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Introduction

The study of surfaces over nonclosed fields k& leads naturally to certain
auxiliary varieties, called wuniversal torsors. The proofs of the Hasse
principle and weak approximation for certain Del Pezzo surfaces required
a very detailed knowledge of the projective geometry, in fact, explicit
equations, for these torsors [6], [8], [7], [20], [22], [23]. More recently,
Salberger proposed using universal torsors to count rational points of
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bounded height, obtaining the first sharp upper bounds on split Del
Pezzo surfaces of degree 5 and asymptotics on split toric varieties over
[?7]. This approach was further developed in [18], [19], [2], [13].

Colliot-Thélene and Sansuc have given a general formalism for writing
down equations for these torsors. We briefly sketch their method: Let
X be a smooth projective variety and {D;},c; a finite set of irreducible
divisors on X such that U := X \ Uje;D; has trivial Picard group. In
practice, one usually chooses generators of the effective cone of X, e.g.,
the lines on the Del Pezzo surface. Consider the resulting exact sequence:

0 — k[U]*/k* — @®jc ZD; — Pic(Xz) — 0.
Applying Hom(—, G,,), one obtains an exact sequence of tori
1 —T(X)—T—R—1,

where the first term is the Néron-Severi torus of X. Suppose we have
a collection of rational functions, invertible on U, which form a basis
for the relations among the {D;};c;. These can be interpreted as a
section U—R x U, and thus naturally induce a T'(X)-torsor over U,
which canonically extends to the universal torsor over X. In practice,
this extension can be made explicit, yielding equations for the universal
torsor.

However, when the cone generated by {D;};e; is simplicial, there are
no relations and this method gives little information. In this paper, we
outline an alternative approach to the construction of universal torsors
and illustrate it in specific examples where the effective cone of X is
simplicial.

We will work with varieties X such that the Picard and the Néron-
Severi groups of X coincide and such that the ring

Cox(X):= €P TI(X, L),
LEPic(X)

is finitely generated. This ring admits a natural action of the Néron-
Severi torus and the corresponding affine variety is a natural embedding
of the universal torsor of X. The challenge is to actually compute Cox(X)
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in specific examples; Cox has shown that it is a polynomial ring precisely
when X is toric [9].

Here is a roadmap of the paper: In Section 1 we introduce Cox rings
and discuss their general properties. Finding generators for the Cox ring
entails embedding the universal torsor into affine space, which yields em-
beddings of our original variety into toric quotients of this affine space.
We have collected several useful facts about toric varieties in Section 2.
Section 3 is devoted to a detailed analysis of the unique cubic surface
S with an isolated singularity of type Eg. We compute the (simplicial)
effective cone of its minimal desingularization S, and produce 10 distin-
guished sections in Cox(S). These satisfy a unique equation and we show
the universal torsor naturally embeds in the corresponding hypersurface
in A'%. More precisely, we get a homomorphism from the coordinate ring
of A% to Cox(S) and the main point is to prove its surjectivity. Here
we use an embedding of S into a simplicial toric threefold Y, a quo-
tient of A'® under the action of the Néron-Severi torus so that Cox(Y") is
the polynomial ring over the above 10 generators. The induced restric-
tion map on the level of Picard groups is an isomorphism respecting the
moving cones. We conclude surjectivity for each degree by finding an
appropriate birational projective model of Y and using vanishing results
on it. Finally, in Section 4 we write down equations for the universal
torsors (the Cox rings) of a split and a nonsplit cubic surface with an
isolated singularity of type Dy.

Acknowledgments: The results of this paper have been reported at
the American Institute of Mathematics conference “Rational and integral
points on higher dimensional varieties”. We benefited from the comments
of the other participants, in particular, V. Batyrev and J.L. Colliot-
Thélene. We also thank S. Keel for several helpful discussions about Cox
rings and M. Thaddeus for advice about the geometric invariant theory
of toric varieties.
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1. Generalities on the Cox ring

For any finite subset = of a real vector space, let Cone(=Z) denote the
closed cone generated by =.

Let X be a normal projective variety of dimension n over an alge-
braically closed field k of characteristic zero. Let A,_1(X) and N,,_1(X)
denote Weil divisors on X up to linear and numerical equivalence, respec-
tively. Let A;(X) and N;(X) denote the classes of curves up to equiva-
lence. Let NE,,_1(X) C N,,_1(X)g denote the cone of (pseudo)effective
divisors, i.e., the smallest real closed cone containing all the effective di-
visors of X. Let NE;(X) C N;(X)g denote the cone of effective curves
and NM'(X) C N,,_;(X)g the cone of nef Cartier divisors, which is dual
to the cone of effective Cartier divisors. By Kleiman’s criterion, this is
the smallest real closed cone containing all ample divisors of X.

Let Lyq,..., L, be invertible sheaves on X. For v = (n,...,n,) € N
write

L' =I%"®. . ®L%.
Consider the ring
R(X,Ly,....L,) = @T(X,L",
veN”
which need not be finitely generated in general.

By definition, an invertible sheaf L on X is semiample if LY is globally
generated for some N > 0:

ProposITION 1.1. — ([14], Lemma 2.8) If Ly,...,L, are semiample
then R(X, Ly,...,L,) is finitely generated.

