Br(X) is the image of Br(k), there is no Brauer-Manin
obstruction to the Hasse principle. However, there is still the inter-
esting cohomology group H3(X,Z/nZ(3)). One can define the notion
of “universal 3-gerbe” associated to this group using similar formalism
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as used above, and this can be used to formulate an obstruction to the
Hasse principle, that there should be one such with points everywhere
locally. This sounds rather abstract, but maybe it could be made more
concrete in some cases.

7 Descent on curves

If X is a smooth projective curve over a number field, we can develop a sim-
ilar theory using H'(X,Z/n(1)). In this case, we are dealing with principal
homogeneous spaces over X under the group-scheme J[n], where J is the
Jacobian of X, and these are parametrized by J(k)/n. As pointed out to us
by Skorobogatov, these are related to the heterogeneous spaces of Coombes-
Grant [CG]. The elementary obstruction is an element of H?(k, H' (X, Z/n(1)))
given by the class of the 2-extension:

0 — HYX,Z/n(1)) = E(X)"/n — Div(X)/n ™ Z/n — 0

that is obtained by reducing the exact sequence:

0 — k(X)*/E" — Div(X) — Pic(X) = 0
modulo n, using the fact that J(k) is divisible. If the genus of X is greater
than one, the universal torseurs will be of higher genus than X, and seem-
ingly more complicated. It should be the case that the Brauer-Manin ob-
struction to the Hasse principle is simpler on these spaces than on X, but we
cannot prove this. See [Sk] §6.2 for more on descent on curves and abelian
varieties.

8 Concluding Remarks

Our theory above suffers from two major shortcomings:

(i) We are not able to show that the Brauer-Manin obstruction on a uni-
versal n-gerbe is “simpler” than on X, and we cannot even say at the
moment what “simpler” should mean. Even in the case of curves of
genus at least two, we face a similar problem.
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(ii) We have also not been able to describe the universal n-gerbes in terms
of explicit local “equations.” In this case, we have some idea of what
form this might take, but have not been able to describe these explic-
itly in any concrete examples. Briefly, our idea is to replace a suit-
able Zariski open set U in the theory of Colliot-Théléne/Sansuc (with
Pic(U) = 0) with a quasi-finite étale morphism U — X which splits
the n-torsion of the Brauer group of X. We can write a diagram sim-
ilar to the one in ([CT/S2], 1.6.10), but we have not been able to find
explicit “equations” to describe the universal n-gerbes. If the Galois
group acts trivially on H%(X,Z/n(2)), we can describe them as fol-
lows: the universal torseur associated to S = Hom(Pic(X), G,,) may
be described by taking line bundles £; that form a basis of Pic(X),
removing their zero sections and taking the product. Thus we need
to describe the universal gerbe bound by Br(X)[n](1). This may be
done as in ([Mi], Ch. IV, §2) by taking a spanning set of elements of
Br(X)[n], describing them as gerbes as in the Appendix below, remov-
ing their zero sections and taking the product. It is a great challenge
to be able to describe them in a more arithmetic situation, as is needed

here.

Appendix

In this appendix, we briefly recall the definition of stacks and gerbes. We
pick and choose material from the books of Milne ([Mi], Chapter IV, §2, p.
144-45) and Laumon/Moret-Bailly ([L/M-B], §§1-3). Let ¢ : F — (C/X)E
be a functor from a category to the underlying category of a site. For our
purposes, this site will almost always be the big étale site. Given an object U
of (C/X)E, we denote by F'(U) the category consisting of objects u of F' such
that ¢(u) = U and morphisms f between such objects that cover the identity
morphism of U. Given a covering U; % U and an element of F(U), we get
via g} elements of F'(U;) which agree on F(U; x U;) and satisfy the cocycle
condition on three-fold fibre products. If any family F(U;) satisfying these
condition arises from such an element of F(U), and if for any uq,us € F(U),
the functor:

(V EN U) = Hompy(g u1, 9" u2)

is a sheaf, then ¢ is a stack (champ). It is a gerbe if it is a stack of groupoids,
there is a covering U; of U such that each F(U;) is nonempty, and if any
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two objects of F(U) are locally isomorphic. A gerbe is bound by an abelian
sheaf F if for any object U of C/X and any u € F(U), we have

FU) = AutF(U) (u).

A basic theorem of Giraud is that the set of gerbes bound by an abelian
sheaf F up to equivalence is isomorphic to the second cohomology group
H*(Xg,F).

In ([L/MB], Définition 3.1.5), a gerbe is defined to be a stack of groupoids

G with a structure morphism G é) X such that both A and the diagonal
morphism:

GxXax,40

are epimorphisms.

Any scheme X is a stack and a gerbe for the Zariski topology via the sheaf
Hom(—, X) it represents. Thus a stack for the étale topology may be vaguely
(but incorrectly) regarded as a “scheme for the étale topology.”

Description of the Brauer group in terms of gerbes

The group H?(X, G,) has a nice description in terms of the gerbes it clas-
sifies (up to equivalence). This may be done as follows (see [Mi], Ch. IV, §2,
p. 145): let A be an Azumaya algebra on X. For U étale over X, let F(U)
be the set of pairs (E, «) where E is a locally free sheaf of Oy-modules and
a: A(U) — Endy(F) is an isomorphism. Then descent theory shows that
this is a stack, and the definition of an Azumaya algebra (see e.g. ibid. Ch.
IV, §2, 2.1) shows that it is a gerbe. It is bound by Gy, since the map

G (U) = Auty(E, )

that sends an element a of G, (U) to multplication by a is an isomorphism.

