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ABSTRACT. — We study the distribution of algebraic points on curves in
abelian varieties over finite fields.

1. Introduction

Let k be an algebraic closure of a finite field and let C' be a curve over
k. Assume that C'is embedded into an abelian algebraic group G over k,
with the group operation written additively. Let ¢ be a k-rational point
of C. In this note we study the distribution of orbits {m - ¢}en in the
set G(k) of k-rational points of G. One of our main results is:

THEOREM 1. — Let C' be a smooth projective curve over k of genus
g =g(C) > 2. Let A be an abelian variety containing C. Assume that C
generates A, i.e., the Jacobian J of C admits a geometrically surjective
map onto A. For any { € N we have

A(k) - Um:l mod ¢ T+ C(k>7

i.e., for every a € A(k) and ¢ € N there exist m € N and ¢ € C(k) such
thata =m-c and m =1 mod /.

Moreover, let A(k){{} C A(k) be the (-primary part of A(k) and let S
be any finite set of primes. Then there exists an infinite set of primes 11,
containing S and of positive density, such that the natural composition

C(k) — A(k) — BpenA(k){(}.

1S surjective.
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2. Curves and their Jacobians

Throughout, C' is a smooth irreducible projective curve of genus g =
g(C) > 2 and J its Jacobian. Assume that C' is defined over F, C k with
a point ¢y € C(F,) which we use to identify the degree n Jacobian J™
with J and to embed C' in J. Consider the maps

¢n $n

cn Sym™(C) —— J™ = J,

[c],

Here (¢; + - -+ 4 ¢,) denotes the zero-cycle and ¢, is a finite cover of
degree n!. For n > 2g + 1, the map ¢, is a P" &-bundle and the map
C" — J™ is surjective with geometrically irreducible fibers (see [3],
Corollary 9.1.4, for example). We need the following

c=(c1y...,cp) —>(c1+ - +cpn)

LEMMA 2. — For every point x € J(F,) and everyn > 2g+1 there exist
a finite extension k' /F, and a point y € P,(k') = ¢, ' (x)(K') such that the
degree n zero-cycle c1+- - -+ ¢, on C corresponding to y is k'-irreducible.

Proof. — This follows from a version of an equidistribution theorem of
Deligne as in [3], Theorem 9.4.4. O

Proof of Theorem 1. — We may assume that A = J. Let a € A(k) be
a point. It is defined over some finite field F, (with ¢y € C(F,)). Fix a
finite extension k'/FF, as in Lemma 2 and let N be the order of A(K').
Choose a finite extension k”/k’, of degree n > 2g + 1, such that n and
the order of the group A(k”)/A(k') are coprime to N¢. By Lemma 2,
there exists a k’-irreducible cycle ¢; + - - - 4+ ¢, mapped to a. The orders
of ¢; — ¢, for j = 1,...,n, are all equal and are coprime to N/ (note
that all ¢; have the same order and the same image under the projection
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A(K") — A(K')). Then there is an m € N, m =1 mod N/, such that

n
0=m(ne — 5 ¢j) = mnc; —ma = mnc; — a.
i=1

We turn to the second claim. Fix a prime p > (2g)! and so that
p1|GLog(Z/VZ)], for all £ € S. Let II be the set of all primes ¢ such that
p1|GLog(Z/0Z)|. We have ¢ € TTif ' #1 mod p, for all i = 1,...,2g.
In particular, IT has positive density.

The Galois group Gal(F,/F,) = Z contains Z, as a closed subgroup.

Put £ = I_ng. For ¢ € II, there exist no non-trivial continuous homo-
morphisms of Z, into GLgg(Z); and the Galois-action of Z, on A(k){¢}
is trivial. In particular,

A(E') o T Atk){e}.

Now we apply the argument above: given a point a € [],.;; A(k){¢} we
find points ¢y, ...,c,r € C(k), defined over an extension of k' of degree
p", and such that the cycle ¢; + - - - + ¢, is k™-irreducible and equal to a.
By construction, p and the orders of ¢; — ¢; are coprime to every ¢ € II,
for all ¢ # j. We conclude that the natural map

Clk) — [T Am){&}

Lell

is surjective. O

REMARK 3. — This shows that, over finite fields, all algebraic points on
A are obtained from a 1-dimensional object by multiplication by a scalar.

REMARK 4. — The fact that
C(k) — @eenA(k){L}

is surjective was established for IT consisting of one prime in [1]; for a
generalization to finite II see [6].
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3. Semi-abelian varieties

Let C' be an irreducible curve over k and C, C C a Zariski open
subset embedded into a semi-abelian group 7', a torus fibration over the
Jacobian J = Jo. Assume that C, generates T, i.e., every point in T'(k)
can be written as a product of points in C, (k).