REMARK 1.2. — If the L; are ample then, after replacing each L; by a
large multiple, R(X, Ly,. .., L,) is generated by

I'(X,[)®...9 (X, L,).

However, this is not generally the case if the L; are only semiample
(despite the assertion in the second part of Lemma 2.8 of [14]). Indeed,
let X —P! x P! be a double cover and L; and Ly be the pull-backs of the

polarizations on the P's to X. For suitably large n; and no, L}* ® Ly?
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is very ample and its sections embed X. However,
DX, L) @ T(X, Ly?) ~ T(P', Opi(ny)) @ T(P', Op1 (na)),
and any morphism induced by these sections factors through P! x P!,

ProroOsITION 1.3. — Let Ly,..., L, be a set of invertible sheaves on
X such that L; is generated by sections sjo, ..., Sjq,- Assume that the
induced morphism X — Hj P% is birational into its image. Then the ring
generated by the s;i’s has the same fraction field as R(X, Ly, ..., L,).

Proof. — Both rings have fraction field k(X)(t,...,t,), where ¢; is a
nonzero section of L;. O

DEFINITION 1.4. — [14] Let X be a nonsingular projective variety so
that Pic(X) is a free abelian group of rank r. The Cox ring for X is
defined
Cox(X) := R(X, Ly,...,L,),

where Ly, ..., L, are lines bundles so that

1. the L; form a Z-basis of Pic(X);

2. the cone Cone({Ly,...,L,.}) contains NE,_1(X).
This ring is naturally graded by Pic(X): for v € Pic(X) the v-graded
piece is denoted Cox(X),.

PROPOSITION 1.5. — [14] The ring Cox(X) does not depend on the
choice of generators for Pic(X).

Proof. — Consider two sets of generators Li,...,L, and M,..., M,.
Since Cone({L;}) and Cone({M;}) contain all the effective divisors, the
nonzero graded pieces of both R(X, Ly,...,L,) and R(X, M,..., M,)
are indexed by the effective divisor classes in Pic(X). Choose isomor-
phisms

MjﬁL(alj """ aTj), izl,...,r,A:(aij)
which naturally induce isomorphisms
D(MY) ~T(LY), Av=(auvi +...+ aybr ... ¢un + ...+ apiy).

Thus we find R(X, Ly,...,L,) ~ R(X, My,..., M,). ]
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As Cox(X) is graded by Pic(X), a free abelian group of rank r, the
torus
T(X) := Hom(Pic(X), G,,)
acts on Cox(X). Indeed, each v € Pic(X) naturally yields a character
X of T(X), and the action is given by

t-&=x,()E, €€ Cox(X),,teT(X).

Thus the isomorphism constructed in Proposition 1.5 is not canonical:
Two such isomorphisms differ by the action of an element of T'(X). It
is precisely this ambiguity that makes descending the universal torsor to
nonclosed fields an interesting question.

The following conjecture is a special case of 2.14 of [14]:

CONJECTURE 1.6 (Finiteness of Cox ring). — Let X be a log Fano va-
riety. Then Cox(X) is finitely generated.

REMARK 1.7. — Note that if Cox(X) is finitely generated it follows
trivially that NE,_1(X) is finitely generated. Moreover, the nef cone
NM'(X) is also finitely generated.

Indeed, the nef cone corresponds to one of the chambers in the group
of characters of T'(X) governed by the stability conditions for points
v € Spec(Cox(X)). These chambers are bounded by finitely many hy-
perplanes (see Theorem 0.2.3 in [10] for more details).

It has been conjectured by Batyrev [1] that the pseudo-effective cone
of a Fano variety is finitely generated. However, the finiteness of the Cox
ring is not a formal consequence of the finiteness of the pseudo-effective
cone.

EXAMPLE 1.8. — Let py,...,p9 € H C P? be nine distinct coplanar
points given as a complete intersection of two generic cubic curves in the
hyperplane H, and let X be the blow-up of P? at these points. Then
NE!(X) is finitely generated but Cox(X) is not. Indeed, X is an equiv-
ariant compactification of the additive group G2, acting by translation
on the affine space P> — H. The group action can be used to show that
NE'(X) is generated by the boundary components (see [12]). Similarly,
one can show that the cone NE;(X) is generated by classes of curves in

the boundary components, e.g., the proper transform HcC X of H It
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is well-known that NE;(H) is infinite [16] §1.23(4): The pencil of cubic

plane curves with base locus pq, ..., pg induces an elliptic fibration,
H—P! ,

for which the nine exceptional curves of H— H are sections. Addition in

the group law gives an infinite number of sections, which are also (—1)-

curves and generators of NE;(H). These are also generators of NE; (X)),
since the sections (other than the nine exceptional curves) intersect H
negatively. It follows that NE;(X) and NM'(X) are not finitely generated

and hence Cox(X) is not finitely generated (see Remark 1.7).

PROPOSITION 1.9. — Let X be a nonsingular projective variety whose
anticanonical divisor —Kx is nef and big. Suppose that D is a nef divisor
on X. Then H'(X,D) =0 for each i > 0 and D is semiample.

Proof. — The first assertion is a consequence of Kawamata-Viehweg van-
ishing [16] §2.5. The second is a special case of the Kawamata Basepoint-
freeness Theorem [16] §3.2. O

Proposition 1.9 largely determines the Hilbert function of the Cox ring:

COROLLARY 1.10. — Retain the assumptions of Proposition 1.9. Then
for nef classes v we have

dim Cox(X), = x(Ox(v)).

