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Preface

The study of random matrices, and in particular the propewti their eigenval-
ues, has emerged from the applications, first in data asadysl later as statisti-
cal models for heavy-nuclei atoms. Thus, the field of randaatrices owes its
existence to applications. Over the years, however, itinecelear that models
related to random matrices play an important role in aregsioéd mathematics.
Moreover, the tools used in the study of random matrices daeraselves from
different and seemingly unrelated branches of mathematics

At this pointin time, the topic has evolved enough that thecwmer, especially
if coming from the field of probability theory, faces a forralile and somewhat
confusing task in trying to access the research literatdoethermore, the back-
ground expected of such a newcomer is diverse, and oftehessdupplemented
before a serious study of random matrices can begin.

We believe that many parts of the field of random matrices avedeveloped
enough to enable one to expose the basic ideas in a systandtamherent way.
Indeed, such a treatise, geared toward theoretical pBisitias existed for some
time, in the form of Mehta’s superb book [Meh91]. Our goal iritimg this book
has been to present a rigorous introduction to the basigyh#aandom matri-
ces, including free probability, that is sufficiently setfntained to be accessible to
graduate students in mathematics or related sciences wiatrastered probabil-
ity theory at the graduate level, but have not necessaréy legposed to advanced
notions of functional analysis, algebra or geometry. Altimgway, enough tech-
nigues are introduced that we hope will allow readers toinasttheir journey
into the current research literature.

This project started as notes for a class on random matheésto of us (G. A.
and O. Z.) taught in the University of Minnesota in the fall®03, and notes for
a course in the probability summer school in St. Flour taugh#A. G. in the

Xiii



Xiv PREFACE

summer of 2006. The comments of participants in these ceuasel in particular
A. Bandyopadhyay, H. Dong, K. Hoffman-Credner, A. Klenke, 8anton and

P.M. Zamfir, were extremely useful. As these notes evolvedtaught from them

again at the University of Minnesota, the University of @ainia at Berkeley,

the Technion and the Weizmann Institute, and received marghrappreciated
feedback from the participants in those courses. Finalyemwexpanding and
refining these course notes, we have profited from the conmagick questions of
many colleagues. We would like in particular to thank G. Beous, F. Benaych-
Georges, P. Biane, P. Deift, A. Dembo, P. Diaconis, U. Haggey. Jones, M.

Krishnapur, Y. Peres, R. Pinsky, G. Pisier, B. Rider, D. Skhtenko, B. Solel, A.

Soshnikov, R. Speicher, T. Suidan, C. Tracy, B. Virag and @&cMescu for their

suggestions, corrections and patience in answering owtiqus or explaining

their work to us. Of course, any remaining mistakes and amgdassages are
fully our responsibility.

GREG ANDERSON MINNEAPOLIS, MINNESOTA
ALICE GUIONNET LYON, FRANCE
OFERZEITOUNI REHOVOT, ISRAEL



1
Introduction

This book is concerned with random matrices. Given the utmgs role that
matrices play in mathematics and its application in thers@e and engineer-
ing, it seems natural that the evolution of probability thewould eventually
pass through random matrices. The reality, however, has ineee complicated
(and interesting). Indeed, the study of random matriced, inrparticular the
properties of their eigenvalues, has emerged from the @gjghs, first in data
analysis (in the early days of statistical sciences, goaxkto Wishart [Wis28]),
and later as statistical models for heavy-nuclei atomsiniétg with the semi-
nal work of Wigner [Wig55]. Still motivated by physical apgdtions, at the able
hands of Wigner, Dyson, Mehta and co-workers, a mathenitdtieary of the
spectrum of random matrices began to emerge in the earlys1 @8 links with
various branches of mathematics, including classicalyaisahnd number theory,
were established. While much progress was initially achdaysing enumerative
combinatorics, gradually, sophisticated and varied nmatitecal tools were intro-
duced: Fredholm determinants (in the 1960s), diffusiorcgsses (in the 1960s),
integrable systems (in the 1980s and early 1990s), and #madin—Hilbert prob-
lem (in the 1990s) all made their appearance, as well as nels soich as the
theory of free probability (in the 1990s). This wide arraytobls, while attest-
ing to the vitality of the field, presents, however, seveoahfidable obstacles to
the newcomer, and even to the expert probabilist. Indeedewtuch of the re-
cent research uses sophisticated probabilistic toolsjlid$on layers of common
knowledge that, in the aggregate, few people possess.

Our goal in this book is to present a rigorous introductiothi® basic theory
of random matrices that would be sufficiently self-contdine be accessible to
graduate students in mathematics or related sciences wiatastered probabil-
ity theory at the graduate level, but have not necessaréylegposed to advanced
notions of functional analysis, algebra or geometry. Witthsreaders in mind, we
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present some background material in the appendices, thieenand expert alike
can consult; most material in the appendices is stated withmof, although the
details of some specialized computations are provided.

Keeping in mind our stated emphasis on accessibility oveeggity, the book
is essentially divided into two parts. In Chapters 2 and 3,present a self-
contained analysis of random matrices, quickly focusinghenGaussian ensem-
bles and culminating in the derivation of the gap probdbgiait 0 and the Tracy—
Widom law. These chapters can be read with very little bamligd knowledge,
and are particularly suitable for an introductory study.tha second part of the
book, Chapters 4 and 5, we use more advanced techniqueBingauore exten-
sive background, to emphasize and generalize certaintagpfebe theory, and to
introduce the theory dfee probability

So what is arandom matrix, and what questions are we abouwittg? Through-
out, letF =R orF = C, and sep3 = 1 in the former case anfgéi= 2 in the latter. (In
Section 4.1, we will also consider the cd8e- H, the skew-field of quaternions,
see Appendix E for definitions and details.) Let M@) denote the space -
by-N matrices with entries if", and Iet%”N(B) denote the subset of self-adjoint
matrices (i.e., real symmetric § = 1 and Hermitian if8 = 2). One can always
consider the sets Ma([F) andff,\,(m, B =1,2, as submanifolds of an appropriate
Euclidean space, and equip it with the induced topology 8odg]) sigma-field.

Recall that a probability space is a trigle, %, P) so thatZ is a sigma-algebra
of subsets 0of) andP is a probability measure (if2,.%). In that setting, @andom
matrix Xy is a measurable map fro(@,.#) to Maty (IF).

Our main interest is in theigenvalueof random matrices. Recall that the
eigenvalues of a matrid € Maty () are the roots of the characteristic polynomial
P (z) = detf(zly — H), with |y the identity matrix. Therefore, on the (open) set
where the eigenvalues are all simple, they are smooth fumcf the entries of
Xn (a more complete discussion can be found in Section 4.1).

We will be mostly concerned in this book with self-adjointtn@esH € %”N(B),
B = 1,2, in which case the eigenvalues are all real and can be arddreus,
forH € %”,\EB), we letA;(H) < --- < An(H) be the eigenvalues ¢i. A conse-
guence of the perturbation theory of normal matrices (seerha A.4) is that the
eigenvaluegAij(H)} are continuous functions d (this also follows from the
Hoffman—Wielandt theorem, Theorem 2.1.19). In particufaXy is a random
matrix then the eigenvaludd;(Xy)} are random variables.

We present now a guided tour of the book. We begin by consigéxligner
matricesin Chapter 2. These are symmetric (or Hermitian) matrigsvhose
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entries are independent and identically distributed, pixfmr the symmetry con-
straints. Fox € R, let &, denote théirac measure at, that is, the unique prob-
ability measure satisfying fddy = f(x) for all continuous functions oRR. Let
Ly = N‘lziN:l Ox(xy) denote theempirical measureof the eigenvalues oKy.
Wigner's Theorem (Theorem 2.1.1) asserts that, under apjpte assumptions
on the law of the entried,n converges (with respect to the weak convergence
of measures) towards a deterministic probability meashesemicircle law We
presentin Chapter 2 several proofs of Wigner’'s Theorem fif$tein Section 2.1,
involves a combinatorial machinery that is also exploitegield central limit the-
orems and estimates on the spectral radivgofAfter first introducing in Section
2.3 some useful estimates on the deviation between the iealpiteasure and its
mean, we define in Section 2.4 tBéieltjes transformof measures and use it to
give another quick proof of Wigner’s Theorem.

Having discussed techniques valid for entries distribatecbrding to general
laws, we turn attention to special situations involving iiddal symmetry. The
simplest of these concerns tBaussian ensemblghe GOE and GUE, so named
because their law is invariant under conjugation by ortmagdresp., unitary)
matrices. The latter extra symmetry is crucial in derivimnection 2.5 an explicit
joint distribution for the eigenvalues (thus effectivedgducing consideration from
a problem involving order oR? random variables, namely the matrix entries, to
one involving onlyN variables). (The GSE, or Gaussian symplectic ensemble,
also shares this property and is discussed briefly.) A laeg&@tions principle for
the empirical distribution, which leads to yet another prafdNigner's Theorem,
follows in Section 2.6.

The expression for the joint density of the eigenvalues én@aussian ensem-
bles is the starting point for obtainingcal information on the eigenvalues. This
is the topic of Chapter 3. The bulk of the chapter deals with@UE, because
in that situation the eigenvalues fornmdaterminantal processThis allows one
to effectively represent the probability that no eigeneslare present in a set
as aFredholm determinanta notion that is particularly amenable to asymptotic
analysis. Thus, after representing in Section 3.2 the phémisity for the GUE in
terms of a determinant involving appropriate orthogon&fpomials, theHermite
polynomials, we develop in Section 3.4 in an elementary veayesaspects of the
theory of Fredholm determinants. We then present in Se@ibithe asymptotic
analysis required in order to study tgap probability at Q that is the probabil-
ity that no eigenvalue is present in an interval around thgrar Relevant tools,
such as the Laplace method, are developed along the wayoi$8ct repeats this
analysis for the edge of the spectrum, introducing alongatag the method of
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steepest descent. The link with integrable systems anBdhde\e equationss
established in Sections 3.6 and 3.8.

As mentioned before, the eigenvalues of the GUE are an exaoid deter-
minantal process. The other Gaussian ensembles (GOE andda$i6t fall into
this class, but they do enjoy a structure where certain Bfedfreplace determi-
nants. This leads to a considerably more involved analjtsésdetails of which
are provided in Section 3.9.

Chapter 4 is a hodge-podge of results whose common feattinatishey all
require new tools. We begin in Section 4.1 with a re-derbratf the joint law
of the eigenvalues of the Gaussian ensemble, in a geometnefvork based on
Lie theory. We use this framework to derive the expressionske joint distri-
bution of eigenvalues of Wishart matrices, of random magifrom the various
unitary groups and of matrices related to random projectSextion 4.2 studies
in some depth determinantal processes, including theistoaction, associated
central limit theorems, convergence and ergodic propert&ection 4.3 studies
what happens when in the GUE (or GOE), the Gaussian entreeplaced by
Brownian motions. The powerful tools of stochastic analysin then be brought
to bear and lead to functional laws of large numbers, cetfitnitl theorems and
large deviations. Section 4.4 consists of an in-depthrireat of concentration
techniques and their application to random matrices; itdemeralization of the
discussion in the short Section 2.3. Finally, in Section @& study a family of
tri-diagonal matrices, parametrized by a param@tevhose distribution of eigen-
values coincides with that of members of the Gaussian enssifir3 = 1,2, 4.
The study of the maximal eigenvalue for this family is linkedthe spectrum of
an appropriate random Schrodinger operator.

Chapter 5 is devoted tioee probability theorya probability theory for certain
noncommutative variables, equipped with a notion of indeleace called free
independence. Invented in the early 1990s, free probalflgéory has become
a versatile tool for analyzing the laws of noncommutativlpomials in several
random matrices, and of the limits of the empirical measfieggenvalues of such
polynomials. We develop the necessary preliminaries afiditiens in Section
5.2, introduce free independence in Section 5.3, and digbedink with random
matrices in Section 5.4. We conclude the chapter with Sed:ib, in which we
study the convergence of the spectral radius of noncomimetadlynomials of
random matrices.

Each chapter ends with bibliographical notes. These areneant to be com-
prehensive, but rather guide the reader through the enariitetature and give
some hint of recent developments. Although we have triedpoasent accurately
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the historical development of the subject, we have necéssanitted important
references, misrepresented facts, or plainly erred. Celogjes to those authors
whose work we have thus unintentionally slighted.

Of course, we have barely scratched the surface of the dutfjeendom ma-
trices. We mention now the most glaring omissions, togettitir references to
some recent books that cover these topics. We have not dettise theory of the
Riemann—Hilbert problem and its relation to integrableteyss, Painlevé equa-
tions, asymptotics of orthogonal polynomials and randortrices. The interested
reader is referred to the books [FOIKNO6], [Dei99] and [D&Gr an in-depth
treatment. We do not discuss the relation between asyroptotirandom matri-
ces and combinatorial problems — a good summary of thesaepipe BaDS09].
We barely discuss applications of random matrices, and iticoéar do not re-
view the recent increase in applications to statistics enrooinication theory —
for a nice introduction to the latter we refer to [TuV04]. Wave presented only a
partial discussion of ensembles of matrices that possediitjoint distribution
of eigenvalues. For a more complete discussion, includisg the case of non-
Hermitian matrices that are not unitary, we refer the reaol¢For05]. Finally,
we have not discussed the link between random matrices antlentheory; the
interested reader should consult [KaS99] for a taste oflthiat We further re-
fer to the bibliographical notes for additional readingdeglaring omissions and
references.



2
Real and complex Wigner matrices

2.1 Real Wigner matrices: traces, moments and combinatorg

We introduce in this section a basic model of random matridEsvhere do we
attempt to provide the weakest assumptions or sharpedtsrasailable. We point
out in the bibliographical notes (Section 2.7) some plachsre the interested
reader can find finer results.

Start with two independent families of independent and idally distributed
(i.i.d.) zero mean, real-valued random variab&s; } 1<ij and{Y; }1<i, such that
EZf,2 =1 and, for all integerk > 1,

M= max(E|Zl72|k, E|Y1|k) <. 2.1.1)
Consider the (symmetridy x N matrix Xy with entries
—— . Zi,j/\/N7 ifi<j,

We call such a matrix &Vigner matrix and if the random variables j andy; are
Gaussian, we use the te@aussian Wigner matrixThe case of Gaussian Wigner
matrices in whicrEYl2 = 2 is of particular importance, and for reasons that will
become clearer in Chapter 3, such matrices (rescaledMyare referred to as
Gaussian orthogonal ensemble (GOE) matrices.

Let AN denote the (real) eigenvalues X%, with AN < AN < ... <A\, and
define theempirical distributionof the eigenvalues as the (random) probability
measure ot defined by

1N
Ln==) O)n.
§ Ni; A

Define thesemicircle distributior{or law) as the probability distributioa (x)dx
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on R with density
1
o(x) = ET\/4—x21M§2. (2.1.3)
The following theorem, contained in [Wig55], can be consédithe starting point

of random matrix theory (RMT).

Theorem 2.1.1 (Wigner)For a Wigner matrix, the empirical measurg lcon-

verges weakly, in probability, to the semicircle distrilout

In greater detail, Theorem 2.1.1 asserts that for aayCy(R), and anye > 0,
’\Ilim P(|{Ln, f) — (o, )| > €) =0.

Remark 2.1.2The assumption (2.1.1) that < o for all k is not really needed.
See Theorem 2.1.21 in Section 2.1.5.

We will see many proofs of Wigner's Theorem 2.1.1. In thistee; we give
a direct combinatorics-based proof, mimicking the origemgument of Wigner.
Before doing so, however, we need to discuss some propeftibe semicircle
distribution.

2.1.1 The semicircle distribution, Catalan numbers and Dxygaths
Define the momentsy := (o, x¢). Recall the Catalan numbers

()

“=T5 T T koW

We now check that, for all integeks> 1,
mpk =Ck, M1 =0. (2.1.4)
Indeedmyk 1 = 0 by symmetry, while

2 .92k rmr/2
Mo — / g (x)dx= 22 / sir(6) co2(0)d6
-2 m J-m2

.22k rm/2
22/ SIr*(6)d6 — (2Kk+ 1)my.

n /2
Hence,
2.22k /2 ok 4(2k—1)
ek = m(2k+2) /_n/zsmz (6)d6 = kg2 T2 (2.1.5)
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from which, together withnyg = 1, one concludes (2.1.4).

The Catalan numbers possess many combinatorial intetipretaTo introduce
a first one, say that an integer-valued sequ€gf®éo<n<, is aBernoulli walkof
length? if S =0and|S;1— S| =1fort <¢—1. Of particular relevance here is
the fact thatCy counts the number ddyck pathsof length X, that is, the number
of nonnegative Bernoulli walks of lengtik2hat terminate at 0. Indeed, I8k
denote the number of such paths. A classical exercise in ic@ataoics is

Lemma 2.1.36, = C < 4%. Further, the generating functigh(z) := 1+ ¥, 7B
satisfies, fofz] < 1/4,

N 1-VI—4z

B(2) = 5 (2.1.6)

Proof of Lemma 2.1.3Let B¢ denote the number of Bernoulli walks,} of
length X that satisfySy = 0, and letBy denote the number of Bernoulli walks
{S} of length X that satisfySy = 0 andS < O for somet < 2k. Then, B« =
By — Bx. By reflection at the first hitting of 1, one sees tha equals the number
of Bernoulli walks{$,} of length X that satisfyS,x = —2. Hence,

BkZBk—§k=< Zkk)—< kz_kl ) = Cx.

Turning to the evaluation q%(z), considering the first return time to O of the
Bernoulliwalk{S,} gives the relation

k
Bc= 3 BejBj-1, k=1, (2.1.7)
=1
with the convention thgBy = 1. Because the number of Bernoulli walks of length

2k is bounded by % one has thag, < 4%, and hence the functioﬁ(z) is well
defined and analytic fde| < 1/4. But, substituting (2.1.7),

R 0 k © k
B2)—1=S Y B iBi-1=25 Y BB,
&7 Pebamr® g Bl
while
- o , w q
B(2)® = 2K BB = 2By By -
k,;=0 qZO/; ‘
Combining the last two equations, one sees that

B(2) = 1+28(22,
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from which (2.1.6) follows (using thaﬁ(O) =1 to choose the correct branch of
the square-root). O

We note in passing that, expanding (2.1.6) in power seriesrira neighborhood
of zero, one gets (fde| < 1/4)

(2k—2)!
2Zk_l k' k=1)

Bz =~ ik, 2 ;zkck,

which provides an alternative proof of the fact tifat= Cx.

Another useful interpretation of the Catalan numbers is@GQaounts the num-
ber of rooted planar trees withedges. (Arooted planar trees a planar graph
with no cycles, with one distinguished vertex, and with aicbaf ordering at
each vertex; the ordering defines a way to “explore” the s&@ting at the root.)
It is not hard to check that the Dyck paths of lengka®e in bijection with such
rooted planar trees. See the proof of Lemma 2.1.6 in Sectib@ for a formal
construction of this bijection.

We note in closing that a third interpretation of the Catalambers, particu-
larly useful in the context of Chapter 5, is that they couetribn-crossing parti-
tionsof the ordered sety := {1,2,...,k}.

Definition 2.1.4A partition of the set’7; :={1,2,...,k} is calledcrossingf there
exists a quadruplé, b, c,d) with 1 < a < b < ¢ < d <k such thag, c belong to
one part whileb,d belong to another part. A partition which is not crossing is a
non-crossing partition

Non-crossing partitions form a lattice with respect to refirent. A look at Fig-
ure 2.1.1 should explain the terminology “non-crossinghieuts the points

.,k on the circle, and connects each point with the next membés qfart
(in cyclic order) by an internal path. Then, the partitiomdm-crossing if this can
be achieved without arcs crossing each other.

Itis not hard to check th&ly is indeed the numbeg of non-crossing partitions
of J#. To see that, letr be a non-crossing partition of; and letj denote the
largest element connected to 1 (wijtk= 1 if the part containing 1 is the s¢t}).
Then, becauser is non-crossing, it induces non-crossing partitions onsiis
{1,...,i—1}and{j+1,...,k}. Thereforey = Zlle W—jVj-1. Withyy =1, and
comparing with (2.1.7), one sees tiffat= W

Exercise 2.1.5Prove that forz € C such thatz ¢ [—2,2], the Stieltjes transform
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Fig. 2.1.1. Non-crossing (leff1,4),(2,3),(5,6)) and crossing (right{1,5), (2, 3), (4,6))
partitions of the set#g.

S(z) of the semicircle law (see Definition 2.4.1) equals

_ /72 _
S(z):/%_zo(d/\):HTZA'.

Hint: Either use the residue theorem, or rel&{® to the generating functioﬁ(z),
see Remark 2.4.2.

2.1.2 Proof #1 of Wigner's Theorem 2.1.1

Define the probability distributiohy = ELy by the relatior(Ly, f) = E(L, )
for all f € Cp, and setr}} := (Ln,X¥). Theorem 2.1.1 follows from the following
two lemmas.

Lemma 2.1.6For every ke N,
lim m =m,.
(See (2.1.4) for the definition ofy.)

Lemma 2.1.7For every ke N ande > 0,

; k ok _
hIllinmP(‘(L,\,,x ) — (LN, X >’ > e) =0.
Indeed, assume that Lemmas 2.1.6 and 2.1.7 have been pivednclude the
proof of Theorem 2.1.1, one needs to check that for any baliocdietinuous func-
tion f,

lim (Ln, f) = (o, f), in probability. (2.1.8)

N—oo
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Toward this end, note first that an application of the Chebyshequality yields
1 (L, X2
k k )
P(<LN, |X| 1\X\>B> > 5) < EE<LN7|X| 1\x\>B> < W
Hence, by Lemma 2.1.6,

2k k
(0,3) _ 4

- k
I|msupP(<LN,|XI 1x>B) > 8) < TeBK S e

N—o0
where we used tha, < 4X. Thus, withB = 5, noting that the left side above is
increasing irk, it follows that

lim supP ((LN, X Ly=p) > e) =0. (2.1.9)

N—oo

In particular, when proving (2.1.8), we may and will assuimat f is supported
on the interva[—5,5].

Fix next such arf andd > 0. By the Weierstrass approximation theorem, one
can find a polynomiaRs(x) = Zf‘:o cix' such that

sup [Qs(x) — f(x)| <

x:[x|<B

0| ™

Then,

P )~ (0.0 > &) <P 1. Q) (En.Qsll > 5 )

_ o o
+P <|<LN7Q5> —(0,Qs)| > Z) +P<|<LNaQ51X>B>| > Z)
= P+P+P;.

By an application of Lemma 2.1.P; —n_«» 0. Lemma 2.1.6 implies th& = 0
for N large, while (2.1.9) implies thd®; —n_. 0. This completes the proof of
Theorem 2.1.1 (modulo Lemmas 2.1.6 and 2.1.7). O

2.1.3 Proof of Lemma 2.1.6: words and graphs
The starting point of the proof of Lemma 2.1.6 is the follogridentity:

- 1
Ly, X = =Etrx&

1 N
= ETiN::N. > T (2.1.10)
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where we use the notation= (iy, ..., ik).

The proof of Lemma 2.1.6 now proceeds by considering whioimgecontribute
to (2.1.10). Let us provide first an informal sketch that expd the emergence of
the Catalan numbers, followed by a formal proof. For the paepof this sketch,
assume that the variabl¥svanish, and that the law @ > is symmetric, so that
all odd moments vanish (and in particul(alfN,xk> = 0 fork odd).

A first step in the sketch (that is fully justified in the actpabof below) is to
check that the only terms in (2.1.10) that survive the passaghe limit involve
only second moments f j, because there are ordéf/2+1 nonzero terms but
only at most ordeN¥/2 terms that involve moments higher than or equal to 4. One
then sees that

(%) = (14 0N ) 5 T e (211D
vp,3lj#p:
(fpsipra)=(ij,ij+1) or (ij2.ij)
where the notatiod! means “there exists a unique”. Considering the infex1
such that eithefij,ij 1) = (i2,i1) or (ij,ij+1) = (i1,i2), and recalling thait, # i1
sinceY, = 0, one obtains

12k N N

C ) — (14 o1 2.1.12
{Ln,x™) = (1+0( ))N gziﬁ.;zzl_i&...,z ( )

ij—_l*
1j+25-l2k=1

(EXN(izais) o XN(-1,12) XN (1, 142) - Xn(iks i1)
+EXN(i2;i3)"'XN(ij—17il)xN(i27ij+2)'"xN(i2k7il)) :

Hencef we could provethatE[(Ly — Ly, %)]2 = O(N~2) and hence
E[(Ln, X3 (L, x®172)] = (LX) (L X 172) (14 O(NTY)

we would obtain
. 2k=y) )
(no®) = (14+O(NY) > (RIS
i=

I
—~
[E
+
o
—~
z
|
[u
~
~—
—
1
=z
3.
~
—
1
P
><l\>
T
T.
N
~

I
—~
[E
+
o
—~
Z
|
-
~
N
—
'_I
=z
x
D
~
—
|
P
gS
=~
|
|
R
~

(2.1.13)
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where we have used the fact that by inductiar,x%2) is uniformly bounded
and also the fact that odd moments vanish. Further,

EXu(i, )2 =Now 1=C;. (2.1.14)
1

=,

™Mz

s

Thus, we conclude from (2.1.13) by induction tMEﬁ,x2k> converges to a limit
ax with ag = a3 = 1, and further that the familyay} satisfies the recursiorg =
y%_;ajaj_1. Comparing with (2.1.7), we deduce thagt= C, as claimed.

We turn next to the actual proof. To handle the summation pressions like
(2.1.10), it is convenient to introduce some combinatamalchinery that will
serve us also in the sequel. We thus first digress and discasombinatorics
intervening in the evaluation of the sum in (2.1.10). Thithisn followed by the
actual proof of Lemma 2.1.6.

In the following definition, the reader may think of as a subset of the integers.

Definition 2.1.8 (-words) Given a set?’, an.”-letter sis simply an element of
<. An “-word wis a finite sequence of lettess: - - s, at least one letter long.
An .Z-word w is closedif its first and last letters are the same. Tw6-words
w1, Wy are calledequivalent denotedw; ~ W, if there is a bijection on? that
maps one into the other.

When.”” = {1,...,N} for some finiteN, we use the ternN-word. Otherwise, if
the set is clear from the context, we refer to ari-word simply as a word.

For any.”-wordw =s; - - - 5, we usef(w) = k to denote théengthof w, define
theweightwt(w) as the number of distinct elements of the{&m®t . .., s} and the
supportof w, denoted supy, as the set of letters appearingin With any word
w we may associate an undirected graph, witbwytvertices and(w) — 1 edges,
as follows.

Definition 2.1.9 (Graph associated with an¥-word) Given awordv=g; - - - &,
we let Gy = (Vw, Ew) be the graph with set of verticaé4, = suppw and (undi-
rected) edgeBy = {{s,S+1},i = 1,...,k—1}. We define the set cfelf edgess
E; = {e€ Ey:e={u,u},ueVy} and the set ofonnecting edgeasE, = Ey \ Ej.

The graphG,, is connected since the word defines a path connecting all the
vertices ofG,,, which further starts and terminates at the same vertexifvbrd
is closed. Foe € Ey, we useNy' to denote the number of times this path traverses
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the edgee (in any direction). We note that equivalent words generagesame
graphsGy, (up to graph isomorphism) and the same passage-cbights

Coming back to the evaluation dTN, see (2.1.10), note that akytuple of
integers defines a closed wond; = iqio---ikiy of lengthk+ 1. We write wi =
wt(w; ), which is nothing but the number of distinct integers.iithen,

1 i W
™=—" 1 E@Y) [1EM*). (2.1.15)
i NKk/2 eelg%i ) EEE‘LNi

In particular, TN = 0 unlessNg" > 2 for all e € Ew,, Which implies that wt<
k/2+1. Also, (2.1.15) shows thatif; ~ wy thenT,N = TN. Further, ifN > t then
there are exactly

Cngi=N(N—1)(N=2)--- (N—t+1)

N-words that are equivalent to a givilaword of weightt. We make the following
definition:

Wkt denotes a set of representatives for equivalence classtssefl
t-wordsw of lengthk+ 1 and weight with N’ > 2 for eache € Eyy .

(2.1.16)
One deduces from (2.1.10) and (2.1.15) that
_ 2+ oy
Ny NY
(L, X<) = L ; E(Z;%) [T E(Y. ). (2.1.17)
t; Nk/2+lwe“ ki €€ES ’ eelg‘ﬁ,

Note that the cardinality ¥, is bounded by the number of closg@-words of
lengthk + 1 when the cardinality of” is t <k, that is,| #;| < tX <K, Thus,
(2.1.17) and the finiteness nf, see (2.1.1), imply that

im (Ln,X<) =0, if kis odd,

while, for k even,

. — k NW NW
lim (Ln,X) = y; E(Zl,ez) QWE(Yle). (2.1.18)
N=e WEW k/241 8BS ecEy,

We have now motivated the following definition. Note thattfoe purpose of this
section, the cade= 0 in Definition 2.1.10 is not really needed. Itis introduced i
this way here in anticipation of the analysis in Section@.1.

Definition 2.1.10A closed wordw of lengthk+ 1 > 1 is called awigner wordif
eitherk =0 ork is even andv is equivalent to an element & /> 1.
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We next note that iftv € #j /2,1 thenGy, is a tree: indeedGy, is a connected
graph with|Vy| = k/2+ 1, hencdEy| > k/2, while the conditioNy’ > 2 for each
e Ey implies that|Ey| < k/2. Thus,|Ew| = V| — 1, implying thatG,, is a tree,
that is a connected graph with no loops. Further, the abopdiemthatEy, is
empty forw € #i /241, and thus, fok even,

Jim (Ln,X) = [Heigzal - (2.1.19)

We may now complete the

Proof of Lemma 2.1.6Let k be even. It is convenient to choose the set of rep-
resentatives/ k2,1 such that each wordl = vy - -~ v 1 in that set satisfies, for
i=1,...,k+1, the condition thafvy,...,vi} is an interval inZ beginning at 1.
(There is a unique choice of such representatives.) Eacheelew € # /2.1
determines a patia, Vo, ..., Vi, Vi1 = V1 Of lengthk on the treeG,,. We refer
to this path as thexploration processssociated withv. Letd(v,V) denote the
distance between vertices/ on the treeG,,, i.e. the length of the shortest path
on the tree beginning atand terminating a¥’. Settingx; = d(Vviy1,Vv1), one sees
that each wordv € #j />, 1 defines a Dyck patD(w) = (X1,X2, ..., %) of length

k. See Figure 2.1.2 for an example of such coding. Convergieln a Dyck path

X = (X1,...,X), ONe may construct a wondt = T(X) € # /2,1 by recursively
constructing an increasing sequemnee. .., Wy = w of words, as follows. Put
wo = (1,2). Fori > 2, if x_1 = X_2+ 1, thenw; is obtained by adjoining on the
right of w;,_1 the smallest positive integer not appearingin;. Otherwisew; is
obtained by adjoining on the right o _; the next-to-last letter of;_1. Note that
for all i, Gy, is a tree (becausBy, is a tree and, inductively, at stageeither a
backtrack is added to the exploration proces&an, or aleaf is added tGy;_,).
Furthermore, the distance @, between first and last letterswf equals_1, and
thereforeD(w) = (xq,...,X). With our choice of representatives(D(w)) = w,
because each uptick in the Dyck p&ifw) starting at location — 2 corresponds
to adjoinment on the right of;_; of a new letter, which is uniquely determined by
suppwi_1, whereas each downtick at location 2 corresponds to the adjoinment
of the next-to-last letter im;_1. This establishes a bijection between Dyck paths
of lengthk and#j />, 1. Lemma 2.1.3 then establishes that

[Pk kj2+1] = Cr/2- (2.1.20)
This completes the proof of Lemma 2.1.6. O

From the proof of Lemma 2.1.6 we extract as a further benefibaff a fact
needed in Chapter 5. L&tbe an even positive integer and l& = {1,...,k}.
Recall the notion of non-crossing partition.gf, see Definition 2.1.4. We define



16 2. WIGNER MATRICES

1

Fig. 2.1.2. Coding of the wordr = 123242521 into a tree and a Dyck path of length 8.
Note that¢/(w) = 9 and wfw) = 5.

a pair partition of % to be a partition all of whose parts are two-element sets.
The fact we need is that the equivalence classes of Wignetsaafrlengthk + 1

and the non-crossing pair partitions .¢fi are in canonical bijective correspon-
dence. More precisely, we have the following result whickadibes the bijection

in detail.

Proposition 2.1.11Given a Wigner word w= i1 - - - ik 1 Of length k+ 1, let My, be
the partition generated by the function {ij,ij11} : {1,...,k} — Ew. (Here, re-
call, Ey is the set of edges of the grapk, @ssociated with w.) Then the following
hold:

() Ny is a non-crossing pair partition;

(ii) every non-crossing pair partition of# is of the formrfl,, for some Wigner
word w of length k- 1;

(iii) if two Wigner words w and Wof length k+ 1 satisfyrl,, = My, then w and W
are equivalent.

Proof (i) Because a Wigner word/ viewed as a walk on its grapB,, crosses
every edge exactly twicd],, is a pair partition. Because the gra@l is a tree,
the pair partitior1,, is non-crossing.

(i) The non-crossing pair partitions 0¥ correspond bijectively to Dyck paths.
More precisely, given a non-crossing pair partitidrof .7, associate with it a
path fq = (fr(2),..., fn(k)) by the rules thatfr (1) = 1 and, fori = 2,... Kk,
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fn(i) = fn(i—1)+1 (resp..,fn (i) = fn(i— 1) — 1) if i is the first (resp., second)
member of the part dfl to whichi belongs. It is easy to check thi is a Dyck
path, and furthermore that the mBlb— fr puts non-crossing pair partitions of
J# into bijective correspondence with Dyck paths of lengthNow choose a
Wigner wordw whose associated Dyck pdit{w), see the proof of Lemma 2.1.6,
equalsfr. One can verify thally, = I1.

(i) Given My, = My, one can verify thab(w) = D(w'), from which the equiva-
lence ofw andw follows. 0

2.1.4 Proof of Lemma 2.1.7: sentences and graphs
By Chebyshev’s inequality, it is enough to prove that

lim |E (<LN,xk>2) — (L, X2 = 0.

N—oo

Proceeding as in (2.1.10), one has

E(<LN7Xk>2)_<|:N,Xk>2: % % -Fi!}ll, (2121)
i1,0ig=1
it =1
where
T = ETNTN -ETVET)] . (2.1.22)

The role of words in the proof of Lemma 2.1.6 is now played biyspaf words,
which is a particular case ofsentence

Definition 2.1.12 (-sentenceslGiven a set¥, an.”-sentence &s a finite se-
guence of-wordswy, ..., Wy, at least one word long. Twe”-sentencesy, a,
are calledequivalentdenotedy ~ ap, if there is a bijection or” that maps one
into the other.

As with words, for a sentenca = (w1,W»,...,W,), we define thesupportas
supp(@) = UL, supp(w;), and theweightwt(a) as the cardinality of supa).

Definition 2.1.13 (Graph associated with an¥’-sentence)Given a sentenca
= (W1,..., W), Withw; =8, - §Z(Wi), we setG, = (Va, Ea) to be the graph with
set of vertice®/, = supp(a) and (undirected) edges

Ba={{sSj,1},i=1....00m)—1i=1,. Kk}

We define the set cfelf edgesisE; = {e € E;: e= {u,u},u € Va} and the set of
connecting edgeasES = Ea \ E;.
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In words, the graph associated with a sentemee (w,...,Wy) is obtained by
piecing together the graphs of the individual womgs(and in general, it differs
from the graph associated with the word obtained by coneditegthe words
w;). Unlike the graph of a word, the graph associated with aese@ may be
disconnected. Note that the sentead®finesk paths in the grapl,. Fore € E,,
we useNg@ to denote the number of times the union of these paths tewdhe
edgee (in any direction). We note that equivalent sentences geéa¢he same
graphsG, and the same passage-couxis

Coming back to the evaluation Eﬁfi/, see (2.1.21), recall the closed wordsw:
of lengthk+ 1, and define the two-word sentergg = (wi,wj). Then,

Ty = [ |E'J E(z |E] E(Y. (2.1.23)

8 i/

w w, w,
. % EZ¥) EL E(vNe") N E(Z)% ) N E(Y)e )} .
ecEy, ecEy, eeEWi, eeEWi,
In particular, TN =0 unlessNe”’ > 2 for all e € Es,. Also, T =0 unless
Ew NEw, # 0. Further, (2.1.23) shows thataf; ~ g thenT!, = TN.. Finally,
if N >t then there are exactlgn: N-sentences that are equivalent to a given
N-sentence of weight We make the following definition:

Wk<t2) denotes a set of representatives for equivalence classesi@ncea
of weightt consisting of two closettwords(wy,w,), each of lengttk+ 1,
with Ng > 2 for eache € E5, andEy, NEw, # 0.
(2.1.24)
One deduces from (2.1.21) and (2.1.23) that

E((Ln, X)) — (L, x€)? (2.1.25)
2 Cny

X (QE QE

a= W1W2 EW

_ Nt Nt Ne? Ne?
eeuw E(Z) )eelgvlle(Yl )eeElNZE(Zl'Z )eeELNZE(Yl ).

1

We have completed the preliminaries to

Proof of Lemma 2.1.7In view of (2.1.25), it suffices to check th%ﬂ[( is empty
fort > k+ 2. Since we need it later, we prove a slightly stronger claiamely
that%/lft) is empty fort > k+ 1.

Toward this end, note that & € Wk(tz) thenG, is a connected graph, with
vertices and at mostedges (sinc®g > 2 for e € E,), which is impossible when
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t > k4 1. Considering the cage= k+ 1, it follows thatG, is a tree, and each
edge must be visited by the paths generated byactly twice. Because the path
generated by, in the treeG, starts and end at the same vertex, it must visit each
edge an even number of times. Thus, the set of edges visited Iy disjoint
from the set of edges visited by, contradicting the definition ch(tz) O

Remark 2.1.14Note that in the course of the proof of Lemma 2.1.7, we acgtuall
showed that foN > 2k,
E((Ln,X)?) — (Ln, X2 (2.1.26)
e
Nt

Y “!EZlZQEYl

= (W1,Wp) 67/(2

- Nel Ne't Ne 2 Ne?
J1 e 1 et e ] et

that is, that the summation in (2.1.25) can be restrictecktd.

Exercise 2.1.15Consider symmetric random matric¥g, with the zero mean
independent random variabl¢Xn (i, j) } 1<i<j<n NO longer assumed identically
distributed nor all of variance/N. Check that Theorem 2.1.1 still holds if one
assumes that for a#l > 0,

L0) 1 NEXu(i, )2 < )
N—oo N2

= :I_7
and for allk > 1, there exists a finitg, independent oN such that

sup E’\/NXN(i,j)‘kgrk.

1<i<j<N

Exercise 2.1.18Check that the conclusion of Theorem 2.1.1 remains true when
convergence in probability is replaced by almost sure cayerece.

Hint: Using Chebyshev’s inequality and the Borel-Cantelli Leamihis enough

to verify that for all positive integers, there exists a consta@t= C(k) such that

B ((L?) — (T X9 < .

Exercise 2.1.17n the setup of Theorem 2.1.1, assume tihat o for all k but
not necessarily thaI[Zfz] = 1. Show that, for any positive integker

SUPE[(Ln, X)] =: C(ry, £ < k) <
NeN



20 2. WIGNER MATRICES

Exercise 2.1.18Ne develop in this exercise the limit theory Mfishartmatrices.
LetM = M(N) be a sequence of positive integers such that

’\IlianM(N)/N =a€[l,,).
Consider arN x M(N) matrix Yy with i.i.d. entries of mean zero and variance
1/N, and such tha (N¥/2|Yy(1,1)[¥) < r¢ < «. Define theN x N Wishart matrix
asWy = YNY,\T, and letLy denote the empirical measure of the eigenvalu&yof
SetLy = ELy.
(a) WriteN(Ly, x*) as

EWN(iz, jo)Wn(i2, jo) (2, j2) (i3, j2) - - (i, k) YN (i, jk)

and show that the only contributions to the sum (divided\)ythat survive the
passage to the limit are those in which each term appearf\eRaice.

Hint: use the words$; j1izj2... jki1 and a bi-partite graph to replace the Wigner
analysis.

(b) Code the contributions as Dyck paths, where the everhteaprrespond to

i indices and the odd heights correspond tadices. Let! = /(i,j) denote the
number of times the excursion makes a descent from an oddttheign even
height (this is the number of distingtindices in the tuple!), and show that the
combinatorial weight of such a path is asymptotid\tg *a*.

(© Let¢ denote the number of times the excursion makes a descenafi@wven
height to an odd height, and set

¢ ¢
Bc= > oo, k= > a.
Dyck paths of length 2 Dyck paths of length 2

(The B are thekth moments of any weak limit di.) Prove that
k k
Be=0ay -iBi-1, W= Bj¥-1, k=1
=1 =1

(d) Setting[?a(z) = zﬁ;gzkﬁk, prove thatﬁa(z) =1+ zﬁa(z)2+ (a— 1)2[30,(2),
and thus the limif, of Ly possesses the Stieltjes transform (see Definition 2.4.1)
—71B4(1/2), where

1-(a—1)z— \/1—4z[07+1—L}>22}

Ba(2) = 2z
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(e) Conclude thaF, possesses a densify supported orfb_,b.], with b_ =
(1-a)?, b, = (1+/a)?, satisfying

fa(x) = (X_Z—%ﬁb“x), xe[b_,b,]. (2.1.27)
(This is the famou$larCenko—Pastulaw, due to [MaP67].)
(f) Prove the analog of Lemma 2.1.7 for Wishart matrices, dediice thaty —
Fq weakly, in probability.
(9) Note that is the image of the semicircle distribution under the transfation
X — X2,

2.1.5 Some useful approximations

This section is devoted to the following simple observattwat often allows one
to considerably simplify arguments concerning the conseeg of empirical mea-
sures.

Lemma 2.1.19 (Hoffman-Wielandt)Let A, B be Nx N symmetric matrices, with
eigenvalued ! < A2 < ... <Al andAB<AB<...<Af Then

N
AR —ABP2 <tr(A-B)2.
2

Proof Note that tA? = 5;(A/)? and tB? = 3;(AB)2. LetU denote the matrix
diagonalizingB written in the basis determined I8y and letDa, Dg denote the
diagonal matrices with diagonal elemenf AP respectively. Then,

trAB=trDAUDEU " = ' APAPU .
I7J

The last sum is linear in the coefficients = uﬁ and the orthogonality o)
implies thaty jvij = 1,5 vij = 1. Thus

trAB < sup > APA Py (2.1.28)

vij 200y vij =13 vij=11]

But this is a maximization of a linear functional over the wex set of doubly
stochastic matrices, and the maximum is obtained at themetmpoints, which
are well known to correspond to permutations The maximumrgr@ermuta-
tions is then easily checked to ge)\iA)\iB. Collecting these facts together implies
Lemma 2.1.19. Alternatively, one sees directly that a maim V = {v;;} in
(2.1.28) is the identity matrix. Indeed, assume w.l.o.gatth, < 1. We then
construct a matri¥ = {Vvjj } with vi1 = 1 andv; = v;; fori > 1 such thaV is also
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a maximizing matrix. Indeed, becausg < 1, there exist g and ak with vij >0
andviq > 0. Setv = min(vyj, ) > 0 and define/;; = vi1 +V, Wj = Vj +Vvand
V1j = Vij — V, Viq = Viq — V, andviap = Vap, for all other pairsab. Then,
SAAPM —vij) = VLA AT = ACAL —AfAP)
I7J
= VAP -ADAP-AP) >0.

Thus,V = {vij} satisfies the constraints, is also a maximum, and the nuniber o
zero elements in the first row and column\6fis larger by 1 at least from the
corresponding one fov. If vi; = 1, the claims follows, while ifv1; < 1, one
repeats this (at most\e— 2 times) to conclude. Proceeding in this manner with
all diagonal elements &f, one sees that indeed the maximum of the right side of
(2.1.28) isy; AP*AE, as claimed. O

Remark 2.1.20The statement and proof of Lemma 2.1.19 carry over to the case
whereA andB are both Hermitian matrices.

Lemma 2.1.19 allows one to perform all sorts of truncatiohemproving con-
vergence of empirical measures. For example, let us pravéotitowing variant
of Wigner's Theorem 2.1.1.

Theorem 2.1.21Assume X is as in (2.1.2), except that instead of (2.1.1), only
r, < o is assumed. Then, the conclusion of Theorem 2.1.1 stilshold

Proof Fix a constanC and consider the symmetric mati¥g, whose elements
satisfy, for 1<i < j <N,

X (i, §) = Xn(i, DY Rix(ijyi<c — EONGL DL Ry j)<c)-

Then, withﬁ\iN denoting the eigenvalues &, ordered, it follows from Lemma
2.1.19 that

AN = ANZ < Ztr(Xy — Xn)?.

Zl-

But

. . . . 2
< 1 2 VNXG DD e~ ECVNXGL D) gy )
]

Sincer;, < o, and the involved random variables are identical in law toeiZ; »
or Yy, it follows thatE[(\/NXN(i,j))zl‘me(LmZC] converges to 0 uniformly in
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N,i, j, whenC converges to infinity. Hence, one may chose for eachlarge
enoughC such thaP(|Wn| > €) < €. Further, let
f(x)—f
Lip(R) = {f € Gp(R) : sup|f(x)| < 1,supM <1}.
X XA£Y |X_y|

Then, on the ever{{Wy | < €}, it holds that forf € Lip(R),
r 1 N 3N
(L, £) = (Lns )] < NIZMi —A < Ve,

whereLy denotes the empirical measure of the eigenvaluééofand Jensen's
inequality was used in the second inequality. This, togetlith the weak conver-
gence in probability of  toward the semicircle law assured by Theorem 2.1.1,
and the fact that weak convergence is equivalent to conaeegeith respect to
the Lipschitz bounded metric, see Theorem C.8, completerhef of Theorem
2.1.21. O

2.1.6 Maximal eigenvalues andiredi—Komlbs enumeration

Wigner's theorem asserts the weak convergence of the aralineasure of eigen-
values to the compactly supported semicircle law. One imately is led to sus-
pect that the maximal eigenvalueX§ should converge to the value 2, the largest
element of the support of the semicircle distribution. Taist, however, does not
follow from Wigner's Theorem. Nonetheless, the combinalcechniques we
have already seen allow one to prove the following, where sethe notation
introduced in (2.1.1) and (2.1.2).

Theorem 2.1.22 (Maximal eigenvaluelConsider a Wigner matrix K satisfying
r, < Kk for some constant C and all positive integers k. Th’qﬂ‘wponverges i@
in probability.

Remark The assumption of Theorem 2.1.22 holds if the random var&B} »|
and|Y;| possess a finite exponential moment.

Proof of Theorem 2.1.22Fix 4 > 0 and letg: R — R be a continuous function
supported o2 — 9, 2], with (o,g) = 1. Then, applying Wigner's Theorem 2.1.1,

P(AN <2—0) <P((Ln,9) =0) < P(|(Ln,9) — (0,0)| > %) —N-w 0. (2.1.29)

We thus need to provide a complementary estimate on the bpititphat )\,\’}‘ is
large. We do that by estimatinigy,x?¢) for k growing withN, using the bounds
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on r¢ provided in the assumptions. The key step is contained irfalh@ving
combinatorial lemma that gives information on the sgfs, see (2.1.16).

Lemma 2.1.23For all integers k> 2t — 2 one has the estimate

[Wie| < 23K-2+2) (2.1.30)

The proof of Lemma 2.1.23 is deferred to the end of this sactio
Equipped with Lemma 2.1.23, we have fdt2 N, using (2.1.17),

k+1 w w
ZN‘—W”)%M sup E(Z)%) m E(Y,*) (2.1.31)
t= T e M

we okt ecE

k+1 ( (2k)6> k+1-t

4
P

To evaluate the last expectation, fixc #5;, and letl denote the number of edges
in ES, with NY = 2. Holder's inequality then gives

N NY
u E(Z,3) QNE(Yle) <Tx 2,
ecE§, ecEy,

with the convention thaty = 1. SinceGy, is connectedE§| > [Vw|—1=t—1. On
the other hand, by noting thislf' > 3 for |E;| — | edges, one hak2> 3(|E§|—1)+

21 +2|E}|. Hence, R— 2| <6(k+1—t). Sinceryq is a nondecreasing function of
gbounded below by 1, we get, substituting back in (2.1.38},filr some constant
c1=c1(C) >0andallk <N,

<EN7X2k>

IN

IN

N N
su E(Z,% E(Y,®).
N p [1 @9 ] Em)

WEW okt ecES

=2k KL/ (K8
(Ln,x™) < 4 Zi N Fo(k-+1-t) (2.1.32)
t=

k+l((2k)6(6(k—|— 1—t))6C>k+lt < 4 k <E>|

< 4K
=Y N

Choose next a sequeniN) —n_. % such that

k(N)Cl/N —N—oo 0 but k(N)/lOgN —N—s00 0.
Then, for anyd > 0, and allN large,
PAN > (248)) < P(N(Ln, &Ny > (24 5)%N)

N{Ln M) 2NgkN
- (2+ 5)2k(N) - (2+ 5)2k(N)

completing the proof of Theorem 2.1.22, modulo Lemma 2.1.23 O

—“7N—oo Oa
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Proof of Lemma 2.1.23The idea of the proof is to keep track of the number of
possibilities to prevent words it from having weight k/2] + 1. Toward this
end, letw € #4; be given. Aparsingof the wordw is a sentencay = (Wi, ..., Wn)
such that the word obtained by concatenating the wardsw. One can imagine
creating a parsing of by introducing commas between partsiof

We say that a parsing= a,, of wis anFK parsing(after Fiiredi and Komlb6s),
and call the senten@ean FK sentenceif the graph associated withis a tree, if
NG < 2forallee E, andif foranyi =1,...,n—1, the first letter ofv;;; belongs
to Uij:]_SUppNj. If the one-word sentena= w is an FK parsing, we say that
is anFK word. Note that the constituent words in an FK parsing are FK words

As will become clear next, the graph of an FK word consistseés whose
edges have been visited twice Wwyglued together by edges that have been visited
only once. Recalling that a Wigner word is either a one-tetterd or a closed
word of odd length and maximal weight (subject to the comstithat edges are
visited at least twice), this leads to the following lemma.

Lemma 2.1.24Each FK word can be written in a unique way as a concatenation
of pairwise disjoint Wigner words. Further, there are at m@% ! equivalence
classes of FK words of length n.

Proof of Lemma 2.1.24Letw=3s; - -- S, be an FK word of length. By definition,
Gy is atree. Lel{sj ,sj+1}§=1 denote those edges Gfy visited only once by the
walk induced byw. Definingig = 1, one sees that the wordg = Sj1+1° S

] > 1, are closed, disjoint, and visit each edge in the @gg exactly twice. In
particular, withlj :==i; —ij_1 — 1, it holds that; is even (possiblyl; = 0 if w;
is a one-letter word), and furtherlif > 0 thenw; ij/zﬂ. This decomposi-
tion being unique, one concludes that for anyith N, denoting the number of
equivalence classes of FK words of lengtland with|#41] := 1,

[ [ r
> NaZ' = [1 21y 24l
n=1 r:l{mﬁzlj:l
lj even
oo oo r
=5 <z+ Zzz'”I%mI) : (2.1.33)
r=1 =1

in the sense of formal power series. By the proof of Lemmab2|¥5 1| =
C = . Hence, by Lemma 2.1.3, fz| < 1/4,

1-V1-42

S 2 | = 2B (2
z l; [W2)41] = 2B(Z) 57
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Substituting in (2.1.33), one sees that (again, in the sehgewer series)

S NP — BB 1-V1-42 _ 1, z+1
nZl " C1-78(R) 22-1+V1-42 2 J1-42

Using the fact that
[ 1 © tk ( 2k>
1-t k;4k k )’
one concludes that

ad 1 S onf 2n
nZanz“_z—|r§(1+22)nzz2 ( . ),

1

from which Lemma 2.1.24 follows. a

Our interest in FK parsings is the following FK parsing of a wordw =
s1---S. Declare an edge of Gy to be new (relative tow) if for some index
1<i<nwe havee={s,s:1} ands 1 € {si,...,5}. If the edgeeis not new,
then it isold. Definew to be the sentence obtained by breakinghat is, “insert-
ing a comma”) at all visits to old edges Gfy and at third and subsequent visits to
new edges oGy,.

4

Fig. 2.1.3. Two inequivalent FK sentenc@g,xp] corresponding to (solid linep =
141252363 and (dashed line}= 1712 (in left)~ 3732 (in right).

Since a wordw can be recovered from its FK parsing by omitting the extra
commas, and since the number of equivalence classes of Fésvimestimated
by Lemma 2.1.24, one could hope to complete the proof of LerBrid@3 by
controlling the number of possible parsel sequences. A key step toward this
end is the following lemma, which explains how FK words arefittogether to
form FK sentences. Recall that any FK wavdan be written in a unique way as
a concatenation of disjoint Wigner wordsg, i = 1,...,r. With 5 denoting the first
(and last) letter ofv;, define theskeletorof w as the words; - - - 5. Finally, for a
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sentence with graphG,, let G = (V2,E2) be the graph with vertex sef, = V2
and edge seEl = {ec E5: N& = 1}. Clearly, whema is an FK sentenceG}, is
always aforest that is a disjoint union of trees.

Lemma 2.1.25Suppose b is an FK sentence with-i words and c is an FK

word with skeletonss - - such that § € supp(b). Let? be the largest index such
that 3 € suppb, and set d=s;---s,. Then a= (b,c) is an FK sentence only if
suppnsuppe = suppd and d is a geodesic iné’s

(A geodesicconnectingx,y € Gi is a path of minimal length starting atand
terminating aty.) A consequence of Lemma 2.1.25 is that there exist at most
(wt(b))2 equivalence classes of FK sentenggs. ., X, such thab ~ xg,...,Xn_1
andc ~ x,. See Figure 2.1.3 for an example of two such equivalenceessand
their pictorial description.

Before providing the proof of Lemma 2.1.25, we explain holeétds to

Completion of proof of Lemma 2.1.23Let I (t,¢,m) denote the set of equiva-
lence classes of FK senten@es: (wy, ..., Wm) consisting ofm words, with total
lengthy ", £(w;) = ¢ and wia) = t. An immediate corollary of Lemma 2.1.25 is
that

[ (t,£,m)| < 2/~mp2m-1) ( -1 ) . (2.1.34)
m-1
Indeed, there arey 1, := ( ri_— 1 ) m-tuples of positive integers summing £p

and thus at most‘2™c, ,, equivalence classes of sentences consisting péir-
wise disjoint FK words with sum of lengths equalto_emma 2.1.25 then shows
that there are at most™ 1 ways to “glue these words into an FK sentence”,
whence (2.1.34) follows.

For any FK sentenca consisting oim words with total lengtt, we have that
m= |EL| — 2wt(a) +2+¢. (2.1.35)

Indeed, the word obtained by concatenating the wordsy@nerates a list af— 1
(not necessarily distinct) unordered pairs of adjoinirttgls, out of whichm— 1
correspond to commas in the FK sentea@nd 2E,| — |E2| correspond to edges
of Ga. Using thatE,| = |Va| — 1, (2.1.35) follows.

Consider a wordv € #4; that is parsed into an FK sentengeconsisting of
m words. Note that if an edgeis retained inG,,, then no comma is inserted
at e at the first and second passagee(but is introduced if there are further
passages 0@). ThereforeE‘}, = 0. By (2.1.35), this implies that for such words,
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m—1=k+ 2—2t. Inequality (2.1.34) then allows one to conclude the prdof o
Lemma 2.1.23. O

Proof of Lemma 2.1.25Assumeais an FK sentence. Thdpy is a tree, and since
the Wigner words composingare disjoint,d is the unique geodesic B; C G,
connectings; to ;. Hence, it is also the unique geodesiddp C G, connecting

s to ;. Butd visits only edges o6y, that have been visited exactly once by the
constituent words ob, for otherwise(b,c) would not be an FK sentence (that
is, a comma would need to be inserted to sglit Thus,Eq4 C E[}. Sincec is

an FK word,E} = Eg ... Sinceais an FK sentence, NEc = E} NEZL. Thus,
En,NEc = Eq. But, recall thaiG,, Gy, G, Gq are trees, and hence

= 1+4|Bo/+1+4|Ec| - 1—|Ed| = V| + Ve — [Vul -

Since |[Vp| 4 [Ve| — Mo NVe| = |Val, it follows that [Vy| = My NVe|. SinceVy C
Vp NV, one concludes thafy = VNV, as claimed. |

Remark 2.1.26The result described in Theorem 2.1.22 is not optimal, irsérese
that even with uniform bounds on the (rescaled) entriesi.eniformly bounded,
the estimate one gets on the displacement of the maximaheigee to the right
of 2isO(n~Y6logn), whereas the true displacement is known to be of andér
(see Section 2.7 for more details, and, in the context of dexpaussian Wigner
matrices, see Theorems 3.1.4 and 3.1.5).

Exercise 2.1.27Prove that the conclusion of Theorem 2.1.22 holds with cenve
gence in probability replaced by either almost sure coremcg orLP conver-
gence.

Exercise 2.1.28rove that the statement of Theorem 2.1.22 can be strerggthen
to yield that for some constadt= 5(C) > 0, N°(A} — 2) converges to 0, almost
surely.

Exercise 2.1.29ssume that for some constarits> 0, C, the independent (but
not necessarily identically distributed) entrig§(i, j) }1<i<j<n of the symmetric
matricesXy satisfy

supE (MNPl < ¢

ij.N -
Prove that there exists a constant= ¢1(C) such that limsug_,, /\,{,\‘ < ¢1, almost
surely, and limsug_, EAY < ¢.
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Exercise 2.1.30Me develop in this exercise an alternative proof, that avaio-
ment computations, to the conclusion of Exercise 2.1.28¢euthe stronger as-
sumption that for som# > 0,

SupE(eMx/N\XNUJ)DZ) <C.

i,j,N B
(a) Prove (using Chebyshev’s inequality and the assumptit there exists a
constantcy independent oN such that for any fixed € RN, and allC large
enough,

P(|Z"Xn |2 > C) < e %N, (2.1.36)

(b) Let A5 = {z;}i'\fl be a minimal deterministic net in the unit ball BfY, that
is [|zi[|2 = 1, SUR,|z,—1infi[|z—z]|]2 < J, andN; is the minimal integer with the
property that such a net can be found. Check that

(1—-06°) sup Z'Xnz< supz'Xnz+2sup sup Z'Xnz.  (2.1.37)
z||Z|2=1 zefs i z|z-zl2<6
(c) Combine steps a) and b) and the estinge< c¥, valid for somecs > 0, to
conclude that there exists a constenindependent oN such that for allC large
enough, independently of,

PAN >C) =P( sup Z'Xnz>C) < e %N,
z|z|=1

2.1.7 Central limit theorems for moments

Our goal here is to derive a simple version of a central lithédrem (CLT)
for linear statistics of the eigenvalues of Wigner matric&%ith Xy a Wigner
matrix andLy the associated empirical measure of its eigenvaluedMggt =
N[(Ln,X<) — (L, X)]. Let

X
e \/2dy

denote the Gaussian distribution. We sgtas in (2.1.44) below, and prove the
following.

®(x)

Theorem 2.1.31The law of the sequence of random variableg\\by converges
weakly to the standard Gaussian distribution. More prelgise
(VVN.k

o < x) = d(x). (2.1.38)

lim P

N—oo0
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Proof of Theorem 2.1.31Most of the proof consists of a variance computation.
The reader interested only in a proof of convergence to a €auslistribution
(without worrying about the actual variance) can skip totthé following equa-

tion (2.1.45).
Recall the notatior?(/kfta, see (2.1.24). Using (2.1.26), we have

lim EWE,) = lim NZ{E(<LN,xk>2)—<I:N,xk)2] (2.1.39)

N—o0
[1E@% ] E
= (W1,Wp) eV/k(i

N N1 Ne 2 Ne 2
—na@>qaw>ﬂam>ﬂawﬂ-
eeEWl eeEWl eeEW2 ecEy,

2

Note thatifa= (wg,w,) € Wk(lf) thenG;, is connected and posseske®rtices and
at mostk edges, each visited at least twice by the paths generated Hgnce,
with k vertices,G, possesses eithkr- 1 ork edges. Let//kf) . denote the subset

of Wk(i) such thaiEy| = k (that is, G is unicyclic i.e. “possesses one edge too
many to be a tree”) and I@t/f)f denote the subset (ﬁ[((lf) such thatEy| =k—1.

Suppose firsa € Wk(k> Then,G; is a tree,E5 = 0, and necessariliy, is a
subtree ofGa. This implies thak is even and thalEy, | < k/2. In this case, for
Ew, NEw, # 0 one must havéE,, | = k/2, which implies that all edges @&, are
visited twice by the walk generated by, and exactly one edge is visited twice
by bothw; andws,. In particularw; are both closed Wigner words of lendth- 1.
The emerging picture is of two trees wiki2 edges each “glued together” at one
edge. Since there af& , ways to chose each of the tre&s2 ways of choosing
(in each tree) the edge to be glued together, and 2 possitgistations for the
gluing, we deduce that

k 2
e =2 (5) Cora- (2.1.40)
Further, for eacla € Wk(il
A f

w1 W2 W2
—na$>qaw>na$>ﬂawﬂ
ecE, eckEy, ecEy, ecE,

W1 w2

= E(Ziz)[E(Zfz)]k_z —[E(Z2)k=E(zf,) —1. (2.1.41)
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We next turn to conside)f//k(a. In order to do so, we need to understand the
structure of unicyclic graphs.

Definition 2.1.32A graphG = (V,E) is called abraceletif there exists an enu-
merationay, ao, ..., a; of V such that

{{ag,01}} ifr=1,

E— {{01,02}} ifr=2,
{{01,02},{02,03},{03,01}} if r=3,

{{a1, 02}, {az, 03}, {03, a4}, {04, 01}} ifr=4,

and so on. We call thecircuit lengthof the braceleG.

We need the following elementary lemma, allowing one to dgoase a uni-
cyclic graph as a bracelet and its associated pendant tResall that a graph
G = (V,E) is unicyclic if it is connected anfE| = |V|.

Lemma 2.1.33Let G= (V,E) be a unicyclic graph. Let Z be the subgraph of
G consisting of all e E such that G e is connected, along with all attached
vertices. Let r be the number of edges of Z. Let F be the grafdiradd from G
by deleting all edges of Z. Then, Z is a bracelet of circuigklrr, F is a forest
with exactly r connected components, and Z meets each dednsamponent of
F in exactly one vertex. Further= 1 if ES # 0 while r > 3 otherwise.

We call Z the braceletof G. We callr the circuit lengthof G, and each of the
components of we call apendant tree(The case = 2 is excluded from Lemma
2.1.33 because a bracelet of circuit length 2 is a tree anglrieuer unicyclic.)
See Figure 2.1.4.

4 1
3 2
8 5
7 6

Fig. 2.1.4. The bracelet 1234 of circuit length 4, and thedpehtrees, associated with the
unicyclic graph corresponding {€25657523412383412
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Coming back ta c W&L, letZ, be the associated bracelet (with circuit length
r=1orr > 3). Note that for anye € E; one hasd\Ng = 2. We claim next that
ec Zy if and only if N&* = N&2 = 1. On the one hand, &< Z, then(Va,E5 \ €)

is a tree. If one of the paths determinedvayandws fail to visit e then all edges
visited by this path determine a walk on a tree and therefeggtth visits each
edge exactly twice. This then implies that the set of edgsited by the walks
are disjoint, a contradiction. On the other hands # (x,y) andNg" = 1, then all
vertices invy, are connected wand toy by a path using only edges froiy, \ e.
Hence,(Va, Ea\ €) is connected, and thuese Z,.

Thus, anya = (wy,W») € ka)Jr with bracelet lengtin can be constructed from
the following data: the pendant tre@ji 5:1 (possibly empty) associated with
each wordv; and each vertexof the braceleZ,, the starting point for each word
w; on the graph consisting of the bracelgtand trees{Tji}, and whethe#, is
traversed by the words; in the same or in opposing directions (in the caze3).

In view of the above, counting the number of ways to attackstte a bracelet of
lengthr, and then the distinct number of non-equivalent ways to sa@barting

points for the paths on the resulting graph, there are exactl
2

21r23k2
|‘lqQ (2.1.42)
r k,>o
251 ki=k-r

elements of//kf& with bracelet of length. Further, fora € Wk(ar we have

[ E@D ] EMS)

W1 w1 w2 W2
- M e E(Yye E(Z)e E(Y,e
J E@R) [ B8 T1 E@s) ] & )

W1 1 w2

B (E(Z2,))% -0 ifr >3,
- (E(Z2,))EYZ-0 ifr=1
1 ifr>3,
- { EYZ ifr=1. (2.1.43)

Combining (2.1.39), (2.1.40), (2.1.41), (2.1.42) and (23}, and settin@, = O if
X is not an integer, one obtains, with

2

s % |_|CK , (2.1.44)

k2
=KeCcZ 1EY2+ 202 1]+ 23
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that
= lim EWS . (2.1.45)

The rest of the proof consists in verifying that, for 3,
: W) [0 if j is odd,
N, E ( Ok ) - { (j—1) if jiseven (2.1.46)

where(j — D! = (j —1)(j — 3)---1. Indeed, this completes the proof of the
theorem since the right hand side of (2.1.46) coincides thiéhmoments of the
Gaussian distributio®, and the latter moments determine the Gaussian distribu-
tion by an application of Carleman’s theorem (see, e.g.r¢B}), since

g (—1/2j) _

To see (2.1.46), recall, for a multi-inde (iq, . ..,ix), the terms‘ITiN of (2.1.15),
and the associated closed wavd Then, asin (2.1.21), one has

. N
EM) = 3 ™2 . (2.1.47)
i, =1
n=12....j
where
j
e n=E[|_I(Ti'n“—ETi'n“)1~ (2.1.48)
n=1

Note thaﬂfilNi2 _ij = 0 if the graph generated by any worg := win does not
have an edge in common with any graph generated by the otlrdswg, n' # n.
Motivated by that and our variance computation, let

Wk(t” denote a set of representatives for equivalence classes of
sentencea of weightt consisting ofj closed wordgwy, wo, ..., wj),
each of lengthk+ 1, with Ng > 2 for eache € E,, and such that for
eachn there is am’ = n’(n) # n such tha€, N Ew, # 0.
(2.1.49)
As in (2.1.25) one obtains

Cniyt
W11W27 vW] = ZL NJk/2 Z Ta (2 1 50)

(i)
ac

W[\J]k ZCNt

=(Wp,Wp,.. ,WJ)EW“)

The next lemma, whose proof is deferred to the end of themeds concerned
with the study oWkt>.
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Lemma 2.1.34Let ¢ denote the number of connected components, 6b1Ga €
U A Then, o< |j/2] andwi(a) < c— j+ [ (k+1)j/2].

In particular, Lemma 2.1.34 and (2.1.50) imply that

) j 0 _if jis odd,
lim E(W ) = 3 , Ta if jiseven (2.1.51)

N—oo

By Lemma 2.1.34, ifa e Wkﬂ?j/z for j even therG, possesses exactly2 con-
nected components. This is possible only if there existgmpttion

m{l,..., i} —{L,...,j},

all of whose cycles have length 2 (that isptching, such that the connected
components o6, are the graphsG(Wi’Wmﬂ}. LettingZ]" denote the collection of
all possible matchings, one thus obtains thatjfeven,

_ i/2

T S 3 T
nexlli= )

gy () gy (2
ah 2 (wh W) €7k

= Y o= =a(i-1, (2.1.52)
rreZJm
which, together with (2.1.51), completes the proof of Tleewo2.1.31. O

Proof of Lemma 2.1.34Thatc < | j/2] is immediate from the fact that the sub-
graph corresponding to any wordarmust have at least one edge in common with
at least one subgraph corresponding to another woad in

Next, put
, j
a=[[ainlf-allq, 1 = UL < {10 K} A= [{ain, Qinsa e
i=1

We visualizeA as a left-justified table of rows. LetG' = (V',E’) be any spanning
forest inG,, with ¢c connected components. Since every connected component of
G is atree, we have

wt(a) = c+ |E/|. (2.1.53)

Now let X = {Xin}inci b€ a table of the same “shape”Asbut with all entries
equal either to 0 or 1. We caK an edge-bounding tablender the following
conditions.

e Forall(i,n) l,if Xin=1, thenA, € E".
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e Foreactee E' there exist distincti1,n1), (i2,n2) € | such thaii, n, = Xi,n, =
landAi, n, =A,n, =€

e Foreachee E’ and index € {1,..., ]}, if eappears in théth row of A then
there existgi,n) € | such thaty , = eandX , = 1.

For any edge-bounding tab}e the corresponding quantit%/z(img Xi.n bounds
|[E’|. Atleast one edge-bounding table exists, namely the taitheand in position
(i,n) for each(i,n) € | such tha#\; , € E’ and 0 elsewhere. Now l&t be an edge-
bounding table such that for some indgxall the entries oK in theigth row are
equal to 1. Then the closed worg}, is a walk inG’, and hence every entry in the
ioth row of A appears there an even number of times amartiori at least twice.
Now choosgip, ng) € | such that, ,, € E’ appears in more than one row Af
Let Y be the table obtained by replacing the entry IXoih position (ip,ng) by
the entry 0. TheryY is again an edge-bounding table. Proceeding in this way we
can find an edge-bounding table with 0 appearing at least ioneeery row, and
hence we havéE’| < L“‘T’jj. Together with (2.1.53) and the definition lofthis
completes the proof. O

Exercise 2.1.35 (from [AnZ05])Prove that the random vectoWW ; }ik:1 satisfies
a multidimensional CLT (aBl — ). (See Exercise 2.3.7 for an extension of this
result.)

2.2 Complex Wigner matrices

In this section we describe the (minor) modifications neadleen one considers
the analog of Wigner's theorem for Hermitian matrices. Canepl with (2.1.2),
we will have complex-valued random variablgs. That is, start with two in-
dependent families of i.i.d. random variablgg j}1<i~; (complex-valued) and
{Yi}1<i (real-valued), zero mean, such t&Z?, = 0, E|Zy,|*> = 1 and, for all
integerk > 1,

M= max(E|zl,2|k, E|Y1|k) < . (2.2.1)
Consider the (Hermitiam)l x N matrix Xy with entries
I . Zi’j/\/N ifi<ij,
xN(Jv')—XN(HJ)—{ VIR i, (2.2.2)

We call such a matrix &lermitian Wigner matrixand if the random variable
andY; are Gaussian, we use the tefdaussian Hermitian Wigner matrixThe
case of Gaussian Hermitian Wigner matrices in wtﬁd’f =1 is of particular
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importance, and for reasons that will become clearer in @&y such matrices
(rescaled by/N) are referred to as Gaussian unitary ensemble (GUE) matrice

As before, leN denote the (real) eigenvaluesXf, with AN < AN < ... <
AL, and recall that the empirical distribution of the eigemesl is the probability
measure ot defined by

1 N
N = 6}\N .
N i; '

The following is the analog of Theorem 2.1.1.

Theorem 2.2.1 (Wigner)For a Hermitian Wigner matrix, the empirical measure
Ln converges weakly, in probability, to the semicircle disition.

As in Section 2.1.2, the proof of Theorem 2.2.1 is a directseguence of the
following two lemmas.

Lemma 2.2.2For any ke N,

lim m) = my.

N—oo
Lemma 2.2.3For any ke N ande > 0,

lim P(‘(LN,xk) - <EN,xk>] > s) ~0.

N—oo

Proof of Lemma 2.2.2We recall the machinery introduced in Section 2.1.3. Thus,
anN-wordw = (sy,...,5) defines a grapB, = (Vw, Ew) and a path on the graph.
For our purpose, it is convenient to keep track of the dioecin which edges are
traversed by the path. Thus, given an edge {s,s'}, with s < &, we define
Ne“* as the number of times the edge is traversed fsaos, and we seNe* =

Ny — N&** as the number of times it is traversed in the reverse dinectio

Recalling the equality (2.1.10), we now have instead of.(&)the equation
N __ Ne Ne
= Nk/z |'E|c E(Zys (Zi)" ee% E(Y;°). (2.2.3)
Wi

In particular,TN = 0 unIessNe' > 2 for alle € Ey,. Furthermore, sincEZf2 =0
one hasTiN =0if Ng' =2 andNe"™" # 1 for somee € Ey,.

A slight complication occurs since the function

- . Nt =
gw(NeT NG ) = E(Zy5 (ZiN )



2.2 COMPLEX WIGNER MATRICES 37

is not constant over equivalence classes of words (sinaegiingthe letters de-
terminingw may switch the role ole** andNg"~ in the above expression). Note
however that, for anw € %, one has

— W
|9w(Ng"",Ng )| < E(|Ze2]™).

On the other hand, any € % /2,1 satisfies thaG,, is a tree, with each edge
visited exactly twice by the path determinedwySince the latter path starts and
ends at the same vertex, one Ngs" = Ng*~ = 1 for eache € E,. Thus, repeating
the argument in Section 2.1.3, the finitenesgamplies that

lim (Ly,X<) = 0, if kis odd,

N—oo
while, fork even,
Jim (Ln,X) = [Hcizealgw(1.2). (2.2.4)

Sincegw(1,1) = 1, the proof is completed by applying (2.1.20). O
Proof of Lemma 2.2.3The proof is a rerun of the proof of Lemma 2.1.7, using
the functiongy(Ne'",Ns* "), defined in the course of proving Lemma 2.2.2. The

proof boils down to showing th&f/kf)+2 is empty, a fact that was established in
the course of proving Lemma 2.1.7. O

Exercise 2.2.40Ne consider in this exercidggermitian self-duamatrices, which
in the Gaussian case reduce to matrices from the Gaussigrlesstio ensemble
discussed in greater detail in Section 4.1. For arye C, set

a b
Map = ( b a ) € Matz(C).

Let {Zi(’l?}lgi<j,]_§k§4 and{Y; }1<i<n be independent zero mean real-valued ran-
dom variables of unit variance satisfying the conditiori(2). For 1<i < j <N,
seta j = (27 +i2%)/(2VN), bij = (2 +iZ])/(2VN), & = ¥/ VN, by, =

0, and writem; j =My ; b, ; for 1 <i < j <N. Finally, constructa Hermitian matrix
XN € j‘@(,f) from the 2-by-2 matricesy j by settingXn(i,j) =m j, 1<i<j<N.

(a) Let

0 1
J1:<_1 O)eMatz(R),

and letdy = diag(Js, .. .,J1) € Maton(R) be the block diagonal matrix with blocks
J1 on the diagonal. Check thi = JnXnJy*. This justifies the name “self-dual”.
(b) Verify that the eigenvalues ofy occur in pairs, and that Wigner's Theorem
continues to hold.
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2.3 Concentration for functionals of random matrices and lgarithmic
Sobolev inequalities

In this short section we digress slightly and prove thataterfiunctionals of ran-
dom matrices have the concentration property, namely, igth probability these
functionals are close to their mean value. A more complet&nent of concen-
tration inequalities and their application to random neasiis postponed to Sec-
tion 4.4. The results of this section will be useful in Sectib4, where they will
play an important role in the proof of Wigner's Theorem via @®tieltjes trans-
form.

2.3.1 Smoothness properties of linear functions of the engal measure

Let us recall that iX is a symmetric (Hermitian) matrix anidis a bounded mea-
surable functionf (X) is defined as the matrix with the same eigenvectors as
but with eigenvalues that are the imagefbgf those ofX; namely, ifeis an eigen-
vector ofX with eigenvaluel, Xe= Ae, f(X)e:= f(A)e. In terms of the spectral
decompositiorX = UDU* with U orthogonal (unitary) an® diagonal real, one
hasf(X) =U f(D)U* with f(D); = f(Dj). ForM € N, we denote by-,-) the
Euclidean scalar product d&™ (or CM), (x,y) = M xvi ((xy) = SM1xy5),
and by|| - || the associated nortjx||3 = (x,X).

General functions of independent random variables needmgéneral, satisfy
a concentration property. Things are different when thetions involved satisfy
certain regularity conditions. It is thus reassuring to tbext linear functionals of
the empirical measure, viewed as functions of the matrikestdo possess some
regularity properties.

Throughout this section, we denote the Lipschitz constéra functionG :
RM SR by

G(x)—G
Glym sup 1SR =6V
XA£ycRM HX_yHZ
and callG aLipschitz functionf |G| ¢ < «. The following lemma is an immediate
application of Lemma 2.1.19. In its statement, we iderflfwith R2.

Lemma 2.3.1Let g: RN — R be Lipschitz with Lipschitz constafg|.». Then,
with X denoting the Hermitian matrix with entriegiXj), the map

{X(i, D) h<i<jen = 9(A1(X), ..., An(X))

is a Lipschitz function oiRN’ with Lipschitz constant bounded b¥2|g|¢. In
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particular, if f is a Lipschitz function oiR,
{X(@0, ) hazicjen = tr(f(X))
is a Lipschitz function olRN(N+1 with Lipschitz constant bounded 2N | » .

2.3.2 Concentration inequalities for independent variasl satisfying
logarithmic Sobolev inequalities

We derive in this section concentration inequalities basedhe logarithmic
Sobolev inequality.

To begin with, recall that a probability meastitenR is said to satisfy théog-
arithmic Sobolev inequalitft SI) with constant if, for any differentiable function
finL2(P),

f2
/leogmdPg 20/|f’|2dP.

It is not hard to check, by induction, thatRf satisfy the LSI with constartand
if PM = @M PR denotes the product measurel, thenP™) satisfies the LS|
with constant in the sense that, for every differentiable functonRM,

F2
/leogmdP(W < 2c/||DF||§dP<M>, 2.3.1)

whereJF denotes the gradient &. (See Exercise 2.3.4 for hints.) We note that
if the law of a random variablX satisfies the LS| with constant then for any
fixed a # 0, the law ofaX satisfies the LS| with constant’c.

Before discussing consequences of the logarithmic Soliréepality, we quote
from [BoL0O] a general sufficient condition for it to hold.

Lemma 2.3.2LetV:RM — RUw satisfy that for some positive constant Gxy—
[x[|3/2C is convex. Then, the probability measwi@x) = Z-1e V) dx, where
Z = [eV¥dx, satisfies the logarithmic Sobolev inequality with cansC. In
particular, the standard Gaussian law d&V satisfies the logarithmic Sobolev
inequality with constant.

The lemma is also a consequence of the Bakry—Emery critese@a Theorem
4.4.18 in Section 4.4 for details.

The interest in the logarithmic Sobolev inequality, in tlatext of concentra-
tion inequalities, lies in the following argument, that amgoother things, shows
that LSI implies sub-Gaussian tails.
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Lemma 2.3.3 (Herbst)Assume that P satisfies the LSI BM with constant c.
Let G be a Lipschitz function dRM, with Lipschitz constantG| . Then for all
A eR,

Ep[e} (C-Er(0)] < g2?10/2, (2.3.2)
and so foralld >0

P(|G—Ep(G)| > &) < 2 0°/%ICl (2.3.3)

Note that part of the statement in Lemma 2.3.3 is By is finite.
Proof of Lemma 2.3.3Note first that (2.3.3) follows from (2.3.2). Indeed, by
Chebyshev’s inequality, for any > 0,

P(IG—EpG| >d8) < e oEple}lCFrC)

e—)\ 5(EP [e/\ (G—EpG)] + Ep[e—)\ (G—EpG)])
2~ 5ec\e@A 2/2.

IN A

Optimizing with respect ta (by takingA = 6/0|G|§Z) yields the bound (2.3.3).

Turning to the proof of (2.3.2), let us first assume t@ds a bounded differen-
tiable function such that

M
118G 3l := sup (3G(x))? < .

xeRM =
Define
A, = logEpe?? (C-ErC)
Then, taking® = ! (6-FrC) in (2.3.1), some algebra reveals that for> 0,
d (A 2
— (=2 ) <2c|||O -
g (3) = zliosig)
Now, becaus& — Ep(G) is centered,
A
Ay =0
and hence integrating with respectqgields

Ay < 2]|[|0G][3|A 2,

firstfor A > 0 and then for anyt € R by considering the functior G instead ofG.
This completes the proof of (2.3.2) in the case thét bounded and differentiable.

_ Let us now assume only th&is Lipschitz with|G| ¢ < . Fore > 0, define
Ge = GA(—1/¢g) vV (1/¢), and note thalGe|# < |G| < «. Consider the reg-
ularizationGg(X) = pe * Ge(X) = [ Ge(y) pe (X — y)dy with the Gaussian density
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pe(x) = e~ X*/2edx/ /(2me)™ such thatpe (x)dx converges weakly towards the
atomic measuréy ase converges to 0. Since, for amye RM,

|Ge (%) — Gs(¥)] < IGI,sf/IIYIIzps(y)dy: M|G|# Ve,

G¢ converges pointwise towards. Moreover,G; is Lipschitz, with Lipschitz
constant bounded bi5| « independently of. G; is also continuously differen-
tiable and

II0Ge[5l0 = sup sup{2(0Gg(x),u) — ||ul|3}
xeRM yeRM
< sup sup{25~Y(Ge(x+ 8u) — Ge(x)) — [|ull5}
u,xcRM >0
< sup{2G|g|lulla—||ull3} =G| . (2.3.4)
ueRM

Thus, we can apply (2.3.2) in the bounded differentiable ¢adind that for any
£>0andallA e R,

Ep[e’C¢] < AEPCe g 101%/2, (2.3.5)
Therefore, by Fatou's Lemma,
Ep[e/‘G] < giminfe_oA Epesemz\e@/; (2.3.6)

We next show that lim_.g EpG; = EpG, which, in conjunction with (2.3.6), will
conclude the proof. Indeed, (2.3.5) implies that

P(|Ge — EpGg| > &) < 26-5°/20l6% (2.3.7)
Consequently,

E[(Gs - EPGE)Z]

2/ XP(|Gs — EpGe| > X) dx
0
2

00 _ X
< 4/ xe 5% dx = 4c|G[2,, (2.3.8)
0

so that the sequen¢€; — EpG; >0 is uniformly integrable. Nows, converges
pointwise toward<s and therefore there exists a const&ntindependent o€,
such that fore < &, P(|G¢| < K) > 3. On the other hand, (2.3.7) implies that
P(|Ge —EpG¢| <) > % for somer independent of. Thus,

is not empty, providing a uniform bound q&EpGe)e<¢,. We thus deduce from
(2.3.8) that sup. EpG§ is finite, and hencé€Ge )<<, is uniformly integrable. In
particular,

lim EpGe = EpG < o,
£—0
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which finishes the proof. O

Exercise 2.3.4From [Led01], page 98.)
(a) Let f > 0 be a measurable function and setdh) = [ flog(f/Epf)dP.
Prove that
Ente(f) =sup{Epfg: Epe? < 1}.

(b) Use induction and the above representation to provel(2.3

2.3.3 Concentration for Wigner-type matrices

We consider in this section (symmetric) matricgg with independent (and not
necessarily identically distributed) entri@sn (i, j) }1<i<j<n. The following is an
immediate corollary of Lemmas 2.3.1 and 2.3.3.

Theorem 2.3.5Suppose that the laws of the independent entries
{Xn(i, ]) }1<i<j<n all satisfy the LSI with constant/dl. Then, for any Lipschitz
function f onR, for anyd > 0,

1 252
P(Jtr(f(Xn) — E[tr(f (Xn)]| > SN) < 2e wig (2.3.9)
Further, for any ke {1,...,N},
1 52
P(f (X)) — EF(u(Xn))] > 8) < 2e ®1% (2:3.10)

We note that under the assumptions of Theorem 2BXy(Xy) is uniformly
bounded, see Exercise 2.1.29 or Exercise 2.1.30. In thesizawsase, more in-
formation is available, see the bibliographical notes {i8a.7).

Proof of Theorem 2.3.5To see (2.3.9), take
G(Xn(i,),1<i<j<N)=tr(f(Xn))-

By Lemma 2.3.1, we see thatffis Lipschitz,G is also Lipschitz with constant
bounded byw/2N|f|» and hence Lemma 2.3.3 with = N(N + 1)/2 yields the
result. To see (2.3.10), apply the same argument to theifumct

GOXn(i, (), 1 <1 < j<N) = F(A(Xn))-

O

Remark 2.3.6The assumption of Theorem 2.3.5 is satisfied for Gaussianaaat
whose entries on or above the diagonal are independentyaiitnce bounded
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by ¢/N. In particular, the assumptions hold for Gaussian Wignetrioes. We
emphasize that Theorem 2.3.5 applies also when the varidnGgi, j) depends
oni, j, e.g. wherXn(i, j) =an(i, j)Yn (i, j) with n(i, j) i.i.d. with law P satisfying
the log-Sobolev inequality arali, j) uniformly bounded (since iP satisfies the
log-Sobolev inequality with constant the law ofax underP satisfies it also with
a constant bounded kafc).

Exercise 2.3.71From [AnZ05]) Using Exercise 2.1.35, prove thak{ is a Gaus-
sian Wigner matrix and : R — R is aC} function, thenN[(f,Ln) — (f,Ln)]
satisfies a central limit theorem.

2.4 Stieltjes transforms and recursions

We begin by recalling some classical results concerninthedtjes transform of
a probability measure.

Definition 2.4.1Let u be a positive, finite measure on the real line. Btieltjes
transformof u is the function

Su(2) ::/Rﬁi(f);),ze(C\R.

Note that forze C\ R, both the real and imaginary parts of(X— z) are continu-
ous bounded functions ofe R and, further|S,(z)| < u(R)/|0z|. These crucial
observations are used repeatedly in what follows.

Remark 2.4.2The generating functioﬁ(z), see (2.1.6), is closely related to the
Stieltjes transform of the semicircle distribution for |z| < 1/4,

B = 32 [@omdx= [T (29)) od
B(2) kZO /x o(x)dx /<z(z)>o(x)x

K=0
1
= /—1_2)(20(x)dx

- /1_1ﬁxa(x)dx= ‘7150(1/\/2),

where the third equality uses the fact that the suppodat &f the interval—2, 2],
and the fourth uses the symmetryaf

Stieltjes transforms can be inverted. In particular, ore ha
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Theorem 2.4.3For any open interval | with neither endpoint on an atonuof

uly = IimE/IS“()\Hg)__S“(/\_ig)d/\

e—0TT 2i
1 .
= :!:ILno;_T |DS“()\ +ig)dA. (2.4.1)

Proof Note first that because

18u(0) = [ M9,

we have thatS, = 0 impliesu = 0. So assume next th&, does not vanish
identically. Then, since

lim yOS, (iy) = lim | —
JmYIS W) =, [ eyt

(dX) = H(R)

by bounded convergence, we may and will assumepti&) = 1, i.e. thatu is a
probability measure.

Let X be distributed according tp, and denote b, a random variable, inde-
pendent oiX, Cauchy distributed with parameteri.e. the law ofC; has density

gdx
—. 2.4.2
(X2 + £2) ( )
Then,OS, (A +i€)/mis nothing but the density (with respect to Lebesgue mea-
sure) of the law o 4 C;¢ evaluated ah € R. The convergence in (2.4.1) is then
just a rewriting of the weak convergence of the law)of- C; to that of X, as
e—0. |

Theorem 2.4.3 allows for the reconstruction of a measurm fits Stieltjes
transform. Further, one has the following.

Theorem 2.4.4Let u, € M1(R) be a sequence of probability measures.

(a) If un converges weakly to a probability measyreghen $,,(z) converges to
Su(2) for each ze C\ R.

(b) If S4,(2) converges for eache C\ R to a limit §z), then $2) is the Stieltjes
transform of a sub-probability measuge and 1, converges vaguely tp.

(c) If the probability measureg, are random and, for eache C\ R, S,,(2)
converges in probability to a deterministic limitZ that is the Stieltjes transform
of a probability measurgt, thenp, converges weakly in probability {o.

(We recall thatu, converges vaguely u if, for any continuous functiorf onRR
that decays to 0 at infinityf fdu, — [ fdu. Recall also that a positive measure
u onRR is asub-probability measuré it satisfiesy(R) < 1.)
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Proof Part (a) is a restatement of the notion of weak convergencese& part
(b), letn, be a subsequence on whigh, converges vaguely (to a sub-probability
measureu). (Such a subsequence always exists by Helly’'s Theoremchuge
Xx+— 1/(z—x), for ze C\R, is continuous and decays to zero at infinity, one
obtains the convergen&, (z) — Su(z) pointwise for sucte. From the hypoth-
esis, it follows thatS(z) = S;(z). Applying Theorem 2.4.3, we conclude that all
vaguely convergent subsequences converge to the garaed henceu, — u
vaguely.

To see part (c), fix a sequenge— 7z in C\ R with z # z, and define, for
v1,V2 € M1(R), p(v1,v2) = 3127'S,,(z) — Sy, (z)|. Note thatp(vn,v) — 0 im-
plies thatv, converges weakly to. Indeed, moving to a subsequence if neces-
sary,v, converges vaguely to some sub-probability meadusnd thusS,,(z) —
Sy(z) for eachi. On the other hand, the uniform (im) boundedness @&,,(z)
andp(vn,v) — 0 imply thatS,,(z) — S,(z). Thus,S,(2) = Sy(2) for all z= 7
and hence, for alt € C\ R since the sefz} possesses an accumulation point and
Sy, Sy are analytic. By the inversion formula (2.4.1), it followsatv = 6 and in
particular@ is a probability measure ang, converges weakly t@ = v. From
the assumption of part (c) we have tiggiun, 1) — 0, in probability, and thugi,
converges weakly tpr in probability, as claimed. O

For a matrixX, defineSx (z) := (X —zl)~1. TakingA = X in the matrix inver-
sion lemma (Lemma A.1), one gets

Sx(2) =z 1(XSx(2) 1), zeC\R. (2.4.3)

Note that withLy denoting the empirical measure of the eigenvalue§of

S(2) = S22 = (EUS, ().

2.4.1 Gaussian Wigner matrices
We consider in this section the case wh@pis a Gaussian Wigner matrix, pro-
viding
Proof #2 of Theorem 2.1.1(Xy a Gaussian Wigner matrix).

Recall first the following identity, characterizing the Gaian distribution, which
is proved by integration by parts.

Lemma 2.4.5If { is a zero mean Gaussian random variable, then for f differen-
tiable, with polynomial growth of f and f

E({f(0)) =E(F'(0))E(L?).
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Define next the matri)!&i,\’,k as the symmetribl x N matrix satisfying

K _ 1, (Ivk):(Jal)Or(lak):(laj)a
ANk(J’l)_{ 0, otherwise

Then, withX anN x N symmetric matrix,

d B ik
WS}( (Z) = S)( (Z)AN S)( (Z) . (244)
Using now (2.4.3) in the first equality and Lemma 2.4.5 and.@.(conditioning
on all entries oXy but one) in the second, one concludes that

1 1 11
N EtrSx, (Z) = 3 + N E (trXN Sxy (Z))
1 1

- E (g[sm (2)(1,1)Swy (2)(k,K) + S <z><i7k>2]>

LS (B -2)ESq @00

= —% — %EKLN, (X— z)_l>2] _ %I“:N’ (X— Z)_2>
_ﬁ > (BY?*—2)ESx (2)(i,i)?) - (2.4.5)

Since(x—2)~! is a Lipschitz function for any fixed € C\ R, it follows from
Theorem 2.3.5 and Remark 2.3.6 that

[E[{Ln, (x=2)71)%] = (Ln, (x=2) )?| =N—w O.
This, and the boundedness g¢f(2— x)? for a fixedzas above, imply the existence
of a sequencen(z) —n_« 0 such that, letting(z) := N~1EtrSx, (z), one has
— 1 1-—
Su(@) =~ “Su(@* +en(d).

Thus any limit points(z) of Sy(2) satisfies
S(z)(z+s(2))+1=0. (2.4.6)

Further, letC, = {ze C: Oz > 0}. Then, forze C_, by its definition,s(z) must
have a nonnegative imaginary part, while for C\ (RUC.), s(z) must have a
nonpositive imaginary part. Hence, for ake C, with the choice of the branch of
the square-root dictated by the last remark,

S(2) = —% [z— 2 —4} . (2.4.7)
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Comparing with (2.1.6) and using Remark 2.4.2, one dedbegs(k) is the Stielt-
jes transform of the semicircle lamy, sinces(z) coincides with the latter fdg| > 2
and hence for alt € C\ R by analyticity. Applying again Theorem 2.3.5 and Re-
mark 2.3.6, it follows thatS (z) converges in probability t@(z), solution of
(2.4.7), for allze C\ R. The proof is completed by using part (c) of Theorem
2.4.4. O

2.4.2 General Wigner matrices
We consider in this section the case wh&nis a Wigner matrix. We give now:

Proof #3 of Theorem 2.1.1(Xy a Wigner matrix).
We begin again with a general fact valid for arbitrary synmicahatrices.

Lemma 2.4.6LetW ¢ j‘f,\fl) be a symmetric matrix, and let wenote the ith col-
umn of W with the entry \W,i) removed (i.e., wis an N— 1-dimensional vector).
Let W) € 74"} denote the matrix obtained by erasing the ith column and row
from W. Then, for everye C\ R,

1

(W —zI)~Yii) = WO 2 WWT 2 1w (2.4.8)

Proof of Lemma 2.4.6Note first that from Cramer’s rule,

1 det(W('> —Z|N_1)
— 1 e e —
(W —zly) (i, i) detW —21) (2.4.9)
Write next
W(N) —2ZIn—1 WN
wozh= (MU )

and use the matrix identity (A.1) with = W®™ —zly_;, B=wy, C = w], and
D =W(N,N) — zto conclude that
detW —zly) =
detw®™ —ziy_1) det[W(N, N) —z—wg (WM — zIN_l)’lWN} .
The last formula holds in the same manner i), w; andW(i,i) replacing

W) wy andW(N, N) respectively. Substituting in (2.4.9) completes the pafof
Lemma 2.4.6. O

We are now ready to return to the proof of Theorem 2.1.1. Repgthe trunca-
tion argument used in the proof of Theorem 2.1.21, we may atidagsume in
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the sequel thaXn (i, i) = O for alli and that for some consta@itindependent oR,

it holds thatlv/NX(i, j)| < Cforalli, j. Defineay(i) = Xn(i, k), i.e. a is thekth
column of the matriXXy. Let ax denote theN — 1 dimensional vector obtained
from ay by erasing the entrg, (k) = 0. Denote by)(,§k> € %ﬂ,\fl) the matrix con-
sisting of Xy with the kth row and column removed. By Lemma 2.4.6, one gets
that

1
—trSxy (20 =
N- N 21—2 a (% —zIN 1) ta
1
- - 2.4.10
z+N-1rSy (2) N, ( )
where
&) = = S N (2.4.11)
N Z\ —z— N~ lterN( )+£i’N)(—Z—N_1U‘SxN(Z))’ o
and
gin = N"1trSy, (2) — T (X — zy_1) Lo (2.4.12)

Our next goal is to prove the convergence in probabilitydqfz) to zero for
each fixedz € C\ R with |0z = & > 0. Toward this end, note that the term
—z—N7trSy,(2)) in the right side of (2.4.11) has modulus at ledgt since
|0zl = & and all eigenvalues ofy are real. Thus, if we prove the convergence
of sup_y |& n| to zero in probability, it will follow thatdy (z) converges to 0 in

probability. Toward this end, I@E,S) denote the matrixy with theith column

and row set to zero. Then, the eigenvalues?&;pf andX,S) coincide except that
)?,S) has one more zero eigenvalue. Hence,

1
%N’
whereas, with the eigenvalues)f}f,i> denoted)\fi> < )\z(i> << )\,EP, and those
of Xy denoted\ N < AN < ... < AN, one has

1/2
1 N 1 (1N
= —A < |A — AP
NZ 52< kz

1 (21X Y2
; 2
< 5—5<Nkzlxm(l,k)> :

where Lemma 2.1.19 was used in the last inequality. Sjg@éXy(i,j)| < C,
we get that sqm*l|trsxn)(z) —1rSxy (2)| converges to zero (deterministically).

1
NS0 (@ -uS 0 ()] <

IA

1
IS0 (@~ S, (2)
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Combining the above, it follows that to prove the convergeoicsup_y |& n| to
zero in probability, it is enough to prove the convergenc® ia probability of
Sup<y |&iN|, where

&N = aiTB(i>(z)ai — %trBf\P (2)

N-1 No1 _

-5 ([VRa] 1) el @i+ T a®apl@kK)
KK =T kk!

= &an(D)+an(2), (2.4.13)

whereB&)(z) = (X,S) —zIy_1)71. Noting thata; is independent oBF\i,) (2), and
possesses zero mean independent entries of varighefe observes by condi-
tioning on the sigma-field#; ny generated b)X,E,') thatEg y = 0. Further, since

N*ltr(B,ﬂ)( 2) ) < %,

and the random variablés/Na; (k)| are uniformly bounded, it follows that

—_ C1
Elan(D]* < -
for some constart; that depends only o& andC. Similarly, one checks that
—_ C2
Elanl* < 5.

for some constart, depending only o€, &. One obtains then, by Chebyshev’s
inequality, the claimed convergence of syp|&i n(2)| to O in probability.

The rest of the argument is similar to what has already be@e @ Section
2.4.1, and is omitted. O

Remark 2.4.7We note that reconstruction and continuity results thastmenger
than those contained in Theorems 2.4.3 and 2.4.4 are alail#n accessible
introduction to these and their use in RMT can be found in9BhiFor example,
in Theorem 2.4.3, ift possesses a Holder continuous densityen, forA € R,

Su(A-+10) =M S, (A +¢) = imm() +PV/ H(dx) dx (2.4.14)

exists, where the notation P.V. stands for “principal valddso, in the context of
Theorem 2.4.4, if the: andv are probability measures supported[eiB, B, a, y
are constants satisfying

1 1 1

u> =,
T Jju<a U2+1 2
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andA is a constant satisfying

4B
K:

“mA-By-D - Y

then for any > 0,

m(1—k)(2y—1) sup[u([-B,X) - v([-B,X]) <

Ix<B

[/_ilsu(U+iV)—Su(u+iv)|du (2.4.15)

1

#supf  p(-Bx+y) — p(-B.)lay].
x J|y|<2va

In the context of random matrices, equation (2.4.15) iswl$efobtaining the rate

of convergence dfy to its limit, but we will not discuss this issue here at all.

Exercise 2.4.8.etY(N) be a sequence of matrices as in Exercise 2.1.18. By writ-
ing Wy = YnYy = Zi'v':(lN) yiy! for appropriate vectorg, and again using Lemma
A.1, provide a proof of points (d) and (e) of Exercise 2.1.B8d1 on Stieltjes
transforms, showing that~trSy, (2) converges to the solution of the equation
mz) = ~1/(z—a/(1+m(2)).

Hint: use the equality

In+ (2= %) (Wh — zIn) ~F = (Why — XIn) (W — zIn) 2, (2.4.16)
and then use the equality

1

T T\-1 Tp-1

T (B4 yy L =

yi (B+yiyi) 1yB Ty, yiB™,

with the matricesB; = Wy — zI — yiy/, to show that the normalized trace of the
right side of (2.4.16) converges to 0.

2.5 Joint distribution of eigenvalues in the GOE and the GUE

We are going to calculate the joint distribution of eigemes of a random sym-
metric or Hermitian matrix under a special type of probapliw which displays
a high degree of symmetry but still makes on-or-above-diagentries indepen-
dent so that the theory of Wigner matrices applies.
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2.5.1 Definition and preliminary discussion of the GOE andgtGUE

Let {&,j,ni,j}i"j—, be an i.i.d. family of real mean 0 variance 1 Gaussian random
variables. We define

SN

to be the laws of the random matrices

V2811 &ip é13 .
&2 V2&o &3 Eﬁfff )7---,

é13 &3 V2&33

V2811 &2 1)
&2 V2& } €A

respectively. We define

2 2
SR

to be the laws of the random matrices

) 3 §1o+im2  §13+iNis
11 S12+in2 o | 1 V2 e V2 @
) V2 2 12—1M12 2311123 2
Go-imz g €A, 73 52?2 7 S A
V2 2.2 §13-in3  §23-iN23 3
V2 V2 33

respectively. A random matriX € j‘f,\fﬁ) with law P,E,B) is said to belong to the
Gaussian orthogonal ensemble (GGOd)the Gaussian unitary ensemble (GUE)
according a3 = 1 or B = 2, respectively. (We often write GOR}J and GUE)
when an emphasis on the dimension is needed.) The theorygifaVmatrices
developed in previous sections of this book applies hergahticular, for fixed
B, given for eactN a random matrixX(N) € ,%”N(B) with law P, the empirical
distribution of the eigenvalues & := X(N)/+/N tends to the semicircle law of
mean 0 and variance 1.

So what'’s special about the Idﬂzﬁ) within the class of laws of Wigner matri-
ces? The IaV\P,E,B) is highly symmetrical. To explain the symmetry, as well as
to explain the presence of the terms “orthogonal” and “umitan our terminol-
ogy, let us calculate the density lqiﬁ) with respect to Lebesgue measﬂk@ on
%”N(B). To fix Ef\,’g) unambiguously (rather than just up to a positive constasit fa
tor) we use the following procedure. In the cg&e- 1, consider the one-to-one
onto mapping/4\? — RN(N+1)/2 defined by taking on-or-above-diagonal entries
as coordinates, and normaliﬁhl) by requiring it to push forward to Lebesgue
measure ofRNN+D/2 - Similarly, in the casg8 = 2, consider the one-to-one
onto mapping4\?’ — RN x CN(N-1/2 — RN’ defined by taking on-or-above-
diagonal entries as coordinates, and normdﬁ?eby requiring it to push forward
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to Lebesgue measure T LetH; j denote the entry dfl € j‘f,\fﬁ) inrowi and
columnj. Note that

N
trHZ:trHH*:Zlei—i—Z S IHl”
i= 1<i<]<N

It is a straightforward matter now to verify that

27 N2(2m) NNt/ 4exp—trH?/4) if B=1,
5y (H) = i (2.5.1)
déy 2 N2 N /2exn(—trH2/2) if B = 2.

arP

The latter formula clarifies the symmetry IQ@B). The main thing to notice is that
the density aH depends only on the eigenvalueshbf It follows that if X is a
random element oﬁf,\fl) with law P,Sl), then for anyN x N orthogonal matrixJ,
againUXU* has IawP,E,l); and similarly, ifX is a random element in”N(a with
law P,SZ), then for anyN x N unitary matrixU, againUXU* has IawP,E,Z). As

we already observed, for randoxne %”N(B) it makes sense to talk about the joint
distribution of the eigenvaluel (X) < --- < An(X).

Definition 2.5.1Letx = (xg,...,%y) € CN. TheVandermonde determinaasso-
ciated withx is

A(x) = det{x }j_1) = [0 %) (2.5.2)

<]

(For an easy verification of the second equality in (2.5.@jethat the determinant
is a polynomial that must vanish when= x; for any pairi # j.)

The main result in this section is the following.

Theorem 2.5.2 (Joint distribution of eigenvalues: GOE and ®E) Let X €
%”N(B) be random with law ,G””, B =1,2. The joint distribution of the eigenvalues
A1(X) < -+ < An(X) has density with respect to Lebesgue measure which equals

~p) N e
NICY Ly <oy [A(X) P rle—ﬁﬁ /4 (2.5.3)

where

-1
00 00 N

NGB = N (/ / |A(x)|5rle‘ﬁxi2/4d>q>
—o0 — i—

_ N2 E BN(N-1)/4+N/2 N r(B/2)
20 2(5) [Fierm)

(2.5.4)
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Here, for any positive rea
r(s) = /0 “ % ledx (2.5.5)
is Euler'sGamma function
Remark 2.5.3We refer to the probability measu@,(f) onRN with density

a7
dLeby

N
=P |ax)|P r!e—ﬁﬂ-z/“, (2.5.6)
=
where Lely is the Lebesgue measure B andc—ﬁ is givenin (2.5.4), as thiaw
of the unordered eigenvaluesthe GOEN) (whenf = 1) or GUEN) (whenf =
2). The special cas® = 4 corresponds to the GSE) (see Section 4.1 for details
on the explicit construction of random matrices whose eigkres are distributed
according to@,(ﬁ).

The distributions@,&ﬁ) for B > 1, B # 1,2,4 also appear as the law of the
unordered eigenvalues of certain random matrices, althouity a very different
structure, see Section 4.5.

A consequence of Theorem 2.5.2 is that a.s., the eigenvafube GOE and
GUE are all distinct. Lev,,...,vy denote the eigenvectors corresponding to the
eigenvaluegAl, ..., Al) of a matrixX from GOE(N) or GUEN), with their first
nonzero entry positive real. Recall thafN) (the group of orthogonal matrices)
andU (N) (the group of unitary matrices) admit a unique Haar prolitghiieasure
(see Theorem F.13). The invariance of the lawXofinder arbitrary orthogonal
(unitary) transformations implies then the following.

Corollary 2.5.4 The collectionvy,...,wn) is independent of the eigenvalues
(AN,...,A). Each of the eigenvectors,v.., vy is distributed uniformly on
= {x=(xe,....%n) : % € R, [X|[2= 1, > O}
(for the GOE), or on
S ={x=0,....xn) :xa €R,x € Cfori >2,|[x|]2=1,% > 0}

(for the GUE). Further(vy,...,v) is distributed like a sample of Haar measure
on Q(N) (for the GOE) or UN) (for the GUE), with each column multiplied by a
norm one scalar so that the columns all belong ib5(for the GOE) and §*
(for the GUE).

Proof Write X =UDU*. SinceT XT* possesses the same eigenvaluex asd
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is distributed likeX for any orthogonal (in the GOE case) or unitary (in the GUE
case)T independent oK, and since choosing uniformly according to Haar
measure and independentlfmakesTU Haar distributed and hence of law in-
dependent of that df, the independence of the eigenvectors and the eigenvalues
follows. All other statements are immediate consequenicissoand the fact that
each column of a Haar distributed orthogonal (resp., wjitaatrix is distributed,
after multiplication by a scalar that makes its first entgf @nd nonnegative, uni-
formly on S~ (resp.S¥ ). O

2.5.2 Proof of the joint distribution of eigenvalues

We present in this section a proof of Theorem 2.5.2 that hasattvantage of
being direct, elementary, and not requiring much in termsavhputations. On
the other hand, this proof is not enough to provide one wighetvaluation of the
normalization constar@—ﬁ in (2.5.4). The evaluation of the latter is postponed to
subsection 2.5.3, where tiselberg integral formulé derived. Another approach
to evaluating the normalization constants, in the case®fabE, is provided in
Section 3.2.1.

The idea behind the proof of Theorem 2.5.2 is as follows. &ke %”N(B),
there exists a decompositioh=UDU*, with eigenvalue matrio € 2y, where
2N denotes diagonal matrices with real entries, and with egeor matrixJ €
%REB), whereﬁZ/,\EB) denotes the collection of orthogonal matrices (wliiea: 1)
or unitary matrices (whep = 2). Suppose this map were a bijection (which it
is not, at least at the matriceswithout distinct eigenvalues) and that one could
parametrize?/,jﬁ) using BN(N — 1) /2 parameters in a smooth way (which one
cannot). An easy computation shows that the Jacobian ofr#msformation
would then be a polynomial in the eigenvalues with coeffisehat are func-
tions of the parametrization @tf,\ﬁm, of degregBN(N — 1)/2. Since the bijection
must break down wheDjj = Djj for somei # j, the Jacobian must vanish on
that set; symmetry and degree considerations then showhhatacobian must
be proportional to the factdx(x)B. Integrating over the parametrization@ﬁﬁ )
then yields (2.5.3).

In order to make the above construction work, we need to tlaway subsets
of jf,\fﬁ) that fortunately turn out to have zero Lebesgue measure.afbthis
end, we say thdll € 42/,\5’3) is normalizedif every diagonal entry ob is strictly
positive real. We say that € 42/,\5’3) is goodif it is normalized and every entry of

U is nonzero. The collection of good matrices is den@‘@ﬁ)’g. We also say that
D € 2y is distinctif its entries are all distinct, denoting bﬁ],‘j the collection of
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distinct matrices, and b@,‘\’,o the subset of matrices with decreasing entries, that
is 78°={D € 2 :Dij >Dij1is1}

Let #4\P)%% denote the subset o#(B) consisting of those matrices that possess

a decompositiorX = UDU* whereD € 2 andU ¢ %,\(,B)’g. The first step is
contained in the following lemma.

Lemma 2.5.5<%ﬂN<B) \jf,\fﬁ)’dg has null Lebesgue measure. Further, the map
(28, %P9 — 7P 99 given by(D,U) — UDU* is one-to-one and onto, while
(28,24P"9) — P19 given by the same map idb-one.

Proof of Lemma 2.5.5In order to prove the first part of the lemma, we note
that for any nonvanishing polynomial functignof the entries ofX, the set{X :
p(X) = 0} is closed and has zero Lebesgue measure (this fact can Heedhmc
applying Fubini’s Theorem). So it is enough to exhibit a remghing polynomial

p with p(X) =0 if X € j‘fN(ﬁ) \j‘fN(ﬁ)'dg. Toward this end, we will show that
for such X, eitherX has some multiple eigenvalue, or, for soigeX and the
matrix XX obtained by erasing theh row and column oKX possess a common
eigenvalue.

Given anyn by n matrixH, fori,j =1,...,nlet H(:) be then—1 byn—1
matrix obtained by deleting thi¢h column andijth row of H, and writeH ¥ for
H &K We begin by proving that iK = UDU* with D € 23, andX andX® do
not have eigenvalues in common for aay: 1,2,....N, then all entries ob) are
nonzero. Indeed, let be an eigenvalue of, setA= X —Al, and defined as the
N by N matrix with 3?1 = (—1)"*idetAl-))). Using the identityAA2d = det A)l,
one concludes tha&A?% = 0. Since the eigenvalues ¥f are assumed distinct,
the null space ofA has dimension 1, and hence all columnsA3f! are scalar
multiple of some vectov, , which is then an eigenvector fcorresponding to the
eigenvalue. Sincev, (i) = AHdJ = det XM — Al) # 0 by assumption, it follows
that all entries ofvy are nonzero. But each column ©f is a nonzero scalar
multiple of somev, , leading to the conclusion that all entrieslbfo not vanish.

We recall, see Appendix A.4, that the resultant of the chargstic polynomials
of X andX®, which can be written as a polynomial in the entrieXcdnd X,
and hence as a polynomRlin the entries oK, vanishes if and only K andX ¥
have a common eigenvalue. Further, the discriminadt,afhich is a polynomial
P, in the entries oK, vanishes if and only if not all eigenvaluesXfare distinct.
Taking p(X) = Pi(X)P,(X), one obtains a nonzero polynomfakith p(X) =0
if X e j‘fN(B) \jf,\fﬁ)’dg. This completes the proof of the first part of Lemma 2.5.5.

The second part of the lemma is immediate since the eigeagpauesponding
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to each eigenvalue is of dimension 1, the eigenvectors ard iy the normaliza-
tion condition, and the multiplicity arises from the podsipermutations of the
order of the eigenvalues. O

Next, we say thdtl € @/,\(,B)’g is very goodf all minors of U have nonvanishing
determinant. Le¢t7/N(/3)"’g denote the collection of very good matrices. The interest
in such matrices is that they possess a particularly nicanpairization.

Lemma 2.5.6The map T: %9 — RAN(N-1/2 defined by
) U U U Un—
T(U) = < 1,2 1N U2z 2.N N—1N )

—,...7 Pl gy gy
Ui U1 Uz2 Uz UN-1N-1

(2.5.7)

(whereC is identified withR? in the casg8 = 2) is one-to-one with smooth inverse.
C
Further, the se(T(%,\SB)’Vg)) is closed and has zero Lebesgue measure.

Proof of Lemma 2.5.6We begin with the first part. The proof is by an inductive
construction. Clearl); 7 = 1+ 3N ,|Uyj[?/|U11/%. So suppose thad; ; are
given for 1<i<igand 1< j <N. Lety; = (U 1,...,Uij,), i=1,...,ic. One
then solves the equation

Uig+zi \*
Utigr1+ ZiN=i0+2U1.i( ot 1, )

V1 Uig+1,ip+1

Us - N Us - Uig+2i \*
Vo s 2jig+1 T+ Dizig+2Y2i Uyg1igi1
Vig

' U . *
Uigio#1+ 5ig-2Uini (g %)

Uig+1ig+1

The very good condition od ensures that the vectdris uniquely determined by
this equation, and one then sets

2 LI Ui |2
_ otl
Ugtaigia =1+ 3 P+ 5 et

i=lg+2 Uio+1,io+l

and
Ui0+1,j = ZTUioJrl,ioJrlv for 1 S J S iO .

(All entriesUj, 11 j with j > ig+ 1 are then determined By(U ).) This completes
the proof of the first part.

To see the second part, Iéﬁ;\ﬁﬁ ) be the space of matrices whose columns are
orthogonal, whose diagonal entries all equal to 1, and atodse minors have
nonvanishing determinants. Define the actiom ain f‘f,f,B) using (2.5.7). Then,
T(%,jm’vg) = T(Ff,f,B)). Applying the previous constructions, one immediately
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obtains a polynomial type condition for a point#N(N-1/2 to not belong to the
setT(&WN(B)). O

Let 74 P¥9 denote the subset of4?% consisting of those matrices that
can be written aX = UDU* with D € 28 andU € %",

Lemma 2.5.7The Lebesgue measure.sf."\ 74PV is zero.

Proof of Lemma 2.5.7We identify a subset o, **% which we will prove to
be of full Lebesgue measure. We say that a mddrix 9,‘3 is strongly distinctf
for any integer =1,2,...,N—1 and subsets J of {1,2,... N},

|:{|1<<|r}, \]:{]1<<]r}

with | # J, it holds that[];, Di # [TicyDii. We consider the subse#; %
of %”N(B)’Vg consisting of those matriceé = UDU* with D strongly distinct and
Uec %(ﬁ)Vg

N

Given a positive integarand subsetk, J as above, put
r r
(AX)a = det X iv,

thus defining a square matriy’ X with rows and columns indexed lwyelement
subsets of 1,...,n}. If we replace each entry of by its complex conjugate, we
replace each entry gf" X by its complex conjugate. If we replageby its trans-
pose, we replacf’ X by its transpose. Given anothéiby N matrixY with com-
plex entries, by the Cauchy—Binet Theorem A.2 we haUeXY) = (A" X)(A"Y).
Thus, ifU € %,\EB) then\"U € %(}NB) wherecy = N!/(N —r)!r!l. We thus obtain
that if X = UDU* then/A" X can be decomposed ASX = (A"U)(A"D)(A"U*).

In particular, ifD is not strongly distinct then, for some/\" X does not possess all
eigenvalues distinct. Similarly, B is strongly distinct but) ¢ 74?9, then some
entry of A"U vanishes. Repeating the argument presented in the proloé dif st
part of Lemma 2.5.5, we conclude that the Lebesgue measur€0OF\ s4\F)=%
vanishes. This completes the proof of the lemma. O

We are now ready to provide the

Proof of (2.5.3)Recall the mapl introduced in Lemma 2.5.6, and define the
mapT : T(%P9) x RN — £ P) by setting, forA € RN andze T(2P9),

D € 9y with Dij = Aj andT(zA) = T-%(2DT(2)*. By Lemma 2.5.6] is
smooth, whereas by Lemma 2.5.5, iN&to-1 on a set of full Lebesgue measure
and is locally one-to-one on a set of full Lebesgue measuettingJT denote the
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Jacobian off, we note thaﬂ'f(z,)\) is a homogeneous polynomial Anof degree
(at most)BN(N — 1) /2, with coefficients that are functions b{since derivatives
of T(z A) with respect to the\ -variables do not depend on while derivatives
with respect to the variables are linear in). Note next thaf fails to be locally
one-to-one whei; = Aj for somei # j. In particular, it follows by the implicit
function theorem thalT vanishes at such points. Hen2g) ) = Mi<j(Aj —Ai)
is a factor ofJT. In fact, we have that

A(M)Pis a factor ofJT . (2.5.8)

We postpone the proof of (2.5.8) in the cg®e- 2. SinceA(A) is a polynomial
of degreeN(N — 1) /2, it follows from (2.5.8) thad T (z,A ) = g(2)A(A )P for some
(continuous, hence measurable) functipnBy Lemma 2.5.7, we conclude that
for any functionf that depends only on the eigenvalueXoft holds that

N!/f(H)dP,E,B) :/|g(z)|dz/f()\)|A()\)|Bl|E!Le/“iz/“d)\i.

Up to the normalization constatf |g(z)|dz)/N!, this is (2.5.3).

It only remains to complete the proof of (2.5.8) in the cfse 2. Writing for
brevity W = T~1(z), we haveT = WDW*, andW*W = |. Using the notation
dT for the matrix of differentials off , we havedT = (dW)DW* +W(dD)W* +
WD(dW*). Using the relatiord(W*W) = (dW*)W +W*(dW) = 0, we deduce
that

W*(dT)W = W*(dW)D — DW* (dW) + (dD).

Therefore, wherdj = A;j for somei # j, acomplexentry (above the diagonal) of
W*(dT)W vanishes. This implies that, whén= A;, there exist two linear (real)
relations between the on-and-above diagonal entried pfvhich implies in turn
that(Aj — Aj)? must divideJT. 0

2.5.3 Selberg’s integral formula and proof of (2.5.4)

To complete the description of the joint distribution of eigalues of the GOE,
GUE and GSE, we derive in this section an expression for thealization con-
stantin (2.5.4). The value of the normalization constamisdwt play a role in the
rest of this book, except for Section 2.6.2.

