Weak Approximation
on Del Pezzo surfaces of degree 4

Sir Peter Swinnerton-Dyer

Let V' be a Del Pezzo surface of degree 4 (that is, the smooth intersection
of two quadrics in P*) defined over an algebraic number field k. Salberger
and Skorobogatov [2] have shown that the only obstruction to weak approx-
imation on V' is the Brauer-Manin obstruction. More precisely:

Theorem 1 Suppose that V (k) is not empty. Let A be the subset of the
adelic space V(A) consisting of the points [| P, such that

) invy(A(P,)) =0 in Q/Z
for all A in the Brauer group Br(V). Then the image of V (k) is dense in A.

In this note I give a simpler proof of this theorem. What I actually prove
is Theorem 2 below, which is equivalent to Theorem 1 because of Lemmas 5
and 7. Readers who are content with Theorem 2 need not trouble themselves
with the Brauer-Manin conditions. Theorem 3, though it is a prerequisite
for the proof of Theorem 2, is also of independent interest, since it adds an
approximation property to Theorem 5.1 of [1] for pencils of conics. However
Colliot-Thélene has pointed out to me that a similar approximation theorem
is implicit in Theorem 6.2 of [1].

I am grateful to Jean-Louis Colliot-Thélene and Alexei Skorobogatov for
a number of valuable comments.

Before beginning the proof (and even the statement) of Theorem 2, I need
to describe the Legendre-Jacobi function L, which is a mild modification of
a function (also called L) which was defined in rather crude form in [3] and
more correctly in [4]. Indeed, one purpose of this paper is to give a fuller
account of this function than has yet appeared. Let F(U,V),G(U,V) be
homogeneous coprime square-free polynomials in k[U, V]. Some of the more
interesting results only hold when deg F' is even, which nearly always holds
in applications; this parity condition did not appear in [4], but it is already
needed if we are to make use of the results of [1]. Let B be a finite set of
places of k£ containing the infinite places, the primes dividing 2, those at
which any coefficient of F' or G is not integral, and any other primes p at



which F'G does not remain separable when reduced mod p. Note that we do
not assume that B contains a base for the ideal class group of k.

We shall always denote by o the ring of integers of k. Let N2 = N?(k) be
the set of ax 3 with o, 3 integral and coprime outside B, and let N'* = A} (k)
be kU{oco}. For ax8in A?(k) with a, 8 not both zero, we shall write A = o/
with X in N''(k). Provided F (o, ) and G(a, ) are nonzero, we define the

function

L(B; F,G;a,8) - ax B [[(F(a, 8), Gl B)) (1)
p

on N2, where the outer bracket on the right is the multiplicative Hilbert
symbol and the product is taken over all primes p of k£ outside B which
divide G(a, B). By the definition of B, F(a, 3) is a unit at any such prime.
Clearly we can restrict the product in (1) to those p which divide G(«, )
to an odd power; thus we can also write it as [[x,(F(«, 8)) where x, is
the quadratic character mod p and the product is taken over all p outside B
which divide G(a, ) to an odd power. This relationship with the quadratic
residue symbol underlies the proof of Lemma 1.

The function L does depend on B, but the effect on the right hand side of
(1) if we increase B is obvious. Although in the applications we can usually
take deg F' even, in the course of the proofs we need to consider functions (1)
with deg F' odd; and for this reason it is expedient to introduce

M(B;F,G;a,B) = L(B; F,G; a, B)(L(B; U, V; v, B)) des F)(deg &),

Here of course L(B;U,V;a, §) = [[(«, B), taken over all p outside B which
divide .

Lemma 1 The value of M is continuous in the topology induced on N? by
B. For each v in B there is a function m(v; F,G; «, §) with values in {£1}
which is continuous on N2 in the v-adic topology and is such that

M(B; F,G; 0, 8) = | [ m(v; F, G; 0, B). (2)

vEB

Proof 1f deg F' is even, so that M = L, the neatest proof of the lemma is by
means of the evaluation formula in [1], Lemma 7.2.4. The case when deg G
is even then follows from (4), and (3) gives the general case. (The proof in
[1] is for £ = Q, but there is not much difficulty in modifying it to cover all
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k.) However, the proof which we shall give, using the ideas of [4], provides a
more convenient method of evaluation.

For this proof we have to impose on B the additional condition that it
contains all primes whose absolute norm does not exceed deg(F'G). As the
proof in [1] shows, this condition is not needed for the truth of Lemma 1
itself; but we use it in the proof of (8) below, and the latter is crucial to the
subsequent argument. In any case, to classify all small enough primes as bad
is quite usual. We repeatedly use the fact that L(B; F,G) and M (B; F, Q)
are multiplicative in both F' and G; the effect of this is that we can reduce to
the case when both F' and G are irreducible in o'[U, V], where o’ is the ring
of elements of £ integral outside B. Introducing M and dropping the parity
condition on deg F' are not real generalizations since if we increase B so that
the leading coefficient of F' is a unit outside B then

M(B; F,G) = L(B; F,GV%&%) (3)

by (5), and we can apply (4) to the right hand side.
It follows from the product formula for the Hilbert symbol that

L(B; f,g;0, B)L(B; g, f; 0, B) = [ [ (f (e B), 9(ex, B))ar (4)

vEB

subject to conditions on B analogous to those stated before (1). The right
hand side of (4) is the product of continuous terms each of which only depends
on a single v in B. This formula enables us to interchange F' and G' when
we want to, and in particular to require that deg F' > deg GG in the reduction
process which follows. We also have

L(B; f,g;, B) = L(B; f — gh, g; v, B) (5)

for any homogeneous h in k[U, V] with degh = deg f — deg g provided the
coefficients of h are integral outside B, because corresponding terms in the
two products are equal. Both (4) and (5) also hold for M.