REMARK 1.11. — In practice, this will help us to find generators of
Cox(X).

2. Generalities on toric varieties

We recall quotient constructions of toric varieties, following Brion-
Procesi [3], Cox [9], and Thaddeus [24].

Let T~ G, be a torus with character group X*(7'). Suppose that T’
acts faithfully on the polynomial ring k[z1, ..., x,.,] by the formula

t(I'J) = Xj(t)l’j, t e T,
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where {x1,..., Xntr} C X*(T). Define M as the kernel of the surjective
morphism

X = (Xb s aXn—i—r) : Zn+r_>%*<T)
We interpret M as the character group of the quotient torus G /T.
Set N = Hom(M, Z) so that dualizing gives

(Z"7)*—N—0.

Let e1,..., e, and €},..., €}, denote the coordinate vectors in Z"*"
and (Z"*")*; let e7,...,€,,, € N denote the images of the e in N.
Concretely, the ef are the columns of the n x (n+r) matrix of dependence
relations among the ;.

Consider a toric n-fold X associated with a fan having one-skeleton
{et,...,€, .. In particular, we assume that none of € is zero or a
positive multiple of any of the others. The variety X is a categorical
quotient of an invariant open subset U C A"™"" under the action of T
described above (see [9] 2.1). Elements v € X*(T') classify T-linearied
invertible sheaves £, on A" and

LA™ L) ~ k), ... Tpor]y
We have A,,_1(X) ~ X*(T) and we can identify
F(Ox(D)) ~ k}[Il, e ,l’n]y(D),

where v(D) € X*(T) is associated with the divisor class of D. The
variables x; are associated with the irreducible torus-invariant divisors
D; on X (see [11] §3.4), and the cone of effective divisors NE,,_;(X) is
generated by {Dy, ..., Dy, }. Geometrically, the effective cone in X*(T)
is the image of the standard simplicial cone generated by eq,..., e,
under the projection homomorphism x : Z"*"—X(T).

Recall that the moving cone

Mov(X) C NE,_1(X)

is defined as the smallest closed subcone containing the effective divisors
on X without fixed components.

PROPOSITION 2.1. — Retaining the notation and assumptions above,

Mov(X) = m Cone(X1, - -+ Xi—1, Xit1s- - » Xntr)

i=1,....,n+r
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and has nonempty interior.

Proof. — The fixed components of I'(X, Ox (D)) are necessarily invari-
ant under the torus action, hence are taken from {Dy,..., D,,}. More-
over, D; is fixed in each I'(X, Ox(dD)),d > 0 if and only if z; divides
each element of k[x1, ..., Zyir]apy. This is the case exactly when

v(D) € Cone(x1, -y Xntr) — Cone(X1, -y Xi1s Xitls-- s Xnir)-

Suppose that the interior of the moving cone is empty. After permuting
indices there are two possibilities: Either Cone(xa, ..., Xn+r) has no in-
terior, or the cones Cone(xa, - .., Xn+r) and Cone(xi, X3, - - -, Xnir) have
nonempty interiors but meet in a cone with positive codimension. As
the T-action is faithful, the x; span X*(7). In the first case, xa, ..., Xnir
span a codimension-one subspace of X*(T') that does not contain xi, so
that each dependence relation

C1X1 T -+ T CntrXntr = 0

has ¢; = 0. This translates into €] = 0, a contradiction. In the second
case, Xs3,.--,Xnir Span a hyperplane, and y; and y, are on opposite
sides of this hyperplane. Putting the dependence relations among the y;
in row echelon form, we obtain a unique relation with nonzero first and
second entries, and these two entries are both positive. This translates
into the proportionality of €] and é3. O

We now seek to characterize the projective toric n-folds X with one-
skeleton {e7, ..., e}, }. These are realized as Geometric Invariant Theory
quotients A"/ /T associated with the various linearizations of our T-
action. We consider the graded ring

R:=> T(A™ Ly) = klx1,. .. Totrla-

d>0 d>0
PROPOSITION 2.2 (see [24] §2,3). — Retain the notation above and set
X = Proj(R).

1. X s projective over k if and only if O us not contained in the convex

hull of {x1, -, Xn+r}-
2. X is toric of dimension n if v is in the interior of

Cone(X1, -+ Xnitr)-
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3. In this case, the one-skeleton of X is contained in {e7,... e . }.
Equality holds if v is in the interior of the moving cone

m COHG(Xl, e Xai—1 X1y - - - 7Xn+r)-
i=1,....,n+r

REMARK 2.3. — Our proof will show that X may still be of dimension
n even when v is contained in a facet of

Cone(X1, - -y Xntr)-

Similary, the one-skeleton of X may still be {é7,... €, .} even when
v is contained in a facet of

Cone(x1; - -+ Xie1s Xit1s - - - ,Xn+r)-
i=1,...,n+r

Proof. — The monomials which appear in R are in one-to-one correspon-
dence to solutions of

a1 X1 + ...+ Aptr Xn+r — dV, a; € Zzo.

In geometric terms, the monomials appearing in R coincide with the
elements of Z"*" in the cone

x !(Cone(v)) N Cone(ey, ..., enir).