We begin by stating Selberg’s integral formula. We then diesdn Corol-
lary 2.5.9 a couple of limiting cases of Selberg’s formuldeTevaluation of the
normalization constant in (2.5.4) is immediate from Canoll2.5.9. Recall, see
Definition 2.5.1, that\(x) denotes the Vandermonde determinant.of
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Theorem 2.5.8 (Selberg’s integral formula)~or all positive numbers a, b and ¢
we have

AT e

"I (a+ je)r(b+jo)r ((j+1)c)
F@a+b+(n+j—1)c)r(c)
(2.5.9)

J:

Corollary 2.5.9 For all positive numbers a and ¢ we have

TS @+ ic)r((j+1c)

/ /IA |2°|'|>qa teXdx = |‘L 0 ., (2.5.10)

and

"T((j+1)c)
|2c e >9/2d>q (2 7-[)”/2 N T (2.5.11)
a =g

Remark 2.5.10The identities in Theorem 2.5.8 and Corollary 2.5.9 holdernd
rather less stringent conditions on the parametetsandc. For example, one
can allowa, b andc to be complex with positive real parts. We refer to the biblio
graphical notes for references. We note also that onlyX2)3s directly relevant
to the study of the normalization constants for the GOE an&Glthe usefulness
of the other more complicated formulas will become appareSection 4.1.

We will prove Theorem 2.5.8 following Anderson’s method 1], after first
explaining how to deduce Corollary 2.5.9 from (2.5.9) by meaf theStirling
approximationwhich we recall is the statement

r(s) = \/ZS"(Z)S(H 05 1en(1), (2.5.12)

wheres tends to+ along the positive real axis. (For a proof of (2.5.12) by an
application of Laplace’s method, see Exercise 3.5.5.)

Proof of Corollary 2.5.9 We denote the left side of (2.5.9) By(a, b,c). Consider
first the integral

_%/OS.../OSA(X)ZCIE‘& “H(1—x/9)%x,

wheres is a large positive number. By monotone convergence, thesigé of
(2.5.10) equals lim Is. By rescaling the variables of integration, we find that

Is=g"@ (195 (a s+ 1,c).
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From (2.5.12) we deduce the formula

r(s+1+A)

MN(s+1+B)
in which A andB are any real constants. Finally, assuming the validity 3.9,
we can evaluate lig,. Is with the help of (2.5.13), thus verifying (2.5.10).

= B1+0s.10(1)), (2.5.13)

Turning to the proof of (2.5.11), consider the integral

2c X12
/ ) i (1 23) o

wheres is a large positive number. By monotone convergence thesigé of
(2.5.11) equals lim,» Js. By shifting and rescaling the variables of integration,
we find that

Js = 23n(nfl)/2+3n/2+2nssn(nfl)c/2+n/281(S+ 1,5+1, C) )
From (2.5.12) we deduce the formula
[(25+2+A) 2A+3/2+256A-2B+1/2

= 14+ 0s10(1)), 2.5.14

F(s+1+B)2 o (14 0s—1w(1)) ( )
whereA andB are any real constants. Assuming the validity of (2.5.9)cae
evaluate ling_.., Js with the help of (2.5.14), thus verifying (2.5.11). O

Before providing the proof of Theorem 2.5.8, we note thedfslhg identity
involving thebeta integralin the left side:

Si1-1
J IR (51 T(5e)
{xeRM:min_; x>0,51 ;% <1} i; ! I_l 51+ +Sn+1)
(2.5.15)

The identity (2.5.15) is proved by substituting=txg, ..., Uy = tXn, Upy1 =t(1—
X1 — -+ —Xn) in the integral

0 oo N+1 1
/ / rluﬁ— e Ydu,
0 0 j—

and applying Fubini’s Theorem both before and after thetstulisn.

Proof of Theorem 2.5.8We aim now to rewrite the left side of (2.5.9) in an
intuitive way, see Lemma 2.5.12 below. Toward this end, weoduce some
notation.

Let 2, be the space consisting of monic polynomi(s) of degreenin a vari-
ablet with real coefficients such th&(t) hasn distinct real roots. More generally,
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given an open interval C R, let 2,1 C 2, be the subspace consisting of polyno-
mials withn distinct roots inl. Givenx € R", let P(t) = t"+ 31 ;(—1)'x,it"".
For any open intervdl C R, the sef{x € R" | B € 2yl } is open, since the pertur-
bation of a degrea polynomial by the addition of a degree— 1 polynomial
with small real coefficients does not destroy the properthafing n distinct
real roots, nor does it move the roots very much. By definiaosetA C 2,
is measurable if and only ifx € R" | B € A} is Lebesgue measurable. L&t
be the measure o, obtained by pushing Lebesgue measure on the open set
{XeR" |’ € %} forward toZ, viax+— P (that is, undef,, monic polynomials
of degreen have coefficients that are jointly Lebesgue distributedyeGP € %,
we definedy(P) € R for k= 0,...,n by the ruleP(t) = $R_o(—1) ok (P)t"*.
Equivalently, ifa; < --- < ap are the roots oP € 2, we havegy(P) = 1 and

ok(P) = Qiy -+ Ui,

1<ip<<ig<n

fork=1,...,n. The map(P+— (01(P),...,0n(P))) : Zn — R" inverts the map
X—=PR): {xeR"| R € Zn} — Zhn. Let én C R" be the open set consisting
of n-tuples(ay,...,an) such thata; < --- < an. Finally, for P € %, with roots
a=(ap < <o), we seD(P) = [Ti-j(aj — ai)? = A(a)%

Lemma 2.5.11Fork, ¢/ =1,...,nanda = (a,...,0n) € D put

(9Tk
Tk = Tk(01,...,0n) = i, - i, Tkj:a—.
1<ip<—<ig<n ap
Then
n
det 1 ¢| = lai — o = |A(a)]. (2.5.16)

Proof We have

whence follows the identity
n
S D)™ o M =8¢ []  (ar—a).
m=1 ie{1,...,n}\{¢}
This last is equivalent to a matrix identi§yB = C where de#\ up to a sign equals
the Vandermonde determinant k}ije;l a}‘*', detB is the determinant we want to
calculate, and d€ up to a sign equalgetA)?. Formula (2.5.16) follows. O

(See Exercise 2.5.16 for an alternative proof of Lemma 2.5.1
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We can now rewrite (2.5.9).

Lemma 2.5.12The left side of (2.5.9) equals

| PO PP DRI 2 (P). (25.17)
Zn(0,1)

Proof We prove a slightly more general statement: for any nonmegat
/n-measurable functiof on Z,, we have

fde, = /@ f(ﬁ(t —a))A(a)da ---day, (2.5.18)

,@n Dhn

from which (2.5.17) follows by takingd (P) = |P(0)[2~|P(1)[>-1D(P)>~%/2. To
see (2.5.18), pug(x) = f(Px) for x € R" such that € Z,. Then, the left side of
(2.5.18) equals

day...dap,

n
det 1
kimi

/ 7 g(xl,...,xn)dxl---dm:/N o(t1,...,Tn)
{XcR"|PEZn} Dn

(2.5.19)

by the usual formula for changing variables in a multivaléaibtegral. The left
sides of (2.5.18) and (2.5.19) are equal by definition; thktrsides are equal by
(2.5.16). O

We next transform some naturally occurring integralsZto beta integrals,
see Lemma 2.5.15 below. This involves some additional imotatet &, C % x
Ph+1 be the subset consisting of paii® Q) such that the rooter; < --- < ap
of P and the root$}; < --- < Bn41 Of Q areinterlaced that is,a; € (i, Bi+1) for
i=1,...,n. More generally, given an interval_ R, let&xl = nN(Znl X Dnyal).

Lemma 2.5.13Fix Q € Zny1 With roots 31 < --- < Bry1. Fix real numbers
Vi,---,¥nt1 and let Rt) be the unique polynomial in t of degreen with real
coefficients such that the partial fraction expansion

n+1
s

holds. Then the following statements are equivalent:

() (PQ) € én.

(1) mintly >0andyMly = 1.

PO _
Q)

Proof (I=11) The number$(f3;) do not vanish and their signs alternate. Similarly,
the number€) () do not vanish and their signs alternate. By L'Hopital'srue
havey = P()/Q'(B) fori =1,...,n+ 1. Thus all the quantitieg are nonzero
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and have the same sign. The quani{y)/Q'(t) depends continuously dnin
the interval[3,,1, ), does not vanish in that interval, and tends fgri-+ 1) as

t — +o. Thusyy;1 is positive. Since the signs &) alternate, and so do the
signs of Q' (), it follows thaty = P(B;)/Q/(Bi) > O for all i. BecauseP(t) is
monic, the numberg sum to 1. Thus condition (1) holds.

(I1=1) Because the signs of the numb€¥43;) alternate, we have sufficient in-
formation to forceP(t) to change sigm+ 1 times, and thus to havedistinct real
roots interlaced with the roots @¥(t). And because the numbexssum to 1, the
polynomialP(t) must be monic iri. Thus condition () holds. O

Lemma 2.5.14Fix Q € Zn 1 With rootsfB; < --- < fBry1. Then we have

1+l D(Q)1/2

h{PeZn| (RQe&}) =5 |‘| QB2 = = (2.5.20)

Proof Consider the set
A: {X€ Rn | (Px,Q) S éan}

By definition the left side of (2.5.20) equals the Lebesguasnee ofA. Consider
the polynomial®Q;(t) = Q(t)/(t—B;) for j=1,...,n+1. By Lemma 2.5.13, for
allxe R", we havex € Aif and only if P(t) = “*1 i ¥Qi(t) for some real numbers
¥ such that miry >0 andy y =1, or equwalentlyA is the interior of the convex
hull of the points

(Tz,j(Bla"'7Bn+l)a"'7Tn+l,j(Bla"'7Bn+l)) cR" for j =1....,n+1,

where thers are defined as in Lemma 2.5.11 (but witteplaced by+ 1). Noting
thatty, =1for{=1,...,n4+1, the Lebesgue measuredequals the absolute
value of 1 deﬂl, 1 Tk [31, .., Bn+1) by the determinantal formula for computing
the volume of a simplex ilR". Finally, we get the claimed result by (2.5.16)J

Lemma 2.5.15Fix Q € %41 with roots 3y < --- < Bh1. Fix positive numbers
S1,...,S+1. Then we have

ntl B M2 Q (RS Y2 (s)
P(B)|51den(P 11Q(B)] . 2.5.21
/{Pe@n\(P.Q)eo@n} iIJ| (Bl (F)= r(zis) ( :

Proof For P in the domain of integration in the left side of (2.5.21), defy =
%(P) =P(B)/Q(B), i=1,...,n+1. By Lemma 2.5.13y; > 0, 3"}y =1,
and furtheP — (y); isa buectlon from{P € 2, | (P.Q) € &} to the domain
of integration in the right side of (2.5.15). Further, thepa— y(F) is linear.
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Hence
s-1

T 2B e

/{Pe%\(RQ)ez%} il:l W

equals, up to a constant multigleindependent ofs }, the right side of (2.5.15).
Finally, by evaluating the left side of (2.5.21) far=--- = s5+1 = 1 by means of
Lemma 2.5.14 (and recalling thafn+ 1) = n!) we find thatC = 1. O

We may now complete the proof of Theorem 2.5.8. Recall thairttegral on
the left side of (2.5.9), denoted as aboveShya, b, c), can be represented as the
integral (2.5.17). Consider the double integral

Kn(@b.0) = [ QO QUL YRPQ) Mdn(PIdtnia(Q),

£n(01)

whereR(P,Q) denotes the resultant BfandQ, see Appendix A.4. We will apply
Fubini’s Theorem in both possible ways. On the one hand, we ha

_ a—1 b-1
Kn(a,b,c) = /9  oy/QOPHRW)

R(P.Q)|¢ 1d¢ P>d€
X</{Pe%<o,1><ao>e£n}| (RO n(P) J dens1(Q)

_ r(c)n+1
= Su(ab, C)m ,

via Lemma 2.5.15. On the other hand, writiRg= t(t — 1)P, we have

Kn(a,b,c) = / /
n( ) »@n(&l)( {Q€@n+1‘(QP>€(’¢n+2}

Q)P Q)P YR(P. Q)|°_1d4n+1(Q))d13n(P)

r@rbre)"
I(a+b+nc

[ OB @) 2R Y 2de(P)
Pn(0,1)

r@rbr(c)"
I (a+b+nc

Si(a+c,b+c,c) ,
by another application of Lemma 2.5.15. This proves (2.5ydinduction onn;
the induction basa = 1 is an instance of (2.5.15). O

Exercise 2.5.1@rovide an alternative proof of Lemma 2.5.11 by noting that t
determinant in the left side of (2.5.16) is a polynomial ofdee=n(n — 1) /2 that
vanishes whenever = x; for somei # j, and thus, must equal a constant multiple
of A(X).
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2.5.4 Joint distribution of eigenvalues: alternative foratation

It is sometimes useful to represent the formulas for the istribution of eigen-
values as integration formulas for functions that deperig on the eigenvalues.
We develop this correspondence now.

Let f: %(B) — [0, ] be a Borel function such thdt{H) depends only on the
sequence of eigenvalugg(H) <--- < An(H). In this situation, for short, we say
that f (H) depends only on the elgenvaluesH)f(Note that the definition implies
that f is asymmetridunction of the eigenvalues &f.) LetX € %”N(B) be random
with law P,E,m. Assuming the validity of Theorem 2.5.2, we have

ST 5 T 0,0 B9 IP N e PX 4dlx
ST [ 1A001B Ny & P/ 4dx
where f(xg,...,xn) denotes the value of at the diagonal matrix with diago-
nal entriesxs,...,xn. Conversely, assuming (2.5.22), we immediately verify tha
(2.5.3) is proportional to the joint density of the eigemesdA;(X), ..., An(X) by

taking f(H) = 1y, (H).... An(H))ca WhereA C RN is any Borel set. In turn, to prove
(2.5.22), it suffices to prove the general integration fdanu

N
B T dx
/f )(dH) cN/ / F(xa,. .. 30 |AX)| Dld)q, (2.5.23)

where

Ef(X)= : (2.5.22)

r(1/2)

N! |_| r(k/2) tp=1,

P —

1 Nt
v [a—y TA=2

and as in (2.5.22), the integrarfigH ) is nonnegative, Borel measurable, and de-
pends only on the eigenvaluestdf Moreover, assuming the validity of (2.5.23),
it follows by taking f(H) = exp(—atr(H?)/2) with a > 0 and using Gaussian
integration that

L [ et

N/2 o~ rip/2a) .1
(2m) BN(N—1)/4— N/2I—| P62 N!C_,(\,m' (2.5.24)

Thus, Theorem 2.5.2 is equivalent to the integration foen{15.23).
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2.5.5 Superposition and decimation relations

The goal of this short subsection is to show how the eigegadfithe GUE can be
coupled (that is, constructed on the same probability gpaitke the eigenvalues
of the GOE. As a by-product, we also discuss the eigenvalfuitbs 6SE. Besides
the obvious probabilistic interest in such a constructiba coupling will actually
save us some work in the analysis of limit distributions fer maximal eigenvalue
of the GOE and the GSE.

To state our results, we introduce some notation. For a fuoitsed C R with
|A| = n, we define Or@A) to be the vector ifR" whose entries are the elements of
A, ordered, that is

Ord(A) = (X1,...,%) withx € Aandx; <xp <...<X.

For a vectorx = (xi,...,%)) € R", we define Defx) as the even-location deci-
mated version ox, that is

Deo(x) = (Xz,X4, e 7X2Ln/2j) .
Note that ifx is ordered, then D€g) erases fronx the smallest entry, the third
smallest entry, etc.
The main result of this section is the following.

Theorem 2.5.17For N > 0 integer, let Aj and By, 1 denote the (collection of)
eigenvalues of two independentrandom matrices distribateording to GOE(N)
and GOE(N+1), respectively. Set

(n¥,....nN) = n" = Ded(Ord(Ay UB.1)). (2.5.25)

and
(6N....,8)) = 6N = DeqOrd(Axn.1)). (2.5.26)

Then, {nN} (resp., {6}) is distributed as the eigenvalues of GUE(N) (resp.,
GSE(N)).

The proof of Theorem 2.5.17 goes through an integratiotiogi#hat is slightly
more general than our immediate needs. To state it let(a,b) C R be a
nonempty open interval, perhaps unbounded, and lehd g be positive real-
valued infinitely differentiable functions defined an We will use the following
assumption on the triple, f,g).

Assumption 2.5.18For (L, f,g) as above, for each integerXk 0, write f(x) =
X€f (x) and g(x) = x¥g(x) for x € L. Then the following hold.
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(I) There exists a matrix W € Mat,, 1(R), independent of x, such that
detM(™ > 0 and

M® (fo, fr,..., fn)T = (Gp, O, G2, To) T -
(1) f3 | fa(x)|dx < eo.
(H1) lim x;a0n(x) = 0 andlimy;, gn(X) = 0.

For a vectorxn = (Xg,...,X%a), recall thatA(xn) = [N1<icj<n(Xj — %) is the
Vandermonde determinant associated with noting that ifx, is ordered then
A(xn) > 0. For an ordered vectap and an ordered collection of indices: {i; <
i <...<ip}C{L,...,n}, we writex; = (xi1,>q2,...,>qm). The key to the proof
of Theorem 2.5.17 is the following proposition.

Proposition 2.5.19Let Assumption 2.5.18 hold for a triplg, f,g) with L =
(a,b). For xony1 = (X1,...,Xont1), S€t

XS‘Ie) = DEC(X2n+l) = (X27X47' . ;in)) andxr(le = (X17X37' . ;X2n+1) .
Let
I ={(,3):1,dc{1,....2n+1},|I|=n,]3| =n+1,1nI = 0}.

Then for each positive integer n au&‘f) € L", we have the integration identities

X0 [Xa b 2n+1
/a /x2 /Xz <<| J)z A(x|)A(XJ)> <|'l f(Xi)> dXons1 -+ dxedxg

€ Joni1
2 (806%))” (12 1090%) (Tf-s f000) (2 900)
, (2.5.27)
detM (™
and
X2 X4 b 2n+1
/a /X s A(X2n+1)<.|_l f(Xi)> dXeni1- - dxgdxg
(2 1000x) (80 (M2 002))2
. (2.5.28)

detM(2n)

Assumption 2.5.18(Il) guarantees the finiteness of thenate in the proposition.
The value of the positive constant 844" will be of no interest in applications.

The proof of Proposition 2.5.19 will take up most of this sactafter we com-
plete the
Proof of Theorem 2.5.1AVe first check that Assumption 2.5.18 wlth= (—co, 0),
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f(x) = g(x) = e~*/4 holds, that is we verify that a matrM (" as defined there
exists. Define(" as the solution to

MO (fo, f1,..., )T = (fo, 3, F1,.... fh )T,

Becausef/ is a polynomial of degree+ 1 multiplied bye‘xz/“, with leading
coefficient equal-1/2, we have thalfi " is a lower triangular matrix, witV{} =
—1/2fori>1 andl\7lf‘1> =1, and thus déil(" = (—1/2)". SinceM(" is obtained
from M(" by a cyclic permutation (of lengtin+- 1, and hence sign equalte 1)"),
we conclude that d&d(™ = (1/2)" > 0, as needed.

To see the statement of Theorem 2.5.17 concerning the GUEamplies equa-
tion (2.5.27) of Proposition 2.5.19 with the above choice$lo f,g) andM (™,
together with Theorem 2.5.2. The statement concerning 8ie Gllows with the
same choice ofL, f,g), this time using (2.5.28). O

In preparation for the proof of Proposition 2.5.19, we ndwdé lemmas. Only
the first uses Assumption 2.5.18 in its proof. To compresatiat, write

A1 ... AN
[A”hﬁ]: . 5
An ... AN

Lemma 2.5.20For positive integers n and N, we have

MO R0 fiade] sl
gi-1(xj) ifi <n4+land j<N+1,
= 0 ifi<n+land j=N+1, (2.5.29)
[ fo(x)dx ifi=n+1

n+1,N+1

foralla=xp<x3 < - <Xy < Xny1=Db.

The left side of (2.5.29) is well-defined by Assumptions 28§, 11).

Proof Leth; =g fori=0,...,n—1 and puth, = fo. The left side of (2.5.29)
equals] /3] hi—1(X)dX ., 1 n,1 @nd this in turn equals the right side of (2.5.29) by
Assumption 2.5.18(111). O

Lemma 2.5.21For every positive integer n ande L", we have

n 2 PP
(A(x))“(ﬂg(xi)) ~def { G2 S0 ] (2530

g_1(Xj2) if jiseven an2n
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The casagy = 1 is the classicatonfluent alternant identity
Proof Write yon = (Y1,...,Y2n). Set

2n
G(yzn) = det[gi-1(Yj)]n2n) = A(Y) [!g(yi) - (2.5.31)

Dividing G(yzn) by [L1(Y2i — Y2i—1) and substituting/si_1 = y2i = X for i =
1,...,ngive the left side of (2.5.30). On the other hand ugtlenote thejth col-
umn of[gi—1(Yj)]2n2n. (Thus,G(y2n) = defus,...,uz].) Since itis a determinant,
G(y2n) = defuy, Up — Uz, U, Ug — Ug, . ..., Upn_1, Upp — Uzn_1] @nd thus

_ G(yzn) —det|u, 2T U2n1:| .
Mit1(Yai — Y2i-1) Y2—V1 Yon—Yan-1
Applying L'Hdpital’s rule thus shows that the last expriessevaluated ay,; 1 =
yoi =X fori =1,...,nequals the right side of (2.5.30). O

Lemma 2.5.22For every positive integer n antbn.1 = (X1,...,%Xn+1) We have
an identity
XA = Y AX)ARX). (2.5.32)
(19)€ Font1

Proof Givenl = {i; <---<ir} C{1,...,2n+1}, we writeAy = A(x;). Given
a polynomialP = P(xy,...,Xon+1) @and a permutation € Syny 1, let 7P be defined
by the rule

(TP)(X1,- -+, Xent1) = P(Xg(1) -+ Xp(2n41)) -

Given a permutatiom € Syni1, let 71 = {z(i) | i € I}. Now let Aj/A; be a term
appearing on the right side of (2.5.32) andiet (ij) € Sn11 be a transposition.
We claim that
T(AD;) =1 if{i,j}clor{ij}cJ,
AnbDgy | (—D)I-IHL otherwise.

(2.5.33)

To prove (2.5.33), since the cas@gsj} C | and{i, j} C Jare trivial, and we may
allow i and j to exchange roles, we may assume without loss of generhbty t
ielandjeJ. Letk (resp.,f) be the number of indices in the defresp.,J)
strictly between andj. Then

k+l=1]i—j|—1, 1A /Ay = (1)K, 183/Ar3 = (—1)",

which proves (2.5.33). It follows that ifand j have the same parity, the effect of
applyingt to the right side of (2.5.32) is to multiply by1, and thereforéx; —x;)
divides the right side. On the other hand, the left side d&§.@2) equals 2times
the product of(x; — xj) with i < j of the same parity. Therefore, because the
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polynomial functions on both sides of (2.5.32) are homoges®f the same total

degree in the variables, ..., Xon. 1, the left side equals the right side times some

constant factor. Finally, the constant factor has to be Jabse the monomial
m1xL M, Xt appears with coefficient'2on both sides. O

We can now provide the

Proof of Proposition 2.5.19Let xo = a andxpn.2 = b. To prove (2.5.27), use
(2.5.32) to rewrite the left side multiplied by dét" as

n

A () m[pe ¢ .
27A(X )det(M [fxm f.,l(x)dx} n+l.n+1) i|1f(xZ.),

and then evaluate using (2.5.29) and the second equalit®.m3(L). To prove
(2.5.28), rewrite the left side multiplied by det?" as

det( M0 H J fima(odx it j is odd ]
fi_1(xj) if jiseven pnLonil ’
and then evaluate using (2.5.29) and (2.5.30). 0O

Exercise 2.5.23 et a,y > —1 be real constants. Show that each of the following
triples(L, f,g) satisfies Assumption 2.5.18:

(@)L = (0,m), f(x) = x%e 7%, g(x) = x?1e~* (the Laguerre ensembles);
(b)L=(0,1), f(X) =x¥(1—x)Y, g(x) = x¢+1(1—x)¥*1 (the Jacobi ensembles).

2.6 Large deviations for random matrices

In this section, we considé& random variablegAy, - - -, An) with law
N
R)(dA, -+, dAN) = (z\';B)—1|A(A)|Be—Nz!21V<Ai) |—|O|Ai , (2.6.1)
i=

for a3 > 0 and a continuous function : R—R such that, for somg’ > 1 satis-

fying B’ > B,

- V(X
I Fogiy e
Here,A(A) = 1<i<j<n(Ai — Aj) and
N
N :// |A()\)|Be*NZiN:1V(Ai> dA;. (2.6.3)
Zp R JR il:l |

WhenV (x) = Bx?/4, andB = 1,2, we saw in Section 2.5 thayxz/w is the law
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of the (rescaled) eigenvalues of a GOE:(natrix whenf = 1, and of a GUHY)
matrix whengB = 2. It also follows from the general results in Section 4.1 tha
caseB = 4 corresponds to another matrix ensemble, namely the IB)SH{( view
of these and applications to certain problems in physicgomeider in this section
the slightly more general model. We emphasize, howevet,ttigadistribution
(2.6.1) precludes us from considering random matrices witlependent non-
Gaussian entries.

We have proved earlier in this chapter (for the GOE, see @e2til, and for the
GUE, see Section 2.2) that the empirical measwye- N"1 3N | 5, convergesin
probability (and almost surely, under appropriate momestimptions), and we
studied its fluctuations around its mean. We have also cereicthe convergence
of the top eigenvalugd ). Such results did not depend much on the Gaussian
nature of the entries.

We address here a different type of question. Namely, weyshalprobability
thatLy, or AY, take a very unlikely value. This was already consideredun o
discussion of concentration inequalities, see Sectioym#h@re the emphasis was
put on obtaining upper bounds on the probability of deviatitn contrast, the
purpose of the analysis here is to exhibit a precise estiofateese probabilities,
or at least of their logarithmic asymptotics. The apprderi@ol for handling
such questions is large deviation theory, and we give in AdpeD a concise
introduction to that theory and related definitions, togethith related references.

2.6.1 Large deviations for the empirical measure

We endowM; (R) with the usual weak topology, compatible with the Lipschitz
bounded metric, see (C.1). Our goal is to estimate the piWawB(LN eA),

for measurable sets C M1(R). Of particular interest is the case whekeloes
not contain the limiting distribution dfy.

Define thenoncommutative entrofy: M1 (R) — [—o, o) as

_ [ Jllog|x—yldu(x)du(y) if [log(]X| + 1)du(x) < oo,
2(H) _{ —00 otherwise (2.6.4)

and the functionk’ My (R) — [0, ] as

|V

B

(1) = { V() E2() ~ ¢ it [VOHO) <0, oo

otherwise,
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where
=, .int /v X)dv (x ——()}e( ). (2.6.6)

(Lemma 2.6.2 below and its proof show that bﬁtlandl;}’ are well defined, and
thatc\lg is finite.)

Theorem 2.6.1Let Ly = N1 3N, &, v where the random variable@N}N , are

distributed according to the Iav@ii3 of (2.6.1), with potential V satisfying (2.6.2).
Then, the family of random measureg &atisfies, in M(R) equipped with the
weak topology, a large deviation principle with speetiand good rate function
I;g’. That is,

() Izg’ :M1(R) — [0, 0] possesses compact level sets

{v:lg(v)<M}forallM e R,
(b) forany open se® c M1(R),

I|m|nf IogPBV (Ly €0O) > igﬂg, (2.6.7)
(c) for any cIosed sef C M1(R),

. 1 :

stupm logPyy (Ln € F) < —|gf|2{. (2.6.8)

The proof of Theorem 2.6.1 relies on the properties of thetion|Y collected in
Lemma 2.6.2 below. Define tHegarithmic capacityof a measurable sé&t C R

as
y(A) = exp{ Vemlf //Iog

Lemma 2.6.2
(a) c\lg € (—oo,00) and Ib’ is well defined on MR), taking its values if0, 4-co].
(b) |2;/(IJ) is infinite as soon ag satisfies one of the following conditions
(b.1) [V (X)du(X) = 0.
(b.2) There exists a set& R of positiveu mass but null logarithmic capacity,

i.e. aset Asuchthagi(A) > 0buty(A)=0

(©) IE’ is a good rate function.
(d) IE’ is a strictly convex function on MR).

(e) IE’ achieves its minimum value at uniqag € My(R). The measurez{ is
compactly supported, and is characterized by the equality

VOV |

V(x) - B(oy,log|-—x|) =Cy, for of-aimosteverk,  (2.6.9)
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and inequality
V(x)—B(oy,log|-—x|) >Cy, forallx¢supoy),  (2.6.10)

for some constant}: Necessarily, § = 2c; — (g)f,V).

As an immediate corollary of Theorem 2.6.1 and of part (e) @fhima 2.6.2 we
have the following.
Corollary 2.6.3 Under F\‘,\fﬁ, Ln converges almost surely toward%’.
Proof of Lemma 2.6.2For all p € M1(R), X() is well defined andk « due to
the bound

log|x—y| <log(|x| + 1) +log(ly| +1). (2.6.11)
Further,c\é < 0 as can be checked by takimgas the uniform law off0, 1].

Set
1 1 B

fxy) =5V +5Vy) -5

Note that (2.6.2) implies thdt(x,y) goes to+c whenx, y do since (2.6.11) yields

log|x—y]. (2.6.12)

(%) 2 5(V(9 — Blog(i|+ 1) + 5(V(y) ~ Bloglyl +1)).  (2.613)

Further, f(x,y) goes to+c whenx,y approach the diagonék = y}. Therefore,
forall L > 0, there exists a constaifL) (going to infinity withL) such that, with

BLi={(xy): x=yl <L u{(xy): [x| >L}U{(xy): |yl >L},
BLC{(xy): f(xy)>K(L)}. (2.6.14)

Sincef is continuous on the compact &ft, we conclude that is bounded below
onRR?, and denote bigs > —o alower bound. It follows thact\é > bs > —o0. Thus,
becausé/ is bounded below by (2.6.2), we conclude thatis well defined and
takes its values iff0, «], completing the proof of part (a). Further, since for any
measurable subsatC R,

Y = [[(10xy)~br)duG)du() +bs -
/A/A(f(XaY) —br)du(x)dp(y) + br - cj

gAA|°g|X_y|_ld“(X)d“(y)+)i(2HgV(X)H(A)2—|bf|—c\lg

D uaiogvia) — il ~ ¢ + intvou(A?,

v

v
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one concludes that h;‘g’(u) < oo, andA is a measurable set wila(A) > 0, then
y(A) > 0. This completes the proof of part (b).

We now show that\’,3 is a good rate function, and first that its level s{am% <

M} are closed, that is thsk’f is lower semicontinuous. Indeed, by the monotone
convergence theorem,

15 (1)

/] ey -

_ sup//(f(x,y)AM)du(X)du(y) -

M>0

But fM = f AM is bounded continuous and so, fdr< o,

= [[ (16xy) AMYdH ()
is bounded continuous od;(R). As a supremum of the continuous functions

IX"M, Iz?/ is lower semicontinuous.

To complete the proof thag is a good rate function, we need to show that the
set{lk’ <L} is compact. By Theorem C.9, to see the latter it is enoughawsh
that{lzg’ <L} isincluded in a compact subsetMf (R) of the form

= ({1 €M(R): u([-B,B|) < &(B)},

BeN

with a sequence(B) going to zero a8 goes to infinity. Arguing as in (2.6.14),
there exist constant§’(L) going to infinity as. goes to infinity, such that

{xy) s X >Lyl > L c{(xy): f(xy) >K'(L)}. (2.6.15)

Therefore, for any large positiie

(X >L)? pop(x >Llyl>L)

u®u( (xy) > K’(L))

w0 —5r [ (109 ~Brduau(y)

1
K'(L) —bg (

Hence, takings(B) = [, /(M + c‘é —bt)+/+/(K'(B) —bt)+] A1, which goes to
zero whenB goes to infinity, one has thdl){ < M} C K. This completes the
proof of part (c).

Sincelzg’ is a good rate function, it achieves its minimal value. b%(t be

IN

IN

IV(u)—i-CB—bf).



2.6 LARGE DEVIATIONS FOR RANDOM MATRICES 75

a minimizer. Let us derive some consequences of minimakiyr any signed
measurey (dx) = qo(x)ol‘{ (dx) + @(x)dxwith two bounded measurable compactly
supported functiong&p, ) such thaty > 0 andv(R) =0, fore > 0 small enough,
01‘3’ + ev is a probability measure so that

1§ (0f +€v) > 15 (ay), (2.6.16)

which implies
| (Vo8 [ toglx-yido} ) ) avix > 0.
Taking @ = 0, we deduce (using: @) that there is a consta@g such that
V(x) — B/Iog|x—y|d02;’(y) =Cp, oyas, (2.6.17)

which implies thatrz{ is compactly supported (becatsex) — 3 [ Iog|x—y|dol‘3’ (y)
goes to infinity wherx does by (2.6.13)). Taking = — [ ¢/(y)dy on the support
of 01‘3’, we then find that

V(x)—B/Iog|x-y|d0,\3/(Y) >cY, (2.6.18)

Lebesgue almost surely, and then everywhere outside ofuiheost of 0/‘3’ by
continuity. Integrating (2.6.17) with respectmg then shows that

Cp =2c5—(0y,V),
proving (2.6.9) and (2.6.10), with the strict inequality(ih6.10) following from
the uniqueness aFY, since the later implies that the inequality (2.6.16) igcstr

as soon a¥ is nontrivial. Finally, integrating (2.6.9) with respectdfl‘{ reveals
that the latter must be a minimizer ty so that (2.6.9) characterizeg.

The claimed unigqueness ot{ and hence the completion of the proof of part
(e), will follow from the strict convexity claim (part (d) dhe lemma), which we

turn to next. Note first that, extending the definitionzofo signed measures in
evident fashion when the integral in (2.6.4) is well defingd,can rewritd;g’ as

() =~5u- %)+ [ (V0o - B flogl- yiday) - f ) ().

The fact thal>3’ is strictly convex will follow as soon as we show ttais strictly
concave. Toward this end, note the formula

) _vl2
Iog|x—y|:/0 %(exp{—%}—exp{—'x 2ty| }) dt, (2.6.19)
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which follows from the equality
1 i/we‘“/zdu
z 2z)o

by the change of variablas— 72/t and integration of from 1 to |x—y|. Now,
(2.6.19) implies that for any € M1(R),

vy (71 x—y? v v
su-0f)=— | 5 ( [[ewl-"Fraw—o))(du—o)y ) dt.
(2.6.20)
Indeed, one may apply Fubini’s Theorem Wwemz{ are supported ir@—%, %]

since theru ® ag(exp{—%} - exp{—%} <0)=1. One then deduces (2.6.20)
for any compactly supported probability measuréy scaling and finally for all
probability measures by approximations. The fact thatafiar> 0,

// exp{‘%}dw—aﬁ )(x)d (1 — o) (¥)
- aaf.

2
therefore entails that is concave sincg— ‘fexp{i)\ xpd(u— ag)(x) is convex
for all A € R. Strict convexity comes from the fact that

2 2
exp{— %}d)\,

/exp{i)\ xpd(pu—0g) (%)

S(ap+(1-a)) - (aZ() + (1- a)Z(v)) = (@® - a)Z(1—v),

which vanishes folr € (0,1) if and only if (v — ) = 0. The latter equality
implies that all the Fourier transforms of— u vanish, and hencg = v. This
completes the proof of part (d) and hence of the lemma. O

Proof of Theorem 2.6.1With f asin (2.6.12),
N
P\'/\fp(d/\l, o dAn) = (zﬁ’v)—le—Nz./f&#yf<><,y)dLN(><)d|_N(y> rle—V(/\i)d)\i .
i=

(No typo here: indeed, nd beforeV (A;).) Hence, if
p [ fxy)duOodu(y)
XAy

were a bounded continuous function, the proof would folloani a standard ap-
plication of Varadhan’s Lemma, Theorem D.8. The main poiifittiverefore be
to overcome the singularities of this function, with the tnibalicate part being to
overcome the singularity of the logarithm.
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Following Appendix D (see Corollary D.6 and Definition D.&)iull large devi-
ation principle can be proved by proving that exponentggitiiess holds, as well
as estimating the probability of small balls. We follow teeseps below.

Exponential tightness

Observe that, by Jensen’s inequality, for some con§tant
logzfV > NIog/e‘WX)dx
d)\.

5 N V(A )
Y /(/ £(x, y)dLn (X)dLn (y ) ' > N2,
[, Ty ) Tevma
Moreover, by (2.6.13) and (2.6.2), there exist constants) andc > —oo so that
fxy) = aV(x)[+aV(y)l+c,

from which one concludes that for & > 0,

N
Rl (/ V(x)|dLy > M) < g 2N MHC-ON? (/e"(X)dx) . (2.6.21)

SinceV goes to infinity at infinityKy = {1 € Mi(R) : [|V]du < M}is a com-
pact set for allM < o, so that we have proved that the lawlaf underR Vg 1S
exponentially tight.

A large deviation upper bound

Recall thatd denotes the Lipschitz bounded metric, see (C.1). We proresthat
for anyu € My (R), if we setP\'/“B = ZBVP\’,“B,

lim Ilmsup 2IogPVB( (Ln,p) <€) < —/f(x,y)du(x)du(y). (2.6.22)
£—0 N—

(We will prove the full LDP forP\'jB as a consequence of both the upper and lower

bounds orPNB see (2.6.28) below.) For amy > 0, setfu(x,y) = f(X,y) AM.
Then the bound

Rip v <o)< [

N
e N fizy I )AL )AL G) [ V(A g,
d(Ln,u)<e iIJ

holds. Since under the product Lebesgue measure\ishare almost surely dis-
tinct, it holds thatLy ® Ly(x = y) = N2, P\’,\'ﬁ almost surely. Thus we deduce
that

/ fm (X, y)dLn(X)dLn(y) = /X#y fm (%, y)dLn (X)dLn(y) + MN 7,
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and so

R (d(Ln, k) <€)

N
< VN / e N2/ tmey)dly (dLn () [ g VN g,
B d(Ln,p)<e il:l
Since fy is bounded and continuou%""' (v — [ fm(xy)dv(x)dv(y) is a con-
tinuous functional, and therefore we deduce that
VM

L 1 =\
Ilmollmjoljpmlong,ﬁ (d(Ln, ) <€) < =17 ().

E—

We finally letM go to infinity and conclude by the monotone convergence theo-
rem. Note that the same argument shows that

. 1 BV .
U< — . .0.
lim SUp logZy uemlf( )/ f(x,y)du(x)du(y) (2.6.23)

N—o0

A large deviation lower bound

We prove here that for any € M1(R),

S 100R (AL, 1) <) > — [ 1(xy)du(du(y). (2629
Note that we can assume without loss of generality t}g‘néw) < oo, since other-
wise the bound is trivial, and so, in particular, we may andlagsume that has
no atoms. We can also assume thais compactly supported since if we con-
sider uy = u([—M,M])—ll‘X‘SMdu(X), clearly uy converges towardg and by
the monotone convergence theorem, one checks that, Eiilsdsounded below,

tim [ 10y dn (00 (v) = [ 10y)d(du(y).

lim liminf
N—oo

-0 N—

which ensures that itis enough to prove the lower boundifor M € R, IE’ (M) <
o), and so for compactly supported probability measures wiitefentropy.

The idea is to localize the eigenvalugs)i<i<n in small sets and to take ad-
vantage of the fast spedf of the large deviations to neglect the small volume of
these sets. To do so, we first remark that, for aryM; (R) with no atoms, if we
set

Xl’N

inf{x: v ((—o0,x]) > NLH} )

- _ - - 1 .
XHIN - — |nf{x>x'*N: v((x'*N,x])>N—+1}, 1<i<N-1,
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for any real numben, there exists a positive integBi(n) such that, for an\N

larger tharN(n),
d L Oy
vV, — iN | <.
N

In particular, forN > N($),

; o .
{ Oscian | =% < 5 ¥ LN € (e L) < 3},
so that we have the lower bound

Rip (d(Ln, ) <)

N
> / &N sy FXYALNXIALNG) [ o VA g,
— IiaiNN<d ) ﬂ
= / M XN XN A= A BeNERLV A = dA
ﬂi{‘)\ikg} 1<) il:l
[T XN B RN — XN E e N DV
i+1<j i

—N |N M) |N
(foy Dntomtsarvmiia)

Ai<higp !

=. F’N’lx Psz, (2.6.25)

where we used the fact thadN — xIN + Aj — Aj| > XN — xIN| v A — Aj| when

Ai > Aj andx"™N > xIN. To estimatePy 2, note that since we assumed thats
compactly supported, tr(e(‘vN, 1 <i < N)nen are uniformly bounded and so, by
continuity ofV,

Y

lim sup sup sup|V(X"N+x)—V(x'N) =0
N=®NeN1<i<N|x/ <&

Moreover, writingu; = A1, Ui11 = Ajy1 — Aj,

g N N g N 5 N(5+1)
T = Al d)\z/ uz du><7)
ﬁﬁ:'«?_l’m" Al = oy 119 (B+2N
Therefore,
1
lim liminf — | >0. 2.6.2
lim liminf 7> 10gP.» > 0 (2.6.26)

To handle the terrRy 1, the uniform boundedness of thieVs and the convergence
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of their empirical measure towargsimply that

l lNv Ny = [V (x)d 2.6.27
LRPALE )= [ Va9, (2.6.27)

N—o0

Finally sincex— log(x) increases ofR ", we notice that

I _
/Xl‘N <x<y<XNN og(y —x)du(x)dp(y)

< Z log(x/+1N —Xi’N)/XE[Xi,N1Xi+1,N] Ixcydp (x)dp(y)

1<i<JIN-1 yexiN xi+1N]

1 1 N-1 . .
— |Og|XIN XJ+1N|+7 21|Og|Xl+l’N—XI’N|.
(N+1)2 l; 2(N+1)2 £

Since logx —y| is upper-bounded whexiy are in the support of the compactly
supported measuge the monotone convergence theorem implies that the ledt sid
in the last display converges towar§§ . Thus, with (2.6.27), we have proved

I|m|nf—logPN1>[3/ log(y —x)du(x)du(y /V (x)dp(x

which concludes, with (2.6.25) and (2.6.26), the proof 06(24).

Conclusion of the proof of Theorem 2.6.1

By (2.6.24), for allu € M1(R),

Iiminf IogZﬁV > Iim IiminfilogP\,B(d(LN,u)ge)

Y

/ (6 y)du()du(y).

and so, optimizing with respect 1o € M;(R) and with (2.6.23),

Y
Jim 5 IogZBV ——uell&lf {/f X, y)du(x)du(y)} = —cg.

Thus, (2.6.24) and (2.6.22) imply the weak large deviationgiple, i.e. that for
all p e My(R),

Iim I|m|nf IogPVB( (Ln, ) <€)
_ . . N _ \Y
= lan0|IrNiijgpm logR) g (d(Ln, 1) <€) =—lg(n). (2.6.28)

This, together with the exponential tightness propertywpdoabove, completes
the proof of Theorem 2.6.1. O
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Exercise 2.6.4[Proof #5 of Wigner's Theorem] Take (x) = 3x?/4 and apply
Corollary 2.6.3 together with Lemma 2.6.2 to provide a proiofVigner's Theo-
rem 2.1.1 in the case of GOE or GUE matrices.
Hint: It is enough to check (2.6.9) and (2.6.10), that is to chlaek t
XX 1
— < _Z
/'09|X ylo(dy) = 7 -5,

with equality forx € [-2,2], whereo is the semicircle law. Toward this end, use
the representation of the Stieltjes transfornootee (2.4.6).

2.6.2 Large deviations for the top eigenvalue

We consider next the large deviations for the maximifin= max; A;, of ran-
dom variables that possess the joint law (2.6.1). Theseb@ithbtained under the
following assumption.

Assumption 2.6.5The normalization constant‘% satisfy

Z“\?/l(N—l).B
I|m —Iog =0yg. (2.6.29)

N B
N—ow N ZV, 8

It is immediate from (2.5.11) that W (x) = 3x?/4 then Assumption 2.6.5 holds,
with ay g = —B/2.

Assumption 2.6.5 is crucial in deriving the following LDP.

Theorem 2.6.6Let(A},...,A{) be distributed according to the joint law)? of
(2.6.1), with continuous potential V that satisfies (2.@8) Assumption 2 6.5.
Let 01‘3’ be the minimizing measure of Lemma 2.6.2, and set max{x: X €
suppol‘g’}. Then Ay, = maxy | AN satisfies the LDP iR with speed N and good
rate function

I () =

Bfloglx ylog(dy) —V(x) —avg if x>x",
otherwise

Proof of Theorem 2.6.68inceJ23’(-) is continuous orix*, o) andJk’ (x) increases
to infinity asx — oo, it is a good rate function. Therefore, the stated LDP foow
as soon as we show that

. 1
foranyx <x, limsuplog RIg(AN <X) = —oo, (2.6.30)
N—oo §
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. 1
for anyx >x",  limsup logR)!z (A% > %) < =I5 (%) (2.6.31)
N—oo ’

and

c i lming L loaPN (1 v
foranyx >, lim liminf = 10gR)5 (A € (x—8,X+8)) > ~J5 (x). (2.6.32)

The limit (2.6.30) follows immediately from the LDP (at sjpk?) for the empiri-
cal measure, Theorem 2.6.1; indeed, the exgnt x implies thatLn ((x,x"]) = 0.
Hence, one can find a bounded continuous functiarith support in(x,x*], inde-
pendent oiN, such thatLy, f) =0 but(ol}’, f) > 0. Theorem 2.6.1 implies that
this event has probability that decays exponentially (aespl?), whence (2.6.30)
follows.

The following lemma, whose proof is deferred, will allow faproper trunca-
tion of the top and bottom eigenvalues. (The reader intedestly in the GOE or
GUE setups can note that Lemma 2.6.7 is then a consequengeraide 2.1.30.)

Lemma 2.6.7Under the assumptions of Theorem 2.6.6, we have

N-1
: 1. 4pg
limsup—log—5— < . 2.6.33
msupglog z, ( )
Further,
L 1 N /g%
hlllinmllegpﬁ |09F’V./3()\N >M)=—0 (2.6.34)
and, withA; = min ; AN,
L 1 NP
J'Tw"r,ﬁ‘fﬂpﬁ logR, (A1 < —M) = —. (2.6.35)

Equipped with Lemma 2.6.7, we may complete the proof of Then2.6.6. We
begin with the upper bound (2.6.31). Note that for &hy- X,

RIB(A% > %) <RI (AR > M) +R5(Ag € [, M]). (2.6.36)

By choosingM large enough and using (2.6.34), the first term in the righe sif

4
(2.6.36) can be made smaller then " <X), for all N large. In the sequel, we fix
anM such that the above is satisfied, the analogous bound-withalso holds,
and further

5 f100x-yioj @y Vx| > sup 8 [loglz-yio oy -vio
(2.6.37)
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Set, forze [-M,M] andu supported orfi—M, M],

®(z 1) = B | 1og|z- ylH(dy) ~V(2) < Blog(2M) +V_ =: By,

whereV_ = —infycgr V(X) < . SettingB(Jd) as the ball of radiug aroundol‘}’,
B (0) as those probability measuresB(d) with supportin[—M, M], and writing
v
NV/(N-1), N—1
IN=—5r—, Im=[-MM""",
Z'p
we get

R (A% € [x,M])
< Rp(AL <-M)

M
N—1)D(An,Ln_ N—1
+NZN/X d)\N/IMe< PONLDRN L (dA . dAnCg)

IN

M
RYG(AL < —M)+Nax | /X N1 sURcay (5) V() g

+(M—x)eN-VpNd (Lo B(é))} . (2.6.38)

(The choice of metric in the definition d&(J) plays no role in our argument,
as long as it is compatible with weak convergence.) Notirzg the perturbation
involving the multiplication oV by N/(N — 1) introduces only an exponential in
N factor, see (2.6.33), we get from the LDP for the empiricahsuge, Theorem
2.6.1, that

. 1 _
limsup 5 109RYy - p(Ln-1 ¢ B(8)) <0,

and hence, for any fixed > 0,

. 1 _

Ilrl\rlL'sotquN |09F’,{,\'V/1(N,1>.B(LN—1 ZB(J)) = —c. (2.6.39)
We conclude from (2.6.38) and (2.6.39) that

lim supEP\’,\‘B()\,Tl exM]) < lim supE logdn + lim sup  D(zp)
Nooeo N N—w N 0—02¢[x,M],u€By (8)
= ayg+lim sup d(zu). (2.6.40)
0—02¢[x M],u€BW ()

Since®(z, ) = infy~o[B [log(|z—y| v n)u(dy) —V(z), it holds that(z, i) —
®(z ) is upper semicontinuous da-M,M] x My ([—M,M]). Therefore, using
(2.6.37) in the last equality,

lim sup  D(z,p) = sup ®(z,0y) = sup ®(z0y).
5ﬂoze[x,M],ueBM(6) ze[x,M] ZE[X,0)
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Combining the last equality with (2.6.40) and (2.6.36), viaéain (2.6.31).

We finally prove the lower bound (2.6.32). Leb 2 x— x* and fixr € (x*,x—
25). Then, withl; = (—M,r)N=1,

RIg(A% € (x—8,x+9))
> Rp(An € (x=8,x+3),A € (=M,1),i=1,...,N—1) (2.6.41)

x+6
N—1)®(Ay,LN N—1
N /x—é dAn /|,e< )P(AN N_l)PNV/(Nfl),B(d’\lv---ad)\N—l)

v

25¢uexp((N=1) inf @z ) )Ryt 1) 5(Ln-1 € Brua(3)),

ze(x—0.,x+9)
HEBrm ()

whereBy v (J) denotes those measuresB(0) with support in[—M,r]. Recall
from the upper bound (2.6.31) together with (2.6.35) that

IiwsupP,\’]‘\j/l(N_lm()\i ¢ (—M,r)for somei € {1,...,N—1}) =0.

Combined with (2.6.39) and the strict inequality in (2.6.280Lemma 2.6.2, we
get by substituting in (2.6.41) that
o1 N . .
= * — >
(I;ghmgf N logR/ (AN € (x=0,X+9)) > avp +CI$|TOZE(X£r;fX+6)¢(z,u)
HeBrm(d)

= ayg+P(x0E),

where in the last step we used the continuitfofu) — ®(z 1) on [x— d,x+
0] x M1([—M,r]). The bound (2.6.32) follows. O

Proof of Lemma 2.6.7We first prove (2.6.33). Note that, for ady> 0 and allN
large,

N-1 N-1 N-1 N-1
Lpg g Awviin-ug 25 Ny
N = —N-1 N < N_1 € B s (2642)
Z\ Z, ZN-—
Zp NV/(N-1), B NV/(N-1),
by (2.6.29). On the other hand,
ZN-1
N1 L - /eN<LN_1’V>dR\Ifl.NV/(N71)- (2.6.43)
NV/(N—1).8

By the LDP forLy_1 (at speed\?, see Theorem 2.6.1), Lemma 2.6.2 and (2.6.21),

the last integral is bounded aboveéwwl\?/’wm). Substituting this in (2.6.43) and
(2.6.42) yields (2.6.33).

For|x| > M, M large and\; € R, for some constantg, bg,

x—AilPe V) < ag(IxP +[A|F)e™V M) < bg|x|P < bge’™.
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Therefore,

N Z\')/}l “ __NV(A Nt VA 1

RG> M) < NZVTB/M e <N>dAN/RN_1 ﬂ (|X—)\i|Be* <.>)d%
< Nbg 1g-NV(M /2ZVL?/ VAN gy,

implying, together with (2.6.33), that

Jim limsup = IogP\',\‘B()\N >M)=—w,

*}00 N*)

This proves (2.6.34). The proof of (2.6.35) is similar. O

2.7 Bibliographical notes

Wigner's Theorem was presented in [Wig55], and proved theirg the method
of moments developed in Section 2.1. Since then, this reaglbeen extended in
many directions. In particular, under appropriate momemddions, an almost
sure version holds, see [Arn67] for an early result in tha¢ation. Relaxation
of moment conditions, requiring only the existence of tmrdments of the vari-
ables, is described by Bai and co-workers, using a mixtuceotbinatorial, prob-
abilistic and complex-analytic techniques. For a review,refer to [Bai99]. It is
important to note that one cannot hope to forgo the assumpfifiniteness of sec-
ond moments, because without this assumption the empirieakure, properly
rescaled, converges toward a noncompactly supported mease [BeGO08].

Regarding the proof of Wigner's Theorem that we presentestetis a slight
ambiguity in the literature concerning the numbering ofalat numbers. Thus,
[Aig79, p. 85] denotes by, what we denote by, 1. Our notation follows
[Sta97]. Also, there does not seem to be a clear conventida afether the
Dyck paths we introduced should be called Dyck paths of le2gtor of length
k. Our choice is consistent with our notion of length of Berttiavalks. Finally,
we note that the first part of the proof of Lemma 2.1.3 is aniapfibn of the
reflection principle, see [Fel57, Ch. 111.2].

The study of Wigner matrices is closely related to the stutdWishart ma-
trices, discussed in Exercises 2.1.18 and 2.4.8. The lifrth@empirical mea-
sure of eigenvalues of Wishart matrices (and generalizatican be found in
[MaP67], [Wac78] and [GrS77]. Another similar model is givey band ma-
trices, see [BoMP91]. In fact, both Wigner and Wishart neasifall under the
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class of the general band matrices discussed in [ShI96]0RE (for the Gaussian
case) and [AnZ05], [HaLNO6].

Another promising combinatorial approach to the study efg¢hectrum of ran-
dom Wigner matrices, making a direct link with orthogonalypomials, is pre-
sented in [Sod07].

The rate of convergence toward the semicircle distributias received some
attention in the literature, see, e.g., [Bai93a], [Bai936pT03].

Lemma 2.1.19 first appears in [HoW53]. In the proof we mentrat permu-
tation matrices form the extreme points of the set of doutdglsastic matrices,
a fact that is is usually attributed to G. Birkhoff. See [CBY®&r a proof and a
historical discussion which attributes this result to DnKp The argument we
present (that bypasses this characterization) was kiratiyncunicated to us by
Hongjie Dong. The study of the distribution of the maximaeivalue of Wigner
matrices by combinatorial techniques was initiated by §lijhand extended by
[FuK81] (whose treatment we essentially follow; see also(¥] for recent im-
provements). See also [Gem80] for the analogous resultg/fsinart matrices.
The method was widely extended in the papers [SiS98a], BB #S50s99] (with
symmetric distribution of the entries) and [PeS07] (in tlemegral case), allow-
ing one to derive much finer behavior on the law of the largegrevalue, see
the discussion in Section 3.7. Some extensions of the kifedhlbés and Sinai—
Soshnikov techniques can also be found in [KhoO1]. Finalbnditions for the
almost sure convergence of the maximal eigenvalue of Wigrarices appear in
[BaY88].

The study of maximal and minimal eigenvalues for Wishartrives is of fun-
damental importance in statistics, where they are refélweas sample covari-
ance matrices, and has received a great deal of attentienthecSee [SpT02],
[BePO05], [LIPRTJO5], [TaV09a], [Rud08], [RuV08] for a satemf recent devel-
opments.

The study of central limit theorems for traces of powers ofd@m matrices
can be traced back to [Jon82], in the context of Wishart mesr{an even earlier
announcement appears in [Arh71], without proofs). Ourgméation follows to a
large extent Jonsson’s method, which allows one to derivETaf@ polynomial
functions. A by-product of [SiS98a] is a CLT forftfXy) for analytic f, under
a symmetry assumption on the moments. The paper [AnZ05]rgkres these
results, allowing for differentiable functiorfsand for nonconstant variance of the
independent entries. See also [AnZ084a] for a differentivarsf Lemma 2.1.34.
For functions of the fornf (x) = ¥ a/(z — x) wherez € C\ R, and matrices of
Wigner type, CLT statements can be found in [KhKP96], witmsevhat sketchy
proofs. A complete treatment fdranalytic in a domain including the support of
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the limit of the empirical distribution of eigenvalues iygn in [BaY05] for ma-
trices of Wigner type, and in [BaS04] for matrices of Wishgipte under a certain
restriction on fourth moments. Finally, an approach base8aurier transforms
and interpolation was recently proposed in [PaL08].

Much more is known concerning the CLT for restricted classematrices:
[Joh98] uses an approach based on the explicit joint denitige eigenvalues,
see Section 2.5. (These results apply also to a class ofaeatnith dependent
entries.) For Gaussian matrices, an approach based ondtigastic calculus
introduced in Section 4.3 can be found in [Cab01] and [GuiB&cent extensions
and reinterpretation of this work, using the notion of setorder freeness, can
be found in [MiS06] (see Chapter 5 for the notion of freenessits relation to
random matrices).

The study of spectra of random matrices via the Stieltjassfam (resolvent
functions) was pioneered by Pastur co-workers, and greatinded by Bai and
co-workers. See [MaP67] for an early reference, and [Pa®r3 survey of the
literature up to 1973. Our derivation is based on [KhKP9BRiP9] and [SiB95].

We presented in Section 2.3 a very brief introduction to emti@ation inequali-
ties. This topic is picked up again in Section 4.4, to whichrefer the reader for
a complete introduction to different concentration indijigs and their applica-
tion in RMT, and for full bibliographical notes. Good refeces for the logarith-
mic Sobolev inequalities used in Section 2.3 are [Led01] [#&mBC*00]. Our
treatment is based on [Led01] and [GuZ00]. Lemma 2.3.2 isrtdfom [BoL0O,
Proposition 3.1]. We note in passing that,®ya criterion for a measure to satisfy
the logarithmic Sobolev inequality was developed by Bobdod Gotze [BoG99].
In particular, any probability measure &possessing a bounded above and be-
low density with respect to the measungsix) = Z-te¥“dx for a > 2, where
Z = [e M"dx, satisfies the LSI, see [Led01], [GuZ03, Property 4.6]. Fma
in the Gaussian case, estimates on the expectation of thienalaeigenvalue (or
minimal and maximal singular values, in the case of Wishatrives) can be ob-
tained from Slepian’s and Gordon’s inequalities, see [0iB®5] and [DaS01]. In
particular, these estimates are useful when using, in thes&an case, (2.3.10)
with k= N.

The basic results on joint distribution of eigenvalues m @OE and GUE pre-
sented in Section 2.5, as well as an extensive list of intégrenulas similar to
(2.5.4) are given in [Meh91], [For05]. We took, however, atgulifferent ap-
proach to all these topics based on the elementary proofeoS#iberg integral
formula [Sel44], see [AnNAR99], given in [And91]. The prodfiand91] is based
on a similar proof [And90] of some trigonometric sum ideiett and is also simi-
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lar in spirit to the proofs in [Gus90] of much more elaboraeritities. For arecent
review of the importance of the Selberg integral, see [FdQ@Bere in particular
it is pointed out that Lemma 2.5.15 seems to have first apdeaf®ix05].

We follow [FORO1] in our treatment of “superposition and ikeation” (The-
orem 2.5.17). We remark that triplgk, f,g) satisfying Assumption 2.5.18, and
hence the conclusions of Proposition 2.5.19, can be cledsifiee [FOR01], to
which we refer for other classical examples where supetipasind decimation
relations hold. An early precursor of such relations carrédesd to [MeD63].

Theorem 2.6.1 is stated in [BeG97, Theorem 5.2] under théiaddl assump-
tion thatV does not grow faster than exponentially and proved theretaildvhen
V(x) = ¥2. In [HiPOOb], the same result is obtained when the topology bl (R)
is taken to be the weak topology with respect to polynomitlfienctions instead
of bounded continuous functions. Large deviations for tm@ieical measure of
random matrices with complex eigenvalues were consider¢BeZ98] (where
non self-adjoint matrices with independent Gaussian entsiere studied) and in
[HiPOOa] (where Haar unitary distributed matrices are a@ered). This strategy
can also be used when one is interested in discretized warsibthe IawPI’;V
as they appear in the context of Young diagrams, see [GuMUBE LDP for
the maximal eigenvalue described in Theorem 2.6.6 is basgBeDGO01]. We
mention in passing that other results discussed in thistehhpve analogs for the
law P;’z\‘,v- In particular, the CLT for linear statistics is discussedJdoh98], and
concentration inequalities fdf convex are a consequence of the results in Section
4.4,

Models of random matrices with various degrees of depereleetveen entries
have also be treated extensively in the literature. For gkaof existing results,
see [BodMKV96], [ScS05] and [AnZ08b]. Random Toeplitz, Hahand Markov
matrices have been studied in [BrDJ06] and [HaMO05].

Many of the results described in this chapter (except fotiGes 2.3, 2.5 and
2.6) can also be found in the book [Gir90], a translation dd@3.Russian edition,
albeit with somewhat sketchy and incomplete proofs.

We have restricted attention in this chapter to Hermitiartrites. A natural
guestion concerns theomplexeigenvalues of a matriXy where all are i.i.d. In
the Gaussian case, the joint distribution of the eigengaees derived by [GIn65].
The analog of the semicircle law is now the circular law: thgpé&ical measure of
the (rescaled) eigenvalues converges to the circular lawttie measure uniform
on the unit disc in the complex plane. This is stated in [Gir8dth a sketchy
proof. A full proof for the Gaussian case is provided in [Edg®vho also eval-
uated the probability that exactkyeigenvalues are real. Large deviations for the
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empirical measure in the Gaussian case are derived in [BeE8Bnon-Gaussian
entries whose law possesses a density and finite momentsief ar least 6, a
full proof, based on Girko idea’s, appears in [Bai97]. Thelpem was recently
settled in full generality, see [TaV08a], [TaV08b], [GoT0the extra ingredients
in the proof are closely related to the study of the minimagsiar value ofX X*
discussed above.



3

Hermite polynomials, spacings and limit
distributions for the Gaussian ensembles

In this chapter, we present the analysis of asymptoticjdint eigenvalue dis-
tribution for the Gaussian ensembles: the GOE, GUE and GSE téns out, the
analysis takes a particularly simple form for the GUE, beeahen the process of
eigenvalues is determinantal procesgWe postpone to Section 4.2 a discussion
of general determinantal processes, opting to presentiememputations “with
bare hands”.) In keeping with our goal of making this chajgtezessible with
minimal background, in most of this chapter we consider thiEEGand discuss
the other Gaussian ensembles in Section 3.9. Generatizgdtamther ensembles,
refinements and other extensions are discussed in Chaptadt #h dhe biblio-
graphical notes.

3.1 Summary of main results: spacing distributions in the blk and edge of
the spectrum for the Gaussian ensembles

We recall that theN eigenvalues of the GUE/GOE/GSE are spread out on an in-

terval of width roughly equal to &N, and hence the spacing between adjacent
eigenvalues is expected to be of ordgx/N.

3.1.1 Limit results for the GUE

Using the determinantal structure of the eigenval{ed, ..., A} of the GUE,
developed in Sections 3.2-3.4, we prove the following.

90
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Theorem 3.1.1 (Gaudin—Mehta)~or any compact set A R,
im PIVNAN, ..., VNAY ¢ A

@ (1 k
= 1+kz ( k') fA'''fAdetj:lP(Sine(xj7Xj)rllj(:ld)(j7 (311)
=1 *

where

1 sin(x—y) X
KSine(Xa y) — { 7]:[ X-y ;A y7
T X= y
(Similar results apply to the sefs+ c,/n with |c| < 2, see Exercise 3.7.5.)

As a consequence of Theorem 3.1.1, we will show that the yhafantegrable
systems applies and yields the following fundamental tesaricerning the be-
havior of spacings between eigenvalirethe bulk

Theorem 3.1.2 (Jimbo—Miwa—Mori—Sato) One has
Jim PIVNAN ... VNAY & (—t/2,t/2)] = 1—F(t),

with
t
1—F(t):exp</ @dx) fort >0,
0

X
with o the solution of

(to”")2 +4(to’ — o) (td’ — o+ (0')?) =0,
so that

L S G ot 0 3.1.2
c=_-_1 _ I+ (tYast | 0. (3.1.2)

The differential equation satisfied lay is the o-form of Painlevé V. Note that
Theorem 3.1.2 implies th&t(t) —¢_o 0. Additional analysis (see Remark 3.6.5in
Subsection 3.6.3) yields that alB@t) —t_.. 1, showing thafF is the distribution
function of a probability distribution ofR , .

We now turn our attention to the edge of the spectrum.
Definition 3.1.3TheAiry functionis defined by the formula
1 3
Ai(x) = — [ /3 Xq 3.1.3
109 =5 . . (3.1.3)

whereC is the contour in the -plane consisting of the ray joinirg /3 to the
origin plus the ray joining the origin t&’"/3c (see Figure 3.1.1).
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oly

oly

Fig. 3.1.1. Contour of integration for the Airy function

TheAiry kernelis defined by

Kaiy (6.Y) = Ax y) i= SOOA ’(Y))( - ?i’(x) Ay

where the value fox =y is determined by continuity.

By differentiating under the integral and then integratiygparts, it follows that
Ai(x), for x € R, satisfies the\iry equation

d?y
Various additional properties of the Airy function and kelrare summarized in
Subsection 3.7.3.

The fundamental result concerning the eigenvalues of th& @tthe edge of
the spectrum is the following.

Theorem 3.1.4For all —oo <t <t’ < oo,

lim F{NZ/3 (%_2) Ztt],i= 1,...,N}

N—oo

) (_1)k t/ t' Kk k
= 1+ / det A(X, X; dx;, 3.1.5
kzl ) | det (X J)JI:ll J (3.1.5)

with A the Airy kernel. In particular,

2/3 AN
lim P |N — 2| <t
me e (Gh2) <

o  1\k
=1+ kzl% ftW...fthetjzlA(xi,xj)|‘|'j‘=ldxj =R(t). (3.1.6)
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Note that the statement of Theorem 3.1.4 does not ensurdé-thata distribu-
tion function (and in particular, does not ensure thgt—) = 0), since it only
implies the vague convergence, not the weak convergendbeaandom vari-
ablesAN/\/N— 2. The latter convergence, as well as a representati®p, are
contained in the following.

Theorem 3.1.5 (Tracy—Widom)The function E(-) is a distribution function that
admits the representation

Fa(t) :exp<—/too(x—t)q(x)2dx) , (3.1.7)
where q satisfies

g’ =tq+2¢, q(t) ~Ai(t),ast — +o. (3.1.8)

The functiornF,(+) is theTracy—Widondlistribution. Equation (3.1.8) is tHeainlee
Il equation. Some information on its solutions is collecteB@mark 3.8.1 below.

3.1.2 Generalizations: limit formulas for the GOE and GSE

We next state the results for the GOE and GSE in a concise veaallows easy
comparison with the GUE. Most of the analysis will be devdtedontrolling the
influence of the departure from a determinantal structutbese ensembles.

ForB=1,2,4, letA(Bn = (Al</3’”>,...,/\r§ﬁ~“>) be a random vector iRR" with
the Iaw%ﬁﬁ), see (2.5.6), possessing a density with respect to Lebesgasure

proportional to|A(x)|FeBX*/4. (Thus,B = 1 corresponds to the GOB,= 2 to
the GUE an@3 = 4 to the GSE.) Consider the limits

1-Fgpult) = lim P({vmM BV} (-1/2,t/2)} =0),
fort >0, (3.1.9)
Foeagdt) = ImP({n°(A#"—2ym)}n(t,) =0),
for all realt . (3.1.10)

The existence of these limits f@ = 2 follows from Theorems 3.1.2 and 3.1.4,
together with Corollary 3.1.5. Further, from Lemma 3.6.6®lewe also have

t t 2
1_F2,bulk(t)=exp<—7—_[—/o (t—x)r(x) dx),
where

((tr)" + (tr))? = 4n)*((tr)*+ ((tr))?), r(t) = =+ —5 +Oo(t?).
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The following is the main result of the analysis of spacirmggiie GOE and GSE.

Theorem 3.1.6The limits1 — Fg p (B = 1,4) exist and are as follows:

1-Frpukt) g
m = exp( 2/or(x)dx), (3.1.11)
1-Fapuk(t/2) 1

VI—Rpu® COSh( 2/0“X>°'X)- (3.1.12)

Theorem 3.1.7The limits g ¢qge(B = 1,4) exist and are as follows:

,edg

2/3 o
Faeagdt/277) cosh(—% / q(x)dx). (3.1.14)
t

vV F27edg&t)

The proofs of Theorems 3.1.6 and 3.1.7 appear in Section 3.9.

3.2 Hermite polynomials and the GUE

In this section we show why orthogonal polynomials ariseiraly in the study
of the law of the GUE. The relevant orthogonal polynomialthis study are the
Hermite polynomials and the associated oscillator wavestions, which we in-
troduce and use to derive a Fredholm determinant representar certain prob-
abilities connected with the GUE.

3.2.1 The GUE and determinantal laws

We now show that the joint distribution of the eigenvaludbfeing the GUE has

a nicedeterminantal form, see Lemma 3.2.2 below. We then use this formula
in order to deduce Bredholm determinangéxpression for the probability that no
eigenvalues belong to a given interval, see Lemma 3.2.4.

Throughout this section, we shall consider the eigenvatfi€SUE matrices
with complex Gaussian entries of unit variance as in Theo2eén2, and later
normalize the eigenvalues to study convergence issuesh¥lllel® interested in
symmetric statistics of the eigenvalues. ot N, recalling the joint distributions
32,82) of the unordered eigenvalues of the GUE, see Remark 2.5.3;alts
marginal #pn on p coordinates thelistribution of p unordered eigenvalues of



3.2 HERMITE POLYNOMIALS AND THE GUE 95

the GUE More explicitly, &2 Z,L is the probability measure dRP so that, for any

f € Co(RP),

[ 161 80)d R0+ 05) = [ 161 8)d7T (61, O0)
(recall that@,i,z) is the law of theunorderedeigenvalues). Clearly, one also has

/f&, %

(61, . 6p)

Zo /f ea(p))d@l(\IZ)(elv"'veN)’
ge

whereSp \ is the set of injective maps frofdl, - - -, p} into {1,--- ,N}. Note that
we automatically hav@,(\,z.?\, = @,(\,a.

P\
7,
p

We now introduce the Hermite polynomials and associatedhabtized (har-
monic) oscillator wave-function.

Definition 3.2.1(a) Thenth Hermite polynomiahn(x) is defined as

on(¥) 1= (—1)"e?2 L o e, (3.2.1)

(b) Thenth normalized oscillator wave-functida the function

e—x2/4ﬁn(x)

) =

(Often, in the Iiteratureg—l)“e?‘z%e*x2 is taken as the definition of theh Her-
mite polynomial. We find (3.2.1) more convenient.)

For our needs, the most important property of the oscilletare-functions is
their orthogonality relations

[ b= 8. (3.2.2)
We will also use the monic property of the Hermite polynomidhat is
$Hn(X) is a polynomial of degree with leading termx”. (3.2.3)

The proofs of (3.2.2) and (3.2.3) appear in Subsection 3s2@ Lemmas 3.2.7
and 3.2.5.

We are finally ready to describe the determinantal strutﬂm@éﬁz,. (See Sec-
tion 4.2 for more information on implications of this deteénantal structure.)



96 3. SPACINGS FORGAUSSIAN ENSEMBLES

Lemma 3.2.2For any p< N, the law?’ Z,L is absolutely continuous with respect

to Lebesgue measure, with density

(N-p)!

2
Lo o) =

detk™(6,0),

where

N-1
= > WX)Uk(y)- (3.2.4)
k=0

Proof Theorem 2.5.2 shows thpijz,)q exists and equals

N, N
Pin(Gs .6 =Con [ 1A [1e 7 [ dai. @29)
i= i=p+1
wherex; = 6 fori < pand( fori > p, andCp n is a normalization constant. The
fundamental remark is that this density depends on the Vamulee determinant

N

N det; 1(). (3.2.6)

A(x) = (xj =) = det .

1<i< <N
where we used (3.2.3) in the last equality.

We begin by considering = N, writing p,E,Z) for p,(\,zg\, Then

N 2N
(B ) = Cnn (iqegm_m)) e (3:2.7)
= i=

. N 2
Cun (iqegw,-1<e.)) —cNNdetK N8, 6)),

where in the last line we used the fact that(@&) = detA) det B) with A=B* =
(Wj-1(8))7j1- Here Cun = Mico (V27O

Of course, from (2.5.4) we know th&@k N = CN . We provide now yet another
direct evaluation of the normalization constant, follow[Meh91]. We introduce
a trick that will be very often applied in the sequel.

Lemma 3.2.3For any square-integrable functions,f.., f,and g, ...,gn on the
real line, we have

/ /det(ka gkxj>|_|d)q

=2 [ ] de det f(Xj)-iggtlgi(Xj)iEldn:ipjlré} [ i0gidx. (32.8)



3.2 HERMITE POLYNOMIALS AND THE GUE 97

Proof Using the identity déAB) = det{A) detB) applied toA = {fx(xi)}ik and
B = {gk(xj) }xj, we get

/ det<sz gkx,>|'ld>q /.../ig'égfi(xj).iﬁneggi(xj)ﬂdx,

which equals, by expanding the determinants involving #meifies{g;} and{ f;},

RIS Flf >>fld*

areSn I_l‘/f
_ Zﬂ rl/f 0o i) dx_n|det fi(x)g; (X)dx

O

Substitutingf; = gy = 1 andn= N in Lemma 3.2.3, and using the orthogonality
relations (3.2.2), we deduce that

N
detK( (8,6)) rlde. =N!, (3.2.9)
i,j=1 i—

which completes the evaluation Gf, y and the proof of Lemma 3.2.2 far= N.

For p < N, using (3.2.5) and (3.2.6) in a manner similar to (3.2.7)fiwe that
for some constar@, n, with x; = 6 if i < pand{; otherwise,

P60 = Con [ ( ety s 2 d
i=p+1

= CpnN /I_l Yo (j) 1(X] wr |_| dd.
crreSN i=p+1
Therefore, letting”(p, v) denote the bijections froffil,-- -, p} to {vy,---,vp}
=V, we get
2
pé,[zl(elv ) ep)
p

= Cn Y > e[ Yo-1(B)ri-2(8)

1<vi<-<Vp<N g,1€.%(p,v)

2
Con det g, 1(8 )) : (3.2.10)

1<vi<-<vp<N < =1

where in the first equality we used the orthogonality of thaifa {(;} to con-
clude that the contribution comes only from permutations/qffor which (i) =
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o(i) fori> p, and we put{vy,--- ,vp} = {1(1),---,1(p)} = {0(1),---,0(p)}.

Using the Cauchy—Binet Theorem A.2 with= B* (of dimensionp x N) and
A = j_1(8), we get that

~ p
péf) (61, ,6p) = CP~Ni?S£(K(N)(9ﬁej))-

To compute’fp,N, note that, by integrating both sides of (3.2.10), we obtain

. p 2
1=Cn Y /(iﬁisngjl(a)) d6y---d6p, (3.2.11)

1<vi<-<vp<N

whereas Lemma 3.2.3 implies that for &k, ..., vp},

p 2

Thus, since there aréN!)/((N — p)!p!) terms in the sum at the right side of
(3.2.11), we conclude th&t,n = (N — p)!/NL. O

Now we arrive at the main point, on which the study of the Iqualperties of
the GUE will be based.

Lemma 3.2.4For any measurable subset ARf

(—1)*
I

N 0 K k
PO eah =1+ / detK<N>(xi,xj)|'ld>q. (3.2.12)
i=1 k=1 A i

Aci,j=1

(The proof will show that the sum in (3.2.12) is actually fin)t The last expres-
sion appearing in (3.2.12) iscredholm determinantThe latter are discussed in
greater detail in Section 3.4.

Proof By using Lemmas 3.2.2 and 3.2.3 in the first equality, and ttreogonality
relations (3.2.2) in the second equality, we have

PPNieAi=1,. N

— et [ w9utodx= det (8~ | wxu(0x)

i,j=0

=1+§1<—1>k 5 dket(ACwVi<x>wvj<x>dx),

O§v1<<-<<vk§N71"J=1
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Therefore,
PP eAi=1,. N]

N K
(-1 / / < >
=1+ det g, (x dx
kzl k! A ACO<vl< ka<N 1 =1 ) J I_|
=1+ S (_1)k/ detK ) (%, %)) [ dx
N kzl Kl Jac  Jacij= ! rl

:1+§ (_1)k/ dZtK<N>(>q xi) [ dx (3.2.13)
& K e Jaeij=l ’Jil:l ’ -

where the first equality uses (3.2.8) wit{x) = fi(X) = ¢, (X)1ac(X), the second
equality uses the Cauchy—-Binet Theorem A.2, and the |gstisteivial since the
determinant dét_; KN (x;,xj) has to vanish identically fok > N because the

rank of (K (x;, x})}¥,_; is at mostN. O

3.2.2 Properties of the Hermite polynomials and oscillatwave-functions

Recall the definition of the Hermite polynomials, Definiti8r2.1. Some proper-
ties of the Hermite polynomials are collected in the follogriemma. Through-
out, we use the notatioff,g)y = [ f(x)g(x)e*xz/zdx In anticipation of further
development, we collect much more information than was eéex far. Thus,
the proof of Lemma 3.2.5 may be skipped at first reading. Nwée (8.2.3) is the
second point of Lemma 3.2.5.

Lemma 3.2.5The sequence of polynomigl§n(x) };,_, has the following proper-
ties.

1. $Ho(x) =1, 91(x) = xandHin;1(X) = X9n(X) — Hn(X).
2. Hn(x) is a polynomial of degree with leading termx".
3. Hn(x) is even or odd according ass even or odd.

4. (x,H2)y =0.

5. (9 Ne)y = V21K &y

6. (f,Hn)¢ = 0 for all polynomialsf (x) of degree< n.
7. X9n(X) = Hnr1(X) +nHn_1(x) forn> 1.

8. 95(X) =nHn_1(x).

9. $(X) —X5(X) +NHn(x) = 0

10. Forx#y,

“ilsjk(x)sak(y) _ (9n(®¥)9n-1(y) — Hn-1(X)Dn(y))
& K (n—=1l(x—y) '
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Property 2 shows thdtHn }n>0 is a basis of polynomial functions, whereas prop-
erty 5 implies that it is an orthogonal basis for the scaladpct(f,g)s defined
on L2(e—X2/2dx) (since the polynomial functions are dense in the latterespac

Remark 3.2.6Properties 7 and 10 are ttleee-term recurrencand theChristoffel—
Darboux identitysatisfied by the Hermite polynomials, respectively.

Proof of Lemma 3.2.5Properties 1, 2 and 3 are clear. To prove property 5, use
integration by parts to get that

2 dl )
/ﬁk(x)ﬁ'(x)eix [Zdx = (—1)|/53k(x)ﬂ(efx /2)dx

_ / [:—;ﬁk(x)] e%/2dx

vanishes ifl > k (since the degree dy is strictly less than), and is equal to
V2mk! if k=1, by property 2. Then, we deduce property 4 since, by profgrty
2 is an even function and so is the functier’/2. Properties 2 and 5 suffice
to prove property 6. To prove property 7, we proceed by indactn n. By
properties 2 and 5 we have, foe> 1,

_ " (x9n, D)y
& (9 ke

By property 6 thekth term on the right vanishes unlggs- n| < 1, by property 4
the nth term vanishes, and by property 2 tfre+ 1)st term equals 1. To get the
(n— 1)stterm we observe that

<Xﬁnaﬁn—l>§¢ _ <Xﬁnaﬁn—l>€¢ <5’)n,f)n>€¢
<f)nfl,f)nfl>€¢ <f)n,f)n>€¢ <f)nfl,f)nfl>€¢

by induction om and property 5. Thus property 7 is proved. Property 8 is atlire
consequence of properties 1 and 7, and property 9 is obtaineiferentiating
the last identity in property 1 and using property 8. To prpxaperty 10, call the
left side of the claimed identitlf (x,y) and the right sid&(x,y). Using properties
2 and 5, followed by integration by parts and property 8, aesghat the integral

Xn(X) Hk(X)-

=1-n=n

[ [ &2 2u50)F () (x-y)dxay

equals the analogous integral wiiiix, y) replacingr (x,y); we leave the details to
the reader. Equality of these integrals granted, propértptlows since{ i k=0
being a basis of the set of polynomials, it implies almosesquality and hence
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equality by continuity of, G. Thus the claimed properties of Hermite polynomi-
als are proved. O

Recall next the oscillator wave-functions, see DefinitioR.B. Their basic
properties are contained in the following lemma, which iseasy corollary of
Lemma 3.2.5. Note that (3.2.2) is just the first point of tharea.

Lemma 3.2.7The oscillator wave-functions satisfy the following.

=

- [ 0w 0dx= 8.
2. xn(x) = VN4 1y a(X) + VN 1(%).-

n-1
3 k;wk(X)wk(y) = VN(Uh(X)Yn-1(y) — Yn-2(X)¥n(y))/ (X —Y)-

4 A0 = ~SnX) + VA 1(x).

1 2
5. Y09+ (n+5 — 7 )¢n(¥) =0.

We remark that the last relation above is the one-dimenkBcabdinger equa-
tion for the eigenstates of the one-dimensional quantum-mécdldrarmonic os-
cillator. This explains the terminology.

3.3 The semicircle law revisited

Let Xy € jf,\fa be a random Hermitian matrix from the GUE with eigenvalues
AN < <A, and let

denote the empirical distribution of the eigenvalues of#sealed matrixy /v/N.
Ln thus corresponds to the eigenvalues of a Gaussian Wignexmat

We are going to make the average empirical distribuﬁgmxplicit in terms
of Hermite polynomials, calculate the momentsLaf explicitly, check that the
moments ofLy converge to those of the semicircle law, and thus providel-an a
ternative proof of Lemma 2.1.7. We also derive a recursigrtfie moments of
EN and estimate the order of fluctuation of the renormalizedimarn eigenvalue
)\,\’}‘/\/N above the spectrum edge, an observation that will be usef8ection
3.7.
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3.3.1 Calculation of moments dfy

In this section, we derive the following explicit formularfd_y, €%).

Lemma 3.3.1For any s€ R, any Ne N,

1 2k \ (N=1)---(N—k) s
(Ln,€° eSZ/ZNzkH( )( )Nk( )(Zk)!. (3.3.2)

Proof By Lemma 3.2.2,
(Ln, @) =N / ( ) (X,X) dx—/ o(x \/—X’ \/_X) X (3.3.3)

This last identity shows thaty is absolutely continuous with respect to Lebesgue

measure, with densitg ™) (v/Nx v/Nx)/v/N.

Using points 3 and 5 of Lemma 3.2.7, we obtain that, forany

(n) (x,y)/ /N = Yn(x) Wn—l(Y))(: ;pn—l(X) Un(y)

and hence by L'Hbpital’s rule
™ (x,%) /v = Ph(X) Pn-1(X) — Pn_1 (g (X).
Therefore
<" 000/ = (9109 — Y1) ¥n(X) = —Un()¢h-1(9). (3.3.4)

By (3.3.3) the functiork ™ (v/Nx v/Nx) /v/N is the Radon-Nikodym derivative
of Ly with respect to Lebesgue measure and hence we have theifajlogpre-
sentation of the moment-generating functiorLQf

(In, & / &Y VNK N (x x)dx (3.3.5)
Integrating by parts once and then applying (3.3.4), we firad t
(Ln, € / YNy (x) -1 (X)dX (3.3.6)

Thus the calculation of the moment generating functiohpboils down to the
problem of evaluating the integral on the right.

By Taylor’s theorem it follows from point 8 of Lemma 3.2.5 thior anyn,
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LetS =: [*, eXyn(X)Pn_1(X)dx. By the preceding identity and orthogonality we
have

_ —x2/2+tx
S"—mﬁ/san J9n1(x)e/2 dx

2/2
= \/—é /YJn X+1)Hn-1(x+1)e e ¥/2dx

- etz/z\/—nik ( )( ”;1 )thle.

Changing the index of summation in the last sum fiota n— 1 — k, we then get
_ 2/2 n l k n n—1 2k+1
g Vi Z) n—-1-k n—1-k t

2/2\/—2 (n— 1 (n—1-K)! (kil)(n;l)tZKH'

From the last calculation combined with (3.3.6) and afteurhier bit of rear-
rangement we obtain (3.3.2). O

We can now present another

Proof of Lemma 2.1.7 (for Gaussian Wigner matrices\We have written the
moment generating function in the form (3.3.2), making wiobis that as\ — o
the moments ok tend to the moments of the semicircle distribution. a

3.3.2 The Harer—Zagier recursion and Ledoux’s argument

Recall that, throughout this chaptaﬁ' denotes the maximal eigenvalue of a GUE
matrix. Our goal in this section is to provide the proof of ftbkowing lemma.

Lemma 3.3.2 (Ledoux’s bound)There exist positive constantsamd C such that

AN 2/35) ) —Ce
>e <Ce **®, 3.3.7
(2\/— N ( )

forallN > 1andeg > 0.

Roughly speaking, the last inequality says that fluctuatiohthe rescaled top
eigenvalue\l := AN /2y/N — 1 above 0 are of order of magnitutle 2/3, This is
ana priori indication that the random variabldg/3AY converge in distribution,
as stated in Theorems 3.1.4 and 3.1.5. In fact, (3.3.7) isggoi play a role in the
proof of Theorem 3.1.4, see Subsection 3.7.1.
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_ The proof of Lemma 3.3.2 is based on a recursion satisfiedéyntbments of
Ln. We thus first introduce this recursion in Lemma 3.3.3 beloaye it, and
then show how to deduce from it Lemma 3.3.2. Write

2Nk &
=525 (5% ) mor

Lemma 3.3.3 (Harer—Zagier recursions)~or any integer numbers k and N,

N Ny, Kk+1) (n
bl(<+>1 = bl(< )+ 4AN?2 bl((f)l’

(3.3.8)

where if k=0 we ignore the last term.

Proof of Lemma 3.3.3Define the (hypergeometric) function

B 1-n|\. & (=D /n-1),
Fat)=F < ) t> ._k;) ] < i} >t , (3.3.9)
and note that
td2 2td n—1) |R(t)=0 3.3.10
W‘F(—)a‘ﬂ—) n(t) =0. (3.3.10)
By rearranging (3.3.2) it follows from (3.3.9) that
(Ln,€%) = Py (—%) , (3.3.11)

where
D (t) = e V2R(t).

From (3.3.10) we find that

d? d

Write next®n(t) = Sp_, af(mtk. By (3.3.12) we have
0=4(k+2)(k+1)a"”; +4ng” —a”,,
where ifk = 0 we ignore the last term. Clearly we have, taking N,

(—Dfa (200 B 2K\ o o
NK _k+1< k >_<"N’X )

The lemma follows. a
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Proof of Lemma 3.3.2From (3.3.8) and the definitions we obtain the inequalities

k(k+1
o<t <o, < (150 ol

forN > 1,k > 0. As a consequence, we deduce that

bV < iz , (3.3.13)
for some finite constard > 0. By Stirling’s approximation (2.5.12) we have
o k32 2k
soaers (e ) <

It follows from (3.3.13) and the last display that, for appriate positive constants
c andC,

P(&>e’f) < E( A )2k (3.3.14)
2N — - 2v/Ne o
— (N)
= ez;Tfi) ( 2kk ) < O3B erin?,

forallN > 1,k > 0 and real numberst > 0 such thak = |t |, where|t| denotes
the largest integer smaller than or equat toTakingt = N?/3 and substituting
N~2/3¢ for ¢ yields the lemma. i

Exercise 3.3.4Prove that, in the setup of this section, for every intdgeholds
that

im E(Ln,XK)2 = im (Ln, X2, (3.3.15)

Using the fact that the moments lo§ converge to the moments of the semicircle
distribution, complete yet another proof of Wigner’'s Theror2.1.1 in the GUE
setup.

Hint: Deduce from (3.3.3) that

(Ln, X< /XkK(N)(X,X)dX.

= NK/2+1
Also, rewriteE (Ly,x¥)? as

= [ S X492 detk ™. x,) [ %
N2+ N i; i,j=1 ’Jﬂ )

2
- Nk1+2 / / XK N (x, y)2dxdy+ Nklﬂ ( / ka<N>(x,x)dx)

= <IjN,Xk>2+Il£N),
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wherelliN) is equal to

2k k
Nk+3/2//X ka () WUn—1(Y) — Un—1(X) YN (Y))K (X, y)dxdy.

To prove the equallty marked with the exclamation pointystiat
KO OK Oyt =K (cy).

while the expression foIrk N) uses the Christoffel-Darboux formula (see Section

3.2.1). To complete the proof of (3.3.15), show thatying I&N) =0, expanding
the expression

XK ek
X—y

as a linear combination of the functiogs(x) Ym(y) by exploiting the three-term

recurrence (see Section 3.2.1) satisfied by the oscillaaweviunctions.

(N PN-1(Y) — Pn-1(X)IN(Y))

Exercise 3.3.5Nith the notation of Lemma 3.3.2, show that there exist’ > 0
so that, forallN > 1, if € > 1 then

2/3¢ 1 3

>l <C'Sec°e?.
(2\/— - ) T e

This bound improves upon (3.3.7) for large

Hint: optimize differently over the parameteat the end of the proof of Lemma
3.3.2, replacing there byeN—2/3,

w

Exercise 3.3.6The functionF,(t) defined in (3.3.9) is a particular case of the
generahypergeometric functiqrsee [GrKP94]. Let
K = x(x+1)- (x+k—1)

be the ascending factorial power. The general hypergeanfetrction is given
by the rule

) = 00 alial[()i
by - by

_k;)bli...bgk!'

(i) Verify the following generalization of (3.3.10):

d/d d ap - ap
&(dt”’l ) (ta+bq—1)F<b1 B

d d a - ap
<tdt+a1) (tdt+ap)F<bl o
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(i) (Proposed by D. Stanton) Check tha(t) in (3.3.9) is a Laguerre polynomial.

3.4 Quick introduction to Fredholm determinants

We have seen in Lemma 3.2.4 that a certain gap probabibtythe probability
that a set does not contain any eigenvalue, is given by a Bhedtheterminant.
The asymptotic study of gap probabilities thus involvesahalysis of such de-
terminants. Toward this end, in this section we review kefiniteons and facts
concerning Fredholm determinants. We make no attempt teaelyreat gen-
erality. In particular we do not touch here on any functiom@lytic aspects of
the theory of Fredholm determinants. The reader interestédin the proof of

Theorem 3.1.1 may skip Subsection 3.4.2 in a first reading.

3.4.1 The setting, fundamental estimates and definition lo¢ tFredholm
determinant

Let X be a locally compact Polish space, wi##x denoting its Borel-algebra.
Let v be a complex-valued measure @6, %x ), such that

|\v|\1:/x|v(dx)| <. (3.4.1)

(In many applicationsX = R, andv will be a scalar multiple of the Lebesgue
measure on a bounded interval).

Definition 3.4.1A kernelis a Borel measurable, complex-valued functi(x, y)
defined onX x X such that

IK|:= sup |K(Xy)|< . (3.4.2)
(xy)eXxX

Thetraceof a kernelK(x,y) (with respect ta) is

tr(K) = / K (%, X)dv(x). (3.4.3)

Given two kernel¥(x,y) andL(x,y), define theicompositior(with respect ta/)
as

(KxL)(xy) = / K(x2)L(zy)dv(2). (3.4.4)

Thetrace in (3.4.3) and the compositionin (3.4.4) are wedfileed becausey || <
o and||K|| < o, and furtherK x L is itself a kernel. By Fubini’s Theorem, for any
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three kernel¥, L andM, we have

tr(KxL) =tr(LxK) and(KxL) xM = K% (LxM).

Warning We do not restricK in Definition 3.4.1 to be continuous. Thus, we may
have situations where two kernddsK’ satisfyK = K’, v x v- a.e., but tK) #
tr(K’).

We turn next to a basic estimate.

Lemma 3.4.2Fix n > 0. For any two kernels Fx,y) and G(x,y) we have

n n
detF (xi,yj) — i(JjSth(Xi ,yj)

det <ntY2|IF — G||-max(|[F |, |G|)"* (3.4.5)
ij=

and

n
,quF(m,yj)‘ <n"2||F|". (3.4.6)
L=

The factom™2in (3.4.5) and (3.4.6) comes from Hadamard's inequalitye@iem
A.3). In view of Stirling’s approximation (2.5.12), it ise4r that the Hadamard
bound is much better than the bounldve would get just by counting terms.

Proof Define

G(x,y) ifi<k,
HY ) ={ F(xy)—Glxy) ifi=k
F(x,y) ifi>Kk,
noting that, by the linearity of the determinant with resgeaows,
n n N n (k)
detF(x,yj) — detG(x;,yj) = 5 detH™(x,yj). (3.4.7)
i,j=1 i,j=1 k:1|,J=1

Considering the vectoxs = vfk> with vi(j) = Hi(k) (xi,Yj), and applying Hadamard’s

inequality (Theorem A.3), one gets

< n"V2|[F — G| - max(|[F|L, | G)™*.

n
k
detH (%))

Substituting in (3.4.7) yields (3.4.5). Noting that the snation in (3.4.7) involves
only one nonzero term whea = 0, one obtains (3.4.6). O

We are now finally ready to define the Fredholm determinartcated with a
kernelK(x,y). Forn> 0, put

Bo=Bo(K,v) = [ igrizath@,é,-)dv(fl)---dv(fn>, (3.4.8)
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settingA\g = Ap(K, v) = 1. We have, by (3.4.6),
[ ] det (&g dv(en) - dvien)| < VIEIKIP2. (349)
So,A, is well defined.

Definition 3.4.3TheFredholm determinardssociated with the kernklis defined
as

AK) =AK,v) = io (=

(As in (3.4.8) and Definition 3.4.3, we often suppress thesdépnce o from
the notation for Fredholm determinants.) In view of Stigls approximation
(2.5.12) and estimate (3.4.9), the series in DefinitionBcbnverges absolutely,
and sadA(K) is well defined. The reader should not confuse the Fredhotermaée
nantA(K) with the Vandermonde determinaiitx): in the former, the argument
is a kernel while, in the latter, it is a vector.

Remark 3.4.4 Here is some motivation for callind(K) a determinant. Let
f1(x),..., fn(X), 91(X), ..., 9n(X) be given. Put

N
K(xy) = ; fi(x)i(y)

Assume further that magup fi(x) < c and maxsug,gj(y) < . ThenK(x,y) is
a kernel and so fits into the theory developed thus far. Paaspty the proof of
Lemma 3.2.4, we have that

A(K —Iqet(d, /f )gj (x)dv(x ) (3.4.10)

For this reason, one often encounters the notatiofi deK) for the Fredholm
determinant oK.

The determinant&(K) inherit good continuity properties with respect to the|
norm.

Lemma 3.4.5For any two kernels Kx,y) and L(x,y) we have

AK) AL < (i VI - max K L)

n=1

) JIK=L]. (3.4.11)
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Proof Sum the estimate (3.4.5). O

In particular, withK held fixed, and withL varying in such a way thafk —L|| —

0, it follows thatA(L) — A(K). This is the only thing we shall need to obtain
the convergence in law of the spacing distribution of theeiglues of the GUE,
Theorem 3.1.1. On the other hand, the next subsectionsevilseful in the proof
of Theorem 3.1.2.

3.4.2 Definition of the Fredholm adjugant, Fredholm resolaeand a
fundamental identity

Throughout, we fix a measuteand a kerneK(x,y). We putA = A(K). All the
constructions under this heading dependkandv, but we suppress reference to
this dependence in the notation in order to control clufbefine, for any integer
n>1,

XL oo Xn\ ] o
K( Yi oo Yn )-iﬁ'e}K(m,yJ), (3.4.12)
set
H"(X’y):/'“/K<§ 2 2 )d‘/(fl)“-d\/(fn) (3.4.13)
and

Ho(x,y) = K(x,y).
We then have from Lemma 3.4.2 that

Ha(xY)| < K[ H[v[[§(n-+ 1) 072, (3.4.14)

Definition 3.4.6 The Fredholm adjuganof the kerneK(x,y) is the function

H(xy) = ZO (_n? Hn(X,y) . (3.4.15)

If A(K) # 0 we define theesolvenif the kerneK(x,y) as the function

R(x,y) = HA((XP’())/) )

(3.4.16)

By (3.4.14), the series in (3.4.15) converges absolutetuariformly onX x X.
ThereforeH (-) is well defined (and continuous 0P if K is continuous orX x
X). The main fact to bear in mind as we proceed is that

sup|F (X,y)| < o (3.4.17)
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forF =K,H,R. These bounds are sufficient to guarantee the absolutergamaee
of all the integrals we will encounter in the remainder oftBet3.4. Also it bears
emphasizing that the two-variable functidd$éx,y) (resp.,R(x,y) if defined) are
kernels.

We next prove a fundamental identity relating the Fredhalijugant and de-
terminant associated with a kerrel

Lemma 3.4.7 (The fundamental identity)Let H(x,y) be the Fredholm adjugant
of the kernel Kx,y). Then,

[KxDHEYAVE = Hexy)—AK)Kxy)
- /H(x,z)K(z,y)dv(z), (3.4.18)
and hence (equivalently)
KxH=H—A(K)-K=HxK. (3.4.19)

Remark 3.4.8Before proving the fundamental identity (3.4.19), we mamns
amplifying remarks. IfA(K) # 0 and hence the resolveRfx,y) = H(x,y)/A(K)
of K(x,y) is well defined, then the fundamental identity takes the form

/K(x,z)R(z,y)dv(z) =R(xYy) —K(x,y) = /R(x,z)K(z,y)dv(z) (3.4.20)
and hence (equivalently)
KxR=R—-K=RxK.

It is helpful if not perfectly rigorous to rewrite the lastrfoula as the operator
identity

1+R=(1-K)™L

Rigor is lacking here because we have not taken the troubdsdociate linear
operators with our kernels. Lack of rigor notwithstanditingg last formula makes
it clear thatR(x,y) deserves to be called the resolventdk, y). Moreover, this
formula is useful for discovering composition identitiesieh one can then verify
directly and rigorously.

Proof of Lemma 3.4.7Here are two reductions to the proof of the fundamental
identity. Firstly, it is enough just to prove the first of thgualities claimed in
(3.4.18) because the second is proved similarly. Secopdbgeeding term by
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term, sinceHp = K andfg = 1, it is enough to prove that, for> 0,

_1)n-1 _\n
((ni)l)! /K(x,z)Hn,l(z,y)dv(z): ( n? (Ha(%,y) — Bn-K(x,Y))
or, equivalently,
Hn(X,y) :An-K(x,y)—n/K(x, 2)Hn-1(z y)dv(2), (3.4.21)

whereA, = Ap(K).

Now we can quickly give the proof of the fundamental iden{@y4.19). Ex-
panding by minors of the first row, we find that

El En
(yaoe)
_ El En
- K(va)K< El En)

C (1) . & & & & En>
+jzl( D K(X’EJ)K< y & .o &1 G o dn

- e (g R
_n , T 3 TR 3 T Y S En)
j;m,fj)K( R D E

Integrating out the variableg, ... ., &, in evident fashion, we obtain (3.4.21). Thus
the fundamental identity is proved. O

x

We extract two further benefits from the proof of the fundatakidentity. Re-
call from (3.4.8) and Definition 3.4.3 the abbreviated niota\, = An(K) and
A(K).

Corollary 3.4.9 (i) For alln > 0,

) = 3 S e () ) *
n+1-k
(i) Further,
_1\n n _ k
( n::-) Ani1= z ( k::-) A -tr(Kx---xK). (3.4.23)
: k=0 ™ n+1-k

In particular, the sequence of numbers

tr(K), tr(KxK), tr(K«xKxK), ...
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uniquely determines the Fredholm determinA(k).

Proof Part (i) follows from (3.4.21) by employing an induction onWe leave the
details to the reader. Part (i) follows by putting= ¢ andy = £ in (3.4.22), and
integrating out the variablé. O

Multiplicativity of Fredholm determinants

We now prove a result needed for our later analysis of GOE &BH.@ reader
interested only in GUE can skip this material.

Theorem 3.4.10Fix kernels Kx,y) and L(x,y) arbitrarily. We have
AK+L—L+K)=AK)A(L). (3.4.24)

In the sequel we refer to this relation as thaltiplicativity of the Fredholm deter-
minant construction.

Proof Let t be a complex variable. We are going to prove multiplicagioty
studying the entire function

¢K7|_(t) =AK+t(L-LxK))

of t. We assume below thak | (t) does not vanish identically, for otherwise there
is nothing to prove. We claim that

Pk (0) = —AK)tr(L—LkK)+tr((L—LxK)xH)
= —AK)tr(L), (3.4.25)

whereH is the Fredholm adjugant df, see equation (3.4.15). The first step
is justified by differentiation under the integral; to jdgtthe exchange of limits
one notes that for any entire analytic functibfz) ande > 0 one hasf’(0) =

ﬁ Jig=¢ %dz, and then uses Fubini's Theorem. The second step followikdoy t
fundamental identity, see Lemma 3.4.7. This completesthefpf (3.4.25).

Sincedo, (t) = A(tL) equals 1 fott = O, the productpo (t)¢Pk L (t) does not
vanish identically. Arbitrarily fix a complex numbgrsuch thatpg | (to) ¢k L (to) #
0. Note that the resolvaigof toL is defined. One can verify by straightforward
calculation that the kernels

K=K+to(L—L*K), L=L+Lx*S, (3.4.26)
satisfy the composition identity

K+ (to+t)(L—LxK)=K+t([L—-LxK). (3.4.27)
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With K andL as in (3.4.26), we havgx i (t) = ¢k L(t +1o) by (3.4.27) and hence

d loggr L (t) =—tr(D)

dt t=ty
by (3.4.25). Now the last identity holds also fiér= 0 and the right side is inde-
pendent oK. It follows that the logarithmic derivatives of the funati®go (t)
and ¢k L (t) agree wherever neither has a pole, and so these logaritheriiae
tives must be identically equal. Integrating and exporaginigy once we obtain an
identity ¢k L(t) = ¢k .L(0)do,(t) of entire functions of. Finally, by evaluating
the last relation at= 1, we recover the multiplicativity relation (3.4.24). 0O

3.5 Gap probabilities at0 and proof of Theorem 3.1.1

In the remainder of this chapter, we &y € jf,\fa be a random Hermitian matrix
from the GUE with eigenvalues] < --- < AY. We initiate in this section the
study of thespacingsetween eigenvalues &fy. We focus on those eigenvalues
that lie near 0, and seek, for a fixed 0, to evaluate the limit

lim PlVNAY, ..., VNAY ¢ (—t/2,t/2)], (3.5.1)

N—co
see the statement of Theorem 3.1.1. We notedhaiori, because of Theorems
2.1.1 and 2.1.22, the limit in (3.5.1) has some chance ofgoromdegenerate
because thil random variables/NAY ..., v/NA{) are spread out over an interval
very nearly of length M. As we will show in Section 4.2, the computation of the
limitin (3.5.1) allows one to evaluate other limits, suchfaslimit of the empirical
measure of the spacings in the bulk of the spectrum.

Asin (3.2.4), set
_ /R Un(X) Lpn_l(y))( : ;Pn—l(x) Un(y)

where thei(x) are the normalized oscillator wave-functions introducedefi-

nition 3.2.1. Set
1 X Yy
n) -~ k{2
V0¥ = 75 (ﬁ’ ﬁ) |
A crucial step in the proof of Theorem 3.1.1 is the followiegima, whose proof,
which takes most of the analysis in this section, is deferred

)

n-1
K™ (x,y) = k;) W (X) Yk (y)

Lemma 3.5.1With the above notation, it holds that

. 1 sin(x—y)
n) i SR 74
lim S (xy) = ~ " (3.5.2)
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uniformly on each bounded subset of {kgy)-plane.

Proof of Theorem 3.1.1Recall that by Lemma 3.2.4,

PV ..., viAY ¢ A
0 -1 k
= 1+ kzl%f\/ﬁlA'”f\/ﬁlAdeﬁj1K(n)(xi’xj)nlj<ldxj

© (1 k
= 1+kz %fA“‘fAdeﬁFls(n)(Xi’xi)ﬂlJ(:lde'

(The scaling of Lebesgue’s measure in the last equalitya@xplthe appearance
of the scaling by 1,/n in the definition ofS"(x,y).) Lemma 3.5.1 together with
Lemma 3.4.5 complete the proof of the theorem. O

The proof of Lemma 3.5.1 takes up the rest of this section. ¥gérbby bring-
ing, in Subsection 3.5.1, a quick introduction to Laplace&thod for the evalua-
tion of asymptotics of integrals, which will be useful fohetr asymptotic compu-
tations, as well. We then apply it in Subsection 3.5.2 to aafecthe proof.

Remark 3.5.2We remark that one is naturally tempted to guess that the ran-
dom variableMy ="width of the largest open interval symmetric about the orig
containing none of the eigenvalue‘NA{“, ey \/N)\N ” should possess a limit in
distribution. Note however that we do r@priori have tightness for that random
variable. But, as we show in Section 3.6, we do have tight(sess (3.6.34) be-
low) a posteriori In particular, in Section 3.6 we prove Theorem 3.1.2, which
provides an explicit expression for the limit distributiofi\.

3.5.1 The method of Laplace

Laplace’s method deals with the asymptotic $as o) evaluation of integrals of
the form

/ f (x)%g(x)dx.

We will be concerned with the situation in which the functibpossesses a global
maximum at some poird, and behaves quadratically in a neighborhood of that
maximum. More precisely, let : R — R be given, and for some constaant
and positive constanss, K, L, M, let¥ =¥ (a, &, %, f(-),K,L,M) be the class of
measurable functior: R — R satisfying the following conditions:

() lg(a)] <K;
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(ii) SUp0<\x—a\§£o %g(a)

(i) f()%|gldx< M.

<L

We then have the following.

Theorem 3.5.3 (Laplace)l et f: R — R, be afunction such that, for some=eR
and some positive constargg c, the following hold.

(@) f(x) < f(X)ifeithera—g<x<xX <aora<x <x<a+é&.
(b) Forall & < &9, SUp,_-¢ F(X) < f(a) —ce®.
(c) f(x) has two continuous derivatives in the interyal- 2y, a+ 2¢p).
(d) f"(a)<O.
Then, for any function g ¢ (a, &, %, f (), K,L,M), we have

lim 51(@)® [ 100°gxdx= —Zf’f,‘;g‘) 0@, (353

and moreover, for fixed, &, &,5,K,L, M, the convergence is uniform over the
class¥(a, &, %, f(-),K,L,M).

Note that by point (b) of the assumptiorf$a) > 0. The intuition here is that as
tends to infinity the functioOf (x) / f (a))® nearx = a peaks more and more sharply
and looks at the microscopic level more and more like a heke, whereas (x)°
elsewhere becomes negligible. Formula (3.5.3) is arguhklgimplest nontrivial
application of Laplace’s method. Later we are going to ent@umore sophisti-
cated applications.

Proof of Theorem 3.5.3Let £(s) be a positive function defined fer> 55 such
that£(s) —s .o 0 aNdse(S)? —s .0 %0, While &g = Sup.¢, €(s). For example, we
could takee(s) = & - (so/s)Y/*. Fors> s, write

[ 100°0dx=g(@)ly + 12+ .

where

I, = f‘xfa‘g(s) f(x)%dx,
2 = fixca<ee FTX3(9(x) —g(a))dx,
I3 = f‘xfa‘».@ f(x)%g(x)dx.

For|t| < 2&, put

1
h(t) = /0 (1—r)(logf)"(a+rt)dr,
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thus defining a continuous function osuch thah(0) = f”(a)/2f(a) and which
by Taylor’'s Theorem satisfies

f(x) = f(a)exph(x—a)(x—a)?)

for [x—al| < 2&. We then have
e e (5)")
1 = exp(h|{ — | t° ) dt,
LT Juzeovs TU\ VB

tm Vaf(a) 1 = [ exp(n0?) ot = |- 2.

and hence

We havellz| < Lég(s)l; and hence
lim \/sf(a)™®1,=0.
S—00

We have, since(s) < &,

2\ %
ol <M sup [f(X)P®<Mf(a)s (1— ce(s) ) ,
x:|x—a|>£(s) f(a)

and hence
lim \/sf(a) 513 =0.
S—oo

This is enough to prove that the limit formula (3.5.3) holdsl &nough also to
prove the uniformity of convergence over all functia@is) of the class?. O

3.5.2 Evaluation of the scaling limit: proof of Lemma 3.5.1

The main step in the proof of Lemma 3.5.1 is the following anifi convergence
result, whose proof is deferred. Let

1 t
Wy(t) =nagy (ﬁ) )
with v a quantity whose difference fromis fixed (in the proof of Lemma 3.5.1,
we willusev =n,n—1,n—2).

Lemma 3.5.4Uniformly fort in a fixed bounded interval,

n|ig30|wv(t)—\iﬁcos(t—%) 1= 0. (3.5.4)
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With Lemma 3.5.4 granted, we can complete the
Proof of Lemma 3.5.1Recall that
WH(%)Wn—l(%) - Wn—l(%ﬂl’n(%)

SV(xy) = VA — .

In order to prove the claimed uniform convergence, it is ukgf get rid of the
division by (x—y) in S™(x,y). Toward this end, noting that for any differentiable
functionsf,gonR,

f(x)g(y) — f(y)9(x)

X—y
(-t g(y) — g%
—( Xy )g(y)+f(y)< X—y >
1 1
- g(y)/o f’(tx+(1—t)y)dt—f(y)/0 g(tx+ (L—t)y)dt, (3.5.5)
we deduce
1
SUxy) = dhal ) / Unlt s+ (1) Tt
y., [t X y
Un( ) / Uh-a(t e+ (1) Tt (3.5.6)
1
- um(%) |Vt 2(2) = S0n(@) 1y
1
Un( ) [ VA 202 St 1@l g

where we used in the last equality point 4 of Lemma 3.2.7. §§%5.4) (in the
casev =n,n— 1 n—2)in (3.5.6) and elementary trigopnometric formulas shows
that

SV(xy) ~ ,—1T<005(y— n(nz— 1))/01003<tx+ (1-t)y— n(nz— 1)> dt

—cogy— %)/Olcos(ter (1-t)y— n(nz— 2)> dt)
1sin(x—y)

)

T X—y

~

which, Lemma 3.5.4 granted, completes the proof of Lemma. 3.5 O

Proof of Lemma 3.5.4Recall the Fourier transform identity

2 1 279
e */2 /e‘f /2-iExgg
V2
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Differentiating under the integral, we find that

ndn

—x2/2 _ 1Y 2 _ Ez/Z—iEx
Bn(¥e /2= (-1 e ﬁ/(|5) dé,

or equivalently
2/4

We use the lettev here instead ctﬁ to help avoid confusion at the next step. As a
consequence, settil@y , = 1/n/(2m), we have

W0 = e [ Eve €2 i0ae. (35.7)

ve?/(4n)n1/4 '
T
2
_ (27‘[)1/4C \e/ti4n n1/4+v/2/ fe &2 /2)n v —|EtEv—ndE
vl
N (27T)l/4(\:},,—r1'nl/4+n/2/(fegz/z)niveiftfvndE
ni

~ Cyne"? / £ €7/2"0)(isigné ) Ve ¥ €V " dE

where Stirling’s approximation (2.5.12) and the fact thgi(t) is real were used
in the last line. Using symmetry, we can rewrite the last egpions as

20,02 [ £(E)a(E)dé

with f(x) = xe™/21,..0 andg(x) = gy (X) = cogxt — 2 )xV ",

Considett as fixed, and lebh — o in one of the four possible ways such that
o(-) does not depend am(recall thatv — n does not depend am. Note thatf (x)
achieves its maximal value gt= 1 and

f(1)=e2 f(1)=0, {"(1)=-2e"2
Hence, we can apply Laplace’s method (Theorem 3.5.3) to ffiat t
1 v
va(t) —Nn—oo WTCOS('[ — 7) .

Moreover, the convergence here is uniform fan a fixed bounded interval, as
follows from the uniformity asserted for convergence initiformula (3.5.3). O

Exercise 3.5.8Jse Laplace’s method (Theorem 3.5.3) vats 1 to prove (2.5.12):
ass — oo along the positive real axis,

= /oo e X _ ss/ (xe*X)S% ~V2msY%es,
0 X 0 X
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This recovers in particular Stirling’s approximation (2.8).

3.5.3 A complement: determinantal relations

Let integers(y,...,¢p > 0 and bounded disjoint Borel sefg,...,Ap be given.
Put

N1, lpi A, Ap) =P G = [{VNAN, ... .VNAY P NA| fori=1,....p].

We have the following.

Lemma 3.5.6Let s, ...,Sy be independent complex variables and let
¢=(1-s)1p + -+ (1=5Sp)la,.
Then, the limit
P(l1,... (piAL, . Ap) = lim PN (ly,... LpiAL,.... Ap) (3.5.8)

exists and satisfies

0 (o)
Lp

Sy -y P(a,... Lpi AL, Ap)ST - Sy

= (1)K
[

:1+zk

f...fdetszl,%s";é’:jxj) M1 0(x)dx;. (3.5.9)
That is, the generating function in the left side of (3.5.8) ©e represented in
terms of a Fredholm determinant. We note that this holdseatgr generality, see
Section 4.2.

Proof The proof is a slight modification of the method presentedubsgction
3.5.2. Note that the right side of (3.5.9) defines, by the &mental estimate
(3.4.9), an entire function of the complex varialdges . ., Sp, whereas the left side
defines a function analytic in a domain containing the prodiip copies of the
unit disc centered at the origin. Clearly we have

N
¢
E rl(l‘ o (VRAN)) = > AN, Lt AL Ap)S - SP
i= 1, 0p>0
O+ +Ep<N
(3.5.10)
The function ofsy, ..., sp on the right is simply a polynomial, whereas the expec-
tation on the left can be represented as a Fredholm detemtmifaom this, the
lemma follows after representing the probabily(¢1,...,¢p;Aq,...,Ap) as ap-
dimensional Cauchy integral. O
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3.6 Analysis of the sine-kernel

Our goal in this section is to derive differential equatiqimsthe parametet)

for the probability that no eigenvalue of the (properly msed) GUE lies in the
interval (—t/2,t/2). We will actually derive slightly more general systems of
differential equations that can be used to evaluate exipresbke (3.5.9).

3.6.1 General differentiation formulas

Recalling the setting of our general discussion of Fredhddterminants in Sec-
tion 3.4, we fix a bounded open interval b) C R, real numbers

a<ti<---<th<b

in the interval(a, b) and complex numbers

Sty.--3S0-1, SO:OZSn
Set
N =Sl + + -1l 16)

and definev so that it has densityy with respect to the Lebesgue measure on
X =R. We then have, fof € L[(a,b)],

n-1 i1
(f,v):/f(x)dv(x): zis/ f(x)dx.
i= K
Motivated by Theorem 3.1.1, we fix the function

sin(x—vy)
Xy)=——= (3.6.1)
Y= Ty)
on (a,b)? as our kernel. As usudl = A(S) denotes the Fredholm determinant
associated witls and the measure. We assume tha = 0 so that the Fredholm
resolventR(x,y) is also defined.

Before proceeding with the construction of a system of difféial equations,
we provide a description of the main ideas, disregardindis sketch issues of
rigor, and concentrating on the most important caseef2. View the kernel$S
andR as operators oh'[(a, b)], writing multiplication instead of the operation.
As noted in Remark 3.4.8, we have, wifiix,y) = (x—y)S(x,y) andR(x,y) =
(x—y)R(x,y), that

(1-97'=1+R S=[M,§, R=[M,R],
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whereM is the operation of multiplication byand the brackgi, B] = AB— BAis
the commutator of the operatdksB. Note also that under our special assumptions

§(x,y) = (sinxcosy — sinycosx) /T,
and hence the operatSiis of rank 2. But we have

R

[MaR] = [Mv(l_s)il]
~1-97YM,1-5(1-9 = (1+R§1+R),

and henceR is also of rank 2. Lettind®(x) = (1+ R)cogx)/+/7T andQ(x) =
(14 R)sin(x)/+/TT, we then obtaiR = Q(x)P(y) — Q(y)P(x), and thus

(See Lemma 3.6.2 below for the precise statement and pr@ofe checks that
differentiating with respect to the endpoinist, the function log\(S) yields the
functionsR(tj,t), i = 1,2, which in turn may be related to derivatives®fand

Q by a careful differentiation, using (3.6.2). The system iffedential equations
thus obtained, see Theorem 3.6.2, can then be simplifiegt, gfecialization to
the casd, = —t; =1/2, to yield the Painlevé V equation appearing in Theorem
3.1.2.

Turning to the actual derivation, we consider the pararseter..,t, as vari-
able, whereas we consider the kerSgl,y) and the parametess, ..., s,-1 to be
fixed. Motivated by the sketch above, $ék) = (sinx)/./mand

QX = 109+ [REYFWIAV(Y), PO) =1+ [Roxy) ') dviy).
(3.6.3)
We emphasize tha®(x), Q(x) andR(x,y) depend or,...,t, (throughv), al-
though the notation does not show it. The main result of taiisn, of which
Theorem 3.1.2 is an easy corollary, is the following systérdiiferential equa-
tions.

Theorem 3.6.1With the above notation, put, forji=1,...,n,

pi=P), G=0Q(), Rj=R.1).
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Then, forij =1,...,nwithis# j, we have the following equations:

Rj = (aipj—ajpi)/(ti—tj),

dq;/0t = —(s—s-1)-Rjia,

opj/oti = —(s—s-1) Rjipi,

g /0t = +pi+ ;(Sk—&—l)'Rika,
KZi

opi/oti = —qg+ Z‘(SK—SK—l)'Rikpka
k#i

Ri = pidqi/oti—qidpi/ot,
(9/0t)logh = (s—s-1)-Ri. (3.6.4)

The proof of Theorem 3.6.1 is completed in Subsection 3.6hZhe rest of
this subsection, we derive a fundamental differentiatmiula, see (3.6.10), and
derive several relations concerning the functiéh introduced in (3.6.3), and
the resolvenR.

In the sequel, we writd;, for ftf‘“. Recall from (3.4.8) that

s=g oz o fs(8 ke

Therefore, by the fundamental theorem of calculus,

0
a_tiAf(va)
¢ n-1 n—-1 — _
- _Z Z z 231 <SS "Sik(s_S—l)
Sisr T T s
S T N T ST R
/I.1 /I.Jl Iy I.f ( R N Ty TR )dej
J#i
= —l(s—s_1)He (1), (3.6.5)

with H,_; as in (3.4.13). Multiplying by(—1)¢/¢! and summing, using the esti-
mate (3.4.9) and dominated convergence, we find that

dtl =(s—s-1)H(.t). (3.6.6)

From (3.6.6) we get

dit. logA = (s —s-1)R(t;, ). (3.6.7)
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We also need to be able to differentid®éx,y). From the fundamental identity
(3.4.20), we have

2 RxY) = (3 -8 DROGHSHY) + [ Six2 dti” v(d2). (3.6.8)

Substitutingy = Z in (3.6.8) and integrating againR{z,y) with respect tav(dZ)
gives

[ PEEED Rz ypviad) = (s 5 DR [ SR YD)

+//5( deii RZ,y)v(d2v(dZ). (3.6.9)

Summing (3.6.8) and (3.6.9) and using again the fundaméeatity (3.4.20)
then yields

2 R0Y) = (-1~ RXHRGY). (3.6.10)

The next lemma will play an important role in the proof of Them 3.6.1.