We deal first with two special cases:

e (G is a constant. Now M (B; F,G) = 1 because all the prime factors of
G must be in B, so that the product in the definition of L(B; F, G) is
empty.

e G = V. Choose H so that F — GH = yU%T for some nonzero 7.
Now M(B; F,G) = 1 follows from the previous case and (5), since all
the prime factors of v must be in B.
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We now argue by induction on deg(F'G). Since we can assume that F' and
G are irreducible, we need only consider the case when

deg F' > deg G > 0, G=7UdegG—f—___’ F =§Udesr L

for some nonzero 7, 0. Let B; be obtained by adjoining to B those primes of
k not in B at which + is not a unit. By (5) we have

M(By; F,G) = M(By; F — y~16GUYB G ), (6)

By taking a factor V out of the middle argument on the right, and using
(4), the second special case above and the induction hypothesis, we see that
M (By; F,G) is continuous in the topology induced by B; and is a product
taken over all v in B; of continuous terms each one of which depends on only
one of the v. Hence the same is true of M (B; F, G), because this differs from
M (By; F, G) by finitely many continuous factors, each of which depends only
on one prime in B; \ B.

But B; \ B only contains primes whose absolute norm is greater than
deg(FG). Thus by an integral unimodular transformation from U, V' to U, V}
we can arrange that G = v, U % + ... and F = §;U%8 " + ... where 7, is a
unit at each prime in B; \ B. Let B be obtained from B by adjoining all the
primes at which ; is not a unit; then M(B; F,G) has the same properties
with respect to By that we have already shown that it has with respect to B;.
Since By N By = B, this implies that M (B; F, G) already has these properties
with respect to B. O

Of course there will be finitely many values of /3 for which the right
hand side of (2) appears to be indeterminate; but by means of a preliminary
linear transformation on U,V one can in fact ensure that the formula is
meaningful except when F(a, 8) or G(«, ) vanishes.

When deg F is even, the value of L(B; F,G;«, ) is already determined
by A = «/f regardless of the values of o and [ separately; here A lies in
k U {oo} with the roots of F'(A,1) and G(), 1) deleted. We shall therefore
also write this function as L(B; F, G; \). But note that it is not necessarily a
continuous function of \; see the discussions in [3] and §9 of [1], and Lemma
4 below. Moreover if B does not contain a base for the ideal class group of k
then not all elements of k£ U {oc} can be written in the form a/f with «, 8
integers coprime outside B; so we have not yet defined L(B; F,G; \) for all
A. To go further in the case when deg F' is even, we modify the definition (1)
so that it extends to all a x 8 in k x k such that F(a, 8) and G(«, 3) are
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nonzero. For any such ¢, 8 and any p not in B, choose ay, 8, integral at p,
not both divisible by p and such that o/ = «a,/5,. Write

L(B; F,G;a, B) = H(F(%aﬁp)aG(%,ﬁp))p (7)

where the product is taken over all p not in B such that p|G(ay, fy). This
is a finite product whose value does not depend on the choice of the oy and
By; indeed it only depends on A = a/f and when «, 3 are integers coprime
outside B it is the same as the function given by (1). Thus we can again write
it as L(B; F,G; \). This generalization is not really needed until we come to
(11); but at that stage we need B to be independent of K. Its disadvantage is
that L is no longer necessarily a continuous function of a x 3; we investigate
this situation in more detail after the proof of Lemma 3.

In discussing the continuity properties of L as a function of A\, we shall
need the following lemma.

Lemma 2 Let \g = /Py with oy, By non-zero and integral outside B; and
let a be an integral ideal in k not divisible by any prime in B. Then we can
find «, B in k, integral outside B, with (o, B) = a(ao, Bo) and such that o x 3
is arbitrarily close to ay X Py at each finite prime in B, a/f is arbitrarily
close to o/ Py at each infinite place of k and a/ag and B/By are positive at
each real infinite place of k.

Proof Let S be the set of primes which divide oy or F;. We can write
a = (71,72) where 7, and ~, are units at every prime in B and both 7, /a and
v2/a are units at every prime in S. Let § in 0, a unit outside B, be such that
apd and [Byd are in 0. Choose positive coprime integers a,b in Z which are
close to 1 at every finite prime in B and units at all the primes which divide
1 or Yo; and let M, N be large positive integers. By writing apda™ /v; in
terms of a base for 0/Z and changing the coefficients by elements of Q which
are small at each finite prime in BU S and O(a) at the infinite place of Q,
we can obtain an integer ¢ in o which is prime to a and ~,/a and such that
agda™ /aq1 is close to 1 at each place in B and oy, «; are divisible by the
same power of p for each p in §. Similarly we can obtain ; in o which is
prime to b and ~y;/a and such that 3,db" /537, is close to 1 at each place of
B and By, B, are divisible by the same power of p for each p in S. We can
further ensure that (3, is prime to a; outside BUS. Now o = ale%/(S and
B = BraM~, /6 satisfy all the requirements in the lemma. The only difficult



thing to verify is that («, 8) = a(ag, o). So far as primes in B are concerned,
the two sides agree; and

(@, 0) = (am, frye) = alea(11/0); Bi(r2/a)) = alen, Bi)

up to such primes. [l

The proof of Lemma 1 constructs an evaluation formula all of whose terms
come from the right hand side of (4) for various pairs f,g. For a x 8 in N
the formula can therefore be described by an equation of the form

m(v; F,G; o, B) = [ [ (¢5(cv, B), ¥5(@, B))o- (8)

J

Here the ¢;, 1, are homogeneous elements of k[U, V] which depend only on
F and G and not on v or B, and which can be freely divided by squares. The
decomposition (8) is not unique, and our next task is to display an invariant
aspect of it.