By Gordan’s Lemma in convex geometry, R is generated as a k-algebra
by a finite set of monomials 2™, ..., ™. The monomials appearing in
the dth graded piece Ry coincide with elements of Z"*" in the polytope

P, = Xﬂgl(dy) N Cone(eq, ..., entr).

Note that xy~1(dv) is a translate of M.

For the first part, recall that Proj(R) is projective over Spec(Ry), where
Ry is the degree-zero part. Now 0 is in the convex hull of {x1, ..., Xnir}
if and only if there are nonconstant elements of R of degree zero. Our
hypothesis just says that Ry = k and thus is equivalent to the projectivity
of X over k.

As for the second part, T acts on R by homotheties and thus acts
trivially on Proj(R), so we have an induced action of G;t" /T on Proj(R).
We claim this action is faithful, so the quotient is toric of dimension n.
Let piq,...,pu, be generators for M = X*(Gt"/T). Choose v € Z""
in the interior of Cone(ey,...,€,+,) so that yg(Cone(v)) = Cone(v).
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Replacing v by a suitably large integral multiple, we may assume each
vt =1,...,n,isin Cone(ey, ..., e, ). If x(v) = dv then R4 contains
a set of generators for M, so the induced representation of G /T on
R, is faithful.

For the third part, we extract the fan classifying X from Py, , following
[11] §1.5 and 3.4: For each face @ of Py, consider the cone

oo ={v € Ng: (u,v) < (u,v) forallu € Q,u’ € Py,}.

This assignment is inclusion reversing, so the one-dimensional cones of
the fan correspond to facets of P;,. Moreover, each facet of Py, is in-
duced by one of the facets of Cone(es,...,e,.,). The corresponding
one-dimensional cone in Ng is spanned by €. It remains to verify that
each facet of Cone(ey,...,e,.,) actually induces a facet of P,,. The hy-
pothesis that v is in the moving cone means that P, intersects each of
the Cone(ey, ..., €;1,€i11, ..., €nsy). If v is in the interior of the moving
cone then the intersection of Py, with Cone(ey, ..., €; 1,611, -, €nis)
meets the relative interior of this cone, hence this cone induces a facet of
Py,. m

Proposition 2.2 yields the following nice consequence:

PROPOSITION 2.4. — Let X be a complete toric variety and v a divisor
class in the interior of Mov(X). Then there exists a projective toric
variety Y, , with the same one-skeleton as X, and polarized by v.

For generic T-linearized invertible sheaves on A™*" all semistable points
are actually stable; hence Y, is a simplicial toric variety for generic v (see
[3] 1.2 and [9] 2.1). For the special values 1y, contained in the walls of
the chamber decomposition of [24], this fails to be the case. However, for
each special vy, there exists a generic v so that Cone(v) is very close to
Cone(1yp) and there is a projective, torus-equivariant morphism Y, —Y,,
[24] 3.11. The polarization associated to v pulls back to Y, so we obtain
the following:

PROPOSITION 2.5. — Let X be a complete toric variety and vy a divisor
class in the moving cone of X. Then there exists a simplicial projective

toric variety Y, with the same one-skeleton as X, so that vy is semiample
onY.
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Of course, 14 is big when it is in the interior of the effective cone.

3. The Eg cubic surface

By definition, the Eg cubic surface is given by the homogeneous equa-
tion

(3.1) S ={(w,z,y,2): zy* +yw* + 2* =0} C P°.

We recall some elementary properties (see [4] for more details on singular
cubic surfaces):

PROPOSITION 3.1. —
1. The surface S has a single singularity at the point p := (0,1,0,0),
of type Eg.
2. 5 1s the unique cubic surface with this property, up to projectivity.
3. S contains a unique line, satisfying the equations y = z = 0.

Any smooth cubic surface may be represented as the blow-up of P? at
six points in ‘general position’. There is an analogous property of the Eg4
cubic surface:

PROPOSITION 3.2. — The Eg cubic surface S is the closure of the image
of P? under the linear series

w=a’c z=—(ac®*+b) y=a*> z=a,

where

['(P?, Op2(1)) = (a, b, ).
This map 1is the inverse of the projection of S from the double point p.
The affine open subset

A? :={a#0} C P

is mapped isomorphically onto S — €. In particular, S\ £ ~ A?, so the
Es cubic surface is a compactification of A®.

REMARK 3.3. — Note that S is not an equivariant compactification of
G2, so the general theory of [5] does not apply.

Indeed, if S were an equivariant compactification of G2 then the pro-
jection from p would be G2-equivariant (see [12]). Therefore, the map
P? --» S given above has to be G2-equivariant. The only G2-action
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I 2
—o *—0—
1 3 6 5 4 |

FicURE 1. Dynkin diagram of Eg

on P2 under which a line is invariant is the standard translation action
[12]. However, the linear series above is not invariant under the standard
translation action

b—b+pPa c+— c+~a.

We proceed to compute the effective cone of the minimal resolution
¢y : S—S. Let £ C S be the proper transform of the line mentioned in
Proposition 3.1.