Lemma 3.6.2The functions R, R satisfy the following relations:

QXP(Y) - QYIPKX) _

R(x,y) = <y R(Y %), (3.6.11)
R(x,x) = Q' (x)P(x) — Q(x)P'(x), (3.6.12)
2 Q( )= (S_1—8)RXt)Q(t), (3.6.13)
and similarly
;tl P(x) = (5-1—S)R(X,ti)P(t;). (3.6.14)

Proof We rewrite the fundamental identity (3.4.19) in the abbaid form
RxS=R—S=SxR. (3.6.15)
To abbreviate notation further, put
ROY) = (x=Y)R(xY), Sxy) = (x=y)SxYy).
From (3.6.15) we deduce that

RxS+RxS=R-S.
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Applying the operatiorf-) x Ron both sides, we get
Rx (R—9)+RxSxR=R+«R—SxR.

Adding the last two relations and making the obvious caatielhs and rearrange-
ments, we get

R=(1+R) xS« (1+R).

Together with the trigonometric identity

sin(X —y) = sinxcosy — sinycosx
as well as the symmetry

S(x,y) =S(,x), RxYy) =R(y,%),
this yields (3.6.11). An application of L'Hdpital’s ruléagn yields (3.6.12). Fi-
nally, by (3.6.10) and the definitions we obtain
7QW = (sa-sR) (10)+ [Rep 1) )
(s—1—s)R(X1)Q(t),
yielding (3.6.13). Equation (3.6.14) is obtained simiarl O

Exercise 3.6.3An alternative to the elementary calculus used in derivih§.5)
and (3.6.6), which is useful in obtaining higher order datixes of the determi-
nants, resolvents and adjugants, is sketched in this eeerci

(i) Let D be a domain (connected open subsef}'Tn With X a measure space, let
f(x,{) be a measurable function ¢fix D, depending analytically og for each
fixed x and satisfying the condition

sup [ [f(x,{)[du(x) <o
{eK

for all compact subsets C D. Prove that the function
F(O) = [ 10x0)du)

is analytic inD and that for each index=1,...,nand all compacK C D,

sup

9
JeK dZI

f(x@’du(x)@.

Further, applying Cauchy’s Theorem to turn the derivative ian integral, and
then Fubini’s Theorem, prove the identity of functions gtialin D:

%F(Z) - / (a%f(x,Z)) du(x).
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(ii) Using the fact that the kernéis an entire function, extend the definitions of
H,, H andA in the setup of this section to analytic functions in the paaters
t1,...,th,S1,.. -, Sh1-

(i) View the signed measure as defining a family of distributiong (in the
sense of Schwartz) on the interyal b) depending on the parameteys . ., t,, by
the formula

tit1

n—-1
@.m =35 | p0odx

valid for any smooth functiog (x) on (a,b). Show thatdn /dt; is a distribution
satisfying

0
o= (S-1—9)% (3.6.16)
fori=1,...,n, and that the distributional derivativd /dx)n of n satisfies
d n N dn
a1 = i;(s -5.1)& = X (3.6.17)

(iv) Use (3.6.16) to justify (3.6.5) and step (i) to justify.6.6).

3.6.2 Derivation of the differential equations: proof of Téorem 3.6.1

To proceed farther we need means for differentiatd(g) and P(x) both with
respect toc and with respect to the parametérs. . ,t,. To this end we introduce
the further abbreviated notation

S9) = ( g5+ 75 ) S0 =0, ROxy) = (55 75 ) Rx)

and

n

(F+' G)(x,y) = /F(x,z)G(z,y)dv’(z) = _zi(s —s_1)F(xt)G(t,y),

which can be taken as the definitionwdf Below we persist for a while in writing
S instead of just automatically puttin§ = 0 everywhere in order to keep the
structure of the calculations clear. From the fundamedtatiity (3.4.19),

RxS=R—S=SxR,
we deduce, after integrating by parts, that

RxS+Rx¥S+R+xS=R -S.
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Applying the operatiorR on both sides of the last equation we find that
R%(R—S +R+(R-—S) +RxSxR=RxR—-S«%R.

Adding the last two equations and then making the obvioused&tions (includ-
ing now the cancellatio8 = 0) we find that

R =R+'R.

Written out “in longhand” the last equation says that

(aax aay) R(xy) = Ii(s_S—l)R(thi)R(tiJ)- (3.6.18)

Now we can differentiat®(x) andP(x). We have from the last identity
/ I d
Q) = 0+ [ —RxyHy)dvy)
, 0
= 1100~ [ LRI Wdvey)

+/ (/R(x,t)R(t,y)dv’(t)> f(y)dv(y).

Integrating by parts and then rearranging the terms, we get

Q) = 1)+ Ry ydviy)+ [Rxy)fy)avy)

+/ (/R(x,t)R(t,y)n(t)dt> f(y)dv(y)

— P+ / R(x,y) f'(y)dv(y)

+/R(x,t)< +/Rty >dv()
= P+ Y (8 SCORKEIQM), (3.6.19)
k=1

and similarly

n

Pix Z S — S-1)RX ) P(t) - (3.6.20)
k=1

Observing now that

Oty =+ 2aw| . Zpay =P+ 2rx|

dt| dt| X=t; dt| dt| X=t;
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and adding (3.6.19) and (3.6.13), we have

d n
—Q(ti) = P(ti — S 1)R(t,t ). 3.6.21
ot (t) =P( )+k=%<¢i(8k sk—1)R(ti, t) Q(tk) ( )

Similarly, by adding (3.6.20) and (3.6.14) we have

(7% P(t) =—Q(ti) + kiﬂ(s‘ — S 1)R(ti, ) P(t).- (3.6.22)

It follows also via (3.6.12) and (3.6.13) that

Q) — Q) AP, (3.6.23)

R(ti,ti) = P(t) ot

(Note that the terms involvingQ(x)/dt;|x—, cancel out to yield the above equal-
ity.) Unraveling the definitions, this completes the prob{&6.4) and hence of
Theorem 3.6.1. O

3.6.3 Reduction to Painlea/\VV

In what follows, we complete the proof of Theorem 3.1.2. Weeta Theorem
3.6.1 the values = 2,51 = s. Our goal is to figure out the ordinary differential
equation we get by reducing still farther to the case —t/2 andt, =t/2. Recall
the sine-kerne§in (3.6.1), seth = % = s1(_t/21/2) and writeA = A(S) for the
Fredholm determinant &with respect to the measuve Finally, setc = g (t) =
t% logA. We now prove the following.

Lemma 3.6.4With notation as above,
(ta”)2+4(to’ — o) (ta’ — o+ (0")?) =0, (3.6.24)

and, for each fixed €\ is analytic in te C, with the following expansions as+ O:

A=1- (I—i)woa“), o=— (I—i)t— (%)th_ (%)3t3+0(t4). (3.6.25)

Proof We first consider the notation of Theorem 3.6.1 specialipat-t 2, writ-
ing A(ty,t2) for the Fredholm determinant there. (Thids= A(ty, t2) ]y, — —,—t/2.)
Recall that

Ro1 = (Gep1— thp2)/(t2 —t1) = Ria.
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From Theorem 3.6.1 specializedrie= 2 we have

1 1
5 (0/0tz —0/0t)logA(t1,tz) = —5s(pi+ 0+ p5+) +S (2~ t)REy,
> (ach/atz —0q1/dt1) = —p1/2+ SRy,
1
5(0p1/0t—0p1/dt) = +01/2+SRizp2. (3.6.26)

We now analyze symmetry. Temporarily, we write
Pr(ts,t2), Cu(ts,t2), Pa(tytz), O(tytz),
in order to emphasize the roles of the parameteasdt,. To begin with, since
Six+c,y+c)=S(xy),
for any constant we have
A(ty,tp) = Aty +C,to+€) = A(—tp, —ty). (3.6.27)
Further, we have (recall thdi{x) = (sinx)/+/m)

1 nanrl

fy,t = f
pa(ty,t2) A 00 n%

t2 T2 th X ... xn) ,
f dxq---dx,d
/tl /tl ( Yy X ... Xn (y) dxq- - dxadly

g (_1)nsn+l
A(—tz,—tl) & n!

t t —t1 —Xl .. —Xp ) ,
f dxq---dx,d
[ ( ) r) ddndy

= f'(-t)+

B 0 ( )nsn+l
N f( t)+ A(—tz,—tl) nZO n!
tl t —t1 X1 ... Xp ) ,
S f dxg - --dx,d
x _ty /42 ( Y X ... %n (y) dxg - dxudy
= pz(-—tz,—t1). (3.6.28)

Similarly, we have

Oa(ty,t2) = —Qa(—t2, —11). (3.6.29)
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Now we are ready to reduce to the one-dimensional situatida.specialize as
follows. Put

p = pit)=pi(-t/2,t/2)=pa(—t/2,t/2),
a = qt)=a(-t/2,t/2) = —0(-t/2,t/2),
= () =Rua(-t/2,t/2) = —2pa/t,
o = at) :t%IogA(—t/Z,t/Z). (3.6.30)

Note that, by the symmetry relations, writihdor differentiation with respect to
t, we have

1
plt) = 5(07 P1/0t2 — 0p1/0t1) lty——ty—t/2

qt) = %(ach/atz—(7Q1/0"t1)|t2=—t1=t/27
while
0(t) = 5 (9/0t ~ 3/3t1) 1091, 1)1y
From (3.6.26) and the above we get
—st(p® + o) + 45’’’
d = —p/2+2spd/t, (3.6.31)
p= +a/2-2spg/t,

while differentiatingo (twice) and using these relations gives

Q
I

/

o = —s(pP+d),
ta” = 452(p’q—q°p). (3.6.32)

Using (3.6.32) together with the equation farfrom (3.6.31) to eliminate the
variablesp, g, we obtain finally

4t(0")3 +4t%(0')? — 40(0’)? + 402 + (t0”)? —8toa’ =0, (3.6.33)

or equivalently, we get (3.6.24). Note that the differergguation is independent
of s

Turning to the proof of the claimed analyticity Afand of (3.6.25), we write

t/2 t/2 k Sm X
k' t/2 t/2|J 1 (X —X])
1/2 1/2 k smt —txj) K
— 1+I|m St / sin(t; — txj)
“H°° 1/2 1/2i,j= 1 T(tx —txJ
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Each of the terms inside the limit in the last display is anrerftinction int, and
the convergence (in) is uniform due to the boundedness of the kernel and the
Hadamard inequality, see Lemma 3.4.2. The claimed anayttA in t follows.

We next explicitly compute a few terms of the expansioaf powers oft.
Indeed,

t/2 t/2 t/2 k
/ / / ¢ SINC3 — %) I_deJ o(t*) fork > 2,
—t/2 t/2 t/2i,j= 1 (X — Xj)
and hence the part of (3.6.25) dealing withollows. With more computational
effort, which we omit, one verifies the other part of (3.6.25) O

Proof of Theorem 3.1.2 We use Lemma 3.6.4. Talee= 1 and set
t
Ft)=1-A= 1—exp</ ?du) fort >0,
0
Then by (3.1.1) we have

1—F(t) = lim P[VNAN, ..., VNAY ¢ (—t/2,t/2)],

N—oo

completing the proof of the theorem. O

Remark 3.6.5We emphasize that we have not yet proved that the funétioh
in Theorem 3.1.2 is a distribution function, that is, we haeé shown tightness
for the sequence of gaps around 0. From the expansion ao(tpfsee (3.1.2),
it follows immediately that lim_gF(t) = 0. To show thaf(t) — 1 ast — o
requires more work. One approach, that uses careful andiviahanalysis of the
resolvent equation, see [Wid94] for the first rigorous prebbws that in fact

a(t) ~ —t?/4 ast — +eo, (3.6.34)

implying that limy, F (t) = 1. An easier approach, which does not however yield
such precise information, proceeds from the CLT for deteamial processes de-
veloped in Section 4.2; indeed, it is straightforward tafyesee Exercise 4.2.40,
that for the determinantal process determined by the semeek the expected
number of points in an interval of lengtharound 0 increases linearly i while
the variance increases only logarithmicallyNn This is enough to show that with

= [-t/2,1/2], the right side of (3.1.1) decreases to & as o, which implies
that lim F(t) = 1. In particular, it follows that the random variable givitige
width of the largest open interval centered at the origin imolr no eigenvalue of
VN Xy appears is weakly convergentlds— o to a random variable with distri-
butionF.
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We finally present an alternative formulation of Theorem3that is useful
in comparing with the limit results for the GOE and GSE. Reta function
r=r(t) = Ria(—t/2,t/2), see (3.6.30).

Lemma 3.6.6With F(-) as in Theorem 3.1.2, we have

1
1-F(t) = exp(—%—/ (t—x)r(x)zdx>, (3.6.35)
0
and furthermore the differential equation
t2((tr)” + (tr))2 = 4(tr)?((tr)? + ((tr))?) (3.6.36)
is satisfied with boundary conditions
_1t 2
r(t) = ——— + Gy o(t9). (3.6.37)

The function (t) has a convergent expansion in powers of t valid for small t.

Proof Recallp andqg from (3.6.30). We have

o 4p%0?
—T=p2+qz—%, tr=—2pq, p'=0q/2-2pq/t,  =—p/2+2pcf/t,
hence (3.6.36) holds and furthermore
d /o 2
= (T) — 12, (3.6.38)

as one verifies by straightforward calculations. From treditity of A it follows
that it is possible to extend bottit) and o (t) to analytic functions defined in a
neighborhood 0f0, «) in the complex plane, and thus in particular both functions
have convergent expansions in powers adlid for smallt. It is clear that

. 1
Itlm r(t) = = (3.6.39)
Thus (3.6.35) and (3.6.37) follow from (3.6.33), (3.6.38)6.39) and (3.6.25).
O

3.7 Edge-scaling: proof of Theorem 3.1.4

Our goal in this section is to study the spacing of eigenvahtethe edge of the
spectrum. The main result is the proof of Theorem 3.1.4, wiccompleted in
Subsection 3.7.1 (some technical estimates involvingtdepest descent method
are postponed to Subsection 3.7.2). For the proof of The@rém, we need the
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following a priori estimate on the Airy kernel. Its proofis postponed to Sutisec
3.7.3, where additional properties of the Airy function anedied.

Lemma 3.7.1For any % € R,

sup €MYA(X,y)| < . (3.7.1)
XY=Xo

3.7.1 Vague convergence of the largest eigenvalue: proofbéorem 3.1.4

Again we letXy € jf,\fa be a random Hermitian matrix from the GUE with eigen-
valuesA) < ... < All. We now present the

Proof of Theorem 3.1.4As before put
K () _ W) Un-1(y) — Yn-1(X)Un(y)
(xy)=+vn Xy
where thair(x) is the normalized oscillator wave-function. Define

3

1 X
ATxy) = K (2vA+ rURENOR #) . (372

In view of the basic estimate (3.4.9) in the theory of Fredhdeterminants and
the crude bound (3.7.1) for the Airy kernel we can by domidatenvergence
integrate to the limit on the right side of (3.1.5). By the hdy3.3.7) of Ledoux
type, if the limit

AN
lim lim P|N%3 (—'—2) t,t) fori=1,... N] 3.7.3
Jm_im PN (2 —2) ¢ () fori~ 1. (37.3)
exists then the limit (3.1.6) also exists and both limits eageial. Therefore we
can take the limit a8 — o on the left side of (3.1.5) inside the limit as—  in
order to conclude (3.1.6). We thus concentrate in the sexquptoving (3.1.5) for
t' < o0,

We begin by extending by analyticity the definition K" and A™ to the
complex planeC. Our goal will be to prove the convergence &f) to A on
compact sets of, which will imply also the convergence of derivatives. Reca
that by part 4 of Lemma 3.2.7,

Un()Pn(y) — Un(Vp(x) 1
= —Ell—’n(x)‘/—’n(y),

KW (xy) =

so that if we set
o 1/12 X
Wn(x) := nY 2y (2/n+ —nl/6)’
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then
Wn(x)Wh(y) = Wn(y)Wa(x) 1
X—y - 2n1/3 l-IJn(x)l-IJn(y) .
The following lemma plays the role of Lemma 3.5.1 in the staflthe spacing in
the bulk. Its proof is rather technical and takes up most dis8ation 3.7.2.

A (xy) =

Lemma 3.7.2Fix a number C> 1. Then,
lim sup |Wh(u)—Ai(u)|=0. (3.7.4)

M=% yeC:|u|<C

Since the functionsV,, are entire, the convergence in Lemma 3.7.2 entails the
uniform convergence d#, to Ai’ on compact subsets @f Together with Lemma
3.4.5, this completes the proof of the theorem. O

Remark 3.7.3An analysis similar to, but more elaborate than, the prodftafo-

rem 3.1.4 shows that
2/3 ’\NN ‘
lim PN — -2 <t

exists for each positive integérand real numbet. In other words, the suitably
rescaled/th largest eigenvalue converges vaguely and in fact weaSimilar
statements can be made concerning the joint distributioth@frescaled tog
eigenvalues.

3.7.2 Steepest descent: proof of Lemma 3.7.2

In this subsection, we use the steepest descent method\e pemnma 3.7.2.
The steepest descent method is a general, more elaboratenvef the method
of Laplace discussed in Subsection 3.5.1, which is inadequben oscillatory
integrands are involved. Indeed, consider the evaluafiamtegrals of the form

[ 1609000

see (3.5.3), in the situation whefeandg are analytic functions and the integral
is a contour integral. The oscillatory nature biprevents the use of Laplace’s
method. Instead, the oscillatory integral is tamed by myuigf the contour of
integration in such a way thdtcan be written along the contoureswith f real,
and the oscillations of at a neighborhood of the critical points bfare slow. In
practice, one needs to consider slightly more generalmesf this example, in
which g itself may depend (weakly) an
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Proof of Lemma 3.7.2Throughout, we let

u u
K= ant g =202 (L ) W) = ().

We assume throughout the proof tinds large enough so that| < C < n2/3.

Let ¢ be a complex variable. By reinterpreting formula (3.5.7\abas a con-
tour integral we get the formula
/4 oo 72
_ (°/2-0x
X) = € dq . 3.7.5
wn( ) |(27T)3/4\/ﬁ _in Z ( )
The main effort in the proof is to modify the contour integrathe formula above
in such a way that the leading asymptotic order of all termiérintegrand match,
and then keep track of the behavior of the integrand nearifisat point. To carry
out this program, note that by Cauchy’s Theorem, we may cegtlae contour of
integration in (3.7.5) by any straight line in the complean® with slope of ab-
solute value greater than 1 oriented so that height abowe#heaxis is increasing
(the condition on the slope is to ensure that no contribudigpears from the con-
tour nearo). Sinceld(x) > 0 under our assumptions concerningndn, we may
take the contour of integration in (3.7.5) to be the perpeudr bisector of the
line segment joining to the origin, that is, replacé by (x/2)(1+ ), to obtain
efxz/B(X/z)nJrl joo -
X)=———"—— 1+ )"eX¥/2%E/2=0) gz . 3.7.6
Let logZ be the principal branch of the logarithm, that is, the brameethon the
interval (0,) and analytic in the complement of the interyaleo, 0], and set

F({)=log(1+)+{?%/2-C. (3.7.7)

Note that the leading term in the integrand in (3.7.6) haddhm e""(¢), where
O(F) has a maximum along the contour of integratiorfat 0, and a Taylor
expansion starting witlf3/3 in a neighborhood of that point (this explains the
particular scaling we took far). Put

W= ()—2()2/3, U =w?—n/w,

where to define fractional powers of complex numbers sucthatsfiguring in

the definition ofw we follow the rule thaf? = exp(alog{) whenevel is in the

domain of our chosen branch of the logarithm. We remark that-a « we have

U — uandw ~ n/3, uniformly for |u| < C. Now rearrange (3.7.6) to the form
(2n)1/4n1/12(x /2)n+1/3e—x2/8

Wh(u) = N In(u), (3.7.8)
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where
In(u) = =— - we?F () -vwlog1+)gz (3.7.9)
27‘[1 —joo
To prove (3.7.4) it is enough to prove that
lim sup|ln(u) — Ai(u)| =0, (3.7.10)
N=%y<c

because we have

I nl/lZ(X/Z)nJrl/Befxz/B 1 I L u nt/3y U2
9 ppvaia (n+ §> og( + 2n2/3) 2 enl3

and hence

lim sup
N=2y|<C

1| =0,
NGl

by Stirling’s approximation (2.5.12) and some calculus.

(2n)1/4n1/12(x /2)n+1/3e—x2/8 - ’

To prove (3.7.10), we proceed by a saddle point analysistheanritical point
{ =00of O(F)({). The goal is to replace complex integration with real inéegr
tion. This is achieved by making a change of contour of irdgn so thafF is
real along that contour. Ideally, we seek a contour so ttabthximum off is
achieved at a unique point along the contour. We proceeddcsfich a contour
now, noting that since the maximum@fF)(¢) along the imaginary axis is 0 and
is achieved af = 0, we may seek contours that pass through 0 and suck tisat
strictly negative at all other points of the contour.

Turning to the actual construction, consider the wedg@atialosed set
S={re'|r € [0,0),6 € [11/3,7/2]}

in the complex plane with “corner” at the origin. For egeh- 0 letS, be the in-
tersection oBwith the closed disc of radiys centered at the origin and 186, be
the boundary of,. For eacht > 0 and all sufficiently larg@, the curveF (9S,)
winds exactly once about the point. Since, by the argument principle of com-
plex analysis, the winding number equals the differencevden the number of
zeros and the number of poles of the functiof) 4t in the domairS,, and the
functionF () +t does not possess poles there, it follows that there existija®
solutiony(t) € Sof the equatior ({) = —t (see Figure 3.7.1). Clearly0) =0

is the unique solution of the equatiéif{) = 0 in S. We have the following.

Lemma 3.7.4The functiory : [0,) — S has the following properties.
(i) iMoo | Y(1)] = oo.
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Fig. 3.7.1. The contoudS; (solid), its imageF (0S3) (dashed), and the curyg-) (dash
and dots).

(i) y(t) is continuous for & 0 and real analytic for t> 0.

(iii)
y(t) o(t"/?) astl o,
y(t) = O *?) astl o,
y(t) = €em/3333 1 o@t#3) ast] 0,
Y (1) e/33-2/3%-2/3 L O(t¥3) ast]O.

Proof (i) follows by noting that- restricted tdSis proper, that is for any sequence
zy € Swith |z;| — ® asn — oo, it holds that|F (z,)| — «. The real analyticity
claim in (ii) follows from the implicit function theorem.i{j follows from a direct
computation, and together wif{0) = 0 implies the continuity claim in (ii). O

From Lemma 3.7.4 we obtain the formula
1 /e / _ /
In(W) = 5= [ e (L y(0) Y ()~ (L+ i) V(D) dt,
0

by deforming the contourico — i in (3.7.9) toy — y. After replacing by t3/3n
in the integral above we obtain the formula

In(u) = Zim/ow(An(t,u) — By(t,u))dt, (3.7.11)
where
3.3 3\~ 3\ 2
w = oo ) (1v(5)) V() 5
313 3\~ 3\ 12
Bn(t,u) = wexp(—aé—r:) <1+;7<%)> V(%)%
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Put

3 .
A(t,u) exp(—%—em/Btu+ ni/3>,
3 .
B(t,u) = exp(—% —e 3y — ni/3> :

By modifying the contour of integration in the definition dfet Airy function
Ai(x), see (3.7.16), we have

. 1 /=
Ail(U) = —./ (A(t,u) — B(t, u))dt. (3.7.12)
2mi Jo
A calculus exercise reveals that, for any positive constamd eachy > 0,
lim sup sup An(t,U) —1‘ =0 (3.7.13)
=% g<t<ty uf<c| At U)

and clearly the analogous limit formula linkilg(t, u) to B(t, u) holds also. There
exist positive constantg andc, such that

llog(1+y(t))| < eat™3, |V (1)] < comax(t2/3,t71/2)
for allt > 0. There exists a positive constamtsuch that
0(w’) >n/2, |w| <2n3 |U|<2c
for all n > ng and|u| < c. Also there exists a positive constagtsuch that
e(:3t1/3 > tl/6
fort > 1. Consequently there exist positive constagtandcs such that
e (14 (1)) MY ()] < cqn e 2rN 23,

hence
|An(t, u)] < caet/0+eS (3.7.14)

for all n>ngp, t > 0 and|u| < c. Clearly we have the same majorization for
|Bn(t,u)|. Integral formula (3.7.12), uniformity of convergence?d.3) and ma-
jorization (3.7.14) together are enough to finish the prddificit formula (3.7.10)
and hence of limit formula (3.7.4). O

Exercise 3.7.55et
1
Sa(xy) = —\/ﬁK(“)

Apply the steepest descent method to show that/if/n —,_.. c with |c| < 2,
then S(,z? (x,y) converges to the rescaled sine-kerne[ggio) (x — y)]/(TT(X —Y)),

(za+X/VN,z0+y/V/N).
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uniformly in x,y in compacts, wherg(c) = ro(c) = v4—c?/2 ando(-) is the
semicircle density, see (2.1.3).
Hint: use (3.7.6) and note the different behavior of the fundiat O wherc < 2.

3.7.3 Properties of the Airy functions and proof of Lemma 317

Throughout this subsection, we will consider various cargan the complex
plane. We introduce the following convenient notation:domplex numbera, b,

we let[a, b] denote the contour joiningto b along the segment connecting them,
i.e. the contouft — (1—t)a+tb): [0,1] — C. We also write]a, co) for the ray
emanating fronain the directiorc, that is the contouft — a+ct) : [0,00) — C,

and write(cw,a] = —[a,co). With this notation, and performing the change of
variables{ — —w, we can rewrite (3.1.3) as
Al(X) = — eV /34w. (3.7.15)

270 Jie 230014 0 25

Note that the rapid decay of the integrand in (3.7.15) aldrggihdicated con-
tour ensures that Ax) is well defined and depends holomorphically xn By
parametrizing the contour appearing in (3.7.15) in evidiasition, we also obtain
the formula

. 1/ t3 o 7O oo Th
Ai(x) = ﬁ/0 exp(—g) (exp(—xte3 + 3) —exp(—xte 3 — 5)) dt.
(3.7.16)
In the statement of the next lemma, we use the notatipw to mean thak goes
to oo along the real axis. Recall also the definition of Euler's @aariunction, see
(2.5.5):T(s) = [5 e *x51dx, for swith positive real part.
Lemma 3.7.6(a) For any integerv > 0, the derivativeAi (V) (x) satisfies

AV (x) -0, asx] . (3.7.17)

(b) The functionAi (x) is a solution of(3.1.4)that satisfies

1 Lo 1
“@erenp MO T mEram)

(c) Ai(x) > 0andAi’(x) < Oforallx > 0.

Ai(0) (3.7.18)

Proof Forx > 0 real,c € C satisfyingc® = 1 andk > 0 integer, define

ek = | )m/‘eWX—W"’/f*dw: ki1 / thgret-t/3g (3.7.19)
0,co0 0
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As x T « we havel (x,e™2""/3 k) — 0 by dominated convergence. This proves
(3.7.17). Next, (3.7.18) follows from (3.7.19) and the digom of I'(-). We next
prove that A{x) > 0 for x > 0. Assume otherwise that for somg> 0 one has
Ai(Xp) < 0. By (3.7.29), if Aixg) = 0 then Al(xg) # 0. Thus, for somey > 0,
Ai(x1) < 0. Since A{0) =0 and Aix) — 0 asx T o, Ai(-) possesses a global
minimum at some; € (0,), and Al’(xz) > 0, contradicting the Airy differential
equation. O

We next evaluate the asymptotics of the Airy functions amibtfi For two
functionsf, g, we write f ~ gasx T o if lim y, f(X)/9(x) = 1.

Lemma 3.7.7For x T co we have the following asymptotic formulas:

Ai(X) ~ T Y2 Y4g=5¢2 . (3.7.20)
A (X) ~ — 11 Y2343 1 (3.7.21)

Proof Making the substitutiorw — x%2(u— 1) and deforming the contour of
integration in (3.7.15), we obtain

27ixt/ 4213 Aj (x) = x3/4 / 2P /3) g (3.7.22)

/

where
C = (723w, —iV3] + [-iV3,iV3] + [iV3,/30) =: C; 4 C) + C}.

Since the infimum of the real part of — u®/3 on the ray<] andCj is strictly
negative, the contribution of the integral o@4randCj to the right side of (3.7.22)
vanishes ag | . The remaining integral (oved}) gives

B, o
i / e P Y3 / edt =iV asx]w,

—\/3x3/4 _
by dominated convergence. This completes the proof 0ofZ8)7 A similar proof
gives (3.7.21). Further details are omitted. O

Proof of Lemma 3.7.1Fix Xy € R. By (3.7.20), (3.7.21) and the Airy differential
equation (3.1.4), there exists a positive consiafftossibly depending oxy) such
that

max(| Ai (x)[,| A" (X)], | A" (x)]) < Ce™
for all realx > xg and hence fox,y > Xo,

x—y| > 1= |A(Xy)| < 2C%e %Y.
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But by the variant (3.5.5) of Taylor's Theorem noted abovealso have, for
XY 2 Xo,
x—y| <1=|A(xY)| < 2C%?e Y.

Thus the lemma is proved. O

Exercise 3.7.8how that/;” Ai (x)dx=1/3.
Hint: for p > 0, lety, denote the patlt — pe?™) : [5/6,7/6] — C, and define
the contoulC, = (€7/3c0, pe?™/3) 4y, + [pe~2"/3 &2 /300). Show that

/ Al (x)dx = = wle W /3dw,
0 2mi Jc,
and takep — 0 to conclude.

Exercise 3.7.9Nrite x | —oo if x — —oo0 along the real axis. Prove the asymptotics
sin(3 |32+ 7

A0~ e

asx | —oo (8.7.23)

and
_ cog 32+ H)x YA
VT

Conclude that Lemma 3.7.1 can be strengthened to the stateme

Ai’(X) ~

asx | —oo, (3.7.24)

sup€Y|A(X,Y)| < oo. (3.7.25)
X,yeR

Exercise 3.7.10rhe proof of Lemma 3.7.7 as well as the asymptotics in Exercis
3.7.17 are based on finding an appropriate explicit contbuntegration. An al-
ternative to this approach utilizes the steepest descehioaieProvide the details
of the proof of (3.7.20), using the following steps.
(a) Replacing by x/2Z in (3.1.3), deduce the integral representation xfor0,
. Xl/2 /2
Ai(x)=2— [ e™MOdz, H(Q)=73/3-1. (3.7.26)
2m Jc

(b) Modify the contourC to another (implicitly defined) contout’, so that
O(H(C")) is constant, and the deformed cont@fsnags” the critical poin{ = 1
of H, so that the imagkl (C’) runs on the real axis from e to —2/3 and back.
Hint: Consider the closed sets

S={1+re®r>0, 6 c[n/3,m/2}
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and the intersection d8 with the closed disc of radiys about 1, and apply a
reasoning similar to the proof of Lemma 3.7.2 to find a cute such that

e 23/2/3,1/2

Ai (x) = /Omeff’/zt(;/(t) _JM)dtforx>0.  (3.7.27)

2m

Identify the asymptotics of(t) and its derivative as— 0 andt — oo.
(c) Apply Laplace’s method, Lemma D.9, to obtain (3.7.20).

Exercise 3.7.11Another solution of (3.1.4), denoted R, is obtained by replac-
ing the contour in (3.7.15) with the conto(e2"/3c0, 0] + [0, 00) + (€2™/30, 0] 4
[0,00), that is

_1 /
21T J(e-2/30,0]42{0,0) + (€271/300 ]
Show that Bjx) satisfies (3.1.4) with the boundary conditidiis(0) Bi’'(0)] =

1 346
[W(Z/i*») r<1/3)} . Show that for an) € R,

Bi(x) W3/3gy. (3.7.28)

det{ Ai(x) Ai'(x) } B i[

Bi(x) Bi'(x) | m’ (3.7.29)

concluding that Ai and Bi are linearly independent solusiorShow also that
Bi(x) > 0 and Bi(x) > 0 for all x > 0. Finally, repeat the analysis in Lemma
3.7.7, using the substitutiom— x¥/2(u+ 1) and the (undeformed!) contour

C= (_e—2ni/3007 _1] + [_1’ 1] + [1700) + e—2ni/3007 _1] + [_L 1] + [1700) ’

and conclude that
Bi(x) ~ T /2% 1432 (3.7.30)

3/2

Bi (x) ~ — 1T Y/2x!/4¢3 (3.7.31)

3.8 Analysis of the Tracy—Widom distribution and proof of Theorem 3.1.5

We will study the Fredholm determinant

S (DK o o X o X\ ok
A=A(t) =1+ fo A Mio1dx
kzl kit t e X i
whereA(x,y) is the Airy kernel and as before we write

X1 ... Xk k
A = detA(Xx,yj).
<y1 yk) ij=1 (%,¥i)
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We are going to explain whi(t) is a distribution function, which, together with

(n)
Theorem 3.1.4, will complete our proof of weak convergerfog?G? A”ﬁ — 2).

Further, we are going to link(t) to the Painlevé Il differential equation.

We begin by putting the study of the Tracy—Widom distribotid(t) into a
framework compatible with the general theory of Fredholrtedwrinants devel-
oped in Section 3.4. Let denote the measure on the real line with density
dv/dx= 14 .)(x) with respect to the Lebesgue measure (althouglepends on
t, we suppress this dependence from the notation). We hame the

A:l+él(_k!l)k/---/A< 2 N zkk )JIELCW(XJ).

Put

® (—1)k k
H(x,y):A(x,y)+kZ1(kT) //A(§ 2 i‘;)udv(xj).

In view of the basic estimate (3.4.9) and the crude bound {Bfor the Airy
kernel, we must havA(t) — 1 ast 7 . Similarly, we have

supsupeY[H(x,y)| < o (3.8.1)
t>to x,yeR
for each reatp and
lim sup€Y[H(x,y) — A(x,y)| = 0. (3.8.2)
thoo x yeR

Note that becaust can be extended to a not-identically-vanishing entireaital
function oft, it follows thatA vanishes only for isolated real valuestoPut

R(Xay) =H (Xay)/Av

provided of course thak # 0; a similar proviso applies to each of the following
definitions since each involvé¥x,y). Put

QW = A+ [ROYAI)AV().

A0+ [ ROGY) AT ()dv(y).

Q). p=P(), u= [ QA (VY.

Vo= [QWANdv) = [PRAINAVK,  (3.83)

the last equality by symmetii(x,y) = R(y,X). Convergence of all these integrals
is easy to check. Note that each of the quantitigs, u andv tends to 0 ag 7 .

2
X
x
[

o
Il
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More precise information is also available. For examplenfi(3.8.1) and (3.8.2)
it follows that

A(X)/ Al (X) —x—e0 1, (3.8.4)

because fox large, (3.7.20) implies that for some const@rnihdependent oX,

/ “Rxy) Ai(y)dy < C / " Y A (y)dy < CAi (x)e 2.

3.8.1 The first standard moves of the game

We follow the trail blazed in the discussion of the sine-lgin Section 3.6. The
first few steps we can get through quickly by analogy. We have

7]
ElogA = R(t,1), (3.8.5)
JRY) = ~ROCOR(LY). (3.8.6)

As before we have a relation

Q(X)P(y) — Q(y)P(x)

R(x,y) = Xy =R(Y,X) (3.8.7)
and hence by L'Hdpital’s rule we have
R(x,x) = Q' (X)P(x) — Q(X)P'(x). (3.8.8)
We have the differentiation formulas
20K = ~REQ) = -QUREX), (38.9
%P(X) = —RX1)P(t) = —P(t)R(t,x). (3.8.10)

Here the Airy function and its derivative are playing theesopreviously played
by sine and cosine, but otherwise to this point our calonfeis running just as
before. Actually the calculation to this point is simplanc we are focusing on a
single interval of integration rather than on several.

3.8.2 The wrinkle in the carpet

As before we introduce the abbreviated notation

WOy = ( 5+ 0 ) A0k Rixy) = (554 55 )R,
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(F+G)(xy) = [F(x26(zy)dv'(2) = F(x1)G(.Y).

Here’s the wrinkle in the carpet that changes the game intigalrivay: A’ does
not vanish identically. Instead we have

A(x,y) = —Ai(x)Ai(y), (3.8.11)

which is an immediate consequence of the Airy differentiplaiony” — xy = 0.
Calculating as before but this tirmet putting A’ to zero we find that

R =R+ R+A +RxA +AxR+RxA' xR

Written out “in longhand” the last equation says that

(dix + %) RY) =RGOREY) ~QWQY).  (38.12)

The wrinkle “propagates” to produce the extra term on thktrigve now have

QX

Ai(x)+ / (;—XR(x,y>> Ai(y)dv(y)

A0~ [ (5 R0 ) Aiv(y)
R [ RLY) A (Y)dv(y) - Qu

AL+ R A (Y)dv(y) + [ Rxy)AiY)dv ()
R [ RLY) A (Y)dv(y) - Qu

A+ [ROY) AT ()av(y)

FROGO(AI(D) + [ RELY)AT)dv(Y) - QUu
P(x) + R(x,1)Q(t) — Q(X)u. (3.8.13)

Similar manipulations yield
P'(X) = xQ(X) + R(X,t)P(t) + P(X)u — 2Q(X)V. (3.8.14)

This is more or less in analogy with the sine-kernel case tignvrinkle continues
to propagate, producing the extra terms involving the gtiasti andv.
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3.8.3 Linkage to Painleg Il

The derivatives of the quantitigs g, u andv with respect td we denote simply
by a prime. We calculate these derivatives as follows. Qlesérat

d= 50| +QU. P=3PW| +PO.
By adding (3.8.9) to (3.8.13) and (3.8.10) to (3.8.14) wechav
qd=p-—qu, p =tq+ pu—2qv. (3.8.15)
It follows also via (3.8.8) that
% logA(t) = R(t,t) = d'p— P'q= p* —tq® — 2pqu+ 2q°v. (3.8.16)
We have

T / (%Q(x)) Al (x)dv(x) + / Q(x) A (x)d (Z—‘t’) %)
—Q(t) / R(t, %) Ai (x)dv(xX) — Q(t) Ai (t) = —cP.

v o= [ (5000) Aeavey + [ Qooaia (5 ) 9
= —Q) [ RE)AT(X)dv(x) ~ QAT (t) = —pa

We have a first integral

w—2v= g%
at least it is clear that thederivative here vanishes, but then the constant of inte-
gration has to be 0 because all the functions here tend ta @ @s Finally,

i

9 = (p—qu/=p —qu-qu=tg+pu—2qv—(p—quu—qg(—a?)
= tq+ pu—2qv— pu+quP+ ¥ = tq+20°, (3.8.17)

which is Painlevé Il; thatj(t) ~ Ai(t) ast — « was already proved in (3.8.4).

It remains to prove that the functidf defined in (3.1.6) is a distribution func-
tion. By adding equations (3.8.12) and (3.8.6) we get

7] 7] 7]
(5t 3t 3¢ ) Rk = ~QQ). (3.8.18)

By evaluating both sides at=t = y and also using (3.8.5) we get
2

% logA = —?. (3.8.19)



3.8 ANALYSIS OF THE TRACY-WIDOM DISTRIBUTION 147

Let us now writeq(t) andA(t) to emphasize the-dependence. In view of the
rapid decay of\(t) — 1, (logA(t))’ andq(t) ast T o we must have

Alt) = exp(—/tm(x—t)q(x)zdx) , (3.8.20)

whence the conclusion th&b(t) = A(t) satisfiesk () = 1 and, because of the
factor (x—t) in (3.8.20) and the fact thaf(-) does not identically vanish, also
F>(—0) = 0. In other wordsk; is a distribution function. Together with (3.8.17)
and Theorem 3.1.4, this completes the proof of Theorem 3.1.5 O

Remark 3.8.1The Painleveé Il equatioqf’ =tq-+ 2¢° has been studied extensively.
The following facts, taken from [HaM80], are particularglevant: any solution
of Painlevé Il that satisfieg(t) —t_. O satisfies also that &s— o, q(t) ~ o Ai (t)

for somea € R, and for each fixedy, such a solution exists and is unique. For
o =1, which is the case of interest to us, see (3.1.8), one thisn ge

qt) ~/—t/2, t— —oo. (3.8.21)

We defer additional comments to the bibliographical notes.

Remark 3.8.2The analysis in this section would have proceeded verbatinei
Airy kernel A(x,y) were replaced bgA(x,y) for anys e (0, 1), the only difference
being that the boundary condition for (3.1.8) would be repthbyq(t) ~ sAi(t)
ast — oo. On the other hand, by Corollary 4.2.23 below, the kes#él (x,y)
replaceA" (x,y) if one erases each eigenvalue of the GUE with probatsility
particular, one concludes that for akjixed,

im limsupP(NY6(AN , —2v/N) <t) =0. (3.8.22)

I
t—oo N—oo

This observation will be useful in the proof of Theorem 3.1.7

Exercise 3.8.3Jsing (3.7.20), (3.8.4) and (3.8.21), deduce from the isgm&ation
(3.1.7) of /, that

. 1 4
Jm@bg[l— R(t)] = 3
1 1
tﬂff‘ﬂ)ﬁ logk(t) = I
Note the different decay rate of the upper and lower tailfiefdistribution of the
(rescaled) largest eigenvalue.
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3.9 Limiting behavior of the GOE and the GSE

We prove Theorems 3.1.6 and 3.1.7 in this section, usingathls teveloped in
Sections 3.4, 3.6 and 3.7, along with some new tools, naftdifians and matrix
kernels. The multiplicativity of Fredholm determinantsesTheorem 3.4.10, also
plays a key role.

3.9.1 Pfaffians and gap probabilities

We begin our analysis of the limiting behavior of the GOE ar®8EGy proving a
series of integration identities involving Pfaffians; th#tér are needed to handle
the novel algebraic situations created by the facta(s)|? with B € {1,4} ap-
pearing in the joint distribution of eigenvalues in the GO &SE, respectively.
Then, with Remark 3.4.4 in mind, we use the Pfaffian integratdentities to
obtain determinant formulas for squared gap probabilitide GOE and GSE.

Pfaffian integration formulas

Recall that Mat,,(C) denotes the space kiby-¢ matrices with complex entries,
with Maty(C) = Maty«n(C) andl, € Mat,(C) denoting the identity matrix. Let

01
-1 0

0 1
-1 0

be the block-diagonal matrix consisting mitopies of{ 1 } strung along

-1 0
the diagonal. Given a family of matrices

{X(i,j) € Mat((C) :i=1,...,mandj =1,...,n},

let
X(1,1) ... X(1n)
X(is 1)lmn = : : € Matmn(C).
X(m1) ... X(m,n)
01

For exampleJn = & j [ ] Inn € Matp,(C).

-1 0
Next, recall a basic definition.
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Definition 3.9.1 (Pfaffians)Let X € Maty(C) be antisymmetric, that isXT =
—X, Xji = =X j. ThePfaffianof X is defined by the formula

2”n| ZJZ |‘lx o@-

where(—1)? denotes the sign of the permutation

PfX =

For example, R}, = 1, which explains the normalizati%.

We collect without proof some standard facts related tofiafad.

Theorem 3.9.2Let X € Maty,(C) be antisymmetric. The following hold:

(i) P(YTXY) = (PfX) (detY) for every Y& Maty,(C);

(i) (PfX)? = detX;

(iii) PEX = 3207 1(—1)"*1X; 20 PEX 127 where X127} is the submatrix obtained
by striking out the ith row, ith columri2n)th row and(2n)th column.

We next give a general integration identity involving Pfarfi§, which is the
analog forp € {1,4} of Lemma 3.2.3.

Proposition 3.9.3Let f;,..., fon and @, ...,02, be C-valued measurable func-
tions on the real line. Assume that all productgjfare integrable. For x R,
put

F(x) = [fi(x) 6i(X)]|2n1 € Matonx2(C).

Then, for all measurable sets@AR,
1 n
Pf/FxJFdex:—/---/deFx- dx . 3.9.1
[ FOOIF(Tdx= 2 - | detF ()] |1n ] o (3.9.1

Here and throughout the discussion of Pfaffian integratieniities, measurable
means Lebesgue measurable.

Proof Expand the right side of (3.9.1) as

Xi) 9o (2i-1 :|
det dx. (3.9.2
2nn| Z,.Z / / rl [ |) ga 2| rl ( )
The(i, j) entry of the matrix appearing on the left side of (3.9.1) camkpressed
fi(x) g%
as [,det
el i) o
(3.9.2) matches term for term the analogous expansion dethside of (3.9.1)
according to the definition of the Pfaffian. O

] dx. Therefore, by Fubini’'s Theorem, the expansion
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To evaluate gap probabilities in the GOE and GSE, we will spiee Proposi-
tion 3.9.3 in several different ways, varying bétlandn. To begin the evaluation,
let ¢ denote a function on the real line of the fortx) = €+Cx+Cs where
C1 < 0,C, andCs are real constants, and &} denote the span ovér of the set
of functions{x~1¢ (x) in=—01_ Later we will make use of specially chosen bases for
O\, consisting of suitably modified oscillator wave-functioihsit initially these

are not needed. Recall thfx) = [M1<i<j<n(Xj — %) for x= (x1,...,%,) € R".
The application of (3.9.1) to the GSE is the following.

Proposition 3.9.4Let { fi }2", be any family of elements 6b,. For x € R, put
FOO=[ /(0 fi(X) ]l2n1 € Matznx2(C).

Then, for all measurable sets@AR,
n
Pf/F(x)JlF(x)de:c/---/A(x)4|_|¢(>q)2d>q, (3.9.3)
A A JA i

where c=c({fi}) is a complex number depending only on the farfifl}, not on
A. Further, ¢ 0if and only if{ fi }2"; is a basis for&,, overC.

Proof By Theorem 3.9.2(i), we may assume without loss of gengridét f; (X) =
x~1¢(x), and it suffices to show that (3.9.3) holds witk 0. By identity (3.9.1)
and the confluent alternant identity (2.5.30), identity(3) does indeed hold for
suitable nonzero independent oA. O

The corresponding result for the GOE uses indefinite integrffunctions. To
streamline the handling of the latter, we introduce theofsihg notation, which
is used throughout Section 3.9. For each integrable rdakgddunctionf on the
real line we define a continuous functief by the formula

N = [ Fsionx—y)fmdy=— [ fp)dy+5 [y
= / Xf(y)oly—% / sign(y) f(y)dx, (3.9.4)
0

where sigiix) = 1.0 — 1x<0, and we write[ f (x)dx = [ f(x)dx to abbreviate
notation. Note thafef)’(x) = f(x) almost everywhere, that ig, inverts dif-
ferentiation. Note also that the operatierreverses parity and commutes with
translation.

The application of (3.9.1) to the GOE is the following.

Proposition 3.9.5Let { fi}]' ; be any family of elements @f,. Let a# 0 be a
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complex constant. For each measurable set R and xe€ R, put
FAX) =] fiX) €(1afi)(¥) ][n1 € Maty.2(C).
If nis even, let K(x) = FA(X) € Maty.»(C). Otherwise, if n is odd, letAfx) €

Maty,(C) be the result of adjoining the roy0 a] at the bottom of §(x). Then,
for all measurable sets A R,

Pf/FA )31FA(x) Tdx = c/ /|A ||_l¢ x)dx,  (3.9.5)

where c= c({fi},a) is a complex number depending only on the ddth},a),
not on A. Further, £ 0 if and only if{ i} , is a basis for&,, overC.

Proof By Theorem 3.9.2(i), we may assume without loss of gengtlét f; (x) =
x~1¢(x), and it suffices to show that (3.9.5) holds with: 0 independent oA.
Forxe R, let f(x) = [fi(X)]|n1 € Maty«1(C). Let A} be the subset A" C R"
consisting oh-tuples in strictly increasing order. Then, using the syrmynef the
integrand of (3.9.5) and the Vandermonde determinantiiyeahe can verify that
the integralfyy deff (y;)]|1n[17dy equals the right side of (3.9.5) with= 1/n!.
Putr = |n/2]. ConS|der foz € R', then x n matrix

{[[<1Af>|_w1|nl [ fi(z) e@af)E™ Jlnr | if nisodd,

[ fi(zj) e(Laf)[2** Ilns if niseven,

l-PA(Z) =

wherez 1 = », andh[} = h(t) — h(s). By integrating every other variable, we
obtain a relation

r n
detWa(2) [1dz = / detf (y;)]|zn [y
Jy derent@]da= | ]
Consider, forze R", then x n matrix

[ Fa(z)llar afpf(x)dx if nis odd,
Palz) = { [FAA(ZjJ)H:r g if nis even.

Becauseba(z) arises from¥a(z) by evident column operations, we deduce that
detda(z) = c1detWa(2) for some nonzero complex constantindependent oA
andz. Since the function d&ta(z) of z€ R" is symmetric, we have

r 1 r
detda(2) [1d :—/ detda(2) [1dz.
, deen@[]dz = [, dewa@[]d2

If nis even, we conclude the proof by using the Pfaffian integndtentity (3.9.1)
to verify that the right side above equals the left side ..

Assume for the rest of the proof thats odd. Fori =1,... n, let F,‘f’i (x) be the
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result of striking out théth row fromF£(x) and similarly, letd (z) be the result
of striking theith row and last column frorba(z). Then we have expansions

Pf[ JAFE()IIFE)TdX  afy f(x)dx }
—afpf()Tdx 0

_ aii(_ni“( /A f(x)dx) (Pf /A F:’i(x)JlF:'i(x)de>,

dewa®) = a3 (-1 /A fi (x)dx) detdly (2),

obtained in the first case by Theorem 3.9.2(iii), and in treord by expanding
the determinant by minors of the last column. Finally, bylging (3.9.1) term
by term to the latter expansion, and comparing the resuténgs with those of
the former expansion, one verifies trfat[A, detda(z)[11dz equals the left side
of (3.9.5). This concludes the proof in the remaining casedafn. O

The next lemma gives further information about the strietirthe antisym-
metric matrix [, Fa(x)J1Fa(x)Tdx appearing in Proposition 3.9.5. Lgt = v/2I,

V2, 0
0 1/\/2 ] for oddn.

for evenn, andn, = [

Lemma 3.9.6In the setup of Proposition 3.9.5, for all measurable sets R,
] Fa0032a 09 Tex= [ P32 (007 dx— | Mo (3)31Fa(0 lx.  (3.9.6)

Proof Let L; j (resp.,R;.j) denote thei, j) entry of the matrix on the left (resp.,
right). To abbreviate notation we writef,g) = [ f(x)g(x)dx. Fori,j < n+1,
using antisymmetry of the kernébigr‘(x— y), we have

1 1
shii = 5((1afi,e(1af))) — (1afj, €(1aTi)) = (1afi, £(1aT)))

= (fi,ef)) — (Lacfi,efj) — (Lafi, e(Lactj))

1

= (fi,ef)) — (Lacfi,efj) + (€(1afi), Lacf)) = ERi’j ,
which concludes the proof in the case of everin the case of odd it remains
only to considerthe cases m@&y) =n+1. Ifi=j=n+1,then, ; =0=R ;. If
i<j=n+1,thenlij=a(la fi)=Rj. If j <i=n+1,thenl;; = —a(la, fj) =
Ri.j. The proofis complete. O

Determinant formulas for squared gap probabilities

By making careful choices for the functiorisin Propositions 3.9.4 and 3.9.5,
and applying Theorems 3.9.2(ii) and 2.5.2, we are going taiokdeterminant
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formulas for squared gap probabilities. Toward that endfi¥ed o > 0 and real
&, let

(X = thog(X) = 0Y2Yn(07 %+ 8), (3.9.7)

andg_, = 0 for convenience. The functiong are shifted and scaled versions of
the oscillator wave-functions, see Definition 3.2.1.

We are ready to state the main results for gap probabilititss GSE and GOE.
These should be compared with Lemma 3.2.4 and Remark 3.4d reBult for
the GSE is as follows.

Proposition 3.9.7For x € R, put

_ 1] @l @)
HY =275 { @ 1(X) (P2i—1(x) ]Il.nelvlatMn(C) (3.9.8)

andH (x) = J1H(x)J; L. Then, for all measurable sets@AR,

~ e [ A4 2dx \ 2
det(lgn—/AH(x)TH(x)dx> = (fAf..jAA(AX())?Hli;i'lg?x(i))(‘z)d:x) . (3.9.9)

To prove the proposition we will interprét as the transpose of a matrix of the
form F appearing in Proposition 3.9.4, which is possible becatseerts differ-
entiation.

The result for the GOE is as follows.

Proposition 3.9.8Letr= |n/2|. Let i = n if nis even, and otherwise, if n is odd,
letn’ =n+1. Let/ € {1,2} have the same parity as n. FOeX®, and measurable
sets AC R, put

e 1 @i—e(X) @i_(X) }
G == r € Matyyor (C).
K= | et ) e e | e € e ©
If nis even, put G(x) = G3(X) € Mat,,y(C). Otherwise, if n is odd, let gx) €
Mat,, v (C) be obtained from §&(x) by adjoining the block

[ th-1(%) 0 ]
e(lagh-1)(%) 1/(gh-1,1)

on the far right. Also puGa(x) = JlGA(x)J;,}Z. Then, for all measurable sets
ACR,

< o Ja 1800 I @)% ) 2
det(lnf— / GR(X)TGAc(X)dx> _< e Sl 02 ) .

10)
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To prove the proposition we will interpré&a as a matrix of the forrrIFAT Nn ap-
pearing on the right side of (3.9.6) in Lemma 3.9.6.

Before commencing the proofs we record a series of elemeptaperties of
the functionsg following immediately from Lemmas 3.2.5 and 3.2.7. These
properties will be useful throughout Section 3.9. As abave,write (f,g) =
Jf(X)g(x)dx. Letk,£,n> 0 be integers. Let, = 0, , ¢ denote the span of the
set{@}-J overC.

Lemma 3.9.9The following hold:

(0 1x+8)2

@wx) = o?@2n) Ve o, (3.9.11)

supe™ |g(x)| < o for every real constany, (3.9.12)

= &(d) = (@), (3.9.13)

<(H<7(P€> = 025k€=—<5(ﬂ<7¢15,>a (3914)

(@, @) = 0 and (g, @) =0 fork+/¢even, (3.9.15)

{@,1) = 0 fornodd, (3.9.16)

o@ = —nTH%HJr ?%71, (3.9.17)

(@,1) > 0 forneven (3.9.18)

E@® € Oph_1 fornodd, (3.9.19)

(0 X+ MM = VN+1gha(x) + vigh-1(x), (3.9.20)

n-1

Z) fn(X><§(y> _ PXAY) —Omy) %(X)fnzn(y), (3.9.21)
& g X—y 20

o’ (x) = (W—n—%) & (X). (3.9.22)

Proof of Proposition 3.9.7Using property (3.9.19), and recalling thainverts

differentiation, we observe that, with = @ and F(x) = H(x)T, the integra-
tion identity (3.9.3) holds with a constaatindependent oA. Further, we have
[H(X)TH(x)dx= I, by (3.9.14) and (3.9.15), and hence

det(ln—/Aﬁ(x)TH(x)dx) _ (PfACF(x)JlF(x)de>2,

after some algebraic manipulations using part (ii) of Tleeo3.9.2 and the fact
that detl, = 1. Thus, by (3.9.3) wittA replaced byA®, the integration identity
(3.9.9) holds up to a constant factor independem.dfinally, since (3.9.9) obvi-
ously holds forA = 0, it holds for allA. O
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Proof of Proposition 3.9.8Taking nn as in Lemma 3.9.6¢ = @ andFa(x) =
Ny 1Ga(x)T, the integration identity (3.9.5) holds with a constaribdependent
of A. Further, we havé, = fJ;,}ZFR(x)JlFR(x)de by (3.9.14), (3.9.15) and
(3.9.16), and hence

det(ln/ _ /A G(X)TGAc(x)dx) _ (Pf /A C FAc(x)JlFAc(x)de>2

by Lemma 3.9.6 withA replaced byA®, after some algebraic manipulations using
part (i) of Theorem 3.9.2 and the fact that det= 1. Thus, by (3.9.5) with
A replaced byA®, the integration identity (3.9.10) holds up to a constantda
independent oA. Finally, since (3.9.10) obviously holds fér= 0, it holds for

all A. O

3.9.2 Fredholm representation of gap probabilities

In this section, by reinterpreting formulas (3.9.9) an®(B0), we represent the
square of a gap probability for the GOE or GSE as a Fredholeraétant of a
matrix kernel, see Theorem 3.9.19.

Matrix kernels and a revision of the Fredholm setup

We make some specialized definitions to adapt Fredholmrd@tants as defined
in Section 3.4 to the study of limits in the GOE and GSE.

Definition 3.9.10For k € {1,2}, let Kefg denote the space of Borel-measurable
functionsK : R x R — Mat(C). We call elements of Kegrscalar kernels ele-
ments of Keg matrix kernels and elements of KetJ Ker, simply kernels We
often view a matrix kernek € Ker, as a 2< 2 matrix with entries<; j € Kery.

We are now using the term “kernel” in a sense somewhat diffefiom that in
Section 3.4. On the one hand, usage is more general becausedumess is not
assumed any more. On the other hand, usage is more spatialiteat kernels
are always functions defined @x R.

Definition 3.9.11GivenK, L € Kery, we defineK x L by the formula

(KxL)(xy) = [ KDLy,

whenever[ [K; ((x,t)Lg j(t,y)|dt < o for all x,y € R andi, j,¢ € {1,...,k}.
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Since the definition of Fredholm determinant made in Se@idrapplies only
to bounded kernels on measure spaces of finite total massetib efficiently we
have to make the next several definitions.

Given a real constant> 0, letw,(x) = exp(y|x+y| — y?) for x € R. Note that
Wy (X) = e for x > —y andwg(x) = 1.

Definition 3.9.12 {-twisting) Givenk € {1,2}, a kerneK € Kery, and a constant
y > 0, we define thg-twistedkernelKY) € Ker by
K(x,y)wy(y) if k=1,

v) =
KW (xy) = Wy(X)Kaa(xy)  Wy()Ki(6Y)Wy(Y) | e 5

Ka1(X,Y) Kaa2(X, y)wy(y)

We remark thak € Ker} = K{;, Kz, € Ker] whereK]; (x,y) = Kq1(Y,X).

As before, let Leb denote Lebesgue measure on the real lioey F 0, let
Leby,(dx) = wy(x)~tLeb(dx), noting that Le = Leb, and that Lep has finite
total mass fory > 0.

Definition 3.9.13Givenk € {1,2}, a kernelK € Kery, and a constang > 0, we
write K € Kerﬁ' if there exists some open détC R and constant > 0 such that
Leby(U) < o and max; [(K¥); j| < clyu.

Note that Kef is closed under the operatiarbecause, foK, L € Ker}, we have
(KxL)W(x,y) = /K<V> (x t)LY) (t, y)Leb,(dt) (3.9.23)

and henc& x L € Ker.

We turn next to the formulation of a version of the definitidriFoedholm de-
terminant suited to kernels of the class Ker

Definition 3.9.14Givenk € {1,2}, y > 0, andL € Ker}, we define Fref(L) by
specializing the setup of Section 3.4 as follows.

(i) ChooseU C R open and: > 0 such that may | (LY); j| < clyxu.
(i) Let X =U x .#, where.# = {1},{1,2} according a& =1, 2.
(i) Let v = (restriction of Lely toU) ® (counting measure o).
(iv) LetK((s,i),(t,])) =LY (st)i ] for (s,i),(t,]) € X.
Finally, we let Freff(L) = A(K), where the latter is given as in Definition 3.4.3,
with inputsX, v andK as defined above.
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The complex number Fréd_) is independent of the choice bf andc made in

point (i) of the definition, and hence well defined. The defimtis contrived so
thatif L € Ker} fori = 1,2, then Frei(L) is independent off, as one verifies by
comparing the expansions of these Fredholm determinamtshyg term.

Two formal properties of Fré{cﬂ-) deserve emphasis.

Remark 3.9.15If K,L € Kerl’(’, then multiplicativity holds in the form
Fred/(K +L—KxL) = Fred/(K)Fred/(L),
by (3.9.23) and Theorem 3.4.10. Further, by Corollary 34 R € Ker{ satisfies
Ko1 =0 orKi2 =0, then
Fred (K) = Fred (K{,)Fred (Ky2).

The analog of Remark 3.4.4 in the present situation is tHeviihg.

Remark 3.9.16Let y > 0 be a constant. La C R be an open set such that
Leby(U) < . LetG,G: R — Maty,on(C) be Borel-measurable. Assume further
that all entries of the matrices

60 o [3 iy Joor

are bounded fox e U. Let
K(x,y) = G(Xx)G(y)" € Maty(C)

forx,y € R. LetAC U be a Borel set. Theba.aK € Kerg and
Fred,(1axaK) :det<I2n— / é(x)TG(x)dx> .
A

If K e Kerl‘(’ and Freﬁ(K) # 0, then one can adapt the Fredholm adjugant con-
struction, see equation (3.4.15), to the present situatinod one can verify that
there exists uniquR € Kerﬁ' such that the resolvent equatiBr- K = KxR=RxK
holds.

Definition 3.9.17The kerneR € Ker}! associated as above withe Ker is called
theresolvenif K with respect tgy, and we writeR = Rei (K).

This definition is contrived so that K € Ker' for i = 1,2, then Re$(K) is in-
dependent of. In fact, we will need to use this definition only far= 1, and the
only resolvents that we will need are those we have alreagly tcsanalyze GUE
in the bulk and at the edge of the spectrum.
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Finally, we introduce terminology pertaining to useful adahal structure a
kernel may possess.

Definition 3.9.18We say thaK € Kery for k € {1,2} is smoothif K is infinitely
differentiable. We say thate Ker; is symmetridresp. antisymmetrigif L(x,y) =
L(y,x) (resp.L(x,y) = —L(y,X)). We say thaK € Ker; is self-dualif K»; andKi»
are antisymmetric anid;1(x,y) = Kz1(x,y). Given smooth. € Ker; andK € Kers,
we say thaK is thedifferential extensiowf L if

Lxy) —ZL(xy)
K(x,y) = ox oxoy )
oy [ Licy)  ~%50cy) ]

Note that ifK € Ker;, is smooth Ky, is antisymmetric, an& is the differential
extension oKy1, thenK is self-dual ando1(x,y) = f; Ki1(t,y)dt.

Main results
Fix real constantg' > 0 and{. With ¢ = ¢, ;5 ¢ as defined by formula (3.9.7),
we put

n-1
Koo c20¥) = 55 5 BA0) (3.9.20

The kernelK, 5 ¢ 2(x,y) is nothing new: we have previously studied it to obtain
limiting results for the GUE.

We come to the novel definitions. We writg = K, ; ¢ » to abbreviate. Let

Kn (Xv y) - % (Xv y)
K X, . y
nod1(oY) l—%slgmx—wa;xn(t,y)dt Ka(%,Y)
N [ t-1(0EMY)  —@h-1(X)¢(y) ]
20° | ([Xgn-a(t)d)E@m(Y) e 1(y)
¢h-1(%)
= ° if nis odd
+ Koma®dt g _i(y) ’ (3.9.25)
(h-1,1) (h-1,1)

0 if nis even,
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and
1| Kena(xy) ——Zai(xy)
Kno.£4(Xy) 5[ Ko (ty)dt Kz:+y1(x,y) ] (3.9.26)
+\/2n+1 @on(X)€@n11(Y) _@n(x)@n+l(Y)1
40% | (X @n®)de@ni1ly)  E@nii(X)@nly) |

We then have the following representations of squares opgapabilities as Fred-
holm determinants of matrix kernels.

Theorem 3.9.19Let y > 0 and a Borel set AC R be given. Assume either that
y > Oorthat A is bounded. Lgt € {1,4}. Then we have

(fAc---fAc AKX [y @02 (4) VPdlx

2
= Fred)(1axaKnozp). (3.9.27)
S-S 1Bx)[P ﬂ{‘zl%,a,e(Xi)\/Edn )

It is easy to check using Lemma 3.9.9 that the right side is\ddfi For compari-
son, we note that under the same hypothesgsamdA we have

e Jac B P Ty @06 (%)%
S JIBOP T @06 (%) 2d%

The latter is merely a restatement in the present setup ofat2.4.

= Fred(1axAKnoz.2) - (3.9.28)

Before commencing the proof we need to prove a Pfaffian anaigg.9.21).
For integers > 0, put

_ g2 ) ay)
Loixy) =bnoey) =02 5 | .

Lemma 3.9.20

n—1
= %g%_l(x)e%(y) + % %8(11 x)ay).

Ln(X,Y)

Proof In view of (3.9.13), it is enough to prove

n—1
0; ‘ % % ‘:g%ﬂx)my)fzomxm(y).
. <jl n ) ’ i=

(-1'=(-1)

Let F1(x,y) and F»(x,y) denote the left and right sides of the equation above,
respectively. Fixx € {1,2} and integerg,k > 0 arbitrarily. By means of (3.9.14)
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and (3.9.17), one can verify thdf Fq (X,y) @ (X) @ (y)dxdyis independent ofr,
which is enough by (3.9.14) to complete the proof. O

Proof of Theorem 3.9.19Given smooth. € Kery, to abbreviate notation, 1&€Xt ¢
Ker, denote the differential extension bf see Definition 3.9.18.

First we prove the cas@ = 4 pertaining to the GSE. Léd (x) be as defined
in Proposition 3.9.7. By straightforward calculation bédhe@ Lemma 3.9.20, one
can verify that

_ 1
H (X)Jn 1H (Y)TJl = 5'—%11,0,5 (Xa Y) = Kn.cr,.f.4(xa Y) :
Then formula (3.9.27) in the cagke= 4 follows from (3.9.9) and Remark 3.9.16.

We next prove the cagé = 1 pertaining to the GOE. We use all the notation
introduced in Proposition 3.9.8. One verifies by straighward calculation using
Lemma 3.9.20 that

Gr(X)J1Gr(Y) Int = L2 (X Y) + M3 £(x,),

where

EhaX—ehal) it nis odd

M Xy) = (Lh-1)
na.&(XY) { 0 if nis even.

Further, with

0 0

Lsignix—y) 0] (3.9.29)

Q) = G (9 Gy I Exy) = |
QA = 1A><AQ andEa = 1a4aAE, we have

—Ea+Qa+Ea*xQa=1axaKno s 1-

Finally, formula (3.9.27) in the cage = 1 follows from (3.9.10) combined with
Remarks 3.9.15 and 3.9.16. O

Remark 3.9.21Because the kerné}, ; ¢ is smooth and antisymmetric, the proof
above actually shows th#, ; ¢ 4 is both self-dual and the differential extension
of its entry in the lower left. Further, the proof shows thensdorK, 5 ¢ 1 +E.

3.9.3 Limit calculations

In this section we evaluate various limits of the form Jim, Kr(I,)gn,En,B’ paying
strict attention to uniformity of the convergence, see Teats 3.9.22 and 3.9.24
below. Implications of these to spacing probabilities anemarized in Corollar-
ies 3.9.23 and 3.9.25 below.
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Statements of main results

Recall the symmetric scalar kernels, see Theorem 3.1.1Dafidition 3.1.3,

1 sin(x—
Ksine(X,Y) = Ksine2(X,y) = I_T)Efyy) , (3.9.30)

A (X) Al (y) — A () Al (y)
X—Y ’
It is understood that these kernels are definedtery in the unique way making

them continuous (and in fact infinitely differentiable). elbubscript 2 refers to
the B parameter for the GUE.

Kairy (%,Y) = Kairy 2(X,y) = (3.9.31)

We define matrix variants of the sine-kernel, and state thie nesult on con-
vergence toward these variants. Let

Ksine(X,Y) — e (x.y)
K i Xa = i ay
smel( y) [ _%s|gn(x—y)+f;Ksine(t7Y)dt KSiﬂE(Xay)
(3.9.32)
1] Kenelxy) — —Zme(xy)
K. 1 y . 3.9.33
et = 3| e o o

The subscripts 1 and 4 refer to tpeparameters for the GOE and GSE, respec-
tively. Note that each of the kernéfgine4 and, withE as in (3.9.29)E + Ksine1 is
self-dual and the differential extension of its entry in liwer left. In other words,
the kernel¥jqeg have properties analogous to thos&gf; s 3 mentioned in Re-
mark 3.9.18.

We will prove the following limit formulas.

Theorem 3.9.22For all bounded intervals & R,

r!mo Kn,\/ﬁ.o.l(xa y) = Ksinel(x7 Y) I (3934)
r!mo Kn,ﬁ,o,z (Xa y) = KsineZ(X7 Y) 9 (3935)
lim Kn.\/ﬁ.OA xy) = Ksinea(x,y), (3.9.36)

nN—oo

uniformly for xy € 1.

Limit formula (3.9.35) is merely a restatement of Lemma B.5nd to the proof
of the latter there is not much to add in order to prove therdthe limit formu-
las. Using these we will prove the following concerning thitkdimits Fyy g (t)
considered in Theorem 3.1.6.
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Corollary 3.9.23For B € {1,2,4} and constants t- 0, the limits g (t) exist.
More precisely, with k= (—t/2,t/2) C R,

(1- FbU”(,l(t))z = Frecg(ll 1 Ksine1) , (8.9.37)
1—Fouka(t) = Fred(Li«Ksinez), (3.9.38)
(1 — Fbu|k4(t/2))2 = Frecg(ll x| Ksine4) . (3.9.39)

Further, for3 € {1,2,4},
t||I'T(]o Fbulk,B (t) =1. (3940)

Formula (3.9.38) merely restates the limit formula in Treeni3.1.1. Note that the
limit formulas limy o Foyi g (t) = 0 for B € {1,2,4} hold automatically as a conse-
guence of the Fredholm determinant formulas (3.9.37),38)%and (3.9.39), re-
spectively. The casg = 2 of (3.9.40) was discussed previously in Remark 3.6.5.
We will see that the casgs € {1,4} are easily deduced from the cg8e= 2 by
using decimation and superposition, see Theorem 2.5.17.

We turn to the study of the edge of the spectrum. We introduateixnvariants
of the Airy kernelKajry and then state limit results. Let

KAiry 1 (Xv Y)
— [ KAiry (X7 Y) - dl;% (X, y)
—%sign(x— y) + f; Kairy (t,y)dt Kairy (%)
1] A [2A1)d) _ A A (Y)
2| (A (Hd)(1— AR (1- [CAimdyAiy) | G4
Kairy 4(X.y)
_ 1 [ Kaiy(xy)  —Z3 (x,y)
2y Kairy (t,y)dt  Kairy (%,Y)
1] AR [ At _AI(X) AV (y)
4 l (A A D) — (A Ody Aily) | 942

Although it is not immediately apparent, the scalar keraglgearing in the lower
left of Kairy g for B € {1,4} are antisymmetric, as can be verified by using formula
(3.9.58) below and integration by parts. More preciselghest the kernel&ajry 4
andE + Kajry 1 (with E as in (3.9.29)) is self-dual and the differential extension
of its entry in the lower left. In other words, the kern&lg, 3 have properties
analogous to those &, ; s 3 mentioned in Remark 3.9.18.

We will prove the following limit formulas.
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Theorem 3.9.24For constants/ > 0 and intervals IC R bounded below,

r!mo Kr(1,)21/6,2ﬁ,1(x’ y) = K,&{r)y’l(xa y) ’ (3943)
r!mo Kr(1,)21/6,2ﬁ,2(x’ y) = K,&{r)y’z(xa y) ’ (3944)
rlmo Krg}/()Zn)l/G,Z\/%A(X’ y) K,&{r)yA (Xa y) ’ (3945)

uniformly for xy € 1.

The proofs of the limit formulas are based on a strengtheonfnigemma 3.7.2

capable of handling intervals unbounded above, see Pitapo8i9.30. The limit

formulas imply, with some extra arguments, the followinguks concerning the
edge limitsFeqqep(t) considered in Theorem 3.1.7.

Corollary 3.9.25For 3 € {1,2,4} and real constants t, the edge limitgyeg (t)
exist. More precisely, with+ (t,«), andy > 0 any constant,

Feager(t)® = Fred)(1.iKaiy.1), (3.9.46)
Fedge2(t) = Fred/(LixiKairy2), (3.9.47)
':ed@|e4(t/22/3)2 = Fred (1. Kairy ). (3.9.48)

Further, for € {1,2,4},
Nim_ Fedges(t) = 0. (3.9.49)

We will show below, see Lemma 3.9.33, that fpe> 0 andf € {1,2,4}, the
y-twisted kerneIK/g‘i’r) g Is bounded on sets of the formx | with | an interval

bounded below, and hence all Fredholm determinants on g aire defined.
Note that the limits lim. . Feqgep(t) = 1 for B € {1,2,4} follow automatically

from formulas (3.9.46), (3.9.47) and (3.9.48), respettivim particular, formula
(3.9.47) provides another route to the proof of Theoremd3cbncerning edge-
scaling in the GUE which, bypassing the Ledoux bound (LemtB&3 handles

the “right-tightness” issue directly.

Proofs of bulk results

The proof of Theorem 3.9.22 is based on the following refineé(3.5.4).

Proposition 3.9.26For all integers k> 0, integersd, and bounded intervals | of
real numbers, we have

(%) k (%+5,ﬁ,o(x) _ Sosx— 7\1/(7_nT+ 6)/2)> ‘ =0,

lim

nN—oo
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uniformly for xe I.

Proof The cas& = 0 of the proposition is exactly (3.5.4). Assume hereaftat th
k > 0. By (3.9.17) and (3.9.20) we have

n+o XGhy s /ao(X)
(pr(1+5,\/ﬁ.0(x) = T%+6—1,ﬁ,o(x) i e

Repeated differentiation of the latter yields a relatiorichtfinishes the proof by
induction onk. O

Proposition 3.9.27For J,k € {0,1} and bounded intervalsd¢ R we have

9 \" 9\"
lim. (@) Knis./n02(%Y) = (a/) Ksine2(X,Y),

uniformly for xy € 1.

The proof is a straightforward modification of the proof ofnuma 3.5.1, using
Proposition 3.9.26 to justify differentiation under thésigral. We omit the details.

The following elementary properties of the oscillator wdmactions will also
be needed.

Proposition 3.9.28We have

lim n1/4/ Un(X)dx=2. (3.9.50)
n:even -

In the bulk case only the order of magnitude establishedikareeded, but in the
edge case we will need the exact value of the limit.

Proof By (3.9.11) in the case = 1 andé = 0 we have
Wo(x) = 2~ VA 1/4g /4 / Wo(X)dx—= 23/471/4. (3.9.51)

By (3.9.17) in the cas& = 0 ando = 1 we have

Jyn(dx  |22i-1 n! .2
Tuobodx—\ 1172 =y 2ﬂ<<n/2>!>2”\/;’

by the Stirling approximation, see (2.5.12). Then (3.9f60pws from (3.9.51).
O
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Proposition 3.9.29We have
sup/ Yn(x)dx
n=1|/0

dd

Proof For odd positive integenswe have a recursion

/Omlpn+2(x)dx = Wn+1 \/f/

which follows directly from (3.9.17) in the cage= 0 ando = 1. Iterating, and
using also the special case

VN+ 1n1(0) = _\/ﬁwn—l(o) (3.9.53)

of (3.9.20), we obtain the relation

(_1)(n+5)/2/000wn+4(x)dx— /%3 /%1(_1)(%1)/2/00 (0
— ( 1) (n+1) /2 n+ n+3
m “Vn+3 V n+2

for odd positive integers. By (3.9.51) and (3.9.53), the right side is positive and
in any case i©(n~%4). The bound (3.9.52) follows. 0

Proof of Theorem 3.9.22The equality (3.9.35) is the cage= 0 of Proposition
3.9.27. To prove (3.9.34) and (3.9.36), in view of Propositi 3.9.26 and 3.9.27,
we just have to verify the (numerical) limit formulas

< oo, (3.9.52)

lim 1t lim __r 0
o (h-1.m0:1) M oea ¥ (n-1,1)
£ 0
im %700 lim 1/4/ Wn(X)dx = 0.
n:odd n Noda 2N
These hold by Propositions 3.9.28 and 3.9.29, respectividig proof of Theo-
rem 3.9.22 is complete. O

Proof of Corollary 3.9.23 For B € {1,2,4}, let AW = (AP APy pe
a random vector iR" with law possessing a density with respect to Lebesgue
measure proportional ti\(x)|PeP¥*/4. We have by Theorem 3.9.19, formula
(3.9.11) and the definitions that
P{o(AMM —&)}n1 =0)? Fred (L1 Knoe.1),
P{oA®V—&)}n1=0) = Fred(LixiKnozo),
P{o(V2A* —&)1n1 =02 = Fred(Li«Knosa)-
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The proofs of (3.9.37), (3.9.38) and (3.9.39) are complbtedsing Lemma 3.4.5
and Theorem 3.9.22. It remains only to prove the stateme®id@). For = 2,

it is a fact which can be proved in a couple of ways describedamark 3.6.5.
The casg3 = 2 granted, the cas¢ke {1,4} can be proved by using decimation
and superposition, see Theorem 2.5.17. Indeed, considethe casg = 1. To
derive a contradiction, assume {im, Fpyik 1(t) = 1 — & for somed > 0. Then, by
the decimation relation (2.5.25), lime Fouik2(t) <1— &2, a contradiction. Thus,
liMt—e Foulk 1(t) = 1. This also implies by symmetry that the probability that no
(rescaled) eigenvalue of the GOE appearfit], denoted (t), decays to 0 as

t — co. By the decimation relation (2.5.26), we then have

1 — Fouika(t) < 2F1(2t) —t—e 0.
This completes the proof of (3.9.40). 0

Proofs of edge results

The proof of Theorem 3.9.24 is similar in structure to thatb&orem 3.9.22. We
begin by refining Lemma 3.7.2.

Proposition 3.9.30For all constantsy > 0, integers K> 0, integersd and intervals
| bounded below we have

r!m)e""(pr(wr)&nl/ﬁzﬁ(x) =e”Ai®(x) (3.9.54)

uniformly for xe 1.

We first need to prove two lemmas. The first is a classical fgiging growth
information about solutions of one-dimensional Schrgdinequations. The sec-
ond applies the first to the Schrodinger equation (3.9.28%fsed by oscillator
wave-functions.

Lemma 3.9.31Fix real numbers a< b. Let@ and V be infinitely differentiable
real-valued functions defined on the interyal «) satisfying the following:

() @' =V, (i) @>0o0n[b,); (i) limy_«(loge) (x) = —o;

(iv)V >0on|[b,»); (v)V'>0o0n][b,).

Then(logg)’ < —V on[b, ).

The differentiability assumptions, while satisfied in onteinded application, are
much stronger than needed.

Proof Suppose rather that the conclusion does not hold. Afteracipdb by
some point of the intervalb,) we may assume th%(b) > —4/V(b). After
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making a linear change of both independent and dependeiables, we may

assume thab =0, V(0) =1 and hence%(O) > —1. Consider the function

6(x) = coshx+ %(O) sinhx. Clearly we havé(0) =1, %’ (0)= %(O) and@” = 6.

Further, becaus%(O) > —1, we haved >0 and%' > —10n[0,). Finally, we
have

(69~ 0'9)(0)=0, = (8¢~ 0'g) = 6p(V ~1)>0 on[0.e).
and hencé% > % > —10nJ0, ), which is a contradiction. O

Lemma 3.9.32Fix n > 0 and putgh(x) = qon.nl/ejzﬁ(x). Then for x> 1 we have
@ (x) > 0and(log@)’(x) < —(x—1/2)%2,

Proof Let { be the rightmost of the finitely many zeroes of the funcinThen

¢h does not change sign @4, ) and in fact is positive by (3.9.20). The logarith-
mic derivative ofg, tends to—o asx — 40 becauseg, is a polynomial inx times

a Gaussian density function @f In the present case the Schrodinger equation
(3.9.22) takes the form

@' (x) = (x+n"2/32/4—1/(2nY3)) gh(x) . (3.9.55)

We finally apply Lemma 3.9.31 with = max(1, {) < b, thus obtaining the esti-
mate

(logg)'(b) < —+/b—1/2 for be ({,0)N(1,).
This inequality forces one to have< 1 because the function bfon the left side
tends to+w asb | ¢. O

Proof of Proposition 3.9.30We write ¢, 5(x) instead ofg, 5 /6 5 ﬁ(x) to abbre-
viate. We have

1/6
Msial®) ~ o) = s ([ 2 1) 0% T,

by (3.9.20) and (3.9.17), and by means of this relation weeeesily reduce to the
cased = 0. Assume thad = 0 hereafter and write simplg = ¢ho.

By Lemma 3.7.2, the limit (3.9.54) holds on bounded intesVaFurther, from
Lemma 3.7.7 and the Airy equation’Ak) = xAi (x), we deduce that

e” Ai 9 (x) is bounded on intervals bounded below (3.9.56)
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Thus it is enough to establish the following bound, for agit constanty > 0
and integer& > 0:

soﬁpsup|equq§k) (X)| < 0. (3.9.57)

n=1x>1

Since in any case sfjp, ¢h(1) < «, we get the bound (3.9.57) fér= 0,1 and all
y > 0 by Lemma 3.9.32. We then get (3.9.57) kor 2 and ally > 0 by (3.9.55)
and induction ork. O

Growth ofKajry g is under control in the following sense.

Lemma 3.9.33For B8 € {1,2,4}, y > 0 and intervals | bounded below,/gt%, pis
bounded on k I.

Proof We have

Kay (%,Y) = /OooAi (X+t) Al (y+)dt. (3.9.58)

To verify this formula, first applys; + 4 to both sides, using (3.9.56) to justify
differentiation under the integral, then apply the Airy atian Ai” (x) = xAi (x) to
verify equality of derivatives, and finally apply (3.9.5&)an to fix the constant
of integration. By further differentiation under the intafj it follows that for all
integerk, ¢ > 0, constanty > 0 and interval$ bounded below,

dk+€
VOHY)_— Ky . 3.9.59
fyg S Skay KAy (Xy)| <o ( )
The latter is more than enough to prove the lemma. O

The following is the analog of Proposition 3.9.27.

Proposition 3.9.34For 0,k € {0, 1}, constanty > 0 and intervals IC R bounded
below, we have

_ d\" a\"
lim e/ (W) K o.n16 2 ﬁ,z(x,y)zevmw (W) Kairy 2(%,y), (3.9.60)

n—oo

uniformly for xy € 1.
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Proof To abbreviate we write s = @, 5 v/ 2ym We have

Kn+6,n1/6,2ﬁ,2(xv y)
= [ @bt Oiansly+tot

1 0
a3 /0 (X+Y+2t)gh 5(X+1)gh 5(y +t)dt (3.9.61)

+T11/3/0w (%,5(X+t)¢n,5(y+t)+%.5(X+t)¢é.a(y+t)) dt.

This is proved using (3.9.12), (3.9.21) and (3.9.22), felltg the pattern set in
proving (3.9.58) above. In the cage= 0 we then get the desired uniform con-
vergence (3.9.50) by Proposition 3.9.30 and dominatedergence. After differ-
entiating under the integrals in (3.9.58) and (3.9.61), ektlge desired uniform
convergence fok = 1 in similar fashion. O

Proof of Theorem 3.9.24The limit (3.9.44) follows from Proposition 3.9.34. To
see (3.9.43) and (3.9.45), note that by definitions (3.%4i)(3.9.42), and Propo-
sitions 3.9.30 and 3.9.34, we just have to verify the (nucadyiimit formulas

jim 7 ( By o= gim gy =
mo a % 1/6 2. m» = Lmoo n; = 5>
Nevpd A Heven 4 2

. 1 . 1 1
lim —————— = I|rrg°1/47 =Z.
I ood (G162 i 1) nosent/4(gn-1,1) 2

These hold by Proposition 3.9.28. The proof of Theorem d.&2omplete. O
Proof of Corollary 3.9.25With the notatiom (3" as defined at the beginning of
the proof of Corollary 3.9.23, we have by Theorem 3.9.19ida (3.9.11) and
the definitions that

P({G(/\ @ _ E)} nl= 0)2 Fredz/(ll X1 Kn,a.f,l) )

P({G(/\ @m _ E)} nl= 0) Fl’ed_f(1| x| Kn,a.E,Z) )
PUo(V2A4 &Nt =02 = Fred(LixKnoea))-

To finish the proofs of (3.9.46), (3.9.47) and (3.9.48), usmina 3.4.5 and The-

orem 3.9.24. The statement (3.9.49) holdsfiot 2 by virtue of Theorem 3.1.5,
and for3 = 1 as a consequence of the decimation relation (2.5.25).

The argument foB = 4 is slightly more complicated. We use some information
on determinantal processes as developed in Section 4.2.8¢®), the sequence
of laws of the second eigenvalue of the GUE, rescaled at ttige'sscaling”, is
tight. Exactly as in the argument above concerifing 1, this property is inherited
by the sequence of laws of the (rescaled) second eigenvathe 6GOE. Using
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(2.5.26), we conclude that the same applies to the sequétengof the largest
eigenvalue of the GSE. O

Remark 3.9.35An alternative to using the decimation relations (2.5.2%) a
(2.5.26) in the proof of lower tail tightness is to use theraptotics of solutions
of the Painlevé Il equations, see Remark 3.8.1. It has therddge of leading to
more precise tail estimates &gqges. \We sketch the argumentin Exercise 3.9.36.

Exercise 3.9.36Using Exercise 3.8.3, (3.7.20), (3.8.4), (3.8.21) and Téen
3.1.7, show that fo = 1,2,4,

1 2B
tlm @ |Og[1 - FedgeB (t)] = - ? y
. 1 B
tlrpw t_3 |Og I:edgeB (t) _ﬂ~

Again, note the different rates of decay for the upper anctlawails of the distri-
bution of the largest eigenvalue.

3.9.4 Differential equations

We derive differential equations for the ratios

1— Founp(t/2))? Fodges (t/22/3)2
PbulKB(t):( 1EbFLl1fK(z(/t)))’ pedgeﬁ(t)Z%, (3.9.62)

for B € {1,4}, thus finishing the proofs of Theorems 3.1.6 and 3.1.7.

Block matrix calculations

We aim to represent each of the quantiigg g (t) andpeqgep(t) as a Fredholm
determinant of a finite rank kernel. Toward that end we proeefollowing two
lemmas.

Fix a constany > 0. Fix kernels

[ i 3} ,{ 2 8] €Kery, o,weKer). (3.9.63)

Assume that

d=o0+w, Fred(o)#0. (3.9.64)



3.9 LIMITING BEHAVIOR OF THEGOEAND THE GSE 171

Below, for brevity, we suppress writing AB for AxB. Put

[ a—be (a—be)b
K1 = | c—de w+(c—deb }’ (3.9.65)
r a—2be (a*fe)b ‘|
Kg = , (3.9.66)
—d —b b—d —d —be)b
I c e+§(a ©) W+e2 _|_(c e+ei§a e))
_[o 0 y
R = |0 Red(0) ] € Ker,.

ThatR is well defined and belongs to Kefollows from assumption (3.9.64).
ThatK; andK 4 are well defined will be proved below. Recall that foe {1,2}
andLy,L; € Ker!, againL L, € Ker}, by (3.9.23).

Lemma 3.9.37With data(3.9.63)and under assumptiof8.9.64) the kerneld ¢
andK, are well defined, and have the following properties:

Ki,Ks € Kerb, (3.9.67)
b
red (| o0 a))
Fred(K1+KiR) = Fred (o) , (3.9.68)
=4 (3]¢ a))
Fred(Ks+K4R) = Fred(0) . (3.9.69)

Proof Put

(3] [0 2) (2 2]

Note thatB, E, S € Ker. GivenLy,...,Ln € Kery with n> 2, let

m(L1,Lp) = Li+Lo—Lils € Kerb,
m(Ly,...,Ln) = m(m(Ly,...,Ln-1),Ln) € Ker} forn>2.

ab
]2 0] eew).

lia b 1

Ones verifies that

Put

Kg=Lg—LgS Lg=Kp+KgR (3.9.70)
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for B € {1,4} by straightforward calculation with 2 matrices in which one
uses the first part of assumption (3.9.64), nantely o +w, and the resolvent
identity R — S= RS= SR. Relation (3.9.70) establishes th&t andK 4 are well
defined and proves (3.9.67). By Remark 3.9.15, we have

Fred(cB) = 1, Fred(+E) = 1, Fred(R)Fred/(o) =1,
wherec is any real constant, and fbg, ..., Ly € Ker{ withn> 2,
Fred(m(Ly,...,Ln)) = Fredy(L1)---Fred(Ln).
We can now evaluate Fré(d_,g), thus proving (3.9.68) and (3.9.69). O

The next lemma shows thb(tﬁ can indeed be of finite rank in cases of interest.

Lemma 3.9.38Let K € Ker, be smooth, self-dual, and the differential extension
of its entry k1 € Kery in the lower left. Let I= (t1,t2) be a bounded interval. Let

[ alx,y) b(xy)

ey e | = B K ), sxy) = G ysignc-y).

thus defining &b, c,d,e € Kerd. Let

P(x) = %(Kll(x7tl)+Kll(X7t2))v (3.9.71)

I,U(X) = Kll(X,tz)—Kll(X,tl), (3.9.72)
X 153

o = 5 ([ omay- [“oay) . 3979

LetKg for B € {1,4} be as defined irf3.9.65)and (3.9.66) respectively, with
w=0. Then

Kixy) = 1|x|(x,y)[ g(();)) } [1 wy ], (3.9.74)
Ka(xy) = 1|x|(x,y)[ g(&))/z _2] H i(%)//zz ] (3.9.75)

We omit the straightforward proof.

Proof of Theorem 3.1.6

We begin by recalling basic objects from the analysis of théEGn the bulk of
the spectrum. Reverting to the briefer notation introduoegtjuation (3.6.1), we
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write S(X,¥) = Ksine2(X,y) for the sine-kernel. Explicitly, equation (3.9.38) says
that

- © (—1)" Xt Xn ) iy qe
1_FbU|K2(t)_1+ zl n! /[_%’%]ns X1 ... Xn il:ld)q.

n=

Let R(x,y;t) be the resolvent kernel introduced in Section 3.6.1 (obthiinom
the sine-kernel with the choice=2,5=0==¢, 53 =1 andty = —t; =t/2).
Explicitly, R(x,y;t) is given by

a X X o0 Xn )\ o
1— t))R(X,Y; X S dx,
(1 Fourca (0RO Yit) = S(x y) + . (y o Xn)ﬂ X
and satisfies
t/2
S(x,y) + /S(x,Z)R(z7y;t)dZ=R(x,y;t) (3.9.76)
—t/2
by the fundamental identity, see Lemma 3.4.7. Recall thetfans
sinx /2 siny
xt) = —+ Rx, 1) ——=dy,
cosX t/2 cosy
P(xt) = R(X,Y; dy,
ot = &+ 2 Oeyit) = dy

which are as in definition (3.6.3) as specialized to the case,5 =0, =1,
s, =0,t; = —t/2 andty =t/2 studied in Section 3.6.3. Finally, as in (3.6.30), let
p=p(t) =P(-t/2;t), g=q(t) = Q(-t/2;t),
noting that
r=r(t)=-2pq/t, (3.9.77)
is the function appearing in Theorem 3.1.6.

We introduce a systematic method for extracting useful ions oft from
R(x,y;t). A smooth (infinitely differentiable) functiop(x;t) defined for reak
and positivet will be called atest-function Given two test-functiongy and @,
we define

1/2
(@@ = til/zfpl(tX;t)(Pz(tX;t)dX

1/2
/ ) (pltx DR(tx ty;t) gu(ty; t)dxdy.
1/2

We call the resulting function clfanangle bracketBecause

R(xy;t) =R(y,xt) = R(—x,—y;t), (3.9.78)
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the pairing(-|-)t is symmetric and, furthermore,

a(—x)@(—xt) = —@xt)@(xt) = (@|@) =0. (3.9.79)

Given a test-functiop = @(x;t), we also define
+ oty ;_ Y ‘7_(P .

Now consider the test-functions

f(xt) = Si%(,
oxt) = (Sxt/2)+Sx /),
1

h(x;t) 5(S(x,t/2) = S(x, ~1/2)),
G(xt) = /Oxg(z;t)dz.
By the resolvent identity (3.9.76) and the symmetry (3.pW& have
p(t) = 7 (t)+ (gl '), —a(t)=f7(t)+ (h|f). (3.9.80)
It follows by (3.9.77) that (t) is also expressible in terms of angle brackets. To

link the functionr (t) to the ratios (3.9.62) in the bulk case, we begin by exprgssin
the latter in terms of angle brackets, as follows.

Lemma 3.9.39For each constantt- 0 we have

Pouk(t) = 1—2G*(t) - 2(h|G), (3.9.81)
Pouka(t) = (1—G+(t>—<h|e>t><1+%<g|1>t). (3.9.82)

Proof Let| = (—t/2,t/2) and define inputs to Lemma 3.9.37 as follows:

{ a(x,y) b(x,y) } 21151 (%, Y)Ksinea(X,Y) ,

c(x,y) d(xy)

exy) = 1i1(xY)5ignx-Y).
U(va) = 1|x|(X,y)S(X,y), w=0.
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Then we have

Kabey) = La(cy)| 35U ][ 1 2h(xt) |,

| G(xt)
[g(xt)/2  0][1 h(yt)
Kaxy) = Lia(xy) L G(xt) -1 ] [ 0 g(xt)/2 }

[0 0
R(Xay) - 1|><|(Xay) I O R(X,y,t) :| )
where the first two formulas can be checked using Lemma 3.9u38 the last
formula holds by the resolvent identity (3.9.76).

The right sides of (3.9.68) and (3.9.69) eqpglig(t) for B € {1,4}, respec-
tively, by Corollary 3.9.23. Using Remark 3.9.15, one caeaktthat the left side
of (3.9.68) equals the right side of (3.9.81), which coneluthe proof of the latter.
A similar argument shows that the left side of (3.9.69) egual

daoz_[6+m**”6” —«mwt}>.
539Gk —3(glLx

But (h|1); and(g|G); are forced to vanish identically by (3.9.79). This conclide

the proof of (3.9.82). O

Toward the goal of evaluating the logarithmic derivativéshe right sides of
(3.9.81) and (3.9.82), we prove a final lemma. Given a tasttfan @ = @(x;t),
let Do = (D@)(x;t) = (x‘,iX +t%)(p(x;t). In the statement of the lemma and the
calculations following we drop subscriptstofor brevity.

Lemma 3.9.40For all test-functionsp;, ¢ we have

(Glle) + (@l @) = (3.9.83)
(@ +(g+hle) (@ +(9+hle) — (@ +(9—hle) (e +(g—hi@)),
t%mvm =

(@1l@) + (D@rl@) + (@1Dae) + (@l f)(Flez) + (@] ) (F'| ). (3.9.84)

Proof The resolvent identity (3.9.76) and the symmeSty, y) = S(y, X) yield the

relation
t/2

/
(g hlgh = [~ RE:/20)000dx

Formula (3.6.18) witm=2,5=0=15,, 5 = 1,t, = —t; =t/2 states that

(;_x + %) R(x,y;t) = R(X, —t/2;t)R(—t/2,y;t) — R(x, t/2;1)R(t/2,y;1).
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These facts, along with the symmetry (3.9.78) and integmaliy parts, yield

(3.9.83) after a straightforward calculation. Similatlgjng the previously proved
formulas for%R(x,y;t), (x—Y)R(x,y;t), P(x;t) andQ'(x;t), see Section 3.6,
along with the trick

<1+x%+y%> R= %(x—y)RnLy(;—er %) R,

one gets
<1+xi +yi +ti) R(X,y;t) = P(xt)P(y;t) + Q(x;1)Q(y:t),

ox oy ot

whence formula (3.9.83) by differentiation under the imétg O
To apply the preceding lemma we need the following iderstifad which the
verifications are straightforward.
d

h+Dh=ff, g+Dg=f""f DG=f"f, t=G = f"f". (39.85)

The notation here is severely abbreviated. For examplehtterelation written
out in full reads(DG)(x;t) = f'*(t)f(x) = f/(t/2)f(x). The other relations are
interpreted similarly.

We are ready to conclude. We claim that
t%(l —2G" - 2(h|G))
= =2(fT+(hf) (I +(f|G)) =2q(f"" +(f|G))

2g(f"" + (gl f') = 2("" + (9| ")) (G" + (h[G)))

= 2pq(1—-2G"—2(h|G)) = —tr(1-2G" - 2(h|G)). (3.9.86)
At the first step we apply (3.9.79), (3.9.84) and (3.9.85)th&tsecond and fourth
steps we apply (3.9.80). At the third step we apply (3.9.88) vy = — ' and
@ = G, using (3.9.79) to simplify. At the last step we apply (3D.7Thus the

claim (3.9.86) is proved. The claim is enough to prove (3 1since both sides
of the latter tend to 1 as| 0. Similarly, we have

t£(1+ (91)) = p(t']1) = —2pa(1+(g1)) =tr(1+(g|1)),

dt
which is enough in conjunction with (3.1.11) to verify (3L2). The proof of
Theorem 3.1.6 is complete. O

Proof of Theorem 3.1.7

The pattern of the proof of Theorem 3.1.6 will be followedheat closely, albeit
with some extra complications. We begin by recalling themwbjects from the
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analysis of the GUE at the edge of the spectrum. We reverte@bibreviated
notationA(x,y) = Kairy 2(X,y). Explicitly, equation (3.9.47) says that

© (—1)”/ <Xl Xn) -
Fedge2(t) = 1+ A -
edgeZ( ) nZl n! [t,0)" X1 ... Xp iI:! X

Let R(x,y;t) be the resolvent kernel studied in Section 3.8. ExplicRl¥, y;t) is
given by

Fapa Rt = Ay 3 S [ AT ) e

n=1
and by Lemma 3.4.7 satisfies
A(X,Y) + /tw AX,2R(zy;t)dz=R(x,y;t). (3.9.87)
Recall the functions
Quet) = A+ [ ROy AT(Y)dy. q=q(t) = QE:t),
which are as in definition (3.8.3), noting thais the function appearing in Theo-

rem3.1.7.

Given any smooth functiong = @ (x;t) andg@ = @(x;t) defined onR?, we
define

(pl@) = /()W(Pl(t+x§t)(P2(t+X;t)dx

+/O /O Ot +XORE+ X+ Y1) @(t+ y;t)dxdy,

provided that the integrals converge absolutely for eagdfixWe call the result-
ing function oft anangle bracketSince the kerneR(x, y;t) is symmetric inx and

y, we have(@| @)t = (¢2/ @)t

We will only need finitely many explicitly constructed paifg, ¢») to substi-
tute into(-|-)1. For each of these pairs it will be clear using the estimeé3¢x56)
and (3.9.59) that the integrals above converge absolwetythat differentiation
under the integral is permissible.

We now define the finite collection of smooth functions(gft) € R? from
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which we will draw pairs to substitute intg|-);. Let

f=1f(xt) = Ai(X),
g=g(xt) = A
F=F(xt) = —/ f(z)dz,

—/Xoog(z;t)dz.

X)),

G=G(xt)

Given any smooth functiop = @(x;t), it is convenient to define

d=dxt) = 221,

ox
=9 () = ot;t),
Do= (Do)(xt) = i+i (x;t)
We have
Df=f', DF=F' =f, G =g, %F‘:f‘, (3.9.88)
Dg=—-f"f, DG=—-f"F, G‘:—(F‘)Z/Z, %G‘:—f‘F‘, (3.9.89)

the first four relations clearly, and the latter four follogifrom the integral rep-
resentation (3.9.58) &(x,y). We further have

q=f"+(f|g), (3.9.90)

by (3.9.87). The next lemma linkg to the ratios (3.9.62) in the edge case by
expressing these ratios in terms of angle bracketsfFof 1,4} let

[ hg T [ -1 -iF- .
[ _

o |=| 1 Fiie || 9]

Lfg ] | O 1

N . Y A G
Gg] |3 —FF F+iF 1
Fs | 3.1 1

L ﬁ . _O wa 5 F



3.9 LIMITING BEHAVIOR OF THEGOEAND THE GSE 179

Lemma 3.9.41For each real t we have

_ B “(t)/2+4 (h|Ga)t  (ha|Fa)t
Pedge1(t) = det(l2 { (f1Guk (f1[F D (3.9.91)
(ha|Ga)t/2  —(ha|1)t/2  (ha|Fa)i/2
Pedges(t) = det| Iz3— | (9a|Ga)t/2 —(0a|1)t/2 (QalFa)/2 | | .
(falGa)e  —(fall)t  (falFa)t

(3.9.92)

It is easy to check that all the angle brackets are well defined

Proof We arbitrarily fix reat, along withf € {1,4} andy > 0. LetK = E+Kajry 1
if B =1 and otherwise le = 2Kjry 4 if B = 4. Letl = (t,) and define inputs
to Lemma 3.9.37 as follows.

[ a(x,y) b(xy)

cixy) dixy) | W YKEY),

| S

e(xy) = lx(xy)3 SIgn(x y),
(Xay) = 1|><|(Xay) (va)v
wixy) = %(55’1_ /X Ai (z)dz) Ai(y).

Using Lemma 3.9.38 with =t andt, — o, one can verify after a straightforward
if long calculation that if3 = 1, then

_ qulyt) 0 1 hi(xt)
Kl(x’y)_l'x'(x’y){ G Falyi) ] { 0 i) } ’

whereas, if3 = 4, then

0 ga(yst)/2

wxt)y2 0 0 ][
0 fa(yst)

1 ha(y;t)/2
K4(X,y)=1|xl(XvY)[ Ga(xt) —1 Fa(x;t)

We also have
0 0
RO =1109) | 0 poe) |

The right sides of (3.9.68) and (3.9.69) eqajges(t) for B € {1,4}, respec-
tively, by Corollary 3.9.25. Using Remark 3.9.15, and thenitity

o 0,
Ny OBl
/t gp(xt)dx= > F~ (1),

which follows from (3.9.88) and the definitions, one can ¢hibat for3 = 1 the
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left side of (3.9.68) equals the right side of (3.9.91), amat for 3 = 4, the left
side of (3.9.69) equals the right side of (3.9.92). This clatgs the proof. O

One last preparation is required. For the rest of the proafirge the subscript
t, writing (@1 |@) instead of @1 |@):. Forg € {f,g} andg € {1,F,G}, we have

%(%l@) = (D@r| @) + (@|Dep) — (flon) (flaz), (3.9.93)

(@l @) + (@l@h) = — (@ +(gle) (@ +(gl@) +(fle)(fle), (3.9.94)
as one verifies by straightforwardly applying the previguitained formulas for
(g—x + %) R(x,y;t) and ZR(x,y;t), see Section 3.8.

We now calculate using (3.9.88), (3.9.89), (3.9.90), @&%and (3.9.94). We
have

d
Gt @) = a(=(f1),

S = (P DA = a1+ (),
SN = ~(VIF) {110+ (1I0(1IF) = a(F + (gIF)).
SE TR = aa-(fF).

@) = (G + GG+ (gl + (TGN (T,

GF)+(1G) = —(G +UG)(F +(gF) + (fIF){f]G).

The first four differential equations are easy to integrate] moreover the con-
stants of integration can be fixed in each case by noting ktieatihgle brackets
tend to 0 a$ — +o, as doeg|. In turn, the last two algebraic equations are easily
solved for(g|G) and(f|G). Letting

x=x(t)=exp( - [ ae).
we thus obtain the relations
(9G) (gl1) <9|F>]
{<f|G> (f|1) (f|F) (3.9.95)
[Lﬁl—x‘ﬁlF—ﬂF-)Z/z—l mct g x—_;l_p—]

—1 —1 —1 ~1
X+X — _ X=X _ X=X XX
2 F 1 2

2 2

It remains only to use these formulas to evaluate the determs on the right sides
of (3.9.91) and (3.9.92) inlterms gfandF~. The former determinant evaluates
to x and the latter td+2*—. The proof of Theorem 3.1.7 is complete. 0
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Remark 3.9.42The evaluations of determinants which conclude the proofab
are too long to suffer through by hand. Fortunately one cgarmize them into
manipulations of matrices with entries that are (Laureatypomials in variables
x andF—, and carry out the details with a computer algebra system.

3.10 Bibliographical notes

The study of spacings between eigenvalues of random mafricthe bulk was
motivated by “Wigner's surmise” [Wig58], that postulatediansity of spacing
distributions of the fornCse s/4. Soon afterwords, it was realized that this was
not the case [Meh60]. This was followed by the path-breakwog [MeG60],
that established the link with orthogonal polynomials dmel sine-kernel. Other
relevant papers from that early period include the seriggsfb], [Dys62c],
[Dys62d] and [DyM63]. An important early paper concernitg torthogonal
and symplectic ensembles is [Dys70]. Both the theory andsargsion of the
history of the study of spacings of eigenvalues of variousearbles can be found
in the treatise [Meh91]. The results concerning the largegtnvalue are due to
[TrWw94a] for the GUE (with a 1992 ArXiv online posting), an@rfV96] for the
GOE and GSE; a good review is in [TrW93]. These results haea lextended
in many directions; at the end of this section we provide afldescription and
pointers to the relevant (huge) literature.

The book [Wil78] contains an excellent short introductiorotthogonal poly-
nomials as presented in Section 3.2. Other good referemeetha classical
[Sze75] and the recent [Ism05]. The three term recurrendetaa Christoffel—
Darboux identities mentioned in Remark 3.2.6 hold for arsgtem of polynomials
orthogonal with respect to a given weight on the real line.

Section 3.3.1 follows [HaT03], who proved (3.3.11) and oted that differ-
ential equation (3.3.12) implies a recursion for the morsenty discovered by
[Haz86] in the course of the latter’s investigation of thedulth space of curves.
Their motivation came from the following: at least formallye have the expan-
sion
2P

2p! (L),

<ENveS'>: Z

p=0

Using graphical rules for the evaluation of expectationproiducts of Gaussian
variables (Feynman’s diagrams), one checks thatx?P) expands formally into

1
g;)@f/‘/%&tr(xzw,g(l)
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with W%tr(pr%g(l) the number of perfect matchings on one vertex of degpee 2
whose associated graph has gegudence, computingLy,€®) as in Lemma
3.3.1 gives exact expressions for the numbﬂgtr()@p),g(l). The link between
random matrices and the enumeration of maps was first degdrilthe physics
contextin [tH74] and [BrIPZ78], and has since been enoratpdeveloped, also
to situations involving multi-matrices, see [GrPW91], @AJ95] for a descrip-
tion of the connection to quantum gravity. In these casegicea do not have in
general independent entries but their joint distributisrdescribed by a Gibbs
measure. When this joint distribution is a small perturtratbf the Gaussian
law, it was shown in [BrIPZ78] that, at least at a formal levahnealed mo-
ments(EN,XZP> expands formally into a generating function of the numbdrs o
maps. For an accessible introduction, see [Zv097], and flis@ission of the as-
sociated asymptotic expansion (in contrast with formabagion), see [GuMO06],
[GuMO7], [Mau06] and the discussion of Riemann—Hilbert hoets below.

The sharp concentration estimates Agfax contained in Lemma 3.3.2 are de-
rived in [Led03].

Our treatment of Fredholm determinants in Section 3.4 istliermost part
adapted from [Tri85]. The latter gives an excellent shdroiduction to Fredholm
determinants and integral equations from the classicalpdént.

The beautiful set of nonlinear partial differential eqoas (3.6.4), contained in
Theorem 3.6.1, is one of the great discoveries reportedviM$80]. Their work
follows the lead of the theory of holonomic quantum fieldsaleped by Sato,
Miwa and Jimbo in the series of papers [SaMJ80]. The link ketwToeplitz
and Fredholm determinants and the Painlevé theory of andidifferential equa-
tions was earlier discussed in [WuUMTB76], and influencedsges [SaMJ80].
See the recent monograph [Pal07] for a discussion of thesgagenents in the
original context of the evaluation of correlations for twin@énsional fields. To
derive the equations (3.6.4) we followed the simplified apgh of [TrW93], how-
ever we altered the operator-theoretic viewpoint of [Tr\M®3 “matrix algebra”
viewpoint consistent with that taken in our general distrsén Section 3.4 of
Fredholm determinants. The differential equations havemilfonian structure
discussed briefly in [Trw93]. The same system of partiakdéhtial equations is
discussed in [M0s80] in a wider geometrical context. See [aTW93].

Limit formula (3.7.4) appears in the literature as [Sze7&, £22.14, p. 201]
but is stated there without much in the way of proof. The ety short self-
contained proof of (3.7.4) presented in Section 3.7.2 ietham the ideas of
[PIR29]; the latter paper is, however, devoted to the asgtigppbehavior of the
Hermite polynomials)s(x) for real positivex only.
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In Section 3.8, we follow [TrWO02] fairly closely. Itis po$se to work out a sys-
tem of partial differential equations for the Fredholm detimant of the Airy ker-
nel in the multi-interval case analogous to the system43f6r the sine-kernel.
See [AdvMO01] for a general framework that includes also @aussian models.
As in the case of the sine-kernel, there is an interpretatidhe system of partial
differential equations connected to the Airy kernel in thdtivinterval case as an
integrable Hamiltonian system, see [HaTW?93] for details.

The statement contained in Remark 3.8.1, taken from [HaM8Q solution
of a connection problemFor another early solution to connection problems, see
[McTW77]. The book [FOIKNO6] contains a modern perspeciire Painlevé
equations and related connection problems, via the Rientdiibert approach.
Precise asymptotics on the Tracy—Widom distribution argaiaed in [BaBDO08]
and [DelKO08].

Section 3.9 borrows heavily from [TrW96] and [TrwWO05], agagworked to our
“matrix algebra” viewpoint.

Our treatment of Pfaffians in Section 3.9.1 is classical,[8ae85] for more
information. We avoided the use of quaternion determindnits treatment based
on these, see e.g. [Dys70] and [Meh91].

An analog of Lemma 3.2.2 exists fBr= 1,4, see Theorem 6.2.1 and its proof
in [Meh91] (in the language of quaternion determinants) tiredexposition in
[Rai00] (in the Pfaffian language).

As mentioned above, the results of this chapter have beemésd in many
directions, seeking to obtaimiversalityresults, stating that the limit distributions
for spacings at the bulk and the edge of the GOE/GUE/GSE ajgfmain other
matrix models, and in other problems. Four main directiamstich universality
occur in the literature, and we describe these next.

First, other classical ensembles have been considere&¢éstien 4.1 for what
ensembles mean in this context). These involve the studihef types of orthog-
onal polynomials than the Hermite polynomials (e.g., Lagaer Jacobi). See
[For93], [For94], [Trw94b], [Trw00], [Joh00], [John01]Fpr06], and the book
[For05].

Second, one may replace the entries of the random matrix hyQaussian
entries. In that case, the invariance of the law under catjag is lost, and no ex-
plicit expression for the joint distribution of the eigehwas exist. It is, however,
remarkable that it is still possible to obtain results cono® the top eigenvalue
and spacings at the edge that are of the same form as Theoredh®s8d 3.1.7,
in case the law of the entries possesses good tail propeftiesseminal work is
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[S0s99], who extended the combinatorial techniques ing8ti$to show that the
dominant term in the evaluation of traces of large powersonéfiom matrices does
not depend on the law of the entry, as long as the mean is ber@atiance as in
the GOE/GUE, and the distribution of the entries is symroefrhis has been ex-
tended to other models, and specifically to certain Wishattiges, see [Sos02b]
and [Péc09]. Some partial results relaxing the symmesyragtion can be found
in [PeS07], [PeS08b], although at this time the univengalitthe edge of Wigner
matrices with entries possessing non-symmetric disiobuemains open. When
the entries possess heavy tail, limit laws for the largegtmialue change, see
[Sos04], [AuBPQ7]. Concerning the spacing in the bulk, endality was proved
when the i.i.d. entries are complex and have a distributiam tan be written as
convolution with a Gaussian law, see [Joh01b] (for the caxpVigner case) and
[BeP05] (for the complex Wishart case). The proof is base@dmmpplication
of the Itzykson—Zuber—Harish-Chandra formula, see thkdgitaphical notes for
Chapter 4. Similar techniques apply to the study of the Erggenvalue of so
called spikedmodels, which are matrices of the fondil X* with X possessing
i.i.d. complex entries andl a diagonal real matrix, all of whose entries except for
a finite number equal to 1, and to small rank perturbations @fnéf matrices,
see [BaBPO05], [Péc06], [FeP07], [Kar07b] and [Ona08].akin a wide ranging
extension of the universality results in [Joh01b] to Heranitmatrices with inde-
pendent entries on and above the diagonal appears in [ERSMa¥09b] and
[ERS09].

Third, one can consider joint distribution of eigenvaluéthe form (2.6.1), for
general potentialg. This is largely motivated by applications in physics. When
deriving the bulk and edge asymptotics, one is naturallytdestudy the asymp-
totics of orthogonal polynomials associated with the weggltY. At this point,
the powerful Riemann—Hilbert approach to the asymptotfosrthogonal poly-
nomials and spacing distributions can be applied. Ofteat,dpproach yields the
sharpest estimates, especially in situations where tihegonal polynomials are
not known explicitly, thereby proving universality statemts for random matri-
ces. Describing this approach in detail goes beyond theesobthis book (and
bibliography notes). For the origins and current state et of this approach we
refer the reader to the papers [FolK92], [DeZ93], [DeZ9B[Z97], [DeVZ97]
[DeKM 98], [DeKM'99], [BII99], to the books [Dei99], [DeG09] and to the
lecture [Dei07]. See also [PaS08a].

Finally, expressions similar to the joint distribution biteigenvalues of ran-
dom matrices have appeared in the study of various combriabpooblems. Ar-
guably, the most famous is the problem of the longest inangasibsequence of
a random permutation, also known diam’s problem which we now describe.
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Let L, denote the length of the longest increasing subsequenceaoidam per-
mutation on{1,...,n}. The problem is to understand the asymptotics of the law
of L. Based on his subadditive ergodic theorem, Hammersley [f2ashowed
thatL,/+/n converges to a deterministic limit and, shortly thereafieeK77] and
[LoS77] independently proved that the limit equals 2. It wasjectured (in anal-
ogy with conjectures for first passage percolation, see §8[for some of the
history and references) thiag := (L, — 2,/n) /n%/® has variance of order 1. Using
a combinatorial representation, due to Gessel, of theildision of L, in terms
of an integral over an expression resembling a joint distidn of eigenvalues
(but with non-Gaussian potentidl)), [BaDJ99] applied the Riemann—Hilbert ap-
proach to prove that not only is the conjecture true, but i fa asymptotically
is distributed according to the Tracy—Widom distributien Subsequently, di-
rect proofs that do not use the Riemann—Hilbert approadhdduse the random
matrices connection) emerged, see [Joh0la], [BoOOO00] @kd(0]. Certain
growth models also fall in the same pattern, see [JohO0] Br8J2]. Since then,
many other examples of combinatorial problems leading taieeusal behavior
of the Tracy—Widom type have emerged. We refer the readdretdarthcoming
book [BaDS09] for a thorough discussion.

We have not discussed, neither in the main text nor in thesiographical
notes, the connections between random matrices and nuhdmey more specif-
ically the connections with the Riemann zeta function. Weerr¢he reader to
[KaS99] for an introduction to these links, and to [KeaO@]daecent account.



4
Some generalities

In this chapter, we introduce several tools useful in thelystf matrix ensem-
bles beyond GUE, GOE and Wigner matrices. We begin by satjinig Section
4.1 a general framework for the derivation of joint disttibn of eigenvalues in
matrix ensembles and then we use it to derive joint distidioutesults for several
classical ensembles, namely, the GOE/GUE/GSE, the Lagaasembles (corre-
sponding to Gaussian Wishart matrices), the Jacobi enssnitdrresponding to
random projectors) and the unitary ensembles (correspgndirandom matrices
uniformly distributed in classical compact Lie groups).Saction 4.2, we study
a class of point processes that degerminantglthe eigenvalues of the GUE, as
well as those for the unitary ensembles, fall within thissslaWe derive a repre-
sentation for determinantal processes and deduce from liffaf@ the number
of eigenvalues in an interval, as well as ergodic conseggenin Section 4.3,
we analyze time-dependent random matrices, where theesrsre replaced by
Brownian motions. The introduction of Brownian motion al® us to use the
powerful theory of Ito integration. Generalizations of ¥vgner law, CLTs, and
large deviations are discussed. We then present in Sectdba discussion of
concentration inequalities and their applications to camanatrices, substantially
extending Section 2.3. Concentration results for matneiis independent en-
tries, as well as for matrices distributed according to Haaasure on compact
groups, are discussed. Finally, in Section 4.5, we intreduttidiagonal model of
random matrices, whose joint distribution of eigenvalusrsagalizes the Gaussian
ensembles by allowing for any value Bf> 1 in Theorem 2.5.3. We refer to this
matrix model as thbeta ensemble

186
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4.1 Joint distribution of eigenvalues in the classical matix ensembles

In Section 2.5, we derived an expression for the joint digtion of eigenvalues
of a GUE or GOE matrix which could be stated as an integrativméla, see

(2.5.22). Although we did not emphasize it in our derivatiaey point was that
the distribution of the random matrices was invariant urtderaction of a group
(orthogonal for the GOE, unitary for the GUE). A collectioinoatrices equipped
with a probability measure invariant under a large groupyafrmetries is gener-
ally called arensembilelt is our goal in this section to derive integration formajla
and hence joint distribution of eigenvalues, for severakembles of matrices, in
a unified way, by following in the footsteps of Weyl. The poafitview we adopt

is that of differential geometry, according to which we ddies ensembles of ma-
trices as manifolds embedded in Euclidean spaces. Theguisites and notation
are summarized in Appendix F.