Let § = v1U + v,V be a linear form with v, v, coprime integers in k. By
using (¢, ), = (¢,0¢),(4,0), and (—6,0), = 1, we can ensure that all the
¢;,%; in (8) have even degree except that 1)y = 6. Denote by © the group
of elements of £* which are not divisible to an odd power by any prime of
k outside B, and by ©y C © the subgroup consisting of those £ which are
quadratic residues mod p for all p outside B; thus we are free to multiply ¢
by any element of ©,. (Actually ©y = £*?, but we shall not use this fact.)

Lemma 3 Suppose that deg I is even. With the convention for the ¢;,;
just adopted, we can take ¢y to be in ©.

Proof Let v in k* be a unit outside B, and apply (8) to the identity
L(B; F, G; v, vB) = L(B; F, G; o, ),

where o x 3 is in N2. On cancelling common factors, we obtain

H(¢0(a7 B)77)v =1 (9)

veEB

If we can choose o x 3 in N? so that ¢o(c, 3) is not in O, this gives a
contradiction. For let ¢ prime to ¢o(c, 5) be such that [[(¢o(c, 5),9), = —1
where the product is taken over all primes p outside B at which ¢y(c, 5) is



not a unit. Let B; be obtained by adjoining to B all the primes at which
J is not a unit; then [[(¢o(, 8),d), = —1 by the Hilbert product formula,
where the product is taken over all places v in B;. Recalling that ¢, does
not depend on B and writing By, § for B, in (9), we obtain a contradiction.
It follows that ¢g(c, B) lies in © for all o, B; this can only happen if ¢q (U, V)
is itself in © modulo squares.

Let S be the set of primes p outside B for which p|F(ay, B,) or p|G (o, Bp)
in the notation of (7). We can write A = /8 where («, /3) is not divisible by
any prime in S. Let a be an integral ideal in the class of («, 8) not divisible
by any prime in S, and let 7 be such that (y) = a/(a, 8); then A = ary/By
and (ary, B7) = a. If By is obtained from B by adjoining all the primes which
divide a, then

L(B; F,G;\) = L(B; F,G; oy, By) = L(By; F, G; ary, ),

where the second equality holds because the two products involved are term
by term the same. By (8) the right hand side is equal to

H H(d)j(a’)/a ﬂ’Y)v ,lpj (arY’ ﬁ’)/))v

{H 1145, 5). 93, ). } L1 (4ol 8),7)

vEBY j vEB

because of the parity properties above. If we further require that no prime
which divides a divides any of the ¢;(c, 8) or (e, 3), then each of the terms
in curly brackets with v in B; \ B is trivial; so the outer product there reduces
to a product over v in B. By the Hilbert product formula the product outside
the curly brackets can be replaced by a product over all v not in B;. In view
of Lemma 3 we can reduce this to a product over those v outside B; which
divide (e, ). If x, is again the quadratic residue symbol mod p, we can write
the result which we have just obtained in the form

L(B; F,G; \) = {Hﬂ@aﬁ i(a, B)) }HXp¢0 (10)

where the final product is taken over those p outside B which divide («, §)
to an odd power.



Lemma 4 Suppose that deg F' is even and the conventions of Lemma 3 hold.
Then ¢y is uniquely determined by F' and G as an element of ©/Oq; and ¢y
is in ©q if and only if L(B; F,G; \) is conlinuous in X in the topology induced
by B.

Proof Suppose first that ¢g is in ©y. Thus the final product in (10) is trivial.
Now let A = /8 and let X' be close to A in the topology induced by B. Let
v in 0 be such that X' (7 is integral. Applying (10) to the representations

A=ay/By and XN =Xgy/By

we deduce that L(B; F,G;\) = L(B; F,G; \).

Conversely suppose that ¢y is in © but not in ©y. Choose a prime p
outside B at which ¢ is not a quadratic residue. As before, let A\g = ay/ 5o,
and let A = a/f where «, 5 have the properties stated in Lemma 2 with
a = p. Arguing as in the previous paragraph, but taking account of the final
product in (10), we obtain

L(B; F,G; \) = L(B; F, G; M) xp(0) = —L(B; F, G; \o).

So L(B; F,G; ) is not continuous at A = A\ — which means that it is
continuous nowhere.
Now suppose that L(B; F,G;«,3) has two representations, say by the
i»¥; and the ¢, 1)7. Taking their quotient, we obtain

1=]] {(¢3/¢3, 0(cx, 8)o | [(85(ct, B), (v, B)) | [ (] (v B), ¥ (e, 6)%} :

vEB 1>0 j>0

This is a representation of a function of A which is continuous; and it is of
a kind to which we can apply the results of the previous two paragraphs.
Hence ¢}/¢5 is in ©,.

It remains only to show that ¢, is independent of the choice of #. Using
a notation like that of the previous paragraph, there is a representation of 1
in which the terms with subscript 0 produce a quotient

H{(¢6/¢ga ') g’ 0'0").};
veB

and since deg(0'0") is even it follows as there that ¢f/¢y is in O. O



In practice, what we usually need to study is the subspace of A% given
by n conditions L(B; F,,G,;a,3) = 1, or the subspace of N'! given by the
L(B;F,,G,;\) = 1, where the deg F), are all even. Let A be the abelian
group of order 2" whose elements are the n-tuples each component of which
is &1; then there is a natural identification, which we shall write 7, of each
element of A with a partial product of the L(B; F,,G,). Thus each element
of A can be interpreted as a condition, which we shall write as £ = 1. If ¢q
is as in Lemma 3, there is a homomorphism

dooT: A — O/O;

let Ay denote its kernel. In view of Lemma 4, the conditions which are
continuous in A are just those which come from Ay. The following lemma
corresponds to Harari’s Formal Lemma (Theorem 3.2.1 of [1]); it shows that
for most purposes we need only consider the conditions coming from the
elements of Ay.