THEOREM 5. — For every t € T(k) there exist a point ¢ € Cs(k) and
an m € N such that t = c™.

Proof. — We follow the arguments of Section 2: for n > 0 the map
cr - JC

o

(cr, ) = Tlig

to the generalised Jacobian has geometrically irreducible fibers. In our
case C, is a complement to a finite number of points in C' and the gen-
eralised Jacobian Jg, is a semi-abelian variety fibered over the Jacobian
J = Jo with a torus T, as a fiber.

In particular, if F, C k is sufficiently large (with C.(F,) # 0) then,
for some finite extension k'/F, and ¢t € Jo, (F,) there exist ¢i,...,¢, €
Cs(K"), where k" /K is the unique extension of k" of degree n, such that
the Galois group Gal(k”/k’) acts transitively on the set {cy,...,¢,} and
t =[[;_, ¢;. The Galois group Gal(k”/k’) is generated by the Frobenius

j=1
n—1

t= H Fr'(c),
=0

o

element Fr so that

where ¢ := ¢;.

Every k-point in Je, is torsion. Let z € J¢, [IV] and assume that z
is defined over a finite field &’. Consider the extension k”/k’, of degree
n > 2g(Cs)+1, coprime to N/, and such that the order of J¢, (k") /Jc, (k)
is coprime to N/. It suffices to take £” to be disjoint from the field defined
by the points of the N/-primary subgroup of Jgo,. Then the result for
Jo, follows as in Theorem 1. Since Jg, surjects onto T', the result holds
for T O

REMARK 6. — Note that the action of the Frobenius Fr on G% (k) is
given by the scalar endomorphism z — 2%, where ¢ = #k'. It follows
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that if T = G¢, is generated by C,, then every ¢ € T'(k) can be represented

as
n—1

+— H @ — " =D/(a=1)
=0
for some ¢ € C,(k).

4. Applications

In this section we discuss applications of Theorem 1.

COROLLARY 7. — Let A be the Jacobian of a hyperelliptic curve C' of
genus g > 2 over k, embedded so that the standard involution ¢ of A
induces the hyperelliptic involution of C. LetY = A/t and Y° C Y be
the smooth locus of Y. Then every point y € Y°(k) lies on a rational
curve.

Proof. — Let a € A(k) be a point in the preimage of y € Y°(k). By
Theorem 1, there exists an m € N such that mc = a. The endomorphism
“multiplication by m” commutes with ¢. Since a € m - C(k) we have
y € R(k), where R=m-C/. CY is a rational curve. O

REMARK 8. — This corollary was proved in [2] using more complicated
endomorphisms of A. It leads to the question whether or not every
abelian variety over k = F, is generated by a hyperelliptic curve. This
property fails over large fields [4], [5].

COROLLARY 9. — Let C be a curve of genus g > 2 over a number field
K. Assume that C(K) # (0 and choose a point ¢y € C(K) to embed
C into its Jacobian A. Choose a model of A over the integers Ok and
let S C Spec(Ok) be a finite set of nonarchimedean places of good or
semi-abelian reduction for A. Assume that C has irreducible reduction
Cy,, v € S (in particular Cy,,v € S, generates the reduction A,). Let k,
be the residue fields and fix a, € A(k,), v € S. Then there exist a finite
extension L/ K, a point ¢ € C(L) and an integer m € N such that for all
v €S and all all places w | v, the reduction (m-c),, = a, € A(k,) C A(lw),
where L, is the residue field at w.
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Proof. — We follow the argument in the proof of Theorem 1. Denote by
n, the orders of a,, for v € S and let n be the least common multiple of
n,. Replacing K be a finite extension and S by the set of all places lying
over it, we may assume that the n-torsion of A is defined over K. There
exist extensions k, /k,, for all v € S, points ¢, € C(k,) C A(k,) and
my = 1 mod n, such that m,c, = a,. Thus there is an m € N such
that

(4.1) MCy = y.

There exist an extension L/K and a point ¢ € C(L) such that for all
v € S and all w over v, the corresponding residue field [, contains k,» and
the reduction of ¢ modulo w coincides with ¢,. Using the Galois action
on Equation 4.1, we find that mc reduces to a,, for all w. O]

Over Q, it is not true that A(Q) = U,cqr - C(Q). Indeed, by the

results of Faltings and Raynaud, the intersection of C(Q) with every

finitely generated Q-subspace in A(Q) is finite.
Consider the map

C(Q) — P(A(Q)/A(Q)tors ® R)

(defined modulo translation by a point). It would be interesting to ana-

lyze the discreteness and the metric characteristics of the image of C'(Q),
combining the classical theorem of Mumford with the results of [7].
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