The plan for Section 4.1 is as follows. In Section 4.1.1,rdftgefly recalling
notation, we present the main results of Section 4.1, nainédgration formu-
las yielding joint distribution of eigenvalues in three sdacal matrix ensembles
linked to Hermite, Laguerre and Jacobi polynomials, regpely, and also Weyl's
integration formulas for the classical compact Lie groiyye.then state in Section
4.1.2 a special case of Federer’s coarea formula and aligsitrby calculating the
volumes of unitary groups. (A proof of the coarea formulahia teasy version”
used here is presented in Appendix F.) In Section 4.1.3 weeptea general-
ized Weyl integration formula, Theorem 4.1.28, which weverby means of the
coarea formula and a modest dose of Lie group theory. In@e4tilL.4 we verify
the hypotheses of Theorem 4.1.28 in each of the setups dextirsSection 4.1.1,
thus completing the proofs of the integration formulas byupdated version of
Weyl's original method.

4.1.1 Integration formulas for classical ensembles

Throughout this section, we I&tdenote any of the (skew) field, C or H. (See
Appendix E for the definition of the skew field of quaternidfis Recall thatH
is a skew field, but not a field, because the produdtliis not commutative.)
We setf3 = 1,2,4 according a¥ = R, C,H, respectively. (Thug is the dimen-
sion of F overR.) We next recall matrix notation which in greater detail & s
out in Appendix E.1. Let Mak.q(F) be the space op x q matrices with en-
tries inF, and write Ma§(IF) = Matnn(F). For each matrix € Matpq(F), let
X* € Matg p(IF) be the matrix obtained by transposiXgand then applying the
conjugation operatiof to every entry. We endow Matq(F) with the structure
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of Euclidean space (that is, with the structure of finite-glirsional real Hilbert
space) by settingl - Y = Otr X*Y. Let GLy(IF) be the group of invertible ele-
ments of Ma4(FF), and let U,(IF) be the subgroup of GI(FF) consisting of unitary
matrices; by definitiot) € Un(F) iff UU* = I, iff U*U = I,,.

The Gaussian ensembles

The first integration formula that we present pertains toGhessian ensembles,
that is, to the GOE, GUE and GSE. L&y(F) = {X € Maty(F) : X* = X}. Let

P r) denote the volume measure g (IF). (See Proposition F.8 for the general
definition of the volume measug, on a manifoldM embedded in a Euclidean
space.) Lepy, ) denote the volume measure oq(B). (We will check below,
see Proposition 4.1.14, tha (F) is a manifold.) The measurgsy, ) andpy, )

are just particular normalizations of Lebesgue and Haasorearespectively. Let
p[Un(F)] denote the (finite and positive) total volume af(@). (For any manifold

M embedded in a Euclidean space, we wgf®l] = pm(M).) We will calculate
p[Un(F)] explicitly in Section 4.1.2. Recall that¥= (x1,...,X%), then we write
A(X) = MMa<i<j<n(Xj —Xi). The notion of eigenvalue used in the next result is
defined for generdl in a uniform way by Corollary E.12 and is the standard one
forF =R,C.

Proposition 4.1.1For every nonnegative Borel-measurable functfoon %, (F)
such thatp (X) depends only on the eigenvalues of X, we have

Un(F n
[ #9000 = ol [ OWIAP T ax. @)

where for every x= (xi,...,%)) € R" we write @ (x) = ¢ (X) for any X e J4(F)
with eigenvaluesy. .., X,.

According to Corollary E.12, the hypothesis tigeiX) depends only on the eigen-
values ofX could be restated as the condition tlgu XU*) = ¢ (X) for all
X € 74 (F) andU € Uy (F).

Suppose now thaX € s, (F) is random. Suppose more precisely that the en-
tries on or above the diagonal are independent; that eaglomh entry is (real)
Gaussian of mean 0 and variangg82and that each above-diagonal entry is stan-
dard normal ovelf. (We say that a random variab&with values inF is stan-
dard normalif, with {G;}{*_; independent real-valued Gaussian random variables
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of zero mean and unit variance, we have Bas distributed like

Gy if F=R,
(G1+iGy)/V/2 if F=C,
(G1+iG2+)G3+kGy)/2 ifF=H.) (4.1.2)

Then forF = R (resp.,F = C) the matrixX is a random element of the GOE
(resp., GUE), and in the cad®= H is by definition a random element of the
Gaussian Symplectic EnsemKl8SE). Consider now the substitutignX) =

e PUX?/4£(X) in (4.1.1), in conjunction with Proposition 4.1.14 below il
computes volumes of unitary groups. FHor= 1,2, we recover Theorem 2.5.2
in the formulation given in (2.5.22). In the remaining cfike: 4 the substitution
yields the joint distribution of the (unordered) eigenvedin the GSE.

Remark 4.1.2As in formula (4.1.1), all the integration formulas in thisction
involve normalization constants given in terms of volumésertain manifolds.
Frequently, when working with probability distributionsne bypasses the need
to evaluate these volumes by instead using the Selbergatfegmula, Theorem
2.5.8, and its limiting forms, as in our previous discussibthe GOE and GUE
in Section 2.5.

We saw in Chapter 3 that the Hermite polynomials play a ctucia in the
analysis of GUE/GOE/GSE matrices. For that reason we witletimes speak of
Gaussian/Hermite ensembles. In similar fashion we willdagh of the next two
ensembles by the name of the associated family of orthogramahomials.

Laguerre ensembles and Wishart matrices

We next turn our attention to random matrices generaliiegWishart matrices
discussed in Exercise 2.1.18, in the case of Gaussian &nffie integers <

p <gandputn=p+gq. Let Phatp,q(F) be the volume measure on the Euclidean
space Magi.q(F). The analog of integration formula (4.1.1) for singularued of
rectangular matrices is the following. The notion of sirgutalue used here is
defined for generdl in a uniform way by Corollary E.13 and is the standard one
forF =R,C.
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Proposition 4.1.3 For every nonnegative Borel-measurable functignon
Matpxq(IF) such thatp (X) depends only on the singular values of X, we have

[ ¢dp _ plUp(F)]p[Uq(F)]28P/2
Matpxq(F) = P[Ul(F)]pP[Uq_p(]F)]Zﬁpq/Zp!

P
< [ (x)|A0R) B [xP Py
Jop ® 1202)° T4

(4.1.3)

where for every x= (x1,...,Xp) € RY wewrite ¥ = (x2,...,x3), and¢ (x) = ¢ (X)
for any X Matp.q(IF) with singular values x . ..., Xp.

Here and in later formulas, by conventigeiUo(F)] = 1. According to Corol-
lary E.13, the hypothesis thgt(X) depends only on the singular valuesf
could be restated as the condition tiggt) XV) = ¢ (X) for allU € Uy(IF), X €
Matp, q(F) andV € Uqy(F).

Suppose now that the entries Xfc Maty.q(F) are i.i.d. standard normal. In
the caseF = R the random matrixXX* is an example of a Wishart matrix, the
latter as studied in Exercise 2.1.18. In the case of gefiiena call X X* a Gaus-
sian Wishart matriboverF. Proposition 4.1.3 implies that the distribution of the
(unordered) eigenvalues &fX* (which are the squares of the singular values of
X) possesses a density (@ )P with respect to Lebesgue measure proportional
to

p p
IAx)|B- I—le—Bx;/4. rlXiB(quH)/zfli

i= i=
Now the orthogonal polynomials corresponding to weighthefformx®e~¥* on
(0,0) are the Laguerre polynomials. In the analysis of random ioestrof the
form X X*, the Laguerre polynomials and their asymptotics play aaokdogous
to that played by the Hermite polynomials and their asyniggan the analysis of
GUE/GOE/GSE matrices. For this reason we alsoX3lf a random element of
alaguerre ensembleverFF.

Jacobi ensembles and random projectors
We first make a general definition. Put
Flag,(A,F) = {UAU":U € Un(F)} C 4 (F), (4.1.4)

whereA € Mat, is any real diagonal matrix. The compact set E[agF) is al-
ways a manifold, see Lemma 4.1.18 and Exercise 4.1.19.

Now fix integers O< p < g and puth=p+g. Also fix 0<r <g-p and
write g = p+r +s. Consider the diagonal matrl = diag(lp+r,0p+s), and the



4.1 JINT DISTRIBUTIONS FOR CLASSICAL MATRIX ENSEMBLES 191

corresponding space Flgdp,F) as defined in (4.1.4) above. (As in Appendix
E.1, we will use the notation diag to form block-diagonal ricats as well as
matrices diagonal in the usual sense.) p,qggh D]F denote the volume measure
on Flag,(D,F). GivenW ¢ Flag,(D,F), letW(P) € J#(FF) denote the upper left
p x p block. Note that all eigenvalues @(P) are in the unit interval0, 1].

Proposition 4.1.4With notation as above, for all Borel-measurable nonnegati
functionsg on s%,(F) such thaty (X) depends only on the eigenvalues of X, we
have

p[Up(F)]p[Uq(F)]2°P/2
plU1(F)]Pp[Ur ()] p[Us(IF)]2Pp!

[
/ 9 (x) [A(x)[P - |‘l(x.<’“"/2 Y(1—x)H B2 14y, (4.1.5)

/ ¢ (W P)dppag o) (W) =

where for every x= (x1,...,Xp) € RP we write ¢ (x) = ¢ (X) for any matrix Xe
4 (IF) with eigenvaluesi. .., Xp

The symmetry here crucial for the proof is thigtW(P)) = ¢ (UWU*)(P)) for all
U € Un(F) commuting with diaglp,0q) and allW € Flag, (D, F).

Now up to a normalization constarziag (o) is the law of a random matrix
of the formU,DU;;, whereU,, € U (F) is Haar-distributed. (See Exercise 4.1.19
for evaluation of the constami[Flag,(D,F)].) We call such a random matrix
UnDU,; arandom projector The joint distribution of eigenvalues of the submatrix
(UnDU;) (P is then specified by formula (4.1.5). Now the orthogonal polyials
corresponding to weights of the forri (1 — x)¥ on [0,1] are the Jacobi polyno-
mials. In the analysis of random matrices of the fo(rlm,DUn)<P>, the Jacobi
polynomials play a role analogous to that played by the Hermolynomials in
the analysis of GUE/GOE/GSE matrices. For this reason we(ldaDU;)(P)
random element of dacobi ensembleverF.

The classical compact Lie groups

The last several integration formulas we present pertathdalassical compact
Lie groups W (F) for F = R, C, H, that is, to the ensembles of orthogonal, unitary
and symplectic matrices, respectively, equipped with redmad Haar measure.

cosf sinf
We setR(9) = [ —sin@ cosO
(61,...,60) €R", we seR,(0) =diagR(61), . ..,R(6n)) € Uzn(R). We also write
diag(0) = diag(64, ..., 6,) € Maty.

} € Uz(R) for 6 € R. More generally, folf =
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We define nonnegative functioAs, By, Cn, Dn onR" as follows:

2

A(6) = [ 1€%-€%2 Dn(@)=AnO) [ |e%-e]",

1<i<|<n 1<i

<n

Bn(6)

<
n . n ' .
Dn(6) []1€% — 1%, Ca(6) =Dn(6)[]1€% — 4.
a O]
(Recall thai equals the imaginary unit viewed as an elemerf afr H.)

Remark 4.1.5The choice of letterg\, B, C, andD made here is consistent with
the standard labeling of the corresponding root systems.

We say that a functiogp on a groupG is centralif ¢(g) depends only on the
conjugacy class dd, that is, if¢(glgzgfl) = ¢(gy) forall 91,92 € G.

Proposition 4.1.6 (Weyl)(Unitary case) For every nonnegative Borel-measurable
central functiong on U, (C), we have

dou, o) 1 idiag(6) n /de
/"’m - H/[o.z,ﬂn"’(d JAn(6) iﬂ(g) : (4.1.6)

(Odd orthogonal case) For odd-a 2/ + 1 and every nonnegative Borel-measurable
central functionp onUn(R), we have

dpu, (k) 1 / ro ‘ ! (de.)
L = dia 6),(—1)))B(0 — .
J 9 o0 = 50 foam 2, $RARO) (1B ( 57
4.1.7)
(Symplectic case) For every nonnegative Borel-measu@aiéral functiong on

Un(H), we have

dPune) _ 1 jdiag(6) no/de
/ P olUn(E)] ~ 2 /[omn"’(é SO (gT) . (419

(Even orthogonal case) For ever=n2¢ and every nonnegative Borel-measurable
central functionp on Un(R) we have

Aoy
/¢ plUn(R)]
14
: zeia/[o,zmﬂ(w(e))m(e)ﬂ (g_i) (4.1.9)
(-1
+ﬁ /[0,2;11/1—1 ¢ (diagR,-1(6),1,—1))C,1(0) El <g_?_lr> .
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We will recover these classical results of Weyl in our setupider to make it
clear that all the results on joint distribution discussedection 4.1 fall within
Weyl's circle of ideas.

Remark 4.1.7Because we have

Dn(8)= (2cosd —2cosh;)?,
1<i<)<n

the process of eigenvalues of,(F') is determinantal (see Section 4.2.9 and in
particular Lemma 4.2.50) not only fér= C but also foff = R, H. Thisis in sharp
contrast to the situation with Gaussian/Hermite, Laguang Jacobi ensembles
where, in the caseB = R, H, the eigenvalue (singular value) processesrarte
determinantal. One still has tools for studying the lattercpesses, but they are
Pfaffian- rather than determinant-based, of the same typsidered in Section
3.9 to obtain limiting results for GOE/GSE.

4.1.2 Manifolds, volume measures and the coarea formula

Section 4.1.2 introduces ttmarea formula Theorem 4.1.8. In the specialized
form of Corollary 4.1.10, the coarea formula will be our mtiol for proving the
formulas of Section 4.1.1. To allow for quick reading by thxpert, we merely
state the coarea formula here, using standard terminolpggcise definitions,
preliminary material and a proof of Theorem 4.1.8 are alsprged in Appendix
F. After presenting the coarea formula, we illustrate it lyrking out an explicit
formula forp[Un(F)].

Fix a smooth mag : M — N from ann-manifold to ak-manifold, with deriva-
tive at a pointp € M denotedT'p(f) : Tp(M) — T (N). Let Merit, Mreg, Nerit
andNeg be the sets of critical (regular) points (values)fofsee Definition F.3
and Proposition F.10 for the terminology. Fpe N such thatMregn f~1(q) is
nonempty (and hence by Proposition F.16 a manifold) we eitpaiatter with the
volume measur@y, ..-1(q) (see Proposition F.8). Py = 0 for convenience.
Finally, letJ(T,(f)) denote the generalized determinaniigf f), see Definition
F.17.

Theorem 4.1.8 (The coarea formula)Nith notation and setting as above, It
be any nonnegative Borel-measurable function on M. Then:

(i) the function p— J(Tp(f)) on M is Borel-measurable;

(ii) the function g— [ ¢ (P)dPy,e41-1(g)(P) ON N is Borel-measurable;
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(iii) the integral formula

[oarro(tdeu(p) = | (/ & (P)dPy et 1<><p>>de(q> (4.1.10)

holds.

Theorem 4.1.8 is in essence a version of Fubini’s Theoreris dtso a particu-
lar case of the general coarea formula due to Federer. Tiee fatmula at “full
strength” (that is, in the language of Hausdorff measuregjires far less differ-
entiability of f and is much harder to prove.

Remark 4.1.9Sincef in Theorem 4.1.8 is smooth, we have by Sard’s Theorem
(Theorem F.11) that fopy almost everyg, MregN f~1(q) = f~1(q). Thus, with
slight abuse of notation, one could write the right side ofl (#0) with f ~(q)
replacingMregN f~1(q).

Corollary 4.1.10 We continue in the setup of Theorem 4.1.8. For every Borel-
measurable nonnegative functignon N one has the integral formula

[T (D)dou(p) = [ pliH@lw@dpn(e).  @41.1)

Nreg

Proof of Corollary 4.1.10By (4.1.10) with¢ = o f, we have

/w (f))dpm(p) = /p[Mregﬂ f~*(@)]w(a)dpn(a),
whence the result by Sard’s Theorem (Theorem F.11), Propo$t.16, and the
definitions. 0

Let S™1 be the unit sphere centered at the originRfh We will calculate
p[Un(IF)] by relating it top[S'~1]. We prepare by proving two well-known lem-
mas concernin™~! and its volume. Their proofs provide templates for the more
complicated proofs of Lemma 4.1.15 and Proposition 4.1¢eldvia

Lemma 4.1.11S! is a manifold and for every & S we haveTy (S 1) =
{XeR":x-X=0}.

Proof Consider the smooth majp= (x— x-x) : R" — R. Let y be a curve with
y(0) =xe R"andy'(0) = X € Tx(R") = R". We haveTx(f))(X) = (y-y)'(0) =
2x-X. Thus 1 is a regular value df whence the result by Proposition F.16.00

Recall that" (s) = [y’ x> te*dxis Euler's Gamma function.
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Proposition 4.1.12With notation as above, we have

- 2m"/2
p[S Y = Fa) (4.1.12)

Proof Consider the smooth map

f = (x—=x/[Ix]) : R"\ {0} — ™.
Let y be a curve withy(0) = x € R"\ {0} andy/(0) = X € Tx(R"\ {0}) =
We have

(T )X) = (y/ IV (0) = 2o — - (% : L) ,

(2| I AN

and hencd(Tx(f)) = [[x|*™". Letting ¢ (x) = ||x||" L exp(—|x||%), we have

/---/E’X'del---dxnzp[g"l]/ —1edr,
0

by Theorem 4.1.8 applied tband¢. Formula (4.1.12) now follows. O

As further preparation for the evaluation pfU,(FF)], we state without proof
the following elementary lemma which allows us to considensformations of
manifolds by left (or right) matrix multiplication.

Lemma 4.1.13 et M C Mat,«(IF) be a manifold. Fix gc GLn(FF). Let f= (p+—
gp) : M — gM = {gp € Mat,(F) : p€ M}. Then:

(i) gM is a manifold and f is a diffeomorphism;

(i) for every pe M and X & Tp(M) we havely(f)(X) = gX;

(iii) if g € Un(F), then f is an isometry (and hence measure-preserving).

The analogous statement concerning right-multiplicabigran invertible matrix
also holds. The lemma, especially part (i) of it, will beefuently exploited
throughout the remainder of Section 4.1.

Now we can state our main result concerningl) and its volume. Recall in
what follows thai3 = 1,2,4 according a¥ = R,C, H.

Proposition 4.1.14U,(TF) is a manifold whose volume is

n Bk/2
p[U (F )] 2 Bn(n— 1/4|—|p98k 1 |—| ZB(ZH)

| 2 B (4.1.13)

The proof of Proposition 4.1.14 will be obtained by applythg coarea formula
to the smooth map

f = (g (last column ofg)) : Un(F) — SP"1 (4.1.14)
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where, abusing notation slightly, we make the isometriaiifieation
P11 = {x e Maty, 1 (F) : x'x = 1}

on the extreme rightin (4.1.14).

Turning to the actual proof, we begin with the identificatafiu,(F) as a man-
ifold and the calculation of its tangent spaceat

Lemma 4.1.15Un(F) is a manifold andT),(Un(F)) is the space of anti-self-
adjoint matrices irMaty(IF).

Proof Consider the smooth map
h= (X X*X) : Mat,(F) — 4 (F).

Let y be a curve in Ma{FF) with y(0) = I, and y(0) = X € T, (Maty(F)) =
Maty(F). Then, for allg € Un(F) andX € Maty(IF),

(Tg(h))(9X) = ((9y)"(gy))'(0) = X +X". (4.1.15)
Thusl, is a regular value df, and hence W(IF) is a manifold by Proposition F.16.

To find the tangent spac®,(Un(F)), consider a curve/(t) € Un(F) with
y(0) = In. Then, becaus¥X* = I, on U,(F) and thus the derivative df(y(t))
vanishes fot = 0, we deduce from (4.1.15) thdt+ X* = 0, and henc@), (Un(F))
is contained in the space of anti-self-adjoint matrices at{FF). Because the lat-
ter two spaces have the same dimension, the inclusion mast bguality. O

Recall the functiorf introduced in (4.1.14).

Lemma 4.1.16f is onto, and furthermore (provided thatni), for any se "1,
the fiber f-1(s) is isometric toU,_1(TF).

Proof The first claim (which should be obvious in the caBes R, C) is proved
by applying Corollary E.8 withk = 1. To see the second claim, note first that for
anyW € Up_1(F), we have

w 0
0 1

] € Up(F), (4.1.16)
and that everg € Up(FF) whose last column is the unit vectey = (0,...,0,1)T
is necessarily of the form (4.1.16). Therefore the fithet (&) is isometric to

Un—1(TF). To see the claim for other fibers, note thag,ih € Un(FF), thenf(gh) =
gf(h), and then apply part (iii) of Lemma 4.1.13. O
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Lemma 4.1.17Let f be asin (4.1.14). Then:
(i) I(Ty(f)) is constant as a function ofgUn(IF);
(i) I (Ti,(1)) = v2° ",

(i) every value of f is regular.

Proof (i) Fix h € Un(F) arbitrarily. Lete, = (0,...,0, 1)T € Mat,«1. The diagram

Ty, (Un(F) 20 g (01

Tin(g—hg) ! ! Ten (x—hx)
Th(f
Th(Un(F)) " Ty ()
commutes. Furthermore, its vertical arrows are, by paytofiLemma 4.1.13,

induced by left-multiplication by, and hence are isometries of Euclidean spaces.
Therefore we havé(Ty(f)) = J(T,(f)).

(i) Recall the notation,j,k in Definition E.1. Recall the elementary matrices
&j € Maty(F) with 1 in position(i, j) and Os elsewhere, see Appendix E.1. By
Lemma 4.1.15 the collection

{(uaj —ueji)/vV2:1<i<j<n ue{l,j,k}nF}
U {ugi:1<i<nueij,k}nF}
is an orthonormal basis fdF,, (Un(F)). Lety be a curve in W(F) with y(0) = I
andy' (0) = X € T, (Un(F)). We have
(T, (F))(X) = (ven)'(0) = Xen,
hence the collection
{(uan—u'en)/V2:1<i<n ue {1,ij,k}NF}
U {uen:ueij,k}NF}
is an orthonormal basis fat,, (Un(F)) N (ker(T,,,(f)))*. Anapplication of Lemma
F.19 yields the desired formula.
(i) This follows from the preceding two statements, sirfcis onto. O

Proof of Proposition 4.1.14Assume at first that > 1. We apply Corollary 4.1.10
to f with ¢y = 1. After simplifying with the help of the preceding two lemsave
find the relation

V2P p[Un(F)] = p[Un_1(F)] p[P"1.

By induction onn we conclude that formula (4.1.13) holds for all positivesirs
n; the induction base = 1 holds becaus8® ! = Uy (FF). O

With an eye toward the proof of Proposition 4.1.4 about Jaenbembles, we
prove the following concerning the spaces FlagF) defined in (4.1.4).
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Lemma 4.1.18With p g, n positive integers so thatypg = n, and D= diag(lp, 0q),
the collectiorFlag,(D,F) is a manifold of dimensiofi pg.

Proof In view of Corollary E.12 (the spectral theorem for self&id}f matrices
over[F), Flag,(D,F) is the set of projectors in Ma{F) of tracep. Now consider
the open se® C J#(FF) consisting of matrices whogeby-p block in upper left

is invertible, noting thab € O. Using Corollary E.9, one can construct a smooth
map from Map.q(F) to ONFlag,(D,F) with a smooth inverse. Now l&? €
Flag,(D,F) be any point. By definitiof® = U*DU for someU € Uy(D,F). By
Lemma 4.1.13 the sgiUMU* | M € ONFlag,(D,F)} is a neighborhood oP
diffeomorphic toO N Flag,(D,F) and hence to Mat.q(F). Thus Flag(D,F) is
indeed a manifold of dimensigBipg,. O

Motivated by Lemma 4.1.18, we refer to FJgB, F) as theflag manifolddeter-
mined byD. In fact the claim in Lemma 4.1.18 holds for all real diagamatrices
D, see Exercise 4.1.19 below.

Exercise 4.1.1Fix A1,...,An € R and putA = diag(A1,...,An). In this exercise
we study Flag(A,F). Write {ty < -+ < g} = {A1,...,An} and letn; be the
number of indiceg such thag; = Aj. (Thus,n=n1+---+ny.)
(a) Prove that Flgg A ,F) is a manifold of dimension equal to

l
dimUn(F) — Y dimUy, (F).
n i; n
(b) Applying the coarea formula to the smooth miag (g— gAg™?1) : Up(F) —
Flag,(D,F), show that

_ P[Un(F)]
ﬂf:lp[uni (F)] 1§!<J.§n

i7A]

p[Flag,(A,F)] Ai—AjlP. (4.1.17)

Exercise 4.1.20Ne look at joint distribution of eigenvalues in the Gaussian
sembles (GUE/GOE/GSE) in yet another way. We continue vighniotation of
the previous exercise.

(a) Consider the smooth mdp= (A (tr(A),tr(A%)/2,....tr(A")/n)) : J4(F) —
R". Show that)(Ta(f)) depends only on the eigenvaluesAkE %4 (F), that
J(T, (f)) =]A(A)|, and that a point oR" is a regular value of if and only if it

is of the formf (X) for someX e J# (F) with distinct eigenvalues.

(b) Applying the coarea formula td, prove that for any nonnegative Borel-
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measurable functioth on 4, (F),

[odonim= [+ ([ odpragnm ) dhadhe. @1
—

—00<A < <A< oo

A=diagA1,...,An)
(c) Derive the joint distribution of eigenvalues in the GUEQE and GSE from
(4.1.17)and (4.1.18).

Exercise 4.1.2Fix A1,...,An € C and putA =diag(A1,...,An). Let Flag,(A,C)

be the set of normal matrices with the same eigenvaluds §8/henA has real
entries, then FlagA , C) is just as we defined it before.) Show that in this extended
setting Flag(A,C) is again a manifold and that formula (4.1.17), with- C and

B = 2, still holds.

4.1.3 An integration formula of Weyl type

For the rest of Section 4.1 we will be working in the setup of groups, see
Appendix F for definitions and basic properties. We aim tavaéean integration

formula of Weyl type, Theorem 4.1.28, in some generalityjolvlencompasses
all the results enunciated in Section 4.1.1.

Our immediate goal is to introduce a framework within whichrdaform ap-
proach to derivation of joint eigenvalue distributions @spible. For motivation,
suppose thaG andM are submanifolds of MafF) and thatG is a closed sub-
group of Wy(F) such that{gmg™: me M,g € G} = M. We want to “integrate
out” the action ofG. More precisely, given a submanifoddC M which satisfies
M={gAgl:ge G, A € A}, and a functionp onM such that (gmg 1) = ¢ (m)
for all me M andg € G, we want to represent¢dpm in a natural way as an
integral onA. This is possible if we can control the set of solutidgst ) € G x A
of the equatioryA g~ = mfor all but a negligible set aihe M. Such a procedure
was followed in Section 2.5 when deriving the law of the eigadues of the GOE.
However, as was already noted in the derivation of the lavhefdigenvalues of
the GUE, decompositions of the form= gA g1 are not unique, and worse, the
set{(g,A) € GxA:gAg~'=m}isin general not discrete. Fortunately, however,
it typically has the structure of compact manifold. Thesesiderations (and hind-
sight based on familiarity with classical matrix ensempiastivate the following
definition.

Definition 4.1.22 A Wey!l quadrupl€G,H,M,A) consists of four manifold&,
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H, M andA with common ambient space M@F) satisfying the following condi-
tions:

() (a) Gis a closed subgroup of JJF),

(b) H is a closed subgroup @&, and
(c) dimG —dimH = dimM — dimA.

() (@ M={gAgt:gcG,AcA},
(b) A={hAhl:hcH, A €A},
(c) for everyA € Athe set{hAh~1:hec H} is finite, and
(d) forallA,u € Awe haveA*u = uA*.

(1) There exists\’ C A such that

(@) N is open inA,
(b) pA(A\N) =0, and
(c) foreveryA € A we haveH = {gc G:gAgte A}

We say that a subsét c A for which (llla,b,c) hold isgeneric

We emphasize that by conditions (la,b), the gro@andH are compact, and
that by Lemma 4.1.13(iii), the measurgs andpy are Haar measures. We also
remark that we make no connectedness assumptions corg&nid, M and
A. (In general, we do not require manifolds to be connectatipagh we do
assume that all tangent spaces of a manifold are of the sanendion.) In fact,
in practice H is usually not connected.

In the next proposition we present the simplest example oegl \@Wuadruple.
We recall, as in Definition E.4, that a mattixe Mat,(F) is monomialf it factors
as the product of a diagonal matrix and a permutation matrix.

Proposition 4.1.23Let G= Uy(FF) and let HC G be the subset consisting of

monomial elements. Let M 4 (FF), let A C M be the subset consisting of (real)

diagonal elements, and l&t C A be the subset consisting of matrices with dis-
tinct diagonal entries. ThefG,H,M,A) is a Weyl quadruple with ambient space
Mat,(IF) for which the set\’ is generic, and furthermore

pIGl _ plUn(F)]
P[] ~ mp[Uy(E)

(4.1.19)

This Weyl quadruple and the value of the associated conp{&if p[H] will be
used to prove Proposition 4.1.1.

Proof Of all the conditions imposed by Definition 4.1.22, only cdiwhs (Ic),
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(lla) and (lllc) require special attention, because theerthare clear. To verify
condition (Ic), we note that

dimM =n+Bn(n—1)/2, dmA =n,
dimG= (B —1)n+pBn(n—1)/2, dimH = (B —1)n.

The first two equalities are clear sinkeand/\ are real vector spaces. By Lemma
4.1.15 the tangent spatig, (G) consists of the collection of anti-self-adjoint ma-
trices in Maj(IF), and thus the third equality holds. So does the fourth becaus
Ti,(H) consists of the diagonal elements®f,(G). Thus condition (Ic) holds.
To verify condition (lla), we have only to apply CorollaryI2(i) which asserts
the possibility of diagonalizing a self-adjoint matrix. Verify condition (llic),
arbitrarily fix A € A/, u € A andg € G such thagAg~! = p, with the goal to show
thatg € H. In any case, by Corollary E.12(ii), the diagonal entrieg @fre merely

a rearrangement of those df After left-multiplying g by a permutation matrix
(the latter belongs by definition te), we may assume that= p, in which casey
commutes withA. Then, because the diagonal entried cdre distinct, it follows
thatg is diagonal and thus belongskh Thus (llic) is proved. Thu§G,H,M,A)

is a Weyl quadruple for which\' is generic.

We turn to the verification of formula (4.1.19). It is cleaatlthe numerator on
the right side of (4.1.19) is correct. To handle the denoioimave observe that
is the disjoint union oh! isometric copies of the manifold4JF)", and then apply
Proposition F.8(vi). Thus (4.1.19) is proved. O

Note that condition (lla) of Definition 4.1.22 implies thging™ € M for all
me M andg € G. Thus the following definition makes sense.

Definition 4.1.24Given a Weyl quadrupl¢G,H,M,A) and a functionp on M
(resp., a subseh C M), we say thatp (resp.,A) is G-conjugation-invariantf
¢(gmgt) = ¢ (m) (resp.,1a(gmgt) = 1a(m)) for all g€ G andme M.

Given a Weyl quadrupléG,H,M,A\) and aG-conjugation-invariant nonnega-
tive Borel-measurable functiop on M, we aim now to represerjt¢dom as an
integral on/\. Our strategy for achieving this is to apply the coarea fdenwithe
smooth map

f=(g—grAg H):GxA—=M. (4.1.20)
For the calculation of the factd(T g »)(f)) figuring in the coarea formula for the

map f we need to understand for each fixed A the structure of the derivative
atl, € G of the map

fA=(g—grg ) :G—>M (4.1.21)
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obtained by “freezing” the second variable fn For study of the derivative
T, (f,) the followingad hocversion of the Lie bracket will be useful.

Definition 4.1.25GivenX,Y € Maty(F), let[X,Y] = XY-YX
Concerning the derivativg, (f, ) we then have the following key result.

Lemma 4.1.26Fix a Weyl quadrupléG,H,M,A) with ambient spacMat,(F)
and a pointA € A. Let fy be asin (4.1.21). Then we have

T, (f2)(Ti,(H)) =0, (4.1.22)
T, (F2)(X) = [X,A], (4.1.23)
Ty, (f2)(T;, (G)) € Tr (M) N'TH (A)-. (4.1.24)

The proof will be given later.

Definition 4.1.27Let (G,H,M,A) be a Weyl quadruple. Giveh € A, let
D) : Ty, (G)NTy, (H): — Ty (M)NT, (A)* (4.1.25)

be the linear map induced By, (f, ). For eachh € A we define th&Veyl operator
©, to equalD; o D,.

The abbreviated notation, and®, is appropriate because in applications be-
low the corresponding Weyl quadruple,H, M, A) will be fixed, and thus need
not be referenced in the notation. We emphasize that thesand target of
the linear maD, have the same dimension by assumption (Ic). The determi-
nant de®,, which is independent of the choice of basis used to compute i
nonnegative becaus®, is positive semidefinite, and hengédeto, is a well-
defined nonnegative number. We show in formula (4.1.29)vbé&low to reduce

the calculation of9, to an essentially mechanical procedure. Remarkably, in all
intended applications, we can calculate@gtby exhibiting an orthogonal basis
for T, (G) N'Ty,(H)* simultaneously diagonalizing the whole fam{l@®; } x <.

We are now ready to state the generalized Wey! integrationdéa.

Theorem 4.1.28 (Weyl)Let (G,H,M,A\) be a Weyl quadruple. Then for every
Borel-measurable nonnegative G-conjugation-invarianttiong on M, we have

_ PG
[ odou - oH [02)v/de®;don(2).
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The proof takes up the rest of Section 4.1.3. We emphasita tWeyl quadruple
(G,H,M,A\) with ambient space Ma{FF) is fixed now and remains so until the
end of Section 4.1.3.

We begin with the analysis of the mapandf, definedin (4.1.20)and (4.1.21),
respectively.

Lemma 4.1.29The restricted function,fiy is constant on connected components
of H, anda fortiori has identically vanishing derivative.

Proof The functionf, |4 is continuous and by assumption (lIc) takes only finitely
many values. Thus, |y is locally constant, whence the result. O

Lemma 4.1.30Let A’ C A be generic. Then for everyg G andAg € N, the
fiber f~1(goAogy 1) is @ manifold isometric to H.

It follows from Lemma 4.1.30 and Proposition F.8(v) thatf ~*(goAogy )] =
pMHI.
Proof We claim that

f~1(goAogo?) = {(goh,h*Aoh) e Gx M :h e H}.

The inclusionD follows from assumption (llb). To prove the opposite inclu-
sion C, suppose now thajAg—! = go/\oggl for someg € G andA € A. Then
we haveg1go € H by assumption (llic), hencgy'g = h for someh € H, and
hence(g,A) = (goh,h~1Agh). The claim is proved. By assumptions (la,b) and
Lemma 4.1.13(iii), the map

(h—goh):H —goH ={goh:heH}
is an isometry of manifolds, and indeed is the restrictiohltof an isometry of
Euclidean spaces. In view of Lemma 4.1.29, the map
(h+— (goh,h~A0h)) : H — f~1(goAogy?) (4.1.26)
is also an isometry, which finishes the proof of Lemma 4.1.30. O

Note that we havenot asserted that the map (4.1.26) preserves distances as
measured in ambient Euclidean spaces, but rather mer¢lypheserves geodesic
distances within the manifolds in question. For manifoldhseveral connected
components (as is typically the case @), distinct connected components are
considered to be at infinite distance one from the other.

Proof of Lemma 4.1.26The identity (4.1.22) follows immediately from Lemma
4.1.29.
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We prove (4.1.23). Legbe a curve irG with y(0) =1, andy’(0) = X € T, (G).
Since(y 1) = —y Yy L, we haveT, (f))(X) = (yAy 1) (0) = [X,A]. Thus
(4.1.23) holds.

It remains to prove (4.1.24). As a first step, we note that
[A*,X]=0forA e AandX € T, (A). (4.1.27)

Indeed, lety be a curve iM\ with y(0) = A andy/(0) = X. Then[A*,y] vanishes
identically by Assumption (lld) and hen¢g*, X] = 0.

We further note that
[X,A]-Y =X-[Y,A%] for X,Y € Mat,(F), (4.1.28)

which follows from the definitiorA- B = OtrX*Y for any A,B € Mat,(F) and
straightforward manipulations.

We now prove (4.1.24). Gived € T, (G) andL € T, (A), we have
T, (fA)(X)-L=[X,A]-L=X-[L,A*] =0,
where the first equality follows from (4.1.23), the seconuhir(4.1.28) and the
last from (4.1.27). This completes the proof of (4.1.24) ahdemma 4.1.26. O

Lemma 4.1.31Let M : Maty(F) — Ty, (G) N Ty, (H)* be the orthogonal projec-
tion. FixA € A. Then the following hold:

0, (X) =N([A%,[A,X]]) for X € Ty, (G) N'Ty, (H)*, (4.1.29)
J(T(ga(f)) =+/det©, forgeG. (4.1.30)

Proof We prove (4.1.29). FiX,Y € T}, (G) N'T),(H)~* arbitrarily. We have
©x(X)-Y = Dj(Da(X))-Y = Dy(X)-Da(Y)
= T, (F)(X) - Tin(f2)(Y)
= [Xv)‘] : [Y7)‘] = [[X’)‘L)‘*] Y = n([[x7)‘]’)‘*]) Y
at the first step by definition, at the second step by defingfadjoint, at the third

step by definition oD, , at the fourth step by (4.1.23), at the fifth step by (4.1.28)
and at the last step trivially. Thus (4.1.29) holds.

Fix h € G arbitrarily. We claim that)(T»)(f)) is independent oh € G.
Toward that end consider the commuting diagram

Tpa)(F)
T (GxA) ————  TH(M)
T(1n,2) (@) (hg 1)) i l T, (m—hmh1).
Tha ()
T (GxA) ——— Typra(M)
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Since the vertical arrows are isometries of Euclidean sphgeassumption (la)
and Lemma 4.1.13(ii), it follows tha{(Tn 5 (f)) = I(Ty, ) (f), and in particular
is independent dfi, as claimed.

We now complete the proof of (4.1.30), assuming without tdggenerality that
g = In. By definition

T, (G xA) =T, (G) @ Tr(N),

where we recall that the direct sum is equipped with Euchidgaucture by declar-
ing the summands to be orthogonal. Clearly we have

(T (F))(XBL) = Ty (1) (X) +L for X € Ty, (G) andL € Ty (A). (4.1.31)

By (4.1.24) and (4.1.31), the linear mdp, ,(f) decomposes as the orthogonal
directsum oo T, (f, ) and the identity map df, (A) to itself. Consequently we
haveJ(T), »(f)) = J(ZoT,(fy)) by Lemma F.18. Finally, by assumption (Ic),
formula (4.1.22) and Lemma F.19, we find tdéE o Ty, (f, )) = /det©, . O

Proof of Theorem 4.1.28L et Mg be the set of regular values of the mapWe
have

[ pltHm)d(mdpu(m) = [ §(A)\/del®; dpen(3.2)
- p[G]-/¢()\)\/detO)\dp/\()\). (4.1.32)

The two equalities in (4.1.32) are justified as follows. Thstfholds by formula
(4.1.30), the “pushed down” version (4.1.11) of the coamemiila, and the fact
that¢ (f(g,A)) = ¢ (A) by the assumption thgt is G-conjugation-invariant. The
second holds by Fubini’'s Theorem and the fact fhata = ps x pa by Proposi-

tion F.8(vi).

By assumption (lla) the map is onto, hencéVieg = M \ Mcsit, implying by
Sard's Theorem (Theorem F.11) th¥feq has full measure ilM. For everym e
Mreg, the quantityp[f~1(m)] is positive (perhaps infinite). The quantiyG| is
positive and also finite sind® is compact. It follows by (4.1.32) that the claimed
integration formula at least holds in the weak sense tiatanjugation-invariant
Borel setA C M is negligible inM if the intersectiorAN A is negligible inA.

Now putM’ = {gAg1:g € G,A € N'}. ThenM’ is a Borel set. Indeed, by
assumption (llla) the seY’ is g-compact, hence so M’. By constructiorM’ is
G-conjugation-invariant. Now we havw® ¢ M’ N A, hence by assumption (Il1b)
the intersectioM’ N A is of full measure im\, and therefore by what we proved
in the paragraph abovh!’ is of full measure ifM. Thus, if we replace by ¢ 1
in (4.1.32), neither the first nor the last integral in (42).8hanges and further,
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by Lemma 4.1.30, we can replace the faqlpn(m) f~1(m) in the first integral by
p[H]. Therefore we have

pIHI [ p(midpu(m) = plG] [ (A)\/GeiBrdpn(2).

'NA

Finally, sinceM’ N Mgq is of full measure it andM’ N A is of full measure in
N\, the desired formula holds. |

4.1.4 Applications of WeylI's formula

We now present the proofs of the integration formulas ofiSeat.1.1. We prove
each by applying Theorem 4.1.28 to a suitable Weyl quadruple

We begin with the Gaussian/Hermite ensembles.

Proof of Proposition 4.1.1Let (G,H,M,A) be the Weyl quadruple defined in
Proposition 4.1.23. As in the proof of Lemma 4.1.17 abovel fam a similar
purpose, we use the notatief,i,j,k. By Lemma 4.1.15 we know thd,(G) C
Maty(TF) is the space of anti-self-adjoint matrices, and it is cléat T, (H) C
Ty, (G) is the subspace consisting of diagonal anti-self-adjoetrives. Thus the
set

{uaj—u'ejjue {1,i,j,k}nF,1<i<j<n}
is an orthogonal basis fak,(G) Ny, (H)*. By formula (4.1.29), we have

Ouiagx (U] — U'eji) = [diag(x), [diag(x), uaj — u*e;i]] = (x —x})*(uaj — u"eji)

\/detgiagy = [AX)|P for xe R,

To finish the bookkeeping, note that the map diag(x) sendR" isometrically to
A and hence pushes Lebesgue measuf@diorward topa. Then the integration
formula (4.1.1) follows from Theorem 4.1.28 combined withrfula (4.1.19) for

p[Gl/p[H]. 0
We remark that the orthogonal projectibhappearing in formula (4.1.29) is

unnecessary in the Gaussian setup. In contrast, we willlegdttdoes play a
nontrivial role in the study of the Jacobi ensembles.

and hence

We turn next to the Laguerre ensembles. The following privjposprovides
the needed Weyl quadruples.



4.1 JINT DISTRIBUTIONS FOR CLASSICAL MATRIX ENSEMBLES 207

Proposition 4.1.32Fix integersO < p < q and put n= p+q. Let

H = {diagU,V' V"):U,V' € Up(F),V" € Ug_p(F),
U,V’ are monomialU (V')* is diagonal (U (V/)")2 =1} C G,
M = {[ 0* X } :XeMathq(F)} C 4 (),
X* 0
0 x O
N = x 0 O : X € Matp, is (real) diagonaly C M.
00 Gy

Let A’ C A be the subset consisting of elements for which the correpgmeal
diagonal matrix x has nonzero diagonal entries with distatzsolute values. Then
(G,H,M,A) is a Weyl quadruple with ambient spadet,(F) for which the sef\’

is generic and, furthermore,

PIG] _ P[Up(F)]p[Uq(F)]
pH]  2rp!(28-D/2p[Uy(F)])Pp[Uqg—p(F)]

(4.1.33)

We remark that in the cage= g we are abusing notation slightly. Fpr= g one
should ignore/” in the definition ofH, and similarly modify the other definitions
and formulas.

Proof Of the conditions imposed by Definition 4.1.22, only coratis (Ic), (l1a)
and (llic) deserve comment. As in the proof of Propositich23 one can verify
(Ic) by means of Lemma 4.1.15. Conditions (lla) and (llld)der from Corollary
E.13 concerning the singular value decomposition inMgff), and specifically
follow from points (i) and (iii) of that corollary, respeegly. Thus(G,H,M,A) is
a Weyl quadruple for which\' is generic.

Turning to the proof of (4.1.33), note that the grdbifs isometric to the product
Up(FF) x Ug(IF). Thus the numerator on the right side of (4.1.33) is justifiEioe
mapx — diag(x,x) from Uy(F) to Ux(IF) magnifies by a factor of/2. Abusing
notation, we denote its image ky2U1(FF). The groupH is the disjoint union of
2Pp! isometric copies of the manifolth/2U; (F))P x Ug_p(F). This justifies the
denominator on the right side of (4.1.33), and completepthef. O

Proof of Proposition 4.1.3 Let (G,H,M,A\) be the Weyl quadruple defined in
Proposition 4.1.32. By Lemma 4.1.1%,,(G) consists of matrices of the form
diagX,Y), whereX € Maty(F) andY € Maty(F) are anti-self-adjoint. By the
same lemmaJ,(H) consists of matrices of the form digWf,W,Z), whereW ¢
Maty () is diagonal anti-self-adjoint aritle Maty_p(RR) is anti-self-adjoint. Thus
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T),(G)NTy,(H)* may be described as the set of matrices of the form

IS SN

wherea, b € Maty(F) are anti-self-adjoint witla vanishing identically on the di-
agonal, ana € Matp.q(IF). Given (real) diagonat € Mat,, we also put

0
0 ]
Q-p

thus parametrizing\.. By a straightforward calculation using formula (4.1.28),
which the orthogonal projection is again unnecessary, one verifies that

a x2a — 2xax+ ax?
b ” = ” X2b + 2xbx+ bx? ” ,

c X2c

o X O
o O X

Orx

and hence that
208 [ 12 [B-1. [ xc [F(@P)
detO (diagr) = [A(<)] "I_||2Xi| 'l|_l|Xi| 4P for x € RP.
1= 1=

Now for X € Matp,q(F), putX’ = [ >?* )é

of formula (4.1.3), lety be the unique function oM such thaty(X") = ¢ (X)

for all X € Matp.q(F). By construction,y is G-conjugation-invariant, and in
particular, (A (diag(x)) depends only on the absolute values of the entries of
x. Note also that the maj — X’ magnifies by a factor of/2. We thus have
integration formulas

] € M. With ¢ as in the statement

P
2992 [ 0Dy e) = [ waow, 27 [ 900 = [ wipn
+ i=

Integration formula (4.1.3) now follows from Theorem 4 8 cmbined with for-
mula (4.1.33) fop[G]/p[H]. O

We turn next to the Jacobi ensembles. The next propositmriges the needed
Weyl quadruples.

Proposition 4.1.33Fix integersO < p<gand putn=p+q. Fix0<r<qg-p
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and write g= p+r +s. Let

H = {diagU,V’, V" V") :U,V' € Up(F),V" € U (F),V" € Ug(F),
U, V'’ are monomialU (V')* is diagonal (U (V)*)2 =1p} C G,
M - F|a%(dlad|p+r,0p+s),F),

A {diag({; | yx],Ir,OS):x,yeMatparediagonaI
p—

and ¥ +y?=x} C M.

Let A’ C A be the subset consisting of elements such that the absalluesvof
the diagonal entries of the corresponding diagonal matrbejong to the interval
(0,1/2) and are distinct. TherdG,H,M,A) is a Weyl quadruple with ambient
spaceMat,(F) for which A’ is generic and, furthermore,

pIG] _ PUp(F)]p[Uqg(F)]
p[H]  2pPp!(2(F~1/2p[Uy(F)])Pp[Ur (F)]p[Us(F)]

As in Proposition 4.1.32, we abuse notation slightly; ongtoanake appropriate
adjustments to handle extreme values of the parampigrs s.

(4.1.34)

Proof As in the proof of Proposition 4.1.32, of the conditions irepd by Defini-
tion 4.1.22, only conditions (Ic), (lla) and (llic) need bredted. One can verify
(Ic) by means of Lemma 4.1.18 and Lemma 4.1.15.

We turn to the verification of condition (lla). By Propositid.14, for every
m e M, there existg € G such that

1 Xy
gmg —dlag({y Z},W)

wherex,y,z € Mat, andw € Mat,_,,, are real diagonal and satisfy the relations
dictated by the fact thaymg ! squares to itself and has trape-r. If we have
trw=r, then after left-multiplyingy by a permutation matrix i we havew =
diagl,0s), and we are done. Otherwisevirs£ r. After left-multiplying g by

a permutation matrix belonging 16, we can writey = diag(y’,0) wherey €
Maty has nonzero diagonal entries. Correspondingly, we writediag(x’,x")
andz = diag(Z,Z’) with X, Z € Maty andx”,Z’ € Mat,_y. We then have =

|y —X. Further, all diagonal entries of andZz’ belong to{0,1}, and finally,
trZ/ +trw >r. Thus, if we left-multiplyg by a suitable permutation matrix @&

we can arrange to havewr=r and we are done.

We turn finally to the verification of condition (llic). Fix € A’ andg € G
suchthagAg e A. Letx,y e Mat, be the real diagonal matrices corresponding
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to A as in the definition of\. By definition of A, no two of the four diagonal
matricesx, Ip — X, Iy and Q have a diagonal entry in common, and hegce
diagU,V,W,T) for someU,V € Uy(F), W € U, (F) and T € Ug(F). Also by
definition of \’, the diagonal entries of have distinct nonzero absolute values,
and hence we havg € H by Corollary E.13(iii) concerning the singular value
decomposition. ThugG,H,M, ) is a Weyl quadruple for which' is generic.

A slight modification of the proof of formula (4.1.33) yielésrmula (4.1.34).
O

Proof of Proposition 4.1.4Let (G,H,M,A) be the Weyl quadruple provided by
Proposition 4.1.33. We follow the pattern established i pihevious analysis
of the Laguerre ensembles, but proceed more rapidly. Wenrae A and
T, (G) Ny, (H)*, respectively, in the following way.

. X y
Alxy) = d|ag<[ y lh—x } ,Ir,OS),
Z atb 0 0 O
c _ 0 a-b ¢ d
d 0 —c* 0 e|’
0 —-d* —-e 0
e

where:

e X,y € Mat, are real diagonal and satisty + y? = X,

¢ a,b € Maty(F) are anti-self-adjoint witta vanishing identically along the diag-
onal, and

e c < Maty,(F), d € Matp,s(F) ande € Mat; . s(IF).

By a straightforward if rather involved calculation usimgrhula (4.1.29), we have

a xa+ ax— 2xax— 2yay

b xb+ bx— 2xbx+ 2yby
Orxxy) || C || = XC

d (Ip—x)d

e e

(Unlike in the proofs of Propositions 4.1.1 and 4.1.3, thbagonal projectiofl
is used nontrivially.) We find that

p p
/861 (iagre diagy)) = 18091 ]~ x;)) P72 M

X (1-x)9P/2
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for x,y € RP such that(1—x) = y? (and hence; € [0,1]) fori =1,...,p. The
calculation of the determinant is straightforward oncs noted that the identity

(Xq 4 X2 — 2X1X2 — 2y1Y2) (X1 + X2 — 2X1X2 + 2y1Y2) = (X1 — X2)?

holds ifx; (1 —x) = y? fori = 1,2.
Now let ¢ be as it appears in formula (4.1.5). Note thas an isometric copy

of Flag,(diag(1,0), R)P and that Flag(diag(1,0),R) is a circle of circumference
/21 Note also that

/f1+cose/2de /m

We find that

p dx
/d) ))dpa (A 29/2/[0’l}p¢(x) ﬂ 7\/ﬁ

Finally, note that the unique functiap on M satisfyingy/(W) = ¢ (W(P) is G-
conjugation invariant. We obtain (4.1.5) now by Theorem2BIlcombined with
formula (4.1.34) fopp[G]/p[H]. O

The next five propositions supply the Weyl quadruples ne&alptbve Proposi-
tion 4.1.6. All the propositions have similar proofs, wittetlast two proofs being
the hardest. We therefore supply only the last two proofs.

Proposition 4.1.34Let G= M = Uy(C). Let HC G be the set of monomial
elements of G. Lek C G be the set of diagonal elements of G, andNett A be
the subset consisting of elements with distinct diagonaie=n ThenG,H, M, A)

is a Weyl quadruple with ambient spab#at,(C) for which A" is generic and,
furthermore,

p[H]/p[A]=n!. (4.1.35)

The proof of this proposition is an almost verbatim repetitof that of Proposi-
tion 4.1.23.

Putl:[1 0

4.1.6.

0 1 } € Mat; and recall the notatioR,(0) used in Proposition

Proposition 4.1.35Let n= 2/ + 1 be odd. Let G= M = Uy(R). Let W, be the
group consisting of permutation matrices\tat, commuting withdiag(t, ..., 1,1).
Let

A= {+diagR/(8),1): 0 € R}, H={wWA : A € A\, weWp}.



212 4, SME GENERALITIES

Let A’ C A be the subset consisting of elements with distinct (compgiigen-
values. Ther{G,H,M,A) is a Weyl quadruple with ambient spaktat,(R) for
which A\’ is generic and, furthermore,

p[H]/p[A] = 2. (4.1.36)

Proposition 4.1.36Let G=M = U, (H). Let H C G be the set of monomial ele-
ments with entries i UCj. LetA C G be the set of diagonal elements with en-
tries inC. Let/\’ C A be the subset consisting of elemehtsuch thadiag(A,A*)
has distinct diagonal entries. Thé®,H,M,A\) is a Weyl quadruple with ambient
spaceMat,(H) for which A\’ is generic and, furthermore,

p[H]/p[A]=2"n!. (4.1.37)

Proposition 4.1.37Let n= 2/ be even. Let G= Uy(R) and let MC G be the
subset on whicldet= 1. Let W," C G be the group consisting of permutation
matrices commuting wittliag(r, ..., 1). Put

A={R(8):0cR}CM, H={WA: A cA,weW,}CG.

Let A’ C A be the subset consisting of elements with distinct (conplgenval-
ues. TherfG,H,M,A) is a Weyl quadruple with ambient spadat,(R) such that
N is generic and, furthermore,

p[H]/pIA =201, (4.1.38)

Proposition 4.1.38Let n= 2¢ be even. Let G= Uy(R) and let MC G be the
subset on whicdet= —1. Put

W, = {diagw,+1,+£1):weW,} CG,
A = {diagR_1(6),1,-1):0 R} c M,
H = {wA:weW,,AeA}cCG.

Let A’ C A be the subset consisting of elements with distinct (comgiigen-
values. Ther{G,H,M,A) is a Weyl quadruple with ambient spaitat,(R) for
whichA' is generic and, furthermore,

p[H]/pIA] =2 (e —1)r. (4.1.39)

Proof of Proposition 4.1.370nly conditions (lla) and (llic) require proof. The
other parts of the proposition, including formula (4.1,38% easy to check.

To verify condition (lla), fixm & M arbitrarily. After conjugatingn by some
element ofG, we may assume by Theorem E.11 thes block-diagonal withR-
standard blocks on the diagonal. Now the only orthog®zatandard blocks are
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+1 e Mat; andR(8) € Mat, for 0 < 8 < 1. Since we assume det= 1, there are
even numbers of 1s andls along the diagonal o, and hence after conjugating
m by a suitable permutation matrix, we hawvec A as required. Thus condition
(lla) is proved.

To verify condition (lllc), we fixA € A, g€ Gandu € A such thagAg ! = p,
with the goal to show thag€ H. After conjugatingA by a suitably chosen element
of Wi, we may assume that the angs. .., 8, describing), as in the definition
of A, satisfy 0< 6; < --- < 6y < 1. By another application of Theorem E.11,
after replacingg by wg for suitably chosemv € W;H, we may assume that= p.
Theng commutes with, which is possible only ify € A. Thus condition (llic)
is proved, and the proposition is proved. O

Proof of Proposition 4.1.38As in the proof of Proposition 4.1.37, only conditions
(lla) and (llic) require proof. To verify condition (Ila) wargue exactly as in the
proof of Proposition 4.1.37, but this time, becausendet —1, we have to pair
off a 1 with a—1, and we arrive at the desired conclusion. To prove comditio
(Illc), we again fixA € A/, g€ G andu € A such thatghg™! = p, with the
goal to show thag € H; and arguing as before, we may assume ghaammutes
with A. The hypothesis that has distinct complex eigenvalues then insures then
g=diaglh_»,£1,£1)v for somev € A, and hencg € H. Thus condition (llIc)

is verified, and the proposition is proved. O

Proof of Proposition 4.1.6It remains only to calculate/det®, for each of the
five types of Weyl quadruples defined above in order to coraplet proofs of
(4.1.6), (4.1.7), (4.1.8) and (4.1.9), for then we obtaioheformula by invoking
Theorem 4.1.28, combined with the formulas (4.1.35), 86)..(4.1.37), (4.1.38)
and (4.1.39), respectively, for the ratidH]/p[A]. Note that the last two Weyl
guadruples are needed to handle the two terms on the right&{d.1.9), respec-
tively.

All the calculations are similar. Those connected with theopof (4.1.9) are
the hardest, and may serve to explain all the other calouigti In the follow-
ing, we denote the Weyl quadruples defined in Propositioh84.and 4.1.38 by
(G,HT ,MT AT) and(G,H~,M~,A™), respectively. We treat each quadruple in
a separate paragraph below.

To prepare for the calculation it is convenient to introdtvee special functions.
Given real numbera andf, letD(a, ) be the square-root of the absolute value
of the determinant of thR-linear operator

Z—R(=a)(R(a)Z-ZR(B)) - (R(a)Z - ZR(B))R(-B)

on Mab(R), and letC(a) be the square-root of the absolute value of the determi-
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nant of theR-linear operator
Z— R(—a)(R(a)Z—-Zk) — (R(a)Z—ZK)K

on Mab(R), wherek = diag(1,—1). Actually both operators in question are non-
negative definite and hence have nonnegative determir@nésfinds that

D(a,B) = |(€° —€F) (" —eP)|, C(a) = [¢“ — e
by straightforward calculations.
Consider the Weyl quadrupig, H™,M*,A") and for8 € R’ putA*(8) =

R/(6). The spaceT,(G) N T, (H")* consists of real antisymmetric matrices
X € Mat, such thaiy 5i—1 =0 fori=1,...,¢. Using formula (4.1.29), one finds

that
Vdet@r+g = [] D(&,6)=D(6)

1I<i<)<t
which proves (4.1.9) for all functiong supported oM *.

Consider next the Weyl quadruglé,H~,M~—,A~) and for@ € R“~* putA —(8)
= diagR/(0),1,—1). The spacé,(G) NT,(H )" consists of real antisymmet-
ric matricesX € Mat, such thatXy 51 =0 fori=1,...,¢— 1. Using formula
(4.1.29) one finds that

Vde - = [] D(6.6) [] C(&)-2,

1<i<j<e—1 1<i<i—1

which proves (4.1.9) for all functiong supported oM. (The last factor of 2 is
accounted for by the fact that f@ € Mat, real antisymmetricik, [k, Z]] = 4Z.)
This completes the proof of (4.1.9).

All the remaining details needed to complete the proof ofpBsition 4.1.6,
being similar, we omit. O

Exercise 4.1.39

Let G = Uy(C) and letH C G be the subgroup consisting of monomial ele-
ments. LetM C Mat,(C) be the set consisting of normal matrices with distinct
eigenvalues, and It C M be the subset consisting of diagonal elements. Show
that(G,H,M,A) is a Weyl quadruple. Show thgfdet®, = [Ti<i<j<n|Ai — Aj|?
forall A =diagAg,...,An) €A

4.2 Determinantal point processes

The collection of eigenvalues of a random matrix naturaliy be viewed as a
configuration of points (ofR or onC), that is, as goint process This section
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is devoted to the study of a class of point processes knowetasmdinantal pro-

cesses; such processes possess useful probabilistiatmepsuch as CLTs for
occupation numbers, and, in the presence of approximatslatsoon invariance,

convergence to stationary limits. The point process detexdby the eigenvalues
of the GUE is, as we show below, a determinantal processhé&tideterminantal

processes occur as limits of the rescaled configuratiorgefwalues of the GUE,
in the bulk and in the edge of the spectrum, see Section 4.2.5.

4.2.1 Point processes: basic definitions

Let A be a locally compact Polish space, equipped with a (hedbssgafinite)
positive Radon measuge on its Borelg-algebra (recall that a positive measure
is Radonif p(K) < o« for each compact sét). We let.# (/) denote the space
of o-finite Radon measures ok, and let.#, (A) denote the subset of7(A\)
consisting of positive measures.

Definition 4.2.1(a) A point processs a random, integer-valuede .Z, (A\). (By
random we mean that for any BorBIC A, x(B) is an integer-valued random
variable.)

(b) A point procesy is simpleif

P(ExeA: x({x})>1)=0. (4.2.2)

Note that the event in (4.2.1) is measurable due to the fatt\this Polish. One
may think abouty also in terms of configurations. Let” denote the space of
locally finite configurations im\, and let.2"# denote the space of locally finite
configurations with no repetitions. More precisely, o A, i € | an interval
of positive integers (beginning at 1 if nonempty), witlinite or countable, let
[xi] denote the equivalence class of all sequedggs, }ici, wheremruns over all
permutations (finite or countable) bf Then, set

2 =2 (N)={x=[x]y, wherex; e\, kK <o, and
Xk |:=#{i: xi € K} < oo forall compac C A}
and
X7 ={xeZ x#xfori#j}.
We endow.2” and 2°# with the o-algebra%s- generated by the cylinder sets
CB = {x€ 2 : |xg| = n}, with B Borel with compact closure anda nonnegative

integer. Sincel = Y1, d, for some (possibly randong) < « and randony;, each
point procesg can be associated with a point#i (in 2°7 if x is simple). The
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converse is also true, as is summarized in the following elgary lemma, where
we letv be a probability measure on the measure spaeéy ).

Lemma 4.2.2A v-distributed random elementof 2" can be associated with a
point procesg( via the formulay (B) = |xg| for all Borel BC A. If v(2'7) =1,
theny is a simple point process.

With a slight abuse, we will therefore not distinguish bedwehe point process
x and the induced configuration In the sequel, we associate the lawvith the
point procesy, and writeE, for expectation with respect to this law.

We next note that ik is not simple, then one may construct a simple point pro-
cessx” = {(xj,Nj) 'j‘il € Z (N*) onA* = A\ x N, by lettingk* denote the num-
ber of distinct entries ix, introducing a many-to-one mappigg) : {1,...,K} —
{1,...,k*}with N; = |{i : j(i) = j}| such that fj(i) = j(i") thenx; = Xy, and then
settingx}‘ = if j(i) = ]. In view of this observation, we only consider in the se-
guel simple point processes.

Definition 4.2.3Let x be a simple point process. Assume locally integrable func-
tions py : /\k—>[0,oo), k > 1, exist such that for any mutually disjoint family of
subset®,, -+, Dk of A,

k
EV[.HX(Di)] :/l'l'k— o Pr(Xa, - X )du (X)) - dp (%) -

Then the functiongy are called thgoint intensities(or correlation functiony of
the point procesg with respect tqu.

The term “correlation functions” is standard in the phyditesature, while “joint
intensities” is more commonly used in the mathematicaldiigre.

Remark 4.2.4By Lebesgue’s Theorem, far almost every(xy, ..., X),

“m P(X(B(les)) = 17' = 177k)

-0 M1 1(B(X,€))
Further, note thapy(+) is in general only defineg®-almost everywhere, and that
Pr(X1,...,%) is not determined by Definition 4.2.3 if there arg j with x = X;.

For consistency with Lemma 4.2.5 below and the fact that wesicker simple
processes only, we spi(x1, . ..,Xs) = 0 for such points.

= Pr(Xe, - %) -

The joint intensities, if they exist, allow one to consideedapping sets, as well.
In what follows, for a configuratiow € 27, andk integer, we letx"k denote
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the set of ordered samples lofdistinct elements fronx. (Thus, if A =R and
x = {1,2,3}, thenx"? = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}.)

Lemma 4.2.5Let x be a simple point process with intensitgs
(a) For any Borel set B- A with compact closure,

By (1X"“NBI) = [ pbaa -+ xodu0a) - dulx).  (4:22)
B

(b) If Dj, i =1,...,r, are mutually disjoint subsets & contained in a compact
set K, and if{ki }{_; is a collection of positive integers such ttgt , ki = k, then

Ev [ﬁ( X(K[.)i) >ki!] :/anki Pr(Xa, ... X )p(dxe) - p(dx).  (4.2.3)

Proof of Lemma 4.2.5Note first that, for any compa& C A, there exists an
increasing sequence of partitiof®'}" ; of Q such that, for anx € Q,

NN Q' ={x

n ixeQ

We denote by2K the collection of (ordered-tuples of distinct elements ¢f"}.
(a) Itis enough to consider sets of the foBr= By x B, x --- x By, with the sets
B; Borel of compact closure. Then

k
Mi= Y (@x-xQINBNxXY = ux(QiﬂBi).

(Q1,... Q) €2K (Qu- Q)2

EV(MI?) = Z / Px(Xa, - x)du(x) ... du(x).  (4.2.4)
(Q1,.. 0.2k 7 (Qux-xQ)NB

Note thatV! increases monotonically imto [x"k B|. On the other hand, since
is simple, and by our convention concerning the intensjgiesee Remark 4.2.4,

limsup z / Pr(X1,- ., X )du(Xq)...du(x) = 0.
"0 (Que Qe bk 2 (e QN8
The conclusion follows from these facts, the fact tiatis a Radon measure and
(4.2.4).
(b) Equation (4.2.3) follows from (4.2.2) through the cledB:= [ DiXk". O

Remark 4.2.6Note that a system of nonnegative, measurable and symrhetce
tions{pr : A" — [0, ]} ; is a system of joint intensities for a simple point process



218 4, SME GENERALITIES

that consists of exactly points almost surely, if and only g = 0 forr >n, p1/n
is a probability density function, and the family is coneigt that is, for kx r <n,

[ P ) 06) = (1= Dpro sl 0).

As we have seen, for a simple point process, the joint intiesgjive information
concerning the number of points in disjoint sets. Let Howbe given disjoint
compact sets, with = (J-_; D; be such thak (2X(®)) < « for zin a neighborhood
of 1. Consider the Taylor expansion, valid fprin a neighborhood of 1,

L © L )
(Dé)_ & . 1\Ni
:122( _1+n;ni§§<o,>i= (X(Di)—ni)!ni!il:l(z‘ 1) (4.2.5)
nikLn
2 e b X)) -1 (x(D) i+ B
_1+n:lniFLn|: ni! IEl(Z‘_l) )

where

{n I—Ln}:{(nl,...,nL)eNi:zini:n}.

Then one sees that, under these conditions, the factorialents in (4.2.3) deter-
mine the characteristic function of the collectioq(Di)}- ;. A more direct way
to capture the distribution of the point procgss via its Janossy densities, that
we define next.

Definition 4.2.7Let D C A be compact. Assume there exist symmetric functions
jox : DK— R, such that, for any finite collection of mutually disjoint nse@able
setsD; € D,i=1,... .k

P(X(D):k,x(Di):l,i:1,...,k):/ kb %) [ (). (426)

Then we refer to the collectiofijp x }i_; as theJanossy densitiesf x in D.

The following easy consequences of the definition are providte same way that
Lemma 4.2.5 was proved.

Lemma 4.2.8For any compact DZ A, if the Janossy densitiesp, k> 1 exist
then

P(x(D)=k) = %/Dk Jok(xe, - %) [T u(dx), (4.2.7)
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and, for any mutually disjoint measurable setsDD, i =1,...,k and any integer
r >0,

P(x(D) =k+r,x(Di)=1,i=1,....k
1

= r_' |'|ik:1Di><Dr jD.k+r (Xl7 ce an+r) ITl “(dx) . (428)

In view of (4.2.8) (withr = 0), one can naturally view the collection of Janossy

densities as a distribution on the spagg ,DX.

Janossy densities and joint intensities are (at leastlypéa. restricted to a
compact seD) equivalent descriptions of the point procegsas the following
proposition states.

Proposition 4.2.9Let x be a simple point process ok and assume [ A is
compact.
(a) Assume thedhossy densitiesDjk, k> 1, exist, and that

k"
Z/k jok( le X nu (dx) < oo, forallrinteger. (4.2.9)
D

Theny restricted to D possesses the intensities

D,...D
%D,-.0) o p (4.2.10)

2 k+r (X1, ..+,
Pe(Xts %) = Jpker (X .
r=;) :

where

r

jD,k-H(le' o anaDa . 7D) = /D" jD,k+I‘(le' o axkvylv' . ,yr) rll"l(dyi) .
i=
(b) Assume the intensitiﬁ(xl, ..., X) exist and satisfy
Kk
Z/k P Xl’ |_|u (dx) < oo, forallrinteger. (4.2.11)
D

Then the anossy densities, j exist for all k and satisfy

pk+l‘ le 'anaDa"'7D)

. , (4.2.12)

Jok(X1,. . X

;Ms

where

r

pk+l‘(xlv"'axkaDa"'7D) :/Drpk+l‘(xlv"'anayla"'7yl‘) rll"l(dyi)
i=
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The proof follows the same procedure as in Lemma 4.2.5: twart\ and use

dominated convergence together with the integrabilityditions and the fact that
X is assumed simple. We omit further details. We note in pgsfiat under a
slightly stronger assumption of the existence of expomaéntoments, part (b) of
the proposition follows from (4.2.5) and part (b) of Lemma.8.

Exercise 4.2.10Show that, for the standard Poisson process of Aate O on
N\ = R with u taken as the Lebesgue measure, one has, for any compa®
with Lebesgue measutB|,

pk(xla"'yxk) = eMD‘jD,k(Xla"'yxk) = )\k'

4.2.2 Determinantal processes

We begin by introducing the general notion of a determingrtacess.

Definition 4.2.11 A simple point procesy is said to be aleterminantal point
processwith kernelK (in short: determinantal process) if its joint intensitgs
exist and are given by

(K(%i,Xj)) - (4.2.13)

In what follows, we will be mainly interested in certain ldigarace-class op-
erators onL?(u) (viewed as either a real or complex Hilbert space, with inner
product denotedf, g), 2,,)), motivating the following definition.

Definition 4.2.12An integral operator#” : L?(u) — L?(u) with kernelK given
by

H (DX = [KExyiy)du), 1 el

is admissiblgwith admissible kern&) if ¢ is self-adjoint, nonnegative and lo-
cally trace-class, that is, with the operatép = 1p.# 1p having kerneKp (x,y) =
1o (X)K(x,y)1p(y), the operators?” and.#p satisfy:

(9.2 (F)izquy = (£(9), Pz, f.9€l(w), (4.2.14)
(f, ()2 >0, fel’(n), (4.2.15)

For all compact set® C A, the eigenvaluef\P)i>o(€ RY)

of #p satisfyy AP < co. (4.2.16)
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We say that’?” is locally admissiblgwith locally admissible kerne) if (4.2.14)
and (4.2.15) hold with#p replacing7”.

The following standard result, which we quote from [Sim03lneorem 2.12]
without proof, gives sufficient conditions for a (positivefthite) kernel to be ad-
missible.

Lemma 4.2.13Suppose K A x A — C is a continuous, Hermitian and posi-
tive definite function, that iy ; Z'z;K(x,x;) > O for any n, x,...,x, € A and
2,...,Z, € C. Then# is locally admissible.

By standard results, see e.g. [Sim05b, Theorem 1.4], agriteompact operator
¢ with admissible kerndk possesses the decomposition

HE(X) = kz A () (G, )12 (4.2.17)
=1

where the functiongy are orthonormal i.?(u), nis either finite or infinite, and
Ak > 0 for all k, leading to

K(xy) = kﬁ A)R)" (4.2.18)
=1

(The last equality is to be understoodLif(u x p).) If K is only locally admis-
sible,Kp is admissible and compact for any compBetand the relation (4.2.18)
holds withKp replacingk and theAy andg, depending oiD.

Definition 4.2.14 An admissible (respectively, locally admissible) intdgop-
erator.z” with kernelK is goodif the Ay (respectively)\l?) in (4.2.17) satisfy
Ak € (0,1].

We will later see (see Corollary 4.2.21) that if the kerdeh definition 4.2.11 of
a determinantal process is (locally) admissible, then istntufact be good.

The following example is our main motivation for discussidgterminantal
point processes.

Example 4.2.15.et(AN,--- | A) be the eigenvalues of the GUE of dimension N,

and denote byy the point procesgn(D) = 3N ; 1AiN€D. By Lemma 3.2.2 is
a determinantal process with (admissible, good) kernel

N-1
KN (x,y) = > ()Ui(y)
Ko

where the functiongy are the oscillator wave-functions.
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We state next the following extension of Lemma 4.2.5. (Resak Definition
3.4.3, thatA(G) denotes the Fredholm determinant of a kef@g!

Lemma 4.2.16Supposg is av-distributed determinantal point processes. Then,
for mutually disjoint Borel sets D¢ =1,...,L, whose closure is compact,

Ev<f| z?‘D”>=A<1D ;u—zg)mm), (4.2.19)
/=1 /=1

where D= {J;_, D, and the equality is valid for al(z)5_, € C-. In particu-
lar, the law of the restriction of simple determinantal pesses to compact sets
is completely determined by the intensity functions, amdréistriction of a de-
terminantal process to a compact set D is determinantal aithissible kernel

1o (K (%,y)1p(y)-

Proof of Lemma 4.2.16By our assumptions, the right side of (4.2.19) is well
defined for any choice c(fzg)',f:l € C" as a Fredholm determinant (see Definition
3.4.3), and

A (b/i (1—zg)K1Dk> ~1
=1

0 L
:nZln—l!/D“‘/Ddet{gl@—1>K<Xi,xj->1ok<xj>} H(dx)- p(dx)

i,j=1
[ee]
B nZl

5

1 L
o l(zek -1 (4.2.20)

1, Tn=1k
n

[ [ det{ 100K (x.)10, () | (e ().

On the other hand, recall the Taylor expansion (4.2.5). @éin2.3) we see that

the v-expectation of each term in the last power series equalsdiresponding

term in the power series in (4.2.20), which represents ainegfiiinction. Hence,

by monotone convergence, (4.2.19) follows. O

Note that an immediate consequence of Definition 4.2.3 amanh& 4.2.16 is
that the restriction of a determinantal process with kekigdy) to a compact
subseD is determinantal, with kerné@k<pK (X, y)1yep.

4.2.3 Determinantal projections

A natural question is now whether, given a good keiielone may construct
an associated determinantal point process. We will andwgquestion in the
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affirmative by providing an explicit construction of detemantal point processes.
We begin, however, with a particular class of determingmtatesses defined by
projection kernels.

Definition 4.2.17A good kernekK is called atrace-class projection kernéf all
eigenvalues\y in (4.2.18) satisfyAdy = 1, andy_; Ax < . For a trace-class
projection kerneK, setHx = sparq ¢}.

Lemma 4.2.18Supposg is a determinantal point process with trace-class pro-
jection kernel K. Thenx(A) = n, almost surely.

Proof By assumptionn < e in (4.2.18). The matriXK(x;, ;) }fj:l has rank at
mostn for all k. Hence, by (4.2.3)x(A) < n, almost surely. On the other hand,

E/(rN) = [ prl0dn(0 = [ Kixaut = 5 [ a0t = n.
This completes the proof. O

Proposition 4.2.19Let K be a trace-class projection kernel. Then a simple deter
minantal point process with kernel K exists.

A simple proof of Proposition 4.2.19 can be obtained by rpthrat the function
deﬂjzl K(x,Xj)/n! is nonnegative, integrates to 1, and by a computation aimil
to Lemma 3.2.2, see in particular (3.2.10), kb marginal is(n — k)!delﬁfj=1
K(x,Xj)/n!. We present an alternative proof that has the advantageoefding
an explicit construction of the resulting determinantahpprocess.

Proof For a finite-dimensional subspatt of L?(u) of dimensiond, let .7
denote the projection operator irttband letKy; denote an associated kernel. That
is, Ku(x,y) =39, k(X)W (y) for some orthonormal familfyi}¢_, in H. For
xe A, setkt! (1) = Ky (x,-). (Formally,k! = 7 &, in the sense of distributions.)
The functionkt!(-) € L?(u) does not depend on the choice of bagi}, for
almost every: indeed, if{ ¢} is another orthonormal basis i, then there exist
complex coefficients{a;,j}}szl such that

d d
B = Zlak»i‘l’i : Zlak,ja;j/ =90y
i= j=

Hence, foru-almost every,y,

d d d
kZl(P«(X)(Hf(Y)Z Z aja Wi Wi (y) = > Wix)u;(y).

kj,)’=1 =1
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We have thaKy (x,x) = ||k{||? belongs toL'(u) and that different choices of
basis{ yx} lead to the same equivalent class of functionklifu). Let uy be the
measure or\ defined byduy /du(x) = Kn (X, X).

By assumptionn < o« in (4.2.18). Thus the associated subspldgeis finite-
dimensional. We construct a sequence of random varidhles.,Z, in A as
follows. SetH, = Hk andj =n.

e If j =0, stop.

e Pick a pointZ; distributed according tpi; /.

e LetH;_; be the orthocomplementto the functib;'rj in Hj.
e Decreasq by one and iterate.

We now claim that the point process= (Z1,...,Z,), of law v, is determinantal
with kernelK. To see that, note that

k;'j" = kg, inL2(p), v-ass.
Hence the density of the random vectd, . . . , Z,) with respect tqu®" equals

H.
L

p(xl,...,xn):g J Jll J

SinceHj =HN (K¢ ,,..., k)", it holds that
- H
A
J=1

equals the volume of the parallelepiped determined by th&)mk;'l,...,k;'n in
the finite-dimensional subspallec L?(u). Since ki (x)ki! (x)u(dx) = K(x,X;),

it follows thatV? = det(K (x,x}))";_;. Hence

1
p(X1,...,Xn) = o det(K(xi,xj))ﬂjzl.

Thus, the random variable, ..., Z, are exchangeable, almost surely distinct,
and then-point intensity of the point processequalsn! p(xy,...,%n). In partic-
ular, integrating and applying the same argument as in1@)_2all k-point inten-
sities have the determinantal form fo< n. Together with Lemma 4.2.18, this
completes the proof. O

Projection kernels can serve as building blocks for trdasscdeterminantal
processes.
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Proposition 4.2.20Suppose is a determinantal process with good kernel K of
the form (4.2.18), witty Ak < . Let{lc};_, be independent Bernoulli variables
with P(lx = 1) = Ax. Set

Ki(x.y) = kilkmxm: ).

and lety, denote the determinantal process with (random) kernellikeny and
X1 have the same distribution.

The statement in the proposition can be interpreted angtttat the mixture of
determinental processgs has the same distribution gs

Proof Assume firstn is finite. We need to show that for ati < n, the m-point
joint intensities ofy andy, are the same, that is

det(K (x.)) = E[ det(Ki (4. ).

But, with A ik = lk@(x) andBy; = @ (x) for 1 <i <m,1 <k <n, then
(Ki (%,%)))T—1 = AB, (4.2.21)
and by the Cauchy-Binet Theorem A.2,
m
det(Ki(%,xj)) = > detlAg1,. myx{vi, vm}) AEUB{yy oo vy x{1,..m}) -
hj=1 1<vi<--<vm<n

SinceE(ly) = Ak, we have
E[det(A{l,..,m}x{v1,~~~,vm})] = det(c{l,..,m}x{vl,m,vm})
with G« = Akgi(Xi). Therefore,
m
E[det(Ki(x,x))] = 5 detCp_mpxfuy,um}) 4€UBy - v {1,.m})

Li=1 1<y <-<ym<n
m
— delCB) = detK(x.x))), (4.2.22)
i=

where the Cauchy-Binet Theorem A.2 was used again in thérast

Suppose next that= . Sincey Ax < o, we have that? := 5 I < « almost
surely. Thusy, is a well defined point process. Lt denote the determinantal
process with kernekKN = 5N | lka(x)@ (y). ThenxN is a well defined point
process, and arguing as in (4.2.21), we get, for every intege

m
det(KMxp) = Y delAu mpc vy unt) (B v (1)
ij=1 1<vi<--<vm<N

= > Loy =1j=1...m}| det(Byy, .. yupx(1..mp)®-  (4.2.23)

1<vi<--<Vm<N
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In particular, the left side of (4.2.23) increasesNn Taking expectations and
using the Cauchy-Binet Theorem A.2 and monotone conveggene get, with
the same notation as in (4.2.22), that

m m
E det(Ki(x,x))) = lim E det(KN(x,x)))
i,j=1 N—oo i j=1

= lim > det(Crmyx{vy, - .vm}) A€M Byy - vy x(1..m})

N—oo 1<vi<--<vm<N
m
= lim_det(Kn(x,xj)) = det(K(x,x;)), (4.2.24)
—oi,j= ij=
where we writeky (X,Y) = SR A@(X) g (y). O

We have the following.

Corollary 4.2.21Let.# be admissible on4(u), with trace-class kernel K. Then
there exists a determinantal procegsvith kernel K if and only if the eigenvalues
of 2 belong to[0, 1].

Proof From the definition, determinantal processes are detethipeestriction
to compact subsets, and the resulting process is detertairtan, see Lemma
4.2.16. Since the restriction of an admissibté to a compact subset is trace-
class, it thus suffices to consider only the case wheigtrace-class. Thus, the
sufficiency is immediate from the construction in Propaosité.2.20.

To see the necessity, suppgeés a determinantal process with nonnegative
kernelK(x,y) = ¥ Ak@(X) @ (y), with maxA; = A1 > 1. Let x; denote the point
process with each point deleted with probability - 1/, independentlyy; is
clearly a simple point process and, moreover, for disjaitsgtdD;, ..., Dy of A,

k
Ev[.qu(Di)] :‘/l_l'k— D_(l/’\l)kpk(xl,'-' X ) A (%) - A (Xg) -

Thus, x1 is determinantal with kernd{; = (1/A1)K. Sincey had finitely many
points almost surely (recall tha¢ was assumed trace-class), it follows that
P(x1(A) = 0) > 0. But, the procesgi can be constructed by the procedure
of Proposition 4.2.20, and since the top eigenvalu&pfquals 1, we obtain
P(x1(A) > 1) =1, a contradiction. O

We also have the following corollaries.

Corollary 4.2.22 Let K be a locally admissible kernel ok, such that for any
compact DC A, the nonzero eigenvalues of,elong to(0, 1]. Then K uniquely
determines a determinantal point process/an
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Proof By Corollary 4.2.21, a determinantal process is uniquetgaeined byKp
for any compacD. By the definition of the intensity functions, this sequente
laws of the processes is consistent, and hence they detetmiquely a determi-
nantal process oA. O

Corollary 4.2.23 Let x be a determinantal process corresponding to an admissi-
ble trace class kernel K. Define the proceggsby erasing, independently, each
point with probability(1— p). Theny, is a determinantal process with kernel pK.

Proof Repeat the argument in the proof of the necessity part ofl@oyat.2.21.
O

4.2.4 The CLT for determinantal processes

We begin with the following immediate corollary of Propdsit4.2.20 and Lemma
4.2.18. Throughout, for a good kerrt€land a seD C A, we write Kp(x,y) =
1o (X)K(x,y)1p(y) for the restriction oK to D.

Corollary 4.2.24 Let K be a good kernel, and let D be such thai Is trace-
class, with eigenvaluel, k > 1. Theny(D) has the same distribution &g &
whereéy are independent Bernoulli random variables witéP= 1) = Ax and
P(ék=0)=1— A

The above representation immediately leads to a centréltliorem for oc-
cupation measures.

Theorem 4.2.29 et x,, be a sequence of determinantal processeA aith good
kernels K. Let D, be a sequence of measurable subsets sdich thatKn)p, is
trace class and&/ar(xn(Dn)) —n—e ©. Then

Xn(Dn) — Ey[Xn(Dn)]
Var(xn(Dn))

converges in distribution towards a standard normal vati&ab

Zn:

Proof We write K, for the kernel(K,)p, and setS, = /Var(xn(Dn)). By
Corollary 4.2.24,xn(Dn) has the same distribution as the sum of independent
Bernoulli variablest)?, whose parameterg! are the eigenvalues &f,. In partic-
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ular, 2 = kAR (1 — AD). SinceKn is trace-class, we can write, for afyreal,

logE[e?] = Z logE[e?(& A/

03k Ak n(ab/Sn
= ——5=—+Slog(1+Al(e”™-1
5 T 2 gL+ AN~ 1))
025 AP(L— AP AN(L—AD
YU k)+0(2k Al k))7
25, S
uniformly for 6 in compacts. Sincgk/\Q/Sﬁ —n-w 0, the conclusion follows.
O

We note in passing that, under the assumptions of Theore264.2
Var(xn(On) = 3 ML AR < 3 AL = [ Kalx x)din(x).
Thus, for Vaf xn(Dy)) to go to infinity, it is necessary that

Aim Kn (X, X)dn(X) = +oo. (4.2.25)
— 00 Dn

We also note that from (4.2.3) (with= 1 andk = 2, andplin> denoting the inten-
sity functions corresponding to the kert&! from Theorem 4.2.25), we get

Var(xa(D)) = | Kk )dhn() — [ KE(ey)dun(dun(y).  (4.2.26)
Exercise 4.2.28Jsing (4.2.26), provide an alternative proof that a neagssan-
dition for Var(xn(Dp)) —  is that (4.2.25) holds.

4.2.5 Determinantal processes associated with eigenvalue

We provide in this section several examples of point praeesslated to configu-
rations of eigenvalues of random matrices that possessantietintal structure.
We begin with the eigenvalues of the GUE, and move on to defiessine and
Airy processes, associated with the sine and Airy kernels.

The GUE

[Continuation of Example 4.2.15] LéA N, - - | A}Y) be the eigenvalues of the GUE
of dimensiorN, and denote byy the point procesgn (D) = ZiN=1 1,nep- Recall
that, with the GUE scaling, the empirical measure of themighues'is, with high
probability, roughly supported on the interyal2y/N, 2y/N].
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Corollary 4.2.27 Let D= [—a,b] with a,b > 0, a € (-1/2,1/2), and set [} =
N9D. Then
Xn(Dn) — E[xn(Dn)]

Var(Xn(Dn))

converges in distribution towards a standard normal vati&ab

N =

Proof In view of Example 4.2.15 and Theorem 4.2.25, the only thirgneed to
check is that Vaixn(Dn)) — o asN — . Recalling that

[ (kM) dy=Kk®xx),

it follows from (4.2.26) that for any® > 0, and alIN large,

Varon(ow) = [ [ (k™0ey) andy

1 Ny, _X y 2
_ kN _—> dxd
/mDN/NDN)C(\/N (\/N N Y
0 R N)
> / /sgNa(x,y)dxdy, (4.2.27)
-RJO

where

Ny — L kN [, X Y
Mooy = 75K (= 752+ k)

is as in Exercise 3.7.5, a 'F\',L (x,y) converges uniformly on compacts, lds—

o, to the sine-kernel six—vy) /(m(x—Yy)). Therefore, there exists a constant 0
such that the right side of (4.2.27) is bounded below, fayddi, by clogR. Since
Ris arbitrary, the conclusion follows. O

Exercise 4.2.28Jsing Exercise 3.7.5 again, prove thatDf = [-ayv/N,bv/N]
with a,b € (0, 2), then Corollary 4.2.27 still holds.

Exercise 4.2.2%rove that the conclusions of Corollary 4.2.27 and Exerti3e8
hold when the GUE is replaced by the GOE.
Hint: Write x(\)(Dy) for the variable corresponding tpy(Dy) in Corollary
4.2.27, with the GOE replacing the GUE. LtV (D) andx N+ (Dy) be inde-
pendent.
(a) Use Theorem 2.5.17 to show th@i(Dy) can be constructed on the same prob-
ability space agz ) (Dy), xNtY(Dy) in such a way that, for ang > 0, there is
aC; so that

limsupP(|xn(Dn) — (x™ (D) + x ™M (Dn)) /2| > Ce) < €.

N—oo
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(b) By writing a GOEN + 1) matrix as a rank 2 perturbation of a GOg(matrix,
show that the laws gf V) (D) andx N+ (Dy) are close in the sense that a copy
of x(N)(Dn) could be constructed on the same probability space®s) (Dy)

in such a way that their difference is bounded by 4.

The sine process

Recall the sine-kernel
1sin(x—y)

Ksine(X,y) = T x—y

TakeA = R andu to be the Lebesgue measure, andffer L2(R), define

Hsinef (X /Ksmex y) f(y)dy.

Writing Ksine(2) = Ksine(X, Y) |2=x—y, we see thaksine(2) is the Fourier transform of
the functionl|_1/5,1/2(&). In particular, for anyf € L?(R),

(f, Hsinef) //f Y)Ksine(X— y)dxdy= / )|2d5 < Hf”Z

(4.2.28)
Thus,Ksine(X, y) is positive definite, and by Lemma 4.2.13gje is locally admis-
sible. Further, (4.2.28) implies that all eigenvalues atrietions of Zgjne to any
compact interval belong to the intervi@l 1. Hence, by Corollary 4.2.22%5ine
determines a determinantal point procesdRofwhich is translation invariant in
the terminology of Section 4.2.6 below).

The Airy process

Recall from Definition 3.1.3 the Airy function Ak) = & |- e¢*/3¢dZ, whereC

is the contour in thé-plane consisting of the ray joinirey /3 to the origin plus
the ray joining the origin t@™/3w, and the Airy kerneKairy (X,y) = A(X,y) :=
(Ai (x) Ai’(y) — Ai’(x )Ai (y))/(x—y). TakeA = R and u the Lebesgue measure.
Fix L > —oo and let#,;, denote the operator drf([L, )) determined by

Alry / KAlry (x,y) f(y)dy.
We now have the following.
Proposition 4.2.30For any L > —oo, the kernel Iﬁiry (x,y) is locally admissible.

Further, all the eigenvalues of its restriction to compaatissbelong to the interval
(0,1]. In particular, Kkiry determines a determinantal point process.
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Proof We first recall, see (3.9.58), that
Kaiy (X.Y) = / A (x+1) Ai (y+t)dt. (4.2.29)
0
In particular, for anyt. > —co and functionsf, g € Ly([L,)),

(g8 = @y ) = [ [ [ A (x+ ) Aly+) f(g(y)ctaxdy

It follows that.’;,, is self-adjoint onLy([L,)). Further, from this representa-
tion, by an application of Fubini’'s Theorem,

(f, 7k 1) = /OW’/LW F(x) Al (x+t)dx’2dt >0.

Together with Lemma 4.2.13, this proves ttﬂé;ﬂ;ry is locally admissible.

To complete the proof, as in the case of the sine process, e ae upper
bound on the eigenvalues of restrictions#;r, to compact subsets &. Toward
this end, deforming the contour of integration in the defimitof Ai(x) to the
imaginary line, using integration by parts to control thetibution of the integral
outside a large disc in the complex plane, and applying Gasidtheorem, we
obtain the representation, feE R,

. 1
A (x) = g{@m 27T/R (/39

with the convergence uniform for in compacts (from this, one can conclude
that Ai(x) is the Fourier transform, in the sense of distributionszi%f:*/\/ﬁ, al-
though we will not use that). We now obtain, for continuousdtionsf supported
on[—M,M] C [L, ),

(F, Hairy ) /‘/f X)Ai (x+ )l dt</ ‘/ A|x+tdx‘dt
(4.2.30)
But, for any fixedk > 0,

/ ‘/ X) Ai (x+t dx‘ dt
_ / ‘/MFL'L"WET/ d(S/3+19 gxsgs f(x )dx‘ dt

_ quanooE-[/ ‘/ e|§5/3+ts ds‘ dt,
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wheref denotes the Fourier transform bfand we have used dominated conver-
gence (to pull the limit out) and Fubini’s Theorem in the legtality. Therefore,

/ ‘/ X) Al x+tdx‘ dt=lim [ ‘\/_n/ "‘Se_i§/3fA(S)ds<2dt

< limsup e*itse*ié/g’l[_R’R} (s)f(s)ds‘ dt

R—o J—00 ’ vV 27'[/—00

. N 2 © 2
—timsup [ [e731_gq(t)f(t)d dtg/ o) ae= 1115,

R—o0 —00 ‘
where we used Parseval’'s Theorem in the two last equalitlssg (4.2.30), we
thus obtain

(f, Ay ) < I F13,

first for all compactly supported continuous functiohsand then for allf €
Lo([—L,)) by approximation. An application of Corollary 4.2.22 cowmigls the
proof. O

4.2.6 Translation invariant determinantal processes

In this section we specialize the discussion to determalgrbcesses on Eu-
clidean space equipped with Lebesgue’s measure. Thus deR? and letu be
the Lebesgue measure.

Definition 4.2.31A determinantal process witt\, u) = (RY,dx) is translation
invariantif the associated kern&l is admissible and can be written liéx,y) =
K(x—y) for some continuous functiok : RY — R.

As we will see below after introducing appropriate notati@meterminantal pro-
cessy is translation invariant if its law is invariant under (spdtshifts.

For translation invariant determinantal processes, thmalitions of Theorem
4.2.25 can sometimes be simplified.

Lemma 4.2.32Assume that K is associated with a translation invarianed®i-
nantal process omd. Then

lim =g (2L) SVar(x ([—L, L] / K (x)%dx. (4.2.31)

Proof. By (4.2.26) withD = [—L,L]4 and Vo[D) = (2L)¢,

Var(x (D)) = Vol(D)K (0) — . K2(x—y)dxdy.
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In particular,

VoI(D)K(O)z/ K2(x— y)dxdy.

DxD

By monotone convergence, it then follows by taking- o that [ K?(x)dx <
K(0) < 0. Further, again from (4.2.26),

Var(x(D)) = VoI(D)(K(O)—/RdK(x)zdx)+/Ddx/y:y¢DK2(x—y)dy.

Since [ra K (X)?dx < o, (4.2.31) follows from the last equality. O

We emphasize that the RHS in (4.2.31) can vanish. In sucluatisin, a more
careful analysis of the limiting variance is needed. Wengféxercise 4.2.40 for
an example of such a situation in the (important) case ofitieleernel.

We turn next to the ergodic properties of determinantal @sees. It is natural
to discuss these in the framework of the configuration spéicdort € RY, let T!
denote the shift operator, that is for any Borel Aet RY, T'A= {x+1t:x € A}.
We also writeT' f(x) = f(x+t) for Borel functions. We can extend the shift to
act on.2” via the formulaT'x = (x; +t)K_; for x = ()£ ;. T' then extends to a
shift on¢’»- in the obvious way. Note that one can alternatively also @€ffry
by the formulaT!x (A) = x(T'A).

Definition 4.2.33Letx be a point process inZ", ¢ ,v). We say thak is ergodic
if for any A € ¢ satisfyingT'A = A for all realt, it holds thatv(A) € {0,1}. It
is mixingif for any A,B € €5, V(ANT'B) — .o V(A)V(B).

By standard ergodic theory,xfis mixing then it is ergodic.

Theorem 4.2.34Let x be a translation invariant determinantal point process in
RY, with good kernel K satisfying x|) —|x—e 0. Thenx is mixing, and hence
ergodic.

Proof Recall from Theorem 4.2.25 thgtk?(x)dx < . It is enough to check
that for arbitrary collections of compact Borel séE«;}:‘:ll and{G; }'j‘il such that
FNF =0andGjNGy =0fori#1', j # j’, and with the notatio®, = T'Gj, it
holds that for anyg = {z}%, € Ct, w = {Wj}lj_il € Clz,

Ev le,xm) wie —tj— Ev le,-X‘F'> E, e ) (4.2.32)
s nw | M
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DefineF = Ui, F, G' = U2, G Let

L1 Lo

Ky = 1|:zi(1—z;)K1|:,, nglgz(l—wj)m@j,
i= =1
Lo L1

Kip = 1FZ(1—Wj)Kle‘j, Kélzth.Zl(l—Zi)Klﬁ

=1 i

By Lemma 4.2.16, the left side of (4.2.32) equals, figrlarge enough so that
FNG =0,

A(Ky + K5+ Kip+Kby). (4.2.33)

Note that, by assumption, SUK}, — -« 0, SUR, K5; =t 0. Therefore, by
Lemma 3.4.5, it follows that

‘tl‘im |A(Kg 4 K5+ Ko+ KSy) — A(Ky + K| =0. (4.2.34)
Next, note that foft| large enough such th&N G! = 0, K3 xK} = 0 and hence,
by the definition of the Fredholm determinant,

A(Ky+Kp) = A(K1)A(KS) = A(K1)A(Kz)

whereKj := Kg and the last equality follows from the translation invadafK.
Therefore, substituting in (4.2.33) and using (4.2.34) geethat the left side of
(4.2.32) equald(K1)A(K2). Using Lemma 4.2.16 again, we get (4.2.32). O

Let x be a nonzero translation invariant determinantal pointgse with good
kernelK satisfyingK(|x|) —x—« 0. As a consequence of Theorem 4.2.34 and
the ergodic theorem, the limit

c:= lim x([-n, n]%)/(2n)d (4.2.35)

exists and is strictly positive, and is called ih&ensityof the point process.

For stationary point processes, an alternative descniptém be obtained by
considering configurations “conditioned to have a poinhatdrigin”. When spe-
cialized to one-dimensional stationary point process$gs oint of view will be
used in Subsection 4.2.7 when relating statistical progeeof the gap around zero
for determinantal processes to ergodic averages of spacing

Definition 4.2.35Let x be a translation invariant point process, andléeenote a
Borel subset oRY of positive and finite Lebesgue measure. Paén distribution
Q associated witly is the measure o7 (Rd) determined by the equation, valid
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for any measurabla,

QA =E ( / 1A<T5x>x<ds>) JE(X(B)).

We then have:

Lemma 4.2.36The Palm distribution Q does not depend on the choice of tihel Bo
set B.

Proof We first note that, due to the stationari/(x (B)) = cu(B) with u the
Lebesgue measure, for some constaitt is referred to as thimtensityof x, and
for determinantal translation invariant point proces#tespincides with the pre-
viously defined notion of intensity, see (4.2.35)). It is s from the definition
that the random measure

Xa(B) = /B 1a(TSX)X(d9)

is stationary, namelya(T'B) has the same distribution as(B). It follows that
ExXa(T!B) = Exa(B) for all t € RY, implying thatExa(B) = cau(B) for some
constantcy, since the Lebesgue measure is (up to multiplication byasc#he
unique translation invariant measure®f. The conclusion follows. O

Due to Lemma 4.2.36, we can speak of the point prog&sattached to the
Palm measur€), which we refer to as th®alm process Note thatx? is such
thatQ(x°({0}) = 1) = 1, i.e. x° is such that the associated configurations have
a point at zero. It turns out that this analogy goes deepérjrafact the lawQ
corresponds to “conditioning on an atom at the origin".‘u)gidenote thé&/oronoi
cell associated witx, i.e., withB(a,r) denoting the Euclidean ball of radius
arounda,

Vyo = {t e R%: x°(B(t,[t|)) = 0} .

Proposition 4.2.37Let x be a nonzero translation invariant point process with
good kernel K satisfying KX|) — |y« O, with intensity c. Letx® denote the
associated Palm process. Then the law B afan be determined from the law Q
of x° via the formula, valid for any bounded measurable function f

Ef(x) = CE/V F(TtXO)dt, (4.2.36)

where c is the intensity of.
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Proof From the definition of? it follows that for any bounded measurable func-
tion g,

E [ o(T*x)x(ds) = cu(BIEGX"). (4.2.37)

This extends by monotone class to jointly measurable naativegfunctionsh :
My (RY) xRY— R as

E/ h(Ttx,t)x (dt) = CE/ h(x°,t)dt.
Rd Rd
Applying the last equality tt(x,t) = g(T x,t), we get

E/ g(x.t)x(dt) =cE/ g(T*txo,t)dt:cE/ g(T'x%, —t)dt. (4.2.38)
Rd Rd Rd

Before proceeding, we note a particularly useful consecgieh(4.2.38). Namely,
let

2 = {x : there exist #t' € RY with [t|| = ||t'| andx ({t}) - x ({t'}) = 1}.
The measurability o is immediate from the measurability of the set
7' ={(tt) e R :t] = It'|l.t #t'}.

Now, with & = {x : x(y) = 1 for somey # t with |ly|| = ||t||},

19 < /1(g>tX(dt)

Therefore, using (4.2.38),

P(2) < cE /R At tesdt.

Since all configurations are countable, the setsoih the indicator in the inner
integral on the right side of the last expression is conthine countable collec-
tion of (d — 1)-dimensional surfaces. In particular, its Lebesgue measnishes.
One thus concludes that

P(2)=0. (4.2.39)

Returning to the proof of the proposition, apply (4.2.38)wi
a(x;t) = F(X)Ly(gtp)=1x(B0,1))=0r and use the fact that' x°(B(O, |t|)) = O iff
t € V0 to conclude that

E (f(x) / 1X<B<o,t))ox(dt)) _CE < /V O (Tt x")dt> .

X
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SinceP(Z) = 0, it follows that [ 1, g o,t))=0X (dt) = 1, for almost every. This
yields (4.2.36).

O

Exercise 4.2.38 et x be a nonzero translation invariant determinantal point pro
cess with good kerné{. Show that the intensitg defined in (4.2.35) satisfies
c=K(0).

Exercise 4.2.3%Assume thaK satisfies the assumptions of Lemma 4.2.32, and
define the Fourier transform

R(A) = /XERd K (x) exp(2mix- A )dx e L2(RY).

Give a direct proof that the right side of (4.2.31) is nonrizga
Hint: use the fact that, sindé is a good kernel, it follows thatK || < 1.

Exercise 4.2.40ColL95] Taked = 1 and check that the sine-kern€lins(x) =
sin(x)/ixis a good translation invariant kernel for which the riglatesof (4.2.31)
vanishes. Check that thengf< b are fixed,

Elx(La,b])] = L(b—a)/m,
whereas
Var(x(L[a, b)) = % logL +O(1).
Hint: (a) Apply Parseval’'s Theorem and the fact that the Fourgrsform of the
function sir(x)/mx is the indicator over the intervgl-1/2m,1/2m] to conclude

that [ K?(x)dx= 1/m= K(0).
(b) Note that, withD = L[a,b] andDy = [La— x,Lb —X],

200 _ 20, 1- cos(Zu
/Ddx DCK (x y)dy_/Ddx K4( nz/ /DC 2 u,

from which the conclusion foIIows.

Exercise 4.2.41 et |V,0| denote the Lebesgue measure of the Voronoi cell for a
Palm procesg® corresponding to a stationary determinantal procesR%with
intensityc. Prove thag(|V,o|) = 1/c.

4.2.7 One-dimensional translation invariant determinaadtprocesses

We restrict attention in the sequel to the case of most istéceus, namely to
dimensiond = 1, in which case the results are particularly explicit. lediewhen
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d = 1, each configuratior of a determinantal process can be ordered, and we
write X = (...,X_1,Xo,X1,...) With the convention thak, < %1 for all i and

Xo < 0 < xq (by stationarity and local finitenesB(x({0}) = 1) = 0, and thus

the above is well defined). We also ude= (...,x°;,0=x3,x),...) to denote the
configuration corresponding to the Palm proge&sThe translation invariance of
the point procesg translates then to stationarity for the Palm process inergs)

as follows.

Lemma 4.2.42Let x° denote the Palm process associated with a determinantal
translation invariant point procesx on R with good kernel K satisfying
K(|x]) —x—e O, and with intensity c- 0. Then the sequeng® := {x?,; —x’}icz

is stationary and ergodic.

Proof Let Ty? = {y°, ,}icz denote the shift of°. Considerg a Borel function
onR? for somer > 1, and seg(y°) = g(y°,,...,y? ;). For any configuration
with Xi < Xi+1 andx_1 < 0 < Xo, sety := {Xi+1— Xi }iez. Setf(x) =g(X_r41—
Xory. % —X%—1), and letAy = {x : f(x) < u}. Ay is clearly measurable, and
by Definition 4.2.35 and Lemma 4.2.36, for any BoBalith positive and finite
Lebesgue measure,

PEY) <0 = QA —E ([ 1a(T0x(@S ) fou(®)

E < z 1g(-|-iy><u> /cu(B). (4.2.40)

i:xeB

(Note the different roles of the shiff®, which is a spatial shift, an@l', which is
a shift on the index set, i.e. ¢h) Hence,

IP(G(y°) < u) — P(G(TY®) < u)| < 2/cu(B).

TakingB = B, = [—n,n] and them — o, we obtain that the left side of the last
expression vanishes. This proves the stationarity. Thedgiy (and in fact,
mixing property) of the sequengd is proved similarly, starting from Theorem
4.2.34. O

We also have the following analog of Proposition 4.2.37.

Proposition 4.2.43Assume is a nonzero stationary determinantal processtfon
with intensity c. Then for any bounded measurable function f

R0
E(f(x)):cE/O F(THO)dt. (4.2.41)
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Proof Apply (4.2.38) withg(x,t) = (X)L x)=—t- O

Proposition 4.2.43 gives an natural way to construct thetgmbcesy starting
from x° (whose increments form a stationary sequence): indeedpiiés thaty
is nothing but thesize biasedersion ofx®, where the size biasing is obtained by
the value of?. More explicitly, letx denote a translation invariant determinantal
process with intensitg, and letx® denote the associated Palm processRon
Consider the sequengé introduced in Lemma 4.2.42, and denote its lawQ@y
Lety denote a sequence with 2@y satlsfylnngy/dQV( ) = cyo, let X0 denote
the associated configuration, thatxPs ZJ ly,, noting thatxg = 0, and letU
denote a random variable distributed uniformly[6ri], independent ok°. Set
X = TUXX0. We then have

Corollary 4.2.44The point procesg has the same law as

Proof By construction, for any bounded measurahle

1 00 d
Ef(X) — E/ £(TU9R0 du—E/ FT0) &
0 %
4
- cE/ FTHO)dt = E f(x),
0
where Proposition 4.2.43 was used in the last step. O

Corollary 4.2.44 has an important implication to averages B, = [0,n]. For
a bounded measurable functibrand a point processonR, let

g T(TXX
fn(X) _ ZX'_EBH ( ) )
[{i : % € Bn}|
Corollary 4.2.45 Let x be a translation invariant determinantal process with in-
tensity ¢, and good kernel K satisfying —y .., 0, and Palm measure Q. Then
lim fn(x) = Eqf ,almost surely

Nn—oo

Proof The statement is immediate from the ergodic theorem and Laerhth42
for the functionsf,(x°). Since, by Corollary 4.2.44, the law ®¢x is absolutely
continuous with respect to that 6%, the conclusion follows by an approximation
argument. O

Corollary 4.2.44 allows us to relate several quantitiestdriest in the study of
determinantal processes. For a translation invariantihétental point process,
let Gx = X1 — %o denote thggaparound 0. WithQ; denoting the marginal oxﬁ of
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the Palm measure, and wi@y defined bydQ; /dQ; (u) = cu, note that

PG >1) =P >0 = [ Qudu=c | uQ(du).
t t
LetG(t) = P({x} N (—t,t) = 0) be the probability that the intervak-t,t) does not
contain any point of the configuration Letting D; = 1ty K = 1pKlp,, and
Xt = x(Dt), we have, using Lemma 4.2.16, that

G(t) = P(xt = 0) = lim E(2%) = A(Ky), (4.2.42)

|7—0

that is,G(t) can be read off easily from the kerri€l Other quantities can be read
off G, as well. In particular, the following holds.

Proposition 4.2.46Let x be a translation invariant determinantal point process
of intensity c. Then the functida is differentiable and

aG(t) °°
== —2c/2t Q1 (dw). (4.2.43)

Proof By Corollary 4.2.44,

_ 1/2 1/2 oo _
Gt) = 2/ Pu>t)du=2 / Qu(dg)du
0 0 t/u

2 [“aww? ["Quds),

where the change of variables=t/u was used in the last equality. Integrating
by parts, using/ (w) = —1/wand% (w) = Q1 ([w,)), we get

Gt = w(2)-2 /2t " w10, (dw)
= w(@)-20t | Qudw) = % (2) - 20t Qu([2.))
= C/:[W—Zt]Ql(dW).

Differentiating int, we then get (4.2.43). O

Finally, we describe an immediate consequence of Propasii2.46, which
is useful when relating different statistics related to $pacing of eigenvalues
of random matrices. Recall the “spacing processissociated with a stationary
point process, i.e.y; = Xi+1 — X
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Corollary 4.2.47 Let g be a bounded measurable functiorfonand define g=
%Z{ng(yi)- Then

On —n-w EQ,0 :/ g(w)Qq(dw), almost surely
0

In particular, with d (w) = 1y~2, we get
—dc;—ft) =2clim (d")n, almost surely (4.2.44)

4.2.8 Convergence issues

We continue to assumi€ is a good translation invariant kernel & satisfying
K(]X|) —x—w O- In many situations, the kernl arises as a suitable limit of
kernelsKy(x,y) that are not translation invariant, and it is natural totesfarop-
erties of determinantal processeé$ (or xN) associated withKy to those of the
determinantal process(or x) associated withK.

We begin with a simple lemma that is valid for (not necesgarénslation
invariant) determinantal processes. lkg{ denote a sequence of good kernels
corresponding to a determinantal proceds and letK be a good kernel cor-

responding to a determinantal processSetG(t) = P({x} N (-t,t) = 0) and
Gn(t) = P({xN}n(~t,t) =0).

Lemma 4.2.48Let D, denote disjoint compact subsets ®f Suppose a se-
quence of good kernelsysatisfy K (x,y) — K(x,y) uniformly on compact sub-
sets ofR, where K is a good kernel. Then for any L finite, the randomarect
(xN(Dy),...,xN(DL)) converges to the random vectgg(D1), ..., x (D)) in dis-
tribution. In particular,Gn(t) —N—w G(t).

Proof It is clearly enough to check that

E <lezng<Dn> e E (Dﬂm)) .

By Lemma 4.2.16, witD = |J%_;, the last limit would follow from the conver-
gence

L

L
A (1.3/2 (1- Zg)KNle> N A <1D/Z (1—zg)K1Dé> :
(=1 =1

which is an immediate consequence of Lemma 3.4.5. O
In what follows, we assume th#t is a good translation invariant kernel @&
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satisfyingK(|x|) —x—w 0. In many situations, the kernkl arises as a suitable
limit of kernelsKy (x,y) that are not translation invariant, and it is natural totesla
properties of determinantal process&s(or xN) associated withy to those of
the determinantal procegqor x) associated withK.

We next discuss a modification of Corollary 4.2.47 that isliapple to the
procesxN and its associated spacing procg¥s

Theorem 4.2.49.et g (X) = 1L(, and define B, = 2 57, g (yN) . Suppose further
that n=0(N) —N_  is such that for any constanta0,
limsup sup |Kn(xy)—K(x—y)|=0. (4.2.45)

N—o | +]yl<2an
Then
oY —n e Eou0 = / Q1(dw), in probability. (4.2.46)
t

Proof In view of Corollary 4.2.47, it is enough to prove thgh{t —0Ont| —N-w O,
in probability. Letc denote the intensity of the processFora > 0, letDpa =
[0,an]. By Corollary 4.2.45x(Dp.a)/n converges almost surely &/c. We now
claim that

N
D
w N g in probability. (4.2.47)
Indeed, recall that by Lemma 4.2.5 and the estimate (4.2.45)

anK(0) a
n

—N—o0 E s

%EXN(Dn.a) _ % /0 "Kn 00 X) — K (0)]dx+

while, c.f. (4.2.26),

an

1 1
Var(—xN(Dn,a)> <= [ Kn(XX)dX—N_e O,
n n¢ Jo

proving (4.2.47).

In the sequel, fia > 0 and let

12 12
Cn(s.n) = n i; 1an>xi’\‘.xi"frlfxi’\‘>s’ C(s,n) = n i;1an>Xi.Xj+1in>S-

In view of (4.2.47), in order to prove (4.2.46) it is enoughstwow that, for any
a,s>0,

[ECN(S,n) —EC(S.N)| —N-w 0, |E(Cn(s,M)?~E(C(SM)?| —N—s: O.
(4.2.48)
Fix & > 0, and divide the interval0,an) into [n/d] disjoint intervalsD; =
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[(i—1)8,i8) N [0,n), each of length< 5. Let xN = xN(Di) and xi = x (D).
Set

1 [an/ 3]
g\l(s o n) n zi 1X|N>1XN =0,j=i+1,..., +|s/3]
=
and
1 [an/ 3]
S(s,9,n) 21 1X,>1XJN =0,j=i+1,...i+[s/5] *
We prove below that, for any fixesld,
IESV(s,8,n) —ES(S,8,n)| —N_w O, (4.2.49)
IE(SV(s,8,n)2) —E(S(s,5,n)?)| —N_w O, (4.2.50)

from which (4.2.48) follows by approximation.
To see (4.2.49), note first that

1 [an/d] i+|s/d]
sstean 15 e (s ] 1))
i=

j=i+1

1 [an/d] i+[s/d] \
- = E((1-1n_) X!
n i; < X=0 jli_Jlrl J)
1 [an/a] i+|s/3] XN i+[s/5] X
= = lim E Z —-E Z:
n i; max; |zj|—0 jﬂrl ! JEI, ]

1 [a/3]
) 818 Knls) ~ A1y Knlg:))
i=

whereB, = U}"\77 D; andB;" = Uj"¥°/D;, and we used Lemma 4.2.16 in the

last equality. Similarly,

[an/d]
ESs N =1 3 [A(18K1g) — A1 K1g)]
Applying Corollary 4.2.45, (4.2.49) follows.
The proof of (4.2.50) is similar and omitted. O

4.2.9 Examples

We consider in this subsection several examples of detamtahprocesses.
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The biorthogonal ensembles

In the setup of Subsection 4.2.1, (g, @)i>o be functions in_2(A, ). Let
Gij = /LM(X)fpj (X)du(x),1<i,j <N.

Define the measurgN on AN by

pN(dxg, - dxy) = de ta(x)) d Ng t(i(x)) r!du %) (4.2.51)

ij=1 i,

Lemma 4.2.50Assume that all principal minors of & (g;j) are not zero. Then
the measurg:N of (4.2.51) defines a determinantal simple point process Wit
points.

Proof The hypothesis implies th&@ admits a Gauss decomposition, that is, it
can be decomposed into the product of a lower triangular angger triangular
matrix, with nonzero diagonal entries. Thus there existimesL = (Iij)]\,_; and

U = (uj)fj_; so that.GU = I. Setting

p=Up J=Ly,
it follows that, with respect to the scalar productif{ ),

(@.0)) =4, (4.2.52)

and, further,
N N . N
P (dxg, -+, dxy) = Cn det(@(x;)) det(di(xj) rldu
i,j=1 |,:

for some constar@y. Proceeding as in the proof of Lemma 3.2.2, we conclude
that

N
pN(dxa,- - ,d CNIqeRZ@ %) P (%5) |'|du %)
The proof of Lemma 4.2.50 is concluded by using (4.2.52) amputations sim-
ilar to Lemma 3.2.2 in order to verify the property in Remark.8. O

Exercise 4.2.51By using Remark 4.1.7, show that all joint distributions epp
ing in Weyl’s formula for the unitary groups (Propositiori4) correspond to
determinantal processes.
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Birth-death processes conditioned not to intersect

TakeA to beZ, u the counting measure arG, a homogeneous (discrete time)
Markov semigroup, that i, : AxA—R™ so that, for any integens m,

Knsm(y) = KnKn(x.) = [ Kn(x 2Kn(Z A (2).
and, further,/ Kn(x,y)du(y) = 1. We assum&;(x,y) =0 if |[x—y| # 1. We let
{Xn}n>0 denote the Markov process with kerii@l, that is for alln < mintegers,

P(Xm € AlXj, j < n) = P(Xm € AlXq) = /y _ Kmn(Xs,y)du(y).

Fix x = (xt < - < xN) with X' € 2Z. Let {XX}ns0 = {(X},...,XN)}n>0 denote
N independent copies dfX,}n>o, With initial positions(X3,...,X}) = x. For
integerT, define the event/r = Mooyt {X < X2 <--- < XN}

Lemma 4.2.52 (Gessel-Viennot\ith the previous notation, sgt= (y* < --- <
yN) with y € 2Z. Then

KN OGY) 2 P(X :ywzﬂ
def',_; (Kot (X,y1))
le< <N de\Nj X ZJ))ﬂd“(Zj).

Proof The proof is an illustration of theeflection principle Let %1 (X, y)
X,y € 27, denote the collection df-valued, nearest neighbor patfa(¢)}2T
with 17(0) = x, (2T) =y and|m(¢ + 1) — ri(¢)| = 1. Let

Mor(x,y) = {{m}L;: T € Zor(X,y)}

denote the collection dfl nearest neighbor paths, with tth path connecting'
andy'. For any permutation € .y, setys = {y°?)1N . Then

N . N
.dEE(KZT(X'7yJ)) = > (o) > I_!LKZT (4.2.53)
H= O (N €M (xyo)
where
2T-2 ) )
Kor () = Ky (X, 71 (2 ( |‘L Ky (7 (k), 7 (k+ 1))) Ky (' (2T —1),y°0).

On the other hand, let

N = {({m}N e Mar(xy) : {}n{m} = 0if i # j}
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denote the collection of disjoint nearest neighbor patmneatingk andy. Then

N
P(X5r=y. )= 3 rleT(ﬂ')- (4.2.54)
[N e v Cy =
Thus, to prove the lemma, it suffices to check that the totatrdmution in (4.2.53)
of the collection of paths not belonging WCE}’ vanishes. Toward this end,
the important observation is that because we assumed 27, for anyn < 2t
andi, j <N, any pathrr e Ny (X, yl) satisfiesri(n) € 2Z +n. In particular, if
(N, € Uges M2t (X,Yo) and there is a time < 2T and integers < j such
that7t' (n) > ! (n), then there actually is a tirma < n with 7i'(m) = 7! (m).

Now, suppose that in a famil‘gmi}i"‘:1 €Nyt (X,Yo), there are integelis< j so
thatr' (n) = ! (n). Consider the patlt so that

m(f), k=i{>n
ﬁk(e):{ (), k=j,{>n

m¥(¢), otherwise

Then, obviously,[TN; Kot (1) = N, Kor (7). Further, for someo’ € A,
{ft}N | € Mar(X,Yer), With o ando’ differing only by the transposition dfand
j- In particularg(o) +e(a’) = 0.