Lemma 5 Suppose that deg F' is even and all the conditions corresponding
to Ao hold at some given \g. Then there exists A arbitrarily close to Ay such
that all the conditions L(B; F,,G,) =1 hold at A.

Proof Let A\g = «y/fo. For a suitably chosen a = (v) we show that we
can take A = «/f, where a x 8 is as in Lemma 2. For any ¢ in A, write
¢oc = ¢ o 7(c) for the corresponding element of ©/0,. If 0 is as defined just
before Lemma 3, the corresponding partial product £ of the L(B; F,,G,; \)
is equal to
£o(A) TT(0e: 0(cx0, Bo))w | [ (Bocs 7)o
vEB vEB

where f. comes from the ¢;,1; with j > 0 and is therefore continuous. The
map ¢ — f.()\) is a homomorphism A — {£1} for any fixed \; moreover if
two distinct ¢ give rise to the same ¢g. their quotient comes from an element
of Ay and therefore the quotient of the corresponding f, takes the value 1 at
Ao- In other words, if A is close enough to Ay then f.(\) only depends on the
class of ¢ in A/Ay. The map ¢ — ¢q. is an embedding A/Ag — ©/O,, by
Lemma 4. The homomorphism Image(A/Ag) — {£1} induced by ¢ — f.()\)
can be extended to a homomorphism ©/0, — {£1} because ©/0 is killed
by 2; and any such homomorphism can be written in the form

06— 110

vEB
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for a suitably chosen 7, because the Hilbert symbol induces a nonsingular
form on ©/6,. But given any such v we can construct A = o/ having the
properties listed in Lemma 2 with a = (7). O

We shall need analogues of these last results for positive 0-cycles, and this
will require more notation. We continue to assume that deg F' is even. Let
K be the direct product of finitely many fields k; each of finite degree over
k, and let B be the set of places of K lying over some place v in B, and *B;
the corresponding set of places of k;. (The place []v;, where v; is a place of
k;, lies over v if each v; does so.) For X in P}(K) write A = [[ \; with )\; in
P!(k;); for each place w in k; write \; = iy, /Biy Where auy,, iy are in k; and
integral at w and at least one of them is a unit at w. For any A in K such
that each F'(\;, 1) and G(\;, 1) is nonzero, we define the function

L*(B;K;F,G;)\): A— H(F(Oéiw,ﬁiw), G (iw, Biw))p: (11)
Bi

where w is the place associated with the prime ‘B; in £; and the product
is taken over all 7 and all primes *J3; of k; not lying in B; and such that
G (i, i) 1s divisible by ;. As with (1), we can restrict the product to
those PB; which divide G(cy, Biw) to an odd power. Note that the functions
®;,%; in the evaluation formula (8) are the same for k; D k as they are for
k. Now let a be a positive 0-cycle on P! defined over k and let a = Uq; be
its decomposition into irreducible components. Let A; be a point of a; and
write k; = k(\;). If K =[] k; and A =[] A\, write

L*(B;F,G;a) = L*(B; K; F,G; \) = [ L(Bi F,G; ). (12)

This is legitimate, because the right hand side does not depend on the choice
of the \;. If K = k this L* is the same as the previous function L. Moreover
L*(aUb) = L*(a)L*(b). We can define a topology on the set of positive
O-cycles a of given degree N by means of the isomorphism between that set
and the points on the N-fold symmetric power of P!. With this topology, it
is straightforward to extend to L* the results already obtained for L.

The product in (11) is finite; so there is a finite set S of primes of &,
disjoint from B and such that every ®J3; which appears in this product lies
above a prime in S. For each i we can write \; = «;/f; with ay, §; integers in
k;. As in the argument which follows the proof of Lemma 3, let (v, 5;) = a;
and choose an integral ideal b; in k; which is prime to a;, in the same ideal
class as a; and such that no prime of k; which divides b; also divides G(«;, 5;)
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or any ¢;(a, ;) or ¥;(ay, B;) or lies above any prime in S. Let ; be such
that (7;) = b;/a; and let B; be obtained from B by adjoining all the primes
of k which lie below any prime of k; which divides b;. For most purposes it
costs us nothing to replace B by B;, and we then have

A= H )\z = H(aﬂz/ﬁ,%) where o;Y; X BZ’YZ is in NQ(kZ)
The following lemma is a trivial consequence of earlier results.

Lemma 6 Suppose that deg F' is even, and let L =1 be a continuous condi-
tion derived from the L and L* =1 the corresponding condition derived from
the L*. For each v in B there is a function ¢*(v; F, G; a) with values in {£1}
which is a continuous function of a in the v-adic topology and is such that

L*(B; F,G;a) = [[ *(v; F, G; 0). (13)

vEB

With these preliminaries out of the way, consider the Del Pezzo surface
V = Q1 N Qy where Q1, Q2 are quadrics in P*. Choose coordinates so that
the given point of V' (k) is (1,0,0,0,0) and the tangents to @1, Qs at this
point are X; = 0, Xy = 0 respectively. Thus the equations of (); and ()5 can
be written

XoX1 + fl(Xla <e 7X4) =0, XoXy+ fZ(Xla <o ,X4) =0 (14)

where fi, fo are homogeneous quadratic. The variety (14) is birationally
equivalent to the cubic surface X, f; = X fo, which is obtained by blowing
up the given point of V' (k); and this cubic surface is birationally equivalent
to the pencil of affine conics

VAUV, X5, Xy) =Ufo(U,V, X3, X4), (15)

which with some abuse of language can be parametrized by the points (U, V)
of P!. Diagonalizing this equation and then making it homogeneous gives a
pencil of projective conics of the form

Z591(U, V) + Z1g(U, V) /91 (U, V) + Z395 (U, V) / 92(U, V) = 0,
where g, is homogeneous of degree r. Writing

Zy = g2Yo, Zi=gqi1Y1, Zy= g1g2Y>
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and dividing by g;g, we obtain
9Y5 + Y7 + 1955 = 0. (16)

We shall assume that the g, are coprime in pairs in k[U, V]; if not, there is
a further simplification of (16) and of the subsequent argument which is left
to the reader. Every point of the line X; = X3 = 0 on the cubic surface also
lies on one of the conics of the pencil (15), so there are an infinity of conics
which contain points defined over k.