19



References

[BM]

[BT1]

[BT2]

[CT]

[CT/R]

[CTS1]

[CTS2]

[CT/S/SwD]

[CG]

[D]
[De]

[Fa]

V. Batyrev and Y. Manin, Sur le nombre des points rationnels de
hauteur borné des variétés algébriques, Math. Annalen 286 (1990)
27-44

F. A. Bogomolov and Yu. Tschinkel, On the density of rational points
on elliptic fibrations. J. Reine Angew. Math. 511 (1999), 87-93.

F.A. Bogomolov and Yu. Tschinkel, Density of rational points on
elliptic K3 surfaces. Asian J. Math. 4 (2000), no. 2, 351-368

J.-L. Colliot-Thélene, Hilbert’s Theorem 90 for K5, with application
to the Chow groups of rational surfaces. Invent. Math. 71 (1983), no.
1, 1-20

J.-L. Colliot-Théléne and W. Raskind, Ks-cohomology and the second
Chow group, Math. Annalen 270 (1985) 165-199

J.-L. Colliot-Théléne and J.-J. Sansuc, La descente sur les variétés
rationnelles, in Journées de Géometrie Algébrique d’Angers, Juillet
1979/ Algebraic Geometry, Angers, 1979, pp. 223-237, Sijthoff & No-
ordhoff, Alphen aan den Rijn—Germantown, Md., 1980

J.-L. Colliot-Théléne and J.-J. Sansuc, La descente sur les variétés
rationnelles IT, Duke Math. Journal 54 (1987) 375-492

J.-L. Colliot-Thélene, J.-J. Sansuc and H.P.F. Swinnerton-Dyer, Inter-
sections of two quadrics and Chatelet surfaces, I and 11, J. reine und
ang. Math. 373 (1987) 37-107; 374 (1987) 72-168

K. Coombes and D. Grant, On heterogeneous spaces, J. London Math.
Society 40 (1989) 385-397

J.A.T. Dee, Thesis, University of Cambridge 1999

P. Deligne, La conjecture de Weil pour les surfaces K3, Inventiones
Math. Invent. Math. 15 (1972), 206-226

G. Faltings, Endlichkeitssatze fiir abelsche Varietaten uber Zahlkorpern,
Inventiones Math. 73 (1983), 349-366

20



[Ha]

[HS]

[HiSi]

[J1]

[J2]

[NO]

[R]

[Ro]

D. Harari, Obstructions de Manin ‘transcendentes’, in Séminaire de
Théorie des Nombres de Paris, 1993-94, S. David éd., 75-87, Cambridge
University Press, 1996

D. Harari and A. Skorobogatov, Non-abelian cohomology and rational
points, Compositio Mathematica 130 (2002) 241-273

M. Hindry and J. Silverman, Diophantine Geometry: an introduction,
Graduate Texts in Mathematics, Volume 201, Springer Verlag, 2000

U. Jannsen, On the Z-adic étale cohomology of varieties over number
fields and its Galois cohomology, in Galois groups over Q (Berkeley,
CA, 1987), 315-360, Math. Sci. Res. Inst. Publ., 16, Springer, New
York, 1989.

U. Jannsen, Letter from Jannsen to Gross on higher Abel-Jacobi maps,
in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998),
261-275, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad.
Publ., Dordrecht, 2000.

M. Kuga and I. Satake, Abelian varieties attached to polarized K3-
surfaces. Math. Ann. 169 (1967) 239-242

G. Laumon and L. Moret-Bailly, Champs Algébriques, Ergebnisse der
Mathematik und ihere Grenzgebiete, Volume 39 Springer Verlag, 2000

J.S. Milne, Etale Cohomology, Princeton Mathematical Series, Volume
33, Princeton University Press, 1980

D. Morrison, On K3 surfaces with large Picard number, Inventiones
Math. 75 (1984) 105-121

N. Nygaard, The Tate conjecture for ordinary K3 surfaces over finite
fields, Invent. Math. 74 (1983), no. 2, 213-237

N. Nygaard and A. Ogus, Tate’s conjecture for K3 surfaces of finite
height. Ann. of Math. (2) 122 (1985), no. 3, 461-505

W. Raskind, Higher /-adic Abel-Jacobi mappings and filtrations on
Chow groups, Duke Math. Journal 98 (1995) 33-57

A.A. Roitman, The torsion of the group of 0-cycles modulo rational
equivalence, Annals of Math. 111 (1980) 553-569

21



[ST]

[Sk1]

[Sk2]

[SD]

[Ta2]

W]

T. Shioda and H. Inose, On singular K3 surfaces, in Complex Analysis
and Algebraic Geometry, articles dedicated to K. Kodaira, 119-136,
Iwanami Shoten and Cambridge University Press, 1977

A. Skorobogatov, Beyond the Manin obstruction, Inventiones Math.
135 (1999) 399-424

A. Skorobogatov, Torsors and rational points. Cambridge Tracts in
Mathematics, 144. Cambridge University Press, Cambridge, 2001.

H.P.F. Swinnerton-Dyer, Analytic theory of abelian varieties, London
Mathematical Society Lecture Notes, Volume 14, Cambridge Univer-
sity Press 1974

J. Tate, On the conjecture of Birch and Swinnerton-Dyer and a geo-
metric analog, Séminaire Bourbaki Exposé 306, 1966; in Dix Exposés
sur la cohomologie des schémas, A. Grothendieck and N. Kuiper ed.,
North Holland and Masson, 1968

A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of
Math. (2) 141 (1995), no. 3, 443-551

Authors’ addresses

WAYNE RASKIND

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA
Los ANGELES, CA 90089-1113, USA
email: raskind@math.usc.edu

VICTOR SCHARASCHKIN
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF QUEENSLAND
BRISBANE, QLD 4072

AUSTRALIA

email: victors@maths.uq.edu.au

22