We can now conclude: by the previous argument, the contoibuin (4.2.53)
of the collection of paths where' intersects with any other path vanishes. On the
other hand, for the collection of paths wheredoes not intersect any other path
(and thusitt(2T) = y'), one freezes a patit' and repeats the same argument to
conclude that the sum over all other paths, restricted rintéssect the frozen path
T but to haverr intersect another path, vanishes. Proceeding inductioely
concludes that the sum in (4.2.53) over all collectiong N ; ¢ .4 C3Y vanishes.
This completes the proof. O

Combining Lemma 4.2.52 with Lemma 4.2.50, we get the follayvi

Corollary 4.2.531n the setup of Lemma 4.2.52, let

N
Bory = ot (J{X'(2T) =y}

i=1
Conditioned on the ever#,r y, the procesgX*(n),...,XN(n))ncpo o1 is a (time
inhomogeneous) Markov process satisfying, with (! < 22 < --- < ZV) and
n<2T,

N . N .
P(X}=2z|lo%1) =Cn(NT,X,Y) iq_E(Kn(X'»ZJ)) iCji_E(Kz‘r,n(Z' )
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with

N
Cn(n, T,X,y) = det(Kn(x 7)) det (K2T n(Z,y)) rldu
i,j=1 i,j=1
At any time n< 2T, the configurationX*(n),...,XN(n)), conditioned on the
event%sr y, is a determinantal simple point process.

We note that, in the proof of Lemma 4.2.52, it was enough tcsictam only
thefirst time in which paths cross; the proof can therefore be adaptedver
diffusion processes, as follows. Take= R, u the Lebesgue measure, and con-
sider a time homogeneous, real valued diffusion pro¢¥ss-o with transition
kernel K(x,y) which is jointly continuous in(x,y). Fix x = (x! < --- < xN)
with X € R. Let {X}}=0 = {(X,...,XN) }t>0 denoteN independent copies of
{X}t=0, with initial positions(X3,...,X)') = x. For realT, define the event

2 = Nocrer IXE <XE < < XN)

Lemma 4.2.54 (Karlin—McGregor) With the previous notation, the probability
measure PX} € -|.or) is absolutely continuous with respect to Lebesgue measure
restricted to the sefy = (y* < y? < --- <yN)} c RN, with density ¥ (y|.<#)
satisfying

def!,_ (Kr (X, y1))

(y|dT) le< <N def\lj KT X ZJ))Hde .

Exercise 4.2.55Prove the analog of Corollary 4.2.53 in the setup of Lemma
4.2.54. Use the following steps.

(a) Fort < T, construct the densityf" "™ of XX “conditioned onz# N {X% =y}"

so as to satisfy, for any Borel sedsB ¢ RN andt < T,

P(XX € A XX € Blo) /rldz/rldy QT (2) X (y )

(b) Show that the collection of densitie|§'T'X'y determine a Markov semigroup
corresponding to a diffusion process, and

N

N S
@ "(2) = Onr(tx,y) det((X,2)) det(Kr«(Z,y"))

with
N . N
Cnr(t,x,y) = Iqe}(Kt (X, zJ))qu (Kr-t(Z,¥")) rldlvl(z')
= = b
whose marginal at any time< T corresponds to a determinantal simple point
process withN points.
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Exercise 4.2.56a) Use Exercise 4.2.55 and the heat kernel
Ky(xy) = (2m)~Y/2e (< ¥)°/2

to conclude that the law of the (ordered) eigenvalues of tB&@oincides with
the law ofN Brownian motions run for a unit of time and conditioned noirtier-
sect at positive times smaller than 1.

Hint: start the Brownian motion at locations-0x; < x» < --- < Xy and then take
xn — 0, keeping only the leading term inand noting that it is a polynomial in
that vanishes whefi\(y) = 0.

(b) Using part (a) and Exercise 4.2.55, show that the law ef(tindered) eigen-
values of the GUE coincides with the law NfBrownian motions at time 1, run
for two units of time, and conditioned not to intersect atifpestimes less than 2,
while returning to O at time 2.

4.3 Stochastic analysis for random matrices

In this section we introduce yet another effective tool fog study of Gaussian
random matrices. The approach is based on the fact that dasthiGaussian
variable of mean 0 and variance 1 can be seen as the valuegeat tof a standard
Brownian motion. (Recall that a Brownian motidy is a zero mean Gaussian
process of covariande(WWs) =t A's.) Thus, replacing the entries by Brownian
motions, one gets a matrix-valued random process, to whadhastic analysis
and the theory of martingales can be applied, leading tonative derivations and
extensions of laws of large numbers, central limit theoreansl large deviations
for classes of Gaussian random matrices that generali2d&/ign@er ensemble of
Gaussian matrices. As discussed in the bibliographicaly&ection 4.6, some of
the later results, when specialized to fixed matrices, anently only accessible
through stochastic calculus.

Our starting point is the introduction of the symmetric aretiditian Brownian
motions; we leave the introduction of the symplectic Braaymimotions to the
exercises.

Definition 4.3.1Let (Bi,j,éi’j,l <i<j<N)be a collection of i.i.d. real valued
standard Brownian motions. Tegmmetriqresp.Hermitian) Brownian motion
denotedHN# ¢ %‘NB, B = 1,2, is the random process with entriéldi'j'j’ﬁ (t),t>
0,i < j} equal to

k|+I(B_1)Bk,|)a Ifk<|a

N T(
H™ = V2p, if k=1.
25

(4.3.1)
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We will be studying the stochastic process of the (orderiggywalues oHN-A. In
Subsection 4.3.1, we derive equations for the system ofe@dees, and show that
at all positive times, eigenvalues do not “collide”. Thesmhastic equations are
then used in Subsections 4.3.2, 4.3.3 and 4.3.4 to derive ¢hharge numbers,
central limit theorems, and large deviation upper boundspectively, for the
process of empirical measure of the eigenvalues.

4.3.1 Dyson’s Brownian motion

We begin in this subsection our study of the process of e@arg of time-
dependent matrices. Throughout, we(M4, ... W) be aN-dimensional Brow-
nian motion in a probability spad€, P) equipped with a filtration = { % ,t >
0}. LetAy denote the open simplex

An = {(X)1<ien ERN i xg < Xo < - < Xn_1 < XN}

with closureAy. With B € {1,2}, let XN-B(0) ¢ %’3 be a matrix with (real)
eigenvaluegAN(0),...,A)(0)) € An. Fort >0, letAN(t) = (AN(t),...,. AN (1)) €
Ay denote the ordered collection of (real) eigenvalues of

XNB (1) = XNB(0) + HNA(1), (4.3.2)

with HN2 as in Definition 4.3.1. A fundamental observation (due tody the
caseXN#(0) = 0) is that the procesa\ N(t));>o is a vector of semi-martingales,
whose evolution is described by a stochastic differenyisiean.

Theorem 4.3.2 (Dyson)Let (X'\"ﬁ(t))t>0 be as in (4.3.2), with eigenvalues
(AN(t))=0 and AN(t) € Ay for all t > 0. Then, the processda N(t))io are
semi-martingales. Their joint law is the unique distritaution GR*, RV) so that

P(Vt>0, (A1), AJ (1) e AN) =11,

which is a weak solution to the system

Ny V2 1 1 .

with initial conditionAN(0).

We refer the reader to Appendix H, Definitions H.4 and H.3,tf@ notions of
strong and weak solutions.
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Note that, in Theorem 4.3.2, we do not assume M¥0) € Ay. The fact that
AN(t) € Ay for all t > 0 is due to the natural repulsion of the eigenvalues. This
repulsion will be fundamental in the proof of the theorem.

It is not hard to guess the form of the stochastic differeémtgpation for the
eigenvalues oXN-B(t), simply by writing XN-A(t) = (ON)*(t)A(t)ON(t), with
A(t) diagonal andON)*(t)ON(t) = Iy. Differentiating formally (using Itd’s for-
mula) then allows one to write the equations (4.3.3) and@mate stochastic dif-
ferential equations fodN(t). However, the resulting equations are singular, and
proceeding this way presents several technical difficailfiestead, our derivation
of the evolution of the eigenvaluas'(t) will be somewhat roundabout. We first
show, in Lemma 4.3.3, that the solution of (4.3.3), whentsthatAy, exists, is
unique, and stays iAy. Once this is accomplished, the proof tafN(t))>o
solves this system will involve routine stochastic analysi

Lemma 4.3.3LetAN(0) = (AN(0),...,A}(0)) € An. For anyB > 1, there exists

a unique strong solutiofAN(t))=o € C(R*,Ay) to the stochastic differential
system (4.3.3) with initial conditioAN(0). Further, the weak solution to (4.3.3)
is unique.

-

This result is extended to initial conditiond!(0) € Ay in Proposition 4.3.5.

Proof The proof is routine stochastic analysis, and proceedsreethteps. To
overcome the singularity in the drift, one first introducesudoff, parametrized
by a paramete¥, thus obtaining a stochastic differential equation withddhitz
coefficients. In a second step, a Lyapunov function is intoedthat allows one
to control the timeTy until the diffusion sees the cut-off; before that time, the
solution to the system with cut-off is also a solution to thigimal system. Finally,
takingMM — o one shows thalyy — o almost surely, and thus obtains a solution
for all times.

Turning to the proof, set, faR > 0,

x 1 if x| >R1,
R2x otherwise

w0 = {
Introduce the auxiliary system

dAiN’R(t)zw/BiNdW(t)jL% )3 RARO AR i=1,.. N,

IBEE
(4.3.4)
with ANR(0) = AN(0) fori = 1,...,N. Sincegr is uniformly Lipschitz, it follows
from Theorem H.6 that (4.3.4) admits a unique strong sahtamapted to the
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filtration .#, as well as a unique weak squti@ﬁf;\RN(()) € M1(C([0, T],RN)). Let
T = inf{t: rir;éiP|)\iN’R(t) AR <R,

noting thatrgr is monotone increasing iR and

ANR(t)y = ANR(t) forallt < 1r andR < R. (4.3.5)

We now construct a solution to (4.3.3) by takitQj(t) = ANR(t) on the eventg >
t, and then showing thak —r_.» %, almost surely. Toward this end, consider the
Lyapunov function, defined for= (xi,...,xn) € An,

1N, 1
100 = f0a,..on) = § 3 —m;ogwxn.
i= i#)

Using the fact that
log|x—y| <log(|x|+ 1) +log(ly] +1) and x2—2log(|x|+1) > —4,
we find that for alli # j,
f(X1,...,%n) >4, —%Iogm —Xj| < f(X1,...,Xn) +4. (4.3.6)
For anyM > 0 andx = (x1,...,XN) € A, set
R=R(N,M) = *#M andTy =inf{t > 0: fANR(t)) > M}.  (4.3.7)

Sincef is C*(An,R) on sets where it is uniformly bounded (note here théat
bounded below uniformly), we have thgliy > T} € %7 forall T > 0, and hence
Twm is a stopping time. Moreover, due to (4.3.6), on the e@it > T}, we get
that, forallt <T,

AMFO -2 O =R

1
and thus on the ever{T < Ty}, (ANR(t),t < T) provides an adapted strong
solutionto (4.3.3). For=1,...,Nandj = 1,2, define the functiong j : Ay — R
by
1 1

Ui (X) = k%éi —r Ui 2(X) = k%ﬂ X

[td’'s Lemma (see Theorem H.9) gives

NR 2 3/ NRy 1 NR (ANR
AAMT) = 53 (A0 - Gua ) )wa o

N
+BiNi= (1+ %ui,z(ANvR(t)O dt+dMN(t), (4.3.8)
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with MN(t) the local martingale
3
22 N/ \R 1 1
dMN(t) =— AT () — = —————— | dW(t).
B3 N3 i; I N\ i ANR@) - AR ()
Observing that, for ak = (x1,...,Xn) € An,

N 1 1

i; (U202 Ui 2(x)) = kz#i R—

kAl

B 1 ( 1 1 )_ 5 1 1
k;#nq—xk X=X X~ X k#;éiXi—xm—m’
kel kAl

we conclude that, fox € Ay,

Similarly,
N N(N—1)
U1(X)% = ———.
2" 2
Substituting the last two equalities into (4.3.8), we get
dfANRt) = (1+ % - %)dw 21—

Thus, for allg > 1, for allM < «, since(MN(t ATy),t > 0) is a martingale with
Zero expectation,

BNZB) > ui2(A NR(t))dt+dMN(t).

E[f ANREATW))] < 3EATM]+ F(ANR(0)).
Therefore, recalling (4.3.6),

(M+HP(Tw <t) = E[(fANREATM)) +4) LT
< E[fANREATW)) +4] <3E[tATu] +4+ F(ANR0))
< 3t+4+ f(ANRO0)),

which proves that
3t+4+ F(ANR0)

P(Ty <t) <
(T <t) < M+c

Hence, the Borel-Cantelli Lemma implies that, fortadl R,

P(AMEN: Ty >t) =1,
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and in particular],,2 goes to infinity almost surely. As a consequence, recalling
thatM = —4+ (logR)/N?, see (4.3.7), and settifg¥(t) = ANR(t) for t < Tye,
gives, due to (4.3.5), a strong solution to (4.3.3), whichienwer satisfiea N (t) €

Ay for allt. The strong (and weak) uniqueness of the solutions to (4 t8dether
with ANR(t) = AN(t) on {T < T} and the fact thafy — o almost surely, imply
the strong (and weak) uniqueness of the solutions to (4.3.3) O

Proof of Theorem 4.3.2As a preliminary observation, note that the lawBf? is
invariant under the action of the orthogonal (whiea: 1) or unitary (wher = 2)
groups, that is{OHN2(t)0* )1~ has the same distribution 48N (t));>o if O
belongs to the orthogonal (B = 1) or unitary (if 3 = 2) groups. Therefore, the
law of (AN(t) )¢ does not depend on the basis of eigenvectorot(0) and we
shall assume in the sequel, without loss of generality,Xﬁ‘d%(O) is diagonal and
real.

The proof we present goes “backward” by proposing a way tetroot the ma-
trix XN-B(t) from the solution of (4.3.3) and a Brownian motion on the ogibnal
(resp. unitary) group. Its advantage with respect to a “odi proof is that we
do not need to care about justifying that certain quantiiefined fromx\# are
semi-martingales to insure that 1td’s calculus applies.

We first prove the theorem in the cakg(0) € Ay. We begin by enlarging the
probability space by adding to the independent Browniarions{W,1 <i <N)
an independent collection of independent Brownian motigmg, 1 <i < j <
N), which are complex if3 = 2 (that is,wij = 2_%(Wi1j +v—1ng) with two
independent real Brownian motion§ ,w?) and real if3 = 1. We continue to use
2 to denote the enlarged sigma-algebravij(s),1 <i < j < N,W(s),1<i <
N,s<t).

Fix M > 0 andR as in (4.3.7). We consider the strong solution of (4.3.3),
constructed with the Brownian motioi#/,1 <i < N), till the stopping timeTy
defined in (4.3.7). We set, fo j,

1 1
dR(t) = Wmdwj t), RY(0)=o. (4.3.9)

We letRN(t) be the skew-Hermitian matrix (i.&N (t) = —RN(t)*) with such en-
tries above the diagonal and null entries on the diagonate Mat since\ N (t) €
Ay for all t, the matrix-valued proces®\(t) is well defined, and its entries are
semi-martingales.
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Recalling the notation for the bracket of semi-martingate® (H.1), forA, B

two semi-martingales with values iy, we denote by{A B); the matrix
N
((A.B)t)ij = (AB)ij)t = > (Ai,Brj)t, 1 <i,j <N.
K=1
Observe that for atl> 0, (A, B); = (B*,A*);. We setON to be the (strong) solution
of
1
doV(t) = oV(t)dRY(t) — EoN Od(RY)* RV, oNO)=Iy. (4.3.10)

This solution exists and is unique since it is a linear equmith ON andR is a
well defined semi-martingale. In fact, as the next lemma sh@i(t) describes
a process in the space of unitary matrices (orthogoraHf1).

Lemma 4.3.4The solution of (4.3.10) satisfies
oNt)oN(t)* =oN)*oN(t) =1 forallt >0.

Further, let DIAN(t)) denote a diagonal matrix with @N(t)); = AN(t); and set
YNty =oON(t)D(AN(t))ON(t)*. Then

Pvt>0, YNt)esgP)=1,

and the entries of the proce€gN (t));>o are continuous martingales with respect
to the filtration.#, with bracket

LY = NN (12 (2— B) + Lij—uot.

Proof We begin by showing that¥(t) := ON(t)*ON(t) equals the identityy for
all timet. Toward this end, we write a differential equation k¥ (t) := JN(t) — Iy
based on the fact that the proc¢€®'(t));o is the strong solution of (4.3.10). We
have

(d<(ON)*a(ON)>t)ij = <d</0‘d(RN)*(S)(ON)*(S),/O- ON(S)dF”(S»t)”
N : .

= | @R (S0 s ([ OMSARY(S)i

Ok(t) Ok (1) (Riyi, R

Imn(t)d (R, RYj)e (4.3.11)
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where here and in the sequel we ygeo denote an indefinite integral viewed as
a process. Therefore, settiddB = AB+ BA, we obtain

dKN(®D) = IMO[aRY (D) — Sd(RY) R
+[d(RN)*(t)—%d<(RN)*,RN>t]JN(t)+d<(ON)*7ON>t
= KN(t).(dFé“(t)—%d<(RN)*,RN>t)+drN(t),

with drV(t)ij = — SR -1 K,’;'m(t)d<§,'}‘]i,Rr'}‘j>t. For any deterministid > 0 and
0<S<T, set, withTy given by (4.3.7),

K(M,ST)=_max sup/K}(T ATu)[?,
1<i,j<N t<S

and note thaEk(M,ST) < « for all M,S T, and that it is nondecreasing in
S. From the Burkholder-Davis—Gundy inequality (Theorem)HtBe equality
Kn(0) = 0, and the fact thaRN (t A Tiy) )t<T has a uniformly (ifT') bounded mar-
tingale bracket, we deduce that there exists a con§td} < « (independent of
S T)such thatforalS<T,

Ek(M,ST) <C(M E/ (M,t,T)dt.
It follows thatEk (M, T, T) vanishes for alll, M. LettingM going to infinity we

conclude thakN(t) = 0 almost surely, that iQN (t)*ON(t) = Iy.

We now show tha¥N has martingales entries and compute their martingale
bracket. By construction,

dYN(t) = dON(t)D(AN(t))0(t)" + OM(HD(AN(t))dON (t)*
+oN( t)dDAN(1))ON(t)* + d(OND(AN) (ON)*), (4.3.12)

where for alli, j € {1,---,N}, we have denoted

(d(O"D@AN)(ON) "))y,

- %(1 XOAAN, Ot + AR (t)d(O O>+1O()d<)\
2 > k> Ot k ik t 2

~z
=
N———

= z)‘k Of, O,

and we used in the last equality the independencemil <i < j <N) and
(W,1 <i < N) to assert that the martingale brackefdf andON vanishes. Set-
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ting
dzZN(t) := oN(t)*dYN(t)oN(1), (4.3.13)

we obtain from the left multiplication b@\ (t)* and right multiplication byON(t)
of (4.3.12) that

dZ2Nt) = Oy )dANODAN)) +DAN(t)dAN (1) N (1)
+dD(AN@©)) + ON(t)*d(OND(AN)(ONy*\ ON(1).  (4.3.14)

We next compute the last term in the right side of (4.3.14y.aa, j € {1,...,N}?,
we have

4

(dO"DAM©Y) ) = 3 A 1)d(Ok Ol

N
= ¥ AOO0) )0 t)d(Ri Ryt -
kI,m=1

But, by the definition (4.3.9) oRY,

1
d<R|’}l<a R—f[‘\‘nk>t =1ma 1m;ékN

(A (1) = AN(1))?

dt, (4.3.15)

and so we obtain

(d<oND()\N)(oN)*>t)i,- - lgk;SNN(/\lﬁ\‘(t)k—)\IN(t))z 1

Hence, for alli, j € {1,...,N}?,

[ON(t)*d(OND(AN)(ON) ) ON(1)]ij = i Z NOY

Similarly, recall that
ON(t)*dON(t) = dRY(t) — 2~ Xd((RY)",RN),
so that from (4.3.15) we get, for allj € {1,---,N}?,

L dt
e NOWO A

kZi

[ON(t)*dON (1)]ij = dR] (t) —2 1

Therefore, identifying the terms on the diagonal in (4.34dd recalling thaRY
vanishes on the diagonal, we find, substituting in (4.3.th3},

daZ'(t) =/ BiNdwm
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Away from the diagonal, for# j, we get
dzfj(t) = [dR'O)DAN (1)) + D(AN(t))dRY (1) ij = \/—1Ndvm (t).

Hence,(ZN(t))t>0 has the law of a symmetric (resp. Hermitian) Brownian mation
Thus, sincg ON(t) >0 is adapted,

_ /O " ON(9)d 2N (510N ()"

is a continuous matrix-valued martingale whose quadrati@tion

d(YN, YNt is given by

N
. k; O ()0} (t) Ol (1) O}y (t)d (ZR, Z¥ )

O

We return to the proof of Theorem 4.3.2. Applying Lévy’s Bhem (Theo-
rem H.2) to the entries ofN, we conclude thatYN(t) — YN(0));>0 is a symmet-
ric (resp. Hermitian) Brownian motion, and $8N(t) )~ has the same law as
(XNB(t))e=0 sinceXN(0) = YN(0), which completes the proof of the theorem in
the caserN(0) € Ay.

Consider next the case wheX'#(0) € Ay \ Ay. Note that the condition
AN(t) ¢ Ay means that the discriminant of the characteristic polyrmbafixN-A (t)
vanishes. The latter discriminant is a polynomial in therieatof XNA(t), that
does not vanish identically. By the same argument as in tbefmf Lemma
2.5.5, it follows thatA N(t) € Ay, almost surely. Hence, for argy> 0, the law of
(XNB(t))=¢ coincides with the strong solution of (4.3.3) initializethd"# (¢).
By Lemma 2.1.19, it holds that for ad|t € R,

N

> WO-ME <G z ~Hy (92,

i,]=1

and thus the a.s. continuity of the Brownian motions patissilte in the a.s.
continuity oft — AN(t) for any giverN. Lettinge — 0 completes the proof of the
theorem. 0

Our next goal is to extend the statement of Lemma 4.3.3 t@lrgbnditions
belonging taAy. Namely, we have the following.
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Proposition 4.3.5Let AN(0) = (AN(0),...,AN(0)) € An. For anyB > 1, there
exists a unique strong solutigA N (t))>0 € C(R*,Ay) to the stochastic differen-
tial system (4.3.3) with initial conditiohN(0). Further, for any t> 0, AN(t) € Ay
andAN(t) is a continuous function gfN(0).

When = 1,24, Proposition 4.3.5 can be proved by using Theorem 4.3.2. In
stead, we provide a proof valid for @I> 1, that does not use the random matrices
representation of the solutions. As a preliminary step, vasgnt a comparison
between strong solutions of (4.3.3) with initial conditiom\y.

Lemma 4.3.6Let (AN(t))>0 and (nN(t))=0 be two strong solutions of4.3.3)
starting, respectively, fromN(0) € Ay andnN(0) € An. Assume thadN(0) <
nN(0) for alli. Then,

P(forallt>0andi=1,....,N, AN®t) <nN@t)=1. (4.3.16)

Proof of Lemma 4.3.6We note first thatl(3; AN(t) — 3; nN(t)) = 0. In particular,

S AN® -n®) =5 A0 -n0) <o0. (4.3.17)

Next, for alli € {1,...,N}, we have from (4.3.3) and the fact thgl (t) € Ay,
AN(t) € Ay for all t that

(MM = AN =nf+ A1)
jijzyéi (nM@®) —nMO)YAN ) —)\jN(t))dL

Thus,)\i"‘ — ni"‘ is differentiable for alli and, by continuity, negative for small
enough times. L€T be the first time at whickAN — nN)(t) vanishes for somec
{1,...,N}, and assum& < «. Since(n]N(t) —nN(t))(AN(t) —AN(1)) is strictly
positive for all time, we deduce tha(AN — nN)|i—t is negative (note that it is
impossible to haveAN —nN)(T) = 0 for all j because of (4.3.17)). This provides
a contradiction sincéAN — nN)(t) was strictly negative for < T. O

Zl-

dAN —nM)(t) =

We can now prove Proposition 4.3.5.

Proof of Proposition 4.3.5SetAN(0) = (AN(0),...,A} (0)) € Ay and put fom €

Z, \M"(0) = AN(0) + L. We have\N"(0) € Ay and, further, ifn> 0, A" ""(0) <
ANTE0) < ANM0) < AN(0). Hence, by Lemma 4.3.6, the corresponding
solutions to (4.3.3) satisfy almost surely and fortal 0

AN < AN ) < AN ) < AN (1)
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Since
N N

3 AN AN T0) = 5 AN0) - AN (o) (43.18)

goes to zero as goes to infinity, we conclude that the sequentbis™ andAN-"
converge uniformly to a limit, which we denote By'. By constructionAN ¢
C(R*,AN). Moreover, if we take any other sequenc®P(0) € Ay converging
to AN(0), the solutionAN'P to (4.3.3) also converges ®N (as can be seen by
comparingA N-P(0) with someAN-"(0), AN:—"(0) for p large enough).

We next show thaA N is a solution of (4.3.3). Toward that end it is enough
to show that for alt > 0, AN(t) € Ay, since then if we start at any positive time
s we see that the solution of (4.3.3) starting frai(s) can be bounded above
and below byAN" and AN-—" for all large enough, so that this solution must
coincide with the limit(AN(t),t > s). So let us assume that there is 0 so that
AN(s) € Ay\Ay for all s <t and obtain a contradiction. We letbe the largest
i €{2,...,N} so thatA(s) < AN (s) for k> I but AN ;(s) = AN(s) for s<tt.
Then, we find a constaft independent oh andé, going to zero withn so that,
for nlarge enough,

AN AN =Ck=1, AN~ AM(9)] < &n.
SinceAN" solves (4.3.3), we deduce that ®K t
2 1

MRS = ALR(O0) + ZgWe ™+ G et~ CIN=1))s

This implies thatA N’”( s) goes to infinity asn goes to infinity, a.s. To obtain a
contradiction, we show that wity (n,t) := & TN, (AN"(t))2, we have

sup sup /Cn(n,t) <o, a.s. (4.3.19)

N scl0]

With (4.3.19), we conclude that for all> 0, AN(t) € Ay, and in particular it is
the claimed strong solution.

To see (4.3.19), note that singd™"(s) > AN"(s) for anyn > n and alls by
Lemma 4.3.6, we have that
Cu(ns) —Cn(m.g)| = & ; (A(9) =AM ()| (A (5) + AN (9)

N

_;(A.”“() AN”())% (AN )+ A (5))

IN

> aN(©) ~ANY(0)),

IN

(vCn(n,s)+/Cn(1,9))

I
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where (4.3.18) and the Cauchy—-Schwarz inequality were insibe last inequal-
ity. It follows that

N
V(s < VOu(I.9) + 5 (A0 -ANT(0)),

and thus
sup sup V/Cn(n,s) < sup VCn(1,s +Zl/\N” ) — AN (0)).
n>r' s[0,t sc[0t

Thus, to see (4.3.19), itis enough to bound almost surely.gy Cn(n,t) fora
fixedn. From Itd’s Lemma (see Lemma 4.3.12 below for a generadinaif this
particular computation),

o 2\/2 N tN,n
CN(n,t)—DN(n,t)—kVB_Ni;/O AN (Sdw ()

with Dn(n,t) := Cn(n,0) + (5 + Mgt Define the stopping timér = inf{s:
Cn(n,s) > R}. Then, by the Burkholder—Davis—Gundy inequality (Theoi¢i8)
we deduce that

E[ sup Cn(n,SA SR)?|

se[0,t]
< 2[Dn(n,t)]2 42N~ 2A/ sup Cn(n,sA R)]du
se[0,u]
< 2Dn(n)2+N"2At+N- 2/\/ [ sup Cn(n,sA Se)3du

sc[0,u]

where the constart does not depend dR Gronwall’'s Lemmathen implies, with
En(n,t) := 2[Dn(n,t)]? + N2At, that

t
E[ supCn(n,sASR)?] < EN(n,t)+/ N PMUE (n, s)ds.
sc[0] 0

We can finally letR go to infinity and conclude thd&[sup. o Cn(n,s)] is finite

and so sup o /Cn(n,s), and therefore sysup. gy +/Cn(n,s), are finite al-
most surely, completing the proof of (4.3.19). O

Exercise 4.3.LetHN4 = Xi'j\"B) be 2N x 2N complex Gaussian Wigner matrices
defined as the self-adjoint random matrices with entries

W
HN’B—ZLQI"'QB l<k<l<N, xM_ . /Llge 1<k<N
kl - \/m ) —= =% ka - 2Ngkk ﬁa =N = )
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where(éb)lgigﬁ are the Pauli matrices

a-(39)a=(2 3 )a=(% 3 )e=(4 %)

Show that withHN# as above, an&N-4(0) a Hermitian matrix with eigenval-
ues(AN(0),...,AN(0)) € Ay, the eigenvaluesA N(t),..., AN (t)) of XN4(0) +
HN-4(t) satisfy the stochastic differential system

1 1 1
AN = —=—dW(O) + = F —————dt,i=1..2N. (4.3.20
=" W(HN;AiN(t)—AjN(t) ' (4.3.20)

Exercise 4.3.4Bru91] LetV (t) be anNxM matrix whose entries are independent
complex Brownian motions and I&0) be anN x M matrix with complex entries.
Let AN(0) = (AN(0),...,A)(0)) € Ay be the eigenvalues &f (0)V(0)*. Show
that the law of the eigenvalues ¥{t) =V (t)*V (t) is the weak solution to

AN+ AN
)\N /\N

dAN(@t) =2 A ()dW()+2 +§ )dt,

with initial conditionAN(0).

Exercise 4.3.9Let XN be the matrix-valued process solution of the stochastic
differential systeniXN = dH"* — xNdt, with D(XN(0)) € Ay.
(a) Show that the law of the eigenvaluesgY is a weak solution of

d)\iN(t):—dW NZ”‘N d —AN@)dt. (4.3.21)

(b) Show that ifx)' = HNA (1), then the law o\ is the same law for ali > 0.
Conclude that the Ia\l?,E,B) of the eigenvalues of Gaussian Wigner matrices is sta-
tionary for the process (4.3.21).

(c) Deduce that?’,(j3 Vis absolutely continuous with respect to the Lebesgue mea-
sure, with density

N
32
Ly <oy X —x;|° Me PR,
1<i<J<N i=

as proved in Theorem 2.5.Hint: obtain a partial differential equation for the
invariant measure of (4.3.21) and solve it.
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4.3.2 A dynamical version of Wigner’s Theorem

In this subsection, we derive systems of (deterministitfcintial equations sat-
isfied by the limits of expectation df.(t), ), for nice test functiong and

Ln®) =N"5 Gyng) (4.3.22)

where(AN(t))>0 is a solution of (4.3.3) fof > 1 (see Proposition 4.3.10). Spe-
cializingtoB =1 or 3 = 2, we will then deduce in Corollary 4.3.11 a dynamical
proof of Wigner's Theorem, Theorem 2.1.1, which, while restd to Gaussian
entries, generalizes the latter theorem in the sense thHbws one to consider
the sum of a Wigner matrix with an arbitrarfd-dependent Hermitian matrix,
provided the latter has a converging empirical distributid@he limit law is then
described as the law at time one of the solution to a complegds equation, a
definition which introduces already the concepfret convolutior(with respect
to the semicircle law) that we shall develop in Section 5.313Exercise 4.3.18,
Wigner’'s Theorem is recovered from its dynamical version.

We recall that, fofT > 0, we denote b¥Z(]|0, T],M1(RR)) the space of contin-
uous processes froff, T] into M1 (R) (the space of probability measures &n
equipped with its weak topology). We now prove the convecgeri the empirical
measurédy(-), viewed as an element 6f[0, T|, M1(R)).

Proposition 4.3.10Let 8 > 1 and letAN(0) = (A](0),...,AN(0)) € Ay, be a
sequence of real vectors so thd (0) € Ay,

:=sup— Y log( oo, 4.3.23
N>€N Z g(A +1) < ( )

and the empirical measureyl(0) = ﬁ ZiN:1 6AkN<O) converges weakly as N goes to
infinity towards au € M1(R).

Let AN(t) = (AN(t),..., AN (1))t=0 be the solution o0f(4.3.3)with initial con-
dition AN(0), and set Iy(t) as in (4.3.22). Then, for any fixed time I o,
(Ln(t))tefo,r] converges almost surely in(@, T],M1(R)). Its limit is the unique
measure-valued procesf )ic(o,1] SO thatplo = p and the function

Gi(2) = / (z— %) Ldpk(x) (4.3.24)
satisfies the equation
Gi(2) = Go(2) — /0 ' 6u(2)0,6:(2)ds (4.3.25)

forze C\R.
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An immediate consequence of Proposition 4.3.10 is thewviatig.

Corollary 4.3.11 For B = 1,2, let (XN#(0))nen be a sequence of real diago-
nal matrices, with elgenvalue{ﬂ"‘( ), .. ,A,’j( 0)) satisfying the assumptions of
Proposition 4.3.10. For t 0, let AN(t) = (AN(T),...,AN(t) € Ay denote the
eigenvalues of X8 (t) = XN-A(0) + HNA(t), and let Ly (t) be as in (4.3.22). Then
the measure-valued procefsy(t))i>o converges almost surely towardg: )t>o0

in C([0, T],M1(R)).

Proof of Proposition 4.3.10/Ne begin by showing that the sequeritg(t) )ic(o 1)

is almost surely pre-compact@{[0, T|,M1(R)) and then show that it has a unique
limit point characterized by (4.3.25). The key step of oupraach is the follow-
ing direct application of I1td's Lemma, Theorem H.9, to thechastic differential
system (4.3.3), whose elementary proof we omit.

Lemma 4.3.12Under the assumptions of Proposition 4.3.10, for altT0, all
f € C?([0,T]xR,R) and allt€ [0, T],

(f(t,"),Ln(t)) = <f(0,-),LN(O)>+/t<(9sf(s’.)7|_N(S)>ds (4.3.26)
2///0)( dy S7y)C“-N(S)(X)C“—N(5)()/)0|s

+ (G- [0s ) Luohdst M),

where M\‘ is the martingale given for£ T by

M (1) =

2 N .
NI || ot (s AN (s,

We note that the bracket of the marting§ appearing in Lemma 4.3.12 is

' 2 At (.92
<M==\‘>t=ﬁ/()((@xf(ﬁx))z,LN(S»dsg Sugdo,gﬂlz 9l

We also note that the term multiplyir{@/8 — 1) in (4.3.26) is coming from both
the quadratic variation term in 1td’s Lemma and the finiteiation term where
the terms on the diagonal=y were added. That it vanishes whgn=2 is a
curious coincidence, and emphasizes once more that theititertase § = 2)
is in many ways the simplest case.

We return now to the proof of Proposition 4.3.10, and begishiywing that the
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sequenceéln (t))ie(o 1) is @ pre-compact family i€([0, T],M1(R)) for all T < eo.
Toward this end, we first describe a family of compact seG(@, T],M1(R)).

Lemma 4.3.13Let K be a an arbitrary compact subset of (R), let (fi)i>o be a
sequence of bounded continuous functions densg(iR)Cand let G be compact
subsets of §O, T|,R). Then the sets

H = e[0,T], i e K} {t—w(f) G} (4.3.27)
i>0

are compact subsets of [0, T],M1(R)).

Proof of Lemma 4.3.13The spac€([0, T],M1(R)) being Polish, it is enough to
prove that the set?” is sequentially compact and closed. Toward this end, let
(UM >0 be a sequence ir¥”. Then, for alli € N, the functiong— (i) be-
long to the compact se@ and hence we can find a subsequep¢r) —n_e ©
such that the sequence of bounded continuous functiearm‘”(n)(fi) converges

in C[0, T]. By a diagonalization procedure, we can findiandependent subse-
quencep(n) —n—o % such that for all € N, the functionseu{p(”)(fi) converge
towards some function— Lk (fi) € C[0, T]. Becaus€ fi)i>o is convergence deter-
mining in K N M1 (R), it follows that one may extract a further subsequencé, stil
denotedg(n), such that for a fixed dense countable subsd0gf], the limit Lk
belongs taM;. The continuity oft— (i) then shows thats € M1 (R) for all t,
which completes the proof thgti"),>0 is sequentially compact. Sinc# is an
intersection of closed sets, it is closed. Thifs,is compact, as claimed. O

We next prove the pre-compactness of the sequéneg),t € [0,T]).

Lemma 4.3.14Under the assumptions of Proposition 4.3.10, fic R*. Then
the sequencél.n(t),t € [0,T]) is almost surely pre-compact in({©, T],M1(R)).

Proof We begin with a couple of auxiliary estimates. Note that froemma
4.3.12, for any functiorf that is twice continuously differentiable,

// ]”(X))(%;/(wdl"\‘(s)(x)dLN(S)(y)
= [ [ ax - aypdadi@ was ). @328)

Apply Lemma 4.3.12 with the functiof(x) = log(1+ x?), which is twice contin-
uously differentiable with second derivative uniformlyuraled by 2, to deduce
that

supl(f, Lu(©)] < (F,Lu(O) + T(1+ )+ supMN (0 (4.3.29)
t<T t<T
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with MN a martingale with bracket bounded b{BN?)~* since|f’| < 1. By the
Burkholder—Davis—Gundy inequality (Theorem H.8) and Gisflev’s inequality,
we get that, for a universal constalkt,

P(supMY (0] > ) < —n

sur >6)< oo (4.3.30)

which, together with (4.3.29), proves that there exists a(T) < o« so that, for
M>T+Cy+1,

2 a
P (tes[g%dog(x +1),Ln(t) > M) < M T Cy AN (4.3.31)

We next need an estimate on the Holder norm of the fundtieqf,Ly(t)),
for any twice boundedly differentiable functiohon R, with first and second
derivatives bounded by 1. We claim that there exists a cohata a(T) so that,
foranyd € (0,1) andM > 2,

1 a61/2

P sup [{f,Ln(t)) — (f,Ln(s)[ = MS® | < g
t,s€[0,T]
[t-g<d

(4.3.32)

Indeed, apply Lemma 4.3.12 wit{x,t) = f(x). Using (4.3.28), one deduces that
forallt > s,

(FLn(©) = (FLn )] < (1T ][wls—t|+MNO) M9, (4.3.33)

whereMN(t) is a martingale with bracket@ *N=2 [$((')?,Ln(u))du. Now,
cutting [0, T] to intervals of length we get, withd := [T& Y],

P ( sup MY (t) —MY(s)| > (M — 1)51/8)
t-s<o

t,s<T

J+1
< P( sup MY (t) - MY (k)| > (M — 1)61/8/3>
k=1 \ko<t<(k+1)d

T AP M1 \aserns f
4.3*N\,52 ad?
< DIFE = 5z | T2

where again we used in the second inequality Chebyshejuaiity, and in the
last the Burkholder—Davis—Gundy inequality (Theorem Hv@8h m= 2. Com-
bining this inequality with (4.3.33) completes the proo{413.32).
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We can now conclude the proof of the lemma. Setting
Ku = {1 € Mi(R) : [ log(L+x*)du(x) < M},

Borel-Cantelli's Lemma and (4.3.31) show that

P( U N {vteloT], Lvt) € KM}> =1. (4.3.34)

No>0N>No

Next, recall that by the Arzela—Ascoli Theorem, sets of thref

C=(1{geC([0,T],R): sup |g(t) —g(s)| < &, sup |g(t)| <M},
n t,5€[0,T] te[0,T]
[t—s|<nn
where{&,,n > 0} and{nn,n > 0} are sequences of positive real numbers going
to zero ag goes to infinity, are compact. Fére C?(R) with derivatives bounded

by 1, ande > 0, consider the subset 6{]0, T],M1(R)) defined by

2 1
Cr(f.e):= [ |{ueC(0TM(R)): sup [m(f)—ps(f)]<—=}.
rDl [t—s|<n—4 ) 5\/ﬁ
Then, by (4.3.32),
4
P(Ln € Cr(f,6)%) < N (4.3.35)
Choose a countable familf of twice continuously differentiable functions

dense iCo(R), and setic = 1/K((|fillo + || fyllo + | £ l) 2 < 272, with

A =Kwun () Cr(fc,&) CC([0,T],M(R)). (4.3.36)
k>1

Combining (4.3.34) and (4.3.35), we get from the Borel-€lirltemma that

P<U N {LNE%}>:1.

No>0N>No
Since# is compact by Lemma 4.3.13, the claim follows. O

We return to the proof of Proposition 4.3.10. To characeetig limit points
of Ly, we again use Lemma 4.3.12 with a general twice continuadiffigren-
tiable functionf with bounded derivatives. Exactly as in the derivation Irgdo
(4.3.30), the Boreli—Cantelli Lemma and the Burkholdern+BaGundy inequality
(Theorem H.8) yield the almost sure convergencm{ﬂftowards zero, uniformly
on compact time intervals. Therefore, any limit pdiat,t € [0,T]) of Ly satisfies
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the equation
/ FEx)du(x) = / £(0,%)dHo(X) + /0 t / dsf (s, )dps(x)ds
+3 /ot /] aXf(&X))(:zXf(s’y) dus()dps(y)ds.  (4.3.37)

Taking f(x) = (z—x)~* for somez € C\R, we deduce that the functidh (z) =
[(z—x)~'du (x) satisfies (4.3.24), (4.3.25). Note also that since the ligis a
probability measure on the real linG;(z) is analytic inzfor ze C...

To conclude the proof of Proposition 4.3.10, we show belolweémma 4.3.15
that (4.3.24), (4.3.25) possess a unique solution anadytze C, :={ze€ C:
O(2) > 0}. Since we knowa priori that the support of any limit poir; lives in
R for all t, this uniqueness implies the uniqueness of the Stieltfgstorm ofy
for all t and hence, by Theorem 2.4.3, the uniquenegg &dr all t, completing
the proof of Proposition 4.3.10. O

Lemma 4.3.15Let Ny g = {zc C, : 0z > a|0Z,|Z > B} and for t> 0, set
N ={ze C;:z2+tGy(z) € C.}. Forallt >0, there exist positive constants
at, B, of, B such thal g, 5 C Ar and the function & Iy, g —2+1Go(2) € Ty

is invertible with inverse H: Iy g —T 4 . Any solution o0f(4.3.24) (4.3.25)is
the unique analytic function o, such thatfor allt and all 2 'y g/,

Gt(2) = Go(H(2)).

Proof We first note that sincéGo(2)| < 1/|02], O(z+tGp(2)) > Oz—t/Ozis
positive fort < (0z)? andJz > 0. Thus,lq 5 C A for t < (ayf3)?/(14 af).
Moreover,|0Gp(z)| < 1/2|0z| from which we see that, for al> 0, the image of
[ a.p Y Z+1Go(2) is contained in somE 5 providedf is large enough. Note
that we can choose thig, 5 andly, g decreasing in time.

We next use the method of characteristics. Gig solution of (4.3.24), (4.3.25).
We associate witla € C the solution{z,t > 0} of the equation

dz=G(z), n=z (4.3.38)
We can construct a solutianto this equation up to timgJz)?/4 with Oz > 0z/2
as follows. We put foe > 0,
£ . z—Xx —GE _
G’((Z) T |Z_X|2+gd“t(x)’atzf G«[(Zf), 28 z
Z exists and is unique singgf is uniformly Lipschitz. Moreover,

al(#) 1 1
e i e U e )



268 4. ME GENERALITIES
implies that|0(Z)|2 < [|0(2)|? — 2t,|0(2)|?] and
O(F)—x 1 1
a0 = / ———d(x) € [— ,

D= e W e VR
shows thafl () stays uniformly bounded, independentlyeptip to time([z)2 /4
as well as its time derivative. Hencgg ,t < (0z)2/4} is tight by Arzela—Ascoli’s
Theorem. Any limit point is a solution of the original equatiand such that
Oz > 0z/2 > 0. Itis unique sinc&; is uniformly Lipschitz on this domain.

Now, &Gt (z) = 0 implies that fott < (0z)?/4,
z =tGy(2) + 2z Gi(z+1tGp(2)) = Go(2) .

By the implicit function theoremz +tGo(2) is invertible fromrl g, g into g/ 5
since 14-t1Gy(2) # 0 (note thatlGy(z) # 0) onT ¢ g . Its inverseH; is analytic
from[ g g into Iy, 5 and satisfies

Gt(2) = Go(Ht(2))-

]

O

With a view toward later applications in Subsection 4.3.thproof of central
limit theorems, we extend the previous results to polynbtest functions.

Lemma 4.3.16Let 3 > 1. Assume that

C = sup max [AN(0 .
Ng}glgi;,gI i (0) <o

With the same notation and assumptions as in Propositiod@,3or any T< oo,
for any polynomial function g, the proce$&,Ln(t)))icjo,r] converges almost
surely and in all I?, towards the procesg (q) )ic(o 1), that s,
limsup sup |(q,Ln(t)) —(a, )| =0 as.
T

N—c tc[0,T]

and for all pe N,

limsupE[ sup [(q,Ln(t)) — (g, k)|P] = 0.
N—o0 te[0,T]

A key ingredient in the proof is the following control of theoments ofAj(t) :=
mavg<ien AN (1)] = max(AY (1), AN (1))

Lemma 4.3.17Let B > 1 and An(0) € Ay. Then there exist finite constants
a=a(p)>0,C=C(B), and for all t > 0 a random variableny(t) with law
independent of t, such that

P(nfi(t) > x+C) < e N
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and, further, the unique strong solution ¢f.3.3)satisfies, for all > 0,
AG (1) < AG0) +vinj(b). (4.3.39)

We note that for8 = 1,2,4, this result can be deduced from the study of the
maximal eigenvalue oKNA(0) + HNA(t), since the spectral radius 6f"-A(t)

has the same law as the spectral radiug/@iN-B(1), that can be controlled as in
Section 2.1.6. The proof we give below is based on stochasétysis, and works
for all B > 1. Itis based on the comparison between strong solution4.8f3)
presented in Lemma 4.3.6.

Proof of Lemma 4.3.170ur approach is to construct a stationary procgsg) =
(nN),...,nN (1)) € Oy, t > 0, with marginal distributiorP(’\[‘;) = PE‘XZ/‘MB as in
(2.6.1), such that, witmg;(t) = max(n{ (t), —n}(t)), the bound (4.3.39) holds.
We first construct this process (roughly corresponding ¢égpfocess of eigenval-
ues ofHNA(t) /T if B = 1,2,4) and then prove (4.3.39) by comparing solutions

to (4.3.3) started from different initial conditions.
Fix € > 0. Consider, fot > &, the stochastic differential system

2 1 1 1
ddV(t) = [ 5= dW() + — § ——————dt— —ulN(t)dt. 4.3.40
Let P,\’i denote the rescaled versionl%{f;) from (2.5.1), thatis, the law afyy with
density proportional to

2
A _)\j|B. e NBAZ/4
[ =]

BecausePﬁ (AN) = 1, we may takeuN(g) distributed according t®°, and the
proof of Lemma 4.3.3 carries over to yield the strong existesind uniqueness of
solutions to (4.3.40) initialized from such (random) ialttonditions belonging to
Ay.

Our next goal is to prove thzﬂ,ﬁ is a stationary distribution for the system
(4.3.40) with this initial distribution, independently ef Toward this end, note
that by Itd’s calculus (Lemma 4.3.12), one finds that for amige continuously
differentiable functiorf : RN—R,

N
BETTWN(D)] = 2,1“; UIN“( _UN(E;‘ S
3 RO+l T PO

where we used the notatiahf (x) = dx f(x1,...,Xn). Hence, if at any time,
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uN(t) has lawP?, we see by integration by parts th@€[f(uN(t))]| vanishes
for any twice continuously differentiable Therefore (uN(t));>¢ is a stationary
process with marginal Ia\)?,’j. Because the marginﬁ’ﬁ does not depend og,
one may extend this process to a stationary proa€4s));o.

Setug (t) = max(ul(t), —ul(t)). Recall that by Theorem 2.6.6 together with
(2.5.11),
.1 .
dim logPS (An > u) = — inf ngz/4(s),

s>u

with ngz/4(s) > 0 fors> 2. Thus, there exi€f < o anda > 0 so that fox > C,
forallN e N,

P(Ui(t) > X) < 2P§ (An > x) < e 0N (4.3.41)

Define nextANO(t) = /iuN(t). Clearly, AN9(0) = 0 € Ay. An application
of Itd’s calculus, Lemma 4.3.12, shows thlt9(t) is a continuous solution of
(4.3.3) with initial data 0, and N-0(t) € Ay for all t > 0. For an arbitrary constant
A, defineANA(t) e Ay by AN (t) = ANO(t) + A, noting that ANA(t) )0 is again
a solution of (4.3.3), starting from the initial dat4, ...,A) € Ay, that belongs to
Ay forallt > 0.

Note next that for anyy > 0, /\iN"SH“*‘(O) (0) > AN(0) for all i. Further, for

t small, )\iN"SHmO) (t) > AN(t) for all i by continuity. Therefore, we get from
Lemma 4.3.6 that, for atl> 0,

ANO <AVTMNO 1) <2300+ 5+ VAU (1)

A similar argument shows that
M) <AK0) + 5+ VAR (D).
SinceuN(t) is distributed according to the Iaﬁqﬁ, takingd — 0 and recalling

(4.3.41) completes the proof of the lemma. O

Proof of Lemma 4.3.16We use the estimates oxj(t) from Lemma 4.3.17 in
order to approximatéy, Ln(t)) for polynomial functionsy by similar expressions
involving bounded continuous functions.

We begin by noting that, due to Lemma 4.3.17 and the Boreltellahemma,
for any fixedt,

limsupAg(t) < Af(0)+AC  a.s. (4.3.42)

N—oo
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Again from Lemma 4.3.17, we also have that, for gny O,

E[(A())P] < 2p<(m(o)+c\/f)p+ptg/o°°xp1eaNXdX)

= 2p<(m(0)+C\/f)p+ (aﬁ’\!l)ptg) . (4.3.43)

As a consequence, there exists an increasing fun€tipn such that for anyl <
o, C(T) = sup.7 C(t) < =, and so that for alN sufficiently large, alp < [0,aN],
E[(AN(1))P] < (2C(1))P. (4.3.44)

Note that (4.3.42) implies that, under the current asswnptithe support of the
limit 1, see Proposition 4.3.10, is contained in the compacf-sAft), A(t)],
whereA(t) := C+Cy/Ai.

We next improve (4.3.42) to uniform (ib < T) bounds. Fix a constant
€ <min(a/6,1/T+/A1), whereA; is as in the Burkholder—Davis—Gundy inequal-
ity (Theorem H.8). We will show that, for all < o andp < ¢N,

E[ sup (|x/P,L(t))] < C(T)P. (4.3.45)
te[0,T]
This will imply that
E[ sup AN (t)P] < NC(T)P, (4.3.46)
te[0,T]

and therefore, by Chebyshev’s inequality, for @ny 0,

. NC(T)P
P(tes[g’%/\,\](t) >C(T)+9) < COrGE

Takingp = p(N) = (logN)?, we conclude by the Borel-Cantelli Lemma that

limsup sup A§(t) <C(T) as.
N—oo 0<t<T

To prove (4.3.45), we use (4.3.26) wiffit,x) = x" and an integen > 0 to get

CZLND) = 002 LN(0) + MY o(1)
t
OEOED (2 1) [oeLutsns

+(an2) /:;/;MLN ()) (X" Ln(s))ds, (4.3.47)

whereM, , is a local martingale with bracket

2
(MY o) = 2(2+22)/0t (X2 | (s))ds.



272 4, SME GENERALITIES

Settingn = 2p and using the Burkholder—Davis—Gundy inequality (Theokk8),
one obtains

2 T
€l sup Ml 07 <RI e[ 0e 2 Ly (s)as

te[0,T]
/\1p Jo C(t)“P+2mdt JaP’TC(T) (4p+2)
N2 =¢ N2 ’
for some constarnt = ¢(f3) independent op or T, where we used (4.3.44) (and
thus used thatg+ 2 < aN). We set

Ai(p) == E[ sup (|x/”,Ln ()],
te[0,T]

IN

and deduce from (4.3.47) and the last estimate thap fof0, eN/2] integer,

A2(p+1) < Ao(2(p+1))+ (cAy)? p\fC( )(@p+1)

+(p+ 1)2/0t E[()\,(‘,(t))zp]ds (4.3.48)

< G2AptD) 4 (C/\l);2L p\/—C( )(@P+)

+(aNy2C(t)?P

Taking p = eN/2, we deduce that the left side is bounded®@(T))N, for all
N large. Therefore, by Jensen'’s inequality, we conclude

Ac(0) < A(eN)an < (2C(T))  forall ¢ € [0,eN]. (4.3.49)

We may now complete the proof of the lemma. For- 0 and continuous
functionq, set

ds(x) =q<ﬁ)-

By Proposition 4.3.10, for any > 0, we have

lim_ sup |(ds, Ln(t)) — (ds. k)| =0 (4.3.50)
—%®te(0,T]

Further, since the collection of measugast € [0,T], is uniformly compactly
supported by the remark following (4.3.42), it follows that

lim sup [(gs, t) — (d, k)| = 0. (4.3.51)
0—0te[0,T]

Now, if gis a polynomial of degrep, we find a finite constar@ so that

X3
1+ 6x2

|a(X) — a5(x)| < C3(IX/P~*+1) 5 SCO(IXPT2+ ).
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Hence, (4.3.45) shows that, for aAy> 0,

P ( sup [{((d—0s),Ln (1)) > AC6>

te[0,T]
1 1
—ELsup (X2 4 X%, Ln(1)] < 25 ((2C(T) P2+ (2¢(T))%)’,
A" e A
for any/ < eN. By the Borel-Cantelli Lemma, taking= (logN)? andA larger
than Z(T), we conclude that

limsup sup |{(q—qs),Ln(1))] < [(2C(T)P2+(25(T))%Ca, as.
N—co te[0,T]

Together with (4.3.50) and (4.3.51), this yields the almsase uniform conver-
gence of(g,Ln(t)) to {(q, k). The proof of theLP convergence is similar once we
have (4.3.45). O

Exercise 4.3.18Take tp = &. Show that the empirical measurg(1) of the
Gaussian (real) Wigner matrices converges almost surbtyw$hat

Gi(2) = £~ Gu(2)

and conclude that the limit is the semicircle law, hencergjva new proof of
Theorem 2.1.1 for Gaussian entries.

Hint: by the scaling property, show th@t(z) =t~1/2G;(t-¥/?z) and use Lemma
4.3.25.

Exercise 4.3.19Using Exercise 4.3.7, extend Corollary 4.3.11 to the syuctle
setup B =4).

4.3.3 Dynamical central limit theorems

In this subsection, we study the fluctuations(bf(t));>0 on path space. We
shall only consider the fluctuations of moments, the geiratédn to other test
functions such as continuously differentiable functiagassible by using con-
centration inequalities, see Exercise 2.3.7.

We continue in the notation of Subsection 4.3.2. Formtyple of polynomial
functionsPy, ..., Py € C[X] and(t )ic[o,7] @s in Lemma 4.3.16 witjip = 4, set

GN.“(P]_, ey Pn)(t) =N <<P1, Ln (t) — [,lt>7 ce <Pn, Ln (t) — [,lt>> .

The main result of this subsection is the following.
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Theorem 4.3.20Let 3 > 1 and T < . Assume that
C= AN©
Sg&ggy i (0)f <eo
and that Ly (0) converges towards a probability measyrén such a way that, for
allp>2,

SUPE[IN({X",Ln(0)) — (X", u))|P] < o0
NeN

Assume that for any a N and any R,...,P, € C[X], Gn u(Py,...,Pn)(0) con-

verges in law towards a random vect@s(P;)(0),...,G(Py)(0)). Then
(a) there exists a proceg$3(P)(t))ic(o.1],pecix]s such that for any polynomial
functions R, ..., P, € C[X], the proces§Gn u (P, .., Pn)(t))icjor) CONVerges in

law towards(G(P1)(t),. .., G(Pn) (t) )iejo.1)s
(b) the limit procesgG(P)(t) )01} pecix] IS Uniquely characterized by the fol-
lowing two properties.
(1) Forall P,Q e C[X] and(A,a) € R?,
G(AP+aQ)(t)=AG(P)(t)+ aG(Q)(t) Vte[0,T].

(2) For any ne N, (G(x")(t) e[o,1),nen IS the unique solution of the system of
equations

G(1)(1) =0, GX)(t)=G(X)(0)+Gi,

and, for n> 2,

GO0 = GO +n [ Ezus(x“-k-%e(xk)(s)ds

213 n(n—1 /us x2)ds+ G, (4.3.52)

where(G{ )teo.T),neN IS @ centered Gaussian process, independent of
(G(X )(O))neN, such that, if a,ny > 1, then for all st > 0,

E[G™G] = niny / L (X2 =2)d .,
0

Note that a consequence of Theorem 4.3.20 is th@(k")(0) )nen is a centered
Gaussian process, then sd&x")(t) )c(o,1],nen-

Proof of Theorem 4.3.20The idea of the proof is to use (4.3.47) to show that
the proces$GN (x,...,X")(t))ic(o.T) is the solution of a stochastic differential sys-
tem whose martingale terms converge by Rebolledo’s Thedteltt towards a
Gaussian process.

Itis enough to prove the theorem with= ! fori € N. SetGN(t) := GN(X)(t) =
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N(X,(Ln(t) — ) to get, using (4.3.47) (which is still valid with obvious nifid
cations ifi = 1),

QM) = GlO+Y [ Ot s M)
k=00

2-p,
2B

where(MN,i € N) are martingales with bracket

. b2 i 12t N
L Pio /0 K2 st 55 3 /O GN(s)GN, (s)ds, (4.3.53)

(MN, M) = Eij /t<xi+j‘2,LN (s))ds.
B Jo
(Note that by Lemma 4.3.16, tHe® norm of <MiN> is finite for all p, and so in
particularMiN are martingales and not just local martingales.)

By Lemma 4.3.16, for all > 0, (M{¥,M}); converges in.? and almost surely
towards 5ij Jo (X172, us)ds  Thus, by Theorem H.14, and with the Gaussian
procesg G )icjo1)icn s defined in the theorem, we see that, fokallN,

(MR (t),.... MY (t) )i o] CONVerges in law towards
thek-dimensional Gaussian proce&, Gt *,...,G o). (4.3.54)
Moreover,(Gf, G 1,...,Gl)c(o 1) is independent ofG(x") (0) e since the con-

vergence in (4.3.54) holds given any initial condition sticht Ly (0) converges
to u. We next show by induction ovegrthat, for allg > 2,

P:= maxsupE[ sup |GN(t)]9] < . (4.3.55)
A ISP NeN [te[O.T]| O

To begin the induction, note that (4.3.55) holdsfiet O sinceG’a‘ (t)=0. Assume
(4.3.55) is verified for polynomials of degree strictly lesanp and allg. Recall
that, by (4.3.45) of Lemma 4.3.16, for gk N,

Bq = sup sup E[(|X|%, Ln(t))] < co. (4.3.56)
NeNte[0,T]

SetAq(N,T) := E[sURco7) |G (1)|%]. Using (4.3.56), Jensen's inequality in the
form E(xg + X2 +x3)9 < 39153 | E[x|9, and the Burkholder-Davis-Gundy in-
equality (Theorem H.8), we obtain that, for ali> 0,

AN, T) < 39A5N,0)
p-2 e
k 1+e) 1xpTie
+(pT)? kZO(AQ(HE)(N’T))( ) B(11++s)s*1(P—2—k)q

)
NI N | 0P, Ly(9)ds,
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By the induction hypotheslsﬁJgI 1ie) is bounded sinc& < p), the fact that we
control A§(N,0) by hypothesis and the finiteness B for all g, we conclude
also thatA§ (N, T) is bounded uniformly irN for all g € N. This completes the
induction and proves (4.3.55).

Set next, foi € N,

—iN- Z/GN )G, ,(s)ds.
Since

sup E[en(i)(9)9] < N*qizq(qu)% T
sc[0,T]

we conclude from (4.3.55) and the Borel-Cantelli Lemma that

en()(-) 2N—w 0, inallL% gq>2,anda.s. (4.3.57)

Setting

YN@t) = 6Ny -GN _'Z/ GN(8) (X 2K pds

for all t € [0, T], we conclude from (4.3.53), (4.3.54) and (4.3.57) that tte p
cessegYN(t), YN, (t),...,Y]N(t))=0 converge in law towards the centered Gaus-
sian proces$G (t), ..., G(t))iso.

To conclude, we need to deduce the convergence in law dBtsefrom that
of theYNs. But this is clear again by inductio@)' is uniquely determined from
YN and G)'(0), and so the convergence in law 6l implies that ofG} since
GY(0) converges in law. By induction, if we assume the convergémdaw of
(GY,k < p—2), we deduce that d&}} ; andG} from the convergence in law of
Yy andYp ;. O

Exercise 4.3.21Recover the results of Section 2.1.7 in the case of Gaussian
Wigner matrices. by takingN-#(0) = 0, with o = 0 andG(x")(0) = 0. Note
thatm(t) := EG(x")(t) = t"2m"(1) may not vanish.

Exercise 4.3.22In each part of this exercise, check that the given initidhda
XN(0) fulfills the hypotheses of Theorem 4.3.20. (a) D€Y(0) be a diagonal
matrix with entries on the diagonatp(ﬁ),l <i < N), with ¢ a continuously
differentiable function o1f0, 1]. Show that

[9(1)P — ¢(0)P]for all p,

I\JII—\

/ Fp(x)dx  G(xP)(0) =
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and that{G(xP)(0), p > 0) are deterministic.

(b) Let XNA (0) be a finite rank diagonal matrix, i.e. for sorkdixed indepen-
dently of N, X(’)“ = diagns,...,Nk,0,...,0), with the n;’s uniformly bounded.
Check that

k
Ho = &, GOXP)(0) = 3 nPfor all p.
=1

and thatG(xP)(0) is random if then;s are.
(c) LetXN-B(0) be a diagonal matrix with entrie€" (0)(ii) = ni/v/N for 1 <i <
N, with some i.i.d. centered bounded random variahle€heck that

Ho(f)=0d, G(xP)(0)=01ifp#1

butG(x)(0) is a standard Gaussian variable.

4.3.4 Large deviation bounds

Fix T € R;. We discuss in this subsection the derivation of large devrigesti-

mates for the measure-valued procésg(t) }icjo.r)- We will only derive expo-
nential upper bounds, and refer the reader to the biblidggcapnotes for infor-
mation on complementary lower bounds, applications araticgls to spherical
integrals.

We begin by introducing a candidate for a rate functionagf0, T],M1(R)).
Foranyf,g e Co'(Rx[0,T]),s<t € [0,T] andv. € C([0, T],M1(R)), set

St f) = /f(x,t)dvt(x)—/f(x,s)dvs(x)

_/‘/auf(X,U)dvu(x)du
t e df(x,u) — ayf (y,
_:_2L/s // - u;_y O gy, () dviy)dus, (4.3.58)
(f,o)3' = /‘ / Ot (%,u)3xg(x, u)dvu(x)du (4.3.59)
and
S_S,t(v,f):SS.t(v,f)—%U’f);t. (4.3.60)

Set, for any probability measugee M1 (R),

. 00, if Vo 7é M, _
Su(v) = LT(v) = SqueCS‘l(Rx[O,T])SURJSSSIST S (v, f), otherwise.
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We now show tha$,(-) is a candidate for rate function, and that a large devia-
tion upper bound holds with it.

Proposition 4.3.23 (a) For any 4 € M1(R), S,(-) is a good rate function on
C([0, T],M((R)), that is,{v € C([0,T],M1(R)); Su(v) < M} is compact for any
MeRT.

(b) With assumptions as in Proposition 4.3.10, the sequéng@) )< (o, 7] Satisfies
a large deviation upper bound of speed &hd good rate function,§ that is, for

all closed subsets F of@, T],M1(R)),

Iimsup% logP(Ln(-) € F) < —igfsﬂ.

N—oo

We note in passing that, sincg,(-) is a good rate function, the process
(Ln(t))tejo,r) concentrates on the sg¢v. : S,(v) = 0}. Exercise 4.3.25 below
establishes that the latter set consists of a singletorsatution of (4.3.25).

The proof of Proposition 4.3.23 is based on Itd’s calculod the introduction
of exponential martingales. We first need to improve Lemn3al4. in order to
obtain exponential tightness.

Lemma 4.3.24Assumg4.3.23) Let T € R™. Then, there exists(@) > 0 and
M(T),C(T) < o so that:
(@) for M > M(T),

P ( sup (log(x*+ 1), Ln(t)) > M) < C(T)e aTMN?,
te[0,T]

(b) for any Le N, there exists a compact set’(L) C C([0,T],M1(R)) so that

P(Ln(-) € #(L)%) <e N,

It follows in particular from the second part of Lemma 4.3tB4t the sequence
(Ln(t),t € [0,T]) is almost surely pre-compact@([0, T],M1(R)); compare with
Lemma 4.3.14.

Proof The proof proceeds as in Lemma 4.3.14. Set fist) = log(x? + 1).
Recalling (4.3.29) and Corollary H.13, we then obtain tfatall L > 0,

N _pNAL2

P|supMi(s)|>L) <2 o,
s<T

which combined with (4.3.29) yields the first part of the leenm

For the second part of the lemma, we proceed similarly, by rfiosicing that
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if f € C?(R) is bounded, together with its first and second derivatived,, lihen
from Corollary H.13 and (4.3.33) we have that
sup  [(f,Ln(s) —Ln(t))| <20 +¢,
i6<s<(i+1)8
. - BN2(e)? :
with probability greater than 2 2e~ 15 . Using the compact setg” = 7y of
C([0, T],M1(R)) as in (4.3.36) withex = 1/kM(| fi||o + || filloo + || fi[|c0), We then
conclude that
P(Ln ¢ Jtia) < 267N
with cy —m—e . AdjustingM = M(L) completes the proof. O

Proof of Proposition 4.3.23We first prove tha§, (-) is a good rate function. Then
we obtain a weak large deviation upper bound, which giveghbyexponential
tightness proved in the Lemma 4.3.24, the full large demmatipper bound.

(a) Observe first that, from Riesz’' Theorem (Theorem B.HL)V) is also

given, whenvg = U, by
1 St(y, )2
Sp(v)= sup sup (7&2 (4.3.61)
fECS’l(RX[O,T])OSSStST <faf>v

Consequentlys, is nonnegative. Moreove§, is obviously lower semicontin-
uous as a supremum of continuous functions. Hence, we meeelgt to check
that its level sets are contained in relatively compact &yd emma 4.3.13, it is
enough to show that, for ariy > 0:

(1) for any integem, there is a positive real numbeM so that for anw €

{Sw <M},

sup vs(|x > LM) <

1
= (4.3.62)
0<s<T m
proving thatvs € K m for all s€ [0, TJ;

(2) for any integemandf € CE,(IR{), there exists a positive real numhgf so
that for anyv € {S,(-) < M},

sup [w(f)—vs(f)| <
lt—s|<a¥

, (4.3.63)

Sl

showing thas—vs(f) € Csm | f.,-
To prove (4.3.62), we consider, fér> 0, f5(x) = log (x3(1+6x?)"1+1) €
C2Y(Rx[0,T]). We observe that

C:= sup |[dfslle+ SUP |07 fs][e
0<5<1 0<8<1
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is finite and, ford € (0,1],
Oxfs(x) — okts(y)
X=y

Hence, (4.3.61) implies, by takinfg= fs in the supremum, that, for ardye (0, 1],
anyt € [0, T}, anyp. € {Sy, <M},

<C.

th(fs) < po(fs) +2Ct+2CvVMt.

Consequently, we deduce by the monotone convergence theard lettingd
decrease to zero that for apye {S,(-) <M},

sup t(log(x®+1)) < (u,log(x* + 1)) + 2C(1+ VM).
t€[0,T]

Chebyshev's inequality and (4.3.23) thus imply that for gng {S,(-) <M} and
anyK € R,

Co+2C(1+ VM)
su X >K) < ;
te[O,'?']“t(' [2K)= log(K2?+1)

which finishes the proof of (4.3.62).

The proof of (4.3.63) again relies on (4.3.61) which implieat for anyf €
CA(R), anyu, € {Sy() <M}andany 0<s<t<T,

[ e — )| < £ leoft — 8]+ 20| ] o VM /[ = 8. (4.3.64)

We turn next to establishing the weak large deviation uppend. Pickv
C([0,T],M1(R)) and f € C?1([0,T]xR). By Lemma 4.3.12, for ang > 0, the
procesgS*(Ly, f),t > s} is a martingale for the filtration of the Brownian motion
W, which is equal to,/2/BN=32 3N | [0 /(AN(u))dW,. Its bracket is(f, f){ .
As f’ is uniformly bounded, we can apply Theorem H.10 to deducettieapro-
cess{Mn(Ln, f)(t),t > s} is a martingale if fopr € C([0,T],M1(R)) we denote

M1 F)(0) 1= exp{N?S™ (41, 1) — o (1, )5+ Ne( )5

with

t
et i=(5-3) [ [#Hsxdutdu

B 27Js

Moreover,u € C([0,T],My(R))—S (p, f) := S (p, f) — 1(f, )3 is continu-
ous asf and its two first derivatives are bounded continuous wheteafiinction
p o s [ 02 (s, x)du(x)duis uniformly bounded byr [|02f||... Therefore, if we
pick & small enough so tha!(., f) varies by at most > 0 on the ball (for
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some metria compatible with the weak topology @([0, T],M1(RR))) of radius
d aroundv, we obtain, forals<t <T,

P(d(Ln,v) <9) = E[%]ﬂ(m,vké]

2 "y _N2SS
VENIT NS VD E MY (L, ) (1) Ly ) <5]

S eN28+NHf”H°°7N2§t(V.f>E[MN(LN’ f)(t)]
NN ]| —N2S (v, )

IN

where we finally used the fact thBf{Mn (L, f)(t)] = E[Mn(Ln, f)(s)] = 1 since
the procesgMn (L, f)(t),t > s} is a martingale. Hence,

1 —
. . < . .t
(Islﬁmol\llgmm NG logP(d(Ln,v) <9) < —S(v,f)
for any f € C21([0, T]xR). Optimizing overf gives

. . 1 1
= < -9 .
lim fim logP(d(Ln,v) <8) < -S4y, f)
SinceLy (0) is deterministic and convergesn, if Vo # Ua,
- 1
!;'TOA'ELW logP(d(Ln,v) < &) = —oo,

which allows us to conclude that

- 1
(I;Lnol\lllinmmlogP(d(LN,v)<5) < =Su(v,f).

O

Exercise 4.3.29n this exercise, you prove that the det : S, (v) = 0} consists
of the unique solution of (4.3.25).
(a) By applying Riesz’ Theorem, show that

t 2
W= sp sup SDE
feC§=1(Rx[O,T])o§S§t§T <a >

(b) Show thaS,(v.) = 0iff vo = g andS* (v, f) =0forall 0<s<t < T and all
f € 21 (Rx[0,T)). Takef(x) = (z—x)~! to conclude.

4.4 Concentration of measure and random matrices

We have already seen in Section 2.3 that the phenomenon cectation of
measure can be useful in the study of random matrices. Iisé¢gigon, we further
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expand on this theme by developing both concentration iqaks and their ap-
plications to random matrices. To do so we follow each of tvedl\@stablished
routes. Taking the first route, we consider functionals efémpirical measure
of a matrix as functions of the underlying entries. When gtoindependence is
present, and for functionals that are smooth enough (tifpit#pschitz), concen-
tration inequalities for product measures can be appliaking the second route,
which applies to situations in which random matrix entries @o longer inde-
pendent, we view ensembles of matrices as manifolds eqdiyjib probability
measures. When the manifold satisfies appropriate cuevaturstraints, and the
measure satisfies coercivity assumptions, semigroupigpadsican be invoked to
prove concentration of measure results.

4.4.1 Concentration inequalities for Hermitian matricesith independent
entries

We begin by considering Hermitian matricég whose entries on-and-above the
diagonal are independent (but not necessarily identidélyibuted) random vari-
ables. We will mainly be concerned with concentration iredifies for the random
variable tif (Xy), which is a Lipschitz function of the entries 4§, see Lemma
2.3.1.

Remark 4.4.1Wishart matrices, as well as matrices of the fofigTn Yy with Ty
diagonal and deterministic, alf € Maty«xn possessing independent entries, can
be easily treated by the techniques of this section. For pla@rto treat Wishart
matrices, fixN < M positive integers, and define the matkx € Matym,

(0 W
x”‘(m 0)'

WY 0
0 YWy

and therefore, for any continuous functién

Now (Xy)? equals

tr(f(X3)) = 2tr(f(YNY3)) + (M —N)(0).

Hence, concentration results for linear functionals ofdhwmirical measure of the
singular values oYy can be deduced from such results for the eigenvalug of
For an example, see Exercise 4.4.9.
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Entries satisfying Poinc&’s inequality

Our first goal is to extend the concentration inequalitiesnima 2.3.3 and The-
orem 2.3.5, to Hermitian matrices whose independent ensaisfy a weaker
condition than the LSI, namely to matrices whose entrieisfgad Poincaré type
inequality.

Definition 4.4.2 (Poincag inequality) A probability measur® on RM satisfies
the Poincaté inequality(PIl) with constantn > O if, for all continuously differen-
tiable functionsf,

Varp(f) := Ep (|f(X) — Ep(f(X))]?) < %Ep(|l]f|2).

Itis not hard to check that P satisfies an LS| with constantthen it satisfies a Pl
with constantn> ¢, see [GuZ03, Theorem 4.9]. However, there are probability
measures which satisfy the PI but not the LSI sucEa "*dx for ae (1,2).
Further, like the LSI, the Pl tensorizes:Rfsatisfies the Pl with constant, P®M

also satisfies the PI with constamtfor anyM € N, see [GuZ03, Theorem 2.5].
Finally, if for some uniformly bounded functiodt we setR, = Z~1e'®¥dP(x),
thenR, also satisfies the PI with constant bounded beloveb§» +in'Vm, see
[Guz03, Property 2.6].

As we now show, probability measures &Y satisfying the Pl have sub-
exponential tails.
Lemma 4.4.3Assume that P satisfies the Pl &Y with constant m. Then, for
any differentiable function G oRM, for |t| < /m/v/2|| [|0G]|2]|«
Ep(d(CFrO)) <K, (4.4.1)

with K = — 3> 2'log(1— 27147"). Consequently, for a6 > 0,
___Yym 5
P(/G—Ep(G)| > 8) < 2Ke V2II6lal=", (4.4.2)

Proof With G as in the statement, faf < m/||[|0G||3]|«, setf = &€ and note
that

2
Ep(¢7°) — (Ep(¢°))” < || [0G]3]Er(*°)
so that
t2

Ep(eXC 1——
P < (- EeT-

)L (Ep(€9))”.
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Iterating, we deduce that

n 4—it2 n
logEp(e”®) < — ;2' log(1— ——l I0G|[3]l) + 2™ logEp(&” ©).
i=
Since
lim 2"logEp(e? "®) = 2Ep(G)
and

Diim— S 2log(l— | 0G| < e
i;ﬁ m

increases wittit|, we conclude that witty = /m/+/2|| | 0G]|2/|«,
Ep(e20(C-Er(G)) < Dy, =K.
The estimate (4.4.2) then follows by Chebyshev’s ineqgyalit O

We can immediately apply this result in the context of largegdom matri-
ces. Consider Hermitian matrices such that the laws of thepgandent entries
{Xn(i, J) J1<i<j<n all satisfy the PI (oveR or R?) with constant bounded below
by Nm Note that, as for the LSI, P satisfies the PI with constant, the law of
axunderP satisfies it also with a constant boundeddBgn 1, so that our hypoth-
esis includes the case whetg(i, j) = an(i, )W (i, j) with Yn(i, j) i.i.d. of law P
satisfying the Pl and(i, j) deterministic and uniformly bounded.

Corollary 4.4.4 Under the preceding assumptions, there exists a univemsal ¢
stant C> 0 such that, for any differentiable function f, and ahy 0,

P(ltr(f (X)) — Eftr(f%))]] > N) < Ce ez ?

Exercise 4.4.8Jsing an approximation argument similar to that employethé
proof of Herbst's Lemma 2.3.3, show that the conclusionserhima 4.4.3 and
Corollary 4.4.4 remain true & is only assumed Lipschitz continuous, wjt| &
replacing| || 0G| |-

X2 .
Exercise 4.4.6Let y(dx) = (2r1)~%2e~z dx be the standard Gaussian measure.
Show thaty satisfies the Poincaré inequality with constant one, bigfohg the
following approaches.
e Use Lemma 2.3.2.
e Use the interpolation

() = [au [ ([ tv@xs vI@ayy)) oyoode
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integration by parts, the Cauchy—Schwarz inequality aeddbt that, for
anya € [0,1], the law of\/ax++/1— ayis yundery®y.

Exercise 4.4.71Guz03, Theorem 2.5] Show that the PI tensorized? gatisfies
the Pl with constanm then P*M also satisfies the Pl with constamtfor any
M e N.

Exercise 4.4.§Guz03, Theorem 4.9] Show thatkfsatisfies an LSI with constant
¢, then it satisfies a Pl with constamt> ¢~1. Hint: Use the LSI withf = 1+ &g
ande — 0.

Exercise 4.4.%8how that Corollary 4.4.4 extends to the setup of singularesof
the Wishart matrices introduced in Exercise 2.1.18. Thanithe setup described
there, assume the entri¥g(i, j) satisfy the Pl with constant bounded below by
Nm and seiXy = (YnYy )¥/2. Prove that, for a universal constahtand alld > 0,

P((tr(f (Xn)) — E[tr(F(%))]| > 8(M +N)) < Ce ST 51 ?

Matrices with bounded entries and Talagrand’s method

Recall that themedian M of a random variabl¥’ is defined as the largest real
number such thaP(Y < x) < 2-1. The following is an easy consequence of a
theorem due to Talagrand, see [Tal96, Theorem 6.6].

Theorem 4.4.10 (Talagrand)Let K be a convex compact subsefRofvith diam-
eter [K| = sup,yek [X—Y|. Consider a convex real-valued function f defined on
KM. Assume that f is Lipschitz oK with constantf| . Let P be a probability
measure on K and letX .., Xy be independent random variables with law P.
Then, if M is the median of {Xy,...,Xu), forall 6 >0,

52

P(|f(Xe,...,Xm) — M¢| > &) < 4e “KFIT%
Under the hypotheses of Theorem 4.4.10,
B[ (Koo Xon) = Mel) = [ P(FOG ) M| = 1)

. 4/ 1s|K|2|f|jdt 16/K||f| .

Hence we obtain as an immediate corollary of Theorem 4.4d @dilowing.
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Corollary 4.4.11 Under the hypotheses of Theorem 4.4.10, for allR *,

N

t

P(f(Xe,. -, Xm) —E[f(Xq,..., Xw)]| > (t+16)|K]| f| 2) < de 1.

In order to apply Corollary 4.4.11 in the context of (Hermuit) random matrices
Xn, we need to identify convex functions of the entries. Since

A(XN) = sup (V,XnV),
veCN |vj,=1
it is obvious that the top eigenvalue of a Hermitian matria isonvex function of
the real and imaginary parts of the entries. Somewhat mopeisingly, so is the
trace of a convex function of the matrix.

Lemma 4.4.12 (Klein’'s Lemma)Suppose that f is a real-valued convex func-
tion onRR. Then the function X~ trf(X) on the vector spacetiﬂ,\f2> of N-by-N
Hermitian matrices is convex.

For f twice-differentiable andf” bounded away from O we actually prove a
sharper result, see (4.4.3) below.

Proof We denote byX (resp. Y) anN x N Hermitian matrix with eigenvalues

(%i)1<i<N (resp.(Vi)1<i<n) and eigenvector&i)i<i<n (resp.({i)i<i<n). Assume
at first thatf is twice continuously differentiable, and consider theldayemain-

derRy(xy) = f(x) - f(y) — (x—y)f'(y). Since

f">c>0
for some constant, we haveR¢(x,y) > §(x—y)? = R%Xz(x,y). Consider also
the matrixRs (X,Y) = f(X) — f(Y) — (X=Y) f'(Y), noting that t(Rgxz(X,Y)) =

tr(S$(X—Y)?). Fori € {1,...,N}, with ¢;j = |(&,n;)|?, and with summations on
i €{1,...,N}, we have

(& .Re(XY)&) = f06)+ 3 (=6 Fyj) —xai (v +ciyif'(y))
J
= D CiR06LY)) = Y GiRge(%,Yi),
] ]

where at the middle step we use the fact fiatij = 1. After summing on €
{1,...,N} we have

tr(F(X) — F(Y) = (X=Y)f'(Y)) > gtr(x —v)2>0. (4.4.3)
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Now take successivelgX,Y) = (A, (A+B)/2),(B,(A+B)/2). After summing
the resulting inequalities, we have for arbitrayB j‘f?fz) that

tr (f(%A+ %B)) < %tr(f(A)) + %tr(f(B)) :

The result follows for general convex functiohdy approximations. O

We can now apply Corollary 4.4.11 and Lemma 4.4.12 to thetfonc
f({Xn(i, j) }1<i<j<n) = tr(f(Xn)) to obtain the following.

Theorem 4.4.13Let (Rj,i < j) and (Q;j,i < j) be probability measures sup-
ported on a convex compact subset KRofLet Xy be a Hermitian matrix, such
that OXn (i, j), | < j, is distributed according toiR, andOXn(i, j), i < j, is dis-
tributed according to @;, and such that all these random variables are indepen-
dent. Fixd:(N) = 8/K|/ma/N. Then, for anyd > 4,/|K|51(N), and any convex
Lipschitz function f ofR,

PN (Jtr(f (X)) — EM[tr(f (Xx))]| = N9)

32K| , 1 &2
< —N — N . 4.4.4
=73 eXp< 16|K|2a2[16|K||f|fg aN)] (4.4.4)

4.4.2 Concentration inequalities for matrices with depesmat entries

We develop next an approach to concentration inequaliteagd on semigroup
theory. When working ofR™, this approach is related to concentration inequali-
ties for product measures, and in particular to the LSI. Hesgts great advan-
tage is that it also applies to manifolds, through the Bakmery criterion.

Our general setup will be concerned with a manifelcequipped with a mea-
sureu. We will consider eitheM = R™ or M compact.

The setup with M= R™ and u =Lebesgue measure

Let ® be a smooth function fro®™ into R, with fast enough growth at infinity
such that the measure

Ho(dX) 1= %efcb(xl,m,Xm)Xmmdxm

is a well defined probability measure. (Further assumptid will be imposed
below.) We consider the operatéfs on twice continuously differentiable func-
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tions defined by
m
Lo=0—(00)-0= Zl[aiz — (a®)a].
i=

Then, integrating by parts, we see th#} is symmetric inL?(ue), that is, for any
compactly supported smooth functiohg,

[ (1Ze9)dto = [ (a%of) dbo.

In the rest of this section, we will use the notatjapf = [ fdue.

Let # denote a Banach space of real functiondvbnequipped with a partial
order <, that containsC,(M), the Banach space of continuous functionshdn
equipped with the uniform norm, with the latter being densed. We will be
concerned in the sequel with = L?(lg ).

Definition 4.4.14A collection of operatorg§R )i>o with B : Z—% is aMarkov
semigroupwith infinitesimal generator? if the following hold.
(i) Pof = f forall f € A.
(il) The mapt—R is continuous in the sense that for &l 4, t—R f is a con-
tinuous map fronR ;. into 4.
(iii) For any f € # and(t,s) € R2, R sf = RPsf.
(iv) R1=1fort >0, andR, preserves positivity: for each> 0 andt > 0,Rf > 0.
(v) For any functionf for which the limit exists,

ZL(f) = mt—lmf —f). (4.4.5)
The collection of functions for which the right side of (&fexists is thelomain
of £, and is denote® (.Z).

Property (iv) implies in particular thafR || < ||f|l~. FurthermoreR is re-
versible inL?(Uo), i.e., do(fRQ) = He(gR ) for any smooth functions, g. In
particular,uq is invariantundeR: thatis,usR = Ue. It also follows immediately
from the definition that, for any € 2(.¢) andt > 0,

feg(¥) = Rfc (%), £Rf=R.ZLf. (4.4.6)

In what follows we will be interested in the case whexe= %, at least as
operators on a large enough class of functions. We introddaeily of bilinear
formsI", on smooth functions by settiig(f,g) = fgand, forn > 1,

1
M(f,g9) = > (ZLoln-1(f,9) —Th-1(f, Zo0) — Tn-1(9, Lo T)) .
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We will only be interested in the cases- 1, 2. Thus, thearré du champ operator
"1 satisfies

1
I‘l(f,g):E(Zcpfg—f.,%,g—g,%,f), (4.4.7)
and thecarré du champ &ré operator , satisfies
Fo(f, 1) = S{Lol1(f, 1)~ 2M4(1, Zo )}, (4.4.8)

We often writel";(f) for I'i(f, f), i = 1,2. Simple algebra shows thBj(f) =
S™.(8f)2 and
m

m
ra(f. =% (30 1) + > dfHesg®);oif, (4.4.9)
i,]=1 i,]=1

with Hesg®);; = Hesg®);i = d,0; P the Hessian of.
Remark 4.4.15We introduced the formE,(f, f) in a purely formal way. To

motivate, note that, assuming all differentiation andtnagian be taken as written,
one has

Fo(f.0) = (ATna(1.9) T 1(AT,AG) oo

=N

5 (Zoln-1(f,9) —Tn-1(f, Zog) — Mn-1(9, Zof)) . (4.4.10)

We will see below in Lemma 4.4.22 that indeed these manijuaiare justified
whenf, g are sufficiently smooth.

Definition 4.4.16We say that th&akry—Emery conditiodenoted BE) is satisfied
if there exists a positive constant> 0 such that

ra(f,f) > %rl(f,f) (4.4.11)

for any smooth functiorf.

Note (by takingf = 3 ajx; with g arbitrary constants) that the BE condition is
equivalentto

1 . .
Hesgd)(x) > EI for all x e R™, in the sense of the partial order

on positive definite matrices (4.4.12)

Theorem 4.4.17Assume thatb € C?(R™) and that the BE conditiori4.4.12)
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holds. Thenpug satisfies the logarithmic Sobolev inequality with constarihat
is, for any fe L?(uo),

f2
/leogmduw < ZC/Fl(f,f)duq,. (4.4.13)

In the sequel, we 16C;, (R™) denote the subset & (R™) that consists of func-
tions all of whose derivatives have polynomial growth atriit§i. The proof of
Theorem 4.4.17 is based on the following result which respustronger assump-

tions.

Theorem 4.4.18Assume the BE conditiof.4.12) Further assume tha® <
C,(R™). Thenuy satisfies the logarithmic Sobolev inequality with constant

From Theorem 4.4.17, (4.4.9) and Lemma 2.3.3 of Section23mnmediately
get the following.

Corollary 4.4.19Under the hypotheses of Theorem 4.4.17,
Ho (IG— / G(X) o (dX)| > 5) < 207 %/206%, (4.4.14)

Proof of Theorem 4.4.17(with Theorem 4.4.18 granted). F&> 0,M > 1, and
setB(0,M) = {x e R™: ||x||2 < M}. We will construct below approximations of
® by functions®y ¢ € C, (R™) with the following properties:

poly

Sup [Dye(x) — B(X)| <&,
xeB(0,M)

1
Hesgdy ) > ——1 uniformly. 4.4.15
gPm) > cre un y ( )

With such a constructiorya,,, converges weakly (a8l tends to infinity ance
tends to 0) towardie, by bounded convergence. Further, by Theorem 4.4.18,
for any M, € as aboveyqs,, , satisfies (4.4.13) with the constac#- £ > 0. For

f2 smooth, bounded below by a strictly positive constant, anmdstant outside a
compact set, we deduce tha satisfies (4.4.13) by lettinil go to infinity ande

go to zero in this family of inequalities. We then obtain tloaibd (4.4.13) for all
functionsf € L?(ue) with [T1(f, f)due < o by density.

So it remains to construct a famityy ¢ satisfying (4.4.15). Fod > 0, we let
Ps be a polynomial approximation @ on B(0,2M) such that

sup [[HessPs)(x) — Hes$®)(x) o <

, P5(0) = ®(0), OP5(0) = O®(0)
xeB(0,2M) 4
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with || - || the operator norm on MafR). Such an approximation exists by Weier-
strass’ Theorem. Note that

sup  [Rs(X) — (x|

xeB(0,2M)

2
< sup 36%. (4.4.16)

/ " ada(x, (HesgPs)(ax) — Hess®) (ax))x)
xeB(0,2M) | /0

With c;* = ¢t — ¢ > 0 for 5 small, note that He$Bs)(x) > ¢, I on B(0,2M)
and definéPs as the function ofR™ given by

1
B0 = sup {Psy) + s (<) + 5 [x- I3} .

yeB(0,2M) Cs
Note thatPs = Ps onB(0,2M) whereas Hegs) > c; 'l almost everywhere since
the map

1 2 1 2
X—  sup 3 Ps(y) +OPs(y) - (X—y) + 5~ lIx=y[" ¢ — 5~ IX]
yeB(0,2M) Cs Cs

is convex as a supremum of convex functions (and thus itsidtesshich is al-
most everywhere well defined, is nonnegative). Finally, ¢firee aCy;, (R™)-
valued function we put, for some sma|l

D5:x) = [ B+ t2)u(2

with u the standard centered Gaussian law. By (4.4.16) and $ineePs on
B(0,M), we obtain forx € B(0,M),

Au(d,t) = sup |Ps(x)—PD(X)|
xeB(0,M)

. ~ SM?
< sup |Ps(x+tz) — Ps(X)|du(z) + ——
xeB(0,M) 2

Thus,Am(9d,t) vanishes whe® andt go to zero and we choose these two pa-
rameters so that it is bounded byMoreover®;; belongs taCy, (R™) since the
density of the Gaussian law@’ andPs has at most a quadratic growth at infinity.
Finally, since Hes@®s) > c;'I almost everywhere, He®g, > c;*l everywhere.
To conclude, we choos®small enough so thaty < c+¢. O

Our proof of Theorem 4.4.18 proceeds via the introductiotmefsemigrou®
associated withzy through the solution of the stochastic differential ecurati

dX* = —0D(X)dt+ v2dw , X§ = x, (4.4.17)
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wherew; is anm-dimensional Brownian motion. We first verify the propestad
the solutions of (4.4.17), and then deduce in Lemma 4.4.@@sanalytical prop-
erties of the semigroup. The proof of Theorem 4.4.18 folltiwese preliminary
steps.

Lemma 4.4.20With assumptions as in Theorem 4.4.18, for amyR™, the solu-
tion of (4.4.17)exists for all te R ;. Further, the formula

Rf(x)=E(f(X)) (4.4.18)

determines a Markov semigroup o/ = L?(uo ), with infinitesimal generata?
so that?(.Z) contains G, (R™), and.Z coincides withZy on C7, (R™).

Proof Since the second derivatives ®@fare locally bounded, the coefficients of
(4.4.17) are locally Lipschitz, and the solution exists @dnique up to (possi-
bly) an explosion time. We now show that no explosion ocdarg, way similar
to our analysis in Lemma 4.3.3. L& = inf{t : |X¥| > n}. Itd’'s Lemma and
the inequalityx - (0d(x) > |x|?/c — ¢ for some constant’ > 0 (consequence of
(4.4.12)) imply that

2 5 tATh
E(Xhml9) = x —E(/0 Xs-DdJ(Xs)ds) +2E(tATy)

N

1 tATh
X+ EE (/ |XS|2ds) +(2+C)E(tAT,). (4.4.19)
0

Gronwall's Lemma then yields that
E(X5nI?) < 0@+ 2+ c)t)ele.

Since the right side of the last estimate does not depend, dnfollows from
Fatou’s Theorem that the probability that explosion ocaufaite time vanishes.
That (4.4.18) determines a Markov semigroup is then imnedreote thag is a
contraction orL?(ue) by virtue of Jensen’s inequality).

To analyze the infinitesimal generator Bf we again use Itd’s Lemma. First
note that (4.4.19) implies thdX|%;|2 < C(t)(x? + 1) for some locally bounded
C(t) . Repeating the same computation (with the funcﬂDQﬁTnFP, p positive
integer) yields thaE*|X|?P < C(t, p)(x*P + 1). For f € C2 (R™), we then get
that

tATh tATh
(Xim) =100 = [ ZotOQds+ [ "g0)dws,  (44.20
where the functiorg has polynomial growth at infinity and thus, in particular,

E(sup( otg(xsx)dws)z) <.

<1
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Arguing similarly with the term containing, f (XX), we conclude that all terms
in (4.4.20) are uniformly integrable. Takimg— o and using the fact tha, — o
together with the above uniform integrability yields that

E(104)) 10 =E [ ZofOQ)ds

Taking the limit a2 — 0 (and using again the uniform integrability together with
the continuityXy —s .0 x a.s.) completes the proof th@f, (R™) C 2(¥). 0O

Remark 4.4.211In fact, 2(.¢) can be explicitly characterized: it is the subset
of L?(ue) consisting of functiond that are locally in the Sobolev spaé*?
and such that?y f € L?(le) in the sense of distributions (see [Roy07, Theorem
2.2.27]). In the interest of providing a self-containedgdtave do not use this
fact.

An important analytical consequence of Lemma 4.4.20 isaHevfing.

Lemma 4.4.22With assumptions as in Theorem 4.4.18, we have the following
(i) If f is a Lipschitz(1) function oR™, then Pf is a Lipschitz(e?/°) function
forallt e R..

(i) If f € CH(R™), then Pf € C, (R™).

(iii) If f ,ge C2 (R™M), then the equality4.4.10)with n= 2 holds.

poly

Proof (i) By applying Itd’s Lemma we obtain that
d 2
Gi X = =200 =) (00 — De(}) < — 21X =X

In particular, | X — XY| < |x—yle~2/¢, and thus forf Lipschitz with Lipschitz
constant equal to 1, we hayB(X¥) — f(X)| < |x—y|e 2/C. Taking expectations
completes the proof.

(ii) Since f € C; (R™), we have thaf € Z(¢) andZ f = Zpf. Therefore, also
Rf € 2(%), and ZoRf = R%of € L?(Uop) (SinceZof € L?(Uup) andR is a
contraction orL?(ge)). By part (i) of the lemma|0R f| is uniformly bounded
and, by assumptioril]®| has at most polynomial growth. It follows thAR f,
which exists everywhere, satisfies

ARTf =g,

where the functiom; € L?(us) has at most polynomial growth at infinity. Stan-
dard estimates for the solutions of uniformly elliptic ejaas (for this version,
see [GiT98, Theorem 4.8]) then imply tHaf € C* (R™).

poly
(iii) By assumption,f,g € C7, (R™). Thusl'y(f,g) € C3 (R™) and, in particular,

poly
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by Lemma 4.4.20, belongs t6(.Z’) and so doeB T 1(f,g). The rest follows from
the definitions. O

Proof of Theorem 4.4.18 et h be a positive bounded continuous function so that
Jhdue = 1. We begin by proving thd® is ergodic in the sense that
lim Uo(Rh— poh)? = 0. (4.4.21)
A direct proof can be given based on part (i) of Lemma 4.4.88tdad, we present
a slightly longer proof that allows us to derive useful imediate estimates.

We first note that we can localize (4.4.21): becaBde= 1 andR f > O for f
positive continuous, itis enough to prove (4.4.21HarC,(R™) that is compactly
supported. Becausgj (K) is dense inC(K) for any compack, it is enough
to prove (4.4.21) foh € CJ(R™). To prepare for what follows, we will prove
(4.4.21) for a functiorh satisfyingh = @(Pgg) for someg € C7’, 6 > 0, andg
that is infinitely differentiable with bounded derivativea the range ofj (the
immediate interest is with = 0, ¢(x) = X).

Seth; = Rh and fors € [0,t], definey(s) = PM1(h—s,hi—s). By part (i) of
Lemma 4.4.22 1 (h_s,h_s) € 2(%). Therefore,

d 2 2
d—SW(S) = 2R 2(R-sh,R_sh) > Epsrl(ﬂ—sh; R_sh) = ELMS)?
where we use the BE condition in the inequality. In particula
[ Ohe||3 = F1(he, h) = w(0) < e 2/°y(t) = e 2/°Ry(h,h). (4.4.22)

The expressiofiy(ht, )| converges to 0 as— o becausé 1(h,h) = ||Oh||3
is uniformly bounded. Further, since for ary € R™,

1
)l = | (On(ax (1 ). x-y)da

Ix=Yll2- [11Ehe2]le < [[x—yll26™/] |Dh2l]e

IN

it follows thath (-) — pe (ht) converges almost everywhere to zero. Sipgéh) =
U (h), we conclude that, converges almost everywhere and.fif (i ) to to(h),
yielding (4.4.21).

We now prove Theorem 4.4.18 féf = h € C’ that is uniformly bounded below
by a strictly positive constant. Set

Si(t) = [ (Rlogh)dpio.

Sinceh loghy is uniformly bounded antl, € RC (R™), we have by (4.4.21) that
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Sh(t) converges to 0 as— c. Hence

00 d 00
$:(0) = [ dig;Si(t) = [ dt [ Fa(hlogh)duo. (4.4.23)

where, in the second equality, we used (4.4.7) and the fatyt¥(g)due =0
for anyg € C;, (R™) and, in particular, fog = h; logh.
Next, using the fact tha® is symmetric together with the Cauchy—-Schwarz in-

equality, we get

/ Fahloghdo = [T1(hR(logh) dho

= (/wd““’)z (/hrl(ﬂ'OQJhuF%|091ht)du<n>2 . (4.4.24)

Now, applying (4.4.22) with the function Idg (note that sincey, is bounded
below uniformly away from 0, log) is indeed smooth on the range fgj, we
obtain

/ hr1(R loghy, R logh)dp < / he 2RI (loghy, logh)dpio
= e*%t/htrl(loght,loght)ducp = e*%t/n(ht,loght)dum (4.4.25)

where in the last equality we have used symmetry of the semjpand the Leib-
niz rule forl";. The inequalities (4.4.24) and (4.4.25) imply the bound

we% - 4e—%t/rl(h% h?)dpo.

(4.4.26)

2
i logh)duo < &% |
Using this, one arrives at

S (0) g/ 4e—%dt/rl(h%,h%)duq,zzc/rl(f,f)duq,,
0

which completes the proof of (4.4.13) whére C; is strictly bounded below.

To considerf € CY, apply the inequality (4.4.13) to the functidg = 2+,
noting that™ 1 (f¢, f¢) <T41(f, f), and use monotone convergence. Another use of
localization and dominated convergence is used to comibleteroof for arbitrary
f € L2(uep) with T1(f, f) < . O

The setup with M a compact Riemannian manifold

We now consider the version of Corollary 4.4.19 applyingi® $etting of a com-
pact connected manifold of dimensiorm equipped with a Riemannian metgc
and volume measune, see Appendix F for the notions employed.
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We let® be a smooth function oM and define
Ho(d¥) = Zedu(x)
as well as the operatdfy such that for all smooth functiors f € C*(M),
Ho(1.Zeh) = Ho(nZo) = — [ g(gradf gradh)dyo.
We have, for allf € C*(M),
Zof =Af —g(gradd, gradf ),
whereA is the Laplace—Beltrami operator. In terms of a local ortromal frame
{Li}, we can rewrite the above as

Zo=Y (LF-OuLi— (Lio)L),

wherel is the Levi—Civita connection.

Remark 4.4.23For the reader familiar with such language, we note thagdall
coordinates,

m . m
ZLo=Y g0+ bla,
PRAAPR
with

b?(x) =& 3 9 (e7*¥ \/detg)g) ) .
]
We wiill not need to use this formula.

Givenf,h € C*(M) we define(Hessf,Hessh) € C*(M) by requiring that

(Hessf,Hessh) = Z(Hessf)(Li,Lj)(Hessh)(Li,Lj)
]

for all local orthonormal frame§L }.

We definel, for n > 0, as in (4.4.10). In particulaF,; andl, are given by

(4.4.7) and (4.4.8). We havg(f,h) = g(gradf,gradh) or equivalently
ri(f,h) = Z(Lif)(Lih)
1

in terms of a local orthonormal framg;}. The latter expression fdr; may be
verified by a straightforward manipulation of differentigderators. The expres-
sion forl, is more complicated and involves derivatives of the mejfrieflecting
the fact that the Levi—Civita connection does not presdrgé.te bracket. In other
words, the curvature intervenes, as follows.
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Lemma 4.4.24 (Bochner—Bakry—Emery)
Mo(f, f) = (Hessf,Hessf) + (Ric+ Hesspb)(grad f,grad f).

(See Appendix F for the definition of the Ricci tensor Ri¢).)

Proof Fix p € M arbitrarily and let|, denote evaluation gt. LetLy,...,Lm be
an orthonormal frame defined neae M. Write Oy, Lj = 5 CK L, whereCK =
g(0Oy L, Lk). We assume that the franfe; } is geodesic ap, see Definition F.26.
After exploiting the simplifications made possible by use@eodesic frame, it
will be enough to prove that

F2(f,)lp = Y ((LiL )2+ LiLj®)(Lif)(LF)) [p
1]

+ 3 (LG LGN Dl @427)
L1,

To abbreviate writeh = Li® + 5, Cl,. By definition, and after some trivial ma-
nipulations of differential operators, we have
1
Fo(f,1) = 3 (G- AL) DL 1) = (Li(LF - AL) (L)
I)J
= 3 ((LiLy )% 4 (L L)L + Lilli L] + L, ALD ) (L ).

I)J
We havelLi, Lj] = 3 (Cf —C¥ )Lk becausél s torsion-free. We also haye, Lj]|p
= 0 becauséL,} is geodesic ap. It follows that

Li,LjJLif[p = 0,
Lilli,L]flp = Z(Licil}—LiCﬁ)(kaﬂp,

(L, AL Tl = Z(LJCLH' LiLi®)(Li f)(LjF)]p.

We haveg(Oy,Lj,Lx) +9(Lj, O Lk) = Cikj +C,L = 0 by orthonormality of{L;}
and thus

> (L, L)L f)fp=— Zk(LiCE)(ka)(Lj )lp.

] i,
Therefore, after some relabeling of dummy indices, we cantkat equation
(4.4.27) holds. O

Rerunning the proofs of Theorem 4.4.18 and Lemma 2.3.3tfthis, not wor-

rying about explosions, since the process lives on a conmpaweifold, and replac-
ing throughout the spacg;, (R™) by Cy(M)), we deduce from Lemma 4.4.24 the
following.
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Corollary 4.4.251f for all x € M and ve TxM,
(Ric+ Hessb)x(v,v) > c gy (v,V),

then e satisfies the LSI (4.4.13) with constant ¢ and, further, foy differen-
tiable function G on M,

Ho (IG - / G(X) o (dX)| > 5) < 2670 /2EusM1(G0), (4.4.28)

Applications to random matrices

We begin by applying, in the setiy = R™ andu =Lebesgue measure, the gen-
eral concentration inequality of Corollary 4.4.19. By € %”N(B) we write
AP = [ A% (i, ) [ (i),
i<] i
for the product Lebesgue measure on the entries on-anceahewdiagonal of

XN, Where the Lebesgue measure@ris taken as the product of the Lebesgue
measure on the real and imaginary parts.

Proposition 4.4.2@ etV € C7,, (R) be a strictly convex function satisfying k) >

clforallx e Randsomec- 0. LetB=1or3 =2, and supposeﬁ(is arandom
matrix distributed according to the probability measure

L NIV gy,
ZV
N

Let B denote the law of the eigenvalu@s, ..., An) of X\. Then, for any Lips-
chitz function f: RNR,

Ncs2

R (If(Az,....AN) =B\ f| > ) <e 2%

Note that iff (Ay,...,Ax) = & SN, g(A), then|f|» = V2N '[g|.

Proof Takem=N(N—-1)3/2+N. Leth: ij(B) — R™ denote the one-to-one
and onto mapping as defined in the beginning of Section 2ah.d etV be the
function onR™ defined by tv(X) =V (h(X)). Note that tiXx2 > ||h(X)|*>. For
X,Y e %ﬂ,\fﬁ) we have

tr(V(X) =V(Y) = (X=Y)V'(Y)) = gllh(x) —h(Y)||?

by (4.4.3), and hence Hegs> cl,. Now the functionf gives rise to a function
f(X) = f(A1,...,An) on R™, where the); are the eigenvalues ¢f 1(X). By
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Lemma 2.3.1, the Lipschitz constants fofand f coincide. Applying Corollary
4.4.19 yields the proposition. O

We next apply, in the setup of compact Riemannian manifétesgeneral con-
centration inequality of Corollary 4.4.25. We study cortcation on orthogonal
and unitary groups. We |€(N) denote theN-by-N orthogonal group and (N)
denote theN-by-N unitary group. (In the notation of Appendix B(N) = Un(R)
andU(N) = Up(C).) We letSU(N) = {X € U(N) : detX = 1} andSQN) =
O(N) NSU(N). All the groupsO(N), SQN), U(N) andSU(N) are manifolds
embedded in Maf(C). We consider each of these manifolds to be equipped with
the Riemannian metric it inherits from MgtC), the latter equipped with the in-
ner producX - Y = trXY*. It is our aim is to get concentration results fofN)
andU (N) by applying Corollary 4.4.25 t8 Q' N) andSU(N).

We introduce some general notation. Given a compact g&uet vg denote
the unique Haar probability measure @n Given a compact Riemannian mani-
fold M with metricg, andf € C*(M), let |f| » » be the maximum achieved by
g(gradf,gradf)1/2 on M.

Although we are primarily interested BON) and SU(N), in the following
result, for completeness, we consider also the Lie gla@pN) = Uy(H) C
Maty (H).

Theorem 4.4.27 (Gromov)Let3 € {1,2,4}. Let
Gn = SQN),SU(N),USpN)
according ag3 = 1,2,4. Then, for all fe C*(Gy) andd > 0, we have
) (B(N+2) _1)52
Ve (|f — Ve, f|>8)<2e “Mren (4.4.29)

Proof Recall from Appendix F, see (F.6), that the Ricci curvaturé&g is given
by

Ric(Gn)(X, X) = (M - 1) ox(X, X) (4.4.30)

for x € Gy andX € Tx(Gn). Consider now the specialization of Corollary 4.4.25
to the following case:

e M = Gy, which is a connected manifold;

e g = the Riemannian metric inherited from Mgi), with F = R, C, H accord-
ingasp =1,2,4;

e L = the volume measure dvl corresponding tgj;
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e ®=0and (hencelp = Vg, .

Then the corollary yields the theorem. O

We next deduce a corollary with an elementary charactertwdhies not make
reference to differential geometry.

Corollary 4.4.28Let 3 € {1,2}. Let Gy = O(N),U(N), according as3 = 1,2.
Put SGy = {X € Gy : detX = 1}. Let f be a continuous real-valued function on
Gn which, for some constant C and all X € Gy, satisfies

[f(X)— F(Y)| < Ctr((X=Y)(X =Y)")¥/2. (4.4.31)
Then we have
sup |ve, f — / F(Y X)dvsg, (Y)] < 2C, (4.4.32)
XeGy
and furthermore
%ﬁfl 52

vou (110 [ 10r)dvq 0|2 8) <26 = @4z
forall & > 0.

For the proof we need a lemma which records some group-ttiesireicks. We
continue in the setting of Corollary 4.4.28.

Lemma 4.4.29 et Hy C Gy be the subgroup consisting of diagonal matrices with
all diagonal entries equal td except possibly the entry in the upper left corner.
Let H C Gn be the subgroup consisting of scalar multiples of the idgnffor
any continuous real-valued function f onQGout

[ 1 X)dvsy (¥).
THx) = [ 1(x2)dv, @),

(T'H(X) = /f(XZ)de'/“(Z).

Then we have TS£ ST f= vg f. Furthermore, if =2 or N is odd, then we
have TSf=STf =vg, f.

(SHX)

Proof It is clear thatT S= ST. SinceGy = {XY: X € SG, Y € Hx}, and Haar
measure on a compact group is both left- and right-invariaifdllows thatT S f

is constant, and hence the6 f = vg, f. The remaining assertions of the lemma
are proved similarly. O
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Proof of Corollary 4.4.28 From (4.4.31) it follows thatf — T f| < 2C. The
bound (4.4.32) then follows by applying the previous lemkiva.turn to the proof
of (4.4.33). By mollifyingf as in the course of the proof of Lemma 2.3.3, we
may assume for the rest of this proof thlat C*(Gn). Now fix Z € Hy and
definefz € C*(SGy) by fz(Y) = f(Y 2), noting thatvsg, fz = (Sf)(Z) and that
the constanC bounds|fz| # sg,. We obtain (4.4.33) by applying (4.4.29) fo
and then averaging ovérc Hy. The proof is complete. O

We next describe a couple of important applications of Gargl4.4.28. We
continue in the setup of Corollary 4.4.28.

Corollary 4.4.30 Let D be a constant and let\pDy, € Maty be real diagonal
matrices with all entries bounded in absolute value by D. Edie a Lipschitz
function onR with Lipschitz constanf| . Set {X) = tr(F (D + XDnX*)) for
X € Gn. Then for every > 0 we have

(B('\i;rz) _ 1)N52
% f—vg,f| > ON) <2exp| — .
GN (| GN |7 )7 p 16D2||F|‘?(f

Proof To abbreviate we writ¢X|| = (tr X X*)1/2 for X € Maty(C). ForX,Y € Gy
we have

[(X) = f(Y)] < V2N|[F|| [ XD\X* —YD{Y*|| < 2V2ND|[X —Y|].

Further, by Lemma 4.4.29, sindef = f, we havevg, f = Sf. Plugging into
Corollary 4.4.28, we obtain the result. O

In Chapter 5, we will need the following concentration ré$oit noncommuta-
tive polynomials.

Corollary 4.4.31Let X% € Maty(C) fori =1,...,k be a collection of nonrandom
matrices and let D be a constant bounding all singular valoEthese matrices.
Let p=p(ty,...,t:2) be apolynomialin k-2 noncommuting variables with com-
plex coefficients, and for X U(N), define {X) = trp(X,X*,Xy,...,X). Then
there exist positive constantg N Ng(p) and c= c(p, D) such that, for any > 0
and N> No(p).

oy (If = Vo F| > ON) < 27N, (4.4.34)

Proof We may assume without loss of generality thatt;, - - -tj, for some indices
i1,...,ig€{1,...,k+2},and also thal > ¢. We claim first that, for alK € U(N),

w f = / (Y X)dveug (Y) = (SH(X). (4.4.35)
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For some integea such thata| < ¢ we havef (€9X) = d29f(X) for all 6 € R
andX € U(N). If a=0, thenSf= vy, f by Lemma 4.4.29. Otherwise, if
a> 0, thenvy f =0, but alsoS =0, becausd (e?™/NX) = e?™a/Nf(X) and
e?a/N| e SU(N). This completes the proof of (4.4.35).

It is clear thatf is a Lipschitz function, with Lipschitz constant depending
only on/ andD. Thus, from Corollary 4.4.28 in the cage= 2 and the equality
v f = Sf, we obtain (4.4.34) fop =t;, ---tj, with No = £ andc = ¢(¢,D),
which finishes the proof of Corollary 4.4.31. O

Exercise 4.4.3ZProve Lemma 2.3.2.

Hint: follow the approximation ideas used in the proof of Theorefm17, replac-
ingV by an approximatiole (x) = [V (x+ €z)u(d2) with p the normal distribu-
tion.

Exercise 4.4.33n this exercise, you provide another proof of Propositich26
by proving directly that the law

N
RN (dAy,...,dAn) = Zive*NZi”:lVWA(Ai)ﬁ rld)\i
N i=

on RN satisfies the LSI with constarfiNc)~X. This proof extends to th@-
ensembles discussed in Section 4.5.
(i) Use Exercise 4.4.32 to show that Theorem 4.4.18 extenttetcase where

N
dA) = N-ZV(Ai)—g-glogMi —)\j|.
i= iZ]

(Alternatively, you may prove this directly by first smoathid.)
(i) Note that

B o BA=A)? if k£ 1,
HeSS‘(—Ei; log|Ai — Aj| )k = { BYia(—A)2 otherwise,

is a nonnegative matrix, and apply Theorem 4.4.18.

4.5 Tridiagonal matrix models and the 8 ensembles

We consider in this section a class of random matrices tleatratiagonal and
possess joint distribution of eigenvalues that generaltizeclassical GOE, GUE
and GSE matrices. The tridiagonal representation has sdrantages, among
them a link with the well-developed theory of random Schiogdr operators.



4.5 TRIDIAGONAL MATRIX MODELS AND [B ENSEMBLES 303

4.5.1 Tridiagonal representation g8 ensembles

We begin by recalling the definition gf random variables (with degrees of
freedom).

Definition 4.5.34The density orfR

ol-t/2yt-15-%2/2
fi(X) = ————
r(t/2)

is called they distributionwith t degrees of freedom, and is denopged

Here,l'(-) is Euler's Gamma function, see (2.5.5). The reason for theeria that
if t is integer andX is distributed according ta:, thenX has the same law as

\ /2}21 Eiz whereé; are standard Gaussian random variables.

Let & be independent i.i.d. standard Gaussian random variable=r® mean
and variance 1, and le§ ~ x;g be independent and independent of the vari-
ables{¢&i}. Define the tridiagonal symmetric matrbiy € Maty(R) with en-
triesH(i, j) = O if |i — j| > 1, Hn(i,i) = /2/B& andHn(i,i +1) = Yn-i/\/B,

i =1,...,N. The main result of this section is the following.

Theorem 4.5.35 (Edelman—Dumitriu) The joint distribution of the eigenvalues
of Hy is given by

Cn(B)AN )Pe 7 5MaA? (4.5.1)

where the normalization constani@3) can be read off2.5.11)

We begin by performing a preliminary computation that poVéeorem 4.5.35
in the casg3 = 1 and also turns out to be useful in the proof of the theorerhédn t
general case.

Proof of Theorem 4.5.35 3 = 1) Let Xy be a matrix distributed according to the
GOE law (and in particular, its joint distribution of eigetues has the density
(2.5.3) withB = 1, coinciding with (4.5.1)). Sefn = Xn(1,1)/+v/2, noting that,
due to the construction in Section 2.5&)},, is a standard Gaussian variable. Let
X,E,l’l) denote the matrix obtained froiy by striking the first column and row,
and letz], ; = (Xn(1,2),...,Xn(1,N)). Thenzy_; is independent oX,E,l’l) and
&n. Let Hy be an orthogonaN — 1-by-N — 1 matrix, measurable 00(Zn-1),
such thatinZn_1 = (||Zn-1]|2,0,...,0), and setYy_1 = ||Zn_1]|2, noting that
Yn_1 is independent o€y and is distributed according toy_1. (A particular
choice offy is theHouseholder reflectdriy = | —2uu' /||u||3, whereu=Zy_1 —
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1 0

Then the law of eigenvalues blyXyHy) is still (4.5.1), while

HZN,;LHQ(].,...,O).) Let

V26N Yao1 Oneo
YN
HNXNH&: e XN-—1 ’

On—2

whereXy_1 is again distributed according to the GOE and is indepenalie&y
andYy_;. Iterating this constructioN — 1 times (in the next step, with the House-
holder matrix corresponding %\ _1), one concludes the proof (wih=1). O

We next prove some properties of the eigenvalues and eigemgeof tridiag-
onal matrices. Recall some notation from Section ZRK:denotes the collection
of diagonalN-by-N matrices with real entries7 denotes the subset &y con-
sisting of matrices with distinct entries, asf° denotes the subset of matrices
with decreasing entries, that#° = {D ¢ 28 : Di; > Dj11}. Recall also that
42/,\21) denotes the collection ®-by-N orthogonal matrices, and I@t',\ﬁl)”’ denote
the subset o@/,\ﬂl) consisting of matrices whose first row has all elementstktric
positive.

We parametrize tridiagonal matrices by two vectors of lerigtand N — 1,
a=(a,...,an) andb = (by,...,by_1), so that ifH € j‘f,\fl) is tridiagonal then
H(i,i) = an—i+1 andH(i,i+ 1) = bn_i. Let Iy C j‘f,\fl) denote the collection of
tridiagonal matrices with all entries bfstrictly positive.

Lemma 4.5.36The eigenvalues of any & .7y are distinct, and all eigenvectors
V= (vy,...,vN) of H satisfy y # 0.

Proof The null space of any matrid € .7} is at most one dimensional. Indeed,
supposeHv = 0 for some nonzero vecter= (vi,...,vN). Because all entries of
b are nonzero, it is impossible thet = O (for then, necessarily ali = 0). So
suppose; # 0, and therv, = —ay/bny-_1. By solving recursively the equation

bn—iVic1+an—iVi = —bnoi—1Vipr, i=2,... ,N—=1, (4.5.2)

which is possible because all entriesloére nonzero, all entries ofare deter-
mined. Thus, the null space of ai/€ 7y is one dimensional at most. Since
H—Al € 9 for anyA, the first part of the lemma follows. The second part fol-
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lows because we showed thavi# O is in the null space dfl — Al, itis impossible
to havev; = 0. a

Let H € 4, with diagonalsa andb as above, and writel = UDUT with
D € 28°andU = V,..., W] orthogonal, such that the first row df denoteds =
(vi,...,W)'), has nonnegative entries. (Note thjat|, = 1.) Write d =
(D11,...,DNN). LetAS = {(X1,...,Xn) i X1 > X2--- > xn } and let

Sft={v=(v1,...,.w) €RN: |lv]2=1, v > 0}.

(Note thatAy, is similar toAy, except that the ordering of coordinates is reversed.)

Lemma 4.5.37The map
(a,b) — (d,v) : RN x RN™Y — Ag x SN2 (4.5.3)
is a bijection, whose Jacobian J is proportional to

A(d
7{1{\,:1(1 3:1 (4.5.4)

Proof That the map in (4.5.3) is a bijection follows from the prodflemma
4.5.36, and in particular from (4.5.2) (the méhv) — (a,b) is determined by
the relationrH =UDU'T).