It costs nothing to set the next part of the argument in a broader context.
Denote by W the surface fibred by the pencil of conics

CLO(U, ‘/)YE)2 + Cll(U, V)YvIZ + GZ(Ua V)Yv22 = Oa (17)

and call the pencil reduced if ay, a1, a; are homogeneous elements of £[U, V|
coprime in pairs and such that

deg ag = deg a; = degay mod 2.

After a linear transformation on U,V if necessary, we can also assume that
agaias is not divisible by V. Clearly any pencil of conics can be put into
reduced form. Suppose that (17) is reduced and everywhere locally soluble.
Let A = (a, B) be a point of P!(k); whether (17) is soluble at o x 3 depends
only on A and not on the choice of «, . Similar statements hold for local
solubility at a place v and for solubility in the adeles. Denote by ¢(U,V) a
monic irreducible factor of agaiay in k[U, V]. Let B be a finite set of places
of k£ containing the infinite places, the primes dividing 2, those at which any
coefficient of any ¢ or a, is not integral, and any other primes p at which
apaiay does not remain separable when reduced mod p. For convenience, we
also assume that B contains a base for the ideal class group of k.

We need to work not on P! but on the set L! obtained from P* by deleting
the roots of agaias; thus we do not have to worry about the singular fibres.
Denote by W, the Zariski open subset of W which is the inverse image of
L', and define V; similarly in terms of the representation (16) of V. Let
A € kU {oo} be a point of L'(k), and write A = a/3 where «, 3 are integers
of k coprime outside B; it will not matter which pair «, 8 we choose.

There is a non-empty set ' C L'(k), open in the topology induced by B,
such that the conic (17) is locally soluble at every place of B if and only if A
lies in NV. Let p be a prime of k£ not in B and consider the solubility of (17)
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in k, at the point A. If none of the a,(c, B) is divisible by p, then solubility
of (17) in k, is trivial. Otherwise there is just one ¢ such that c(c, §) is
divisible by p; to fix ideas, suppose that this ¢ divides ay. Then the condition
for solubility in k; is

(—ao(a; B)ar(a, B), c(a, B))p = 1. (18)

Hence necessary conditions for the local solubility of (17) at A for all p outside
B are the conditions like

L(B; —agai, c; \) = H(—ao(a, B)ai(a, B), c(a, B))p =1

where the product is taken over all p outside B which divide ¢(«, 8). There
is one of these conditions for each ¢, and for each of them the first argument
in the Hilbert symbol has even degree. As in the discussion which follows the
proof of Lemma 4, these generate a group of conditions naturally isomorphic
to A. In the light of Lemma 4, we shall call a condition in this group contin-
uous if it comes from Ay. Since increasing B does not alter the ¢, it does
not alter the set of continuous conditions.

Lemma 7 Let Wy be everywhere locally soluble. Then the continuous condi-
tions derived from (17) are collectively equivalent to the Brauer-Manin con-
ditions for the existence of points of Wy defined over k. The continuous
conditions similarly derived from the L*(a) are collectively equivalent to the
Brauer-Manin conditions for the existence of positive 0-cycles of degree N
on Wy defined over k.

Proof The first assertion is proved for £ = Q in [1], §8; as with Lemma 1, the
proof there can be extended to our more general case. The second sentence
follows trivially from the first in the light of (12). O

Theorem 2 Let B be a finite set of places of k, satisfying the conditions for
(16) analogous to those stated above for (17).

(i) For each v in B let A, be a point of Vy(k,), and let A\, be its image
under the projection to L'. Suppose that all the conditions like

[[m(v; —acar,¢; 0) = 1 (19)

vEB

hold. Then there is a point of Vo(k) as close as we like to each A,.
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(ii) Let A be a point of L' (k) such that all the conditions like
L(B; —agai,c; ) =1 (20)

hold. Then there is a point in Vy(k) whose projection on L' (k) is as close as
we like to X in the topology induced by B.

Since we can find A arbitrarily close to each A, it follows from (2) that the
two parts of the theorem are equivalent. In view of Lemma 5, the conclusion
of (ii) still follows if we only require the continuous conditions to hold. By
the first assertion of Lemma 7 and the fact that weak approximation holds
for conics, Theorem 2(ii) is equivalent to Theorem 1.

To prove Theorem 2, we need to construct points in the image of V4 (k)
in L'(k) which satisfy strong local conditions; to do this, we construct a
sequence of positive O-cycles of gradually decreasing degrees. If N is large
enough, we can generate positive 0-cycles of degree N on Vj satisfying local
conditions by means of an argument which depends on the partial fraction
formula (22); its use in this context was pioneered by Salberger. Of the
various versions of the consequent algorithm, Lemma 9 seems the simplest,
both in its proof and in the way in which it is used; in particular, it does not
involve an auxiliary set of primes and its proof does not depend on a deep
result of Waldschmidt.

We need a preliminary lemma about approximation.

Lemma 8 Let L be an algebraic number field, B a finite set of places of L
and & a finite set of primes of L not necessarily disjoint from B. Let b > 1
be in Z and such that no prime of L which divides b is in 8. Let M > 0
be a rational integer and for each v in B let &, be in L,. Then there exists
€ in L* as close as we like to each &, and such that & = ay™, where (o) is
the product of a first degree prime p not in B U S and primes in B, and
v = 71/72 for coprime integers v1,ve such that the prime factorization of v,
does not include any prime in BUS U {p} and the only primes which divide
Yo also divide b.