PROPOSITION 3.4. — The Picard group Pic(S) is a free abelian group of
rank seven, generated by £ and the exceptional curves of ¢,. For a suitable
ordering { F, Fy, F3, Fy, F5, Fs} of the exceptional curves, the intersection
pairing takes the form

R F, F5 ¢ Fy F5 F;
F{-2 0 1 0 0 0 0
Ko -2 0 0 0 0 1
11 0 -2 0 0 0 1
(3:2) ¢y10 0 0 -1 1 0 O0°
K0 0 0 1 -2 1 0
{0 0 0 0 1 -2 1
1 0 1 1 0 0 1 =2
PROPOSITION 3.5. — The effective cone NE(S) is simplicial and gen-

erated by ® := {Fy, Fy, F3, 0, Fy, F5, Fs}. Each nef divisor is contained in
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the monoid generated by the divisors
A = Fy+ F3+ 20+ 2F, + 2F5 4 2F;
Ay = Fi+Fy+2F54+ 30+ 3F,+ 3F5 + 3F%
As = F1+2F +2F3+ 40+ 4F, + 4F5 + 4F§
Ay = 2F 4+ 3F, +4F5+ 30+ 4F, + 5F5 4 6F;
Ay = 2F1 +3F, +4F5+ 404+ 4F, + 5F5 + 6F5
As = 2F, +3F, +4F5+ 50+ 5F, + 5F5 + 6F
Ag = 2F1 +3F, +4F34+ 60+ 6F, + 6F5 + 6F%

. Moreover Ay is the anticanonical class —Kg and its sections induce the
resolution morphism ¢y : S—S.

Proof. — The intersection form in terms of A := {A;,..., Ag} is:

A Ay As A, Ay As Ag

A0 1 1 2 2 2 2

A1 1 2 3 3 3 3

A; |1 2 2 4 4 4 4

(3.3) A2 3 4 3 4 5 6
A2 3 4 4 4 5 6

As|2 3 4 5 5 5 6

Asl2 3 4 6 6 6 6.

This is the inverse of the intersection matrix (3.2) written in terms of the
basis ®, so the A; generate the dual to Cone(®). Observe that all the
entries of matrix (3.3) are nonnegative and

Cone(A) C Cone(®).

Suppose that D is an effective divisor on S. We write D as a sum of
the fixed components contained in {F}, ..., Fg, ¢} and the parts moving
relative to ®:

D:Mq>—|-a1F1—|—...—|—CL6F6—|—ag€, al,...,ag,agzO.

A priori, Mg may have fixed components, but they are not contained in
¢ (however, see Lemma 3.6). It follows that Mg intersects each element
of ® nonnegatively, i.e., it is contained in Cone(A) and thus in Cone(®).
We conclude that D € Cone(®). Since Ay, ..., Ag, Ay generate Ny (S) over
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7 each nef divisor can be written as a nonnegative linear combination of
these divisors.
To see that A, is the anticanonical divisor, we apply adjunction
KsF;=0,1=1,...,6 Kgl=—1.

Nondegeneracy of the intersection form implies A, = —Kg. Since S has
rational double points, the resolution map ¢, is crepant, i.e., o; Kg = K.
Thus

[(Ag) =T(=Kg) =T'(=¢;Ks) = I'(¢;0s(+1))
so the sections of A, induce ¢;. O

Choose nonzero sections &1, ..., & generating I'(F}), ..., ['(¢):
L(F) = (&), ... . T(Fs) = (&), T'(0) = (&) -
These are canonical up to scalar multiplication. Each effective divisor
D =01 F) + boFy + b3 F3 + bpl + by Fy + bsF5 + bgFy
has a distinguished nonzero section
glbrbab bbabsbe) . ehi -5365?-

The distinguished section of A; is denoted £2). Note that we have an
injective ring homomorphism
(34) k[Sh cee 7567 SE]HCOX(S)

There is a partial order on the monoid of effective divisors of S: Dy <
Dy if Dy — Dy is effective. The restriction of this order to the generators
of the nef cone is illustrated in the diagram below:

Ag

|
As

Ay

A
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Whenever D; < D, we have an inclusion
I'(D1)=T'(D2)
which is natural up to scalar multiplication. Indeed, express
Dy — Dy =biFy +boFo+ ...+ bgFs +bil, b; >0

so we have

s — 5(b1,b27537b57b4,b5,b6)81
[(Dy) — T(Dy).

The homomorphism (3.4) is not surjective, and we now look for gen-

erators of Cox(S) beyond the ;. Consider the subring

Cox,(S) = @ Cox(9),

veNM(S)

obtained by restricting to degrees corresponding to nef classes on Si. The

following lemma implies that any homogeneous element sp € Cox(.S) can
be written in the form

b be b,
Sp = mell e ‘566 /Z

with nonnegative exponents and mp € Coxy(S).

LEMMA 3.6. — Let D be an effective divisor on S with fized part Fp
and moving part Mp. Then Fp is supported in {Fy, ..., Fs,(}, and Mp
is a linear combination of A1, ..., As, Ay with nonnegative coefficients.

Proof. — Clearly Mp is nef, so the description of the nef divisors in
Proposition 3.5 gives the expression in terms of the A;. Proposition 1.9
shows Mp is semiample with vanishing higher cohomology; the last part
of Proposition 3.5 gives the requisite positivity of the anticanonical class.