To evaluate the Jacobian, we recall the proof of fhe 1 case of Theorem
4.5.35. LetX be a matrix distributed according to the GOE, consider tiakgaty-
onal matrix with diagonalg, b obtained fromX by the successive Householder
transformations employed in that proof. WrKe=U DU * whereU is orthogonal,

D is diagonal (with elementd), and the first romu of U consists of nonnegative
entries (and strictly positive except on a set of measurBl6e that, by Corollary
2.5.4,uis independent oD and, by Theorem 2.5.2, the density of the distribution
of the vector(d,u) with respect to the product of the Lebesgue measuragpn
and the the uniform measure &1 is proportional toA(d)e~ 2197/4, Using
Theorem 4.5.35 and the first part of the lemma, we concludehbdatter (when
evaluated in the variablesb) is proportional to

2 2 N—1 N—-1
Je s F g |-| bl = Je S/ |—l o,
i= i=

The conclusion follows. O

We will also need the following useful identity.
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Lemma 4.5.38With notation as above, we have the identity
Micy b
A(d) = = (4.5.5)
Mo

Proof Write H =UDU". Lete; = (1,0,...,0)". Letw! be the first column of
UT, which is the vector made out of the first entries/bf. .., V. One then has

N-1
rlb; = defe,Hey,...,HN te;] = defe;,UDU Tey,... ,UDN1UTey)
i=

+defw!, Dw!, ..., DN"Iwl] = +A(d) -ﬁ\}l'

Because all terms involved are positive by constructiom;ttlis actually a+, and
the lemma follows. O

We can now conclude.

Proof of Theorem 4.5.35 (generaB > 0) The density of the independent vectors
a andb, together with Lemma 4.5.37, imply that the joint densitylafndv with
respect to the product of the Lebesgue measur&fpand the uniform measure
onSY1is proportional to

N-1 iB—1__BsN @2
J rlbi e 420 (4.5.6)
i=

Using the expression (4.5.4) for the Jacobian, one has

N-1 . N-1 p-1 N p-1
Jlub;ﬁle(d)(Elb}) = A(d)P <.|1\/1> :

where (4.5.5) was used in the second equality. Substitini(§5.6) and integrat-
ing over the variableg completes the proof. O

4.5.2 Scaling limits at the edge of the spectrum

By Theorem 4.5.35, Corollary 2.6.3 and Theorem 2.6.6, wenktiat Ay /v/N,
the maximal eigenvalue dfly/+/N, converges to 2 aNl — . It is thus natural
to consider the matrixiy = Hy — 2v/Nly, and study its top eigenvalue. For
B =1,2,4, we have seen in Theorems 3.1.4 and 3.1.7 that the top eigenvf
N/6Hy converges in distribution (to the Tracy-Widom distributi=s). In this
section, we give an alternative derivation, valid for @Jlof the convergence in
distribution, although the identification of the limit doest involve the Tracy—
Widom distributions.
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One of the advantages of the tridiagonal representatiorhebfiem 4.5.35 is
that one can hope that scaling limits of tridiagonal magioaturally relate to
(second order) differential operators. We begin by proxgdi heuristic argument
that allows one to guess both the correct scale and the fothedimiting oper-
ator. From the definition of variables witht degrees of freedom, such variables
are asymptotically (for large) equivalent to\/t + G/+/2 whereG is a standard
Gaussian random variable. Considfar as an operator acting on column vectors
W= (Y1,...,n)". We look for parameters, y such that, if one writea = [xN°]
and Y, = W(x) for some “nice” function¥, the action of the top left corner of
NYHy on (s approximates the action of a second order differential apeonW.
(We consider the upper left corner because this is whereffkgiagonal terms
have largest order, and one expects the top of the spectrinm telated to that
corner.) Toward this end, expatd in a Taylor series up to second order, and
write Yne1 ~ Pn = N"TW (x) + N~29W"(x) /2. Using the asymptotic form gf
variables mentioned above, one gets, after neglectingl emal terms, that, for
a < 1 andxin some compact subset Bf, ,

(NFFi) () ~ N2
+\/ %NV (26511) +GP + Gﬁz_)l) W) —xNTHRR(x), (4.5.7)

where{Grq)}, i =1,2, are independent sequences of i.i.d. standard Gaussian va
ables. It is then natural to try to repres@ﬂ) as discrete derivatives of indepen-
dent Brownian motions: thus, &%, Wy denote standard Brownian motions and
(formally) write Gi = N=9/2W, G\Z) = N~9/2W/, with the understanding that

a rigorous definition will involve integration by parts. Stituting in (4.5.7) and
writing By = (W 4 W) /+/2, we obtain formally

2NY-9/2g]
VB

where (4.5.8) has to be understood after an appropriagratten by parts against
smooth test functions. To obtain a scaling limit, one thezdsdo taker, y so that
1 1

I M VR MV S, SN V.
R e =3V=5

In particular, we recover the Tracy—Widom scaling, and ekplee top of the
spectrum oNY/®Hy to behave like the top of the spectrum of the “stochastic Airy
operator”

(NYANY)(N) ~ NYHY2-2a97 (x) 4 W(x) — xNHV-129(x) | (4.5.8)

2
2
Hp : d — X+ ——=B,. (4.5.9)
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The rest of this section is devoted to providing a precisendifn of Hg, devel-
oping some of its properties, and proving the convergentieefop eigenvalues
of N¥/6Hy to the top eigenvalues dfig. In doing so, the convergence of the
quadratic forms associated with/6Hy toward a quadratic form associated with
Hg plays an important role. We thus begin by providing someyditall machin-
ery that will be useful in controlling this convergence.

On smooth functions of compact support(@ ), introduce the bilinear non-
degenerate form

(f.q). :/Ow f’(x)g’(x)dx+/Ow(1+x)f(x)g(x)dx.

Define %, as the Hilbert space obtained by completion with respedtedriner
product(-,-), (and norm|| f||. = \/(f, f).). Because of the estimate

[FO) = fW) < VIX=YII[ ][+ (4.5.10)

elements ofZ, are continuous functions, and vanish at the origin. Funtinep-
erties of.Z, are collected in Lemma 4.5.43 below.

Definition 4.5.39A pair (f,A) € .%, x Ris called areigenvector—eigenvalue pair
of Hg if || f[|2 = 1 and, for any compactly supported infinitely differenteafinc-
tion ¢,

)\/wap(x)f(x)dx = /Ow[qf’(x)f(x)—X<P(X)f(><)]dx

2 0 00
-5 U (p/(x)f(x)Bde+/ (p(x)BXf’(x)dx] . (4.5.11)
0 0
Remark 4.5.40 Equation (4.5.11) expresses the following{f,A) is an
eigenvector—eigenvalue pair éfg if Hgf = Af in the sense of Schwarz dis-
tributions, where we understarfdx)B;, as the Schwarz distribution that is the
derivative of the continuous functiof(x)Bx — fg' By f’(y)dy.

Remark 4.5.41Using the fact thaf € .%,, one can integrate by parts in (4.5.11)
and express all integrals as integrals involvigigonly. In this way, one obtains
that (f,A) is an eigenvector—eigenvalue pairtdf if and only if, for Lebesgue
almost everyi and some constaftt, f'(x) exists and

f’(x):C+/OX(/\ +G)f(e)de—BXf(x)+/0XBef’(9)d9. (4.5.12)

Since the right side is a continuous function, we concludefthcan be taken con-
tinuous. (4.5.12) will be an important tool in deriving pespes of eigenvector—
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eigenvalue pairs, and in particular the nonexistence ofligenvector—eigenvalue
pairs sharing the same eigenvalue.

The main result of this section in the following.

Theorem 4.5.42 (Ramirez—Rider-Virag)Fix B > 0 and letA) > A} ; > -+
denote the eigenvalues ofHFor almost every Brownian pathBfor each k> 0,
the collection of eigenvalues Hifs possesses a well definegtist largest element
M. Further, the random vectorfl%l‘i()\,\’}‘fj — 2\/N)‘j‘:0 converges in distribution
to the random vectofA;)X_.

The proof of Theorem 4.5.42 will take the rest of this sectiois divided into
two main steps. We first study the operdthy by associating with it a variational
problem. We prove, see Corollary 4.5.45 and Lemma 4.5.4h¢hat the eigen-
values ofH g are discrete, that they can be obtained from this variatjoredblem
and that the associated eigenspaces are simple. In a sdepneve introduce a
discrete quadratic form associated with = N¥/®Hy and prove its convergence
to that associated withi g, see Lemma 4.5.50. Combining these facts will then
lead to the proof of Theorem 4.5.42.

We begin with some preliminary material related to the spate

Lemma 4.5.43Any f € %, is Holder(1/2)-continuous and satisfies
XA <2/ ., x>1. (4.5.13)

Further, if { fn} is a bounded sequence.t. then it possesses a subsequence that
converges to some f i, in the following senses: (i)nf— 2 f, (i) f, —
weakly in 12, (iii) f, — f uniformly on compacts, (ivl,f— f weakly in.%,.

Proof The Holder continuity statement is a consequence of (@)5.The latter
also implies that for any functioh with derivative inL?,

)1 = (11091 = VY=l 7ll2)
and in particular, for any,
F2(x) < 2| fl|2]| '] (4.5.14)

(Indeed, fixx and consider the se¥ = {y: |y — x| < f2(x)/4(/f'||3}. On A,
If(y)| > [f(x)|/2. Writing || |3 > [, f2(y)dythen gives (4.5.14).) Sindgf |2 >

[ (1+x)f2(x)dx > z ;" f2(x)dx, applying the estimate (4.5.14) on the function
f(2)1ox yields (4.5.13).
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Points (ii) and (iv) in the statement of the lemma follow frahe Banach—
Alaoglu Theorem (Theorem B.8). Point (iii) follows from thaniform equi-
continuity on compacts of the sequenfgethat is a consequence of the uniform
Holder estimate. Together with the uniform integrability, [ x f2(x)dx < oo,
this gives (i). O

The next step is the introduction of a bilinear form.&f associated witlti g.
Toward this end, note that if one interpret$igg for ¢ smooth in the sense of
Schwarz distributions, then it can be applied (as a lineactional) again onp,
yielding the quadratic form

@0 =198+ IVR0IB+ s [T Ba0gax (4519

We seek to extend the quadratic form in (4.5.15) to function&,. The main
issue is the integral

2 [ B9 (9dx= [ Bu(p(x?)dx.

Since it is not true thaBy| < C,/x for all largex, in order to extend the quadratic
form in (4.5.15) to functions inZ., we need to employ the fact thBf is itself
regular inx. More precisely, define

_ X+1
By = / B,dy.
X

For ¢ smooth and compactly supported, we can wBje= By + (Bx — B_X) and
integrate by parts to obtain

| Bx(oyax=— [ (B¢ 9dx+2 [ (B Bg(99 (¥x.
0 0 0

This leads us to define
2
(@O =15+ ]vVXe(X) 15— —=

L o2 ["ratog o

(4.5.16)
where
Q= (Bx) =Byi1—Bx, Rq=Bx—Bx. (4.5.17)

As we now show, this quadratic form extends#%.

Lemma 4.5.44(a) For eache > 0 there exists a random constant C (depending
on 3, € and B only) such that

4 VIR
4 QIR _
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(b) The quadratic forni-, '>HB of (4.5.16)extends to a continuous symmetric bi-
linear form on.%, x .%,: there exists a (random) constant,@epending on the
Brownian path Bonly, such that, almost surely,

1
SIFIE=CIITIZ < (F, Fhmy <CUITIE. (4.5.19)

Proof For part (a), note that
Qx| VIR < Ziy + Zig 11,

whereZz; = SURc(0,1) |Biry —Bi|. The random variabled; are i.i.d. and satisfy
P(Z > t) <4P(G >t) whereG is a standard Gaussian random variable. From
this and the Borel-Cantelli Lemma, (4.5.18) follows.

We turn to the proof of (b). The sum of the first two terms in thedimition
of (f,f)n, equals|f[|2— [ f[|5. By the estimate (4.5.18) 0@ with & = 1/10,
the third term can be bounded in absolute value| by?/104-C4|| f||3 for some
(random) constanE; (this is achieved by upper boundi@(1+ /x) by C; +
x/10). Similarly, the last term can be controlled as

® 1 / 1.2 1.0 2

— < « — < = .

/0 (C+ 25V T C0ldx < Cl Il + 51 112 < S 12+ Call 13
Combining these estimates (and the fact {Hdt. dominated f ||) yields (4.5.19).

O

We can now consider the variational problem associatedthvétlquadratic form
<-,->HB of (4.5.16).

Corollary 4.5.45The infimum in the minimization problem

= inf f, f 4.5.20
0 fef*l.HfH2:1< RLE ( )

is achieved at some € .%,, and (f,—/Ag) is an eigenvector—eigenvalue pair for
HB’ with —Ag = Aq.

We will shortly see in Lemma 4.5.47 that the minimizer in Qtany 4.5.45 is
unique.

Proof By the estimate (4.5.19), the infimum in (4.5.20) is finite.t £&}» be a
minimizing sequence, that jsfy||2 = 1 and(fy, fn>HB — No. Again by (4.5.19),
there is some (random) constéhso that|| f,||. < K for all n. Write

(o g = 1 Foll2— 1ol 3= % [ outiwan-2 [T R 00

Let f € Z, be a limit point off, (in all the senses provided by Lemma 4.5.43).
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Then 1= ||fy]|2 — || f||2 and hencd|f||> = 1, while liminf||fa|l. > || f]l.. Fix

€ > 0. Then, by (4.5.18), there is a random variaklsuch that

% [/Xwafﬁ(x)dx—Z/: Refn(X) frﬁ(x)dx}

The convergence df, to f uniformly on[0, X] together with the boundedness of
|| |« then imply that

< €| fnll- -

(f,F)np < liminf (fo, o), + €K = Ao+ eK.

Sincee is arbitrary, it follows from the definition of\q that (f, f>HB = /g, as
claimed.

To see thatf,—/g) is an eigenvector—eigenvalue pair, §ix> 0 andg smooth
of compact support, and sét? = (f + @) /|| f + £¢||> (reducee if needed so
thatg # f/€). Then

(F8, £, — (F, Py

_ _2s<f,f>HB/Omf(x)qo(x)olx+2e/O (£ ()@ (X) + xF(X) (x) )dx
—% [ /0 " Qep(¥) f (X)dx— /O : Rx[qo(x)f(x)]’dx} +0(e?).

Thus, a necessary condition fbto be a minimizer is that the linear mterm in
the last equality vanishes for all such smooth and compaaihportedp. Using
the fact thatp is compactly supported, one can integrate by parts the r@rotv-
ing Q and rewrite it in terms oBy. Using also the fact thaf, f)1, = Ao, one
gets from this necessary condition tli&t —/\o) satisfies (4.5.11).

Finally, we note that by (4.5.11) and an integration by paftgg,A) is an
eigenvector—eigenvalue pair then for any compactly supp@amoothp,

)\/w(P(X)g(X)dx = /w[qf’(x)g(x)—xqo(x)g(x)]dx
0 0
_%[/O DY [ Rx[q,(x)g(x)],dx]. w21

Take a sequendem } of smooth, compactly supported functions, so that> gin
.. Applying the same argument as in the proof of Lemma 4.5.44 concludes
that all terms in (4.5.21) (withg, replacingg) converge to their value with
replacingg. This implies thatg, g)HB =-A HgH%, and in particular that < —Ag.
Since the existence of a minimizéto (4.5.20) was shown to imply thaf, —Ag)
is an eigenvector—eigenvalue pair, we conclude that inf&¢t = Aq. O
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Remark 4.5.46 The collection of scalar multiples of minimizers in Coroila
4.5.45 forms a linear subspag&. We show that is finite dimensional: in-
deed, let{ f,} denote an orthogonal (ib?) basis of.#%, and suppose that it is
infinite dimensional. By Lemma 4.5.44, there is a constasiich thaf| f||.. <C.
Switching to a subsequence if necessary, it follows from iren#.5.43 that,
converges to soméin L2, with || |, = 1, and in factf € 7. But on the other
hand,f is orthogonal to alff, in % and thusf ¢ 7%, a contradiction.

We can now repeat the construction of Corollary 4.5.45 itidely. Fork > 1,
with j‘(j(fl denoting the ortho-complement g#,_1 in L2, set

Ny = inf (f, f>Hﬁ . (4.5.22)
fe 2| fll=1fesnt

Mimicking the proof of Corollary 4.5.45, one shows that thémum in (4.5.22)
is achieved at somé € .%,, and(f,—/A) is an eigenvector—eigenvalue pair for
Hg, with —/\x = A¢. We then denote by the (finite dimensional) linear space
of scalar multiples of minimizers in (4.5.22). It followsahthe collection of
eigenvalues oHg is discrete and can be orderedias> Ay > ---.

Our next goal is to show that the spac#g are one dimensional, i.e. that each
eigenvalue is simple. This will come from the analysis 06(42). We have the
following.

Lemma 4.5.47For each given CA and continuous function.Bthe solution to
(4.5.12)is unique. As a consequence, the spa#gsre all one-dimensional.

Proof Integrating by parts, we rewrite (4.5.12) as

£/(x) =C+ (A +x) /Xf'(e)ola—/X f’(G)dG—BX/X f’(@)d6+/XBgf’(9)d6.

° ° ° ° (4523
By linearity, it is enough to show that solutions of (4.5.2@nish wherC = 0.
But, for C = 0, one gets that for some bound&{x) = C'(A,B.,x) with C'(x)
increasing inx, |f'(x)| < C' [5|f’(6)|d6. An application of Gronwall's Lemma
shows thatf’(x) = O for all positivex. To see that’ is one dimensional, note
that if f satisfies (4.5.12) with consta@f thencf satisfies the same with constant
cC. O

Another ingredient of the proof of Theorem 4.5.42 is the espntation of the
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matrix Hy := N¥/®Hy as an operator of,. Toward this end, define (fore R..)

XN1/3
x) = N6 E[N ]H i 4.5.24
yN,l() B Z N(a)v ( )

xN1/3

yna(x) = 2N"Y6 Z (VN —Hn(i,i+1)). (4.5.25)

Standard estimates lead to the following.

Lemma 4.5.48There exists a probability space supporting the procesggé y
and two independent Brownian motionsjBj = 1,2, such that, with respect to
the Skorohod topology, the following convergence holdesisurely:

2 . .
N, (+) = \/;Bx,j +x2(1 -1)/2, j=1,2.

In the sequel, we work in the probability space determinetddiyma 4.5.48, and
write By = By 1+ By 2 (thys defining naturally a version of the operatly whose
relation to the matricelly needs clarification). Toward this end, we consider the
matricesHy as operators acting &\ equipped with the norm

N N

N
VIR = NY2 S (v(i+1) = v(i))?+ N"Z3 5 iv(i)? + N~V3 3 v(i)?,
’ i; i; i;
where we se¥(N + 1) = 0. Write (v,w)n2 = N~Y3 5N v(i)w(i) and let||v|n 2
denote the associated norm BN. Recall the random variablé appearing in
the definition of the tridiagonal matriAdy, see Theorem 4.5.35, and motivated by
the scaling in Theorem 4.5.42, introduce

1
ni = 2NTVO(VN- —=EW-i),
VB
o= 2NVS L (Ev Y.

VB

Itis straightforward to verify thag; > 0 and that, for some constantndependent
of N,

i Ki
—— —K<ni<—+K. 4.5.26
kKv/N =M= vN ( )
Also, with w.") = /2/BN-Y65k | & andw? = 5% , 4, we have that for any

€ > O there is a tight sequence of random varialigs satisfying

sup |wl((j) — w12 < giNTYB 4 k. (4.5.27)
i<k<i+N1/3
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We now have the following analog of (4.5.19).

Lemma 4.5.49There exists a tight sequence of random variabjes ¢ (N), i =
1,2,3, so that, forall N and v,

cuVIR. — c2llVIlRi2 < — (v Anvinz < es|IVIR..

Proof Using the definitions, one gets (settimgN + 1) = 0)

N
—(v,FnVnz = Nl/BZ( (i+1) —v(i))*+2N" l/SZm (i+1)
\/7 1/Gzlv2 ()& + 2N~ 1/Gzlyv v(i+1)
— S+ S-S+ S. (4.5.28)

One identifiesS; with the first term in|\v||ﬁ’*. Next, we have

i niv(iv(i+1) < \/g1 niv(i)2- _ir]iv(i +1)2

and thus, together with the bound (4.5.26), we have $hét bounded above by
a constant multiple of the sum of the second and third ternfig|i§ ,. Similarly,
we have from the bounab > —(a—b)?/3+a?/4 that

o 1 1 1 1. K
mv(iv(i+1) > —ér](Vi+1—vi)2+ 4—1rlivi2 > —ér](Vi+1—vi)2+ @w?— Zvi2

and using (4.5.26) again, we conclude that, for an apprgpeianstant(k),

2
$+S5 > §||VH§1,*—C(K)HV||§- (4.5.29)
We turn next toSs. Write dwl)) = N-/3w/!/ )Nl/s —w)}, j =1,2. Summing
by parts we get
N N

S = 3 - w oW )+ _ziéwf“vz(i)

N3 <i+Nl/3< U “))> (V2(i+1)— S 5
- W, — W, i+ W
= 1+ (4.5.30)
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Using (4.5.27) we find that

1S51] < i|v2(i +1) —V2(i)]y/EIN"Y/3 4 Kk

N _ 1N - i
< VENYSS (Wi 0) —v()*+ = 5 (6N ki NV
< ﬁnvnﬁ.*ﬂjgnvn%.

Applying (4.5.27) again to estima& , we conclude that

1
1Sl < (VE+E)IIVIIR + (= + Dknce VI3

VE
A similar argument applies t§;. Choosings small and combining with the esti-
mate (4.5.29) then concludes the proof of the lemma. O

Because the family of random variables in Lemma 4.5.49 ist tigny subse-
quence{N,} possesses a further subsequefiig} so that the estimates there
hold with fixed random variables (how independent dfl). To prove Theorem
4.5.42, it is enough to consider such a subsequence. Witk abirse of notation,
we continue to writéN instead ofNy.

Each vector € RN can be identified with a piecewise constant functigtoy
the formulaf,(x) = v([NY/3x]) for x € [0, [N%3]] and f,(x) = O for all otherx.
The collection of such functions (for a fixéd) forms a closed linear subspace of
L2:=L%(R,), denoted2N, andHy acts naturally on.2N. Let 22y denote the
projection fromL2 to L2N  L2. ThenHy extends naturally to an operator bf
by the formulaHn f = Hy 2 f. The relation between the operatttg andHg
is clarified in the following lemma.

Lemma 4.5.50(a) Let fy € L>N and supposenf— f weakly in I2, so that
NY3(fy (x4 N"Y3) — fy(x) — f/(x)  weakly in 2.
Then, for any compactly supportexd
(@.Anfn)2 = (9, 0)m, - (4.5.31)

b) Let &y € LN with || fy||n« < ¢ and||fy]l2 = 1. Then there exists an & .%Z.

and a subsequence N» « so that f, — f in L2 and, for all smooth, compactly
supportedp, one has

(@, AN, )2 —imeo (@, Fomg -
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Proof The first part is an exercise in summation by parts that we.offotsee
the second part, pick a subsequence such thatfaotmdNY/3( fy (x+N~1/3) —
fn(X)) converge weakly in? to a limit (f,g), with f(x) = fé g(s)ds(this is pos-
sible becausd fn||n« < ®). An application of the first part of the lemma then
completes the proof. O

We have now put in place all the analytic machinery needednalade.

Proof of Theorem 4.5.42Write nyx = NY8(AY , — 2v/N). Thennyy is the
kth top eigenvalue ofiy. Let vnk denote the associated eigenvector, so that
|| funll2 = 1. We first claim thatyy := limsupnn < Ax. Indeed, ifig > —c, one
can find a subsequence, that we continue to dendtg by thatnn 1, ..., Mnk) —
(é1,...,& = Nk). By Lemma 4.5.49, foij = 1,....k, |[vn j|[n. are uniformly
bounded, and hence, on a further subsequeiyge converge in_2 to a limit fj,
j=1,...,N, and thef; are eigenvectors dfi g with eigenvalue at leasfy. Since
the f; are orthogonal i and the spaces#; are one dimensional, it follows that
Ak > Nk

To see the reverse implication, that will complete the pra@fuse an inductive
argument. Suppose thai j — Aj andfy,; — fjin L?for j =1,...,k—1, where
(fj,Aj) is the jth eigenvector—eigenvalue pair fétg. Let (fy,Ax) be thekth
eigenvector—eigenvalue pair filiz. Let f? be smooth and of compact support, so
that|| f — f¢||. < &, and set

k—1
fN,k = QZN fk'g — Z <VN,j R QZN fkg>VN’j .
j—1
Since || j|[n+ < € for some fixedc by Lemma 4.5.49, an Zn ff — fy |2
is bounded by & for N large, it follows that|| fy x — 2N |In« < ce for some
(random) constart. Using Lemma 4.5.49 again, we get that

(g, AN fk) _ liminf (PNTE ANDNTE)
(ko ) Nowo  (PNFE PNTEE)

liminf Ny x > liminf
N—o0 ’ N—o0

+5(¢),
(4.5.32)
wheres(g) —¢_0 0. Applying (4.5.31), we have that

im (PNEANDNEE) = (T i dmg -

Substituting in (4.5.32), we get that

(fic: fmg
[ ill2

where agairs' (¢) —¢_0 0. This implies, after taking — 0, that

+9(¢),

liminf ny x >
N— o0

liminf NNk > Ak.
N—oo ’
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The convergence df,, — fk follows from point (b) of Lemma 4.5.50. O

4.6 Bibliographical notes

The background material on manifolds that we used in Seetibrcan be found
in [Mil97] and [Ada69]. The Weyl formula (Theorem 4.1.28)rche found in

[Wey39]. A general version of the coarea formula, Theoretn8.is due to Fed-
erer and can be found in [Fed69], see also [Sim83] and [Ev&B2gss intimi-

dating descriptions.

The physical motivation for studying different ensemblésamdom matrices
is discussed in [Dys62e]. We note that the Laguerre and Jacsembles oc-
cur also through statistical applications (the latter urtie name MANOVA, or
multivariate analysis of variance), see [Mui81].

Our treatment of the derivation of joint distributions ofjenvalues was influ-
enced by [Due04] (the latter relies directly on Weyl's foleguand [Mat97]. The
book [For05] is an excellent recent reference on the deomaif joint distribu-
tions of eigenvalues of random matrices belonging to varensembles; see also
[Meh91] and the more recent [Zir96]. Note, however, thatdineular ensembles
COE andCSEdo not correspond to random matrices drawn uniformly from the
unitary ensembles as in Proposition 4.1.6. A represemt#ti@oretic approach to
the study of the latter that also gives central limit theosdor moments is pre-
sented in [DiS94] and further developed in [DIEO1]. The glsaBon contained
in Remark 4.1.7 is motivated by the discussion in [KaS99}. rRore on the root
systems mentioned in Remark 4.1.5 and their link to the Wegbration formula,
see [Bou05, Chapter 9, Section 2].

The theory of point processes and the concept of Palm mesaappdy to much
more general situations than we have addressed in SecloA4ood treatment
of the theory is contained in [DaVJ88]. Our exposition bsitth [Kal02, Chapter
11].

Point processes’ on R whose associated difference sequenfdsee Lemma
4.2.42) are stationary with marginals of finite mean areschty/clo-stationary It
is a general fact, see [Kal02, Theorem 11.4], that all cygtégionary processes
are in one-to-one correspondence with nonzero statiofapgle point processes
of finite intensity via the Palm recipe.

Determinantal point processes were studied in [Mac75],ate® the survey
[Sos00]. The representation of Proposition 4.2.20, as agelhe observation that
it leads to a simple proof of Corollary 4.2.21 and of the CLTCafrollary 4.2.23
(originally proved in [Sos02a]), is due to [HOKPV06]. See@[HoKPV09]. The
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Janossy densities of Definition 4.2.7 for determinantatpsses were studied in
[BoSO03], see [Sos03] for the Pfaffian analog.

The argument in the proof of Proposition 4.2.30 was sugdessteus by T.
Suidan. Lemma 4.2.50 appears in [Bor99]. Lemma 4.2.52 entélom [GeV85].
A version valid for continuous time processes was provelieeam [KaM59]. The
relation between non-intersecting random walks, Browniations and queueing
systems was developed in [OcY01], [OcY02], [KoOR02] and¢Q®]. There is
a bijection between paths conditioned not to intersect antin tiling problems,
see [Joh02], [Kra90] and references therein; thus, cetilaig problems are re-
lated to determinantal processes. The relation with spantmees in graphs is
described in [BuP93]. Finally, two-dimensional deternmited processes appear
naturally in the study of zeroes of random analytic funcdices was discovered
in [PeV05], see [HOKPVO09].

The description of eigenvalues of the GUE as a diffusion @sscthat is, Theo-
rem 4.3.2, was first stated by Dyson [Dys62a]. McKean [McK®2323] consid-
ered the symmetric Brownian motion and related its eigemsio Dyson’s Brow-
nian motion. A more general framework is developed in [NoR]\B the context
of Brownian motions of ellipsoids. The relation betweerhsatonditioned not to
intersect and the Dyson process is studied in [BiBO05] armiJ05]. The ideas
behind Lemma 4.3.6 come fror8i02]. A version of Lemma 4.3.10 can be found
in [RoS93]. WherB = 1,2, 1 in that lemma is the asymptotic limit of the spectral
measure oXN-A(0) + HN-A(t). Itis a special case of free convolution (of the law
u and the semicircle law with varian¢gthat we shall describe in Chapter 5. A
refined study of the analytic properties of free convolutidgth a semicircle law
that greatly expands on the results in Lemma 4.3.15 appe#Bsio7b].

The properly rescaled process of eigenvalues convergddywteahe sine pro-
cess(in the bulk) and theiry process(at the edge), see [TrWw03], [AdIO5] and
[AdvMO5]. The Airy process also appears as the limit of vasi@ombinatorial
problems. For details, see [PrS02] or [Joh05]. Other pse®eccur in the study
of rescaled versions of the eigenvalue processes of othdona matrices. In par-
ticular, the Laguerre process arises as the scaling lintiteoow-lying eigenvalues
of Wishart matrices, see [Bru91], [KoO01] and [DemQ7], aiad the interpreta-
tion of Bessel processes conditioned not to intersect.

The use of stochastic calculus as in Theorem 4.3.20 to previeat limit theo-
rems in the context of Gaussian random matrices was intextindCabO01]. This
approach extends to the study of the fluctuations of word&of(br more) inde-
pendent Wigner matrices, see [Gui02] who considered ddimri&theorems for
words of a Gaussian band matrix and deterministic diagoa#lices.
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Proposition 4.3.23 is due to [CaGO01]. It was completed intolldarge devi-
ation principle in [GuZ02] and [GZ04]. By the contractionrmiple (Theorem
D.7), it implies also the large deviations principle fag(1), and in particular for
the empirical measure of eigenvalues for the sum of a Gau®gigner matrixXy
and a deterministic matri&y whose empirical measure of eigenvalues converges
and satisfies (4.3.23). Féf = 0, this recovers the results of Theorem 2.6.1 in
the Gaussian case.

As pointed out in [GuZ02] (see also [Mat94]), the large d8wias for the em-

pirical measure of the eigenvaluesAy + Xy are closely related to the Itzykson—
Zuber—Harish-Chandra integral, also called sphericabjral, given by

'l(\JZ)(A’ D) = /e%ﬁtr(UDU*A)dm(\lB)(U),

where the integral is with respect to the Haar measure onrthegonal group
(whenf = 1) and unitary group (whefi = 2). This integral appeared first in the
work of Harish-Chandra [Har56] who proved that whee- 2,

det( (eM4%)1<i j<n)
Mi<j(@ —aj) Mi<j(di—dj)’
where(d;)1<i<n (resp.(a)i1<i<n) denote the eigenvalues bf(resp.A). Itzykson
and Zuber [1tZ80] rederived this result, proved it using leat equation, and gave
some properties dff) (A,D) asN goes to infinity. The integraf\,z) (A,D) is also
related to Schur functions, see [GuMO5].

12(A,D) =

Concentration inequalities have a long history, we ref@céal01] for a modern
and concise introduction. Theorem 4.4.13 is taken from [B}Zwhere analo-
gous bounds are derived, via Talagrand’s method [Tal9@]thfe case in which
the entries of the matriXy are bounded uniformly bg/+/N for some constant
c. Under boundedness assumptions, concentration inegadiitr thes-largest
eigenvalue are derived in [AIKV02]. The proof of Klein’s Lena 4.4.12 follows
[Rue69, Page 26].

In [GuZzO0Q] it is explained how Theorems 2.3.5 and 4.4.4 altove to obtain
concentration results for the empirical measure, with @espo the Wasserstein
distance

diuv)= sup | [fdu [fdvl, pvem(®).
fol [ fllo <1, f|| <1
(d(p,v) is also called the Monge—Kantorovich—Rubinstein distasee the his-
torical comments in [Dud89, p. 341-342]).

Concentration inequalities for the Lebesgue measure omaotrtonnected
Riemannian manifold were first obtained, in the case of thesyn in [LéV22]
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and then generalized to arbitrary compact connected Riei@amanifold of di-
mensionn with Ricci curvature bounded below y — 1)R? for someR > 0 in
[GrMS86, p. 128]. Our approach in Section 4.4.2 follows Baknd Emery
[BaE85], who introduced the criterion that carries theimes. The ergodicity of

R invoked in the course of proving Theorem 4.4.18, see (4)4dgies not depend
on the BE criterion and holds in greater generality, as a@qunsnce of the fact
thatl" vanishes only on the constants, see [Bak94]. In much of eatrrent, we
follow [ANBC 00, Ch. 5], [GuZ03, Ch. 4] and [Roy07], which we recommend
for more details and other applications.

Concentration inequalities for the empirical measure angdst eigenvalue of
Hermitian matrices with stable entries are derived in [HBKO

The first derivation of tridiagonal matrix models for tifeHermite and La-
guerre ensembles is due to [DUEO2]. These authors used ttelsno derive
CLT results for linear statistics [DUEO6]. In our derivatjove borrowed some
tools from [Par80, Ch. 7]. Soon after, other three- and fiiganal models for
the 3-Jacobi and circular ensembles were devised in [KiNO4]Jieitly linking
to the theory of orthogonal polynomials on the unit circlel éime canonical ma-
trix form of unitary matrices introduced in [CaMVO03]. The dio[Sim05a] and
the survey [Sim07] contains much information on the refaibetween the coef-
ficients in the three term recursions for orthogonal polyiasron the unit circle
with respect to a given measure (the Verblunsky coefficjeamd the CMV ma-
trices of [CaMVO03]. In this language, the key observatiorikiN04] is that the
Verblunsky coefficients corresponding to Haar-distriduteitaries are indepen-
dent. See also [FORO06], [KiNO7] and [BoNRO08] for further dpments in this
direction.

The derivation in Section 4.5.2 of the asymptotics of theepiglues of the
B-ensembles at the edge is due to [RaRV06], who followed aeotmje of Edel-
man and Sutton [EdS07]. (In [RaRV06], tail estimates on tpedigenvalue are
deduced from the diffusion representation.) The resulffRmRV06] are more
general than we have exposed here in that they apply to adgeof tridiagonal
matrices, as long as properly rescaled coefficients coruergrownian motion.
Analogous results for the “hard edge” (as in the case of thtoiyoeigenvalue
of Wishart matrices) are described in [RaR08]. A major aradke is to identify
the Tracy—Widom distributions (and thgranalogs) from the diffusion in The-
orem 4.5.42. The description of the process of eigenvaludise bulk involves
a different machinery, see [VaVv07] (where it is called “Brgan carousel”) and
[KiS09].
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Free probability

Citing D. Voiculescu;Around 1982, | realized that the right way to look at certain
operator algebra problems was by imitating some basic plodlig theory. More
precisely, in noncommutative probability theory a new kifidhdependence can
be defined by replacing tensor products with free productstais can help un-
derstand the von Neumann algebras of free groups. The duitgsevolved into a
kind of parallel to basic probability theory, which should talled free probability
theory.

Thus, Voiculescu’s first motivation to introduce free prbllity was the analy-
sis of the von Neumann algebras of free groups. One of hisalestiservations
was that such groups can be equipped with tracial statesdalled traces), which
resemble expectations in classical probability, wherbeagptroperty of freeness,
once properly stated, can be seen as a notion similar to @mtlgmce in classical
probability. This led him to the statement

free probability theory=noncommutative probability tlmge free independence.

These two components are the basis for a probability themrgdncommuta-
tive variables where many concepts taken from probabhigpty such as the no-
tions of laws, convergence in law, independence, ceniréll theorem, Brownian
motion, entropy and more can be naturally defined. For instathe law of one
self-adjoint variable is simply given by the traces of itsyeos (which generalizes
the definition through moments of compactly supported podityameasures on
the real line), and the joint law of several self-adjoint commutative variables
is defined by the collection of traces of words in these vémbSimilarly to the
classical notion of independence, freeness is defined giceelations between
traces of words. Convergence in law just means that the ofaey word in the
noncommutative variables converges towards the right.limi
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This chapter is devoted to free probability theory and softis consequences
for the study of random matrices.

5.1 Introduction and main results

The key relation between free probability and random mesriwas discovered
by Woiculescu in 1991 when he proved that the trace of any wonddependent
Wigner matrices converges toward the trace of the correipgrword in free
semicircular variables. Roughly speaking, he proved tHeviing (see Theorem
5.4.2 for a complete statement).

Theorem 5.1.1Let (Q,%,P) be a probability space and ]y be positive inte-
gers. Let )IU Q- %”N(B), 1<i < p, be afamily of independent Gaussian Wigner
matrices following the (rescaled) GOE or GUE. Then, for amgger k> 1 and
i1,...,1k € {1,...,p}, N"Hr(XY---XN) converges almost surely (and in expec-
tation) as N— oo to a limit denotedo (P (X, ---X;,). 0P is a linear form on
noncommutative polynomial functions which is called v of p free semicir-
cular variables

Laws of free variables are defined in Definition 5.3.1. Thessnancommutative
laws which are defined uniquely in terms of the laws of thenialdes, that is,

in terms of their one-variable marginal distributions. Ihebrem 5.1.1 all the
one-variable marginals are the same, namely, the seneidaal. The statement
of Theorem 5.1.1 extends to Hermitian or real symmetric \@ignatrices whose
entries have finite moments, see Theorem 5.4.2. Anothenginte deals with

words that include also deterministic matrices whose lawerges, as in the
following.

Theorem 5.1.2Let3 = 1 or 2 and let(Q, %, P) be a probability space. L&N =
{DN}1<i<p be a sequence of Hermitian deterministic matrices with anify
bounded spectral radius, and &N = {XN}1<i<p, XN : Q — j‘f,\fﬁ), 1<i<p,
be self-adjoint independent Wigner matrices whose entrde® zero mean and
finite moments of all order. Assume that for any positivegetd and i, ... ,ix €
{1,...,p}, N"'tr(D}} --- DY) converges to some numbe(D;, - -- D;, ).

Then, for any positive integérand polynomial functionQj, P)1<i</,

%tr (QuDM)P(XM)Qa(DN) -+ P (X))
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converges almost surely and in expectation to a limit deshote

T(Q1(D)PL(X)Q2(D)---Py(X)).

Here, T is the law of p free semicircular variables, free from the collection of
noncommutative variabld3 of law p.

(See Theorem 5.4.5 for the full statement and the proof.)

Theorems 5.1.1 and 5.1.2 are extremely useful in the stutgnafom matrices.
Indeed, many classical models of random matrices can b&wgs some polyno-
mials in Wigner matrices and deterministic matrices. Thithe case for Wishart
matrices or, more generally, for band matrices (see Exesé&ist.14 and 5.4.16).

The law of free variables appears also when one considetlsmamatrices fol-
lowing Haar measure on the unitary group. The following swarizes Theorem
5.4.10.

Theorem 5.1.3TakeDN = {DN},<j<pasin Theorem 5.1.2. L&tN = {UN} 1<
be a collection of independent Haar-distributed unitarytriteas independent
from {DN}1<i<p, and seUN)* = {(UN)*}1<i<p. Then, for any positive integér
and any polynomial function®, R )1<i</,

,\|liLT'IOo %U‘ (Ql(DN)Pl(UN7 (UN)*)QZ(DN) . Pg(UN, (UN)*))
=1(Q1(D)P(U,U")Q2(D)---P(U,U")) as,

wherert is the law of p free variabled = (U, ...,Up), free from the noncommu-
tative variable®D of law u. The law of i, 1 <i < p, is such that

(WU -1%) =0, T(U")=T1((U")") = Lno.

Thus, free probability appears as the natural setting tdystine asymptotics of
traces of words in several (possibly random) matrices.

Adopting the point of view that traces of words in severalncat are funda-
mental objects is fruitful because it leads to the study afies@eneral structure
such as freeness (see Section 5.3); freeness in turnsfi@shie analysis of con-
vergence of moments. The drawback is that one needs to esmaiate general
objects than empirical measures of eigenvalues convetgingrds a probabil-
ity measure, namely, traces of noncommutative polynonimatandom matrices
converging towards a linear functional on such polynomizdfied a tracial state.
Analysis of such objects is then achieved using free prdibatnols.

In the first part of this chapter, Section 5.2, we introdueegétup of free prob-
ability theory (the few required notions from the theory gleoator algebras are



5.2 NONCOMMUTATIVE LAWS AND PROBABILITY SPACES 325

contained in Appendix G). We then define in Section 5.3 th@erty of freeness
and discuss free cumulants and free convolutions. In Seétid, which can be
read independently of the previous ones except for the igtiser of the limit-
ing quantities in terms of free variables, we show that themgotics of many
classical models of random matrices satisfy the freenegsepty, and use that
observation to evaluate limiting laws. Finally, Sectiob Gises free probability
tools to describe the behavior of spectral norms of noncotative polynomials
in independent random matrices taken from the GUE.

5.2 Noncommutative laws and noncommutative probability spces

In this section, we introduce the notions of noncommutadéiwes and noncommu-
tative probability spaces. An example that the reader shke¢p in mind con-
cernsN x N matrices(My, ...,Mp); a natural noncommutative probability space
is then the algebra dfl x N matrices, equipped with the normalized trateltr,
whereas the law (or empirical distribution) @1, ..., Mp) is given by the collec-
tion of the normalized traces of all words in these matrices.

5.2.1 Algebraic noncommutative probability spaces and $aw

Basic algebraic notions are recalled in Appendix G.1.

Definition 5.2.1 A noncommutative probability spaiga pair(</, @) wheres/
is a unital algebra ovef andg is a linear functional : o —C so thatp(1) = 1.
Elements € o/ are callechoncommutative random variables

Let us give some relevant examples of noncommutative pitityadpaces.

Example 5.2.2

(i) Classical probability theoryet (X, %, 1) be a probability space and set
of =L"(X,%,u). Take @ to be the expectatiop(a) = [y a(x)u(dx).
Note that, for anyp < o, the space&P(X, %, ) are not algebras for the
usual product. (But the intersectifn -, LP(X, %, 1) is again an alge-
bra.) To consider unbounded variables, we will introduterlthe notion
of affiliated operators, see Subsection 5.2.3.

(i) Discrete groupd.et G be a discrete group with identiy and letes =
C(G) denote the group algebra (see Definition G.1). Tek® be the
linear functional onz so that, for allg € G, @(g) = 1g—e.
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(iii)

(iv)

v)
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Matrices Let N be a positive integer and’ = Maty(C). Let(-,-) denote
the scalar product o8N and fixv € CN such thatv,v) = 1. We can take
@ on <7 to be given byg,(a) = (av,v), or by gy (a) = N~tr(a).

Random matricesLet (X, %, ) be a probability space. Defing =
L*(X, u,Maty(C)), the space ol x N-dimensional complex random ma-
trices withu-almost surely uniformly bounded entries. Set

N
(@)= [ rEx)u(Ex) = %i; [@we.au@. 621

where here the are the standard basis vectorsdN. Alternatively, one
can consider, witlv € CN so that(v,v) = 1,

w(a) = /)((a(x)v,v)u(dx). (5.2.2)

Bounded operators on a Hilbert spacet H be a Hilbert space with inner
product(-,-) andB(H) be the set of bounded linear operatorstbnWe
set forv € H so that(v,v) = 1 anda € B(H),

@ (a) = (avv).

The GNS construction discussed below will show that thisrgXa is in a
certain sense universal. It is therefore a particularlyangmt example to
keep in mind.

We now describe the notion ¢diws of noncommutative variables. Hereaftdr,
denotes a subset B, andC(X;|i € J) denotes the set of polynomials in noncom-
mutative indeterminatesX }icy, that is, the set of all finit€-linear combinations
of words in the variableX; with the empty word identified to & C; in symbols,

CX] =

m
CXified) = {0+ 3 UXy- X ;e Cme N,ike ).
=

C(X) denotes the set of polynomial functions in one variable.

Definition 5.2.3Let {a; }icj be a family of elements in a noncommutative proba-
bility space(.«7, @). Then, thedistribution (or law) of {a;}ic; is the mapu,y,;
C(X|i € J) — C such that

Hiayic, (P) = @(P({ai}tics)) -

This definition is reminiscent of the description of compasupported proba-
bility measures (on a collection of random variables) by nseaf their (mixed)
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moments. Since linear functionals @xX;|i € J) are uniquely determined by their
values on words, --- X, (i1,...,ik) € J, we can and often do think of laws as
word-indexed families of complex numbers.

Example 5.2.4Example 5.2.2 continued.
(i) Classical probability theoryf a € L*(X, %, u), we get by definition that

Ha(P) = [ P(@()d(x)

and soy; is (the sequence of moments of) the lavaafnderu (or equiv-
alently the push-forwardyu of u by a).

(i) Discrete groupd_etG be a group with identitgand takep(g) = 1g—e. Fix
{Gi}1<i<n € G". The lawp = g, ., has then the following description:
for any monomiaP = X, X;, - - - X;,, we haveu(P) =1if g, - - - gi, = eand
u(P) = 0 otherwise.

(i) One matrix Let a be an NxN Hermitian matrix with eigenvalues
(A1,...,AN). Then we have, for all polynomiale C[X],

1 1N
Ha(P) = Ntr(P(a)) =N _;P()\i)

Thus, 145 is (the sequence of moments of) the spectral measuag arid
thus (in effect) a probability measure &n

(iv) One random matrixin the setting of part (iv) of Example 5.2.2 af. X—
,%”,\EB), for B =1 or 2, has eigenvaluéd;(x),...,An(X))xex, we have

N
wP@) = g [oPEMKME@I=F S [P

= (Ln,P). (5.2.3)

Thus, s is (the sequence of moments of) the mean spectral measare of
(v) Several matrice¢Setting of Example 5.2.2, parts (iii) and (iv)) If we are

given{a; }icj € Matn(C) so thate; = a; for all i € J, then forP € C(Xi|i €

J),

Hiayie, (P) = N"tr (P({a}ica))

defines a distribution of noncommutative variablegs,),_; is called the
empirical distribution or law of the matriceqa; }ic;. Note thatifJ = {1}
anday is self-adjoint us, can be identified, by the previous example, as the
empirical distribution of the eigenvaluesaf. Observe that if théa }ic;

are random and with the notation of Example 5.2.2, part 4, ag define
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their “guenched empirical distribution’l{ai(X)}ieJ for almost allx, or their
“annealed empirical distribution/ ﬁl{wx)}i@du(x).

(vi) Bounded operators on a Hilbert spatet H be a Hilbert space antl a
bounded normal linear operator bhwith spectrumo(T) (see Appendix
G, and in particular Section G.1, for definitions). Accoglio the spec-
tral theorem, Theorem G.6, ) is the spectral resolution df, for any
polynomial functionP € C[X],

P(T) = [ PA)AX)
Therefore, withv € H so that(v,v) = 1, we find that
@ (P(T)) = (P(T)wV) =/ PA)AX (A )% V).
a(T)

Hence, the law ofl € (B(H),@,) is (the sequence of moments of) the
compactly supported complex measdig (A )v, V).

(vii) Tautological exampléet .« = C(X;|i € J) and letp € &’ be any linear
functional such thaip(1) = 1. Then(«, @) is a noncommutative proba-
bility space andp is identically equal to the lawx;y; ;-

It is convenient to have a notion of convergence of laws. #asiest to work
with the weak*-topology. This leads us to the following défon.

Definition 5.2.5Let (e, gh), N € NU {0}, be noncommutative probability spa-
ces, and lefalN}ic; be a sequence of elementsdaf. Then{al}ic; converges in
law to {&" }icj if and only if for all P € C({X|i € J),

l\||i£>noo u{aiN}ieJ(P) = u{aim}iEJ(P)'
We also say in such a situation tr{aiN}iEJ converges in moments {&” }ic,.

Since a law is uniquely determined by its values on mononiatee noncom-
mutative variables(, the notion of convergence introduced here is the same as
“word-wise” convergence.

The tautological example mentioned in Example 5.2.4 urdees the point
that the notion of law is purely algebraic and for that reasmnbroad to capture
any flavor of analysis. We have to enrich the structure of a&caomtmutative prob-
ability space in various ways in order to put the analysikbd begin to see
what sort of additional structure would be useful, consttiercase in whicld is
reduced to a single element. Then a laws simply a linear functionad € C[X]’
such thatr (1) = 1, or equivalently a sequence of complex numlzers= a(X")
indexed by positive integers Consider the following question.
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Does there exist a probability measyren the real line such that(P) = [ P(x)u(dx) for
allP e C[X]?

This is a reformulation in the present setup of the Hambung@ment problem.
It is well known that the problem has an affirmative solutibarid only if all the
momentsay, are real, and furthermore the matricgs ., {jj‘:lo are positive defi-
nite for alln. We can rephrase the latter conditions in our setup as fell@iven
P=y;aX €C[X], & € C, putP* = y;a'X!. Then the Hamburger moment prob-
lem has an affirmative solution if and onlydf(P*P) > 0 for all P € C[X]. This
example underscores the important role played by positi@ur next immedi-
ate goal is, therefore, to introduce the notion of positivitto the setup of non-
commutative probability spaces, through the concept eéstandC*-probability
spaces. We will then give sufficient conditions, see Prdjmosb.2.14, for a linear
functionalt € C(X|i € J)’ to be writteng(P({a;}ic3)) = T(P) for all polynomi-
alsP e C(X|i € J), where{a }icj is a fixed family of elements of @*-algebras’
andgis a state on'.

5.2.2 C*-probability spaces and the weak*-topology

We first recallC*-algebras, see Appendix G.1 for detailed definitions. Wenel
strict our discussion throughout to unitzil-algebras (an@€*-subalgebras) with-
out further mentioning it. Thus, in the following, @ -algebra< is a unital
algebra equipped with a norfn || and an involutiorx so that

2
Ixyil < X[yl lla*all = jal]*.

Recall thate7 is complete under its norm.

An elementa of < is said to beself-adjoint(respectivelynormal) if a* = a
(respectivelya*a = aa"). Let .o, (respectively,e) denote the set of self-adjoint
(respectively, normal) elements of.

Example 5.2.6The following are examples @*-algebras.

(i) Function spacesf X is a Polish space, the spad@sX) andC,(X), of
C-valued functions which are, respectively, bounded anahded contin-
uous, are unitaC*-algebras when equipped with the supremum norm and
the conjugation operation. Note however that the s@a¢R) of contin-
uous functions vanishing at infinity is in general not a (ahiC*-algebra,
for it has no unit.

(i) Classical probability theorffake(X, %, 1) a measure space and sét=
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L*(X, i), with the norm
[|f|| = ess sug f(x)].

(iii) MatricesAn important example is obtained if one take’s= Maty (C). It
is aC*-algebra when equipped with the standard involution

(A)ij =Aji, 1<i,j<N

and the operator norm given by the spectral radius.

(iv) Bounded operators on a Hilbert spadée previous example generalizes
as follows. TakeH a complex Hilbert space, and consider@ghe space
B(H) of linear operator3 : H — H which are bounded for the norm

ITllg) = sup [[Tef|n.
llelln=1
Here, the multiplication operation is taken as composititine adjoinfT *
of T € B(H) is defined as the unique elementB{H) such that{Ty,x) =
(y, T*x) for all x,y € H, see (G.3).

Part (iv) of Example 5.2.6 is, in a sense, generic: @malgebracs is isomorphic
to a subC*-algebra ofB(H) for some Hilbert spackl (see e.g. [Rud91, Theorem
12.41]). We provide below a concrete example.

Example 5.2.7Let u be a probability measure on a Polish sp¥Xce The C*-
algebraeZ = L®(X, i) can be identified as a subset®H) with H = L?(X, ) as
follows. For allf € L*(X, i), we define the multiplication operatbt; € B(H)
by Mig= f-g (whichisinH if g€ H). ThenM mapsL®(X, ) into B(H).

In C*-algebras, spectral analysis can be developed. We reeallAppendix
G.2) that the spectrum of a normal operaddn a C*-algebra< is the compact
set

sp(a) ={A € C: Ae—aisnotinvertible} c {ze C:|Z7 < |a|}.

The same functional calculus we encountered in the confextadrices can be

used inC*-algebras, for such normal operatarsSuppose that is continuous on

sp(a). By the Stone—Weierstrass Theorehan be uniformly approximated on
sp(a) by a sequence of polynomia;bﬁ in aanda*. Then, by part (iii) of Theorem

G.7, the limit

f(a) = lim p/(a,a")

nN—oo

always exists, does not depend on the sequence of appraxirmzand yields an
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element ofe7. It can thus serve as the definition bf a€ &/ — f(a) € o/ (one
may alternatively use the spectral theorem, see Section G.2

Remark 5.2.8The smallest€*-subalgebraz, C <7 containing a given self-adjoint
operatorais given bye/a = {f(a) : f € C(sp(a))}. Indeed,ez; contains{p(a) :

p € C[X]} and so, by functional calculus, contaifi§(a) : f € C(sp(a))}. The
conclusion follows from the fact that the latter i€&algebra. The norm onrz,

is necessarily the spectral radius by Theorem G.3. Obshkatghis determines
an isomorphism o€(sp(a)) into «7 that preserves linearity and involution. It is
a theorem of Gelfand and Naimark (see e.g. [Rud91, Theorefi8)lthat if a
C*-algebraeZ is commutative then it is isomorphic to the algebx@) for some
compactX; we will not need this fact.

To begin discussing probability, we need two more conceptsfirst is posi-
tivity and the second is that of a state.

Definition 5.2.9Let («, || - ||, *) be aC*-algebra.

(i) An elementa € <7 is nonnegativédenoteda > 0) if a* = a and its spec-
trum sga) is nonnegative.
(i) A stateis alinear mapp : & — C with ¢(e) =1 andg(a) > 0ifa> 0.
(iii) A state istracial if p(ab) = ¢(ba) foralla,be «.

Itis standard to check (see e.g. [Mur90, Theorem 2.2.4}) tha
{ac«:a>0}={aa":ac o}. (5.2.4)

Example 5.2.10An important example is7 = C(X) with X some compact space.
Then, by the Riesz representation theorem, Theorem B.1a&teais a probability
measure oiX.

C*-probability spaces

Definition 5.2.11A quadruple(</, || - ||,*, @) is called aC*-probability spacef
(,]-,*) is aC*-algebra andp is a state.

As a consequence of Theorem 5.2.24 below, the law of a farhilgradom vari-
ables{a; }icj in aC*-probability space can always be realized as the law of nando
variables{b;}ic; in aC*-probability space of the fordB(H), || - ||, *,a+— (av,V)),
whereH is a Hilbert space with inner produgt ), || - || is the operator norm, and
v € H is a unit vector.
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We show next how all cases in Example 5.2.2 can be made to fitetfieition
of C*-probability space.

Example 5.2.12Examples 5.2.2 and 5.2.4 continued.

(i) Classical probability theoryet (X, %, 1) be a probability space and set

(ii)

(iii)

of =L2(X,%,u). Letg(a) = [y a(x)u(dx) be the expectation operator.
In this setup, usél = L?(X, %, ), consider eacl € &/ as an element
of B(H) by associating with it the multiplication operatigly f = af (for

f € H), and then writep(a) = (Ma1,1). <7 is equipped with a structure
of C*-algebra as in part (i) of Example 5.2.6. Note that i§ self-adjoint,

it is just a real-valued element &f°(X, £, u), and the spectrum dfl, is

a subset ofess-infcxa(x), ess-sup-ya(x)]. The spectral projections are
then given byE(A) = Mlaflm) for anyA in that interval.

Discrete groupd.et G be a discrete group. Consider an orthonormal basis
{Vg}gec Of £2(G), the set of SUMF 4. CgVg With cq € C andy |cg|? < co.
/2(G) is equipped with a scalar product

<ggG CgVg, ggG CyVg) = ggecgeé ,

which turns it into a Hilbert space. The action of eafthe G on (2(G)
becomesA (¢')(34CqVg) = Y qCoVyg: Yielding the left regular represen-
tation determined bys, which defines a family of unitary operators on
?(G). These operators are determinedXig)vi = Vgh. TheC*-algebra
associated with this representation is generated by tharyroperators
{A(9)}gee, and coincides with the operator-norm closure of the linear
span of{A(g) }4cc (the latter contains any sufficgA (g) wheny |cg| <
®). It is in particular included irB(¢?(G)). Take as trace the function
@(a) = (ave,ve) Wheree € Giis the unit. In particulam(y 4 bgA (g)) = be.
Random matrice$n the setting of part (iv) of Example 5.2.2, consider
o = L%(X,u,Matn(C)). The function

N
wia) = [ rau@) =5 5 [na.au. (6525

on < is a tracial state. There are many other states7grior any vector
ve CN with ||v|| = 1,

@(@) = [(@vvdu()

is a state.
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We now consider the set of laws of variables}ic; defined on &£*-probability
space.

Definition 5.2.13Let («/, | - ||, *) be aC*-algebra. Define#., = .4, .| . to be
the set ofstateson <7, i.e. the set of linear formg on <7 so that, for all positive
elementac &,

a(a) >0, a(l)=1. (5.2.6)

(By Lemma G.11, a state automatically satisfiega|| < 1, thatis,|a(x)| < ||x||
for anyx € &7.) Note that by either Lemma G.11 or (5.2.4), equation (5.6
equivalent to

a(bb*)>0 Vbe «, a(l)=1. (5.2.7)

In studying laws of random variablés; }ic; in aC*-algebrazZ, we may restrict
attention to self-adjoint variables, by writing for aay <7, a=b+icwith b=
(a+a*)/2 andc =i(a* — a)/2 both self-adjoint. Thus, in the sequel, we restrict
ourselves to studying the law of self-adjoint elements.igwof this restriction,
it is convenient to equifC(X|i € J) with the unique involution so thaf; = X,
and, as a consequence,

We now present a criterion for verifying that a given lineandtional on
C(X|i € J) represents the law of a family of (self-adjoint) random &hhes on
someC*-algebra. Its proof follows ideas that are also employederoof of
the Gelfand—Naimark—Segal construction, Theorem 5.2eab

Proposition 5.2.14L et J be a set of positive integers. Fix a constart R < co.
Let the involution orC(X;|i € J) be as in(5.2.8) Then there exists a'Calgebra
of = o/(R,J) and a family{a }ic; of self-adjoint elements of it with the following
properties.

(@) supllaill <R.

(b) & is generated bya }icj as a C-algebra.

(c) For any C-algebra# and family of self-adjoint elements;}ic; of it
satisfyingsup.; |Ibi|| < R, we have|P({ai}icy)|| > |IP({bi}ics)]| for all
polynomials Re C{Xi|i € J).

(d) Alinear functionala € C{Xi|i € J)’ is the law of{a; }ic; under some state
1€y ifandonlyifa(l) =1,

(X, -+ X )| < RS (5.2.9)
for all words X, , ..., X, anda(P*P) > Ofor all P € C({X|i € J).
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(e) Under the equivalent conditions stated in paid}, the stater is unique,
and furthermorer is tracial if a(PQ) = a(QP) for all P,Q € C(X|i € J).

Points (a), (b) and (c) of Proposition 5.2.14 imply that, doyC*-algebraz and
{bi}ics as in point (c), there exists a unique continuous algebraomeonphism
o — %8 commuting withx sendinga; to b; for i € J. In this senseg’ is the
universal example of @*-algebra equipped with a@R-bounded]-indexed family
of self-adjoint elements.

Proof To abbreviate notation, we write
A=C(Xli€Jd).

First we constructy and{a; }ic; to fulfill the first three points of the proposition
by completingA in a certain way. FOP = P({Xi}ic3) € A, put

IPlrsc = sup [[P({bi}ica)ll, (5.2.10)

Z.{bities

where4 ranges over alC*-algebras andb; }icj ranges over all families of self-
adjoint elements o2 such that sup; ||bi|| < R. Put

L={PeA:|Plryc- =0}

Now the function||-|g ; c- is & seminorm on the algebra. It follows thatL is

a two-sided ideal of7 and that||-||r ;- induces on the quotier/L a norm.
Furthermoregl|PP*||z 5 ¢ = ||P|\§’JYC*, and hence|P*||g ;¢ = [|Pllryc- for all

P € A. In particular, the involutios passes to the quotieAfL and preserves the
norm induced by|-[|g ;c-- Now completeA/L with respect to the norm induced
by [|-[|g 3¢+ @and equip it with the involution induced By P*, thus obtaining
aC*-algebra. Call this completio and leta; denote the image of; in <7 for

i € J. Thus we obtainz and self-adjoin{a; }ic; fulfilling points (a), (b), (c).

Since the implication (d}) is trivial, and point (e) is easy to prove by approxi-
mation arguments, it remains only to prove (g GivenP = 3¢ cs¢ € A, where
the summation extends over all worél$n the X; (including the empty word) and
all but finitely many of the coefficients € C vanish, we define

IPllay = ¥ o R% <o,

where ded denotes the length of the woéd One checks thatP|| ; is a norm
on A and further, from assumption (5.2.9),

la(P)| <[IPllry. PeEA. (5.2.11)
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ForP € AandQ € A satisfyinga (Q*Q) > 0 we define
a(QPQ)

ag(P) = —~—3,
oP=%QQ
and we set
1/2
[Pl =1 sup aq(P*P)
QcA
a(Q'Q)>0

By the continuity ofa with respect td| - ||rJ, see (5.2.11), and Lemma G.22, we
have thai|P||s < ||P*P||%{J2. In particular)||Xi||« < Rforalli e J.

We check thal- ||, is a seminorm o satisfying||P*P||, = ||P||§ forallPe A
Indeed, forA € C, ||AP||q = |A]-||P|l« by definition. We verify next the sub-
additivity of || - |lo. Sinceag is a nonnegative linear form ofy, we have from
(G.6) that for any5 T € A,

[aQ((S+T)*(S+T))2 < [ag(S'S)/2 + [ag(TT)*2,
from which||S+T||a < ||S||a + || T ||« follows by optimization oveg.

To prove the sub-multiplicativity of - ||, note first that by the Cauchy—Schwarz
inequality (G.5), foiQ,S, T € Awith a(Q*Q) > 0,

ag(T*S'ST) vanishesif ag(T*T)=0.
Then, assumingT||q > O,

IST|Z =  sup ao(T*S'ST)
QeA
a(Q*Q)>0

= s are(S9aT T < [SEITIG. (5:2.12)
c
a(Q*T*TQ)>0

We conclude that - ||4 is @ seminorm or\.

To verify that | TT*||4 = ||T||%, note that by the Cauchy—Schwarz inequal-
ity (G.5) andag(1) = 1, we have|ag(T*T)|? < ag((T*T)?), hence||T||2 <
IT*Tla- By (5.2.22),||T*T||la < || T|la||T*||la @and therefore we get thdT || <
IT*|la- By symmetry, this impliedT*||qg = | T||a = HT*TH}/Z, as claimed.

Using again the quotient and completion process which wd tseonstruct
</, but this time using the seminorff|,, we obtain aC*-algebraZ and self-
adjoint elementgb; }icj satisfying sup.;||bi|| < Rand||P||, = |[P({bi}icJ)| for
P € A. But then by point (c) we havgP|, < ||P|rac+ for P € A, and thus
|a(P)| < ||P|lryc+. Lett be the unique continuous linear functional .@hsuch
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thatt(P({ai}ics)) = a(P) for all P € A. Sincea (P*P) > 0 for P € A, it follows,
see (5.2.7), that is positive and hence a state .on The proof of point (d}&) is
complete. O

Example 5.2.15Examples 5.2.2 continued.

(i) Classical probability The setM;([—R,R]) of probability measures on
[~R,R] can be recovered as the s#t,(r (1))

(i) MatricesThe study of noncommutative laws of matriges}ic; belonging
to Maiy(C) with spectral radii bounded big reduces, by the remark fol-
lowing (5.2.7), to the study of laws of Hermitian matricesr Ehe latter,
the noncommutative law dé matrices whose spectral radii are bounded
by Rcan be represented as elementsif(r (1,...k})-

The examples above do not accommodate laws of unboundedblessi We will
see in Section 5.2.3 that such laws can be defined using tienradt affiliated
operators.

Weak*-topology

Recall that we endowed the set of noncommutative laws wattvétak*-topology;,
see Definition 5.2.5.

Corollary 5.2.16 For N € N, let {aN}ic; be self-adjoint elements of & @roba-

bility space(.a, || - |In, *n, @ ). Assume that for all R C(Xi|i € J), en(P(al,i €

J)) converges to some(P). Let R> 0 be given, withe/ (R, J) the universal C-
algebra and{a; }ic; the elements of it defined in Proposition 5.2.14.

(i) If supeynllaNin < R, then there exists a collection of statgs, ¢ on
</(R,J) so that, for any Re C(Xi|i € J),

Un(P({aitics)) = sv(P({al}Yics),  W(P({ai}ics)) = a(P).
(ii) If there exists a finite R so that for allkN and all (ij)1<j<k € J¥,
(X, X, )| <R, (5.2.13)
then there exists a statp on </ (R,J) so that, for any Re C({X;|i € J),
Y(P({aitics)) = a(P).

Proof By the remark following Proposition 5.2.14, there exist fore N C*-
homomorphisms : /(R J) — a4 so thataiN = hn(a) and the stateiy =
@\ o hy satisfiespy (P({@N}ies)) = Wn(P({a }ies)) for eachP € C(Xi|i € J). By
assumptionyn (P({a})) convergesta (P), and thusa (P)| < ||P({ai}ic)]| (the
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norm here is the norm on/(R,J)). As a consequence, extends to a state on
o/ (R,J), completing the proof of the first part of the corollary.

The second part of the corollary is a direct consequencero{gpof Proposi-
tion 5.2.14. O

We remark that a different proof of part (i) of Corollary 5.8.can be given
directly by using part (d) of Proposition 5.2.14. A diffetgaroof of part (ii) is
sketched in Exercise 5.2.20.

Example 5.2.17Examples 5.2.2, parts (iii) and (iv), continued.

(i) MatricesLet {MJN}J-EJ € Maty(C) be a sequence of Hermitian matrices
and assume that there exi&éinite so that

limsuplpyyy (X - )| < R

Assume thatu{MN}jd(P) converge as\ goes to infinity to some limit
]

a(P) for all P € C{X;|i €J). Then, there exist noncommutative random
variables{a, } jc; in aC*-probability space so that = & and{MJN}jEJ
converge in law tda;j } je3.

(i) Random matriceset (Q, %, 1) be a probability space. Fare J, let
MJN(w) € %ﬂN(Z) be a collection of Hermitian random matrices. If the re-
quirements of the previous example are satisfied for almibsb & Q,
then we can conclude similarly th@MJN(w)}jEJ € Maty(C) converges
in law to some{al(w)}jcs. Alternatively, assume one can show the con-
vergence of the moments of products of elements f{onrﬁ‘(w)}jej, in
LY(u). In this case, we endow ti@-algebraMaty (C), || - ||n, *) with the
tracial stategy = N~ otr. Observe thaty is continuous with respect
to |M||& := ess sufM(w)||«, but the latter unfortunately may be infinite.
However, if we assume that for ajl € J, gv(M]} --- M) converges asl
goes to infinity toa (X, - -- X;, ), and that there exisR < o so that, for all
ij €,

a(xil"'xik)| < Rk,

then it follows from Corollary 5.2.16 that there exists aeatg, on the uni-
versal C*-algebra </ (R,J) and elements{a }ic; € «/(RJ) so that
{MN(w)}ics converges in expectation {@ }icy, i.e.

’\Iliquq\,(P(MiN(w),i €d))=w(P(a,icd) VPeC(Xlied).

This example applies in particular to collections of indegent Wigner
matrices.
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The space#,, possesses a nice topological property that we state next. Th
main part of the proof (which we omit) uses the Banach—Aladdleorem, The-
orem B.8.

Lemma 5.2.18Let («,|| - ||, *) be a C-algebra, with” separable. Thenz,, is
compact and separable, hence metrizable.

Thus, on#,,, sequential convergence determines convergence.

As we next show, the construction of noncommutative lawsughghat any
one-dimensional marginal distribution is a probabilityasere. This can be seen
as a variant of the Riesz representation theorem, Theor#fin B.

Lemma5.2.19 et (<, || - ||,*) be a C-algebra andu a state on(«7, || - ||, *). Let

F € o/, F =F*. Then there exists a unique probability measurec M; (R) with
moments X*ur (dx) = u(FX). The support ofir is included in[—||F ||/, ||F ||.»]-
Further, the mapu — pg from .#,, furnished with the weak*-topology, into
M1(R), equipped with the weak topology, is continuous.

Proof The uniqueness ofi with the prescribed properties is a standard con-
sequence of the bourlg(F¥)| < |\F||E{. To prove existence ofir, recall the
functional calculus described in Remark 5.2.8 which presids with a magp —
f(F) identifying theC*-algebraC(sp.y (F)) isometrically with theC*-subalgebra
o C o/ generated byr. The composite map — u(f(F)) is then a state on
C(sp»(F)) and hence by Example 5.2.10 a probability measursmp(F) C
[—|IF |l IFIl /- Itis clear that this probability measure has the momergs pr
scribed forug. Existence ofur € .#1(R) with the prescribed moments follows.
Abusing notation, forf € Cp(R), let f(F) = g(F) € o/ whereg = f|s,_ () and
note thatug (f) = [ fdur = u(f(F)) by construction. Finally, to see the claimed
continuity, if we take a sequenge” € .#,, converging tou for the weak*-
topology, for anyf € Cy(R), P (f) converges tqur (f) asn goes to infinity since
f(F) € «7. Thereforeu — e is indeed continuous. O

Exercise 5.2.20n the setting of Corollary 5.2.16, show, without using dditof
Proposition 5.2.14, that under the assumptions of parofithe corollary, there
exists a sequence of statpg on </ (R+1,J) so thatyn(P) converges tax (P)
for all P € C(X|i € J). Conclude that is a state on#' (R+1,J).

Hint: setfr(x) =xA(R+1)V (-(R+1)), and de1‘ineai'\"R = fr(al). Using the
Cauchy—Schwarz inequality, show thm(P({qN'R}iEJ)) converges tax (P) for
all P € C(X;|i € J). Conclude by applying part (i) of the corollary.
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5.2.3 W*-probability spaces

In the previous section, we considered noncommutativeghitity measures de-
fined onC*-algebras. This is equivalent, in the classical settinggtining proba-
bility measures as linear forms on the set of continuous dedrunctions. How-
ever, in the classical setting, it is well known that one cafirg probability
measures as linear forms, satisfying certain regularityd@mns, on the set of
measurablebounded functions. One can define a generalization to themot
measurable functions in the noncommutative setting.

If one deals with a single (not necessarily bounded) sgtfiatioperatorb, it
is possible by the spectral theorem G.6 to defifle) for any functiong in the
setB(sp(b)) of bounded, Borel-measurable functions oftsp This extension is
such that for any,y € H, there exists a compactly supported mea;uzg;a(which
equals(xpx,y) if xp is the resolution of the identity df, see Appendix G.2) such
that

(abixy) = [ o@dudy(@). (5.2.14)

In generalg(b) may not belong to th€*-algebra generated Hy it will, however,
belong to a larger algebra that we now define.

Definition 5.2.21 A C*-algebraes C B(H) for some Hilbert spacél is avon
Neumann algebréor W*-algebra) if it is closed with respect to the weak operator
topology.

(Weak operator topology closure means that— b on a neta if, for any fixed
x,y € H, (bgx,y) converges tdbx, y). Recall, see Theorem G.14, that in Definition
5.2.21, the requirement of closure with respect to the wemstaior topology is
equivalent to closure with respect to the strong operatooltgy, i.e., with the
previous notation, tb,Xx converging tdoxin H.)

Definition 5.2.22 A W*-probability spaceis a pair (<7, ¢) where o/ is a W*-
algebra, subset d8(H) for some Hilbert spaceél, and ¢ is a state that can be
written asg(a) = (a&, &) for some unit vecto€ € H.

Example 5.2.23

(i) We have seen in Remark 5.2.8 that tG&-algebra.st, generated by a
self-adjoint bounded operatbron a separable Hilbert spakkis exactly
{f(b), f eC(sp(b))}. It turns out that the von Neumann algebra generated
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by bis ., = {f(b), f € B(sp(b))}. Indeed, by Lusin’s Theorem, Theorem
B.13, for allx,y € H, for any bounded measurable functignthere ex-
ists a sequenagy, of uniformly bounded continuous functions converging
in HQy probability tog. Since we assumed thht is separable, we can,
by a diagonalization argument, assume that this conveegeoids for all

X,y € H simultaneously. Therefore, the above considerations shatv
gn(b) converges weakly tg(b). Thus the weak closure af4, contains
<. One sees thaty, is a von Neumann algebra by the double commutant
theorem, Theorem G.13, and the spectral theorem, Theorém G.

(i) As a particular case of the previous example (take be the right mul-

tiplication operator by a random variable with lgw, L*(X,u) can be
identified as aV*-algebra. In fact, every commutative von Neumann al-
gebra on a separable Hilbert spatean be represented &8 (X, u) for
some(X, %, ). (Since we do not use this fact, the proof, which can be
found in [Mur90, Theorem 4.4.4], is omitted.)

(iii) Animportant example of &/*-algebra isB(H) itself which is a von Neu-

mann algebra since it is trivially closed.

We saw in Proposition 5.2.14 sufficient conditions for a dinéunctional on
C(Xi|i € J) to be represented by a state irC&algebra(«,| - ||,*). The fol-
lowing GNS constructiogives a canonical way to represent the latter as a state
onB(H) for some Hilbert spackl.

Theorem 5.2.24 (Gelfand—Naimark—Segal construction)et a be a state on
a unital C*-algebra(«,|| - ||,*) generated by a countable famifw; }ic; of self-

adjoint elements. Then there exists a separable Hilbertspé, equipped with
a scalar product-,-), a norm-decreasing-homomorphism: o —B(H) and a

vectoré; € H so that the following hold.

(@) {m(a)é1: ac o/} isdenseinH.
(b) Setgy (X) = (&1,x&1) for x € B(H). Then, for all a in«7,

a(a) = gu(m(a)).

(c) The noncommutative law §8;}icj in the C'-probability space

(.|| -|l,*,a) equals the law of 1i(a;) }icy in the W-probability space
(B(H), @)

(d) LetW*({a}icy) denote the von Neumann algebra generated by

{n(&):i€J}inB(H). If a is tracial, so is the restriction of the statg
to W*({aj }iea)-

Proof of Theorem 5.2.24Let Ly = {f € &/|a(f*f) = 0}. As in the proof of



5.2 NONCOMMUTATIVE LAWS AND PROBABILITY SPACES 341

Proposition 5.2.14, 4 is a left ideal. Itis closed due to the continuity of the map
f — a(f*f). Consider the quotient spacé® := &/ \ Ly. Denote by¢ : a+— &,
the map frome7 into «7?. Note that, by (G.6)a (x"y) depends only 0éy, &y, and
put

E &) =alXy), [[&lla:= (52,

which defines a pre-Hilbert structure er”. Let H be the (separable) Hilbert
space obtained by completing® with respect to the Hilbert norm- || 4.

To construct the morphism, we considers as acting onzZ? by left multipli-
cation and define, fan € < andb € &7,

n(a)ép =& e 7.
By (G.7),
||(a)&p||5 = ||€abl|5 = a(b*a*ab) < ||al|?a (b*b) = ||a|?||&(3 .

and thereforegt(a) extends uniquely to an element B{H), still denotedri(a),
with operator norm bounded bjg||. rris ax-homomorphism from into B(H),
that is, i(ab) = m(a)rr(b) and ri(a)* = m(a*). To complete the construction, we
takeé; as the image undér of the unit ine.

We now verify the conclusions (a)—(c) of the theorem. P3rhdds sinceH
was constructed as the closure{of(a)é; : a € «7}. To see (b), observe that
for all ae o7, (§1,m(a)é1) = (&1,&a) = a(a). Finally, sincerr is a morphism,
n(P({ai}icy)) = P({m(a&)}ies), which together with part (b), shows part (c).

To verify part (d), note that part (b) implies that fab € <7,
a(ab) = g (m(ab)) = g (11(a) (b))

and thus, ifa is tracial, one getsy (11(a) (b)) = @, (11(b)11(a)). The conclusion
follows by a density argument, using the Kaplansky densigotem, Theorem
G.15, to first reduce attention to self-adjoint operatoistheir approximation by
a net, belonging tar(.«7), of self-adjoint operators. O

The norm-decreasinghomomorphism constructed by the theorem is in gen-
eral not one-to-one. This defect can be corrected as follows

Corollary 5.2.251n the setup of Theorem 5.2.24, there exists a separableHilb
§pacel:|, a norm-preserving-homomorphisnit : o/ — B(H) and a unit vector
& € H such that for all ac <7, a(a) = (fi(a)&, &).

Proof By Theorem G.5 there exists a norm-preservingomomorphisnvt,, :
«/ — B(H,.) butH, might be nonseparable. Using the separabilitysfit is
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routine to construct a separable Hilbert spBige_ H., stable under the action of
&/ via T, so that the induced representatign < — B(Hp) is a norm-preserving
x-homomorphism. Then, withr: &7 — B(H) andé&; as in Theorem 5.2.24, the
direct sumit= 1o @ 11: &/ — B(Ho @ H) of representations and the unit vector
& =06 & € Hod H have the desired properties. O

We will see that the stat@, of Theorem 5.2.24 satisfies additional properties
that we now define. These properties will play an importalg o our treatment
of unbounded operators in subsection 5.2.3.

Definition 5.2.26Let <7 be a von Neumann algebra.

e A statet on.« is faithful iff T(xx") =0 impliesx=0.
¢ A state one is normaliff for any monotone decreasing to zero ragtof
nonnegative elements of’,

inft(ag) =0.
n (ag)

The normality assumption is an analog in the noncommutatep of the reg-
ularity assumptions on linear functionals on measurahfetfans needed to en-
sure they are represented by measures. For some consesjoénoemality, see
Proposition G.21.

We next show that the Gelfand—Naimark—Segal constructiows us, if a
is tracial, to represent any joint law of noncommutativeialales as the law of
elements of a von Neumann algebra equipped with a faithfuhabstate. In what
follows, we will always restrict ourselves W*-probability spaces equipped with
a tracial statep. The properties we list below often depend on this assumptio

Corollary 5.2.27 Let a be a tracial state on a unital Calgebra satisfying the
assumptions of Theorem 5.2.24. Then, the tracial sfat®n W*({a; }icj) of
Theorem 5.2.24 is normal and faithful.

Proof We keep the same notation as in the proof of Theorem 5.2.2Ahédfm by
showing thaty, is faithful onW*({a }icy) C B(H). Takex € W*({a; }icj) so that
@ (X*x) = 0. Then we claim that

xm(a)é1 =0, forallae «. (5.2.15)
Indeed, we have

Ixm(@)éully = (xm(@)&r,xm(a)é) = (&1, 7(@) X x1m(@)é1)

= @u(m@)x'xm(@)) = gu (x7(a)m(@)x’),
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where we used in the last equality the fact tpgtis tracial onW*({a; }icj). Be-
causert is a morphism we have(a)n(a*) = r(aa“), and because the operator
norm of ri(aa*) € B(H) is bounded by the norifaa’|| in <7, we obtain from the
last display

Ixmr(@) 1| = (&1, xmm(aa’)x*&1) < [|a@’]| ¢ (x'x) =0,

completing the proof of (5.2.15). Singga)é; is dense irH by part (a) of The-
orem 5.2.24, and € B(H), we conclude thaté = 0 for all £ € H, and therefore
x = 0, completing the proof thaty is faithful inW*({a;}ic3). By using Proposi-
tion G.21 withx the projection onto the linear vector space generateé, bwe
see thatp, is normal. O

Laws of self-adjoint operators

So far, we have considered bounded operators. However,apiications to
random matrices in mind, it is useful also to consider unldedroperators. The
theory incorporates such operators via the notion of affiflaperators. Let/ be
aW* -algebra, subset d&&(H ) for some Hilbert spackl.

Definition 5.2.28A densely defined self-adjoint operatéron a Hilbert spacél
is said to beaffiliated to.«7 if, for any bounded Borel functiof on the spectrum
of X, f(X) € &/. A closed densely defined operaois affiliated with </ if its
polar decompositiolY = uX (see Lemma G.9) is such thate </ is a partial
isometry andX is a self-adjoint operator affiliated witty. We denote by the
collection of operators affiliated with/.

(Here, f(X) is defined by the spectral theorem, Theorem G.8, see Sectbfo
details.)

It follows from the definition that a self-adjoint operabiis affiliated with.o?
iff (1+2zX)~1X € .« for one (or equivalently allg € C\R. (Equivalently, iff all
the spectral projections of belong toer.) By the double commutant theorem,
Theorem G.13, this is also equivalent to saying that, foruamtary operatou in
the commutant oy, uXu* = X.

Example 5.2.29 ety be a probability measure dR, H = L?(u) and.«Z = B(H).
Let X be the left multiplication by x with law, thatis, X f:=xf, f € H. Then X
is a densely defined operator, affiliated with

We define below the noncommutative laws of affiliated opesaamd of poly-
nomials in affiliated operators.
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Definition 5.2.30Let (<7, T) be aW*-probability space and I&t be a self-adjoint
operator affiliated withe7. Then, thdaw ur of T is the unique probability mea-
sure onR such thatr (u(T)) = fu(A)dur(A) for any bounded measurable func-
tion u. The associatedistribution functionis Fr(x) := Fy; (X) := pr((—00,x]),
xeR.

(The uniqueness qiit follows from the Riesz representation theorem, Theorem
B.11.) The spectral theorem, Theorem G.8, implies Bydk) = (X7 ((—,X]))

if x7 is the resolution of the identity of the operaibi(this is well defined since
the spectral projectiogr ((—,X]) belongs toe).

Polynomials of affiliated operators are defined by the foltayalgebraic rules:
(A+B)v:= Av+Bv for anyv € H belonging to the domains of both and B,
and similarly, (AB)v := A(Bv) for v in the domain ofB such thatBv is in the
domain ofA. One difficulty arising with such polynomials is that, in geal, they
are not closed, and therefore not affiliated. This difficalgyin can be overcome
by an appropriate completion procedure, which we now descrGiven an*-
algebraeZ equipped with a normal faithful tracial stateintroduce a topology by
declaring the sets

N(g,0) = {a€ o : for some projectiop € <7, ||lap|| < &,T(1—p) < 5}

and their translates to be neighborhoods. Similarly, shice neighborhoods id
by declaring the sets

O(g,8) = {h e H : for some projectiomp € «7, ||ph|| < &,7(1— p) < &}

to be a fundamental system of neighborhoods, i.e. theislates are also neigh-
borhoods. Lets be the completion of vector spaeg with respect to the uni-
formity defined by the system (e, d) of neighborhoods of origin. Le# be the
analogous completion with respect to the system of neigidmdsO(e, d). A
fundamental property of this completion is the followingdnem, whose proof,
which we skip, can be found in [Nel74].

Theorem 5.2.31 (Nelsonpuppose? is a von Neumann algebra equipped with a
normal faithful tracial state.
(i) The mappings e~ a*, (a,b)— a+Db,(a,b) — ab,(h,g) — h+g,(a,h) —
ah with ab € & and hg € H possess unique uniformly continuous exten-
sions to<7 andH.
(i) Withbe </ associate a multiplication operatorgyiwith domainZ (M) =
{h e H :bhe H}, by declaring Mh = bh for he 2(Mp). Then M, is a
closed, densely defined operator affiliated with with M; = My:. Fur-
ther, ifac .;z//v,then there exists a unique@;a?so that a= M.
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The advantage of the operatdvk, is that they recover an algebraic structure.
Namely, while ifa,a € </ then it is not necessarily the case that & or ad
belong to.;zZ however, ifa= My anda’ = My thenMy_y andMyyy are affiliated
operators that equal the closure\f + My andMpMy (see [Nel74, Theorem 4]).
Thus, with some standard abuse of notatiorT; i .527,i =1,...,k we say that
for Qe C(X|1<i <k), Q(Ty,...,Tk) € &/, meaning that witll; = M, we have
Mo(ay,...a) € <7

The assumption of the existence of a normal faithful trastiale ensures Prop-
erty G.18, which is crucial in the proof of the following pragition.

Proposition 5.2.32 et (<7, 1) be a W'-probability space, subset of B) for some
separable Hilbert space H. Assume thtais a normal faithful tracial state. Let
Q € C(X]1<i <k) be self-adjoint. Let ..., Tx € & be self-adjoint, and let
Q(Ty,...,Tk) be the self-adjoint affiliated operator described follog/ifiheorem
5.2.31. Then, for any sequencgeaf bounded measurable functions converging,
as n goes to infinity, to the identity uniformly on compactsatb ofR, the law of
Q(un(T1),...,un(Tk)) converges to the law of @u, ..., Tk).

The proof of Proposition 5.2.32 is based on the two followangiliary lemmas.

Lemma 5.2.33Let (<7, 1) be as in Proposition 5.2.32. Ley.T.., Ty be self-
adjoint operators in=Z, and let Qe C(Xi|1 <i <k). Then there exists a constant
m(Q) < oo, such that, for any projectionsip..,px € &7 sothat T = Tip € &
fori=1,2,...,k, there exists a projection p such that

e Q(Ty,...,Tp=Q(T{,..., T)p,
e 7(p) > 1-m(Q)max<i<k(1—1(pi)).

Note that part of the statement is ti¥fT1, ..., T«)p € . In the proof of Proposi-
tion 5.2.32, we use Lemma 5.2.33 with projectigns= p := x1,([—n,n]) on the
domain of theT; that ensure thafT;, ..., T,) belong to’. Since such projections
can be chosen with traces arbitrarily close to 1, Lemma 3.2 allow us to
define the law of polynomials in affiliated operators by dgnsis a consequence
of the following lemma.

Lemma 5.2.34Let (<, 7) be as in Proposition 5.2.32. Let X be two self-adjoint
operators ineZ. Fix € > 0. Assume that there exists a projectios p7 such that
pXp= pY p andr(p) > 1— ¢ for somee > 0. Then

suplFx(x) —Fv(x)| < &.

XeR
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Note that the Kolmogorov—Smirnov distance
dks(H, V) = max|Fy(x) — Fy(x)|
xeR

dominates the Lévy distance &y (R) defined in Theorem C.8. Lemma 5.2.34
shows that, withX,Y, p, € as in the statemendk s(Lix, tiy) < €.

Proof of Lemma 5.2.33The key to the proof is to show thatdf € ;z7andp isa
projection, then there exists a projectigpsuch that

17(q) > 1(p) andZq= pZq. (5.2.16)

With (5.2.16) granted, we proceed by induction, as folloket.§ € < and pi be
projections so the} = Sp; € «7, i = 1,2. (To prepare for the induction argument,
at this stage we do not assume that $hare self-adjoint.) Writgy12 = p1 A pa2.
By (5.2.16) (applied witlp = p1o), there exist two projectiongandq’ such that
P12510 = S10, P12Sd = Sq. Setp:=p1Ap2AgA(d. We have thapp = p
andg'p = p, and thusS;p = S¢'p. The range o5,q belongs to the range ¢f
and ofp, (because1,$q = Sq'). Thus

Sp=S0p=p1Sqp= p1Sp = p1SpP2P. (5.2.17)
Therefore
SiSp =SSP, (5.2.18)

where (5.2.17) was used in the last equality. Note that gaheoequality is that
the image ofS;p is in the domain ofS; and soSS;p € «/. Moreover,7(p) >
1—4maxt(1— p;) by Property G.18. We proceed by induction. We first detail
the next step involving the produsiS,S3. SetS= S,S; and letp be the projection
asin (5.2.18), so thé@p= S,S;p € .«/. Repeat the previous step now wittand
S1, yielding a projectiom so thaiS; $,S3pg= S, S,S;pa. Proceeding by induction,
we can thus find a projectiopf so thatS; ---S,p' = S; - -- §,p’ with § = Sp; and
T(p) > 1—2"maxt(1— p;). Similarly, (S +---+S)q = (S;+ -+ ) if
g = p1APpz2--- A pn. Iterating these two results, for any given polynon@ahwe
find a finite constann(Q) such that for an{f;/ = Tipi with T(p;) > 1—¢, 1<i <Kk,
there existp so thatQ(Ty,..., Ty)p=Q(T{,...,T))pandt(p) > 1—m(Q)e.

To complete the argument by proving (5.2.16), we write thiEapdecompo-
sition (1 — p)Z = uT (see G.9), with a self-adjoint nonnegative operafos
|(1— p)Z| andu a partial isometry such thatvanishes on the ortho-complement
of the range off . Setq=1— u*u. Noting thatuu* < 1— p, we haver(q) > 1(p).
Also,qT = (1—u*u)T = 0 implies thafl q= 0 sinceT andq are self-adjoint, and
therefore(1— p)Zq=0. O
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Proof of Lemma 5.2.34We first claim that, given an unbounded self-adjoint op-
eratorT affiliated to.«Z and a real numbet, we have

Fr(x) =sup(1(q):q* =q® =qe o/, qTge «, qTq< xq}. (5.2.19)
More precisely, we now prove that the supremum is achieved fo-co with the
projectiongyr c(X) = xT1((C,X]) provided by the spectral theorem. At any rate, itis
clear thatr (x) = (X7 ((—,X])) is a lower bound for the right side of (5.2.19).
To show that~ (x) is also an upper bound, consider any projectiGn.e# such
that7(r) > Fr(x) with rTr bounded. Pug = x1((—o,x]). We haver(r) > 1(q).
We havetr(r —r AqQ) = T(rvg—q) > 1(r) — 7(q) > 0 using Proposition G.17.
Therefore we can find a unit vecter= H such thatrTrv,v) > x, thus ruling out

the possibility that (r) belongs to the set of numbers on the right side of (5.2.19).
This completes the proof of the latter equality.

Consider next the quantity

Frp(x) =sup(t1(q): " =a* =q€ «, qTqe o/, qTq< xq,q < p}.
We claim that
Fr(x) — & < Fr.p(X) < Fr(x). (5.2.20)

The inequality on the right of (5.2.20) is obvious. We get linger equality by
takingg = ar¢(X) A p on the right side of the definition & p(x) with c large and
using Proposition G.17 again. Thus, (5.2.20) is proved.

To complete the proof of Lemma 5.2.34, simply note fhap(x) = Fv,p(X) by
hypothesis, and apply (5.2.20). O
Proof of Proposition 5.2.32PutT;" := Tip|" with p!' = x1.([—n,n]). Define the
multiplication operatoiMq = Mq(t,,...7,) as in Theorem 5.2.31. By Lemma
5.2.33, we can find a projectigr such that

X":=p"Q(T{,..., TP = p"Q(T1,..., k) p" = p"Mgp"
andt(p") > 1—m(Q)max t(1— x1.([—n,n])). By Lemma5.2.34,
dis(Hmg, Hoerp.... 1)) < M(Q)maxt (1 — i ([—n,n))),

DTy
implying the convergence of the law @{(T;",..., T,") to the law ofMq. Since also
by constructiorp'Ti p{' = w"(T;) with w"(x) = x1 <, we see that we can replace
noww" by any other local approximatiai of the identity since the difference

X" — p"Q(u(Ta),...,u"(Ti)) p"

is uniformly bounded bycsup, -, [w" — u"|(x) for some finite constant =
c(n,supy<n W'(x)|,Q) and therefore goes to zero whef(x) approaches the
identity map on{—n,n. O



348 5. REE PROBABILITY
5.3 Free independence

What makes free probability special is the notion of fresnbsait we define in
Section 5.3.1. It is the noncommutative analog of indepeoéén probability.

In some sense, probability theory distinguishes itselfrfiategration theory by
the notions of independence and of random variables whielhar basis to treat
problems from a different perspective. Similarly, free lpability differentiates

from noncommutative probability by this very notion of fresss which makes it
a noncommutative analog of classical probability.

5.3.1 Independence and free independence

Classical independence of random variables can be defing inoncommuta-
tive context. We assume throughout thiat, @) is a noncommutative probability
space. Supposgs }ici is a family of subalgebras of7, each containing the
unit of 7. The family is calledindependentf the algebras«4 commute and
®(ag---an) = @(a) - @(an) for & € ;) with i # j = k(i) #K(j). This is the
natural notion of independence when considering tensatymts, as is the case
in the classical probability examplé® (X, £, ).

Free independence is a completely different matter.

Definition 5.3.1Let {.<7j} j<| be a family of subalgebras o, each containing
the unit of<7. The family{.« } jc| is calledfreely independerit for any positive
integern, indicesk(1) # k(2), k(2) # k(3), ..., k(n—1) #k(n) in | and any
aj € j), i =1,...,n, with g(a;j) = 0, it holds that

(p(al...an) =0.

Letr, (mg)1<k<r be positive integers. The se¥ p,. .., Xm,.p)1<p<r Of NONCOM-
mutative random variables are callieeeif the algebras they generate are free.

Note that, in contrast to the classical notion of indeperderepetition of indices
is allowed provided they are not consecutive; thus, freepetidence is a truly
noncommutative notion. Note also that it is impossible ted@a= 1 in Definition
5.3.1 because of the conditigria;) = 0.

Observe that we could have assumed ttvatas well as all members of the
family {4 }ic) areW*-algebras. In that situation, &; is a family of generators
of theW*-algebrad, then theN*-subalgebra$.« }ic, are free iff the families of
variables{ gi }c| are free.
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Remark 5.3.2

(i) Independence and free independence are quite diffehedéed, letX,Y
be two self-adjoint elements of a noncommutative probgtspace <7, @)
such thatp(X) = @(Y) = 0 but@(X?) # 0 andg(Y?) # 0. If X,Y commute
and are independent,

PXY) =0, @XYXY) = p(X2)@(Y?) £0,

whereas ifX,Y are free, themp(XY) = 0 but@(XY XY) = 0.

(i) The interest in free independence is that if the sublalge<s are freely
independent, the restrictions @fto the.o# are sufficient in order to com-
pute ¢ on the subalgebra generated by.&ll To see that, note that it is
enough to compute@(aya; - - an) for & € ;) andk(i) # k(i +1). But,
from the freeness condition,

@((a1 — @(a)1) (a2 — @(az)1)--- (an — @(an)1)) = 0. (5.3.1)

Expanding the product (using linearity), one can indudyiveompute
@(a;---an) as a function of lower order terms. We will see a systematic
way to perform such computations in Section 5.3.2.

(iii) The law of free sets of noncommutative variables is atawous func-
tion of the laws of the sets. For example, ¥e§ = (Xyp,...,Xmp) and
Yp=(Y1,p:---,Ynp) be sets of noncommutative variables for egaithich
are free. Assume that the law Xf, (respectively,Y ) converges ap
goes to infinity towards the law of = (Xg,...,Xn) (respectively,Y =
(Y1,---,Yn)).

(a) If the setsX andY are free, then the joint law ¢ p, Y ) converges to
the joint law of (X, Y).

(b) If instead the joint law ofX, Y p) converge to the joint law ofX,Y),
thenX andY are free.

(iv) If the restriction ofg to each of the subalgebrés }i¢ is tracial, then the
restriction ofg to the algebra generated By# }i¢ is also tracial.

The proof of some basic properties of free independenceatteainherited by
subalgebras is left to Exercise 5.3.8.

The following are standard examples of free variables.

Example 5.3.3

(i) Free products of groupéContinuation of Example 5.2.2, part (ii)) Sup-
poseG is a group which is the free product of its subgro@sthat is,
every element iic can be written as the product of elements in@eand
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(ii)
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0102---On # € Whenevem; € G;(;) \ {e} andi(j) #i(j +1) forall j. In
this setup, we may take ag theW*-algebra generated by the left regular
representation (G), see part (i) of Example 5.2.12, and we may talkes
the tracep defined in that example. Take also.&sthe W*-algebra gen-
erated by the left regular representatidr{&;). This coincides with those
operatorsy 4 cgA (g) with ¢(g) = 0 for g £ G; that form bounded opera-
tors. Now, ifa € o4 andg(a) = 0 thence = @(a) = 0. Thus, ifa; € )
with @(a) = 0 andk(i) # k(i + 1), the resulting operator corresponding
to a; ---an, denotedy ;CqA (9), satisfiescy # 0 only if g = g;---gn for

g € Gy \ e In particular, sincegs ---gn # € we have thate =0, i.e.
@(a;---an) = 0, which proves the freeness of th&¢. The converse is also
true, that is, if the subalgebrag associated with the subgrou@s are
free, then the subgroups are algebraically free.

Fock spaces.Let H be a Hilbert space and define tBeltzmann—Fock
space as

T =PH"". (5.3.2)

n>0

(Here,H®® = C1 where 1 is an arbitrary unit vector K). .7 is itself a
Hilbert space (with the inner product determined from theeirproduct in
H by (G.1) and (G.2)). I} is an orthonormal basis iH, then{1} is
an orthonormal basis fo1%°, and{e, ® --- @&, } is an orthonormal basis
for H®", An orthonormal basis foZ is constructed naturally from these
bases.

For h € H, define/(h) to be the left creation operatof(h)g = h® g.
On the algebra of bounded operators.@ndenoted”(.7 ), consider the
state given by theacuum @(a) = (al,1). We next show that the family
{l(a),¢*(a)} is freely independent i0Z(.7 ), @). Here (i .= (*(a), the
left annihilationoperator, is the operator adjoint £p:= ¢(e). We have
41 = 0. More generally,

gi*31®32®'“®3n =0i,8,Q- - ®8,
because, fog € .7 with (n— 1)th term equal t@,_1,

(8, 06,0--06,40 = (6,06, 6,630 1)
= 5i1<32®“'®3mgn—1>~
Note that even though/; is typically not the identity, it does hold true that

£y = §;l with | the identity in# (7). Due to that, the algebra generated
by (¢i,¢;,1) is generated by the ternd&(¢)P, p+q > 0, andl. Note also



5.3 FREE INDEPENDENCE 351

that
PE(6)P) = {(€)PL, (¢)%1) = O,

since at least one gf,q is nonzero. Thus, we need only to prove that if
P+ Ok > 0, i # kg1,

Z:= (6P 2 ()P4 (6)™) = .

But necessarily iZ # 0 theng; = O (for otherwise a terng, pops out
on the left of the expression which will then be annihilatedhie scalar
product with 1). Thusp; > 0, and then one must hage = 0, implying
in turnp > 0, etc., up tgpn > 0. But since(/; )1 = 0, we conclude that
Z=0.

In classical probability one can create independent randoiables by forming
products of probability spaces. Analogously, in free philitg, one can create
free random variables by forming free products of nonconating probability
spaces. More precisely, {7}, ¢;)} is a family of noncommutative probability
spaces, one may construct a noncommutative probabilitgespd, ¢) equipped
with injectionsij : «/j — &7 such thatg; = @oij and the imageg (<)) are free
in.o.

We now explain the construction of free products in a singdifsetting suf-
ficient for the applications we have in mind. We assume eacitoromutative
probability spacé.c7j, ¢;) is aC*-probability spaceg; is separable, and the fam-
ily {(«%,q)} is countable. By Corollary 5.2.25, we may assume i#atis a
C*-subalgebra oB(H;) for some separable Hilbert spakk, and that for some
unit vector{j € Hj we haveg; (a) = (adj, {j) for all a € «7j. Then the free prod-
uct («7, @) we aim to construct will be &*-subalgebra oB(s#) for a certain
separable Hilbert spac#’, and we will have for some unit vectdr e 7 that
¢p(a)=(al,() forallac «.

We construct.Z, {) as thefree producof the pairs(H;, {j). Toward that end,
givenf € Hj, let f = f — (f,{j){j € Hj and putH; = {f : f € H;}. Then, for a
unit vector¢ in some Hilbert space which is independenj gbut

x()=Cle@| G H,oH,2 -H; |. (5.3.3)
n>1 11#_12;_#Jn
117

Let 7# be defined similarly but without the restrictign # j. Note that all the
Hilbert spaces’(]) are closed subspaces.#f. We equipB(.¢’) with the state
1= (ar (al,{)), and hereafter regard it as a noncommutative probabildgesp
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We need next for each fixefito define an embedding &(H;) in B(J¢).
Toward that end we define a Hilbert space isomorphignH; @ 7 (j) — 4 as
follows, whereh; denotes a general elementhf.

(@] ¢,
Flj@( F]jv
g (h, @hj,®--@hj,) hj, @hj, @ @hy,,
h @ (hy, ®hj,® - @h;,) hj@hy, @h,® - @h;,.

111

Then, givenT € B(H;), we definer(T) € B(¢) by the formula
7G(T) =Vjo (T® L) oVf

wherel ,,(j) denotes the identity mapping o#’(j) to itself. Note thatr is a
norm-preserving-homomorphism oB(H;) into B(#"). The crucial feature of
the definition is that foff # j1 # jo # -+ # jm,

m(T)(hy @ @hy,) = (T, @@ hj, + (TE) @ hy @ ©hy,. (5.3.4)
We have nearly reached our goal. The key point is the follgwin

Lemma 5.3.4In the noncommutative probability spa@®(.7#’), 1), the subalge-
brasm;(B(H;)) are free.

The lemma granted, we can quickly conclude the constructidime free product
(«, @), as follows. We taker to be theC*-subalgebra oB(.#’) generated by
the imagesr; («7}), @ to be the restriction of to <7, andi; to be the restriction of
T to «7]. It is immediate that the imagég <) are free in(<7, @).

Proof of Lemma 5.3.4Fix j1 # j» # --- # jm and operator§y € B(H;,) for
k=1,...,m Note that by definitiort (5 (Tx)) = (Telje, ¢j,). PutTi = T —
(k< € i Wherelj, denotes the identity mapping bff, to itself, noting that
T(mk('ﬁ()) = 0. By iterated application of (5.3.4) we have

o (Ta) -+ 1, (Tn) = (1183) @+ @ (Td)) € Fj @ Hp © - @ Hj-
Since the space on the right is orthogonad fave have
(11 (T1) -+ - Thjy (Tm)) = 0.

Thus theC*-subalgebragr (B(Hj)) are indeed free il(.#) with respect to the
stater. 0

Remark 5.3.5In point (i) of Example 5.3.3 the underlying Hilbert spaceiggped
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with unit vector is the free product of the pa(@(Gi),veGi ), while in point (ii) it
is the free product of the pait¢p;,_,Ce™", 1).

Remark 5.3.6The free product<, @) of a family { (<7}, ¢;) } can be constructed
purely algebraically, using just the spa¢eg , ¢;) themselves, butitis less simple
to describe precisely. Giveme .7}, putd = a— ¢j(a) 1y, and«/, = {4:a€ o}
At the level of vector spaces,

o =Cly® ( D JZ{oj1®"'®eQ{°jm> .
j1#i2##im

The injectioni; : 27} — </ is given by the formula
ij(@=galydac Clﬂ@sz;j co
and the state is defined by
(p(lef) =1, (p(g{oh@@g{o]m) =0.

Multiplication in <7 is obtained, roughly, by simplifying as much as possiblenvhe
elements of the same algebr4 are juxtaposed. Since a rigorous definition takes
some effort and is not needed, we do not describe it in detail.

Exercise 5.3.7n the setting of part (ii) of Example 5.3.3, show that, fdma& N,
1 /2
pllts+ ) = = [ x/a=xedx
-2

Hint: Expand the left side and show thpf¢P1¢P2 ... ¢Pn) with p; = 1 or x, van-
ishes unles§ L, 1,-1 =5 ;15—.. Deduce that the left side vanishes when
is odd. Show that when is even, the only indiceép;,-- -, pn) contributing to
the expansion are those for which the p@h= Xi_1+ 1p -1 — 1p—+)1<i<n, With
Xo =0, is a Dyck path. Conclude by using Section 2.1.3.

Exercise 5.3.8(i) Show that freely independent algebras can be “piled ag”,
follows. Let{. }ic| be a family of freely independent subalgebras4fPartition

| into subsetqlj};c; and denote byZ; the subalgebra generated by the family
{.;zfi}ie”. Show that the family{.%; }c; is freely independent. (ii) Show that
freeness is preserved under (strong or weak) closures/lag$o Suppose that
(<, @) is aC*- or W*-probability space. Lef.}ic be a family consisting of
unital subalgebras closed under the involution, and foheadexi € | let .;z?l\
be the strong or weak closure of. Show that the famil>{.;zZ}i6| is still freely
independent.
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5.3.2 Free independence and combinatorics

The definition 5.3.1 of free independence is given in termghefvanishing of
certain moments of the variables. It is not particularlyyemshandle for com-
putation. We explore in this section the notion of cumulaitich is often much
easier to handle.

Basic properties of non-crossing partitions

Whereas classical cumulants are related to moments via asuimre whole set

of partitions, free cumulants are defined with the help of-oossing partitions

(recall Definition 2.1.4). A pictorial description of nomessing versus crossing
partitions was given in Figure 2.1.1.

Before turning to the definition of free cumulants, we neecktoew key prop-
erties of non-crossing partitions. Itis convenientto deffor any finite nonempty
setJ of positive integers, the s&tC(J) to be the family of non-crossing partitions
of J. This makes sense because the non-crossing property dftiopas well de-
fined in the presence of a total ordering. Also, we definmtarvalin J to be any
nonempty subset consisting of consecutive elements@fveno, me NC(J) we
say thato refinesr if every block of g is contained in some block af, and in
this case we writer < 1. Equipped with this partial ordelC(J) is a poset, that
is, a partially ordered set. Fdr= {1,...,n}, we simply writeNC(n) = NC(J).
The unique maximal element diC(n), namely{{1,...,n}}, we denote byl,.

Property 5.3.9For any finite nonempty familfr }ic; of elements of N@) there
exists a greatest lower bounde375 € NC(n) and a least upper boundic;7t €
NC(n) with respect to the refinement partial ordering.

We remark that greatest lower bounds and least upper bonradgaset are auto-
matically unique. Below, we Writec(1 2,7 = TH A Th andVic (12,75 = T4 V Th.

Proof It is enough to prove existence of the greatest lower boyags, for then
VieaTh can be obtained asyck 0k, Where{ok}kek is the family of elements of
NC(n) coarser tham for all i € J. (The family{ oy} is nonempty sincé, belongs
to it.) Itis clear that in the refinement-ordered family df@rtitions of{1,...,n}
there exists a greatest lower bourtdor the family {75 }icj. Finally, it is routine
to check thattis in fact non-crossing, and henme= Ajc3Tt. a

Remark 5.3.10As noted in the proof above, far, o € NC(n), the greatest lower
bound ofrrando in the posefNC(n) coincides with the greatest lower bound in
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the poset of all partitions of1,...,n}. But the analogous statement about least
upper bounds is false in general.

Property 5.3.11Let 1T be a non-crossing partition of a finite nonempty set S of
positive integers. Let;S..., Sy be an enumeration of the blocks of For i =
1,...,m let 75 be a partition of § Then the partitionJ ; 77 of S obtained by
combining therg is non-crossing if and only iff is non-crossing fori=1,...,m.

The proof is straightforward and so omitted. But this proyp&ears emphasis
because it is crucial for defining free cumulants.

Property 5.3.12If a partition 77 of a finite nonempty set S of positive integers is
non-crossing, then there is at least one blockrafhich is an interval in S.

Proof Let W be any block ofrr, letW' > W be the interval irS bounded by the
least and greatest elementd/éfand putS =W’ \W. If S'is empty, we are done.
OtherwiseS is a union of blocks ofr, by the non-crossing property. Lat be the
restriction ofrrto S. By induction on the cardinality db, some block/ of 17’ is
an interval ofS, henceV is an interval inSand a block ofr. O

Free cumulants and freeness

In classical probability, moments can be written as a sum pasitions of clas-
sical cumulants. A similar formula holds in free probakikxcept that partitions
have to be non-crossing. This relation between momentsraecctimulants can
be used to define free cumulants, as follows.

We pause to introduce some notation. Suppose we are givelfeatiom { ¢y, :
</" — C}p_; of multilinear functionals on a fixed complex algebed. We
definex({a }icy) € C for finite nonempty setd of positive integers, families
{ai}icy Of elements ofez and € NC(J) in two stages: first we writd = {i1 <
.- <im} and define/({aj }ici) = {m(ai,, ..., aiy,); then we definér({a }ics) =
ﬂVeng({ai}ieV)-

Definition 5.3.13Let (<7, @) be a noncommutative probability space. Thee
cumulantsare defined as a collection of multilinear functionals

kn: " —C (neN)
by the following system of equations:

o ---an) = z kn(ag,...,an). (5.3.5)
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Lemma 5.3.14The free cumulants are well defined.

Proof We definegr({a;i}icy) € C for finite nonempty setd of positive integers,
families {a; }icy of elements ofer’ and m e NC(J) in two stages: first we write
J={i1<--- <im} and defingic;a = &, - - - ai,; then we definep({a }ics) =
Mver®(Micv &) If the defining relations (5.3.5) hold, then, more gengralle
must have

on(ag,...,an) = z ko (az,...,an) (5.3.6)
oeNC(n)

o<T
foralln, (as,...,an) € @™ andme NC(n), by Property 5.3.11. Since every partial
ordering of a finite set can be extended to a linear orderimgsystem of linear
equations (5.3.6), for fixed and(ay,...,an) € &", has (in effect) a square tri-
angular coefficient matrix with 1s on the diagonal, and hemo@ique solution.
Thus, the free cumulants are indeed well defined. O

We now turn to the description of freeness in terms of cums|awhich is
analogous to the characterization of independence by amntaih classical prob-
ability.

Theorem 5.3.19 et (<7, ) be a noncommutative probability space and consider
unital subalgebras»#, ..., o C &. Then#,. .., 9, are free if and only if, for
alln>2andforalla € ;) with1 < j(1),...,j(n) <m,

kn(aa,...,an) =0 if there existl <,k < nwith j(I) # j(k). (5.3.7)

Before beginning the proof of the theorem, we prove a reshitlwexplains
why the description of freeness by cumulants does not requriy centering of
the variables.

Proposition 5.3.16Let (<7, @) be a noncommutative probability space and as-
sume a,...,an € & withn> 2. If there isie {1,...,n} so that a= 1, then

kn(ala"'van) = 0
As a consequence, forn2 and any a, ...,a, € &7,

kn(@g; .-, 8n) = kn(a1 — @(a1), 82— @(a2), -, @ — @(an))-

Proof We use induction om > 2. To establish the induction base, fo= 2 we
have, sincé; (a) = @(a),

p(anaz) = Ka(a1,a2) + @(a1) p(az)



5.3 FREE INDEPENDENCE 357

and so, ifag = 1 oray = 1, we deduce, sincg(1) = 1, thatky(az,a2) = 0. For
the rest of the proof we assume timat 2. By induction we may assume that for
p<n-—1,kp(by,...,by) =0 if one of theb; is the identity. Suppose now that
a=1. Then

@@---an) =kn(as,....an)+ 3 kn(as,...,an), (5.3.8)
T,
where by our induction hypothesis all the partitiomgontributing to the above
sum must be such thét} is a block. But then, by the induction hypothesis,

kn(al7...,an) = Z kﬂ(a17"')ai—17ai+l7"')an)
nei(:f(n) meNC(n—1)
T#1n

= @@1--q-18+1° an)
®(ay---an) —kn(ag, .-, an)

where the second equality is due to the definition of cumaland the third to
(5.3.8). As a consequence, becagge;---a_18:1---an) = @(a1---an), we
have proved thaty(ay, ...,a,) =0. |

Proof of the implication < in Theorem 5.3.15We assume that the cumulants
vanish when evaluated at elements of different algebfas. . , o and consider,
for a € o) with j(i) # j(i+1) foralli € {1,...,n— 1}, the equation

p((a1—@(ar)) -~ (an—@(an))) = 5 kn(as,...,an).
neNC(n)

By our hypothesis; vanishes as soon as a blockoontains I< p,g < nso that
i(p) # i(q). Therefore, since we assumgg) # j(p+1) forallpe {1,...,n—
1}, we see that the contribution in the above sum comes frontipag 1T whose
blocks cannot contain two nearest neighbigsgsp+ 1} foranyp e {1,...,n—1}.
On the other hand, by Property 5.3.Z2must contain an interval ifi1,...,n},
and the previous remark implies that this interval must béhefformV = {p}
for somep € {1,...,n—1}. But thenk; vanishes sinck; = 0 by centering of the
variables. Therefore, ifforX p<n—1,j(p) # j(p+1), we get

(a1 —@(a1)) - (@ — ¢(an))) =0,

and hencep satisfies (5.3.1). O

The next lemma handles an important special case of the datfgh = in
Theorem 5.3.15.
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Lemma 5.3.17f @, ..., .9y are free, then for n> 2,

kn(a,...,an) =0 ifaj € ) with j(1) # j(2) # --- # j(n). (5.3.9)
Proof We proceed by induction om> 2. We have

0 = o((ar—¢@))-(am—g@n)= 5 kr(a—@@),...,a—@@))
neNC(n)

= z ke(as,-..,an), (5.3.10)
meNC(n)

mhas no singleton blocks

where the second equality is due to Proposition 5.3.16 amdahishingk; (a —
¢(a)) = 0. To finish the proof of (5.3.9) it is enough to prove that thstIsum
reduces tdq(as, . ..,an). If n= 2 this is clear; otherwise, far > 2, this holds by
induction onn, using Property 5.3.12. O

The next lemma provides the inductive step needed to finspithof of Theo-
rem5.3.15.

Lemma 5.3.18Fix n>2 and a,...,ah, € &«/. Fix1<i<n-1landleto €
NC(n) be the non-crossing partition all blocks of which are sirtigtes except for
{i,i+1}. Then for allp € NC(n— 1) we have that

kp(ag,...,&8i41,...,8n) = Z kn(as,...,an)- (5.3.11)

meNC(n)
nvo=n

Proof Fix { € NC(n—1) arbitrarily. It will be enough to prove equality after
summing both sides of (5.3.11) over< (. Let

f:{1,...,n} - {1,....n—1}

be the unique onto monotone increasing function suchfitiat= f(i+1). Let
{' € NC(n) be the partition whose blocks are of the fofm! (V) with VV a block
of {. Summing the left side of (5.3.11) on< { we getq, (ay, ..., 8@ 1,...,an)
by (5.3.6). Now summing the right side of (5.3.11) @< { is the same thing as
replacing the sum already there by a sum averNC(n) such thatt < {’. Thus,
summing the right side of (5.3.11) ovgr< ¢, we get,(ay,...,a,) by another
application of (5.3.6). But clearly

%(alv"' aa'iai+la'~~7an) = q){’(alv"' ,an),
Thus (5.3.11) holds. O

Proof of the implication = in Theorem 5.3.15orn> 2, indicesj(1),...,j(n) €
{1,...,m} such that{j(1),...,j(n)} is a set of more than one element, and
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Ay fori=1,...,m, assuming, ..., om are free ina with respect top, we
have to prove thakn(ay,...,a,) = 0. We proceed by induction om> 2. The
induction bas@ = 2 holds by (5.3.9). Assume for the rest of the proof that2.
Because of (5.3.9), we may assume there ekist§l,...,n— 1} such thatj(i) =
j(i+1). Leto € NC(n) be the unique partition all blocks of which are singletons
except for the blocKi,i+1}. In the special casge = 1,,_1, equation (5.3.11) after
slight rearrangement takes the form

kn(ala"'van):kn—l(al7"';aiai+la"'7an)_ z kﬂ(al7"'aan)' (5312)
1n#meNC(n)
mwvo=1y

In the present case the first of the terms on the right vanishé@sduction onn.
Now eachrir € NC(n) contributing on the right is of the formr= {V;,Vi;1} where

i €V, andi+1eV,;. Since the function — j(i) cannot be constant both on
V; and onV;, 1 lest it be constant, it follows that every term in the sum o fer
right vanishes by induction om We conclude that,(a,...,an) = 0. The proof
of Theorem 5.3.15 is complete. O

Exercise 5.3.1%rove that

ks(ag,ap,83) = @(araaz) — @(a1)@(azas) — @(a1ag)P(az)
—@(a122)p(as) + 2¢(a1) p(az) p(as) -

5.3.3 Consequence of free independence: free convolution

We postpone giving a direct link between free independendeandom matrices
in order to first exhibit some consequence of free indepetela@iten described as
free harmonic analysisWe will consider two self-adjoint noncommutative vari-
ablesa andb. Our goal is to determine the law aft- b or of abwhena, b are free.
Since the law ofa, b) with a, b free is uniquely determined by the lapwgof aand
Uy of b (see part (ii) of Remark 5.3.2), the law of their sum (respebtt, product)

is a function ofu, and uy denoted byu, B uy, (respectivelyus X up). There are
several approaches to these questions; we will detail fipstraly combinatorial
approach based on free cumulants and then mention an algappoach based
on the Fock space representations (see part (ii) of Exampl&)5 These two
approaches concern the case where the probability megsypgshave compact
support (thatisaandb are bounded). We will generalize the results to unbounded
variables in Section 5.3.5.
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Free additive convolution

Definition 5.3.20Let a, b be two noncommutative variables in a noncommutative
probability spacé.«7, @) with law g, L, respectively. Ifa, b are free, then the law
of a+ bis denotedus B L.

We usekn(a) = kq(a,...,a) to denote theith cumulant of the variabla.

Lemma 5.3.21L et a b be two bounded operators in a noncommutative probability
space(«/, @). If aand b are free, then for all i 1,

kn(a+b) = kn(@) + kn(b).