Proof. By Dirichlet’s theorem on primes in arithmetic progression, we can
choose p and « as in the statement of the lemma so that « is as close as
we like to &, for each finite v in B and &,/a > 0 for each real v in ®B. For
each infinite v in B we choose 7, in L, so that v = &,/a. Using weak
approximation, choose 7' in L, a unit at every finite prime in B U & U {p},
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so that +' is arbitrarily close to 1 at every finite place in 8 and arbitrarily
close to 7, at every infinite place v in ®B. By writing 7/b" for large enough
N in terms of a base for 0;,/Z and changing the coefficients by elements of Q
which are small at each finite prime in BU S and bounded at every infinite
place in B, we can obtain an integer ; which is prime to S U {p} and to b
and close to ¥'b" at every place in B. Now take v, = b"; then £ = ayM
satisfies all our requirements. O
For the statement and proof of the following lemma, we shall call a place
of k bad if it lies in B or divides b; and we shall call a place in Q or in a field
containing k bad if it lies below or above a bad place of k. For our purposes,
the most important difference between places in B and primes dividing b is
that the latter have no approximation conditions associated with them.

Lemma 9 Let k be an algebraic number field and P;(X), ..., Py(X) monic
irreducible non-constant polynomials in k[X]; and let N > > deg(P;) be a
given integer. Let B be a finite set of places of k which contains the infinite
places, the primes which divide 2, the primes at which some coefficient of
some P; is not integral and any other primes p at which [[ P;(X) does not
remain separable when reduced mod p. Let b be as in Lemma 8. For each
v in B let U, be a non-empty open set of separable monic polynomials of
degree N in k,[X]. Let M > 0 be a fized rational integer. Then we can find
an irreducible monic polynomial G(X) in k[X] of degree N which lies in each
U, and for which X\, the image of X in K = k[X]/G(X), satisfies

(P(N) = P, (21)

for each i, where the PB; are distinct first degree primes in K not lying above
any prime in B, the A; are products of bad primes in K and the &; are
integral ideals in K. Moreover we can arrange that A = «/f where « is
integral and B is an integer all of whose prime factors are bad.

Proof We shall need to apply Lemma 8 repeatedly with the same value of M
as in Lemma 9. We can assume, after adding a constant to X if necessary,
that none of the P;(X) is a multiple of X. Write R(X) = [[ P(X) and
R;(X) = R(X)/P;(X). Any polynomial G(X) in k[X] can be written in just
one way in the form

G(X) = R()QX) + Y Ri(X)9(X) (22)
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with deg 1; < deg P;; for if \; is a zero of P;(X) this is just the classical
partial fraction formula

X)) ¥i(X)
[1A((X) Z Fi(X)

with ¥;(\;) = G(\;)/Ri(\;). This property determines a unique t;(X) in
k[X] of degree less than deg P;. The same result holds over any k,. If the
coefficients of GG are integral at v, for some v not in B, then so are those of
@ and each 1; because R and the R; are monic and R;();) is a unit outside
B. For each v in B let G, (X) be a polynomial of degree N lying in U,, and
write

Gy(X) = )+ ) Ri(X)i (X

with deg v;, < deg P;. We adJ01n to B a further finite place w at which b is
a unit, and associate with it a monic irreducible polynomial G,,(X) in &, [X]
with degree N; the only purpose of G,, is to ensure that the G(X) which
we shall construct is irreducible over k. We build G(X), close to G,(X) for
every v € *B including w, in the following manner.

For the first step let k; = k[X]/P;(X) and for each v € B let ¢;, be the
class of 1y, in k,[X]/P;(X) = k; ® k,. Take & to consist of those primes
in k£ at which the constant terms of the P;(X) are not all units. We apply
Lemma 8 to each set of ¢;, in turn, replacing L by k; and B and & by the sets
of places of k; which lie above 8 and G respectively; let ¢; be the element
of k; thus obtained, and let J3; be the associated prime in k;. Let }(X)
be the unique polynomial in k£[X| with deg) < deg P, whose class in k; is
¢;. Clearly ¢}(X) is arbitrarily close to each 1;,(X), and its coefficients are
integers outside B because B contains all the primes which ramify in ;/k.
Now choose positive ¢,T" in Z so that c is a unit at all bad primes, divisible
by all the primes outside B U {3;} which divide the numerator of any ¢;,
and close to b7 at the real place and at all the primes below primes in 8.
Let 1;(X) = (¢/67)M15)(X).

We now choose Q(X) to be close to Q,(X) for each v in B, and to be such
that each coefficient other than the leading coefficient (which is 1) is integral
except perhaps at bad primes and is divisible by ¢. We can do this by an
argument like, but very much simpler than, that in the proof of Lemma 8.
This construction ensures that G(X) is monic and arbitrarily close to each
G,(X) including G,,(X). The assumptions made about G, (X) ensure that
G(X) is irreducible in k,, and therefore in k. Moreover, the coefficients of

16



Q(X) are integers except perhaps at bad primes; and since G(X) is monic
the denominator of any P;(\) only contains bad primes. A consequence of
the choice of & is that every \;, and therefore every Q(J;), is prime to c.
We have still to prove (21). Let p; be the prime in £ below ;. By
computing the resultant of P;(X) and G(X) in two different ways, we obtain

where ); is a zero of P;(X). By hypothesis R;(};) is a unit at every place of
k(\;) which does not lie above a place in B; and we have arranged that the
denominator of Normy, /1¢; is only divisible by bad primes, and its numerator
is the product of the first degree prime p;, powers of primes in 8 and Mth
powers of norms of primes which come from the €; of Lemma 8. Also A, and
therefore P;(\), is integral outside bad primes in K. None of these lie above
p;. Hence P;()\) is an integer at each prime of K lying above p;. It follows
that the ideal (P;(\)) is divisible by just one prime of K above p;, and that
to the first power. It only remains to show that, apart from this prime and
bad primes, what we have is an Mth power.

