
CURVES IN ABELIAN VARIETIES OVER FINITE FIELDS

by

Fedor Bogomolov and Yuri Tschinkel

ABSTRACT. — We study the distribution of algebraic points on curves in abelian varieties over finite fields.

1. Introduction

Let k be an algebraic closure of a finite field and let C be a curve over k . Assume that C is embedded into an abelian algebraic group G over k , with the group operation written additively. Let c be a k -rational point of C . In this note we study the distribution of orbits $\{m \cdot c\}_{m \in \mathbb{N}}$ in the set $G(k)$ of k -rational points of G . One of our main results is:

THEOREM 1. — *Let C be a smooth projective curve over k of genus $g = g(C) \geq 2$. Let A be an abelian variety containing C . Assume that C generates A , i.e., the Jacobian J of C admits a geometrically surjective map onto A . For any $\ell \in \mathbb{N}$ we have*

$$A(k) = \bigcup_{m=1 \pmod{\ell}} m \cdot C(k),$$

i.e., for every $a \in A(k)$ and $\ell \in \mathbb{N}$ there exist $m \in \mathbb{N}$ and $c \in C(k)$ such that $a = m \cdot c$ and $m = 1 \pmod{\ell}$.

Moreover, let $A(k)\{\ell\} \subset A(k)$ be the ℓ -primary part of $A(k)$ and let S be any finite set of primes. Then there exists an infinite set of primes Π , containing S and of positive density, such that the natural composition

$$C(k) \rightarrow A(k) \rightarrow \bigoplus_{\ell \in \Pi} A(k)\{\ell\}.$$

is surjective.

Acknowledgments: We are grateful to Ching-Li Chai, Nick Katz and Bjorn Poonen for their interest and useful remarks. The first author was partially supported by the NSF.

2. Curves and their Jacobians

Throughout, C is a smooth irreducible projective curve of genus $g = g(C) \geq 2$ and J its Jacobian. Assume that C is defined over $\mathbb{F}_q \subset k$ with a point $c_0 \in C(\mathbb{F}_q)$ which we use to identify the degree n Jacobian $J^{(n)}$ with J and to embed C in J . Consider the maps

$$C^n \xrightarrow{\phi_n} \text{Sym}^{(n)}(C) \xrightarrow{\varphi_n} J^{(n)} = J,$$

$$c = (c_1, \dots, c_n) \longrightarrow (c_1 + \dots + c_n) \longrightarrow [c],$$

Here $(c_1 + \dots + c_n)$ denotes the zero-cycle and ϕ_n is a finite cover of degree $n!$. For $n \geq 2g + 1$, the map φ_n is a \mathbb{P}^{n-g} -bundle and the map $C^n \rightarrow J^{(n)}$ is surjective with geometrically irreducible fibers (see [3], Corollary 9.1.4, for example). We need the following

LEMMA 2. — *For every point $x \in J(\mathbb{F}_q)$ and every $n \geq 2g + 1$ there exist a finite extension k'/\mathbb{F}_q and a point $y \in \mathbb{P}_x(k') = \varphi_n^{-1}(x)(k')$ such that the degree n zero-cycle $c_1 + \dots + c_n$ on C corresponding to y is k' -irreducible.*

Proof. — This follows from a version of an equidistribution theorem of Deligne as in [3], Theorem 9.4.4. \square

Proof of Theorem 1. — We may assume that $A = J$. Let $a \in A(k)$ be a point. It is defined over some finite field \mathbb{F}_q (with $c_0 \in C(\mathbb{F}_q)$). Fix a finite extension k'/\mathbb{F}_q as in Lemma 2 and let N be the order of $A(k')$.

Choose a finite extension k''/k' , of degree $n \geq 2g + 1$, such that n and the order of the group $A(k'')/A(k')$ are coprime to $N\ell$. By Lemma 2, there exists a k' -irreducible cycle $c_1 + \dots + c_n$ mapped to a . The orders of $c_1 - c_j$, for $j = 1, \dots, n$, are all equal and are coprime to $N\ell$ (note that all c_j have the same order and the same image under the projection

$A(k'') \rightarrow A(k')$). Then there is an $m \in \mathbb{N}$, $m = 1 \pmod{N\ell}$, such that

$$0 = m(nc_1 - \sum_{j=1}^n c_j) = mnc_1 - ma = mnc_1 - a.$$

We turn to the second claim. Fix a prime $p > (2g)!$ and so that $p \nmid |\mathrm{GL}_{2g}(\mathbb{Z}/\ell\mathbb{Z})|$, for all $\ell \in S$. Let Π be the set of *all* primes ℓ such that $p \nmid |\mathrm{GL}_{2g}(\mathbb{Z}/\ell\mathbb{Z})|$. We have $\ell \in \Pi$ if $\ell^i \neq 1 \pmod{p}$, for all $i = 1, \dots, 2g$. In particular, Π has positive density.