Proof The result is obvious fon = 1 by linearity ofk;. Moreover, for alin > 2,
by multilinearity of the cumulants,

kn(a+b) = Zj kn(€1a+ (1—&1)b,...,eqa+ (1 — &)b)
&§=0,1
= kn(a)+kn(b),

where the second equality is a consequence of Theorem 5.3.15 O

Definition 5.3.22For a bounded operatarthe formal power series
Ra(2) = § kny1(a)Z"

is called theR-transform of the law 5. We also writeRy,, := R, sinceR, only
depends on the lay;.

By Lemma 5.3.21, thé&k-transform is to free probability what the log-Fourier
transform is to classical probability in the sense that liriear for free additive
convolution, as stated by the next corollary.

Corollary 5.3.23 Let a b be two bounded operators in a noncommutative proba-
bility space(«, @). If a and b are free, we have

Ruafiu, = Rua + Ry,

where the equalities hold between formal series.

We next provide a more tractable definition of tReransform in terms of the
Stieltjes transform. Lett : C[X] — C be a distribution in the sense of Definition
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5.2.3 and define the formal power series

Gu(2) =y u(XMz ™. (5.3.13)

n>0

Let K, (2) be the formal inverse 0By, i.e. Gy(Ky(z)) =z Theformal power
series expansion ¢{;, is

1 [ee]
Ku(@=>+3 2"
z n=1
Lemma 5.3.24Let u be a compactly supported probability measure. For i

integer, G, = k, and so we have equality in the sense of formal series

Ry(2) =Ku(z2)—-1/z

Proof Consider the generating function of the cumulants as thedbpower
series

with my(a) := p(a"). We will prove that
Ca(zMa(2)) = Ma(2). (5.3.14)
The rest of the proof is pure algebra since
Ga(2) = Gu(2) =7 'Ma(z ), Ra(2):=7(Ca(2 1)
then givesC,(Ga(z)) = zGa(2) and so, by composition with,
ZRu(2) + 1= Ca(2) = 2Ka(2).

This equality proves thdt, = C, for n > 1. To derive (5.3.14), we will first show
that

(@) = Z T k@m@-m@. (65315
s=1i1,...,is€{0,1,....n—s}

i14--+is=n-s
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With (5.3.15) granted, (5.3.14) follows readily since

0

Ma(2) = 143 my(a)Z’
n=1
© n
nzlsziil--_-.,iseg,l ,,,,, n—s} s(2)zm, (3) (a)
i1+ +Hs=n-s

S
1+ S k(27 @im(a)) = Ca(ZMa(2)).
s=1 i=
To prove (5.3.15), recall that, by definition of the cumutant

my(a) = z kn(a).
meNC(n)

Given a non-crossing partitiam= {V4, ...,V } € NC(n), writeVy = (1,vp,...,Vs)
with s= V4| € {1,...,n}. Sincerm is non-crossing, we see that for ahy
{2,...,r}, there existk € {1,...,s} so that the elements & lie betweenvy
andvi.1. Herevs; 1 = n+ 1 by convention. This means thatdecomposes into
V; and at moss other (non-crossing) partitiorf, .. ., . Therefore

kr[ S kskﬁ-l ce kﬁg

If we letiy, denote the number of elementsiipg we thus have proved that

m(a) = 3 k(@) kry () - - k7 (@)
RN i
= ;ks(a)_ 2 M@ m(a),

i >0

where we used again the relation (5.3.5) between cumuladtsrements. The
proof of (5.3.15), and hence of the lemma, is thus complete. O

We now digress by rapidly describing the original proof ofr@ary 5.3.23
due to Voiculescu. The idea is that since laws only dependsaments, one can
choose a specific representation of the free noncommutediiablesa, b with
given marginal distribution to actually compute the lavaefb. A standard choice
is then to use left creation and annihilation operators asriteed in part (ii) of
Example 5.3.3. Ley denote the Fock space described in (5.3.2)grd{(e),

i = 1,2, be two creation operators ¢A.
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Lemma 5.3.25Let (aj,,i = 1,2,j € N) be complex numbers and consider the
operators on7

a =4+ agil + Zlaj'igij’ i=12.
J:

Then, denoting in sho® = | for i = 1,2, we have that

agtax=(01+05)+ Uj’lﬁi—k aj’zﬁé (5.3.16)
&I,
and
ag=(i+ Y ajali+ Z)a,-ze{ (5.3.17)
=0 i=

possess the same distribution in the noncommutative pitityapace(.7, (-1,1)).

In the above lemma, infinite sums are formal. The law of the@ated operators
is still well defined since thé/})j>m will not contribute to moments of order
smaller tharM; thus, any finite family of moments is well defined.

Proof We need to show that the tracés1,1) and ((a; + a)*1,1) are equal
for all positive integerk. Comparing (5.3.16) and (5.3.17), there is a bijection
between each term in the sum definifag + a2) and the sum definings, which
extends to the expansionsagand(al + az)k. We thus only need to compare the
vacuum expectations of individual terms; f(agl, 1) they are of the fornZ :=
(011012 .. 0371, 1) wherew; € {,1}, whereas the expansion ¢fa; + ap)¥1,1)
yields similar terms except théf has to be replaced b§f + /5 and some of the
¢} by ¢3. Note, however, thaZ # 0 if and only if the sequencey, W, ..., Wy is

a Dyck path, i.e. the walk defined by it forms a positive eximrghat returns

to O at timen (replacing the symbot by —1). But, since(¢; + £5)6 = 1 = £;¢;
fori = 1,2, the value oZ is unchanged under the rules described above, which
completes the proof. O

To deduce another proof of Lemma 5.3.21 from Lemma 5.3.25ex¢ show
that the cumulants of the distribution of an operator of thref

a=/l"+ Z)ajéj,
=
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for some creation operatdron .7, are given byk; = a;.1. To prove this point,
we compute the moments af By definition,

<ﬁ+zmﬂ>Lm

(a"1,1)

120

— y (00O Ty a .
i(1),...,i(n)e{—1,0,....n—1}

where forj = —1 we wrote/* for ¢ and setor_; = 1, and further observed that
mixed moments vanish if somié) > n. Recall now that¢/'(® ... /(W1 1) van-
ishes except if the patti(1),...,i(n)) forms a positive excursion that returns to
the origin at timen, that is,

i(1)+---+i(m) >0 forall m<n, andi(1)+---+i(n) =0. (5.3.18)

(Such a path is not in general a Dyck path since(ilip), 1 < p < n) may take
any values infl—1,0,...,n—1}.) We thus have proved that

(a”l, 1> = z di(1) - Adi(n) - (5.3.19)
i(1),....i(n)e{-1,....n—1},
Tpe1i(P>03]_4i(p)=0

Define next a bijection between the set of integé(4),...,i(n)) satisfying
(5.3.18) and non-crossing partitioms= {V1,...,V;} by i(m) = |Vi| —1 if mis
the first element of the block, andi(m) = —1 otherwise. To see it is a bijection,
being given a partition, the numbsgjigl),...,i(n)) satisfy (5.3.18). Reciprocally,
being given the numbe($(1),...,i(n)), we have a unique non-crossing partition
m= (Vi,...,V) satisfying|Vi| = i(m) + 1 with mthe first point ofv;. It is drawn
inductively by removing block intervals which are sequenggindices such that
{i(m) = p,i(m+k) = —1,1 <k < p} (includingp = 0 in which case an interval is
{i(m) = 0}). Such a block must exist by the second assumption in (5.3Fb8ng
such intervals as blocks of the partition, we can remove ¢heesponding indices
and search for intervals in the corresponding suBs#ft{i(k),1 < k < n}. The
indices inSalso satisfy (5.3.18), so that we can continue the consbruantil no
indices are left.

This bijection allows us to replace the summation overithgin (5.3.19) by
summation over non-crossing partitions to obtain
@LL)= % ay10y-a-

m=(V1,...,Vr)

Thus, by the definition (5.3.5) of the cumulants, we dedueg, tfor alli > 0,
ai_1 = ki, with k; theith cumulant. Therefore, Lemma 5.3.25 is equivalent to the



5.3 FREE INDEPENDENCE 365

additivity of the free cumulants of Lemma 5.3.21 and the ofghe analysis is
similar.

Example 5.3.26Consider the standard semicircle law(dx) = o(x)dx. By
Lemma 2.1.3 and Remark 2.4.2,

z—VZ2 -4
5 :

Thus,Ka(2) = z 1 +z In particular, theR-transform of the semicircle is the linear
function z, and summing two (freely independent) semicircular vaeslyields
again a semicircular variable with a different variancelded, repeating the com-
putation above, th&-transform of a semicircle with suppdrta, a] (or equiva-
lently with variancea?/4) isa®z/4. Note here that the linearity of tfetransform
is equivalent tdk(a) = 0 except ifn = 2, andkp(a) = a?/4 = @(a?).

Ga(2) =

Exercise 5.3.270) Let 4 = 3(8,1+ 8_1). Show thatG,, () = (2 - 1)~'zand

V14+422-1
RH(Z) = T

with the appropriate branch of the square root. Deducedhaf,(z) = vVZ% — 7"
Recall that ifo is the standard semicircle lasho(x) = o(x)dx, Gg(X) = %(z—
\/Z2 — 4). Deduce by derivations and integration by parts that

%(1— 2Guzu(2) = / Zixdxo(x)dx

Conclude thaju H u is absolutely continuous with respect to Lebesgue measure
and with density proportional to,l.»(4 — xz)—%.

(ii) (Free Poisson) Letr > 0. Show that if one takesn(dx) = (1—2)& + 2 5,,

pi converges to a limip whoseR-transform is given by

Aa
R(z) = 1-az

Deduce thap is the Maréenko—Pastur law givenAif> 1, by

p(dx) = p(dx) = ﬁ\/M a? — (x—a(A +1))2dx,

andforA <1,p=(1—-A)%+Ap.

Multiplicative free convolution

We consider again two bounded self-adjoint opera#obsin a noncommutative
probability spacé.e/, @) with laws Lz and L, but now study the law oéb, that
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is, the collection of momentgp((ab)"),n € N}. Note thatab does not need to be
a self-adjoint operator. In the case wherés tracial anda self-adjoint positive,
we can, however, rewritg((ab)") = qo((a:?L baz )") so that the law o&b coincides
with the spectral measure atba? whenbis self-adjoint. However, the following
analysis of the family{ ¢((ab)"),n € N} holds in a more general context where
these quantities might not be related to a spectral measure.

Definition 5.3.28L et a, b be two noncommutative variables in a noncommutative
probability spac€.«7, @) with laws u; andpu, respectively. Ifaandb are free, the
law of abis denotedus X Ly,

Denote bym, the generating function of the moments, that is, the formalgr
series

M2 = 3 o) =Ma(2) ~ 1.

m>1

When ¢(a) # 0, my is invertible as a formal power series. Denoterby! its
(formal) inverse. We then define

Definition 5.3.29Assumeg(a) # 0. TheS-transformof ais given by

_1+z
Tz

Si(2): m, *(2).

We next prove that th&-transform plays the same role in free probability that the
Mellin transform does in classical probability.

Lemma 5.3.30Let a b be two free bounded operators in a noncommutative prob-
ability space(.«7, @), so thatg(a) # 0, g(b) # 0. Then

See Exercise 5.3.31 for extensions of Lemma 5.3.30 to theevehere eithep(a)
or ¢(b) vanish.

Proof The idea is to use the structure of non-crossing partitiomslate the gen-
erating functions

Man(2) = Z}fp((ab)”)zn, M(2) = Z}fp(d(Cd)”)ZT
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where(c,d) = (a,b) or (b,a). Note first that, from Theorem 5.3.15,

o((ab)") = ¢(abab --ab)= Z kr(a,b,...,a,b)
eNC(2n)
= S K (8)krg ()

m eNC(1,3,...,2n—1)1eNC(2,4,...,2n)
UM ENC(2n)

The last formula is symmetric ia,b so that, even ifp is not tracial,¢((ab)") =
@((ba)") for all n > 1. We use below the notatio#? (odd) and & (ever) for the
partitions on the odd, respectively, even, positive integEix the first block/; =
{Vv1,...,Vs} in the partitionrg. We denote by, ... ,\Ws the intervals between the
elements oW1 U {2n}. Fork=1,...,s, the sum over the non-crossing partitions
of W, corresponds to a word(ab)'x if |W| = 2ix+1 = Vi1 — ik — 1. Therefore
we have

S

n
p(@)") = 3 ks(a) kr (D)kr, (a)
;]_ ° g+ le—ﬂ Sﬂ nle;@(odd),z@ey(ever)nl B
iK=>0 mUMBENC({L,..., 2 +1})
n S .
= Yk(@ Y []eb@y). (5.3.20)
s=1 i1+ +|so—n sk=1
|k>

Now we can do the same fgi(b(ab)") by fixing the first block/; = (v1,...,Vs) in

the partition of theébs (on the odd numbers); the corresponding first intervals are
{Vik+ 1, vy 1 — 1} for k < s— 1 (representing the words of the forab)'ka, with

ik =2 (Vs 1 — Vk) — 1), whereas the last intervéils + 1,2n 4 1} corresponds to

a word of the form(ab)'o with ig = 2-1(2n+ 1 — vs). Thus we get, fon > 0,

S

o(b(ab 20k5+1 z ((ab)'0) |_| a(ba)'x) (5.3.21)
ig+---+is=n-s

ix>0

Setca(z) := Y n>1kn(a)Z". Summing (5.3.20) and (5.3.21) yields the relations

Map(z2) = 1+Ca(ZMgb(Z))a
_ a Mab( )
ME(2) = S;ZSKSJrl(b)Mab(Z)Mba(Z) V(D) Co(zMG4(2)) -
SinceMgp = Mpa, We deduce that
ZMB(2ME,(2)

Mab(2) — 1 = Ca(zM24y(2)) = Co(zMa(2)) = Man( )
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which yields, noting that,, ¢, are invertible as formal power series sirkgéa) =
¢(a) # 0 andk (b) = @(b) # 0 by assumption,

Ca '(Man(2) — 1)Cp * (Map(2) — 1) = zMap(2) (Man(2) — 1) - (56.3.22)
Finally, from the equality (5.3.14) (note here thegt= C; — 1), if my = Mg — 1,
then

Ma(2) = Ca(Z(1+Ma(2))) = ¢ "(2) = (1+2)m,(2) =2(2).
Therefore, (5.3.22) implies
ZS(20%(2) = (14 2)2My (2) = 2Sw(2) ,

which completes the proof of the lemma. O

Exercise 5.3.31n the case whera is a self-adjoint operator such thata) = 0
buta # 0, definemgl, the inverse ofn,, as a formal power series ifz. Define
the StransformS,(z) = (z 1 + 1)m;%(2) and extend Lemma 5.3.30 to the case
whereg(a) or ¢(b) may vanish.

Hint: Note that@(a?) # 0 so thatmy(2) = @(a2)Z + ¥ m>3@(a™)z™ has formal
inversemy1(z) = @(a2)~2./z+ (@(a)/2¢(a2)2)z+ - -, which is a formal power
series in,/z.

5.3.4 Free central limit theorem

In view of the free harmonic analysis that we developed inpte¥ious sections,
which is analogous to the classical one, it is no surprisestiamdard results from
classical probability can be generalized to the noncomtivetsetting. One of the
most important such generalizations is the free centraf tmeorem.

Lemma 5.3.32Let {a }icn be a family of free self-adjoint random variables in
a noncommutative probability space with a tracial stgte Assume that, for all
keN,

sup|p(a¥)| < o. (5.3.23)
i

Assumep(a;) =0, p(a?) = 1. Then

1 N
NN

converges in law as N goes to infinity to a standard semicad&ibution.
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Proof Note that by (5.3.23) the cumulants of words in there well defined and
finite. Moreover, by Lemma 5.3.21, for gl> 1, we have

N

N .
Kp(Xn) = kzlkp(\/im) = N—l,g 2

Kp(ai) -
1
Since, for eaclp, {kp(a)};> ; are bounded uniformly i, we get, forp > 3,
’\I‘im kp(Xn) = 0.

Moreover, sincep(a;) = 0, ¢(a?) = 1, for any integem, ky(Xy) = O whereas
ko(Xn) = 1. Therefore, we see by definition 5.3.13 that, foradi N,

. Oif pis odd
Py _ H
am, 904 _{ {1 e NC(p), t pair partitior}
Here we recall that a pair partition is a partition whose k#obave exactly two
elements. The right side corresponds to the definition ofrtbments of the semi-

circle law, see Proposition 2.1.11. O

5.3.5 Freeness for unbounded variables

The notion of freeness was defined for bounded variable®psig) all moments.
It naturally extends to general unbounded variables thémkse notion ofaffili-
ated operatorslefined in Section 5.2.3, as follows.

Definition 5.3.33Self-adjoint operator§X; }1<i<, affiliated with a von Neumann
algebra/, are calledreely independenor simply free, iff the algebras generated
by {f(X) : f bounded measuraljle-i<, are free.

Free unbounded variables can be constructed in a noncornivelspace, even
though it is not possible anymore to represent these vasaid bounded opera-
tors, so that standard tools such as the GNS represent@tienrem 5.2.24, do
not hold directly. However, we can construct free affiliatadgiables as follows.

Proposition 5.3.34Let (u1,...,up) be probability measures oR. Then there
exist a W -probability space <7, ) with T a normal faithful tracial state, and self-
adjoint operators{ X }1<i<p which are affiliated withe7, with lawsp;, 1 <i < p,
and which are free.

Proof Sete/ = B(H;) with H; = Lz(ui) and construct the free produ#f as in the
discussion following (5.3.3), yielding@"-probability spacé.e7, ) with a tracial
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state and a morphisnit such that the algebrdsi(.#)).1<i<p are free. By the
GNS construction, see Proposition 5.2.24 and Corollary23,2ve can construct
a normal faithful tracial state on a von Neumann algebr# and unbounded
operators(ay, . .., ap) affiliated with 2, with marginal distribution(1, ..., 4p).
They are free since since the algebras they generate aréhfyeethatp andt
satisfy the relations of Definition 5.3.1 according to Rek&aB.2). O

From now on we assume that we are given a Hilbert sphces well as a
W+-algebraey C B(H) and self-adjoint operators affiliated withf. The law of
affiliated operators is given by their spectral measure acchrding to Theorem
5.2.31 and Proposition 5.2.32 {ifi } 1 <i <k are self-adjoint affiliated operators, the
law of Q({Ti }1<i<k) is well defined for any polynomia).

The following corollary is immediate.

Corollary 5.3.35Let {Ti}1<i<k € </ be free self-adjoint variables with marginal
distribution { 14 }1<ij<k and let Q be a self-adjoint polynomial in k noncommuting
variables. Then the law of @Ti}1<i<k) depends only of i }1<i<k and it is
continuous in these measures.

Proof of Corollary 5.3.35 Let u, : R — R be bounded continuous functions so
thatun(x) = x for x| < nandun(x) = 0 for |x| > 2n. By Proposition 5.2.32, the
law of Q({Ti }1<i<k) can be approximated by the law@Qf {un(T;) }1<i<k). To see
the claimed continuity, note that j!ip — Ui converges weakly ag — o for i =
1,...,k, then the sequencéﬂip} are tight, and thus for eagh> 0 there exists an
M independent op so that”({x: |x| > M}) < &. In particular, withT,” denoting
the operators corresponding to the measm‘ésit follows that the convergence of
the law of Q({un(T;") }1<i<k) to the law ofQ({T;"}1<i<k) is uniform in p. Since,
for eachn, the law ofQ({un(T,")}1<i<k) converges to that o®({un(Ti) }1<i<k),
the claimed continuity follows. O

Free harmonic analysis can be extended to affiliated opsrdtat is, to laws
with unbounded support. We consider here the additive foewaution. We
first show that theR-transform can be defined as an analytic function, at least
for arguments with large enough imaginary part, withouhgshe existence of
moments.

Lemma 5.3.36Let u be a probability measure dR. Fora, 3 >0, letl; g C C*
be given by

Fap={z=x+iyeC':|x <ayy>B}.
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Put, for ze C\R,

Gu(2) ::/%{du(x), Fu(2) = 1/Gu(2). (5.3.24)

Foranya > Oande € (0,a), there exist$3 > 0 so that:

() Fyisunivalentor, g;
(i) Fu(Tap) contgiﬂsra,g.B(HE) and in particular, the inverse of F de-
noted F; %, satisfies F*: Fq_¢ g1e)—Ta p;
(iii) Fytis analytic only_¢ g(1¢)-

Proof Observe thak, is analytic on", g and

H !
oot @=-1
In particular, the latter shows th#,(z)| > 1/2 onT4 g for B large enough.
We can thus apply the implicit function theorem (also knowrhis context as
the Lagrange inversion theorem) to deduce fats invertible, with an analytic
inverse. The other claims follow by noting thiat is approximately the identity
for B sufficiently large. O

Definition 5.3.37Let ', g be as in Lemma 5.3.36. We define theiculescu
transformof onl, g as

WD) =F 2~z
For 1/zc T4 g, we define theRk-transformof p asRy(2) := (pu(%).

By Lemma 5.3.36, foB3 large enoughg, is analytic on, g. As the following
lemma shows, the analyticity extends to a full neighborhafadfinity (and to an
analyticity of R, in a neighborhood of 0) as soon @ss compactly supported.

Lemma 5.3.38If u is compactly supported and| is small enough, then ,Rz)
equals the absolutely convergent seffgs o kn+1(a)2".

Note that the definition dB, given in (5.3.24) is analytic (in the upper half plane),
whereas it was defined as a formal power series in (5.3.13)keMer, whenu is
compactly supported arms large enough, the formal series (5.3.13) is absolutely
convergent and is equal to the analytic definition (5.3.@4jch justifies the use

of the same notation. Similarly, Lemma 5.3.38 shows thafdhmal Definition
5.3.22 ofR;, can be strengthened into an analytic definition wpea compactly
supported.
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Proof Let u be supported ifi—M,M] for someM < «. Then observe thab,,
defined in (5.3.13) can be as well defined as an absolutelyecgimg series for
|zl > M, and the resulting function is analytic in this neighbortiobinfinity. R,
is then defined using Lemma 5.3.36 by applying the same puvees in Lemma
5.3.24, but on analytic functions rather than formal series O

By Property 5.3.34, we can always construct a Hilbert sphice tracial state
@, and two free variableX;, X, with laws 1 and up, respectively, affiliated with
B(H). By Corollary 5.3.35, we may define the law Xf + X, which we denote

1B o

Corollary 5.3.39 Let 113 and u» be probability measures dR, and lety = p; H
2. For eacha > 0, we havey, = @, + @, in Iy g for B sufficiently large.

Proof The proof is obtained by continuity from the bounded vaegalgase. In-
deed, Lemmas 5.3.23 and 5.3.24, together with the last pbinémma 5.3.36,
show that Corollary 5.3.39 holds when and p, are compactly supported. We
will next show that

if U, converge tqu in the weak topology, then there exist
a, > 0 such thatg,, converges tag, uniformly on (5.3.25)
compacts subsets b, g .

With (5.3.25) granted, pudy” = i ([—n, n])‘ll‘x‘gndui, note thaty" converges
to y; fori = 1,2, and observe that the lguf' B 15 of un(X1) + un(X2), with Xq, Xo
being two free affiliated variables, convergesuoH t, by Proposition 5.2.32.
The convergence of),n to ¢, on the compacts of somie, g for u = i, L2
and p1 B o, together with the corollary applied to the compactly supgmis”,

implying
Py = Qup + Pp s
yield the corollary for arbitrary measurgs

It remains to prove (5.3.25). Fix a probability measprand a sequence"”
converging tou. Then,F, converges td, uniformly on compact sets @* (as
well as its derivatives, since the functiofg, are analytic). SincéF), (2)| > 1/2
onl 4 g for B sufficiently IargeJFﬁn(z)| > 1/4 uniformly innlarge enough fozin
compact subsets 6f, g for B sufficiently large. Therefore, the implicit function
theorem asserts that there exas{3 > 0 such thaf, has a right inversEL;l on
I g, and thus the function§p,,,n € N, ¢,) are well defined analytic functions
on 4 g and are such thap,,(z) = o(z) uniformly in n as 2| goes to infinity.
Therefore, by Montel's Theorem, the famifyp,,,n € N} has subsequences that
converge uniformly on compacts bf, g. We claim that all limit points must be
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equal tog, and hencey,, convergestagy, onl", g. Indeed, assumg,, converges
to @ on a compacK C 'y g. We have

Fu(e@d+2) -2 = |Fu(9(2)+2) - Fu, (@, (2) +2)|

IFu(9(2) +2) — Fu(u, (2) +2)|

+[Fu(P; (2 +2) — Fu, (@, (2 +2)]-

The first term in the right side goes to zerojagoes to infinity by continuity oF,
and the second term goes to zero by uniform convergenlég]jobn My - (Note

that P, (2) is uniformly small compared t{z| so thatz+ P, (2),j €N, stays in
a,g-) Thus,z+ @is arightinverse oF, thatis,p = ¢,. O

The study of free convolution via the analytic functiops (or Ry) is useful
in deducing properties of free convolution and of free inélyi divisible laws
(whose definition is analogous to the classical one, with é@nvolution replacing
classical convolution). The following lemma sheds lighttba special role of the
semicircle law with respect to free convolution. For a meague M1(R), we
define the rescaled measuxg% € M1(R) by the relation

X
,f :/f —)du(x) for all bounded measurable functiohs
By 3, f) = [ 150

Lemma 5.3.40Let u be a probability measure dR, so that(u,x?) < . If
Hyr B2 =, (5.3.26)
V2 V2

thenyu is a scalar rescale of the semicircle law.

(The assumption of finite variance in Lemma 5.3.40 is supauiu see Section
5.6. The statement we present has the advantage of pogsasdiort proof.)

Proof Below, we consider the definition of Voiculescu’s transfarfiu, see Defi-
nition 5.3.37. We deduce from (5.3.26) that
(P,J(Z) = 2@%; (2).
V2

But
Gy, , (2 =V26u(vV29) = qu(2) = V2@, (2/V2),
V2

V2

and so we obtain

w(z/V2) =V2@u(2). (5.3.27)
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When(u,x?) < o andz has large imaginary part, since

Gul(2) = <1+ L —<“;§2> + o(|mz|—2)> ,

we get

<[.1,X2> — <“7X>2
2z

From (5.3.27) and (5.3.28), we deduce first tatx) = 0 and then that, Sz —
o, 2y, (2) convergestdu,x?) /2. Since 5.3.27 implies thap, (2) = 2"/, (2"?2),
it follows by lettingn go to infinity thatzgy (2) = (u,x?)/2, for all zwith Oz # 0.
From Example 5.3.26, we conclude thatis a scalar rescale of the semicircle
law. O

(2 = (U, %) + +o(|077Y). (5.3.28)

Exercise 5.3.41 et € > 0 andp,(dx) be the Cauchy law

e 1

Pl = i 2

Show that foze C*, Gy, (z) = 1/(z+i¢€) and soRy, (z) = —i€ and therefore that
for any probability measurg onR, Gugmp, (2) = Gu(z+i€). Show by the residue
theorem thaG..p, (z) = G (z+i€) and conclude that B p. = i+ p, that s, the
free convolution by a Cauchy law is the same as the standargbtdion.

5.4 Link with random matrices

Random matrices played a central role in free probabilitgesiVoiculescu’s sem-
inal observation that independent Gaussian Wigner matigoaverge in distri-

bution as their size goes to infinity to free semicircularakles (see Theorem
5.4.2). This result can be extended to approximate any lafreefvariables by

taking diagonal matrices and conjugating them by indepethdieitary matrices

(see Corollary 5.4.11). In this section we aim at presentiege results and the
underlying combinatorics.

Definition 5.4.1A sequence of collections of noncommutative random vagmbl

({aNYics)nen

in noncommutative probability spacé, , @\ ) is calledasymptotically fredf it
converges in law abl goes to infinity to a collection of noncommutative random
variables{a }icj in @ noncommutative probability spa¢a, x, @), where{a; }ics
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is free. In other words, for any positive integeand anyiy,...,ip € J,
Jim o (ayaf, ) = (ai, - aiy)
and the noncommutative variablasi € J, are free in(A, x, @).

We first prove that independent (not necessarily Gaussiagh&¥ matrices are
asymptotically free.

Theorem 5.4.2L et (Q, %, P) be a probability space and ¥ be positive integers.

LetB =1or2, andlet ){\‘ Q- %”N(B), 1<i < p, be a family of random matrices
such that X!/+/N are Wigner matrices. Assume that, for alf kY,

sup sup sup E[XN(m ()] < cx < oo, (5.4.1)
NeN1<i<pl<m</<N
that(XN(m,£),1<m< /¢ <N,1<i< p) areindependent, and thaf&" (m, ¢)] =
0and E[XN(m,¢)]?] = 1.

Then the empirical distributiofiy := “{ﬁ@'hggp of{%xi“}lgigp converges
almost surely and in expectation to the law of p free semitarcvariables. In
other words, the matrice$ﬁxi”}1§i§p, viewed as elements of the noncom-
mutative probability spaceMaty (C), , ﬁtr) (respectively(Maty (C), x, E[ﬁtr])),
are almost surely asymptotically free (respectively, gsptically free) and their
spectral measures almost surely converge (respectivetyerge) to the semicir-
cle law.

In the course of the proof of this theorem, we shall prove tileing useful
intermediate remark, which in particular holds when onlg omatrix is involved.

Remark 5.4.3Under the hypotheses of Theorem 5.4.2, except that we do not
require tha€[|XN(m,1)|?] = 1 but only that it is bounded by 1, for all monomials
g€ C(X,1<i< p) of degreek normalized so thag(1,1,...,1) =1,

lim sup|E [Bn(a)]| < 2°.

N—oo

Proof of Theorem 5.4.2We first prove the convergence &ffly]. The proof
follows closely that of Lemma 2.1.6 (see also Lemma 2.2.Béciase of complex
entries). We need to show, for any monongiglXi }1<i<p) = X, - - - Xi, € C(Xi|1<

i < p), the convergence of

1

Elbn(@] = 5 >Ti. (5.4.2)
20
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wherej = (j1,..., k) and
Ty = E (X (1, i2)X) (j2 Ja) -+ X (Jir 1)) -
(Compare with (2.1.10).) By (5.4.1‘)7,1- is uniformly bounded by.

We use the language of Section 2.1.3. Consider the closed wer w; =
j1---Jkj1 and recall that its weight v) is the number of distinct letters .
Let Gy = (Vw, Ew) be the graph as defined in the proof of Lemma 2.1.6. As there,
we need to find out which set of indices contributes to theifepdrder of the
sum in the right side of (5.4.2). Loosely speakiffg,vanishes more often when
one has independent matrices than when one always has teensatnix. Hence,
the indices corresponding to grapBg which are not trees will be negligible. We
will then only consider indices corresponding to graphsolfare trees, for which
'FJ- will be easily computed. Recall the following from the pradfLemma 2.1.6
(see also Lemma 2.2.3 for complex entries).

0] ﬂ vanishes if each edge By, is not repeated at least twice (im;'\'j >2
for eache € Ey). Hence, wtwj) < §+ 1 for all contributing indices.
(i) The number ofN-words in the equivalence class of a gividaword of
weightt isN(N—1)---(N—t+1) <N
(i) The number of equivalence classes of clodéadvordsw of lengthk + 1
and weight such thalNY > 2 for eache € E is bounded by < KX,

Therefore,

< 3 Nioth < C(KN?

t<

> T
jwg <§
and, considering (5.4.2), we deduce

2

l —
E[in(a)] — —— T
Nz“j:wt,géﬂ

where the sefj : wtj = '§‘+ 1} is empty ifk is odd. This already shows that,kf
is odd,

< C(KNL, (5.4.3)

lim E[fn(a)] = 0. (5.4.4)
If kis even, recall also that if ity ) = §+ 1, thenGy, is a tree (see an explana-
tion below Definition 2.1.10) and (by the cited definitiom) is a Wigner word.
This means that each (unoriented) edg&qf is traversed exactly once in each
direction by the walkj; --- jkj1. Hence,T; will be a product of covariances of
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the entries, and therefore vanishes if these covarianges/etwo independent
matrices. Also, whem, < 1, 'FJ will be bounded above by one and therefore
limsupy_... [E[n()]| is bounded above by .1| < 2%, where, as in Def-
inition 2.1.10, %4 x/2,1 denotes a set of representatives for equivalence classes
of Wigner words of lengttk + 1, and (hence)#j x/>.1| is equal to the Catalan

numberk/2—1+l (kl/(z)- This will prove Remark 5.4.3.

We next introduce a refinement of Definition 2.1.8 needed twlleathe more
complicated combinatorics of monomials in several indeleah\Wigner matrices.
(Throughout, we consider the set = {1,...,N} and omit it from the notation.)

Definition 5.4.4 Let q = q({Xi }1<i<p) = Xi, --- X, € C(X|1 <i < p) be given,
wherek is even. Letw =s;---&Si1, i1 = S1 be any Wigner word of length
k+ 1 and letG,, be the tree associated with We say thatv is g-colorableif,
for j,¢ =1,...,k, equality of edgegs;j,sj+1} = {s/,S+1} of the treeG,, implies
equality of indices (“colors”); =i,. With, as above?jy,».1 denoting a set of
representatives for the equivalence classes of Wignersvofdengthk + 1, let

q
Wk.k/m denote the subset gfcolorable such.

By the previous considerations, each indgezontributing to the leading or-
der in the evaluation OE[{in(g)] corresponds to a treBy, , each edge of which
is traversed exactly once in each direction by the walk- jj1. Further, since
E[)(i'z‘(l,Z)xi';f(Z, 1)] = 1,—y, an indexj contributes to the leading order of
E[fin(q)] if and only if it the associated Wigner wovd is g-colorable, and hence
equivalent to an element @f/lfk/zﬂ. Therefore, for evek,

Jim Elin(@)] = 7zl (5.4.5)
Moreover, trivially,
Xk
|ch.1k/2+l| < |Wk.kl/2+1| = |Wk,k/2+l|- (5-4-6)

Recall that# /1 is canonically in bijection with the s&tC; (k) of non-crossing
pair partitions of’% = {1,...,k} (see Proposition 2.1.11 and its proof). Similarly,
for g =X, --- X%, the set’%;’/kf‘k/zle is canonically in bijection with the subset of
NG, (k) consisting of non-crossing pair partitiomsof % such that for every
block {b,b’} € mone hasy = iy. Thus, we can also write

ImEN@] = 5> ] Liiy:

meNGy(K) (b,b)em

where the product runs over all blockb, b’} of the pair partitionr. Recalling
thatkn(a) = 1h—2 for semicircular variables by Example 5.3.26 and (5.3.8, w
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can rephrase the above as

lim E[fi = kn(aiy,---, &

Neoo [“N (Q)] neNqu) ﬂ(a417 7a4k)a
with k; = 0 if 7ris not a pair partition ank(a;,aj) = 1j—j. The right side corre-
sponds to the definition of the moments of free semicircutaiables according
to Theorem 5.3.15 and Example 5.3.26. This proves the cgewmee ofE[{i\] to
the law ofmfree semicircular variables.

We now prove the almost sure convergence. Continuing totadapdeas of
the (first) proof of Theorem 2.1.1, we follow the proof of Lemrd.1.7 closely.
(Recall that we proved in Lemma 2.1.7 that the variancélgf,x) is of or-
derN—2. As in Exercise 2.1.16, this was enough, using Chebysheegual-
ity and the Borel-Cantelli Lemma, to conclude the almose stonvergence in
Wigner’s Theorem, Theorem 2.1.1.) Here, we study the vadasf fiy(q) for
ad(Xq,...,Xp) = X, - -- X, which is given by

Var(iin (@) = Ellin(@) - Efn(@IP = ez YTy (647
)
with

T”’ = E[Xll(leJZ)Xlk(kaJl)XH((]gLvJ/Z)X|1(JI/(7J§L)]
—E[Xi; (i1, J2) - Xi (i JOJE X (i1, 12) -+ Xiy (Jk T2

where we observed thafiy(g) = fn(g*). We consider the sentence
Wy = (j1---jki1,J1i5---j1) and its associated gra[ﬁ],vu, = (VWJ.J.,,EW”.,). As

in the proof of Lemma 2.1.7]; ;» vanishes unless each edgeEi\n”, appears at
least twice and the grapta,vjrj, is connected. This implies that the number of dis-
tinct elements irVWW is not more thak+ 1, and it was further shown in the proof
of Lemma 2.1.7 that the case where it is equakte 1l never happens. Hence,
there are at modt different vertices and so at maskt possible choices for them.
Thus, sinceT; ;s is uniformly bounded by &y, we conclude that there exists a
finite constant(k) such that

Var(iin(@) < S5

By Chebyshev’s inequality we therefore find that

P(mN(X'lx'k) - E[I]N(xllxlk)” > 5) < %

The Borel-Cantelli Lemma then yields that

dim |7 (g - %) — B[N (X - X%i)]] = 0, aus. 0
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We next show that Theorem 5.4.2 generalizes to the case ph@uials that
may include some deterministic matrices.

Theorem 5.4.5Let B =1 or 2 and let(Q,%4,P) be a probability space. Let
DN = {DN}1<i<p be a sequence of Hermitian deterministic matrices and Yt
XN} cicp, XN Q — ,%”N(B), 1 <i < p, be matrices satisfying the hypotheses of
Theorem 5.4.2. Assume that

1 1
D := supmax sup—tr(|DN|) 5.4.8
Supmaxsupy (IB[)k < oo, (5.4.8)
and that the law oDN in the noncommutative probability spa¢ilaty(C), *,
ﬁtr) converges to a noncommutative lawThen we have the following.

(i) The noncommutative variabl%%x"‘ andDN in the noncommutative prob-
ability space(Matn (C), =, E[Xtr]) are asymptotically free.

(i) The noncommutative variabl%%xN andDN in the noncommutative prob-
ability space(Maty (C), *, ﬁtr) are almost surely asymptotically free.

In particular, the empirical distribution o{ﬁx’\', DN} converges almost surely

and in expectation to the law ¢X,D}, X andD being freeD with law p and X
being p free semicircular variables.

To avoid repetition, we follow a different route than thakedsn the proof of
Theorem 5.4.2 (even though similar arguments could be dped). We de-
note byC(Dj, X|1 <i < p) the set of polynomials i{Dj, X }1<i<p, by [in (re-

spectively, un) the quenched (respectively, annealed) empirical digioh of

{DN,N=2XN} = {DN,N~2XN}1i<, given, forg € C(D;, X |1 <i < p), by

N
fvie) == (a7 DY ) (@ = Ein(all

To prove the convergence éfin Inen We first show that this sequence is tight
(see Lemma 5.4.6), and then show that any limit point sadidfie so-called
Schwinger-Dyson, or master loop, equation which has a engmlution (see
Lemma5.4.7).

Lemma 5.4.6For R,d € N, we denote b (X;,Di|1 <i < p)rg the set of mono-
mials in X := {Xi}1<i<p and D := {Dj}1<i<p With total degree in the variables
X (respectivelyD) less than R (respectively, d). Under the hypotheses of The-
orem 5.4.5, except that instead of EN(m,1)?] = 1 we only require that it is
bounded byl, assuming without loss of generality thatb1, we have that, for
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any Rd e N,

sup lim sup| n (q)| < D92R. (5.4.9)
9eC(X;,Di|1<i<p)rd N—o0

As a consequencéfin(q),q € C(X,Di|1 <i < p)rd}nen is tight as aCRI-
valued sequence, with(R,d) denoting the number of monomials@{X;, D;|1 <
i < P)rd-

We next characterize the limit points §fin(q),q € C(X,Di|1 <i < p)rd }NeN-

To this end, led be the noncommutative derivative with respect to the vigiab
X; which is defined as the linear map frdii{X;, Di|1 <i < p) to C(X;,Dj|1 <i <
p)®2 which satisfies the Leibniz rule

APQ=0dPx (12Q)+ (P 1) x 4Q (5.4.10)

anddXj =1-j1®1,D; =0®0. (Here A BxC®D =AC®BD). If gis a
monomial, we have
dq= a1 ® 02,
a=01X a2

where the sum runs over all possible decompositiortpasa, X .

Lemma 5.4.7For any Rd € N, the following hold under the hypotheses of Theo-
rem5.4.5.

(i) Any limit pointt of {{in(q),q € C(X;,Di|1 <i < p)rd}nen Satisfies the
boundary and tracial conditions

Tleiji<i<p)og = Mlepii<i<pyoq T(PQ) = T(QP), (5.4.11)

where the second equality {8.4.11)holds for all monomials F) such
that PQe C(X;,Di|1 <i < p)rg. Moreover, for all ic {1,...,m} and all
qe C(X,Dil1 <i <m)r_14, We have

1(Xq) =1®1(40). (5.4.12)

(i) There exists a unique solutioftr4(q),q € C(X;,Di|1 <i < p)rg} tO
(5.4.11)and(5.4.12)

(iii) Sett to be the linear functional of©(X;,D;|1 <i < p) so thatt(q) =
Trd(Q) for ge C(X;,Di|1 <i < p)rd, any Rd € N. Thent is character-
ized as the unique solution of the system of equafferdsll)and(5.4.12)
holding for g Q,P € C(X;,Di|1 <i < p). Further, T is the law of p free
semicircular variables, free with variablg®; }1<ij<p possessing law.
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Note here that) € C(X;,Di|1 <i < p)rg implies thatg;, g € C(X,Di|1 <i <
p)rd for any decomposition af into g1 Xd. Therefore, equation (5.4.12), which
is given by

T(Xq) = q:q%qz (1) 7(q),

makes sense for anye C(X;,Di|1 <i < p)r_14 if {T(q),q€ C(X;,Di|1<i <
P)rd} is well defined.

Remark 5.4.8The system of equations (5.4.11) and (5.4.12) is often medeio
in the physics literature as tf8chwinger—Dysagror master loopequation.

We next show heuristically how, wheixN}1<i< are taken from the GUE, the
Schwinger-Dyson equation can be derived using Gaussiagration by parts,
see Lemma 2.4.5. Toward this end, we introduce the dere@tiv (07, —idq,)/2
with respect to the complex variabte= Oz + iz, so thatd,z= 1 butd,z= 0.
Using this definition for the complex variab}é\' (¢,r) when? # r (and otherwise
the usual definition for the real variab¥ (¢, ¢)), note that we have

a&NW)&’N (0r") =80 pbp. (5.4.13)

Lemma 2.4.5 can be extended to standard complex Gaussiablesr as intro-
ducedin (4.1.2), by

/ 0,1 (z7)e W dz= / 7f(z 7)e ¥ dz. (5.4.14)

Here,dzis the Lebesgue measure @hdz= dOzddz Applying (5.4.14) with
z=XN(m,¢) for m= ¢ and f (XN) a smooth function of XN}1<i< of polynomial
growth along with its derivatives, we have

E[X"(e,mf(XN)] =E [dﬁww)f(x'“)} : (5.4.15)
Using Lemma 2.4.5 directly, one verifies that (5.4.15) &iillds form = £. (One

could just as well take (5.4.15) as the definitiorﬂgn(m’[).) Now let us consider

(5.4.15) with the special choice d¢f= P(%, DV)(j,k), whereP € C(X;,Dj|1 <
i <p)yandj,ke {1,...,N}. Some algebra reveals that, using the notatibm
B)(j,m,¢,k) = A(j,m)B(¢,k),

Iynvme (POXN,DN)) (1,6 = (aP(XN,DM)) (1, m. £,k). (5.4.16)

Together with (5.4.15), and after summation oyer mand¢ = k, this shows that

E[iNn(XP) — iIn® fin(6P)] = 0.
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We have thus seen that, as a consequence of Gaussian iictedmatarts, iy
satisfies the master loop equation in expectation. In oalprdve thafuy satis-
fies asymptotically the master loop equation, that is, ppaf(Lemma 5.4.7, it is
therefore enough to show thag self-averages (that is, it is close to its expecta-
tion). The latter point is the content of the following teatal lemma, which is
stated in the generality of Theorem 5.4.5. The proof of timente is postponed
until after we derive Theorem 5.4.5 from the lemma.

Lemma 5.4.9Let q be a monomial if£(X;,Di|1 < i < p). Under the hypotheses
of Theorem 5.4.5, except that instead ¢! (m, 1)|?] =< 1, we only require that
it is bounded byi, we have the following for ang/> 0.
(i) For any positive integer K,
limsupN~—¢  max E[|q(x—N DMY(i,j)K =0 (5.4.17)
N—co 1<i<j<N VN’ ’ ' o

(i) There exists a finite constan{ ) such that, for all positive integers N,

Ellin (@) — (@2 < S

(5.4.18)

We next give the proof of Theorem 5.4.5, with Lemmas 5.4.4,7/5and 5.4.9
granted.

Proof of Theorem 5.4.5By Lemmas 5.4.6 and 5.4.7un(0),q € C(X;,Di|1 <

i < p)rd} is tight and converges to the unique solutiaa 4(q),q € C(X;,Dj|1 <

i < p)ra} Of the system of equations (5.4.11) and (5.4.12). As a careseg,
Trd(Q) = TR, (q) for g e C(X,Di|1 <i < p)r o, R> R andd > d’, and we can
definet(q) = trq(q) for g € C(X;,Di|1 <i < p)rg. This completes the proof of
the first point of Theorem 5.4.5 sineds the law ofp free semicircular variables,
free with {D; }1<i<p with law u by part (iii) of Lemma 5.4.7.

The almost sure convergence asserted in the second par tfigbrem is a
direct consequence of (5.4.18), the Borel-Cantelli Lemnwhthe previous con-
vergence in expectation. O

We now prove Lemmas 5.4.6, 5.4.7 and 5.4.9.

Proof of Lemma 5.4.6We prove by induction oveR a slightly stronger result,
namely that for alR, d € N, with |g| = /q(,

sup sup limsup|an(|g]")|F < DY2R. (5.4.19)

r>0qeC(X Dj|1<i<p)rg N—
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If R=0, this is obvious by (5.4.8). WhdR= 1, by using (G.10) twice, for any
qe CX,Dil1<i<p)1a,

1 1
r T

T r d - T
lun(lal)|T <D lrgglum(lxl)l ;

which yields (5.4.19) since by Remark 5.4.3r, i 2p for somep € N,

==

. _ . _ 1
imsupln (1% 1) < IlmsupluN((N)zp)IZP <2

We next proceed by induction and assume that (5.4.19) isuppue R = K — 1.
We writeq = g'Xjp(D) with p a monomial of degreéandq’ € C(X;,Dj|1 <i <
P)k_14d—¢- By (G.10) and the induction hypothesis, we have, for &l0,

. — 1 — 1 — 1 C1nd-
||E15UP|IJN(|Q|r)|' < DJan (X2 7 [n(|' )7 < 2D2¢ 1D,
which proves (5.4.19) foK = R, and thus completes the proof of the induction

step. Equation (5.4.9) follows. O

Proof of Lemma 5.4.9Without loss of generality, we assume in what follows that
D > 1. If gis a monomial inC(X;,Dj|1 <i < p)rg, and if Amax(X) denotes the
spectral radius of a matriX ande the canonical orthonormal basis®¥,

S DY) = (e g, DY) < DEEA [ Aman( )
QWa 1)1 = aﬂm, RS = 1§irlp maxm )

wherey; (respectivelyd;) is the degree ofj in the variableX; (respectivelyD;)
(in particulary yy <Rand}y d; <d). As a consequence, we obtain the following
bound, for any even positive integeand anys> 1,
xN - XN
El|lg(Z=,D")(i, j)|¥] < D E[Amax( —= K4
o 7R P <0 ] Elma )"

< DK .|jE {tr((\)%)ks“)}é < DN T (00}

where the last term is bounded uniformly by Lemma 2.1.6 (see Exercise
2.1.17in the case where the variances of the entries arelbddoy one rather than
equal to one, and recall thBt> 1) or Remark 5.4.3. Choosirgjarge enough so
that’—; < € completes the proof of (5.4.17). Note that this control Baldiformly
on all Wigner matrices with normalized entries posseskgigmoments bounded
above by some value.

To prove (5.4.18) we consider a lexicographical or@éf,1 <r < pN(N +
1)/2) of the (independent) entrigX (i, j),1 <i < j <N,1 <k < p) and denote
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by Zx = o{X",r <k} the associated sigma-algebra. By convention we denote by
2o the trivial algebra. Then we have the decomposition

pPN(N+1)/2
n=E[in@) —in@ = Y e, (5.4.20)
r=1
with
Or = E[[E[in(a) (2] - El[in(a)[Zr-1] ).

By the properties of conditional expectation and the indejeace of theX', we
can write®, = E[|9,|?] with

8r 1= E[In(a) =] (X" X1, XD — E[In(g) 2] (X7, XL X
and(X",X") identically distributed and independent of each other &n¢for’

r. If X" =Xx{(i,j) forsomese {1,..., p} andi, j € {1,...,N}?, we denote by
the interpolation

Xy = (1—y)X"+yX".

Taylor’s formula then gives

1
o = [ OEIN@IZI0G.X . XYy

1 /1 - 1 1
373 [ XY El(0201) (J, D[ Z ] (Xy, X, ..., X )dy
N3/2 0 yq:qu<sC12 Y
1 1 _
+—/ dVXr E[(qqu)(i’j)|zr](xr’xr—l’“.7xl)dy7
N3/2 0 yq:q%%QZ Y

where the sum runs over all decompositiongjanto g; Xsgz. Hence we obtain
that there exists a finite consta®q) such that

—~ |
Q
=

6 <

P

P ad VN

(kO)=(i,j) or (j,i)

1 er
> [ EG GO ) (DM Py,

with X’))‘,r the p-tuple of matrices where th@, j) and(j,i) entries of the matris
were replaced by the interpolatimj and its conjugate andN(i, j) = XN(i, j) —
XN(i,j). We interpolate again with thp-tuple XN where the entrie$i, j) and
(j,i) of the matrixs vanishes to obtain by the Cauchy—Schwarz inequality and
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independence ofN with YN(i, j) that, for some finite constan®q)1,C(q)2,
C(a) ( XN N 2
o < E[l(getn)(—=.D") (k. £)|]
r N3 g= qZ\SQz N

(k,O)=(i,J) or (j.)

N

N 1
+ [l G DMk )~ (e Dk ) oy

N

'(\IQ)Z :;\qu (EH (CI2CI1)(\);—N7 DY) (k. O)F

(k,O)=(i,J) or (i)

O

INA
@

XN N Xp‘ N 2
EH(qul)(WaD )(kvg)_(qul)(\/—NvD )(ka€)| ]

N
+ / |(G2) ( D”)(LJ)—(qmﬂ(%b”)(h@ﬁﬁdv). (5.4.21)

To control the last two terms, consider twmituples of matricesxN and XN
that differ only at the entrie§, j) and(j,i) of the matrixs and putYN(i, j) =
XN(i,j) = xN(i,j). Letqbe a monomial and ¥ k,¢ < N. Then, if we set
XN = (1—y)XN+yXN, we have

XN xN
Aq(k,f) = Q(Wv DN)(k’E) - Q(W’ DN)(kv‘g)
YN(mn) 2 XN XN

- _ Y RN Y N
- (m‘n)z:(i.j) \/N /O q:p%(spzpl(\/N,D )(k7m)p2(\/N7D )(n,g)dy

or (j.1)
Using (5.4.17), we deduce, that for allr > 0,

Im N2N"¢ max max E[|Aq(k,¢ 5.4.22

: 1<|J<XN1<k1/2(N H Q( )H ( )
As a consequence, the two last terms in (5.4.21) are at mcuﬂ'def_N*”f_and
summing (5.4.21) over, we deduce that there exist finite consta®(g)3,C(q)4
so that

p XN
N < 3 ( |(CI2C11)(—,DN)(i,j)|2]+Nl+£>
glq Q%%Ch 1<i,J<N VN
_ . s
= 9s z N (02010705) + N(zcl)j
s=1g=01Xs02
Using (5.4.17) again, we conclude tiét < C(q)/N?~¢. 0

Proof of Lemma 5.4.7To derive the equations satisfied by a limiting paipg of
Un, note that the first equality of (5.4.11) holds since we asslithat the law of
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{Di’\‘}lgigp converges tq, whereas the second equality is verifiedipyfor each
N, and therefore by all its limit points. To check thgiy also satisfies (5.4.12),
we write

_ 1 N xN
IN(XQ) = —=7s EXN(j1,i2)a(5=.DY)(j2, i)] = S liyrp, (5.4.23)
N N3/2 11,122:1 1,)2 \/N 2,]1 4, l1,00

where ¢, (respectively,/>) denotes the number of occurrences of the entry
XiN(jl, i2) (respectiverXiN(jz, j1)) in the expansion of] in terms of the entries

of XN. 1g in the right side of (5.4.23) vanishes by independence antkdag.

To show that the equation (5.4.15) leading to the master éopation is approxi-
mately true, we will prove tha¥ ,, ¢,)+(0,1) l¢1.0, 1S Negligible.

We evaluate separately the different terms in the right efdg.4.23). Con-
cerninglp 1, we have
1 XN XN
lo1= 5 ZQ Elga(—=,D)(j1. j1)d2(—=.D")(j2, j2)],
N ngq:ch i%2 VN VN

whereXN is the p-tuple of matrices whose entries are the sam¥é™sexcept that
XN(j1,i2) = XN(j2, j1) = 0. By (5.4.22), we can replace the matri¢€$ by XN
up to an error of ordeNZ ¢ for anye > 0, and therefore

lox = qz%qu[ﬂN(m)lle(%)]+0(1)

ZQ E[fin(an)]E[fn(a2)] +0(1), (5.4.24)
q=0q14 02

where we used (5.4.18) in the second equality.
We similarly find that

N XN N

1 .. X .
o=z J_L%:lqz%qf[m(mﬂ)(lz, Jl)%(W,D)(Jz, i)l

so that replacing™ by XN as above shows that

1
|1’0 = NUN (qlqE) + 0(1) —N-—o00 0, (5.4.25)

where (5.4.9) was used in the limit, and we used tx --- Xi,)* = zX,--- X;.
Finally, with (¢1,¢5) # (1,0)0r(0,1), we find that
1

lr6o = —5— z zl(ijZao-)
N2+ q=Q1XiQZ"'><iQk+1j§2 o
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with
o XN XN
I(j1,J2,0) == E[ql(ﬁ)(O(l),U(Z))---qk+1(7N)(0(k+ 1),0(1))],

where we sum over all possible maps: {1,...,k+1}—{]1, j2} correspond-

ing to ¢1 (respectivelyf,) occurrences of the oriented edge, j>) (respectively,

(j2,J1)). Using Holder’s inequality and (5.4.17) we find that th@ebis at most
lq+lo—1

of orderN™ S foranye > 0. Combined with (5.4.24) and (5.4.25), we have

proved that

Jlim (EN (Xia) — q=(%Qq2 EN(ql)ﬁN(qZ)> =0. (5.4.26)

Since ifq € C(X;,Di|1 <i < p)r-1,4, @any0s, g such thag = g1X;g2 also belong
to this set, we conclude that any limit poing 4 of ’”T{%KN DM}1cic restricted to
N | <i<

C({X,Di|1 <i < p)rg satisfies (5.4.12).

Since (5.4.12) together with (5.4.11) define&) uniquely for anyP €
C(X;,Di|1 <i < p)rg by induction over the degree &fin the X, it follows that
Un converges abl goes to infinity towards a law which coincides withrg 4 on
C(Xi,Di|l1 <i < p)rg for all R,d > 0. Thus, to complete the proof of part (i) of
Theorem 5.4.5, it only remains to check thais the law of free variables. This
task is achieved by induction: we verify that the trace of

Q(X,D) = q1(X)p1(D)d2(X) p2(D) - - - p«(D) (5.4.27)

vanishes for all polynomialg, p; such thatr (pi(D)) = 1(qj(X)) =0,i >1,j > 2.
By linearity, we can restrict attention to the case whgre; are monomials.

Let deg (Q) denote the degree 6fin X. We need only consider dgQ) > 1.
If degy (Q) = 1 (and thu) = py(D)X; pz(D)) we haver(Q) = T(X p2p1(D)) =0
by (5.4.12). We continue by induction: assume &) = 0 whenever deg(Q) <
K and 7(pi(D)) = 1(q;(X)) =0, i >1,j > 2. Consider nowQ of the form
(5.4.27) with deg(Q) = K and 1(q;(X)) = 0,j > 2, t(pi) = 0,i > 1. Using
traciality, we can writer(Q) = 1(X;q) with deg((q) = K — 1 andq satisfies all
assumptions in the induction hypothesis. Applying (5.%.4 find thatr(Q) =
Yq-qxa T(01)T(02), whereq (respectivelygy) is a product of centered polyno-
mials except possibly for the first or last polynomials in ¥peThe induction hy-
pothesis now yields that(Xiq) = 3 q—q,x.q, T(d1)7(g2) = 0, completing the proof
of the claimed asymptotic freeness. The marginal distidbuof the {X }1<i<p is
given by Theorem 5.4.2. O
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We now consider conjugation by unitary matrices followihg Haar measure
pu(n) on the sety (N) of N x N unitary matrices (see Theorem F.13 for a defini-
tion).

Theorem 5.4.10LetDN = {DN},-i<, be a sequence of Hermitian (possibly ran-
dom) Nx N matrices. Assume that their empirical distribution coges to a
noncommutative law. Assume also that there exists a deterministic B such
that, for allke Nand all Ne N,

%tr((DiN)Zk) <D* as.
LetUN = {UN}1<i<, be independent unitary matrices with Haar lay ), in-
dependent fro§DN}1<i<p. Then the subalgebrag N generated by the matrices
{UN, (UN)*}1<i<p, and the subalgebr&@N generated by the matric§®N}1<i<p,

in the noncommutative probability spaddaty(C), x, E[%tr]) (respectively,
(Maty(C), x, ﬁtr)) are asymptotically free (respectively, almost surelynastpot-
ically free). For allie {1,...,p}, the limit law of {UN, (UN)*} is given as the
element ofZc(y u+),|.||,.« SUCh that

(VU -1)?) =0, 1(U")=1((U"")=1n0.

We have the following corollary.

Corollary 5.4.11 Let {DN}1<i<p be a sequence of uniformly bounded real di-
agonal matrices with empirical measure of diagonal elemeunverging tqu;,
i=1,...,p respectively. Le{UiN}lgigp be independent unitary matrices follow-
ing the Haar measure, independent frg®N }1<i<p, .

(i) The noncommutative variablg&NDN(UN)*}1i<p, in the noncommuta-

tive probability spacéMaty (C), x,E[£1r]) (respectively,
(Matn (C), *, ﬁtr)) are asymptotically free (respectively, almost surely
asymptotically free), the law of the marginals being givgrhe ;.

(i) The empirical measure of eigenvalues of §fBUNDYUY; converges weakly
almost surely tquy B up as N goes to infinity.

(iii) Assume that @ is nonnegative. Then, the empirical measure of eigenval-
ues of

1 1
(DY) ZUND3UY (DY)
converges weakly almost surelyigX Li> as N goes to infinity.

Corollary 5.4.11 provides a comparison between indeperel@respectively,
standard convolution) and freeness (respectively, frewalation) in terms of
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random matrices. ID} andD} are two diagonal matrices whose eigenvalues
are independent and equidistributed, the spectral meaﬁlﬂ}§+ D'g‘ converges

to a standard convolution. At the other extreme, if the eigetors of a matrix
A? are “very independent” from those of a mamtkgJ in the sense that the joint
distribution of the matrices can be written as the distidouof (AY, UNAY (UN)*),
then free convolution will describe the limit law.

Proof of Theorem 5.4.10We denote by := H(DN UN (UM} 1cicp the joint em-
pirical distribution of{DN,UN, (UN)*}1<i<p, considered as an element of the al-
gebraic dual ofC(X;,1 <i < n) with n = 3p, equipped with the involution such

that(AXi, - Xi,)* = AX;: -+ X if
Xi_o=Xai_2, 1<i<p, X3_1=Xg,1<i<p.

The norm is the operator norm on matrices. We may and willrasghatD > 1,
and then our variables are bounded uniformlyfhyHence,fiy is a state on the
universalC*-algebra«’ (D, {1,---,3n}) as defined in Proposition 5.2.14 by an
appropriate separation/completion constructiof£ 6%, 1 <i < n). The sequence
{E[in]}nen is tight for the weak*-topology according to Lemma 5.2.1&nide,
we can take converging subsequences and consider theiptints. The strategy
of the proof will be to show, as in the proof of Theorem 5.4Hgattthese limit
points satisfy a Schwinger—Dyson equation. Of course, Bihwinger—Dyson
equation will be slightly different from the equation olrtad in Lemma 5.4.7 in
the context of Gaussian random matrices. However, it williade a system
of equations defined by an appropriate noncommutative alare; and will be
derived from the invariance by multiplication of the Haarasere, replacing the
integration by parts (5.4.15) (the latter could be derivexif the invariance by
translation of the Lebesgue measure). We will also show tti&tSchwinger—
Dyson equation has a unique solution, implying the convecg®f (E[fin],N €
N). We will then show that this limit is exactly the law of freeriables. Finally,
concentration inequalities will allow us to extend the teso the almost sure

convergence of fin }nen-

e Schwinger-Dyson equatiowe consider a limit point of {E[{in]}nen. Be-
cause we havgiy((Uj(U)* — 1)) = 0 and jin(PQ) = fin(QP) for anyP,Q €
C(Dj,U;, U |1 <i < p), almost surely, we know by taking the larjdimit that

T(PQ =1(QP), T((UiUf-1)*)=0,1<i<p. (5.4.28)

SincerT is a tracial state by Proposition 5.2.16, the second eguali{5.4.28)
implies that, in theC*-algebra(C(D;,U;, U |1 <i < p),*,]| - ||r), UiU;" = 1 (note
that this algebra was obtained by taking the quotient irh 7(PP*) = 0}).



390 5. REE PROBABILITY

By definition, the Haar measum, ) is invariant under multiplication by a
unitary matrix. In particular, if € C(D;,U;,U;"|1 <i < p), we have for alk,| €
{1,...,N},

dt/(P(Di,UietBi,e‘tBiUi*)) (k1)dpy ) (U) -+ dpy o) (Up) = 0

for any anti-Hermitian matriceB; (Bf = —B;), 1 <i < p, since€® € U(N).
Taking B; = 0 except fori = ig andB;, = 0 except at the entrigg),r) and(r,q),
we find that

/(0iop)({Dianan*}lgigp)(k, r,q, I )de(N) (Ul) oo de(N) (Up) =0
with d; the derivative which obeys the Leibnitz rules
a(PQ = aPx1®Q+P®1x4Q,
dU; = 1.U;®1,0U] = -1 1aU;,

where we used the notatigA® B)(k,r,q,1) := A(k,r)B(q,!). Takingk =r and
g = and summing over, q gives

E [N fin(@P)] = 0. (5.4.29)

Using Corollary 4.4.31 inductively (on the numigeof independent unitary ma-
trices), we find that, for any polynomile C(D;,U;,U;*|1 <i < p), there exists
a positive constart(P) such that
2
PGy (TPEDN,UN, (UN) hasicp) — EtrP| > 8) < 2e79P),
and therefore
2

E[/trP — EtrP|?] < R

Writing giP = z’j‘":l P; ® Q; for appropriate integeM and polynomiald®,Q; €
C(Di,U;,U" |1 <i < p), we deduce by the Cauchy—Schwarz inequality that

|E[(fn — E[fn]) © (in — E[n]) (2P)]|
M
< ZlE [(Ein — E[an]) (Py) (i — E[an])(Qj)]
J:

M max max{ ! !
N2 1<j<p " c(P))’ c(Q))
We thus deduce from (5.4.29) that

IN

lim E [fn] © E ] (4P) = 0.

N—oo
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Therefore, the limit point satisfies the Schwinger—Dyson equation
T®1(6P)=0, (5.4.30)

forallie {1,...,p} andP € C(D;,U;,U" |1 <i < p).

e Uniqueness of the solution {®.4.30) Lett be a solution to (5.4.28) and
(5.4.30), and leP be a monomial irC(D;,U;,U;*|1 <i < p). We show by induc-
tion over the total degree of P in the variabled); andU;* that(P) is uniquely
determined by (5.4.28) and (5.4.30). Note thaPif C(D;|1<i < p), T(P) =
u(P) is uniquely determined. IP € C(D;,U;,U|1<i < p\C(Di|1<i < p) is
a monomial, we can always writgP) = 7(QU;) or 1(P) = 7(U;*Q) for some
monomialQ by the tracial property (5.4.28). We study the first case séwond
being similar. IfT(P) = 1(QU),

9(QU) =aQx1aUi+(QU)®1,

and so (5.4.30) gives

T(QU;) -1 T(GQ x 1xV)

- T(QU)T(QU)+ 5 T(Q)T(Q),
Q=Q:UiQ2 Q=Q1U" Q2

where we used the fact thatU;"QuU;) = 1(Q2) by (5.4.28). Each term in the
right side is the trace underof a polynomial of degree strictly smaller &) and
U;* thanQU;. Hence, this relation defingsuniquely by induction. In particular,
takingP = U" we get, for alin > 1,

]

UM TUIY) =0,

k=1

from which we deduce by induction thatU"") = 0 for all n > 1 sincet(U?) =
7(1) = 1. Moreover, ag is a stater ((U;")") = t(((U)")*) = 1(U") =0forn> 1.

e The solution is the law of free variablétss enough to show by the previous
point that the joint lawu of the two freep-tuples{U;,U;" } 1<i<p and{D; }1<i<p
satisfies (5.4.30). So talke= Uir;lBl e Uir;po with someBys in the algebra gen-
erated by{D;}1<i<p andn; € Z\{0} (where we observed that* = U %). We
wish to show that, for all € {1,..., p},

U ® U(éP) =0. (5.4.31)
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Note that, by linearity, it is enough to prove this equalityempi(B;) = O for alll
j- Now, by definition, we have
Nk
aP = S UMBy B 1V ®ui”k*'Bk---u{;"Bp
kig=I,ng>01=1
nkfl

-3 %uijlsl.--sk_lui*'®Ui”k+'Bk.--ui';PBp.
kiig=I,ng<0 I=

Taking the expectation on both sides, sim&(él}) =0andu(Bj)=0foralli#0
andj, we see that freeness implies that the trace of the rightvsidishes (recall
here that, in the definition of freeness, two consecutivenelgs have to be in
free algebras but the first and the last element can be in the algebra). Thus,
U ® U(6P) = 0, which proves the claim. O

Proof of Corollary 5.4.11 The only point to prove is the first. By Theorem 5.4.10,
we know that the normalized trace of any polynonftah {UNDN(UN)*}1<i<p
converges ta (P({UiDiU; }1<i<p)) with the subalgebras generated {iy; }1<i<p
and{U;,U;" }1<i<p free. Thus, if

P({X}1<i<p) = Qu(Xiy) -+~ Q(X,), withig g #ip, 1<l <k—1
andt(Q(X,)) = 1(Q(Dj,)) =0, then
T(P({UiDiUi }1<i<p)) = 1(Ui;Q1(Diy)V;; - - - Ui, Qk(Di, )U;y) = 0,
sincet(Q,(Dj,)) =0 andt(U;) = T(U;*) = 0. O

Exercise 5.4.12Extend Theorem 5.4.2 to the self-dual random matrices con-
structed in Exercise 2.2.4.

Exercise 5.4.13n the case where thB; are diagonal matrices, generalize the
arguments of Theorem 5.4.2 to prove Theorem 5.4.5.

Exercise 5.4.14rakeDN(ij) = 1 1i<jan] the projection on the fir§orN] indices
andXN be anN x N matrix satisfying the hypotheses of Theorem 5.4.5. Wijth
the identity matrix, set

N = DNxN(y—DN)+ (Iy—DV)XNDN
0 fo[aN],[aN]
= <(XN—[GN],[GN])* 0 >

with XN=ONLaNT the corner(XN)i<i<(any [anj+1<j<n Of the matrixXN. Show
that (ZN)? has the same eigenvalues as those of the Wishart mafig :=
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XN=[aNL[aN] (X N—[aNL[aN]y+ with multiplicity 2, plus N — 2[aN] zero eigenval-
ues (ifa > 1/2 so thatN — [aN] < [aN] ). Prove the almost sure convergence of
the spectral measure of the Wishart mai¥:% by using Theorem 5.4.5.

Exercise 5.4.1%Continuing in the setup of Exercise 5.4.14, takec Mat(q to
be a self-adjoint matrix with converging spectral disttibn. Prove the almost
sure convergence of the spectral measure of the Wisharixmatr

XN_[GN]’[GN]TNT,\)T(XN_[GN]’[GN])*.
Exercise 5.4.16Take (0 (p,q))o<pg<k-1 € Mk(C) and put

aij(N) = a(p,a) L jpn<i<(prani Foro< p,g<k—1.

[aN/K<j<[(a+1)N/K]

TakeXN to be anN x N matrix satisfying the hypotheses of Theorem 5.4.5 and
puty = N2 (N)XY. LetAN be a deterministic matrix in the noncommutative
probability spaceéMy(C) andDN be the diagonal matrix didg/N,2/N,...,1).
Assume thatAN, (AN)* DN) converge in law towards, while the spectral radius
of AN stays uniformly bounded. Prove thatN + AN)(YN + AN)* converges in
law almost surely and in expectation.

Hint: Show thatyN = 5, ;.2 &SNXNEN with {3N $N1, ... appropriate pro-
jection matrices. Show the convergence in la @GN, =N, 2, AV, (AV)*} by
approximating the projectiorﬁ\' by functions ofDN. Conclude by using Theo-
rem 5.4.5.

Exercise 5.4.1Another proof of Theorem 5.4.10 can be based on Theorem 5.4.2
and the polar decompositit]! = GT‘(GE“(G’J-“)*)‘% with G a complex Gaussian
matrix which can be written, in terms of independent sejad Gaussian Wigner
matrices, ag) = XN +iXN.

(i) Show thatUJ-N follows the Haar measure.

(ii) Approximating G’J-\‘(G'j\‘(GE\‘)*)*:ZL by a polynomial in(xj'\l,)zj'\l)lgjgp, prove
Theorem 5.4.10 by using Theorem 5.4.5.

Exercise 5.4.185tate and prove the analog of Theorem 5.4.10 whetfhéol-
low the Haar measure on the orthogonal gr@(pl) instead of the unitary group
U(N).
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5.5 Convergence of the operator norm of polynomials of indegndent GUE
matrices

The goal of this section is to show that not only do the tradgsotynomials in
Gaussian Wigner matrices converge to the traces of polyaisrini free semicir-
cular variables, as shown in Theorem 5.4.2, but that thisexgence extends to
the operator norm, thus generalizing Theorem 2.1.22 andcisee2.1.27 to any
polynomial in independent Gaussian Wigner matrices.

The main result of this section is the following.

Theorem 5.5.1Let (X,...,XN) be a collection of independent matrices from
the GUE. Let(S,,...,Sn) be a collection of free semicircular variables in &-C
probability spacg., g) equipped with a faithful tracial state. For any noncom-
mutative polynomial B C(Xy, ..., Xn), we have

xN N
e = PSS as

On the left, we consider the operator norm (largest singedare) of theN x N

N
random matrixP(X—\/lﬁ,...,\/ﬁNN), whereas, on the right, we consider the norm of
P(S1,...,Sm) in the C*-algebra.”. The theorem asserts a correspondence be-

tween random matrices and free probability going conshigriaeyond moment
computations.

lim ||P
lim ||P(

Remark 5.5.2If (<7, 1) is aC*-probability space equipped with a faithful tracial
state, then the norm of a noncommutative random varebles can be recovered
by the limit formula

Jal| = Jim T((aa)) % . (5.5.1)

However, (5.5.1) fails in general, because the spectruma’otan be strictly larger
than the support of the law afa*. We assume faithfulness and traciality in Theo-
rem 5.5.1 precisely so that we can use (5.5.1).

We pause to introduce some notation. Ket (Xy,...,Xn). We often abbrevi-
ate using this notation. For example, we abbreviate thersettQ(Xy,...,Xm) €
C(Xq,...,Xm) to Q(X) € C(X). Analogous “boldface” notation will often be used
below.

Theorem 5.5.1 will follow easily from the next propositiomhe proof of the
proposition will take up most of this section. Recall tlX) is equipped with
the unique involution such thaf* = X; fori = 1,...,m. Recall also that thdegree
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of Q = Q(X) € C(X) is defined to be the maximum of the lengths of the words in
the variables appearing irQ.

Proposition 5.5.3LetXN := (XN, ..., XN) be a collection of independent matrices
from the GUE. Le6:= (S,...,Sn) be a collection of free semicircular variables
in a C*-probability spacg.”, g). Fix an integer d> 2 and let P=P(X) € C(X)

be a self-adjoint noncommutative polynomial of degre@. Then, for any > 0,
P(%), for all N large enough, has no eigenvalue at distance lathan € from
the spectrum of 5), almost surely.

We mention the state and degree bound in the statement of the proposition
because, even though they do not appear in the conclusayfjgfure prominently
in many formulas and estimates below. We remark that sincauta (5.5.1) is
not needed to prove Proposition 5.5.3, we do not assuméfkigss and traciality
of . Note thescale invarianceof the proposition: for any constapt> 0, the
conclusion of the proposition holds férif and only if it holds foryP.

Proof of Theorem 5.5.1(Proposition 5.5.3 granted). We may assume i
self-adjoint. By Proposition 5.5.3, usi{S)* = P(S),

N

Iimsup||P(X—)|\ < (spectral radius dP(S)) + £ = |P(9)||+¢&, as,
N—o0 \/N

for any positives. Using Theorem 5.4.2, we obtain the bound

L f 1 XN ¢ . XN Y,
o(P(S)") = Jim Gr(P(T)") < linf [P(70) | as

By (5.5.1), and our assumption thatis faithful and tracial,

XN 1
liminf |P(==)| > supa(P(S)*)z = ||P(S)||, as.,
minf || (\/N)Hf@? (P(S7) IP(S)Il

which gives the complementary bound. O

We pause for more notation. Recall that, given a complex reumih]zand0z
denote the real and imaginary partzofespectively. In general, we let/Adenote
the unit of a unital complex algebk#. (But we letl,, denote the unit of MafC).)
Note that, for any self-adjoint elemeabf aC*-algebrae/, andA € C such that
OA >0, we have thaa— A1, is invertible and||(a— A1,)%|| < 1/0A. The
latter observation is used repeatedly below.

ForA € CsuchthatA > 0, with P € C(X) self-adjoint, as in Proposition 5.5.3,



396 5. REE PROBABILITY

let
gA)=d"(A) = o((P(S-A1y)"h), (5.5.2)
oNA)=gR(A) = Eltr((P(x—N)—MN)_l) (5.5.3)
p = R . 5.

Bothg(A) andgn(A ) are analytic in the upper half-plag&A > 0}. Furtherg(A)
is the Stieltjes transform of the law of the noncommutatamdom variablé>(S)
underog, andgn (A ) is the expected value of the Stieltjes transform of the eicedir

distribution of the eigenvalues of the random maﬁ'()\%). The uniform bounds

9| < 5 lonA)| < 2 (55.4)

are clear.

We now break the proof of Proposition 5.5.3 into three lemmas

Lemma 5.5.4For any choice of constantg &y, > 0, there exist constantsolty,
C2,¢3 > 0 (depending only on P pand g) such that the following holds.

For all integers N and complex numbetsif

N > max(No, (ch) "%, |OA| < cp, and N"® < A < cp, (5.5.5)
then
Pryy AP < C2
1g"(A) = an(A)[ < NGIEE (5.5.6)

Now for anyy > 0 we haveyg"”(yA) = g°(A) andyg!l (yA) = gR(A). Thus,
crucially, this lemma, just like Proposition 5.5.3, is gcalvariant: for any > 0,
the lemma holds foP if and only if it holds foryP.

Lemma 5.5.5For each smooth compactly supported functiorR — R vanishing
on the spectrum of (), there exists a constant ¢ depending onlygend P such
that|E§ trp(P(XV))| < & for all N,

Lemma 5.5.6With ¢ and P as abovelimy_ N3 - ﬁtr(p(P(%)) = 0, almost
surely.

The heart of the matter, and the hardest to prove, is Lemmd.5The main
idea of its proof is thdinearization trick which has a strong algebraic flavor. But
before commencing the proof of that lemma, we will presantéverse order) the
chain of implications leading from Lemma 5.5.4 to Proposith.5.3.
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Proof of Proposition 5.5.3(Lemma 5.5.6 granted) L& = sp(P(S)), and write
Df = {ye R:d(y,D) < €}. Denote byfly the empirical measure of the eigenval-
ues of the matriP(%). By Exercise 2.1.27, the spectral radii of the matrix%gs
fori =1,...,mconverge almost surely towards 2 and therefore there exifits
nite constanM such that limsug_,., fin([—M, M]¢) = 0 almost surely. Consider a
smooth compactly supported functign R — R equal to one oiD?)°N[—M, M]
and vanishing oD#/2 U [—2M, 2MI¢. We now see that almost surely for laye
no eigenvalue can belong (B*)°, since otherwise

lt”ﬂ /(0 )diin (X >N73,

in contradiction to Lemma 5.5.6. m|

Proof of Lemma 5.5.6(Lemma 5.5.5 granted) As before, & denote the em-
pirical distribution of the eigenvalues ﬂ(é—ﬁ). Let g be the noncommutative
derivative defined in (5.4.10). L@k be the derivative as it appearsin (5.4.13)
and (5.4.15). The quantitye(x)dfin (X ) is a bounded smooth function ¥f¥ sat-
isfying

1 N

NE ((aP) W \/N ke (6.5.7)

Oxpi (e / P(x)dfin(x) =

where we letA® BﬁC = BCA Formula (5.5.7) can be checked for polynomial
@, and then extended to general smogthy approximations. As a consequence,
with d bounding the degree &f as in the statement of Proposition 5.5.3, we find
that

10 otainlE < 5 151 2 e (0 e PR)

for some finite constai@ = C(P). Now the Gaussian Poincaré inequality

Var(f(XN)) < cEZ By FOXM)12 (5.5.8)

must hold with a constant independent oN and f since all matrix entries
)(1-N (¢,r) are standard Gaussian, see Exercise 4.4.6. Consequendygfy suffi-
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ciently smalle > 0, we have

Var( [ p(9din(4) < cE(I0 [ pdin()]3)

< 2chI\F /(p’ (x)2dfin (%)
+c||<d|\2E w2 fnzf’ )
2cC A
< 2T [ g rame) +ldlny  (559)

N2-¢
for a constan€’ = C'(&), where we use the fact that

V1< p<oo,supEH—
N

<o (5.5.10)

by Lemma 2.6.7. But Lemma 5.5.5 implies tH#[tf ¢/ (x)?dfin(X)] is at most of
orderN—2 sinceq’ vanishes on the spectrum®(S). Thus the right side of (5.5.9)
is of orderN—**¢ at most whenp vanishes on the spectrum BfS). Applying
Chebyshev’s inequality, we deduce that

1
P | o00dn (0~ E( [ @(ain(0)] > ) < C'NE-++¢

for a finite constan€” = C"(P,&, ). Thus, by the Borel-Cantelli Lemma and
Lemma 5.5.5 @(x)dfin(X) is almost surely of ordeX—3 at most. O
Proof of Lemma 5.5.5(Lemma 5.5.4 granted) We first briefly review a method for
reconstructing a measure from its Stieltjes transformW.eR? — C be a smooth
compactly supported function. Pat(x,y) = - 1(d+id,)W(x,y). Assume that
OW(x,0) = 0 anddW¥(x,0) = 0. Note that by Taylor's Theore@W(x,y)/|y| is
bounded forly| # 0. Let u be a probability measure on the real line. Then we
have the following formula for reconstructingfrom its Stieltjes transform:

D/ dy/WdX( awxy ) /Lvto (dt). (5.5.11)

This can be verified in two steps. One first reduces to the pasedy, using
Fubini's Thearem, compact support¥{x,y) and the hypothesis that

0w, Y|/t —x—iy| < [0¥(x,)|/]Y]

is bounded foy > 0. Then, lettind(x,y)| = v/X2+¥2, one uses Green's Theorem
on the domaif{0 < € < |[(x,y)| <R, y> 0} with Rso large that is supported in
the disc{|(x,y)| < R/2}, and withe | O.

Now let ¢ be as specified in Lemma 5.5.5. dtbe a large positive integer,
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later to be chosen appropriately. Choose the arbitrarytaots) in Lemma 5.5.4
so thatg is supported in the intervdl-cp,co]. Choosecy > 0 arbitrarily. We
claim that there exists a smooth functigh: R? — C supported in the rectangle
[—Co,Co] X [—Ch,Ch] such that¥(t,0) = ¢(t) and dW(x,y)/|y/M is bounded for
ly| # 0. To prove the claim, pick a smooth functign: R — [0, 1] identically
equal to 1 near the origin, and supported in the intefval, c;]. One verifies
immediately that/(x,y) = M, L—i(p("') (X)w(y)y’ has the desired properties. The
claim is proved.

As before, letfly be the empirical distribution of the eigenvaluesmfé—%).
Let u be the law of the noncommutative random varia®(8). By hypothesisp
vanishes on the spectrumBfS) and hence also vanishes on the support.dBy
(5.5.11) and using the uniform bound

e -am 1| <o,

VN

we have
E [@iin = E [gdin- [ou(y

077 @y antxr iv) - gtxciv)dz

Letcs = c4(M) > 0 be a constant such that

sup 0Wx.y)|/lyM < ca.
(xy)€[~co,C0] % (0,c{)]
Then, with constantdly, ¢;, ¢; andcz coming from the conclusion of Lemma
5.5.4, for allN > N,

o NG Co [
E / pdfin| < 2c4 / / yMtdxdy-+ % / / *yM-Sdxdy,
—Cp /0 —Cp /0

where the first error term is justified by the uniform bound(8). WithM large
enough, the right side is of ordBr2 at most. O

We turn finally to the task of proving Lemma 5.5.4. We need foshtroduce
suitable notation and conventions for handling block-aegosed matrices with
entries in unital algebras.

Let.« be any unital algebra over the complex numbers. LejMét”) denote
the space ok-by-k’ matrices with entries in7, and write Mag(.</') = Maty k(< ).
Elements of Maty (<) can and will be identified with elements of the tensor
productMag v (C) ® <. Inthe case tha¥ itself is a matrix algebra, say Mdt%#),
we identify Maf i (Maty (%)) with Mat,n (%) by viewing each element of the
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latter space as kby-k’ array of blocks each of which is amby-n matrix. Re-
call that the unit ofe7 is denoted by 1, but that the unit of Ma{C) is usually
denoted byt,. Thus, the unitin Maf(.«/) is denoted by, ® 1.

Suppose that7 is an algebra equipped with an involution. Then, given a ma-
trix a € Maty..¢(«7), we definea* € Mat;«x(<) to be the matrix with entries
(a)ij = aj;. Suppose further that” is aC*-algebra. Then we use the GNS
construction to equip Mat,(<7) with a norm by first identifyinge” with a C*-
subalgebra oB(H) for some Hilbert spaceél, and then identifying Mat (<)
in compatible fashion with a subspaceBfH’,H¥). In particular, the rules enun-
ciated above equip Mate) with the structure of £*-algebra. That structure is
unique bece;use@*-algebra cannot be renormed without destroying the prgpert
laar|| = [al.

We define thelegreeof Q € Maty,,(C(X)) to be the maximum of the lengths of
the words in the variable§ appearing in the entries @f. Also, given a collection
X = (X1,...,Xm) Of elements in a unital complex algebrd, we defineQ(x)
Maty. (<) to be the result of making the substituti®n= x in every entry ofQ.

Givenfori = 1,2 alinear maf; : Vi — W, the tensor produdy @ T, : Vi1 @V, —
W, @ Wb, of the maps is defined by the formula

(MOT)(AL®A2) =Ti(A1) @ T2(A2), A €V

For example, giverA € Mat (<) = Mat(C) ® Maty(C), one evaluatesidy ®
ﬁtr)(A) € Mat(C) by viewing A as ak-by-k array of N-by-N blocks and then
replacing each block by its normalized trace.

We now present the linearization trick. It consists of twotpaummarized in
Lemmas 5.5.7 and 5.5.8. The first part is the core idea: itriescthe spectral
properties of a certain sort of patterned matrix with estireaC*-algebra. The
second part is a relatively simple statement concernirtgfiaation of a noncom-
mutative polynomial into matrices of degreel.

To set up for Lemma 5.5.7, fix an integge> 2 and letky, ..., kq. 1 be positive
integers such thét = ky.1 =1. Putk=k; +---+kq. Fori=1,...,d, let

Ki:{l—i— z'ka,...,zka}c{l,...,k} (5.5.12)

a<i a<li

and putKq,; = K3. Note that{1,...,k} is the disjoint union 0Kj, ...,Kq. Let.&/
be aC*-algebra and for=1,...,d, letti € Matg ., (<) be given. Consider the
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block-decomposed matrix

T= - € May(«), (5.5.13)
tg—1
ty
wherefor =1,...,d, the matrix; is placed in the block with rows (resp., columns)
indexed byK; (resp. K1), and all other entries af equal Oc «#. We remark that
the GNS-based procedure we used to equip each matrix spaeg (8 with a
norm implies that

T > max]i]. (5.5.14)

A0
0 Ix1
A®1,, A =A1l, and more generallf = { ® 1., for any { € Mat(C). This
will not cause confusion, and is needed to compress notation

Let A € C be given and puf\ = [ } € Mat(C). Below, we writeA =

Lemma 5.5.7Assume thayt--ty — A € & is invertible and let ¢ be a constant
such that

¢ (1+d[TH* 2@+t ta—A) ).

Then the following hold.
(i) T —Aisinvertible, the entry of T —A)~tin the upper left equald; - - - tq —
A7t and|[(T-A)1| <ec.
(i) For all ¢ € Mat(C), if 2¢||{|| < 1, then T—A —( is invertible and
(T =A== (T-n) T < 2?7 <c.

Proof Putt>; =t; - --ty. The following matrix identity is easy to verify.

A —t1 1
1 -t t>o 1

1 —tgq t>d-1 1

—td 1 tzd 1
! _1tl t A—ty--ty
—t
1
1 —tgq

=
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Here we have abbreviated notation even further by writirgl}, ® 1,,. The first
matrix above i\ — T. Call the next two matrice8 andB, respectively, and the
lastD. The matrice®\ andB are invertible sincé — Iy is strictly lower triangular
andB — Iy is strictly upper triangular. The diagonal matiXis invertible by the
hypothesis that; -- -ty — A is invertible. ThusA — T is invertible with inverse
(N—T)~1 = AD1B~1. This proves the first of the three claims made in point (i).
Fori,j=1,...,dletB (i, j) denote thek; x K; block of B~1. It is not difficult
to check thaB~1(i, j) = 0 fori > j, B=1(i,i) = Iy, andB~1(i, j) =t;---t;_4 for

i < j. The second claim of point (i) can now be verified by directakdtion,
and the third by using (5.5.14) to boutjd|| and||B~*||. Paint (ii) follows by
consideration of the Neumann series expansiofilfor (T —A)~1)~1. O

The second part of the linearization trick is the following.

Lemma 5.5.8Let P< C(X) be given, and let & 2 be an integer bounding the
degree of P. Then there exists an integer h and matrices

Vi € Matyn(C(X)), Va,...,Vy_1 € Maty(C(X)), Vg € Maty1(C(X))

of degree< 1 such that P=V; - -- V.

Proof We have
d m m
P=3 3 3 ChiXarr X,
r=0ii=1 =1

for some complex constant§ ;. Let{P"}]_; be an enumeration of the terms
on the right. Leeﬁkj’[) € Mat,,(C) denote the elementary matrix with entry 1 in
position(i, j) and 0 elsewhere. Then we have a factorization

P’ = (e} o W) (el o) (&)} e vy p) (el o V)

for suitably chosev}” € C(X) of degree< 1. TakeV; = Zvef\’,”) VY, V=

Sy es,r?;,n) @V fort=2...,d-1andVg =y, ef,r?’ll) ®VY. ThenVy,...,Vy have
all the desired properties. O

We continue to prepare for the proof of Lemma 5.5.4. For teegkthis section
we fix a self-adjoint noncommutative polynomile C(X) and also, as in the
statement of Proposition 5.5.3, an integer 2 bounding the degree &f. For
i=1,....d, fix i € Mat«k_, (C(X)) of degree< 1, for suitably chosen positive
integersky, ... ,Kyy1, such thatP = Vi ---Vy. This is possible by Lemma 5.5.8.
Any such factorization serves our purposes. Pstk; + - - - + kg and letK; be as
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defined in (5.5.12). Consider the matrix
Vi

L= e Mat (C(X)), (5.5.15)
Vi-1

Vd

where, fori = 1,...,d, the matrixV; occupies the block with rows (resp., columns)
indexed by the se&K; (resp. Ki1), and all other entries df equal Oc C(X). Itis
convenient to write

m
L=ay® 1<c<x>+21a4 X, (5.5.16)
i=

for uniquely determined matrices € Mat(C). As we will see, Lemma 5.5.7
allows us to use the matric%é—%) andL(S) to “code” the spectral properties of

P(%) andP(S), respectively. We will exploit this coding to prove Lemm&a 3.

We will say that any matrix of the forrh arising fromP by the factorization
procedure above isdrlinearizationof P. Of courseP has manyd-linearizations.
However, the linearization construction is scale invariathe sense that, for any
constanty > 0, if L is ad-linearization ofP, theny!/9L is ad-linearization ofyP.

Put
xN

o = sﬁE1+dHL— 8d-8 5.5.17

v = stpErdL) ) 6517)
m

a = laoll+ Y laill, (5.5.18)
2,

as = (1+d|L(9))* 2. (5.5.19)

Note thata; < « by (5.5.10). We will take care to make all our estimates below
explicitin terms of the constants (and the constamtappearing in (5.5.8)), in an-
ticipation of exploiting the scale invariance of Lemma 8.8nd thed-linearization
construction.

We next present the “linearized” versions of the definiti|$s.2) and (5.5.3).

ForA € C suchthatiA > 0, letA = { )‘0 |k(31 } € Mat(C). We define
G(A) = (idk®0o)((L(S)—A®1s)Y), (5.5.20)
N
Gn(A) = E(idm%tr)((l.(\);—ﬁ)—A®|N)*1), (5.5.21)

which are matrices in MgtC).
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The next two lemmas, which are roughly parallel in form, give basic prop-
erties ofGn (A ) andG(A ), respectively, and in particular show that these matrices
are well defined.

Lemma 5.5.9(i) For A € C such thatOA > 0, Gy(A) is well defined, depends
analytically onA, and satisfies the bound

1
IGN)I < an(1+ 7). (5.5.22)
(i) The upper left entry of @(A) equals g (A).
(iif) We have
m 2 1
I+ (A—a0)Gn(A) + 5 aGn(MaGu(d) | < 2+t (65.29)

where c is the constant appearing(®.5.8)

We call (5.5.23) th&schwinger—Dyson approximatiolmdeed, ad goes to infin-
ity, the left hand side of (5.5.23) must go to zero, yieldingyatem of equations
which is closely related to (5.4.12). We remark also thafpttosf of (5.5.23) fol-
lows roughly the same plan as was used in Section 2.4.1 toRyivef #2 of the
semicircle law.

Proof As before, lete,, = e;\f;N € Maty(C) denote the elementary matrix with
entry 1 in position(¢,r), and 0 elsewhere. Givehe Mat,(C), let

All,r] = (idg@trn) ((Ik @ e r)A) € Maty(C),
so thatA =y, Al/,r] @ &,. (Thus, within this proof, we viewA as anN-by-N
array ofk-by-k blocksA[¢,r].)

SinceA is fixed throughout the proof, we drop it from the notationtte extent
possible. To abbreviate, we write

N

Ry = (L(%) ~A®IN)L Hy = (ide® %tr)RN -

From Lemma 5.5.7(i) we get an estimate

N
3 Ruliil

Zl -

\);_%) )2d*2(1+ %) (5.5.24)

which, combined with (5.5.17), yields assertion (i). Froenhma 5.5.7(i) we also
get assertion (ii).

IRul s<1+dHL<

Assertion (iii) will follow from an integration by parts as i(5.4.15). Recall
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thatd _N(N)Xi',“(gfyr,) =380 . We have, foi € {1,...,m} and/,r, 0’1" €
{1,...,N},

By ey R €] = ——<Ru[r rJaiRu[£. €. (5.5.25)

VN
Recall thaEdKN(r’z)f(XN) =EXN(¢,r)f(XN). We obtain
1
VN

Now left-multiply both sides of (5.5.26) b&, and sum on, £ = /¢, andr =r’,
thus obtaining the first equality below.

ER(A)[r,rJaiRn ()[4, ] = EXN(4,NRu(A)[F, ¢ (5.5.26)

__iE(aiHNaiHN) = E(idk®%tr)((L(%)_aO®|N)RN)
= Elide® 1) (k@ I+ (A 20) © )R
= lx+(A—ag)Gn(A).

The last two steps are simple algebra. Thus the left side.bf438) is bounded by
the quantity

2
< (FlalMElH—Erl} < o3 1aI7)E 3 [t
T i ir

AN

E[iai(HN — EH)ai(Hy — EHy)]

A

where at the last step we use once again the Gaussian Roinegtiality in the
form (5.5.8). For the quantity at the extreme right underekgectation, we have
by (5.5.25) an estimate

1

5 2 (R TR ORI E R I < %(lzneunznmn“.

in e

The latter, combined with (5.5.17), (5.5.18) and (5.5.2#ishes the proof of
(5.5.23). O

We will need a generalization d&(A). For anyA € Mat(C) such that
L(S) —A® 1y is invertible, we define

G(A) = (idk@ 0)((L(S) —~A®@1y) ).
Now for A € C such thaG(A ) is defined G(A) is also defined and

G(H 0 D:G()\). (5.5.27)

lk—1
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Thus, the functiorG(A) should be regarded as an extensioiGoA ). Let & be
the connected open subset of Mé&) consisting of all sums of the form

A 0
{ 0 les ]+Z’
where
1
A eC, { eMay(C), OA >0, 2a3||{||(1+ ﬁ) <1. (5.5.28)

Recall that the constat; is specified in (5.5.19).

Lemma 5.5.10(i) For A € C such that0A > 0, G(A) is well defined, depends
analytically onA, and satisfies the bound

1
IG(A)|| < KPas(1+ ) (5.5.29)
(ii) The upper left entry of G\) equals dA).
(iii) More generally,G(A) is well defined and analytic fok € ¢, and satisfies the
bound

~(|A O 1 1
G({ 0 hey }“) —GWH < #a(1+ 55?7l < Kos(1+ 55

(5.5.30)
for A and{ as in(5.5.28)
(iv) If there exists\ € & such that\ — ag is invertible and the operator

(L(S)—a0® 1) ((A—a0) '®1y) € Mat(.”) (5.5.31)
has norm< 1, then
lk+ (A —ag)G(A) + ia;é(A)a;é(/\) =0 (5.5.32)

forall A e 0.

In particular,é(/\) is by (5.5.32) invertible for alh € &. As we will see in
the course of the proof, equation (5.5.32) is essentiallgfarmulation of the
Schwinger-Dyson equation (5.4.12).

Proof Let us specialize Lemma5.5.7 by takitneg- Vi (S) fori=1,...,d and hence
T =L(S). Then we may takerz(1+1/0A)~! as the constant in Lemma 5.5.7.
We note also the crude bourtidy ® o)(M)|| < k?||M|| for M € Matc(.#). By
Lemma 5.5.7(i) the operatty(S) — A ® 1.» is invertible, with inverse bounded in
norm byas(1+1/0A)~ and possessin@®(S) — A1»)~! as its upper left entry.
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Points (i) and (ii) of Lemma 5.5.10 follow. In view of the rétanship (5.5.27) be-
tweenG(A) andG(A ), point (i) of Lemma 5.5.10 follows from Lemma 5.5.7(ii).

It remains only to prove assertion (iv). Since the operZsét connected, and

G(A) is analytic on@, it is necessary only to show that (5.5.32) holds foraih
the nonempty open subset @fconsisting ofA for which the operator (5.5.31) is
defined and has norra 1. Fix suchA now, and letM denote the corresponding
operator (5.5.31). Put
bi = ai(A —ag) " € Mat(C)
fori=1,...,m. By developing
(LS -A®1y) t=—((N—a)) t@1ly)(k®1y — M),

as a power series i, we arrive at the identity

0

lk+ (A —ag)G(A) = — %(idkm)(M”l).

According to the Schwinger-Dyson equation (5.4.12),

bi (idk ® 0)(SM’) = by ﬁ (idk ® o) (MP~ by (idy @ o) (MP)
p=1

whence, after summation, we get (5.5.32). O

Remark 5.5.11In Exercise 5.5.15 we indicate a purely operator-theovegig to
prove (5.5.32), using a special choiceGifprobability space.

Lemma 5.5.12Fix A € C and a positive integer N such th&atA > 0 and the
right side of (5.5.23)is < 1/2. PutA = [ A0 ] € Mat(C). Then Gy(A) is

0 Ik
invertible and the matrix

AN(A) = —GN<A>-1+ao—ieueN<A>ai (5.5.33)

satisfies

2ca103 1
Ne (LT Ex

where c is the constant appearing(#.5.8)

ai102

A<
IAN) = All < i

)4(|)‘ |+ 14 a2+ o100+

), (5.5.34)

Proof Let us write

e (A= 20)GN(A)+ 5 3G (A )aGH(N) = ).
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By hypothesig|en(A)| < 1/2, hencely — en(A) is invertible, henceGy(A) is
invertible, and we have an algebraic identity

ANM)—A:('k—eN(A))1eN<A><A—ao+iaieN<A>ai>.

We now arrive at estimate (5.5.34) by our hypothésig(A )| < 1/2, along with
(5.5.23) to bound ey (A ) || more strictly, and finally (5.5.18) and (5.5.22). O

We record the last trick.
Lemma 5.5.13Let zw € Mat(C) be invertible. If
m m m 2
p Zajza =wl4 Zawa . and ||Z|[|w]| Z||ai|| <1,
i= i= is
then z=w.

Proof Suppose that # w. We havew—z= y{", za(w— z)aw after some alge-
braic manipulation, whence a contradiction. O

Completion of the proof of Lemma 5.5.4By the scale invariance of Lemma
5.5.4 and of thel-linearization construction, for any constant 0, we are free to
replaceP by yP, and hence to replace the linearizatlohy y*/9L. Thus, without
loss of generality, we may assume that
1
o1 <2, az<1—8, az < 2. (5.5.35)
The hypothesis of Lemma 5.5.10(iv) is then fulfilled. Moregsely, withA =

[ (I) | 0 ] the matrix/\A — ag is invertible, and the operator (5.5.31) has norm
k-1

< 1. Consequently, we may take the Schwinger—Dyson equafidn3Q) for
granted.

Now fix co,c; > 0 arbitrarily. We are free to increasg, so we may assume
that

) > 3. (5.5.36)
We then pickNp andc; so that:
If (5.5.5) holds, then the right side of (5.5.23)xis1/2 and
the right side of (5.5.34) ist 55-(1+ ;).

Suppose now thad andA satisfy (5.5.5). Thern(A) is well defined by formula
(5.5.33) becaus@y(A) is invertible, and moreover belongs#d We claim that

G(An(A)) =Gn(A). (5.5.37)
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To prove (5.5.37), which is an equality of analytic funcsmfA, we may assume
in view of (5.5.36) that

OA > 2. (5.5.38)
Putz= Gn(A) andw = G(An(A)). Now

12 <3
by (5.5.22), (5.5.35) and (5.5.38), whereas

Iw]| <6

by (5.5.29), (5.5.30), (5.5.35) and (5.5.38). Applying 8ehwinger—Dyson equa-
tion (5.5.32) along with (5.5.35), we see that the hypotheséemma 5.5.13 are
fulfilled. Thusz=w, which completes the proof of the claim (5.5.37). The claim
granted, for suitably chosen andcs, the bound (5.5.6) in Lemma 5.5.4 holds by
(5.5.30) and (5.5.34), along with Lemma 5.5.9(ii) and Len®r&a10(ii). In turn,
the proofs of Proposition 5.5.3 and Theorem 5.5.1 are cample O

In the next two exercises we sketch an operator-theoreficoagph to the
Schwinger-Dyson equation (5.5.32) based on the study ¢zBann—Fock space
(see Example 5.3.3).

Exercise 5.5.14 et T, T and S be bounded linear operators on a Hilbert space.
Assume thaf is invertible. Assume thatris a projector and letr" = 1— mbe
the complementary projector. Assume that
mtsrt=Sand Tt = Tt S= .
Then we have
m=nT (T -TSTm=m(T-TSTnT 1m (5.5.39)

Hint: Use the block matrix factorization

a b] [1 bd!t][a-bdl 0 1 0
c d| |0 1 0 d dlc 1
in the Hilbert space setting.

Exercise 5.5.15 et V be a finite-dimensional Hilbert space with orthonormal
basis{e }",. LetH = @ ,V®' be the corresponding Boltzmann-Fock space, as
in Example 5.3.3. Lev € V¥9 C H be the vacuum state. EquR{H) with the
statep = (a+— (av,v)). Fori=1,...,m, let{; =  ® - € B(H) be theleft creation
operator previously considered. We will also considerrigbt creation operator
r=-®e €B(H). Fori=1,... mputs = ¢ + ¢ and recall thas,,...,sn are
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free semicircular elements B(H). Puts= (si,...,Sn)-

() Fora =1,...,m, show thatrgrq = 1gy) and g = rqfg is the orthogonal
projection ofH onto the closed linear span of all worgls® - - - @ g, with terminal
lettere, equal toey.

(ii) Let p € B(H) be the orthogonal projection &f ontoV°. Show that we have
an orthogonal direct sum decompositidn= @y Tz H.

(i) Verify the relations

TaS T = OuplaSlp, ToSTa = GaTh="I3STh (5.5.40)

holding fori,a,B=1,...,m.

(iv) Identify Mat(B(H)) with B(H¥). LetL = ap+ Y™, a © X € Mat(C(X)) be
of degree 1. Fix\ € Mat(C) such thafl = L(s) —~A® gy € B(HX) is invert-
ible. Putrr= ly® 1 € B(HX) andS= 3™, (k@) T 1(lk@r) € B(HX). Put
G(A) = (ide® @)(T~1). Use (5.5.39) and (5.5.40) to verify (5.5.32).

5.6 Bibliographical notes

For basics in free probability and operator algebras, wedabn Voiculescu’s
St. Flour course [VoiO0Ob] and on [VODN92]. A more combin@bapproach is
presented in [Spe98]. For notions of operator algebrastwdiie summarized in
Appendix G, we used [Rud91], [DuS58], [Mur90Q], [Li92], [PE2] and [Dix69].
For affiliated operators, we relied on [BeV93] and [DuS58jd an the paper
[Nel74]. (In particular, the remark following Definition 528 clarifies that the
notion of affiliated operators in these references cointiection 5.3.2 follows
closely [Spe03]. Many refinements of the relation betweee frtumulants and
freeness can be found in the work of Speicher, Nica and cdeaveysee the mem-
oir [Spe98] and the recent book [NiS06] with its bibliogrgph theory of cumu-
lants for finite dimensional random matrices was initiatedGaC06]. Subjects
related to free probability are also discussed in the ctleof papers [Voi97].

Free additive convolutions were first studied in [Voi86] 4§BdV92] for boun-
ded operators, then generalized to operators with finitewee in [Maa92] and
finally to the general setting presented here in [BeV93]. failked study of free
convolution by the semicircle law was done by Biane [Bia97Byeeness for
rectangular matrices and related free convolution werdietuin [BeG09]. The
Markovian structure of free convolution (see [Voi00a] fdpasic derivation) was
shown in [Voi93] and [Bia98a, Theorem 3.1] to imply the egiste of a unique
subordination function E C—C such that

o forall ze C\R, Ga1p(2) = Ga(F(2)),
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e F(CT) cC*, F(2) =F(2), O(F(2)) > O(2) for ze C* andF(iy)/iy—1 asy
goes to infinity while staying itfR.

Note that, according to [BeV93, Proposition 5.2], the seteet of conditions on
F is equivalent to the existence of a probability measuon R so thatF = F, is
the reciprocal of a Cauchy transform. Such a point of viewaemally serve as
a definition of free convolution, see [ChGO08] or [BeB07].

Lemma 5.3.40 is a particularly simple example of infiniteigivility. The as-
sumption of finite variance in the lemma can be removed byrebsgthat the
solution of (5.3.26) is infinitely divisible, and then usif8eV93, Theorem 7.5].
The theory of free infinite divisibility parallels the clasal one, and in particular,
a Lévy—Khitchine formula does exist to characterize indilyi divisible laws, see
[BeP00] and [BaNT04]. The former paper introduces the BaoiePata bijec-
tion between the classical and free infinitely divisible $a{gee also the Boolean
Bercovici—Pata bijection in [BNO8]). Matrix approximatis to free infinitely di-
visible laws are constructed in [BeGO05].

The generalization of multiplicative free convolution tffile@ted operators is
done in [BeV93], see also [NiS97].

The relation between random matrices and asymptotic femanas first estab-
lished in the seminal article of Voiculescu [Voi91]. In [\@di, Theorem 2.2], he
proved Theorem 5.4.5 in the case of Wigner Gaussian (Hamitandom matri-
ces and diagonal matricé®N} i<, whereas in [Voi91, Theorem 3.8], he gen-
eralized this result to independent unitary matrices. Wwi98b], he removed the
former hypothesis on the matricé®N}1<i<p, to obtain Theorem 5.4.5 for Gaus-
sian matrices and Theorem 5.4.10 in full generality (follognthe same ideas as in
Exercise 5.4.17). An elegant proof of Theorem 5.4.2 for Geumsmatrices which
avoid combinatorial arguments appears in [CaC04]. Thedrdn? was extended
to non-Gaussian entries in [Dyk93b]. The proof of Theoredh B we presented
follows the characterization of the law of free unitary @dnles by a Schwinger—
Dyson equation given in [Voi99, Proposition 5.17] and theas of [COMGO06].
Other proofs were given in terms of Weingarten functionsGolp3] and with a
more combinatorial approach in [Xu97]. For uses of mastep l@r Schwinger—
Dyson) equations in the physics literature, see e.g. [EYBA8 [Eyn03].

Asymptotic freeness can be extended to other models suabirdsdjstribu-
tion of random matrices with correlated entries [ScSO5padeterministic mod-
els such as permutation matrices [Bia95]. Biane [Bia98¢ (@lso $ni06] and
[Bia01]) showed that the asymptotic behavior of rescaledngpdiagrams and as-
sociated representations and characters of the symmaatipg can be expressed
in terms of free cumulants.
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The study of the correction (central limit theorem) to Thesors.4.2 for Gaus-
sian entries was performed in [Cab01], [MiS06]. The geneatibn to non-
Gaussian entries, as done in [AnZ05], is still open in theeggimoncommutative
framework. A systematic study and analysis of the limitimgariance was un-
dertaken in [MiNO4]. The failure of the central limit theonefor a matrix model
whose potential has two deep wells was shown in [Pas06].

We have not mentioned the notion of freeness with amalgamatrhich is a
freeness property where the scalar-valued state is raptacan operator-valued
conditional expectation with properties analogous to doorthl expectation from
classical probability theory. This notion is particularigtural when consider-
ing the algebra generated by two subalgebras. For instdéineefee algebras
{Xi}1<i<p @as in Theorem 5.4.5 are free with amalgamation with resjpeitiet al-
gebra generated by the; }1<i<p . We refer to [VoiO0ODb] for definitions and to
[ShI98] for a nice application to the study the asymptoticthe spectral measure
of band matrices. The central limit theorem for the trace ofemh moments of
band matrices and deterministic matrices was done in [Gui02

The convergence of the operator norm of polynomials in ietelent GUE ma-
trices discussed in Section 5.5 was first proved in [HaTOHje(norms of the lim-
iting object, namely free operators with matrix coefficernwere already studied
in [Leh99].) This result was generalized to independenticeg from the GOE
and the GSE in [Sch05], see also [HaSTO06], and to Wigner oh&vismatrices
with entries satisfying the Poincaré inequality in [CaOIf was also shown in
[GuS08] to hold with matrices whose laws are absolutelyicooius with respect
to the Lebesgue measure and possess a strictly log-coneas#yd The norm of
long words in free noncommutative variables is discussg&am07a]. We note
that a by-product of the proof of Theorem 5.5.1 is that thelfgis transform of
the law of any self-adjoint polynomial in free semicircutandom variables is
an algebraic function, as one sees by applying the algetyraiiterion [AnZ08b,
Theorem 6.1], to the Schwinger—Dyson equation as expréssee form (5.5.32).
Proposition 5.5.3 is analogous to a result for sample camag matrices proved
earlier in [BaS98a].

Many topics related to free probability have been left outum discussion. In
particular, we have not mentioned free Brownian motion dsdd in [Spe90],
which appears as the limit of the Hermitian Brownian motioithvsize going
to infinity [Bia97a). We refer to [BiS98b] for a study of thelaged stochastic
calculus, to [Bia98a] for the introduction of a wide classpobcesses with free
increments and for the study of their Markov properties Aog02] for the intro-
duction of stochastic integrals with respect to processtsfree increments, and
to [BaNTO02] for a thorough discussion of Lévy processes lainy laws. Such
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a stochastic calculus was used to prove a central limit #raon [Cab01], large
deviation principles, see the survey [Gui04], and the coyemece of the empirical
distribution of interacting matrices [GuS08]. In such a cmmmutative stochastic
calculus framework, inequalities such as the Burkholdem®-Gundy inequality
[BiS98b] or the Burkholder—Rosenthal inequalities [JuKio&Id.

Another important topic we did not discuss is the notion eéfentropy. We re-
fer the interested readers to the reviews [Voi02] and [HB}OGoiculescu defined
several concepts for an entropy in the noncommutative sé&tugt, the so-called
microstates entropy was defined in [Voi94], analogously tbe t
Boltzmann—Shannon entropy, as the volume of the colleaforandom matri-
ces whose empirical distribution approximates a givenidtastate. Second, in
[Voi984a], the microstates-free free entropy was defineddtipdving an infinitesi-
mal approach based on the free Fisher information. Voiculekowed in [V0i93]
that, in the case of one variable, both entropies are equédlowing a large de-
viations and stochastic processes approach, bounds bethese two entropies
could be given in the general setting, see [CaG01] and [Bi&}G®oviding strong
evidence toward the conjecture that they are equal in fulbgaity. Besides its
connections with large deviations questions, free ent®piere used to define
in [Voi94] another important concept, namely the free goyrdimension. This
dimension is related with2-Betti numbers [CoS05], [MiS05] and is analogous
to a fractal dimension in the classical setting [GuS07]. Ag®tanding conjec-
ture is that the entropy dimension is an invariant of the vauMann algebra,
which would settle the well known problem of the isomorphibeiween free
group factors [V0i02, section 2.6]. Free entropy theory &lasady been used to
settle some important questions in von Neumann algebrad\Vs&6], [Ge97],
[Ge98] or [Voi02, section 2.5]. In another direction, randmatrices can be an
efficient way to tackle questions concerni@tralgebras or von Neumman alge-
bras, see e.g. [Voi90], [Dyk93a], [Rad94], [HaT99], [H&4(JP0S03], [HaT05],
[HaST06], [GuJS07] and [HaS09].

The free probability concepts developed in this chapted,iarparticular free
cumulants, can also be used in more applied subjects sueteasinmunications,
see [LiTVO1] and [TuVO04].



Appendices

A Linear algebra preliminaries

This appendix recalls some basic results from linear alelle refer the reader
to [HoJ85] for further details and proofs.

A.1 ldentities and bounds

The following identities are repeatedly used. ThroughAuB,C,D denote arbi-
trary matrices of appropriate dimensions. We then have

A B A 0 1 A1B
1dem#°det[c D} - det({c D—CA‘lB] [0 1 D

= detA-defD —CA1B], (A.1)
where the right side of (A.1) is set to OAfis not invertible.

The following lemma, proved by multiplying on the right g} — zI) and on
the left by(X — A—zl), is very useful.

Lemma A.1 (Matrix inversion) For matrices XA and scalar z, the following
identity holds if all matrices involved are invertible:
(X—A-z)t-(X—z)t=X-A-z)tAX—2zI)"L.
Many manipulations of matrices involve their minors. THes| = {i,... gt
c{L...,my, 3= {j1,...,Jj3} € {L,...,n}, and for amm-by-n matrix A, letA

be the|l|-by-|J| matrix obtained by erasing all entries that do not belongrima
with index froml and a column with index frord. That is,

Ag(LK) =AxL k), T=1,...01, k=1,...,]J].

414



A. LINEAR ALGEBRA PRELIMINARIES 415

Thel,J minor of Ais then defined as dat ;. We have the following.

Theorem A.2 (Cauchy—Binet Theorem)Suppose A is an m-by-k matrix, B a
k-by-n matrix, C= AB, and, with r<min{m,k,n}, setI= {i1,...,ir} C{1,...,m},

J={j1,...,jr} € {%,...,n}. Then, letting#; x denote all subsets ¢fl, ..., k} of
cardinality r,
detC 5 = z detA x detBk ;. (A.2)
Ke Ak

We next provide a fundamental bound on determinants.

Theorem A.3 (Hadamard’s inequality) For any column vectorsyy...,Vv, of
length n with complex entries, it holds that

n n

detlvy... vy < ViTVi < N2 Vil -
M N

A.2 Perturbations for normal and Hermitian matrices

We recall that a normal matri& satisfies the relatioAA® = A*A. In particular,
all matrices in}f,\fﬁ), B =1,2, are normal.

In what follows, we let|Al2:= /5 ; |A(i, j)|? denote théFrobeniusnorm of
the matrixA. The following lemma is a corollary of Gersgorin’s circlestirem.

Lemma A.4 (Perturbations of normal matrices) Let A be an N by N normal
matrix with eigenvalueg;, i =1,...,N, and let E be an arbitrary N by N matrix.
I_Aetf\ be any eigenvalues of AE. Then there is an & {1,...,N} such that
A=Al < [[E]2.

For Hermitian matrices, more can be said. Recall that, foearttian matrixA,
we letA1(A) < Az(A) <--- < An(A) denote the ordered eigenvaluesfofwe first
recall the

Theorem A.5 (Weyl'sinequalities)Let AB € ij(Z). Then, foreachk {1,...,N},
we have

A(A) +M1(B) < A(A+B) < A(A) + Mn(B). (A3)

The following is a useful corollary of Weyl's inequalities.
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Corollary A.6 (Lipschitz continuity) Let AE € %”,\‘(a. Then
[A(A+E) = A(A)| < [IE]l2- (A.4)

Corollary A.6 is weaker than Lemma 2.1.19, which in its Hetram formulation,
see Remark 2.1.20, actually implies that, under the samergdsons,

ZI)\k(AJr E) —AA) < [IEJZ. (A.5)

We finally note the following comparison, whose proof is lthsm the
Courant—Fischer representation of the eigenvalues of Kiarmmatrices.

Theorem A.7Let Ae %”N(a and ze CN. Then, forl <k <N -—2,
MAL£27) < Ms1(A) < Aea(A+22). (A.6)

A.3 Noncommutative matrix.P-norms

GivenX € Maty,¢(C) with singular valuegty > --- > iy > 0, wherer = min(k, ¢),

and a constant ¥ p < o, one defines th@oncommutative R-norm of X by
1/p . .

IXIlp = (311 ?) " if p < o0 and X |, = limp-a X[, = bt

Theorem A.8 The noncommutative’lnorms satisfy the following.

X = 11X 1 = [IXT] - (A7)

[UX|l, = [IX][, for unitary matrices Ue Mat(C). (A.8)

tr(XX*) = [|X|5. (A.9)
r 1/p

Xllp = <Zl|xi.i|p> forl1<p<oo. (A.10)
i=

|||/ is @ norm on the complex vector spadat,(C).  (A.11)

Properties (A.7), (A.8) and (A.9) are immediate consegasiof the definition. A
proof of (A.10) and (A.11) can be found in [Sim05b, Prop. 2.6/&8m. 2.7]. It
follows from (A.10) that ifX is a square matrix then

Xy = [tr(X)]- (A.12)

For matricesX andY with complex entries which can be multiplied, and expo-
nents 1< p,q,r < o satisfying% +%1 =1, we have theoncommutative slder
inequality

XYl < [IX[plYllg- (A13)
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(See [SimO5b, Thm. 2.8].)

A.4 Brief review of resultants and discriminants

Definition A.9 Let
P=P(t) = S atl = an m(t—ai), Q=Q(t) = S byt] = bn [ (t—Bj).
el 2ot =l

be two polynomials where thas, bs, as andBs are complex nhumbers, the lead
coefficientsa, andb, are nonzero, andis a variable. Theesultantof P andQ is
defined as

RIP.Q) = ahb[] [ (a1~ A1) =[] ar) = (~1™eR [ P(Ay).
I=1]= i= =

The resultanR(P, Q) can be expressed as the determinant of the n)-by-(m+
n) Sylvester matrix

am ... ag

Here there ara rows ofas andmrows ofbs. In particular, the resultaR®(P, Q) is
a polynomial (with integer coefficients) in tlas andbs. HenceR(P, Q) depends
only on theas andbs and does so continuously.

Definition A.10 Given a polynomiaP as in Definition A.9, theliscriminantof P
is defined as

D(P) — <—1>m<m—l>/2R<P,FV>=<—1>m<m-1>/2ﬁp'(ai>

= a1 (a—ap (A.14)

1<i<)<n

We emphasize th&(P) depends only on thas and does so continuously.
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B Topological preliminaries

The material in Appendices B and C is classical. These appemdre adapted
from [DeZ98].

B.1 Generalities

A family 1 of subsets of a se®” is atopologyif 0 € 1, if 2" € 1, if any union
of sets oft belongs tor, and if any finite intersection of elements pbelongs
to 7. A topological space is denotéd?”, 7), and this notation is abbreviated to
4 if the topology is obvious from the context. Sets that belomg are called
open sets Complements of open sets arlesed sets An open set containing a
pointx € 2 is aneighborhoof x. Likewise, an open set containing a subset
A C Z is a neighborhood oA. Theinterior of a subseA ¢ 2", denoted??, is
the union of the open subsetsAfTheclosureof A, denoted, is the intersection
of all closed sets containindy. A point p is called araccumulation poinof a set
A C Z if every neighborhood op contains at least one point & The closure
of Alis the union of its accumulation points.