Let L be a splitting field for all the P;(X) and let P be a prime in L(\)
which divides the numerator of P;(A). By (23) and the remarks on either
side of it, 3 must divide Normy, . (¢;) and therefore must divide c. Hence

G(X) = R(X)Q(X) (24)

where the tilde denotes reduction mod ‘P of the coefficients. But the con-
struction of (X)) has ensured that the resultant of Q(X) and R(X), which
is = [, Normy, /£ (Q(X:)), is prime to ¢; hence R(X) and Q(X) are coprime.
Moreover R(X) is a product of distinct linear factors over the residue field
of L at . It follows that (24) can be lifted to a factorization of G(X) in the
completion of L(A) at B; and the roots of G(X) in this field consist of one
near each root of each P;(X) together with roots which come (after a further
field extension) from the lift of Q(X). The latter are not close to any root of
any P,(X).

I now claim that the power of 9 which divides P;()) is PB™ where m is a
multiple of M. For if X is not close to a root of P;(X) then m = 0. On the
other hand, (22) can be written

G(X) = Ry(X)y:(X) + fi( X) Pi(X)
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where
fi(X) = R(X)Q(X) + ) 0 (X)R;(X)/ Pi(X).
J#i

By construction, if A is close to a root of P;(X) then f;()\) is a unit at B, as
is R;(A). If \; is that root of P;(X) which is close to A, then the standard
successive approximation process shows that A — \; has the same valuation
as ¥;(A\;) = ¢;; and by construction P™||¢; where M|m. It follows that
P Pi(A) with M|m, as claimed, in both cases.

Now let p be a prime in k& which divides ¢, and let q be any prime of k()
above p. The factors of P;(\) coming from primes of L()) above q have the
form

H PP where each m(9) is divisible by M. (25)
PBla
This is equal to the corestriction of q", where q" is the exact power of q which
divides P;(\). But the extension L()\)/k(\) is unramified at q, because it is
only ramified at places above places in B. Hence each m(J3) in (25) is equal
to n, and so n is divisible by M. This holds for all primes in k(\) which
divide c. O

We apply Lemma 9 to the surface Wy fibred by the pencil (17), and
we assume that B satisfies the conditions listed after (17). We state the
theorem below in the form which corresponds to Theorem 2(ii), leaving it to
any reader who wishes to do so to formulate a version which corresponds to
Theorem 2(i). At the price of some extra complications, one can replace the
condition on N in Theorem 3 below by the weaker condition that N is at
least equal to the number of singular fibres of the pencil (17). For (16) this
would enable us to take N = 5, since only the roots of g5 give singular fibres.
One could then dispense with one step in the proof below of Theorem 2(i).

Theorem 3 With the notation above, let N > deg(agaias) be a fized integer.
Let a be a positive 0-cycle of degree N on L' defined over k and for each place
v of k suppose that Wy contains a positive 0-cycle b, of degree N defined over
ky; for v in B suppose further that b, is so chosen that its projection on L' is
a. If all the continuous conditions derived from the conditions (20) hold, then
there 1s a positive 0-cycle of degree N on Wy defined over k whose projection
15 arbitrarily near to a in the topology induced by B.

Proof We must first show that for the purpose of proving this theorem we
are allowed to increase B. Suppose that B, satisfies the conditions which
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were imposed on B after (17), and let p be a prime of £ not in By. Suppose
also that the hypotheses of the theorem hold for B = By and a = ay. Having
chosen b, we can find a positive 0-cycle a’ on L' of degree N and defined
over k which is close at every v in By to a and close at p to the projection of
b,. Now

L*(By U {p}; —apay, c;a') = L*(By; —agpay, ¢; a');

for writing both sides as products by means of (11), if there is a factor on the
right hand side which is not present on the left, that factor must come from
p and is therefore equal to 1. But a continuous condition for By holds at a’ if
and only if it holds at a, which it does by hypothesis. Hence the continuous
conditions for By U {p} hold at a’. Now suppose that the theorem holds for
By U {p}; then there is a positive 0-cycle b of degree N on W, defined over
k whose projection on L! is close to a' in the topology induced by By U {p}.
The same projection is close to a in the topology induced by By. So the
theorem also holds for B.

Note that if a is actually the projection of a positive 0-cycle of degree N
in Wy, then the continuous conditions certainly hold in view of (12); thus
imposing the hypothesis that they all hold costs us nothing. To simplify the
notation, we assume henceforth that K is an algebraic number field; this will
be true for the application in this paper because K will be constructed by
means of Lemma 9. In view of the previous paragraph, we can assume that
B is so large that it satisfies the conditions imposed on B in the statement
of Lemma 9 and it contains the additional place w which was adjoined to
B in the first paragraph of the proof of Lemma 9; and if b is as in Lemma
9 we also adjoin to B all the primes in k£ which divide b. By the analogue
of Lemma 5, we can now choose a” close to a so that all the conditions
like L*(B;—agai,c;a”) = 1 hold. As was remarked in the last paragraph
before (14), we can now increase B so that if A\ = o/ is a point of L (K)
in a” then «g, By are coprime and integral except perhaps at primes of K
above a prime in B. Now apply Lemma 9 with M = 2, where we take the
¢(X, 1), normalized to be monic, to be the P;(X) and each U, to be a small
neighbourhood of the monic polynomial whose roots determine a”. Let G(X)
be given by Lemma 9; let a’ be the associated 0-cycle on L!(k) and \ a point
of L}(K) in a/. For each v in B, the cycle a' is close to a” in the v-adic
topology; so (17) at A is soluble in K, for each w above v, by continuity.
But A = «/8 with «, 8 coprime except at primes of K above a prime of 5.
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So
H(_GO(aa ﬁ)al(aaﬂ)a C(O{,B))&B = L*(Ba —Qpay, G &, /6) = ]-a
B