Let F be a fixed component of D not supported in {F}, ..., Fg, ¢}. To
arrive at a contradiction, we need to show that h%(Mp + F) > h(Mp).
Since Mp has vanishing higher cohomology and

h*(F + Mp) = h°(K — F — Mp) =0
it suffices to show that
X<F+ MD) > X(MD)



UNIVERSAL TORSORS AND COX RINGS 17
By Riemann-Roch, it suffices to show that
F? +2MpF — KgF >0
or, equivalently,
F? + KgF + 2MpF — 2KsF = 2g(F) — 2+ 2MpF — 2KgF > 0.

Since F is irreducible, g(F) > 0 and MpF > 0 and —KgF > 1, as Mp
is nef and — Kz is nonpositive only along the exceptional curves and has
degree 1 only on the line ¢ (see Proposition 3.1). O

Corollary 1.10 gives the dimensions of the graded pieces of Cox,(S).
We focus first on the generators of the nef cone, introducing sections
7; € I'(A;) as needed to achieve the prescribed dimensions:

DA = (£0.n)
D(Ay) = (€0, 6=0r m)
D(A) = (g7, g0, g0-ay, 7,)

The sections of A, induce ¢, : S—S C P3 by Proposition 3.5, and can be
identified with the coordinates w,z,y, z of Equation (3.1). Since A; <
Ay < Ay, we have

['(A;) — I'(Ag) — T'(A).

We can identify I'(A;) = (y, 2); these correspond to projecting S from
the line { = {y = z = 0} and induce a conic bundle structure

o1 : S—P.

We have I'(Ay) = (z,y, z); these correspond to projecting S from the
singularity p = {w = y = z = 0} and induce the blow-up realization

by 1 S—P2.
Therefore, we may choose 11, 75, and 7, so that

y =0 gy =geO-0@p o) 5 7
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We obtain the following induced sections for As, A4, A5, and Ag:

[(45) = (£2® ga@-aly cal)-al)y, ca)-2a(1),2)

[(A) = (€@ ga—aly caW-a@)y, calb-al)y, ca()=2a(1) 2)

[(45) = (€90 go@-ally cab)-a)y, cal)-aldy, cal)-2a();2,
ga®-a)-a)r, )

[(Ag) = (620 ga®)—aly ca®-a@)y, ca®-all);, calo)-2a(1);2,

ga(6)fa(1)fa(2)7_17_27 504(6)7204(2)7_227 50[(6)7304(1)7_13>

Equation (3.1) gives the relation
7_25204@) + T22€3a(€)—20z(2) + 7_1353a(2)—3a(1) =0.

Dividing by a suitable monomial £°, we obtain

Te& 68 + Tl + T E = 0,

a dependence relation in I'(Ag). This is the only such relation: Any other

relation, after multiplying through by &7, yields a cubic form vanishing

on S C P3, but equation (3.1) is the only such form. It follows that the

sections given above for Ay, ..., A5 form bases for I'(A;),...,['(45).
Since

A3 < Ay < As < Ag < 24,
we have
— F(QAE) = <w2> wr, wy, x27 TY, Xz, y27 Yz, ZQ>

and identifications

D(A3) = (v yzwy,2*)

['(Ay) (v, yz, wy, vy, 2°)

['(A5) = <y2, Yz, wy, Ty, 22, wz>
['(Ag) = <y2, yz, wy, ry, 22, we, w2> )

The sections of Az induce a morphism

o3 : S—p?
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onto a quadric surface with a single ordinary double point. The sections
of A4 induce a morphism

bg : S—P*
with image a quartic Del Pezzo surface with a rational double point of
type D5. The sections of Ay induce a morphism

¢5 : S’—>]P)5

with image a quintic Del Pezzo surface with a rational double point of
type Dy. The sections of Ag induce a morphisms

b6 : S—PS

with image a sextic Del Pezzo surface with two rational double points,
of types Ay and As.
We summarize this analysis in the following proposition

PROPOSITION 3.7. — Ewvery section of Aj,j = 1,2,3,£,4,5,6, can be
expressed as a polynomual in &1, ..., &, &, T1, T2, Tg. The only dependence
relation among these s

TE EREs + 1560 + TP ELEs = 0
in I'(Ag). Each A; is globally generated and induces a morphism
¢;: S=P X = x(05(4;)).

The remainder of this section is devoted to proving the following:

THEOREM 3.8. — The homomorphism
0 ¢ K[Er, . €6, €01, T2, T/ (Te€PEREs + TEE + TVETER)—Cox(S)

1 an isomorphism.

If o were not injective, its kernel would have nontrivial elements in de-
gree v = dAy, for some d sufficiently large. These translate into homoge-
neous polynomials of degree d vanishing on S C P3. All such polynomials
are multiples of the cubic form defining S, which itself is a multiple of
the relation we already have.

It remains to show that p is surjective. By Proposition 3.5, Lemma 3.6
and the analysis of the sections of the A;, it suffices to prove:
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PROPOSITION 3.9. — o is surjective in degrees corresponding to nef di-
visor classes of S.

LEMmMmA 3.10. — For any positive integers cy, ¢, C3, Cy, C4, C5, Cg, the im-
age of

[(A)*" ®...0T(A)% ®...T(As)%° — T(c1 Ay + ...+ cAg)
is a linear series embedding S.