The Galois group $\mathrm{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q) = \hat{\mathbb{Z}}$ contains \mathbb{Z}_p as a closed subgroup. Put $k' := \bar{\mathbb{F}}_q^{\mathbb{Z}_p}$. For $\ell \in \Pi$, there exist no non-trivial continuous homomorphisms of \mathbb{Z}_p into $\mathrm{GL}_{2g}(\mathbb{Z}_\ell)$; and the Galois-action of \mathbb{Z}_p on $A(k)\{\ell\}$ is trivial. In particular,

$$A(k') \supset \prod_{\ell \in \Pi} A(k)\{\ell\}.$$

Now we apply the argument above: given a point $a \in \prod_{\ell \in \Pi} A(k)\{\ell\}$ we find points $c_1, \dots, c_{p^r} \in C(k)$, defined over an extension of k' of degree p^r , and such that the cycle $c_1 + \dots + c_{p^r}$ is k' -irreducible and equal to a . By construction, p and the orders of $c_i - c_j$ are coprime to every $\ell \in \Pi$, for all $i \neq j$. We conclude that the natural map

$$C(k) \rightarrow \prod_{\ell \in \Pi} A(k)\{\ell\}$$

is surjective. □

REMARK 3. — This shows that, over finite fields, all algebraic points on A are obtained from a 1-dimensional object by multiplication by a scalar.

REMARK 4. — The fact that

$$C(k) \rightarrow \bigoplus_{\ell \in \Pi} A(k)\{\ell\}$$

is surjective was established for Π consisting of one prime in [1]; for a generalization to finite Π see [6].

3. Semi-abelian varieties

Let C be an irreducible curve over k and $C_\circ \subset C$ a Zariski open subset embedded into a semi-abelian group T , a torus fibration over the Jacobian $J = J_C$. Assume that C_\circ generates T , i.e., every point in $T(k)$ can be written as a product of points in $C_\circ(k)$.

THEOREM 5. — *For every $t \in T(k)$ there exist a point $c \in C_\circ(k)$ and an $m \in \mathbb{N}$ such that $t = c^m$.*

Proof. — We follow the arguments of Section 2: for $n \gg 0$ the map

$$\begin{aligned} C_\circ^n &\rightarrow J_{C_\circ} \\ (c_1, \dots, c_n) &\mapsto \prod_{j=1}^n c_j \end{aligned}$$

to the generalised Jacobian has geometrically irreducible fibers. In our case C_\circ is a complement to a finite number of points in C and the generalised Jacobian J_{C_\circ} is a semi-abelian variety fibered over the Jacobian $J = J_C$ with a torus T_\circ as a fiber.

In particular, if $\mathbb{F}_q \subset k$ is sufficiently large (with $C_\circ(\mathbb{F}_q) \neq \emptyset$) then, for some finite extension k'/\mathbb{F}_q and $t \in J_{C_\circ}(\mathbb{F}_q)$ there exist $c_1, \dots, c_n \in C_\circ(k'')$, where k''/k' is the unique extension of k' of degree n , such that the Galois group $\text{Gal}(k''/k')$ acts transitively on the set $\{c_1, \dots, c_n\}$ and $t = \prod_{j=1}^n c_j$. The Galois group $\text{Gal}(k''/k')$ is generated by the Frobenius element Fr so that

$$t = \prod_{j=0}^{n-1} \text{Fr}^j(c),$$

where $c := c_1$.

Every k -point in J_{C_\circ} is torsion. Let $x \in J_{C_\circ}[N]$ and assume that x is defined over a finite field k' . Consider the extension k''/k' , of degree $n > 2g(C_\circ) + 1$, coprime to $N\ell$, and such that the order of $J_{C_\circ}(k'')/J_{C_\circ}(k')$ is coprime to $N\ell$. It suffices to take k'' to be disjoint from the field defined by the points of the $N\ell$ -primary subgroup of J_{C_\circ} . Then the result for J_{C_\circ} follows as in Theorem 1. Since J_{C_\circ} surjects onto T , the result holds for T . \square

REMARK 6. — Note that the action of the Frobenius Fr on $\mathbb{G}_m^d(k)$ is given by the scalar endomorphism $z \mapsto z^q$, where $q = \#k'$. It follows

that if $T = \mathbb{G}_m^d$ is generated by C_\circ then every $t \in T(k)$ can be represented as

$$t = \prod_{j=0}^{n-1} c^{q^j} = c^{(q^n-1)/(q-1)}.$$

for some $c \in C_\circ(k)$.

4. Applications

In this section we discuss applications of Theorem 1.