A basefor the topologyr is a collection of sets7 C 1 such that any set from
T is the union of sets iny. If 11 and 1, are two topologies oi?", 1 is called
stronger (or finer) tham,, and1, is called weaker (or coarser) thanif 1, C 13.

A topological space islausdorffif single points are closed and every two dis-
tinct pointsx,y € 2" have disjoint neighborhoods. It regular if, in addition,
any closed seff C 2" and any poink ¢ F possess disjoint neighborhoods. It is
normalif, in addition, any two disjoint closed sek, F, possess disjoint neigh-
borhoods.

If (2°,11) and (#/, 1) are topological spaces, a functidn: 2" — % is a
bijectionif it is one-to-one and onto. It isontinuousf f‘l(A) e 11 foranyAe 1.
This implies also that the inverse image of a closed set iseclo Continuity is
preserved under compositions, i.efif 2" — # andg: % — % are continuous,
thengo f : 2 — % is continuous. If bothf and f~1 are continuous, thef is
a homeomorphisgrand spaces?”, % are called homeomorphic if there exists a
homeomorphisni : 2" — %'

A function f : 2" — R is lower semicontinuoug@ipper semicontinuoQisf its
level sets{x e 2 : f(x) < a} (respectively{xe 2 : f(x) > a} ) are closed
sets. Clearly, every continuous function is lower (uppemgontinuous and the
pointwise supremum of a family of lower semicontinuous fiorts is lower semi-
continuous.
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A Hausdorff topological space ompletely regulaif for any closed seF C
& and any poink ¢ F, there exists a continuous functidn 2~ — [0,1] such
thatf(x) =1 andf(y) =0forally e F.

A coverof a setA C 2" is a collection of open sets whose union conta#ing
set iscompacif every cover of it has a finite subset that is also a cover. Atice
uous image of a compact set is compact. A continuous bijetitween compact
spaces is a homeomorphism. Every compact subset of a Héfusgiogical
space is closed. A set jge-compactf its closure is compact. A topological
space idocally compacif every point possesses a neighborhood that is compact.

Theorem B.1A lower (upper) semicontinuous function f achieves its imimn
(respectively, maximum) over any compact set K.

Let (Z°,1) be a topological space, and letc 2". Therelative (or induced)
topology onA is the collection of set&( 1. The Hausdorff, normality and regu-
larity properties are preserved under the relative topplBgrthermore, the com-
pactness is preserved, i.B.C Ais compact in the relative topology iff it is com-
pact in the original topology. Note, however, that the “closedness” property is
notpreserved.

A nonnegative real functiod: 2" x 2" — R is called ametricif d(x,y) =0 <
x=Yy,d(x,y) =d(y,x), andd(x,y) < d(x,z) +d(zy). The last property is referred
to as thetriangle inequality. The seBy 5 = {y: d(x,y) < &} is called theball of
centerx and radiug®. The metric topology of2” is the weakest topology which
contains all balls. The se¥” equipped with the metric topology isnaetricspace
(Z°,d). Atopological space whose topology is the same as someatgbology
is calledmetrizable Every metrizable space is normal. Every regular space that
possesses a countable base is metrizable.

A sequencey, € 2" convergeso x € 2 (denotedx, — X) if every neighbor-
hood ofx contains all but a finite number of elements of the sequdnmgp. If
2, % are metric spaces, thdn 2~ — % is continuous ifff (xn) — f(x) for any
convergent sequencg — X. A subsetA C 2 of a topological space isequen-
tially compactf every sequence of points lihas a subsequence convergingto a
pointin 2.

Theorem B.2A subset of a metric space is compactiiff it is closed and se iy
compact.

A setAC Z isdensdfits closure isZ". A topological space iseparabldf it
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contains a countable dense set. Any topological space tisgepses a countable
base is separable, whereas any separable metric spaceggssae€ountable base.

Even if a space is not metric, the notion of convergence omaesee may be
extended to convergence filters, or nets such that compactness, “closedness”,
etc. may be checked by convergence. The interested reaeéeiised to [DuS58]
or [Bou87] for details.

LetJ be an arbitrary set. Le#™ be the Cartesian product of topological spaces
Zj, 1.e, 2 =T1; Zj. Theproduct topologyn 2" is the topology generated by
the basq;Uj, whereU; are open and equal t&] except for a finite number
of values ofj. This topology is the weakest one which makes all projestion
pj : & — Zj continuous. The Hausdorff property is preserved underymsits
and any countable product of metric spaces (with metsic, -)) is metrizable,
with the metric onZ" given by

0

1 dn(pPnX, pry)
dX¥) = > T o oo
( y) nZl 2n1 + dn( pnx7 pny)

Theorem B.3 (Tychonoff)A product of compact spaces is compact.

B.2 Topological vector spaces and weak topologies

A vector spacever the reals is a se2” that is closed under the operations of
addition and multiplication by scalars, i.e.xify € 2", thenx+y € 2" andax €

Z for all o € R. All vector spaces in this book are over the realg¢opological
vector spacés a vector space equipped with a Hausdorff topology thatandihe
vector space operations continuous. Thavex hullof a setA, denoted c@A), is
the intersection of all convex sets containifigThe closure of c@) is denoted
Co(A). co({xq,...,Xn}) IS compact, and, iK; are compact, convex sets, then the
set cc(UiNzl K;j) is closed. Alocally convextopological vector space is a vector
space that possesses a convex base for its topology.

Theorem B.4Every (Hausdorff) topological vector space is regular.

A linear functionalon the vector spacg” is a functionf : 2° — R that satisfies
f(ax+ By) = af(x) + Bf(y) for any scalarsx,3 € R and anyx,y € 2". The
algebraic dualof .2, denoted2”, is the collection of all linear functionals on
Z . Thetopological dualof 2, denotedZ™*, is the collection of all continuous
linear functionals on théopologicalvector spaceZ’. Both the algebraic dual
and the topological dual are vector spaces. Note that, \ekdhe algebraic dual
may be defined for any vector space, the topological dual neagidfined only
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for a topological vector space. The product of two topolagjiector spaces is
a topological vector space, and is locally convex if eachhefdoordinate spaces
is locally convex. The topological dual of the product spacéne product of the
topological duals of the coordinate spaces. A#éic 2" is calledseparatingf
for any pointx € 27, x # 0, one may find ah € J# such that(x) # 0. It follows
from its definition that2™’ is separating.

Theorem B.5 (Hahn—-Banach)Suppose A and B are two disjoint, nonempty,
closed, convex sets in the locally convex topological vespace 2. If A is
compact, then there exists anef 2™ and scalarsa,3 € R such that, for all
xeA yeB,

f(x) <a<p<f(y). (B.1)

It follows in particular that if 2" is locally convex, then2™ is separating. Now
let 7 be a separating family of linear functionals &ti. The .7#-topologyof
Z is the weakest (coarsest) one that makes all element§ @bntinuous. Two
particular cases are of interest.

(a) If 72 = 27", then theZ *-topology onZ" obtained in this way is called the
weak topologwf 2. It is weaker (coarser) than the original topology.8n

(b) Let Z" be a topological vector space (not necessarily locally erpvEvery
x € 2 defines a linear functional on 2™ by the formulafy(x*) = x*(x). The
set of all such functionals is separating#i*. The 2 -topology of 2 * obtained
in this way is referred to as theeak topologyof 2°*.

Theorem B.6 Suppose?” is a vector space an@ C 2" is a separating vector
space. Then th& -topology makes? into a locally convex topological vector
space withZ™ = %,

It follows in particular that there may be different topoiog) vector spaces with
the same topological dual. Such examples arise when thmakigpology on%Z"
is strictly finer than the weak topology.

Theorem B.7 Let 2" be a locally convex topological vector space. A convex
subset of2" is weakly closed iff it is originally closed.

Theorem B.8 (Banach—Alaoglu)l.etV be a neighborhood 6fin the topological
vector space?’. Let K= {x* € 2™ : |x*(x)] <1, ¥xeV}. Then K is weak
compact.
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B.3 Banach and Polish spaces

A norm |- || on a vector space?” is a metricd(x,y) = ||x—y|| that satisfies
the scaling propertyja(x—y)|| = a|[x—y|| for all a > 0. The metric topology
then yields a topological vector space structure®n which is referred to as a
normedspace. The standard norm on the topological dual of a norpeces?”
is [[X*|| 27+ = supy <1 [X" (X)|, and ther{|X|| = Sup|y-| .. <1 X"(X), forallx e 2.

A Cauchy sequencim a metric spaceZ” is a sequence, € 2 such that,
for everye > 0, there exists al(g) such thatd(x,,xm) < &€ for anyn > N(¢)
andm > N(g). If every Cauchy sequence id” converges to a point it#’, the
metric in £ is calledcomplete Note that completeness is not preserved under
homeomorphism. A complete separable metric space is calRatishspace. In
particular, a compact metric space is Polish, and an opesesoba Polish space
(equipped with the induced topology) is homeomorphic to isRspace.

A complete normed space is calle@anachspace. The natural topology on a
Banach space is the topology defined by its norm.

A setB in a topological vector spacg” is boundedf, given any neighborhood
V of the origin in 2", there exists ag > 0 such thaf{ax:x € B,|a| < &} C V.
In particular, a seB in a normed space is bounded iff sup||X|| < . A setBin
a metric space?’ is totally boundedf, for everyd > 0, it is possible to coveB
by a finite number of balls of radius centered irB. A totally bounded subset of
a complete metric space is pre-compact.

Unlike in the Euclidean setup, balls need not be convex intaicrspace. How-
ever, in normed spaces, all balls are convex. Actually, tlewing partial con-
verse holds.

Theorem B.9 A topological vector space is normable, i.e., a norm may be de
fined on it that is compatible with its topology, iff its omghas a convex bounded
neighborhood.

Weak topologies may be defined on Banach spaces and thelogiged duals. A
striking property of the weak topology of Banach spaceseédlst that compact-
ness, apart from closure, may be checked using sequences.

Theorem B.10 (Eberlein-Smulian) Let 2" be a Banach space. In the weak
topology ofZ", a set is sequentially compact iff it is pre-compact.
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B.4 Some elements of analysis

We collect below some basic results tying measures andiéumsobn locally com-
pact Hausdorff spaces. In most of our applications, the tyidg space will be
R. A good reference that contains this material is [Rud87].

Theorem B.11 (Riesz representation theoreni)et X be alocally compact Haus-
dorff space, and led\ be a positive linear functional onCX). Then there exists
a g-algebra.# in X which contains all Borel sets in X, and there exists a uaiq
positive measurg on.# which represents in the sense that

/\f:/ fdu forevery fe Ce(X).
X

We next discuss the approximation of measurable functigrisice” functions.
Recall that a functiosis said to be simple if there are measurable Aetnd real
constantsai)i<i<n such thas =y ; aila,.

Theorem B.12Let X be a measure space, and letX — [0, ] be measurable.
Then there exist simple functio(&)p>o on X suchtha0 < g < s--- < g < f
and %(x) converges to (x) for all x € X.

The approximation of measurable functions by continuoesas often achieved
using the following.

Theorem B.13 (Lusin) Suppose X is a locally compact Hausdorff space and
is a positive Borel measure on X. LetAX be measurable with(A) < o, and
suppose f is a complex measurable function on X, wi) £ 0if x ¢ A. Then,
for anye > O there exists a g C¢(X) such that

Hx: f(x) #9(0}) < &.
Furthermore, g can be taken such tisatg,  |g(X)| < supex | f(X)].

C Probability measures on Polish spaces
C.1 Generalities

The following indicates why Polish spaces are conveniemmiandling measur-
ability issues. Throughout, unless explicitly stated othige, Polish spaces are
equipped with their Borev-fields.
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Theorem C.1 (Kuratowski) Let 21,2, be Polish spaces, and let:&; — 2, be
a measurable, one-to-one map. LetEZX; be a Borel set. Then(E;) is a Borel
setinX,.

A probability measuren the Borelo-field s of a Hausdorff topological space

Y is a countably additive, positive set functipnwith ;(X) = 1. The space of
(Borel) probability measures dn is denotedV;(X). WhenZ is separable, the
structure ofM;(Z) becomes simpler, and conditioning becomes easier to handle
namely, let>,>; be two separable Hausdorff spaces, anduldte a probability
measure orfz, %s). Let m: = — 3; be measurable, and let= po ! be the
measure os, defined byv(Ey) = u(m1(Ey)).

Definition C.2 A regular conditional probability distribution giverr (referred to
asr.c.p.d.) isa mapping € 23 — U € M1(Z) such that:
(a) there exists a sét € #As, with v(N) =0 and, for eaclw; € Z;\N,

O ({0 m(0) # 01}) = 0;
(b) for any se€ € %5, the mapoy — p?(E) is %5, measurable and

HE)= [ u(E)v(doy).

It is property (b) that allows for the decomposition of measu In Polish spaces,
the existence of an r.c.p.d. follows from:

Theorem C.3LetZ, 23 be Polish spacegi € M1 (%), andr: Z — %, a measurable
map. Then there exists an r.c.pgft. Moreover, it is unigue in the sense that any
other r.c.p.dI“? satisfies

v({op: 1% # puot}) = 0.
Another useful property of separable spaces is their behawider products.

Theorem C.4Let N be either finite or N= o,
(a) |_|iN=l‘@z C ‘%)I'IiN:lZ'
(b) If = is separable, thep ; Zs = By 5

We now turn our attention to the particular case wheige metric (and, when-
ever needed, Polish).

Theorem C.5LetZ be a metric space. Then apye M1 (Z) is regular.
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Theorem C.6 Let X be Polish, and lejt € M1(X). Then there exists a unique
closed set ¢ such thau(C,) = 1and, if D is any other closed set with(D) = 1,
then G, C D. Finally,

Cy={oez:0eU® = puU°)>0}.

The selCy, of Theorem C.6 is called theupportof u.

A probability measurgu on the metric spacg is tight if, for eachn > 0,
there exists a compact g€} C = such thalu(K,C,) < n. A family of probability
measureg Ly } on the metric spack is called atight familyif the setK,, may be
chosen independently of.

Theorem C.7Each probability measure on a Polish spaces tight.

C.2 Weak topology

Whenevers is Polish, a topology may be defined b (X) that possesses nice
properties; namely, define theeak topologyn M; (Z) as the topology generated
by the sets

Upxs =1V eEMy(2): |/Z(pdv—x| <0},

whereg € C,(Z), 0 > 0 andx € R. If one takes only functiong € C,(Z) that are
of compact support, the resulting topology is ttague topology

HereafterM;(Z) always denotebl (Z) equipped with the weak topology. The
following are some basic properties of this topologicakspa

Theorem C.8Let be Polish.

(i) M1(%) is Polish.
(i) A metric compatible with the weak topology is thei metric:

d(u,v) =inf{d: u(F)<v(F°)+d VF C Z closed.

(iii) M1(X) is compact ifz is compact.

(iv) Let E C X be a dense countable subset>f The set of all probability
measures whose supports are finite subsets of E is densg¥).M

(v) Another metric compatible with the weak topology is the tliitz bound-
ed metric:

duy(i,v) = sup | fdv—/ fdul , (C.1)
fEf}LU z z
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where.7|  is the class of Lipschitz continuous functions3 — R, with
Lipschitz constant at mo&tand uniform bound.

The spacéVl; (%) possesses a useful criterion for compactness.

Theorem C.9 (Prohorov)LetZ be Polish, and lef ¢ M1(Z). Thenl is compact
iff I" is tight.

SinceM; (Z) is Polish, convergence may be decided by sequences. Thwiia
lists some useful properties of converging sequence jix).

Theorem C.10 (Portmanteau theorem)Let 2~ be Polish. The following state-
ments are equivalent.

(i) Uup— pHasn— oo,

(i) Vg bounded and uniformly continuourf.im /gdun = / gdu.

(iii) VF C Zclosed, limsuppn(F) < u(F).

n—oo
(iv) VG C Z open, Iinminf Un(G) > U(G).
(v) VA € %5, which is a continuity set, i.e., such thatA\A®) = 0, limp_..,
Hn(A) = H(A).

A collection of functions4 C B(%) is calledconvergence determinirfgr M1 (Z)
if

nN—oo

lim /zgdunz/zgdu, YgEY = ln—noow U.

ForX Polish, there exists a countable convergence determiwitertion of func-
tions forM1(Z) and the collectiod f (X)g(y) }  gec, () IS convergence determining
for My (22).

Theorem C.11Let> be Polish. If K is a set of continuous, uniformly bounded
functions onX that are equicontinuous on compact subset& ofhenu, — u
implies that
limsupsu |/(pdun—/(pdu|}=0.
z z

n—oo (peK

The following theorem is the analog of Fatou’s Lemma for mieas. It is proved
from Fatou’s Lemma either directly or by using the Skorohegresentation the-
orem.
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Theorem C.12Let X be Polish. Let f: £ — [0,] be a lower semicontinuous
function, and assumg, — u. Then

liminf fdunz/fdu.
now J5 s

D Basic notions of large deviations

This appendix recalls basic definitions and main resultafd deviation theory.
We refer the reader to [DeS89] and [DeZ98] for a full treatinen

In what follows,X will be assumed to be a Polish space (that is a complete sep-
arable metric space). We recall that a functforX — R is lower semicontinuous
if the level setg(x: f(x) < C} are closed for any consta@t

Definition D.1 A sequencépin)nen Of probability measures oX satisfies darge
deviation principlewith speeday (going to infinity withN) and rate function iff

| : X—[0, ] is lower semicontinuous (D.1)

For any open séd C X, Ii'r\lninf % logun(0) > — igf l. (D.2)

For any closed sdt C X, lim sup% logun(F) < —irF1fI. (D.3)
N—oo

When it is clear from the context, we omit the reference tosieed or rate func-
tion and simply say that the sequenfen} satisfies the LDP. Also, iky are
X-valued random variables distributed accordingitg we say that the sequence
{xn} satisfies the LDP if the sequen{gn } satisfies the LDP.

Definition D.2 A sequencépin )nen Of probability measures o satisfies aveak
large deviation principlgf (D.1) and (D.2) hold, and in addition (D.3) holds for
all compact set§ C X.

The proof of a large deviation principle often proceeds bgsthe proof of a weak
large deviation principle, in conjuction with the so-cdllexponential tightness

property.

Definition D.3 (a) A sequencéLn)nen Of probability measures oX is exponen-
tially tight iff there exists a sequenci| ), <y of compact sets such that

limsuplim sup% log un (KF) = —oo.

L—oo N—oo
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(b) A rate functionl is goodif the level sets{x € X : I (x) < M} are compact for
allm > 0.

The interest in these concepts lies in the following.

Theorem D.4 (a) ([DeZ98, Lemma 1.2.18])f {un} satisfies the weak LDP and
it is exponentially tight, then it satisfies the full LDP, atie rate function | is
good.

(b) ([Dez98, Exercise 4.1.10H) { un } satisfies the upper bound (D.3) with a good
rate function I, then it is exponentially tight.

A weak large deviation principle is itself equivalent to gsimation of the prob-
ability of deviations towards small balls.

Theorem D.5Let .« be a base of the topology of X. For everngA7, define
o1
NAp = "'&“J?of n log un (A)

and

[(X)=sup Aa.
Aca/:xeA

Suppose that, for all € X,
I(x)=sup {—Iimsupi IoguN(A)} .
Ac.a/ :xeA N—o aN

Thenuy satisfies a weak large deviation principle with rate funotio
Letd be the metric irX, and seB(x,0) = {y € X :d(y,x) < &}.
Corollary D.6 Assume that, for all ¥ X,

1 1
—1(X) = limsuplimsup— lo B(x,0)) = liminf liminf — lo B(x,0)).
(x) = limsuplimsup_" logun (B(x, 6)) = liminfliinf 2= log i (B(x, 0))

Thenpy satisfies a weak large deviation principle with rate funotio

From a given large deviation principle one can deduce a ldeg&tion principle
for other sequences of probability measures by using etitteeso-called contrac-
tion principle or Laplace’s method.

Theorem D.7 (Contraction principle) Assume that the sequence of probability
measuregln)nen 0N X satisfies a large deviation principle with good rate func
tion 1. Then, for any function FX—Y with values in a Polish space Y which is
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continuous, the imagéFtun)neny € M1(Y)Y defined as Eun(A) = poF~1(A)
also satisfies a large deviation principle with the same dpmed rate function
given for any y¢ Y by

J(y) =inf{l(x) : F(x) = y}.

Theorem D.8 (Varadhan's Lemma)Assume thafun )nen Satisfies a large devi-
ation principle with good rate function I. Let FX—R be a bounded continuous
function. Then

jim —+ log [ eNF®duy(x) = sup{F(x) —1(X)}.

N—o ay xeX
Moreover, the sequence

1
un(dX) = ——=————eMF®dpy(x) € My(X

satisfies a large deviation principle with good rate funatio

IX) =1(x) =F(x) —)?EUXP{F(Y) -1y}

Laplace’s method for the asymptotic evaluation of integrahich is discussed
in Section 3.5.1, can be viewed as a (refined) precursor toréheD.8 in a nar-
rower context. In developing it, we make use of the followétgmentary result.

Lemma D.9 (Asymptotics for Laplace transforms)Let f: R, — C posses poly-
nomial growth at infinity. Suppose that for some expoment —1 and complex
constant B,

f(t)=At"+0(t ) ast| 0.
Consider the Laplace transform
F(x) = / f(t)e >t
0

which is defined (at least) for all realx 0. Then,

Br(a+1) 1
F(x) = RS} +O<xa+2> as x7 co.

Proof In the special casé(t) = Bt we haveF(x) = %, and hence the

claim holds. To handle the general case we may assumdtaad. Then we
have [y e ™ f(t)dt = O( 5t +le-tXdt) and [;° e ™f (t)dt decays exponentially
fast, which proves the lemma. O

Note that if f(t) has an expansion in powet%, t?*1, t9+2 and so on, then
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iterated application of the claim yields an asymptotic exgdan of the Laplace
transformF (x) at infinity in powersx ~1, x"9-2, x~~3 and so on.

E The skew fieldH of quaternions and matrix theory over F

Whereas the reader is undoubtedly familiar with the figddand C, the skew
field H of quaternions invented by Hamilton may be less familiar.give a brief
account of its most important features here. Then, Withlenoting any of the
(skew) fieldsR, C or H, we recount (without proof) the elements of matrix theory
overlF, culminating in the spectral theorem (Theorem E.11) ancbitsllaries. We
also prove a couple of specialized results (one concermimjggiors and another
concerning Lie algebras of unitary groups) which are wethkn in principle but
for which references “uniform ifi” are not known to us.

Definition E.1 The field H is the associative (but hot commutativi@jalgebra
with unit for which 1,i, j, k form a basis oveR, and in which multiplication is
dictated by the rules

i?=j?=k%®=ijk = —1. (E.1)

Elements ofH are calledquaternions Multiplication in H is hot commutative.
However, every nonzero element Hfis invertible. Indeed, we hav@+ bi +

¢ +dk)~! = (a—bi — ¢ —dk)/(a? + b? + ¢+ d?) for all a,b,c,d € R not all
vanishing. Thudl is askew field that is, an algebraic system satisfying all the
axioms of a field except for commutativity of multiplication

Remark E.2 Here is a concrete model for the quaternions in terms of oestri
Note that the matrices

o I LA el

with complex number entries satisfy the rules (E.1). Itdal$ that the map

athbitqtdk | &FD c+d

| —Cc+di a—bi] (3,b,c.dER)

is an isomorphism ofl onto a subring of the ring of 2-by-2 matrices with entries
in C. The quaternions often appear in the literature identifigd 2+by-2 matrices
in this way. We do not use this identification in this book.

For every
x=a+bhi+c+dkeH (ab,c,deR)
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we define
IX| = Va2+b2+c2+d2, x*=a—bi—c—dk, Ox=a.

We then have

X+

* * X"
X2 =3¢, Ixyl = X Iy]l, ()" =y*x", Ox= —5— Oxy=Dyx

for all x,y € H. In particular, we have 1 = x* /||x|| for nonzerax € H.

The space of all real multiples ofd H is a copy ofR and the space of all real
linear combinations of 1 anidis a copy ofC. ThusR andC can be and will be
identified with subfields ofl, and in particular both i anidwill be used to denote
the imaginary unit of the complex numbers. In short, we ttohR, C andH as
forming a “tower”

RcCcCH.

If x e C, then||x|| (resp.,x*, 0x) is the absolute value (resp., complex conjugate,
real part) ofx in the usual sense. Furth¢x,= x*j for all x € C. Finally, for all
nonrealk € C, we have{y € H | xy=yx} = C.

E.1 Matrix terminology overF and factorization theorems

Let Matp«q(IF) denote the space gi-by-q matrices with entries iff. Given
X € Matp,q(IF), let X;j € F denote the entry oK in row i and columnj. Let
Matpyxq = Matpq(R) and Mah(F) = Matyn(F). Let Opxq denote thep-by-q
zero matrix, and let = Op,p. Letl, denote then-by-n identity matrix. Given
X € Matyyq(IF), let X* € Matg, p(F) be the matrix obtained by transposiXgnd
then applying “asterisk” to every entry. The operatdmr— X* is R-linear and,
furthermore(XY)* = Y*X* for all X € Matp.q(F) andY € Matq. (). Similarly,
we have(xX)* = X*x* for any matrixX € Matp.q(F) and scalax € IF. Given
X € Maty(FF), we define tX € F to be the sum of the diagonal entriesxafGiven
X,Y € Matpyq(F), we setX-Y = OtrX*Y, thus equipping Mat.q(IF) with the
structure of finite-dimensional real Hilbert space (Euetid space). Given ma-
tricesX € Mat, (F) fori =1,...,¢, let diagXy,...,X;) € Maty,1....n, (F) be the
block-diagonal matrix obtained by stringing the given rizatsX; along the diag-
onal.

Definition E.3 The matrixe;j = q(jp’Q) € Matpxq with entry 1 in rowi and column
j and Os elsewhere is called alementary matrix
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The set
{ugj [lue Fn{1,i,j,k}, &j € Maty«q}

is an orthonormal basis for Mgtq(IF).

Definition E.4 (i) Let X € Maty(F) be a matrix. It isinvertible if there exists
Y € Mat,(F) such thaty X = I, = XY. Itis normalif X*X = XX*. Itis unitary

if X*X =1,=XX*. ltis self-adjoint(resp.,anti-self-adjoin} if X* = X (resp.,
X* = —=X). Itis upper triangular(resp.,lower triangulas) if Xjj =0 unless < j
(resp.j > j).

(i) A matrix X € Maty(IF) is monomialif there is exactly one nonzero entry in
every row and in every column; if, moreover, every entr)Xds either O or 1, we
call X apermutation matrix

(iii) A self-adjoint X € Mat,(F) is positive definitaf v:Xv > 0 for all nonzero
v € Maty1(F).

(iv) A matrix X € Mat,(IF) is aprojectorif it is both self-adjoint and idempotent,
that is, ifX* = X = X2.

(v) Amatrix X € Matp,q(IF) is diagonalif Xj =0 unless = j. The set of positions
(i,i) fori=1,...,min(p,q) is called thelmain) diagonabf X.

The group of invertible elements of MAF) is denoted GL(F), while the sub-
group of GLy(F) consisting of unitary matrices is denoted(B). Permutation
matrices in Mat belong to U (F).

We next present several factorization theorems. The firebiained by the
Gaussian elimination method.

Theorem E.5 (Gaussian elimination)_et X € Matp,q(F) have the property that
forall v e Matg,1(F), if Xv=0, then v= 0. Then p> q. Furthermore, there exists
a permutation matrix = Maty(F) and an upper triangular matrix & Maty(F)
with every diagonal entry equal tb such that PXT vanishes above the main
diagonal but vanishes nowhere on the main diagonal.

In particular, for squaré, B € Maty(IF), if AB= Ip, thenBA= I, It follows also
that GLy(F) is an open subset of MdfF).

The Gram-Schmidt process gives more information wheng.

Theorem E.6 (Triangular factorization) Let Q € Mat,(F) be self-adjoint and
positive definite. Then there exists a unique upper triaagulatrix T € Mat, (F)
with every diagonal entry equal tb such that TQT is diagonal. Further, T
depends smoothly (that is, infinitely differentiably) oe émtries of Q.
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Corollary E.7 (UT factorization) Every Xe GLn(F) has a unique factorization
X =UT where Te GLn(F) is upper triangular with every diagonal entry positive
and U € Un(F).

Corollary E.8 (Unitary extension) If V € Mat,«(IF) satisfies VV = I, then
n > k and there exists & U, (F) agreeing with V in the first k columns.

Corollary E.9 (Construction of projectors) Let p and q be positive integers. Fix
Y € Matp.q(F). Put n=p+q. Write T"(Ip+YY*)T = I, for some (unique)
upper triangular matrix Te Maty(IF) with positive diagonal entries. Thdh =

| TT TT*Y
S YTTE YITTYY
M € Maty(F) such thatir M = p and the px p block in upper left is invertible is
of the formMn = M(Y) for unique Y& Matp, q(IF).

rney) € Maty(TF) is a projector. Further, every projector

E.2 The spectral theorem and key corollaries

A reference for the proof of the spectral theorem in the uiilfancaselF = H is
[FaPO03].

Definition E.10 (Standard blocks)A C-standard blocks any element of MafC)
= C. An H-standard blockis any element of MafC) = C with nonnegative
imaginary part. AnR-standard blockis either an element of Mat= R, or a

matrix [ —2 2 } € Mat, with b > 0. Finally, X € Mat,(F) is F-reducedif
X =diag(By,...,B,) for someF-standard blocks;.

Theorem E.11 (Spectral theorem) et X € Maty(F) be normal.

(i) There exists U= Un(F) such that UXU isF-reduced.

(i) Fix U € Up(F) andF-standard blocks B...,B, such thatdiag(Bs,...,B,)
=U*XU. Up to order, the Bdepend only on X, noton U.

Corollary E.12 (Eigenvalues)Fix a self-adjoint Xe Mat,(IF).

(i) There exist Uc Un(F) and a diagonal matrix D= Mat, such that D=U*XU.
(i) For any such D and U, the sequence of diagonal entries of Drayea in
nondecreasing order is the same.

We call the entries oD the eigenvaluef the self-adjoint matrixX. (When
F =R, C this is the standard notion of eigenvalue.)
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Corollary E.13 (Singular values)Fix X € Matpyq(F).

(i) There exist Uc Up(FF), V € Uy(F) and diagonal De Matp,q such that D=
UXV.

(i) Forany such U, V and D, the sequence of absolute values obd&gntries

of D arranged in nondecreasing order is the same.

(i) Now assume that g q, and that X is diagonal with nonzero diagonal entries
the absolute values of which are distinct. Then, for any U,nd B as in (i),

U is monomial and \= diag(V',V"), where V € Up(F) and V' € Ug_p(F). (We
simply putV=V'if p=g.) Furthermore, the product U\is diagonal and squares
to the identity.

We call the absolute values of the entrieahesingular valueof the rectangu-
lar matrixX. (WhenF = R, C this is the standard notion of singular value.) The
squares of the singular valuesXfare the eigenvalues &f*X or X X*, whichever
has mir{p,q) rows and columns.

E.3 A specialized result on projectors

We present a factorization result for projectors which isclig the discussion of
the Jacobi ensemble in Section 4.1. The daseC of the result is well known.
But for lack of a suitable reference treating the factoraauniformly in F, we
give a proof here.

Proposition E.14Let0 < p < q be integers and put# p+q. Letln € Mat,(F)
be a projector. Then there existsd&JUn(F) commuting wittdiag(l p, 0q) such that
U nu = [ ET g } where ac Maty, 2b € Matp.q and de Maty are diagonal
with entries in the closed unit intervéd, 1].

a B
g d
Since every element of\JF) commuting with diagl p, 0q) is of the form diagv, w)
for v e Up(F) andw € Uy(F), we may by Corollary E.13 assume tleedindd are
diagonal and real. Necessarily the diagonal entriesasfdd belong to the closed
unit interval[0,1]. For brevity, writea; = &; andd; = dj;. We may assume that
the diagonal entries af are ordered so that(1— &) is nonincreasing as a func-
tion of i, and similarlyd;(1—d;) is nonincreasing as a function ¢f We may
further assume that whenewva(l — a) = a+1(1— a1) we haves; < a1, but
that wheneved; (1 —d;) = dj1(1—dj;1) we haved;j > dj1.

Proof Write I = { } with a € Matp(IF), B € Maty,q(IF) andd € Maty(IF).
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From the equatiofl? = N we deduce thaa(l, —a) = fB* andd(lq—d) =
B*B. Letb € Maty be the unique diagonal matrix with nonnegative entries such
thatb? = B3*. Note that the diagonal entries bfappear in nonincreasing order,
and in particular all nonvanishing diagonal entries areugea together in the
upper left. Furthermore, all entries bbelong to the closed intervid, 1/2].

By Corollary E.13 there existe Up(F) andw € Ugy(IF) such that[b 0y, (q—p)]W
= B. From the equatiob’® = 33* we deduce that commutes withb? and hence
also withb. After replacingw by diagV, lq—p)w, we may assume without loss of
generality thaB = [b Op, (q—p)W. From the equation

w*diag(b?, Og_p)w = BB = d(lg—d).

we deduce thatv commutes with dia@, 0g_p).

Let 0<r < p be the number of nonzero diagonal entriesbof Write b =
diag(b,0p—r), whereb € GL,(R). Sincew commutes with diaf, 0q—r), we can
write w = diag W, w'), wherew e U, (F) andw € Uq((FF). Then we have8 =

[diag(bW, 0p_) O (q_p)] @nd, furtherwcommutes wittb.

Now write a = diag(d,a’) with & € Mat, anda € Matp_,. Similarly, write
d = diagd,d’) with d € Mat, andd’ € Maty . Both&andd are diagonal with
diagonal entries irf(0,1). Both a andd’ are diagonal with diagonal entries in
{0,1}. We have a block decomposition

1]

& 0 bw o
n_| o a 00
whb o d o
o 0 o0 d

From the equatiofil2 = N we deduce thehaw = abw = bw(I, — d), henceai =
W(l, — d), henceaandl; — d have the same eigenvalues, and hence (on account of

the care we took in ordering the diagonal entriea ahdd), we havea= I, — d.
Finally, sinced andw commute, withU = diag(lp, W,lq—r), we haveU*NMU =

a b
bT d | 5

E.4 Algebra for curvature computations

We present an identity needed to compute the Ricci curvatutiee special or-
thogonal and special unitary groups, see Lemma F.27 andgbassgion immedi-
ately following. The identity is well known in Lie algebragtry, but the effort
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needed to decode a typical statement in the literature istadmpal to the effort
needed to prove it from scratch. So we give a proof here.

Let sun(IF) be the set of anti-self-adjoint matricése Maty(IF) such that, if
F =C, then trX = 0. We equip the real vector spage,(F) with the inner product
inherited from Mai(FF), namelyX -Y = O trXY*. Let[X,Y] = XY-Y Xfor X,Y €
Matn(F), noting thatsun(F) is closed under the bracket operation. Bet 1,2,4
according a¥ =R,C,H.

Proposition E.15For all X € suny(F) and orthonormal baseflq } for sup(FF), we
have

_%Z[[X,La],Lab (B(nfz)—l)x. (E-2)

Proof We havesui(R) = suy(C) = 0, and the caseu; (H) can be checked by
direct calculation with, j, k. Therefore we assume that> 2 for the rest of the
proof.

Now for fixed X € sun(IF), the expressiofiX,L],M] for L,M € suny(F) is an
R-bilinear form onsuy(F). It follows that the left side of (E.2) is independent of
the choice of orthonormal bas{$.,}. We are therefore free to choo$k, } at
our convenience, and we do so as follows. &g Mat, fori,j =1,...,nbe the
elementary matrices. Ford k < nandu € {i,j,k}, let

k n

u : u

DU: jy———— —k + i y D :DI s DU: _— i

k KT 12 ( &+1,k+1 é Q|> K n \/ﬁé i
Forl<i<j<nandue{1,ij,k},let

aj — u'e;

u l H
Ri=—75 Bi=R Ri=H

ij> i
Then
{Ej:1<i<j<n},
{Dx:1<k<n}juU{Ej,Fj:1<i<j<n},
{Dg:1<k<nue{ijk}Uu{R}:1<i<j<nue{lijk}}
are orthonormal bases fou,(R), sup(C) andsup(H), respectively.
We next want to show that, in proving (E.2), it is enough tosidar just one

X, namelyX = E1,. We achieve that goal by proving the following two claims.

(I) Given{Lq} andX for which (E.2) holds and any € Uy(TF), again (E.2)
holds for{UL,U*} andUXU*.
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(1) The set{UE;U* |U € Uy(F)} spanssun(FF) overR.

Claim (1) holds because the operatn— U XU* stabilizessu,(F), preserves the
bracketX,Y], and preserves the inner prodXctY. We turn to the proof of claim
(I). By considering conjugations that involve appropei@tby-2 blocks, one can
generate any element of the collectipf}, D{} from Ej». Further, using conju-
gation by permutation matrices and taking linear combamesj one can generate
{Fj,Dg}. Finally, to obtainDy, it is enough to show that digi,0,....,0) can be
generated, and this follows from the identity

diag(1,j)diagi,—i)diag(1,j) ! = diag(i, ).
Thus claim (ll) is proved.

We are ready to conclude. The following facts may be verifigdtbaightfor-
ward calculations:

e E;> commutes witlD} for k > 1 andu € {i,j,k};
e E1p commutes witrFi}j for2<i< j<nandue{1,,j,k};
o [[ExoR{],RY] = —3E12 for 1 <i < j <nsuch that #i,j} N {1,2} = 1 and
ue {1,|,J k};and
E12, F12 F 2] E12, Du Du] =—-2E» forue {I,J,k}

It follows that the left side of (E.2) witlK = Ej» and{L,} specially chosen as
above equalsE; ,, where the constaigtis equal to

1

. (%-2{3(n—2)+2-2([3—1)) _Bn+2)

—1.
4

Since (E.2) holds witlX = E;» and specially chosefl 4 }, by the previous steps
it holds in general. The proof of the lemma is finished. O

F Manifolds

We have adopted in Section 4.1 a framework in which all grafpratrices we
used were embedded as submanifolds of Euclidean spacehachthe advantage
that the structure of the tangent space was easy to ideRtfycompleteness, we
present in this appendix all notions employed, and prowid8ubsection F.2 the
proof of the coarea formula, Theorem 4.1.8. An inspirationdur treatment is
[Mil97]. At the end of the appendix, in Subsection F.3, weaddluce the language
of connections, Laplace—Beltrami operators, and Hessizgsed in Section 4.4.
For the latter we follow [Hel01] and [Mil63].
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F.1 Manifolds embedded in Euclidean space

Given a differentiable functior defined on an open subset®f with values in
a finite-dimensional real vector space and an inidexl, ..., n, we letd f denote
the partial derivative of with respect to théh coordinate. Ih = 1, then we write
f'=01f.

Definition F.1 A Euclidean spacés a finite-dimensional real Hilbert spa&g
with inner product denoted bf¢,-)e. A Euclidean seM is a nonempty locally
closed subset d, which we equip with the induced topology.

(A locally closed set is the intersection of a closed set @ittopen set.) We refer
to E as theambient spacef M.

We consideR" as Euclidean space by adopting the standard inner product
(X,Y)rn =X-y= Y1 %Vi. Given Euclidean spac&andF, and amagd :U —V
from an open subset & to an open subset &f, we say thaf is smoothf (after
identifying E with R" andF with R¥ as vector spaces ov&rin some way)f is
infinitely differentiable.

Given fori = 1,2 a Euclidean seM; with ambient spacé&;, we define the
product M, x M3 to be the subsgtm @ mp | My € M1, mp € My} of the orthogonal
direct sumg; @ E».

Let f : M — N be a map from one Euclidean set to another. We sayfthsit
smoothif for every pointp € M there exists an open neighborhdddf p in the
ambient space dfl such thatf|y~v can be extended to a smooth map fronto
the ambient space ™. If f is smooth, therf is continuous. We say thdtis a
diffeomorphismif f is smooth and has a smooth inverse, in which case we also
say thatM andN arediffeomorphic Note that the definition implies that every
n-dimensional linear subspace of a Euclidean space is diffephic toR".

Definition F.2 (Manifolds) A manifold Mof dimensiom (for short:n-manifold
is a Euclidean set such that every pointMfhas an open neighborhood diffeo-
morphic to an open subset Bf'.

We calln thedimensiorof M and writen = dimM. A diffeomorphism®: T — U
whereT C R" is a nonempty open set attlis an open subset & is called a
chartof M. By definitionM is covered by the images of charts. The product of
manifolds is again a manifold. A subdétC M is called asubmanifoldf N is a
manifold in its own right when viewed as a subset of the antlipace oM.
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Definition F.3 Let M be ann-manifold with ambient spacE. Let p& M be a
point. A curvey through pe M is by definition a smooth map: | — M, where

I C R is a nonempty open interval, @1, andy(0) = p. We define the tangent
spacelp(M) of M at p to be the subset d& consisting of all vectors of the form
¥y (0) for some curvey throughp € M.

The setl'p(M) is a vector subspace &f of dimensiom overRR. More precisely,
forany char®: T — U and pointg € T such thatb(tp) = p, the vectorgo, @) (to)
fori=1,...,nform a basis oveR for T,(M). We endowI',(M) with the struc-
ture of Euclidean space it inherits frofn

Let f : M — N be a smooth map of manifolds, and g M. There exists
a uniqueR-linear transformatiorT'p(f) : Tp(M) — Ty (N) with the follow-
ing property: for every curvg with y(0) = p andy(0) = X € Tp(M), we have
(Tp(f))(X) = (foy)(0). We callT,(f) thederivativeof f atp. The magl'p(f)
is an isomorphism if and only if maps some open neighborhoodwf M diffeo-
morphically to some open neighborhoodfdfp) € N. If f is a diffeomorphism
andTp(f) is an isometry of real Hilbert spaces for evgrnye M, we call f an
isometry

Remark F.4 Isometries need not preserve distances in ambient Eunlisjgzces.
For example{(x,y) € R?\ {(0,0)} : x> +y? = 1} c R? and{0} x (0,2m) C R?
are isometric.

Definition F.5 Let M be ann-manifold, withA C M. We say thaA is negligibleif
for every charth : T — U of M the subse®~1(A) C R" is of Lebesgue measure
zero.

By the change of variable formula of Lebesgue integratiosulasetA C M is
negligible if and only if for everyp € M there exists a chafe: T — U such that
p < U and®~1(A) C R"is of Lebesgue measure zero.

We exploit the change of variables formula to define a volureasuare on the
Borel subsets df1. We begin with the following.

Definition F.6 Let®: T — U be a chart of an-manifoldM. LetE be the ambient
space oM.

(i) The correction factoragg is the smooth positive function oh defined by the
following formula, valid for allt € T:

1]

Oo(t) = \/ let((a®)(1), (9, P)(V))e-
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(if) The chart measurért  on the Borel sets of is the measure absolutely con-
tinuous with respect to Lebesgue measure restrictdd fe, defined by

dlto
dir %

Lemma F.7 Let A be a Borel subset of an n-manifold M, anddetT — U be a
chart such that AC U. Then/t o (P 1(A)) is independent of the chadt.

Since a measure on a Polish space is defined by its (compatskeictions to
open subsets of the space, one may employ charts and Lemraad-défine in a
unique way a measure on a maniféld which we call thezolume measuren M.

Proposition F.8 (Volume measure) et M be a manifold.

(i) There exists a unique measysg on the Borel subsets of M such that for
all Borel subsets AC M and charts® : T — U of M we havepy(ANU) =
(1.0(P71(A)). The measurpy is finite on compacts.

(i) A Borel set AC M is negligible if and only ifom(A) = 0.

(iii) For every nonempty open subsetdM and Borel set AC M we havepy (AN

U) =pm(ANU).

(iv) For every isometry f M; — M, of manifolds we havpy, o f =1 = pw,.

(v) For all manifolds M and My we havepm, xm, = Pm; X PM,-

Clearly, prn is Lebesgue measure on the Borel subse®"of

We write p[M] = pm (M) for every manifoldM. We have frequently to con-
sider such normalizing constants in the sequel. We always pM] € (0, .
(It is possible to hav@[M] = o, for examplep[R] = o; but it is impossible to
havep[M] = 0 because we do not allow the empty set to be a manifoldV) i$
compact, thep[M] < co.

“Critical” vocabulary

Definition F.9 Critical and regular points Let f : M — N be a smooth map of
manifolds. Ap € M is acritical pointfor f if the derivativeT ( f) fails to be onto;
otherwisep is aregular pointfor f. We say thatj € N is acritical value of f if
there exists a critical poirg € M for f such thatf (p) = g. Giveng € N, thefiber
f~1(q) is by definition the se{p € M | f(p) = q}. Finally,q € N is aregular
valuefor f if gis not a critical value and the fibér(q) is nonempty.
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Our usage of the term “regular value” therefai@es not conforrto the traditions
of differential topology. In the latter context, a regulawe is simply a point
which is not a critical value.

The following facts, which we use repeatedly, are stramérdly deduced
from the definitions.

Proposition F.10Let f: M — N be a smooth map of manifolds. Lefcjresp.,
Mecrit) be the set of regular (resp., critical) points for f. LegN(resp., Neg) be
the set of critical (resp., regular) values of f.

(i) The set Npg (resp., Myit) is open (resp., closed) in M.

(if) The sets Nt and Neg, beinga-compact, are Borel subsets of N.

Regular values are easier to handle than critical ones.’sSEnéorem allows
one to restrict attention, when integrating, to such values

Theorem F.11 (Sard)[Mil97, Chapter 3]The set of critical values of a smooth
map of manifolds is negligible.

Lie groups and Haar measure

Definition F.12 A Lie group Gis a manifold with ambient space M@F) for some
nandF such thaG is a closed subgroup of GLIF).

This ad hocdefinition is of course not as general as possible but it ipkrand
suits our purposes well. For example, (BF) is a Lie group. By Lemma 4.1.15,
Un(F) is a Lie group.

Let G be a locally compact topological group, e.g., a Lie groupt jLébe a
measure on the Borel sets@f We say thap is left-invariantif yA= u{ga|ac
A} for all Borel A C G andg € G. Right-invariance is defined analogously.

Theorem F.13Let G be a locally compact topological group.

(i) There exists a left-invariant measure on G (neitke® nor infinite on com-
pacts), calledHaar measurevhich is unique up to a positive constant multiple.
(ii) If G is compact, then every Haar measure is right-invariaartd has finite
total mass. In particular, there exists a unique Haar prottigbmeasure.

We note that Lebesgue measureRif is a Haar measure. Further, for any Lie
groupG contained in W(FF), the volume measurgs is by Proposition F.8(vi) and
Lemma 4.1.13(iii) a Haar measure.
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F.2 Proof of the coarea formula

In this subsection, we prove the coarea formula, Theoren®4\We begin by in-
troducing the notion of -adapted pairs of charts, prove a few preliminary lemmas,
and then provide the proof of the theorem. Lemmas F.18 ar@ddad be skipped

in the course of the proof of the coarea formula, but are ohetusince they are
useful in Section 4.1.3.

Let f : M — N be a smooth map from anmanifold to ak-manifold and assume
thatn > k. Let 71: R" — RK be projection to the first coordinates. Recall that a
chart onM is a an open nonempty sub&t R" together with a diffeomorphism
Y from Sto an open subset of.

Definition F.14 A pair (W:S— U,®: T — V) consisting of a chart ofl and a
chart ofN is f-adaptedf

Scm{T)cR", Ucf V), foWw=dors,
in which case we also say that the openlset M is goodfor f.

The commuting diagram

W

R" O S —- U c M
mol ms | L flu bt
R o T 2 v c N

summarizes the relationships among the maps in questien her

Lemma F.15Let f: M — N be a smooth map from an n-manifold to a k-manifold.
Let pe M be a regular point. (Since a regular point exists, neceifgar > k.)
Then there exists an open neighborhood of p good for f.

Proof Without loss we may assume thdtc R" andN c R¥ are open sets. We
may also assume that= 0 € R" andq = f(p) = 0 RK. Write f = (f1,..., fy).
Letty,...,tn be the standard coordinatesRfi. By hypothesis, for some permuta-
tionoof {1,...,n}, puttingg; = fi fori =1,... . kandg =t, fori=k+1,...,n,
the determinant déjzldjgi does not vanish at the origin. By the inverse func-
tion theorem there exist open neighborhobld$ ¢ R" of the origin such that
(*) = (f1lus-- -, lustowrylus - -5 tom)lu) mapsU diffeomorphically toS. Take
Y to be the inverse ofx). Take® to be the identity map ol to itself. Then
(W, @) is an f-adapted pair of charts and the origin belongs to the imagié of

O
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Proposition F.16Let f: M — N be a smooth map from an n-manifold to a k-
manifold. Let Meg C M be the set of regular points of f. Fix@N such that
f=1(q) N Mreg is nonempty. Then:

(i) Mregn f~1(q) is a manifold of dimension-ak;

(ii) for every pe MregN f~1(q) we haveTp(MregN f~1(q)) = ker(Tp(f)).

Proof We may assume thM,eg # 0 and hence > k, for otherwise there is noth-
ing to prove. By Lemma F.15 we may assume t#at R" andN c R* are open
sets and thatf is projection to the firsk coordinates, in which case all assertions
here are obvious. O

We pause to introduce some apparatus from linear algebra.

Definition F.17 Let f : E — F be a linear map between Euclidean spaces and let
f*:F — E be the adjoint off. Thegeneralized determinant §) is defined as
the square root of the determinantfdf : F — F.

We emphasize thal(f) is always nonnegative. If a linear mdp R" — RX is
represented by k-by-n matrix A with real entries, and the Euclidean structures
of source and target are the usual ones, thaf)? = det AAT). In general, we
haveJ(f) # 0 if and only if f is onto. Note also that, if is an isometry, then
J(f) =1.

Lemma F.18Fori=1,2 let fi: EE — F be a linear map between Euclidean
spaces. Letqf® f, . E; @ E; — F1 & F, be the orthogonal direct sum of &nd 5.
Then we have @ ') = J(f)J(f').

Proof This follows directly from the definitions.

Lemma F.19Let f: E — F be a linear map between Euclidean spaces. Let
D C ker(f) be a subspace such that-Dand F have the same dimension. Let
X1,...,% € D+ be an orthonormal basis. Ldl : E — D+ be the orthogonal
projection. Then:

(i) I(f)? = def ;1 (fxi, fx))F;

(i) J(f)? is the determinant of thR-linear operatorfo f*o f : D+ — D*.

Proof Since(fx, fxj)r = (%, f*fx;)r, statements (i) and (ii) are equivalent.
We have only to prove statement (i). Extexd...,X, to an orthonormal basis
of Xq,...,Xnk Of E. Letys,...,y, be an orthonormal basis &f. Let A be the
n-by-n matrix with entrieqy;, x;)r, in which casé"A is then-by-n matrix with
entries(fx;, fxj)e. Now make the identificationg = R™k andF = R" such a
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way thatxy, ..., %y« (resp.y, .. .,yn) becomes the standard basigifi® (resp.,
R"). Thenf is represented by the matrjA 0], where 0c Mat,.k. Finally, by
definition,J(f)? = defA 0][A0]" = detATA, which proves the result. 0

Lemma F.20Let f: E — F be an onto linear map from an n-dimensional Eu-
clidean space to a k-dimensional Euclidean space. {xgt" , and {y}¥ ; be
bases (not necessarily orthonormal) for E and F, respelstiseich that {x;) =
fori=1,...,kand f(x) =0fori =k+1,...,n. Then we have

2 det(x X0k —  det (x.x)e det(vi.y
J(F)7 detx,xj)e = det (x,xj)e det(y;,yj)e.

Proof Let A (resp. B) be then-by-n (resp. k-by-k) real symmetric positive definite
matrix with entriesAij = (X, Xj)e (resp.,Bij = (i,Yj)r). LetC be the(n—k)-by-
(n—K) block of A in the lower right corner. We have to prove thigf )> detA =
detCdetB. MakeR-linear (but in general not isometric) identificatioBs= R"
andF = R¥ in such a way thafx }!"_; (respectively{y;}X ,) is the standard basis
in R" (respectivelyR¥), and (hencef is projection to the firsk coordinates.
Let P be thek-by-n matrix with 1s along the main diagonal and Os elsewhere.
Then we havefx = Px for all x € E. Let Q be the uniquen-by-k matrix such
that f*y = Qyfor all y € F = R¥. Now the inner product of is given in terms
of A by the formula(x,y)e = x" Ay and similarly(x,y)r = x"By. By definition
of Q we have(Px)"By = x"A(Qy) for all x € R" andy € R¥, henceP™B = AQ,
and henc&® = A~'PTB. By definition ofJ(f) we havel(f)? = def PA"'PTB) =
detPA-1PT) detB. Now decomposa into blocks thus:

A:[a b], a—PAP', d=C.
c d

From the matrix inversion lemma, Lemma A.1, it follows that/@APT)
= detA/ detC. The result follows. O

We need one more technical lemma. We continue in the setfifdgn@orem
4.1.8. For the statement of the lemma we also fixfaadapted paif¥ : S —
U,®: T — V) of charts. (Existence of such implies tat k.) Let 71: R" — RK
be projection to the firdt coordinates. Lefr: R" — R" X be projection to the last
n—k coordinates. Givehe T such that the set

S = {xeR"¥|(t,x) eU}
is nonempty, the map

W = (x— W(t,X) 1§ — U N L))
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is chart ofMregN f~1(®(t)), and hence the correction factog,, see Definition
F.6, is defined.

Lemma F.21With notation as above, for alls S we have
I(Tus)(1))0w(s) = 0w, (TT(5)) 0w (T1(S)).

Proof Use Lemma F.20 to calculai¢Tys (), taking{(d¥)(s) }{_; as the basis
for the domain ofTy ) () and{(ai®)(m(s)) k | as the basis for the range. O

Proof of Theorem 4.1.8We may assume theg # 0 and hence > k, for other-
wise there is nothing to prove. Lemma F.21 expresses theifumg— J(Tp(f))
locally in a fashion which makes continuity dffeg clear. MoreoveMeit = {p €

M| J(Tp(f)) = 0}. Thus the function in question is indeed Borel-measurdbie.
fact it is continuous, but to prove that fact requires ugilemulas.) Thus part (i)

of the theorem is proved. We turn to the proof of parts (ii) &éipof the theorem.
Since on the seli; no contribution is made to any of the integrals under con-
sideration, we may assume tidt= Mreg. We may assume thatis the indicator

of a Borel subseA C M. By Lemma F.15 the manifol is covered by open
sets good forf. AccordinglyM can be expressed as a countable disjoint union of
Borel sets each of which is contained in an open set goofl feayM = JM,. By
monotone convergence we may replécey AN M, for some indexa, and thus
we may assume that for sonieadapted paif¥ : S— U, ®: T — V) of charts we
haveA C U. We adopt again the notation introduced in Lemma F.21. We hav

Jad(Tp(F))dom(p) = fy-1(a)I(Tw(g (F))dlsw(s)
= [ (o dls 0 (9) diro(t)
= J(Jant-1(q) 9Ps-1(g)(P))dPn (D).
At the first and last steps we appeal to Proposition F.8(ixtvicharacterizes the
measurep.. At the crucial second step we apply Lemma F.21 and Fubini’s

Theorem. The last calculation proves both the measunabaiertion (ii) and the
integral formula (iii). O

F.3 Metrics, connections, curvature, Hessians, and the lape—Beltrami
operator

We briefly review some notions of Riemannian geometry. Altioin this book
we work exclusively with manifolds embedded in Euclideaacn all formulas in
this subsection can be understood in the general settingeaidnian geometry.

Let M be a manifold of dimensiom, equipped with a Riemannian metgcand
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let u be the measure naturally associated witiBy definition,g is the specifica-
tion for everyp € M of a scalar produajp on Tp(M). In the setup of manifolds
embedded in some Euclidean space that we have addpgéMd,) is a subspace
of the ambient Euclidean space, the Riemannian megjris given by the restric-
tion of the Euclidean inner product to that subspace, anddhene measurg
coincides with the measupg, given in Proposition F.8.

LetC*(M) denote the space of real-valued smooth functionslon

Definition F.22 (i) A vector fieldlon M) is a smooth ma from M to its ambient

space such that, for gle M, X(p) € Tp(M). Given a vector fielK and a smooth
functionf € C*(M), we define the functioX f € C*(M) by the requirement that
Xf(p) = % f(y(t))|i=o0 for any curvey throughp with y'(0) = X(p).

(i) If X,Y are vector fields, we defirggX,Y) € C*(M) by

9(X,Y)(p) = gp(X(p), Y(P))-
TheLie bracket[X, Y] is the unique vector field satisfying, for dllc C*(M),
IX,Y]f = X(Y f) =Y (XT).

(iiif) A collection of vector fieldsLy,...,Ly defined on an open sét C M is a
local frameif L1(p),...,Lm(p) are a basis offz(M) for all pc U. The local
frame{L;} is orthonormalif g(L;,L;) = §&;.

Definition F.23 (i) For f € C*(M), thegradientgrad f is the unique vector field
satisfyingg(X,gradf) = X f for all vector fieldsX. If {L;} is any local orthonor-
mal frame, then gradl = 5 (L; f)Li.

(ii) A connectiori] is a bilinear operation associating with vector fielandY
a vector fieldOxY such that, for anyf € C*(M),

OexY = fOxY, Dx(fY) = fDXY+X(f)Y.

The connectiofl is torsion-freeif OxY — OyX = [X,Y].
(iif) The Levi—Civitaconnection is the unique torsion-free connection satigfyi
that, for all vector field<,Y, Z,

Xg(Y,Z) = g(0OxY,Z) +9(Y,0xZ) .

(iv) Given a vector fieldX, thedivergencelivX € C*(M) is the unique function
satisfying, for any orthonormal local frari&; },

divX =% g(Li, [Li, X]).
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Alternatively, for any compactly supportdde C*(M),

/g(gradf,x)du = —/fdideu.

(v) The Laplace—BeltrambperatorA on C*(M) is defined byAf = divgradf.
With respect to any orthonormal local frarfile } we have

Af =S LEF+ Y gl [Li L)L
]

From part (iv) of Definition F.23, we have the classical im&gpn by parts for-
mula: for all functionsg,y € C*(M) at least one of which is compactly sup-
ported,

[ slgradg. gradw)du = - [ ¢(a)ap. (F.1)

In our setup of manifolds embedded in a Euclidean space,rddiemt gradf
introduced in Definition F.23 can be evaluated at a pgird M by extending
f, in a neighborhood op, to a smooth functiorf in the ambient space, taking
the standard gradient of in the ambient space g, and finally projecting it
orthogonally toTp(M). We also note (but do not use) that a connection gives
rise to the notion of parallel transport of a vector field g@curve, and in this
language the Levi—Civita connection is characterized bpdeorsion-free and
preserving the metrig under parallel transport.

We use in the sequel the symholto denote exclusively the Levi—Civita con-
nection. It follows from part (iv) of Definition F.23 that, f@ vector fieldX and
an orthonormal local framéL; }, divX = ¥;9(0., X, L;). Further, for all vector
fieldsX, Y andz,

29(0xY,2) = Xo(Y,Z)+YJZ X)—Zg(X,Y) (F2)
+9(1X,Y1,2) +9([Z,X],Y) +9(X, [Z,Y]).

Definition F.24 Given f € C*(M), we define thedessianHesd to be the opera-
tion associating with two vector fields andY the function

Hesgf)(X,Y) = (XY —0OxY)f =g(Oxgradf,Y) = Hesgf)(Y,X).

(The second and third equalities can be verified from the tliefinof the Levi—
Civita connection.)

We have Hegd ) (hX,Y) =Hesg f)(X,hY) =hHesg f)(X,Y) forallhe C*(M)
and hencéHesgf)(X,Y))(p) depends onl)X(p) andY(p).
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With respect to any orthonormal local frarfflie }, we have the relations

Hesgf)(Li,Lj) = (LiLj—Oylj)f,
Af = z(l_?— OuLi)f =Y Hesgf)(Li,Li).  (F.3)
| 1

In this respect, the Laplace—Beltrami operator isoatractionof the Hessian.
The divergence, the Hessian and the Laplace—Beltrami typer@incide with the
usual notions of gradient, Hessian and Laplacian wies R™ and the tangent
spaces (all of which can be identified wilf" in that case) are equipped with the
standard Euclidean metric.

We are ready to introduce tliemannian curvature tensand its contraction,
theRicci curvature tensor

Definition F.25 (i) The Riemann curvature tensor(R-) associates with vector
fieldsX,Y an operatoR(X,Y) on vector fields defined by the formula

R(X,Y)Z = Ox(OyZ) — Oy(Ox2Z) — Oix v Z-

(i) The Ricci curvature tensoassociates with vector fields andY the function
Ric(X,Y) € C*(M), which, with respect to any orthonormal local frarfig },
satisfies Ri€X,Y) = 3;9(R(X,Li)L;,Y).

We haveR(fX,Y)Z=R(X, fY)Z=R(X,Y)(fZ) = fR(X,Y)Zforall f € C*(M)
and hencgR(X,Y)Z)(p) € Tp(M) depends only oiX(p), Y(p) andZ(p). The
analogous remark holds for RiX,Y) since it is a contraction d®(X,Y)Z.

Many computations are simplified by the introduction of acsaletype of or-
thonormal frame.

Definition F.26 Let p € M. An orthonormal local framégL; } in a neighborhood
of pis said to begeodesiat pif (O Lj)(p) =0.

A geodesic local framéL;} in a neighborhoodl of p € M can always be built
from a given orthonormal local framgKi} by settingLi = 3 ; AjjKj with A
U — Mat, a smooth map satisfying(p) = Im, ATA = I, and (KiAj)(p) =
—0(0kKj,Kk)(p). With respect to geodesic fram¢k;}, we have the simple
expressions

Hesg f)(Li,Lj)(p) = (LiLjf)(p), Ric(Li,Lj)(p)= (Z LiCh— LCl) (p).

(F.4)
whereCt = g(O,Lj, Li).
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Curvature of classical compact Lie groups

Let G be a closed subgroup and submanifold Gf(Il), where the latter is as
defined in Appendix E. In this situation both left- and rigtanslation inG are
isometries. We specialize now to the cAde= G. We are going to compute the
Ricci curvature ofs and then apply the result to concrete examples. In particula
we will provide the differential geometric interpretatiohProposition E.15.

The crucial observation is that, in this situation, “all qmuations can be done
at the identity”, as we now explain. For eaghe T, (G), choose any curvg
throughl,, such that/(0) = X and letX be the vector field whose associated first
order differential operator is given X f)(x) = %f(xy(t))h:o forall f eC*(G)
andx € G. The vector fieldX does not depend on the choiceyof Recall that
[X,Y] =XY-=YXandX- Y =OtrXY* for X,Y € Mat,(F). For allX,Y € Ty, (G)
one verifies by straightforward calculation that

X.Y] € Ty, (G), [X.Y]=[X.Y], g(X,¥) =X-Y.

It follows in particular from dimension considerationsttesery orthonormal ba-
sis{Lq} for Ty, (G) gives rise to a global orthonormal franie, } onG.

Lemma F.27For all X,Y,Z,W € T),(G) we have

vt 1

05Y = SIXY], oRXV)ZW) = —2[[X.Y].Z] W,

and hence

oo 1
Ric(X,X) = _ZZ[[X’LG]’LG] - X, (F.5)
where the sum runs over any orthonormal badig } of T, (G).

Proof By formula (F.2) we havg(CyY,Z) = 1[X,Y]-Z, whence the result after
a straightforward calculation. O

We now consider the special cases- {U € Un(F) | detU =1} for F =R, C.
If F =R, thenG is thespecial orthogonal group SM) whereas, iff = C, then
G is the special unitary group SN). Using now the notation of Proposition
E.15, one can show thdt, (G) = sun(F). Thus, from (E.2) and (F.5) one gets
for G=SQN) or G = SU(N) that

B(N+2)
——

for every vector fieldX on G, wheref3 =1 for SQN) and3 = 2 for SU(N). We
note in passing that & = Un(C) then RigX, X) =0 for X =ily € T (Un(C)),

Ric(X,X) :( —1>g(X,X), (F.6)
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and thus no uniform strictly positive lower bound on the Riemsor exists for
G = UN(C). We also note that (F.6) remains valid 8r= Un(H) and3 = 4.

G Appendix on operator algebras
G.1 Basic definitions

An algebra is a vector spaces over a fieldF equipped with a multiplication
which is associative, distributive akdbilinear, that is, fox,y,z€ & anda € F:

* X(y2) = (xy)z,
o (X+VY)z=Xz+Yyz X(y+2) =Xy+Xz
e a(xy) = (ax)y =x(ay).
We will say thate is unital if there exists a unit elememte </ such thake=
ex= X (eis necessarily unique becauseifs also a unit thee€ = ¢ = ee=¢).

A group algebra KG) of a group(G, *) over a fieldF is the sef{y 4ccag9
ag € F} of linear combinations of finitely many elements®fwith coefficients
in F (aboveag = 0 except for finitely many). F(G) is the algebra oveff with
addition and multiplication

gé agg+ g; bgg = gé(ag +bg)g, <géagg> (gé bgg> = gvéGagbhg xh,

respectively, and with product by a scale§ ycc agg = ¥ gec(bag)g. The unit of
F(G) is identified with the unit of5.

A complex algebras an algebra over the complex fieltl A seminormon a
complex algebraz is a map frome into R™ such that for alk,y € & anda € C,
fax]| = laflixll, x4yl < X[+ [yl il < I - [lyll,

and, if <7 is unital with unite, also||e|| = 1. Anormon a complex algebra/ is a
seminorm satisfying thaitx|| = 0 impliesx = 0 in /. A normed complex algebra
is a complex algebra/ equipped with a nornj.||.

Definition G.1 A complex normed algebrge,||.||) is aBanach algebraf the
norm|| - || induces a complete distance.

Definition G.2 Let ¥ be a Banach algebra.

¢ An involutionon <7 is a map* from ./ to itself that satisfiega+ b)* =
a‘+b*, (ab)* =b*a*, (Aa)* =Aa" (for A € C), (a")* =aand||a*|| = a.
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e o/ is aC*-algebraif it possesses an involutian— a* that satisfiega*al| =
all?

e Zis a (unital) C*-subalgebraof a (unital)C*-algebra if it is a subalgebra
and, in addition, is closed with respect to the norm and thelirtion (and
contains the unit).

HereA denotes the complex conjugateafNote that the assumptiofa|| = ||a*||
ensures the continuity of the involution.

The following collects some of the fundamental propertieBanach algebras
(see [Rud9l, pp. 234-235)).

Theorem G.3Let.«7 be a unital Banach algebra and let(@&) denote the invert-
ible elements of7. Then G.«/) is open, and it is a group under multiplication.
Furthermore, for every & o7, thespectrunof a, defined as

spa)={A €C:Ae—x¢G(«)},
is nonempty, compact and, defining the spectral radius
p(a)=sup{|A|: A € sp(a)},
we have that
p(a) = lim a7 = inf |]a"|*/",
(The last equality is valid due to sub-additivity.)

An elementa of &7 is said to beself-adjoint(resp.,normal, unitary) if a* = a
(resp.,a*a = aa*, a*a= e = aa*). Note that, if< is unital, its unite is self-
adjoint. Indeed, for alk € <7, we havee*x = (x*e)* = x, similarly xe* = x, and
hencee* = e by uniqueness of the unit.

A Hilbert space His a vector space equipped with an inner produet that is
complete for the topology induced by the nofm| := /(-,-).

Let Hy, H, be two Hilbert spaces with inner produgts )n, and(-,-)n, respec-
tively. Thedirect sum H® H, is a Hilbert space equipped with the inner product

<(Xlay1)’ (X2ay2)>H1OH2 = <X17X2>H1 + <y17y2>H2~ (Gl)
Thetensor product H® Hy is a Hilbert space with inner product
(X1 ®@Y1,X @ Y2)HyoH, = (X1, X2)H; (Y1,Y2)H, - (G.2)

Let B(H) denote the space of bounded linear operators on the Hilpades
H. We define the adjoinT* of any T € B(H) as the unique element &(H)
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satisfying
(Txy) = (XT"y) ¥xyeH. (G.3)

The spac®(H), equipped with the involutior and the norm

[T llgH) = sup{{Txy)|. Xl = [lyll = 1},

has a structure aC*-algebra, see Definition G.2, ardfortiori that of Banach
algebra. Therefore, Theorem G.3 applies, and we denote([dy) sipe spectrum
of the operatofl € B(H).

We have (see [Rud91, Theorem 12.26]) the following.

Theorem G.4Let H be a Hilbert space. A normal & B(H) is

(i) self-adjointiffsp(T) lies in the real axis,
(i) unitary iff sp(T) lies on the unit circle.

The GNS construction (Theorem 5.2.24) discussed in the tagirtan be used
to prove the following fundamental fact (see [Rud91, Theofe.41]).

Theorem G.5For every C-algebra.«/ there exists a Hilbert space JAand a
norm-preserving--homomorphisnmm,, : &7 — B(H,/).

G.2 Spectral properties

We next state the spectral theorem. L&tbe ac-algebrain a se®. A resolution
of the identity(on .#) is a mapping

X : #—B(H)

with the following properties.

() x(©0)=0,x(Q)=1I.
(i) Eachy(w) is a self-adjoint projection.
(i) x(w'Nnw’)=x(w)x(").
(iv) f N’ =0, x(0UW") = x()+ x ().
(v) For everyx € H andy € H, the set functionyxy(w) = (x(w)x,y) is a
complex measure o .

When.Z is theo-algebra of all Borel sets on a locally compact Hausdorftspa
it is customary to add the requirement that eggh is a regular Borel measure
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(this is automatically satisfied on compact metric spaceélsgn we have the fol-
lowing theorem. (For bounded operators, see [Rud91, Thed®23], and for
unbounded operators, see [Ber66] or references therein.)

Theorem G.6If T is a normal linear operator on a Hilbert space H with domai
dense in H, there exists a unique resolution of the ideption the Borel subsets
of sp(T) which satisfies
T= Adx(A).
Sp(T)
We cally thespectral resolutionf T.

Note that sfT) is a bounded set i € B(H), ensuring thajyy is a compactly
supported measure for ally € H. For any bounded measurable functibron
sp(T), we can use the spectral theorem to defifig) by

(1) = [ fa)dx).
SP(T)
We then have (see [Rud91, Section 12.24]) the following.

Theorem G.7

(i) f — f(T) is a homomorphism of the algebra of all bounded Borel func-
tions onsp(T) into B(H) which carries the functiof to |, the identity into
T and which satisfie$(T) = f(T)*.
@) (M| <sup{|f(A)]:A €sp(T)}, with equality for continuous f.
(ii) If f, convergesto f uniformly osp(T), || fa(T) — f(T)|| goes to zero as n
goes to infinity.

The theory can be extended to unbounded operators as follawsperator
T onH is a linear map fronH into H with domain of definition2(T). Two
operatorsT, S are equal if2(T) = 2(S) andTx= Sxfor x€ 2(T). T is said
to beclosedif, for every sequencéxn}neny € 2(T) converging to some € H
such thafT x, converges aa goes to infinity toy, one hax € Z(A) andy = Tx
Equivalently, the graplih, Th)pc 5 () in the direct sumH @ H is closed. T is
closableif the closure of its graph itd @ H is the graph of a (closed) operator.
The spectrum g) of T is the complement of the set of all complex numbers
A such that(Al — T)~! exists as an everywhere defined bounded operator. We
next define thadjointof a densely defined operator if the domainZ(T) of the
operatorT is dense irH, then the domair®(T*) consists, by definition, of all
y € H such that(Tx y) is continuous fox € 2(T). Then, by density of7(T),
there exists a uniqgug € H such thatTx y) = (x,y*) and we then sel*y := y*.
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A densely defined operatdr is self-adjointiff 2(T*) = 2(T) andT* =T. We
can now state the generalization of Theorem G.6 to unbouopletors.

Theorem G.8[DuS58, p. 1192] et T be a densely defined self-adjoint operator.
Then its spectrum is real and there is a uniquely determimggilar countably
additive self-adjoint spectral measuye defined on the Borel sets of the real line,
vanishing on the complement of the spectrum, and relateddy thie equations

— 2 "
@ M) ={xeH| [ Ay <a),
(b) Tx:Aian/n Adxr(A)x.

Another good property of closed and densely defined opexdétat necessarily
self-adjoint) is the existence offalar decomposition

Theorem G.9[DuS58, p. 12491 et T be a closed, densely defined operator. Then
T can be written uniquely as a productS PA, where P is a partial isometry, that
is, PP is a projection, A is a nonnegative self-adjoint operatiog closures of the
ranges of A and T coincide, and both are contained in the domain of P.

Let < be a sub-algebra d@(H). A self-adjoint operatol onH is affiliated
with & iff it is a densely defined self-adjoint operator such thataioy bounded
Borel functionfon the spectrum oA, f(A) € «7. This is equivalent, by the spec-
tral theorem, to requiring that all the spectral projecsi¢r ([n,m]),n < m} be-
long to.«” (see [Ped79, p. 164]).

G.3 States and positivity

Lemma G.10[Ped79, p. 6An element x of a Calgebra A isnonnegativex > 0,
iff one of the following equivalent conditions is true:

(i) xis normal and with nonnegative spectrum;

(i) x=y? for some self-adjoint operatory in A;
(iii) xis self-adjointand|tl —x|| <t for any t> ||x||;
(iv) xis self-adjoint and|t1—x|| <t for some t> ||x||.

Lemma G.11[Ped79, Section 3.1]et o be a linear functional on a Galgebra
(,%,]|.|]). Then the two following conditions are equivalent:

(i) a(x*x)>O0forallx € «;

(i) a(x)>0forallx>0in ..
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When one of these conditions is satisfied, we sayahahonnegativeThena is

self-adjoint, that ispr (x*) = a(x) and if &7 has a unit I,|ja (X)| < a(1)]||x/|.

Some authors use the temositivefunctional where we use nonnegative func-
tional.

Lemma G.12[Ped79, Theorem 3.1.3] a is a nonnegative functional on a€
algebra.«Z, then for all xy € o7,

a(yx)|? < a(xx)a(y"y).

G.4 von Neumann algebras

By Theorem G.5, ang*-algebra can be represented &3"ssubalgebra oB(H),
for H a Hilbert space. So, let us fix a Hilbert spa¢eB(H) can be endowed with
different topologies. In particular, thetrong (resp.,weak topology onB(H) is
the locally convex vector space topology associated witdimily of seminorms
{x—=||x€|| : & € H} (resp., the family of linear functionalsx—(xn,&) : &.n €
H}).

Theorem G.13 (von Neumann’s double commutant theoremjor a subset
. C B(H) that is closed under the involution define,

" :={beB(H):ba=ab, Vac .v}.
Then a C-subalgebras of B(H) is a W*-algebra if and only it = &

We have also the following.

Theorem G.14[Ped79, Theorem 2.2.2]et &7 C B(H) be a subalgebra that is
closed under the involutiohand contains the identity operator. Then the follow-
ing are equivalent:
() "=
(i) < is strongly closed;
(iii) < is weakly closed.

In particular,&7” is the weak closure of7. The advantage of a von Neumann
algebra is that it allows one to construct functions of ofmsawhich are not
continuous.

A useful property of self-adjoint operators is their beloavinder closures.
More precisely, we have the following. (See [Mur90, Theore 3] for a proof.)
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Theorem G.15 (Kaplansky density theorem)_et H be a Hilbert space and let
&/ C B(H) be a C-algebra with strong closure?. Let.«%, and %s, denote the
self-adjoint elements a7 and 4. Then:
(i) “Hais strongly dense i#sy;
(ii) the closed unit ball ofs, is strongly dense in the closed unit ball#t;;
(iii) the closed unit ball of7 is strongly dense in the closed unit ball &t

Von Neumann algebras are classified into three types: 1, dII&fLi92, Chap-
ter 6]. The class ofinite von Neumann algebras will be of special interest to
us. Since its definition is related to properties of projasi we first describe the
latter (see [Li92, Definition 6.1.1] and [Li92, Propositi@rB.5]).

Definition G.16 Let .« be a von Neumann algebra.
(i) A projectionis an elemenp € < such thap = p* = p.
(i) We say thatp < q if gq— p is anonnegativeelement ofe/. We say that
p ~ qif there exists & € & so thatp = vw* andq = v*v.
(iif) A projection p € & is said to bdinite if any projectionq of .7 such that
g < pandg~ p must be equal tp.

We remark that the relation in point (ii) of Definition G.16 is an equivalence
relation.

Recall that, for projectionp, g € B(H ), theminimumof p andq, denotedb A q,
is the projection frontH onto pHNgH, while themaximum v qis the projection
from H onto pH+qgH. The minimump A g can be checked to be the largest
operator dominated by bofnandq, with respect to the ordet. The maximum
pV g has the analogous least upper bound property.

The following elementary proposition clarifies the analbgyween the role the
operations of taking minimum and maximum of projectionym@hanoncommuta-
tive probability, and the role intersection and unions pfaglassical probability.
This, and other related facts concerning projections, egimbnd in [Nel74, Sec-
tion 1], see in particular (3) there. (For similar statersesee [Li92].) Recall the
notions of tracial, faithful and normal states, see Definiti5.2.9 and 5.2.26.

Proposition G.17Let (<7, 1) be a W'-probability space, witlt tracial. Let pq e
&/ be projections. Then pg,pvqe o andt(p)+1(q) =T(pAQ)+T(PV Q).

As a consequence of Proposition G.17, we have the following.

Property G.18 Let (<7, 1) be a W'- probability space, subset of(B) for some
Hilbert space H. Assume thatis a a normal faithful tracial state.
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(i) Lete >0and pq be two projections in7 so thatr(p) > 1— ¢ andt(q) >
1—¢. Then, withr=pAq, 1(r) > 1—2¢.
(i) If pj is an increasing sequence of projections converging wetakiye
identity, thent (p;) goes to one.
(iii) Conversely, if pis an increasing sequence of projections such ttax)
goes to one, then; gonverges weakly to the identity.i.

Proof of Property G.18 The first point is an immediate consequence of Proposi-
tion G.17. The second point is a direct consequence of nagnudl T while the
third is a consequence of the faithfulness of O

Definition G.19 A von Neumann algebra/ is finiteif its identity is finite.

Von Neumann algebras equipped with nice tracial states rite fion Neumann
algebras, as stated below.

Proposition G.20[Li92, Proposition 6.3.15]et.«# be a von Neumann algebra. If
there is a faithful normal tracial state on.«7, .7 is a finite von Neumann algebra.

We also have the following equivalent characterizationaimal states on a von
Neumann algebra, see [Ped79, Theorem 3.6.4].

Proposition G.21Let ¢ be a state on a von Neumann algebyain B(H). Let
{¢i}i>0 be an orthonormal basis for H and put, foexB(H), Tr(x) = 5i(X&, ).
Then the following are equivalent:

e @is normal,
o there exists an operator x of trace class on H such th(g) = Tr(xy);
e (@is weakly continuous on the unit ball of .

G.5 Noncommutative functional calculus

We taket to be a linear form on a unital complex algelwaequipped with an
involution x such that, for ala € <7,

7(aa") > 0. (G.4)

Then, for alla,b € <7, we haver(a*b) = 7(b*a)* and the noncommutative version
of the Cauchy—Schwarz inequality, namely

7(a*b)| < T(a*a)21(b'b)?. (G.5)
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(See, e.g., [Ped79, Theorem 3.1.3].) Moreover, by an agijmic of Minkowski’s
inequality,

T((a+b)*(a+b))? < r(aa’)? + 1(bb*)2. (G.6)

Lemma G.22If T is as above and, in addition, for some nojri| on.«, |1(a)| <
|lal| for all a € <7, then

|T(b*a*ab)| < ||a*al|T(b*b). (G.7)
Proof By the Cauchy—Schwarz inequality (G.5), the claim is tiiifiar (b*b) = 0.
Thus, fixb € & with t(b*b) > 0. Define
_ 1(b*ab)
®(@) =T 5p)
Note thatry is still a linear form one satisfying (G.4). Thus, for alh;,ay € 7,
by the Cauchy—Schwarz inequality (G.5) appliedja;ay),
|T(b*ajazb)|? < T(b*ajaib)T(b*asasb).
Takinga; = (a*a)?" anda; the unit in.«7 yields

1(b*(a*a)?'b)? < 1(b*(a*a)?"

b)r(b*b).
Chaining these inequalities gives

1(b*(a*a)b) < T(b*(a*a)?'b)? "1(b*b): 2" < ||b*(a*a)?'b||2 "T(b*b) 2",
Using the sub-multiplicativity of the norm and taking theit asn — oo yields
(G.7). O

We next assume thét?, «, || - ||) is @ von Neumann algebra amé tracial state
on (<, ). The following noncommutative versions of Holder inedtied can be
found in [Nel74].

Forac </, we denotdal = (aa*)%. We have, fora,b € <7, b a self-adjoint
bounded operator,
|T(ab)| < ||bl|T(|al]). (G.8)
We have the noncommutative Holder inequality saying tbatfl p,q > 1 such
that <+ § = 1, we have

1 1

[T(ab)| < t([a|t)ar(|b|P)?. (G.9)

More generally, see [FaK86, Theorem 4.9(i)], forralt 0 andp=2+q 1 =r"1,
[7(Jabl")[? < T(|al%)aT(Jb|?)P (G.10)

This generalizes and extends the matricial case of (A.13).
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H Stochastic calculus notions

A good background on stochastic analysis, at a level s@iteblour needs, is
provided in [KaS91] and[ReY99].

Definition H.1 Let (Q,.#) be a measurable space.

(i) A filtration .#4,t > 0, is a nondecreasing family of subields of .
(i) Arandom timeT is astopping timeof the filtration.;, t > 0, if the event
{T <t} belongs to ther-field .% for allt > 0.

(iii) A process Xt > 0, isadaptedo the filtration.% if, for all t > 0, X; is an
F-measurable random variable. In this case, we{s@qy.%,t > 0} is an
adapted process

(iv) Let {X,%,t >0} be an adapted process, so tHf|] < « forallt > 0.
The process;,t > 0 is said to be at# martingaleif, for every 0< s <
t < oo,

E[X(L?S] = Xs.

(v) Let X, t > 0, be an% martingale, so thaE[X?] < » for allt > 0. The
martingale bracketX);, t > 0 of X; is the unique adapted increasing pro-
cess so thax? — (X); is a martingale for the filtratior#.

(vi) If X, t >0, andy;, t > 0, are% martingales, theicross-brackeis defined
as(X,Y)t = [<X +Y>t — <X —Y>t]/4

In the case when the martingafe possesses continuous patkX); equals its
guadratic variation. The usefulness of the notion of braoka continuous mar-
tingale is apparent in the following.

Theorem H.2 (Lévy) Let {X;, % ,t > 0} with Xy = 0 be a continuous, adapted,
n-dimensional process such that each component is a cants#%;-martingale
and the martingale cross brackéX', X)) = & jt. Then the components Xre
independent Brownian motions.

Let X,t > 0 be areal-valueds adapted process, and Bbe a Brownian motion.
Assume thaE|[ [y X2dt] < . Then

n

T n-1
| e im > Xe(Bris ~By)
0 L e I

exists, the convergence holdslifiand the limit does not depend on the choice of
the discretization of0, T] (see [KaS91, Chapter 3]).
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One can therefore consider the problem of finding solutiotise integral equa-
tion

X=X+ [ 0008+ [ bxds (H.1)

with a givenXy, o andb some functions oft", andB a n-dimensional Brownian
motion. This can be written under the differential form

dX = 0(Xs)dBs+ b(Xs)ds. (H.2)

There are at least two notions of solutions: strong solgteomd weak solutions.

Definition H.3 [KaS91, Definition 5.2.1] Astrong solutiorof the stochastic dif-
ferential equation (H.2) on the given probability sp&@e.%#) and with respect to
the fixed Brownian motio8 and initial conditioné is a procesgX,t > 0} with
continuous sample paths so that the following hold.

(i) X is adapted to the filtratio## given by.% = (% U.4"), with
% = 0(Bs,s<t;Xp), 4/ ={NCQ,3G € % withN C G,P(G) =0}.
(i) PXo=¢)=1.

(i) POV, [5([bi(Xs)| + |aij(Xs)|?)ds< ) = 1 foralli, j <n.
(iv) (H.1) holds almost surely.

Definition H.4 [KaS91, Definition 5.3.1] Aweak solutiorof the stochastic dif-
ferential equation (H.2) is a pafiX,B) and a triple(Q,.#,P) so that(Q,.#,P)

is a probability space equipped with a filtratigh, B is ann-dimensional Brow-
nian motion, andX is a continuous adapted process, satisfying (iii) and €v) i
Definition H.3.

There are also two notions of uniqueness.

Definition H.5 [KaS91, Definition 5.3.4]

e We say thastrong uniquenessolds if two solutions with common prob-
ability space, common Brownian moti@and common initial condition
are almost surely equal at all times.

e We say thatweak uniquenes®r uniqueness in the sense of probability
law, holds if any two weak solutions have the same law.

Theorem H.6 Suppose that b and satisfy

[Ib(t,x) = b(t,y)[[ +[[o(t,x) — a(t,y)]l
Ib(t, %) 12+ a(t, %)

Klx=yll,
K2(1+Ix]1%),

IN N
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for some finite constant K independent of t. Then there exigstsque solution to
(H.2), and it is strong. Moreover, it satisfies

.
B[ llot. %) ] < .
forall T > 0.

Theorem H.7 Any weak solutionéX', B', Q', .Z' P")i_1 , of (H.2) withg = I,, SO
that

T .
E[ [ Ib(t.X) Pat] < o,

forall T <o andi= 1,2, have the same law.

Theorem H.8 (Burkholder—Davis—Gundy inequality) There exist universal con-
stantsAm, Am S0 that, for all me N, and any continuous local martinga(#; ,t >
0) with bracket(A;,t > 0),

AmE (AT) < E(supMZ™) < AmE(AT).
t<T

Theorem H.9 (Itd, Kunita—Watanabe) Let f : R—R be a function of clas$?
and let X= {X,.%;;0 <t < o} be a continuous semi-martingale with decompo-
sition

X( = XO + Mt + A( ’

where M is a local martingale and A the difference of contumsjaadapted, non-
decreasing processes. Then, almost surely,

(00 =106)+ [ 100aMet [ 1106dA+S [ P0dM)s, 0<t<e.

Theorem H.10 (Novikov)Let {X,.%,t > 0} be an adapted process with values
in RY such that

Ele? /o SLix)%d) < o
forall T e R*. Then, if{\W,.%,t > 0} is a d-dimensional Brownian motion, then
M t d L' ix 2q
= ex . - = u
= el [ Xoaws =5 3 ()

is an.%-martingale.
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Theorem H.11 (Girsanov)Let { X, .%,t > 0} be an adapted process with values
in RY such that

Efe? /o SLa0d%dl) < o
Then, if{W,.%,P,0 <t < T} is a d-dimensional Brownian motion,
_ . t
W =W —/ Xlds, 0<t<T,
0
is a d-dimensional Brownian motion under the probabilityasigre
_ T 1 T d )
P — exp| / X, — = Zl(xt',)zdu}P.
0 2Jo i=
Theorem H.12Let {X,.%:,0 <t < o} be a submartingale whose every path is

right-continuous. Then, for any> 0 andA > 0,

AP(sup % > A) <E[X/].

o<t<r
We shall use the following consequence.

Corollary H.13 Let{X,.%,t > 0} be an adapted process with valuegif, such
that

[ e /()Té()qi)zdt

is uniformly bounded by the constant ALet{W,.%;,t > 0} be a d-dimensional
Brownian motion. Then, for any 0,

t 12
P(sup || X, dW||>L)<2e 2.
0<t<T /0

Proof We denote in shoi; = féxu.dV\(J and write, forA > 0,

P(sup || >A) < P(supe™>e"4+P(supe™>eh

0<t<T Oot<T iy :d
2 A2A
< P( sup M7 JolXuldu > e/\AﬁrT)
0<t<T

Z A2A
+P< sup e M7z JolXul?du > e/\A—ZT) .
0<t<T
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2
By Theorem H.10M; = e~ % /oI%?du s a nonnegative martingale. Thus, by
Chebyshev’s inequality and Doob’s inequality,
A2A A2A A2A
P < sup M > e’\A2T> <eM Tz EMp]=e M T
o<t<T
Optimizing with respect td completes the proof. O

The next statement, an easy consequence of the Dubins—8zliwee change
identities (see [KaS91, Thm. 3.4.6]), was extended in [Réib& a much more
general setup than we need to consider.

Theorem H.14 (Rebolledo’s Theorem)et n€ N, and let My be a sequence of
continuous centered martingales with value®Rihwith bracket(My) converging
pointwise (that is, for all £ 0) in L* towards a continuous deterministic function
@(t). Then, for any T> 0, (Mn(t),t € [0,T]) converges in law as a continuous
process fronf0, T] into R" towards a Gaussian process G with covariance

E[GSGT (1] = @t AS).
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General conventions and notation

Unless stated otherwise, f@a Polish spaceMi(S) is given the topology of weak
convergence, that makes it into a Polish space.

When we writea(s) ~ b(s), we assert that there existés) defined fors>> 0 such
that lims_...c(s) = 1 andc(s)a(s) = b(s) for s> 0. We use the notatioa, ~ by for
sequences in the analogous sense. We wafie= O(b(s)) if limsupg_,., |a(s) /b(s)| < .
We write a(s) = o(b(s)) if limsups_, |a(s)/b(s)| = 0. an = O(bn) andan = o(by) are
defined analogously.

The following is a list of frequently used notation. In cale hotation is not routine, we
provide a pointer to the definition.

v

a.s., a.e.
Ai(x)
(|1, @)

for all
almost sure, almost everywhere
Airy function
C*-algebra (see Definition 5.2.11)
closure, interior and complement Af
set difference
space of bounbed operators on a Hilbert sgdce
functions onSwith continuous (resp., bounded continuous)
derivatives up to ordek
infinitely differentiable functions 0%
bounded functions o8 possessing bounded derivatives of all order
infinitely differentiable functions o of compact support
Continuous functions frorgto S
infinitely differentiable functions o™ all of whose derivatives
have polynomial growth at infinity.
central limit theorem

convergence in probability

metric and distance from pointto a setA

determinant oM

Vandermonde determinant, see (2.5.2)

Fredholm determinant of a kerni€l see Definition 3.4.3
open(N — 1)-dimensional simplex

domain of.Z

the empty set

the signature of a permutatian
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482 CONVENTIONS AND NOTATION

4,3 there exists, there exists a unique
f(A) image ofA under f
f-1 inverse image of
fog composition of functions
Flag,(A,F) Flag manifold, see (4.1.4)
GLn(F) invertible elements of Ma{F)
H skew-field of quaternions
H64(F) elements of Mat(F) with X* =X
i basis elements df (together with 1)
i,j,k basis elements dfl (together with 1)
i.i.d. independent, identically distributed (random shies)
1a(+), 1a(*) indicator onA and on{a}
In identity matrix in GLy(F)
[t]. It] largest integer smaller than or equat temallest integer greater than or equal to
LDP large deviation principle (see Definition D.1)
Lip(R) Lipschitz functions oR
LLN law of large numbers
log(+) logarithm, natural base
LSI logarithmic Sobolev inequality (see Subsection 2.31@ @.4.13))
Matpyq(F) p-by-gq matrices with entries belonging ®(whereF=R, C or H)
Matp (IF) same as Maip(IF)
M1(S) probability measures o8
u,v, v probability measures
pof1 composition of a (probability) measure and a measurable map
N(O,I) zero mean, identity covariance standard multitarisormal
AV (pointwise) minimum, maximum
Pl Poincaré inequality (see Definition 4.4.2)
P(-),E(-) probability and expectation, respectively
R,C reals and complex fields
RY d-dimensional Euclidean space (whekés a positive integer)
Ru(2) R-transform of a measune (see Definition 5.3.37)
oM volume on Riemannian manifod
sp(T) spectrum of an operatdr
S(2) Stransform ofa (see Definition 5.3.29)
Su(2) Stieltjes transform of a measuge(see Definition 2.4.1).
g1 unit sphere irR"
SQN), SU(N) special orthogonal group (resp., special unitary group)
sup(F) anti-self-adjoint elements of Ma(F), with vanishing trace if = C
Z(u) noncommutative entropy of the measuyresee (2.6.4)
tr(M), tr(K) trace of a matribM or of a kerneK
transpose of the vector (matrix)
Vi transpose and complex conjugate of the vector (mairix)
Un(F) unitary matrices in Gh(F)
{x} set consisting of the point
Zy positive integers
- contained in (not necessarily properly)
(-, scalar product ifR¢
(f, ) integral of f with respect tqu
53] direct sum
® tensor product
M free additive convolution (see Definition 5.3.20)
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free multiplicative convolution (see Definition 5.3.28



Index

Adapted, 251, 257459, 460

Airy
equation 92, 140, 142, 145, 167
function 91, 133, 138-141, 231
kernel seeKernel, Airy
processseeProcess, Airy
stochastic operatQr307-317

Algebraic function, algebraicity condition,
412

symmetri¢c248 257, 319
symplecti¢c248

Bulk, 90, 91, 114, 163, 183, 184, 215, 319,
321

C*-// algebrg 329-339, 394, 400, 41351
probability space329,331-338, 351, 353,
369, 394, 395, 407
universal C-algebrag 334, 336

Ambient space, 200, 202, 203, 207, 209-

212,438 439
Antisymmetric matrices, 214
Arzela—Ascoli Theorem, 266, 268

Bakry—Emery condition (BE), 39, 28289,
290, 294, 321

Banach—Alaoglu Theorem, 310, 3381
Bercovici—Pata bijection, 411
Bernoulli random variables, 225, 227
Bernoulli walk,8

Beta integral 50

(L?)-Betti numbers, 413

Birkhoff, G., 86

Bobkov-Gotze, 87
Bochner—Bakry—Emerg97

Borel-Cantelli Lemma, 19, 252, 266, 270—,

272,276, 311, 378, 382

Bracelet31
circuit length of 31

Branch, 46, 135

Brownian motion, 186, 248, 253, 257, 261
280, 292, 307, 309, 314, 319, 321, 459
carousej 321
free 412
Hermitian, 248 257

Carré du champ operat@g89
iterg, 289
Catalan numbetf?, 9, 10, 85, 377
Cauchy transform, 411
Cauchy-Binet Theorem, 57, 98, 99, 225,
415
Central, 192
Central limit theorem (CLT), 29, 86, 87, 88,
131, 186, 215, 227, 248, 318, 319, 321,
412, 413
dynamicaj 273-277
multidimensiongl35
see alsd-ree, central limit theorem
Characteristic polynomial, 55, 257
Christoffel-Darboux, 100, 181
Circular law, 88
Coarea formula, 187193 195, 198, 201,
205, 318, 442-445
Configuration215 216, 233, 236, 238
Combinatorial problems, 184, 319
Commutant, 343
'‘Complete, completion 329, 334, 335, 341,
389

Concentration, 3843, 71, 87, 88, 186, 273,
281-302, 320, 389

484
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Confluent alternant identity, 69 Diffusion process, 247-281, 319, 321
Conjugation-invariant, 201, 202, 205, 208 Discriminant, 55, 257417
Connection problem, 183 Distribution (law),326, 327, 331, 333, 343,
Contraction principle, 320428 344, 349, 360, 363, 365, 366, 378, 380,
cOnvergenceq_lg, 420 382, 385, 387, 391, 394, 412

almost sure 28, 71, 73, 263, 268, 323,  Bernoulli seeBernoullirandom variables

324, 375, 378, 379, 393 Cauchy 374

LP, 28, 268, 375, 388 X, 303, 307

in distribution (law) 92, 93, 103, 241,  function 344 S

274, 322328 GaussianseeGaussian, distribution

in expectation323, 324, 375, 379 Schwarz 126, 310

in moments328, 337 stable 321

sequentigl 338 Double commutant theorem (von Neumann),

vague 44, 45, 134 340, 343, 455

weak 44, 134, 388, 420 Doubly stochastic matrix, 21, 86

weakly, in probability 7, 23, 44, 71 Dyck path, 7,8, 15-17, 20, 85, 353, 363,

364

Convex, Dyson, 181249, 319

funcztilon 72,285-287, 291 see als@®chwinger—Dyson equation

set

strict, 72, 75, 298
Correlation functions216
see alsdntensity, joint

Edelman—Dumitriu303
Edge, 13, 17, 30, 90, 92-94, 132, 162, 166,
177, 183, 215, 306, 319, 321, 376, 378,

Coupling, 66 387
Critical (point, value), 193440, 441 bounding table34, 35
Cumulant, 354, 357, 361-364, 369, 410 connecting13, 17
see alsdrree, cumulant hard, 321
Cut-off, 250 self 13,17
Cyclo-stationary, 318 Eigenvalue, 6, 20, 21-23, 36, 37, 45, 48, 51,
Cylinder set, 215 55, 58, 65, 71, 78, 90-94, 131, 186, 188,

193, 198, 199, 209-212, 220, 221, 223,
226-228, 230, 231, 240, 249, 261, 263,

Decimation, 66, 88, 166, 170 269, 286, 298, 320, 321, 327, 374-393,
Determinantal 395, 396, 399433

formulas 152-155 complex 88, 89, 213

process90, 94, 131, 186, 193, 21220- joint density 65, 87

248, 318, 319 joint distribution 50-70, 87, 88, 184, 186,

projections 222-227 187, 191, 261, 303, 318

relations 120 law of ordered 53, 248

stationary proces215, 237-239 law of unordered53, 189, 304

Diagonal, block-diagonal, 190, 191, 198, 200, maximal 23, 28, 66, 81, 86-88, 103, 183,
201, 206, 207, 209-214, 254, 263, 276, 269, 306, 321
277, 282, 300, 301, 304, 305, 319, 388, see alsEmpirical measure

389, 402, 411, 432-437 Eigenvector, 38, 53, 286, 304, 389
Differential equations, Eigenvector—eigenvalue paB08-317

i)éztemlzl-lzs, 126-130, 170-180, 182Empirical distribution (measure}, 7, 20,

_ _ _ 21, 23, 29, 36, 38, 45, 51, 71, 80, 82, 83,
Differential extension158 85, 88, 89, 114, 228, 262, 320, 324, 327,

Differentiation formula, 123, 144 375, 379, 388, 389, 396, 397, 399, 413
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annealed 328, 379
guenched328, 379
Ensemble187
beta 186, 303, 321
Biorthogonal 244
COE, CSE318
Gaussian 90, 186, 189, 193, 198, 206
(see alsdHermite
Jacobj seeJacobi, ensemble
Laguerre seel.aguerre, ensemble
unitary, 186
see als&@GOE, GSE, GUE
Entropy 71, 78, 413
Enumeration of maps, 182
Ergodic, 186, 233, 238, 239, 294, 321
Euclidean space, 187-190, 197, 203, 20
437,438-445
Exploration process, 15
Exponential tightness, 77, 80, 278, 249/,
428
Extreme point, 21, 86

Federer, 194, 318, s&area formula
Feynmann’s diagrams, 181

Fiber, 196

Field, 187

Filtration, 249, 251, 254, 28@59
Fisher information, 413

Flag manifold, 190, 197198 209, 211

INDEX

independence322,348-374

infinitely divisible law 373group, 322
group factors 413

harmonic analysis359, 368, 370
multiplicative convolution365-368 411
probability, 322—410 366

Poisson 365

product 349-353

semicircular variables323, 324
variables 325,348-352, 362, 378, 380,
382, 387, 391, 394, 395, 410413
see alsdBrownian motion, free

Freeness, 87, 324, 350, 387, 392, 410

second order87
with amalgamation412

E!:unctional calculus, 330, 331, 457-458
Fundamental identityl11-113, 124, 173
Firedi—Komlos (FK), 23—29, 86

Gamma function (Euler'sh3, 139, 194, 303
Gap, 114, 131, 148, 150, 152, 155, 159, 239
Gaudin—Mehta91

Gauss decomposition, 244

Gaussian, 42, 88

distribution (law) 29, 30, 33, 45, 184,
188, 277, 284, 291, 303, 307, 311, 381,
397, 405

ensemblesseeEnsembles, Gaussian
process274-276

subs 39

Fock, Boltzmann—Fock space, 350, 359, 362, Wigner matrixseeWigner

409
Forest, 27, 31

Gaussian orthogonal ensemble (GOERB;

54, 58, 66, 71, 82, 87, 93, 132, 148, 150,

Fourier transform, 87, 118, 230, 231, 237, 160, 166, 169, 183, 184, 186, 187, 189—

360
Fredholm
adjugant 110 111, 113, 157
determinant 94, 98, 107, 108109-113,
120, 121, 128, 142156 163, 170, 182,
183, 222, 234
resolvent110, 111, 121-123, 157
Free,
asymptotically374-393, 411
central limit theorem368

191, 199, 229, 248, 302, 305, 323, 412

Gaussian symplectic ensemble (GSE), 37,

53, 58, 66, 68, 71, 93, 132, 148, 150,
160, 170, 183, 184, 186, 189-191, 302,
412

Gaussian unitary ensemble (GUE), 36

54, 58, 66, 68, 71, 82, 87, 93, 105, 121,
158, 163, 169, 183, 184, 186, 187, 189—
191, 199, 215, 228, 229, 248, 302, 319,
323, 394, 395, 412

convolution 262, 319, 325359-368373, Gelfand—Naimark Theorem, 331

374, 388, 389, 410, 411

cumulant 325,354-356, 359, 360, 364,
410, 411

increments412

Gelfand—Neimark-Segal construction (GNS),

326, 333,340, 342, 369, 370, 400, 401,
452

Generalized determinant, 1983
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Generic, 200, 201, 203, 209-212
Geodesic27, 28, 203,448

frame 297,448
Gersgorin circle theorem, 415
Gessel-Vienno245
Graph,

unicyclic 30

see als@®entence, Word
Green’s theorem, 398
Gromov,299
Gronwall's Lemma, 260, 292
Group, 200, 299, 300

algebrg 325,450

discrete 325, 327, 332

see alsd-ree, group Lie, group Orthog-

onal, groupandUnitary, groups

Hamburger moment problem, 329

Harer-Zagier recursiond 04, 181

Heat equation, 320

Helly’s Theorem, 45

Herbst's Lemma40, 284

Hermite,
polynomials 95, 99, 101, 182, 187, 190,
191
ensemble189, 193, see alsBnsembile,
Gaussian/Hermite

Hessian, 289-291, 298, 43¥47, 448

Hilbert space, 326, 328, 330-332, 339-341

350-353, 409451457
Hoffman-Wielandt21
Holder norm, 265

Householder reflector (transformatioB)3
305

Hypergeometric function, 104, 106

Implicit function theorem, 371, 372
Inequality,
Burkholder—Davis—Gundy55, 260, 265,
266, 271, 272, 275, 41361
Burkholder—Rosentha#i13

Cauchy—Schwar285, 295, 335, 338, 384,

390, 457

Chebysheyv11, 17, 19, 29, 40, 49, 265,
271, 284, 378, 398, 463

Gordon 87

Hadamard 108,415

487

Holder, 24, 387
Jensen23, 77, 273, 275
noncommutative Holded16, 458
Logarithmic Sobolev (LSIB8,39-43, 87,
283-285, 287, 290, 298, 302
Poincaré (Pl) 283-285, 397, 405, 412
Slepian 87
Wey| 415

Infinitesimal generatof88 292

Infinite divisibility, 411

Initial condition, 249, 250, 257, 258, 262,
269, 275

Integral operator, 220
admissible220, 221, 226, 227, 230, 232
compact 221
good 221, 233-239, 241

Integration formula, 65, 66, 187-214

Intensity,216-220, 222, 227, 234—-238, 240,
242

Interlace, 62

Involution, 329, 330, 333, 334150

Isometry, 195, 196, 197, 201, 203, 205—
207, 211, 343, 346, 439, 454

1td’s Lemma (formula), 250, 251, 260, 263,
269, 292, 293

Iltzykson—Zuber—Harish-Chandra, 184, 320

Jacobi,

ensemble70, 183, 186, 190, 191, 193,
' 197, 206, 208, 318

polynomia) 187, 191
Jacobian, 54, 305, 306
Janossy densit@18 219, 319
Jimbo-Miwa—Mori—-Sato91, 181, 182
Jonsson, 86

Kaplansky density theorem, 34456
Karlin-McGregor,247

Kernel,107, 121, 220, 224-228
Airy, 92, 133, 143, 147, 161, 162, 168,
177, 183, 228, 230
antisymmetric158

y-twisting of 156

Hermitian, 221

matrix, 155-159, 161, 170-172
positive definite221, 230
trace-class projectior223-226
resolvent122, 173, 177
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self-dua) 158 159, 172

sing 91, 114, 121, 122, 131, 144, 161,

173, 181, 228, 229, 233, 237
smooth 158 172
symmetri¢158
Klein's Lemma,286, 320
Kolmogorov-Smirnov distanc&46

Laguerre
ensemble70, 186, 189, 193, 206, 210,
318
polynomia) 107, 183, 190

Lagrange inversion theorem, 371

Laplace—Beltrami operator, 296, 43%47,
448

Laplace’s method, 59115-117, 119, 134,
142, 429

INDEX

Limit distribution (law), 66, 262

Lusin’s Theorem, 340423

Logarithmic asymptotics, sdearge devia-
tion

Logarithmic capacityy2

Lyapunov function, 250, 251

Manifold, 187, 193-200, 207, 318,37-

Riemannian295, 299, 320, 321

submanifolg 199

see alsd-lag manifold
MANOVA, 318
Marcenko—Pastur lav21, 365
Markov, 410, 412

Process246

semigroup 245,288 292, 295

Large deviation, 70-85, 88, 186, 248, 277artingale (martingale bracket), 252, 254,

320, 413, 427-429
lower bound 72, 78, 79, 84
principle (LDP), 72, 77, 81-83, 413427
rate function seeRate function
speed72, 78, 81, 82, 84, 278, 427
upper bound72, 77, 82, 84, 278-281
weak LDR 80,427
Lattice, 9
Law, seeDistribution (law)
of large numbers248
Lebesgue’s Theorem, 216
Ledoux’s bound103 133, 181
Left regular representation, 322, 350
Leibnitz rule, 380, 390
Letter, 13
Levi—Civita connection, 296446, 447
Lévy—Khitchine, 411
Lévy distance (metric), 34625
Lévy process, 412
Lévy's Theorem, 257459
Lie,
bracket 202, 296446
group 186, 191, 199, 299141
Linearization (trick), 396, 400, 402, 403,
408
Lipschitz
bounded metric23, 77,425
constant38-42, 299, 302
function 23, 38-42, 46, 250, 267, 268,
282, 284-287, 292, 293, 298, 301, 302

255, 263, 265, 271, 274, 275, 278, 280,
281,459
see als@emi-martingale
Master loop equation, s&chwinger—Dyson
equation
Matching,34, 182
Matrix
band 319, 324, 412
distinct 54
good 54
Hankel 88
inversion lemma45,414
Markov, 88
normalized 54
sample covariancet12, see als@/ishart
matrix
Toeplitz 88, 182
Wigner matrixseeWigner
with dependent entrie87, 88, 287-302
Measure,
GaussiarseeGaussian distribution
Haar, 53, 88, 186, 188, 191, 200, 299,
300, 320, 321, 324, 388, 389, 390, 393,
441
Hausdorff 194
Lebesgueb5-57, 77, 93, 96, 102, 107,
115, 121, 149, 156, 165, 188, 206, 220,
230, 236, 238, 247, 261, 287, 298, 305,
320, 439-441
positive 215
Radon 215
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reconstruction qf44, 49
sub-probability 44, 45

Median,285

Melin transform, 366

Metrizable, 338419

Minimizer (of variational problem), 311-314
Mixing, 233 238

Moment, 29, 101, 102, 268, 273, 318, 328
361-364, 366, 369, 370, 383, 412
see alsdHamburger moment problem

489

left (right) creation 350, 362, 364, 409
multiplication, 122, 330, 341, 343, 344,
353

norm, 343, 394, 412

normal, 328-330415, 432,451-453
unbounded342, 343, 347, 369

unitary, 332, 343451, 452

see also undeBelf-adjoint

Orthogonal, 192

ensembleseeGOE
group, 53, 187, 253, 299, 320, 393

Monge-Kantorovich-Rubinstein distance, 320 matrix 52, 54, 254, 305

Monomial, 200, 209-214, 375, 379, 380,
382, 383, 391, 432
Montel’'s Theorem, 372

polynomial 86, 94, 181, 184, 190, 191,
321
projection 204, 206, 208, 210

Oscillator wave-function95, 99, 101, 114,

Noncommutative,
derivative 380, 389, 397
entropy seeEntropy, noncommutative
law, 325 326, 336, 338, 340, 379, 388
LP-norm, 416

133, 164, 221

Painlevé 91, 93, 122, 128, 143, 146, 147,

170, 182, 183
o-form, 91

polynomial 301, 323, 325, 326, 394, 402 paim (distribution, process}34, 238-240,

probability (space) 322,325 326, 328,

348-352, 356, 360, 363, 365, 366, 374p, caval's Theorem, 232, 237

375, 379, 388, 400
(random) variable 325 326, 337, 366,
394, 396, 399, 412

Non-intersecting, 245, 319

Norm, 329-331, 334, 336, 341, 343, 352,
394, 400, 401, 406, 41222
Frobenius 415
semi; 334, 335
sub-multiplicativity 335
see alsdNoncommutative, #-=norm and
Operator, norm

Normal
matrix, 199, 214standard variable188,
190, 227, 229

Normalization constant, 54, 58, 81, 96, 191
303

Operator,
algebra 322, 324, 410450-458
affiliated, 325, 336,343-345, 347, 369,
370, 372,410

Partition,9, 359, 367

block of 354-359, 364, 367, 369, 377
crossing 9, 10

interval of 354-359, 367

non-crossing 9, 10, 15, 17, 354, 355,
358, 362, 364, 366, 367, 377

pair, 16, 369, 377

refinement qf354

Pauli matrices261
Permutation matrix, 200, 201, 209-213, 411,

432

Perturbation, 184, 415
Pfaffian, 148149, 183, 193, 319

integration formulas148-151, 154

Point process215-220, 225, 318

simple 215-220
see alsdeterminantal, process

Poisson process, 220
Polar decomposition, 343, 34454
Polish space, 107, 215, 264, 423-426

bounded 326-328, 330, 343, 350, 360, Polynomial, 58, 60, 257, 268, 270-275, 290,

366, 409

commutatoy 122
densely-define43, 453, 454
left annihilation 350, 362, 364

293, 323, 328, 330, 333, 343, 370, 379,
381, 390, 392-394, 397, 412
degree 394, 400, 402, 410
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see als®@rthogonal, polynomigandNon- R-transform, 360, 365, 370, 371
commutative, polynomial

Poset, 354 Saddle point, 136
Erlnupal value, 49 Sard's Theorem, 194, 20841
rocess, : :
Bessel319 ) '
Birth-death 245 Schur function, 320
eigenvalue319 Schwinger-Dyson equatio881, 382, 386,
Gaussiansee Gaussian, process 389, 391, 404, 406409, 411, 412
Laguerre 319 also appear amaster loop equation
measure-valued262, 263, 277 Self-adjoint, 198, 220, 260, 323, 329, 333,
sing 230, 231, 319 334, 343-347, 368, 370, 395, 396, 412,
see alsdDiffusion Markov, processand 432, 433, 451-454
Point, process anti-, 196, 201, 206, 207, 210, 432, 436

Projector, projection, 186, 190, 191, 198 Self-dual, 37, 392
345-347, 409, 410, 432, 434, 435, 456 see alsernel, self-dual
Selberg integral formula, 5%59-64, 87, 88
Quaternion, 187, 430 Semicircle distribution (law)6, 7, 21, 23,
determinani 163 275,310, 323, 365, 368, 369, 373, 374
ing, 31 ' ' ' ' ' ' ' J
gzgz:ntg(,siage) 334, 335, 341, 389 375,404, 410
’ ’ ’ ’ Semicircular variables, 323, 374, 375, 377—-
380, 382, 394, 395, 410, 412

Ramirez—Rider-Virag Theorer8p9 Semi-martingale, 249, 253, 254
Random analytic functions, 319 Sentencel7, 18, 25, 33, 378
Rate functiony/2, 277, 278427-429 equivalent17
good 72, 74, 81, 278, 427, 428 FK, 25-28
minimizer 75, 81 graph associated wittl7, 378
strictly convex72, 75 support of 17
Rebolledo’s Theorem, 27463 weight of 17
Reflection, 8, 85, 245 Separable, 338-341, 351, 419
Regular (point, value), 193, 196-198, 205Shift, 233, 238
440, 441 Sinai—Soshnikov, 86
Resolution of the identity, 339152, 453 Singular value, 87-89, 189, 193, 207, 301,
Resolvent, 87 394,434
see alsd-redholm, resolvent Size bias239
Resultant, 55, 64417 Skew field, 187430
Riccitensor (curvature), 297-299, 321, 435Skew-Hermitian matrix, 253
448-450 Sobolev space, 293
Riemannian, Solution,
manifold seeManifold, Riemannian strong 249-251, 253, 254, 258, 259, 269,
metric 295, 299, 445, 446 460
Riemann-Hilbert, 182—-185 weak 249, 251, 261460
Riemann zeta function, 185 Soshnikov, 184
Riesz’ Theorem, 279, 281, 331, 338, 344Spacing, 114, 160, 183, 184, 240, 242
423 Spectral,

Root system, 192, 318 analysis 330
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measure327, 366, 370, 375, 389, 412 Tiling, 319

projection 332, 343, 344, 454 Torsion-free, 297446
radius (norm) 269, 323, 325, 331, 336, Trace, 11, 86107, 198, 332, 350, 363, 387,
383, 395, 396451 392, 394
resolution 328,453 -class 220, 227, 412
theorem 198, 328, 331, 339, 340, 343, ormalized 325, 392, 400
344, 347433 452-456 see als@tate, tracial
Spectrum, 328, 330-332, 394-396, 398, 39ppacy_Widom,93, 142-147, 181-185, 306,
451-454 307
Spiked models, 184 Translation invariance, 215, 23931241
State, 331-334, 336-342, 391, 395, 454, Trigiagonal, 186, 302317, 321
455 Topology, 88, 344418

f4asitg1ful, 342-345, 369, 370, 394, 395, Skorohod 314
strong operatoy 339
Zgr?mal 342-345, 369, 370, 454, 456, weak 71, 72, 262, 282, 372121 425—
. 427
367370, 372, 380, 387, 380, 301, 304, Ieak operatorsag
395_413’ 456’ ' ' ! ' ' weak* 328, 336, 338, 383121
Y ' Tree, 15, 19, 25, 27, 28, 30, 376, 377

Stationary process, 261, 269, 318 pendant 31

see alsd:)etermlpan_tal, stationary pro- rooted planar tree9

cessandTranslation invariance Trigonometric sum identities, 87
Steepest descent, 134, 138, 141 9 !
Stieltjes transform, 9, 20, 383-50, 81, 87,

267, 360, 396, 398, 412 Ulam’s problem, 184
Stirling’s formula,59, 119 Unbounded variable, 325, 336
Stochastic, Unital agebra, 325, 329, 340, 356, 395, 399,

analysis (calculus)87, 248-281, 412,413 400, 450
differential equation (system249, 250, Unitary, 192

258, 261, 274, 291 ensembleseeEnsemble, unitary
noncommutative calculugd13 Gaussian ensembleeeGUE
Stone—Weierstrass Theorem, 330 g;%u%sziségg?’ 191-197, 244, 253, 299,
Stopping time, 251, 253159 roe
Stransform 366, 368 Lnlaltn;(,lgz, 54, 88, 254, 374, 388-390,
Subordlne}t_lon function, 410 see als®perator, unitary
Superposition, 66, 88 Universality, 183-185

Symmetric function, 65
Symplectic, 192

see als@saussian symplectic ensemble Vacuum, 350, 363, 409

Vandermonde determinari2, 58, 61, 96,

151

Talagrand285-287, 320 Varadhan's lemma, 76,29
Tangent space, 196 Verblunsky coefficients, 321
Tensor product, 399, 40851 Vertices. 13. 17
Telecommunications, 413 Voicules‘cu '322 410
Three-term recurrence (recursion), 100, 181, transform 371, 373

321 Volume (measure), 187, 188, 191, 193, 195,
Tight, 314-317, 38%25 224, 234, 295440, 446

see alsd&xponential tightness
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von Neumann algebra, 322, 339-342, 344,
348, 353, 370, 413, 455-458

\Voronoi cell,235-237

Wasserstein distance, 320

Weierstrass approximation theorem, 11

Weingarten function, 411

Weyl, 187, 192, 193, 19202
formula 206, 244, 318
operator, 202quadruple 199-203, 206—
214
see alsdnequality, Weyl

Wigner,
complex (Hermitian) Wigner matri85—
37,184
complex Gaussian (Hermitian) Wigner ma-
trix, 28, 35, 260, 323, 393, 411
Gaussian Wigner matrj, 43, 45, 101,
103, 261, 273, 276, 320, 323, 374, 394
matrix, 6, 23, 29, 42, 47, 50, 51, 86, 87,
186, 262, 323, 324, 337, 375, 383, 412
surmise 181
Theorem 7, 10, 22, 35,36-38, 81, 85,
105, 186, 262, 378
word seeWord

Wishart matrix, 20, 21, 85-87, 184, 186,
189, 190, 261, 282, 285, 319, 324, 392,
393, 412

Word, 11,13, 18, 25, 34, 36, 37, 319, 322,
325-328, 333, 334, 367, 369, 395, 400,
410, 412
closed 13, 14, 18, 30, 33, 376
g-colorable 377
equivalent13, 14
FK, 25-28
FK parsing of 25, 27
graph associated withL3, 376
length of 13, 334
skeleton of FK26
weight of 13, 376
Wigner, 14, 16, 25, 30, 376, 377

W*-
algebra, segon Neumann algebra
probability space339-347

Young diagram, 88, 411