where the product is taken over all primes P not above a prime in B and such
that ¢(q, 8) is divisible to an odd power by PB. Here the first equality holds
by definition and the second one follows from the evaluation formula (8) by
continuity. But if ¢(X,1) = P;(X) then the product on the left reduces to
the single term for which ‘B is the prime of K above p; whose existence was
proved by means of (23). Hence (17) at A is locally soluble at this prime; and
because these are the only primes not lying above a prime of B which divide
any c(a, §) or any a.(a, 3) to an odd power, they are the only primes not
lying above a prime of B at which local solubility might present any difficulty.
Thus A can be lifted to a point of that conic which is the fibre above A, and
the theorem now follows because weak approximation holds on conics. [

We now turn to the proof of Theorem 2(i), and therefore revert from Wj
to Vi which we identify with the pencil of conics (16). In principle, the idea
of the proof is to construct a sequence of positive 0-cycles defined over &
of decreasing degrees, each satisfying the appropriate continuous conditions,
until we obtain a point P, in Vj(k) satisfying the given local conditions; and
indeed this is what we shall do in the last part of the proof. But it is not
obvious how the local descriptions of successive elements of the sequence are
related. So although the application of Theorem 3 to (16) shows that there
is a positive 0-cycle of degree 8 satisfying any assigned local conditions, we
do not yet know what local conditions to impose on it for P, to be close in
the topology induced by B to the adelic point which is our target. To cope
with this, we first run the process backwards. We need only consider the
continuous conditions £* = 1 introduced in Lemma 6.

(From now on, any b” or b} will be a positive 0-cycle on V;, defined over
k or k, respectively, and a” or a” will be its projection on L!. For each v in
B we choose two distinct hyperplanes H, and H,, each defined over k, and
passing through A,. Choose H’, a hyperplane defined over k£ and close to
each H/, and similarly for H”. The intersection H' N H" NV is a positive
0-cycle b! of degree 4 defined over k; and though b' may be irreducible over
k it is reducible over k, for each v in B because it has one point close to A,.

Thus we can write b' = b2 U b3 where b2, b3 are positive O-cycles of degrees
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1, 3 respectively defined over k, and b? is close to A,. Hence
1 =L£*(B; —apa,c;a') = HZ*(U; —apay, c; a2 Ual)
= HE* (v; —agay, c; a2) Hﬂ* (v; —agay, c; a2)

where the products are each taken over all v in B. But the first product in
the second line is 1, by continuity applied to (19); hence

HE*(U; —agay, c;al) = 1. (26)

Now let P, and P, be two points of Vy(k); there are oo® curves on V
which are the intersection of V' with a quadric and have double points at
P, and P,. For each v in B, let C; and C] be two such curves defined over
k, each of which also passes through the three points of b2, and let Q’, Q"
be quadrics defined over k, which contain C!, C” respectively but neither of
which contains the whole of V. Choose @', a quadric defined over &, close to
each () and touching V' at P, and P,, and similarly for QQ"; since @’ is given
by a single equation and the tangency conditions are linear in the coefficients,
this is just a matter of weak approximation. The intersection

Q'NQ'NV =4{P}u4{P}Ub".

(This fails if @' and @" have a common component; but we can ensure that
this does not happen by requiring P;, P, and b' to be in sufficiently general
position. Similar remarks are needed at each stage of the proof.)

Much as before, b* = b5 U b8 over k, for each v in B, where each b> has

degree 3 and is close to b3, and each bS has degree 5; hence

Hﬂ*(v; —agay, ca)) =1
follows from (26) by continuity. But
L(B; —agay, c; A1) = L(B; —apar, ¢ Ag) =1
where \;, \y are the projections of P;, P, on L!; so
HK*(U; —aga,c;ad) = 1.

Now let Ps, Py, Ps be three further points of Vy(k); then there are oo’
curves on V which are the intersection of V' with a quadric and pass through
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Ps, Py, Ps. For each v in B, let D! and D] be two such curves defined over
k, each of which also passes through the five points of b, and let R, R!
be quadrics defined over k, which contain D), D! respectively but neither
of which contains the whole of V. Choose R', a quadric defined over k,
close to each R] and passing through Ps, Py, P5, and similarly for R"”. The
intersection

RNR'NV ={P}U{P}U{P} UL,

where b’ has degree 13. Much as before, b” = b3 U b2 over k, for each v in
B, where each b? is close to b%, so that b® has degree 8 and

HE*(U; —apay, c;ad) = 1.

We now have the necessary map of how to go back. By Theorem 3, we can
find a positive 0-cycle 9® of degree 8 on V;, defined over k and arbitrarily near
to each b%. With the same Pj, Py, Ps as before, there is a pencil of curves on
V which are the intersections of V' with a quadric and pass through Ps, Py, Ps
and the points of 8. Let 9, of degree 5, be the residual intersection of the
curves of this pencil; since the pencil contains a curve close to each D] and
another close to each D/, it follows that 9° is close to each b3. (This time,
the curves in the pencil do not all have a common component, because one
of them is arbitrarily close to R’ NV and another to R" NV.)

In the same way, we successively generate a 0-cycle 9 on V; of degree 3
and arbitrarily close to each b3, and then a point of Vi(k) arbitrarily close

to each A,. This last is the point which we want. Il
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