COROLLARY 7. — *Let A be the Jacobian of a hyperelliptic curve C of genus $g \geq 2$ over k , embedded so that the standard involution ι of A induces the hyperelliptic involution of C . Let $Y = A/\iota$ and $Y^\circ \subset Y$ be the smooth locus of Y . Then every point $y \in Y^\circ(k)$ lies on a rational curve.*

Proof. — Let $a \in A(k)$ be a point in the preimage of $y \in Y^\circ(k)$. By Theorem 1, there exists an $m \in \mathbb{N}$ such that $mc = a$. The endomorphism “multiplication by m ” commutes with ι . Since $a \in m \cdot C(k)$ we have $y \in R(k)$, where $R = m \cdot C/\iota \subset Y$ is a rational curve. \square

REMARK 8. — This corollary was proved in [2] using more complicated endomorphisms of A . It leads to the question whether or not *every* abelian variety over $k = \bar{\mathbb{F}}_p$ is generated by a hyperelliptic curve. This property fails over large fields [4], [5].

COROLLARY 9. — *Let C be a curve of genus $g \geq 2$ over a number field K . Assume that $C(K) \neq \emptyset$ and choose a point $c_0 \in C(K)$ to embed C into its Jacobian A . Choose a model of A over the integers \mathcal{O}_K and let $S \subset \text{Spec}(\mathcal{O}_K)$ be a finite set of nonarchimedean places of good or semi-abelian reduction for A . Assume that C has irreducible reduction C_v , $v \in S$ (in particular $C_v, v \in S$, generates the reduction A_v). Let k_v be the residue fields and fix $a_v \in A(k_v)$, $v \in S$. Then there exist a finite extension L/K , a point $c \in C(L)$ and an integer $m \in \mathbb{N}$ such that for all $v \in S$ and all places $w \mid v$, the reduction $(m \cdot c)_w = a_v \in A(k_v) \subset A(l_w)$, where l_w is the residue field at w .*

Proof. — We follow the argument in the proof of Theorem 1. Denote by n_v the orders of a_v , for $v \in S$ and let n be the least common multiple of n_v . Replacing K be a finite extension and S by the set of all places lying over it, we may assume that the n -torsion of A is defined over K . There exist extensions $k_{v'}/k_v$, for all $v \in S$, points $c_{v'} \in C(k_{v'}) \subset A(k_{v'})$ and $m_{v'} = 1 \pmod{n}$, such that $m_{v'}c_{v'} = a_v$. Thus there is an $m \in \mathbb{N}$ such that

$$(4.1) \quad mc_{v'} = a_v.$$

There exist an extension L/K and a point $c \in C(L)$ such that for all $v \in S$ and all w over v , the corresponding residue field l_w contains $k_{v'}$ and the reduction of c modulo w coincides with $c_{v'}$. Using the Galois action on Equation 4.1, we find that mc reduces to a_v , for all w . \square

Over $\bar{\mathbb{Q}}$, it is not true that $A(\bar{\mathbb{Q}}) = \cup_{r \in \mathbb{Q}} r \cdot C(\bar{\mathbb{Q}})$. Indeed, by the results of Faltings and Raynaud, the intersection of $C(\bar{\mathbb{Q}})$ with every finitely generated \mathbb{Q} -subspace in $A(\bar{\mathbb{Q}})$ is finite.

Consider the map

$$C(\bar{\mathbb{Q}}) \rightarrow \mathbb{P}(A(\bar{\mathbb{Q}})/A(\bar{\mathbb{Q}})_{\text{tors}} \otimes \mathbb{R})$$

(defined modulo translation by a point). It would be interesting to analyze the discreteness and the metric characteristics of the image of $C(\bar{\mathbb{Q}})$, combining the classical theorem of Mumford with the results of [7].

References

- [1] G. W. ANDERSON and R. INDIK – “On primes of degree one in function fields”, *Proc. Amer. Math. Soc.* **94** (1985), no. 1, p. 31–32.
- [2] F. BOGOMOLOV and Y. TSCHINKEL – “Rational curves and points on K3 surfaces”, [math.AG/0310254](#).
- [3] N. M. KATZ – *Twisted L-functions and monodromy*, Annals of Mathematics Studies, vol. 150, Princeton University Press, Princeton, NJ, 2002.
- [4] F. OORT and J. DE JONG – “Hyperelliptic curves in abelian varieties”, *J. Math. Sci.* **82** (1996), no. 1, p. 3211–3219, Algebraic geometry, 5.
- [5] G. P. PIROLA – “Curves on generic Kummer varieties”, *Duke Math. J.* **59** (1989), no. 3, p. 701–708.

- [6] F. POP and M. SAIDI – “On the specialization homomorphism of fundamental groups of curves in positive characteristic”, Galois groups and fundamental groups (L. Schneps, ed.), MSRI Publications, vol. 41, Cambridge Univ. Press, 2003, p. 107–118.
- [7] L. SZPIRO, E. ULLMO and S. ZHANG – “Équirépartition des petits points”, *Invent. Math.* **127** (1997), no. 2, p. 337–347.