Proof. — Proposition 3.7 says that each A; is globally generated, so if
the image of

['A))®...0T(4g) — T'(A; + ...+ Ag)

embed S then the general result follows. We use the standard criterion:
a linear series gives an embedding iff any length-two subscheme ¥ C S
imposes two independent conditions on the linear series.

First, suppose the support of 3 is not contained in the exceptional
locus of ¢y : S—.5, i.e., the curves F}, Fy, F3, Fy, F5, F5. Then ¢, maps X
to a subscheme of length two, which imposes independent conditions on
I'(A;), and thus independent conditions on the linear series in question.
Second, suppose that ¥ C F} for some j (resp. ¥ C ¢). Since A;- F; =1
(resp. A;-¢ = 1), ¢; maps Fj (resp. {) isomorphically onto a line. It
follows that ¥ imposes independent conditions on I'(A;). Third, suppose
that ¥ is reduced with support in Fj and Fj, but is not contained in either
F; or F;. Consider the chain of rational curves containing F; and Fj (see
Figure 3.) There exists a curve Fj, in this chain so that ¢y (F;) # ¢r(Fj),
so X imposes independent conditions on I'(Ag). Fourth, suppose that
> is nonreduced and supported in F; but not contained in any F; or
¢. The morphism ¢; ramifies at points where F; meets one of the other
exceptional curves, and the kernel of the tangent morphism d¢; consists
of the tangent vectors to the curves contracted by ¢;. It follows that
¢;(X) has length two and imposes independent conditions on I'(4;). O

The polynomial ring

k[fl, s 7667 gfa T1, T2, Tﬁ]
is graded by the Néron-Severi group of S

deg(&) =Fj,j=1,...,6 deg(&) =0 deg(rj) = A;,j =1,2,4.
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This gives an action of the Néron-Severi torus 7(S) on the corresponding
affine space A0,
We consider the projective toric varieties that arise as quotients of A

by T'(S). As sketched in §2, these varieties have the one-skeleton
r1=(0,1,2), 20 = (1,1,3), 23 = (1,2,4), 2, = (2,3,3), 24 = (2,3,4)
rs = (2,3,5), 6 = (2,3,6),t1 = (—1,0,0),t2 = (0,—1,0),¢, = (0,0, —1)

where the z; correspond to the &; and the ¢; correspond to the 7;.

LEMMA 3.11. — Let X be a toric threefold with one-skeleton {xy, ..., t;}

and divisor class-group X*(T'(S)) = N1(S). Then
Mov(X) = Cone(A4;, ..., Ag, Ar).

Proof. — Proposition 2.1 reduces this to computing the intersection of
the cones generated by subsets of

{F17"'7F67€7A17A27AZ}

with nine elements. Since A, Ay, A, are effective combinations of the
classes Fi, ..., Fg, and /, it suffices to compute

Cone(Fl,...,ﬁ,...,Ag)ﬂ ( ﬂ Cone(Fl,...,Fi,...,Ag)) :
i=1,...,6
This intersection obviously contains A;, Ay, and Ay, and it is a straight-
forward computation to show that it also contains As, Ay, A5, Ag. For the
reverse inclusion, suppose that D is contained in the intersection. Con-
sidering D as a divisor on S, we see that

D-F,....D-Fs,D-¢

are all nonnegative. Thus D is an effective sum of A; by Proposition
3.5. O

Combining Lemmas 3.11 and 3.10 with Propositions 2.2 and 3.7, we
obtain the following

PROPOSITION 3.12. — Let v be an ample divisor on S. Then there
exists a projective toric variety Y, with one-skeleton {x1,...,t;} and po-
larization v, and an embedding S — Y, with the following properties:
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L. the divisor class group of Y, is isomorphic to the divisor class group
of S so that the moving cone of Y, is identified with the nef cone of
S;

2. the equation for S in the Cox ring of Y, is

7€ 68 + T3 + & & = 0

and [S] = Ag in the divisor class group of Y,,;
3. Cox(Y,) = k[&, ..., T and is mapped isomorphically to the image
of the homomorphism o.

For each toric variety Y,,, we can consider the exact sequence of sheaves
0—15—0y,—05—0,

where Iz ~ Oy, (—Ag) is the ideal sheaf of S. Given an element 6 in the
divisor class group of Y,, we can twist to obtain

0—15(6)—0Oy, (0)—0z(8)—0.

We should make precise what we mean by the twist F(6) of a coherent
sheaf F on Y,: Realize F as the sheafification of a graded module F' over
Cox(Y,) (which exists by [17] Theorem 1.1, [9] Proposition 3.1), shift F’
by 0, and then resheafify the shifted module to obtain F(#). Twisting
respects exact sequences [9] 3.1.

The anticanonical divisor of a toric variety is the sum of the invariant
divisors [11] p. 89, so

—Kyy :F1++F6+£+A1+A2+A52A3+A6
and we can rewrite our exact sequence as
O—>OYV (KYV + A+ 6)—>OYV (9)—>O§((9)—>O

Suppose that 6 corresponds to a nef class on S; we shall prove that o
is surjective in degree #, thus proving Proposition 3.9 and Theorem 3.8.
Since

F(OYV(Q)) = k[fl? v 75675@77-177-27 TZ]G
it suffices to show that
H'(Oy,(Ky, + Ay +6)) = 0.

We apply Proposition 2.5, with vy = A, + 0, to get a simplicial toric
variety Y, on which A, + @ is nef. As A, is in the interior of the effective
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cone of Y,,, Ay+0 is also big. Note that Y, has finite-quotient singularities,
which are log terminal [16] §5.2. The desired vanishing follows from
Theorem 2.17 of [15]. Alternately, we could apply Theorem 0.1 of [17],
which applies in arbitrary characteristic and obviates the need to pass to
a simplicial model.

4. D, cubic surface

The strategy of the previous section can applied to other surfaces as
well. Here we illustrate it in the case of a cubic surface given by the
homogeneous equation

S = {(x1, 29, 23, w) : w(w1 + T3 + 23)% = T1THT3} C P2

We summarize its properties:

1. S has a single singularity at the point (0,0,0, 1) of type Dy.
2. S contains 6 lines with the equations

ty={w=x=0} m):={x; =20+ 23=0}
Uy :={w=xo=0} my:={xy=121+23=0}
Uy :={w=x3=0} mi:={x3=u124+22=0}

3. S is given as a blow-up of P? by the linear series
z1 = (w4 us 4 uz)?, @2 = us(ug + us + u3)’, 3 =uz(us +us +uz)?,
W = Ujuausz,

where (uy, ug, uz) = T'(P?, Op2(1)).

REMARK 4.1. — There are two isomorphism classes of cubic surfaces
with a Dy singularity [4] Lemma 4. The other class is

w(xy + o9 + 23)% = 2129 (— 21 — T9);
it is obtained from S by substituting
(w, T1, To, T3) > (2w, 11, 09, tx3 + (t — 1)y + (t — 1)x0)

and letting t—0 in the resulting equation.
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Let 3 : S—S denote the minimal desingularization of S and
617 627 637 my, M2, M3

the strict transforms of the lines. The rational map S --» P? induces a
morphism S—P? and let L denote the pullback of the hyperplane class.
Let Ey, E1, E5, E3 be the exceptional divisors of (3, ordered so that we
have the following intersection matrix:

L E1 E2 E3 my Mo M3
Li{1 o o0 O 0 0 O
Ej0 -2 0 0 1 0 0
Ey|O 0 -2 0 0 1 O
(4.1) Est0 0 0 -2 0 0 1
m |0 1 0O O -1 0 0
me|O0O O 1 0 0 -1 0
mg|0 O O 1 0 0 -1

This is a rank seven unimodular matrix; since the Picard group of S has
rank seven, it is generated by L, F, 5, E3, m1, msy, ms3. In particular, we
have

E():L— (E1+E2+E3+m1+m2+m3) and gj :L—E]—Zm]
The anticanonical class is given by

- 5:3L—(E1+E2+E3)—2(m1+m2+m3):€1+£2+€3.

PROPOSITION 4.2. — The effective cone NE(S) is generated by
= :={Ey, E1, By, E5,mj, (;}.
Proof. — Each effective divisor D can be expressed as a sum
D = Mz+bg,Ey+ bg, By + ... + by, U3,

with nonnegative coefficients, where Mz intersects each of the elements
in = nonnegatively and thus is in the dual cone to Cone(Z). Direct
computation shows that the dual to Cone(Z) has generators

L,L—EZ—m2,2L—EZ—2mz,2L—EZ—EJ—2mz—2m3,
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Each of these is contained in Cone(Z):

2L—EZ—E]—mZ—2mJ = Ez—i—ﬁj—i—mz,
L—-E;i—m; = 4;+my,
It follows that Mz and D are sums of elements in = with nonnegative
coeflicients. O

Each of the divisors m;, ¢; and E; has a distinguished nonzero section
(up to a constant), denoted p;, A; and 7;, respectively. We have
{Nimad s mommansp papsy € T(L),

and we may identify

up = Amip; and uy + Up + uz = MmN 2 /s
after suitably normalizing the u;, A;, and 7;. The dependence relation
among the sections in I'(L) translates into
(4.2) ML + Aatlafty + Astsis = NoThnansia fiafts.

An argument similar to the one given at the end of Section 3 proves that
the natural homomorphism

k[ﬁo, < M35 iy Ai]/</\17hlﬁ + >\2772N§ + )\3773M§ - 770771772773/~01/~02M3>—>COX(§)

is an isomorphism.

The cubic surface S admits an G3-action on the coordinates x1, x5, 3.
In particular, it admits nonsplit forms over nonclosed ground fields. They
can be expressed as follows: Let K/k be a cubic extension with Galois
closure E/k. Fix a basis {v,7/,7"} for K over k so that elements Y € K
can be represented as

Y — y'y +y//y/ +y//7//
with 3,9/, y" € k. Choose ¢ € Gal(E/k) so that o and o2 are coset
representatives Gal(E/k) modulo Gal(E/K). Then

w - Trgp(Y)? = Ng (V)
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is isomorphic, over E, to S:

s

rno= Y =yy+y7 +y"y
vy = oY) =yo(y) +y'o(y)+y'0c(r") .
vy = o*(Y) =yo’(y) +yo*(y) +y"o* (")

Assigning elements U, V,W € K to m,pu; and \q, respectively, the
torsor equation (4.2) takes the form

1]

[4]

[5]

6]

[7]

8]

[9]
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