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Abstract

In this paper we study the spectrum of certain large random Hermitian Jacobi matrices. These

matrices are known to describe certain communication setups. In particular we are interested in an

uplink cellular channel which models mobile users experiencing a soft-handoff situation under joint

multicell decoding. Considering rather general fading statistics we provide a closed form expression

for the per-cell sum-rate of this channel in high-SNR, when an intra-cell TDMA protocol is employed.

Since the matrices of interest aretridiagonal, their eigenvectors can be considered as sequences with

second order linear recurrence. Therefore, the problem is reduced to the study of the exponential growth

of products of two by two matrices. For the case whereK users are simultaneously active in each cell,

we obtain a series of lower and upper bound on the high-SNR power offset of the per-cell sum-rate,

which are considerably tighter than previously known bounds.

I. INTRODUCTION

The growing demand for ubiquitous access to high-data rate services, has produced a huge

amount of research analyzing the performance of wireless communications systems. Cellular
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systems are of major interest as the most common method for providing continuous services to

mobile users, in both indoor and outdoor environments. Techniques for providing better service

and coverage in cellular mobile communications are currently being investigated by industry and

academia. In particular, the use of joint multi-cell processing (MCP), which allows the base-

stations (BSs) to jointly process their signals, equivalently creating a distributed antenna array,

has been identified as a key tool for enhancing system performance (see [1][2] and references

therein for surveys of recent results on multi-cell processing).

Most of the works on the uplink channel of cellular systems deal with a single-cell setup.

References that consider multi-cell scenarios tend to adopt complex multi-cell system models

which render analytical treatment extremely hard (if not, impossible). Indeed, most of the results

reported in these works are derived via intensive numericalcalculations which provide little

insight into the behavior of the system performance as a function of various key parameters

(e.g. [3]-[8]).

Motivated by the fact that mobiles users in a cellular system“see” only a small number of

BSs, and by the desire to provide analytical results, an attractive analytically tractable model for

a multi-cell system was suggested by Wyner in [9] (see also [4] for an earlier relevant work). In

this model, the system’s cells are ordered in either an infinite linear array, or in the familiar two-

dimensional hexagonal pattern (also infinite). It is assumed that only adjacent-cell interference

is present and characterized by a single parameter, a scaling factorα ∈ [0, 1]. Considering non-

fading channels and a “wideband” (WB) transmission scheme,where all bandwidth is available

for coding (as opposed torandomspreading), the throughput obtained with optimum and linear

MMSE joint processing of the received signals fromall cell-sites are derived. Since it was first

presented in [9], “Wyner-like” models have provided a framework for many works analyzing

various transmission schemes in both the uplink and downlink channels (see [2] and references

therein).

In this work we consider a simple “Wyner-like” cellular setup presented in [10] (see also

[11]). According to this setup, the cells are arranged on a circle (or a line), and the mobile users

“see” only the two BSs which are located on their cell’s boundaries. All the BSs are assumed

to be connected through an ideal backhaul network to a central multi-cell processor (MCP),

that canjointly process the uplink received signals of all cell-sites, as well as pre-process the

signals to be transmitted by all cell-sites in the downlink channel. The users are hence in what

October 11, 2007 DRAFT



3

is referred to as a “soft-handoff” situation, which is very common in practical real-life cellular

systems, and is therefore of real practical as well as theoretical interest (see for example [12]

for a recent survey on handoff schemes). With simplicity andanalytical tractability in mind,

and in a similar manner to previous work, the model provides perhaps the simplest framework

for a soft-handoff setting in a cellular system, that still represents real-life phenomena such as

intercell interference and fading.

Unfortunately, the analysis of “Wyner-like” models in general and the “soft-handoff” setup in

particular presents some analytical difficulties (see Section II-B) when fading is present. These

difficulties render conventional analysis methods such as large random matrix theory impractical.

Indeed the per-cell sum-rate rates supported by MCP in the uplink channel of the “soft-handoff”

setups are known only for limited scenarios such as non-fading channels, phase-fading channels,

fading channels but with large number of users per-cell, andRayleigh fading channels with single

user active per-cell [10][11][13]. The latter result is dueto a remarkable early work by Narula

[14] dealing with the capacity of a two-tap time variant ISI channel. Calculating the per-cell

sum-rate capacity supported by the uplink channel of the “soft-handoff” setup in the presence

of general fading channels (not necessarily Rayleigh fading channels), when finite number of

users are active simultaneously in each cell remains an openproblem (see [11][15] for bounds

on this rate). As will be shown in the sequel, this problem is closely related to calculating the

spectrum of certain large random Hermitian Jacobi matrices. The high-SNR characterization of

the sum-rate capacity, previously unknown, is the main focus of this work.

In particular we calculate the high-SNR slope and power offset of the rate with a single user

active per-cell (intra-cell TDMA) under a rather generic fading distribution. We also prove the

following results for any given number of active users per-cell. We prove the existence of a

limiting sum-rate capacity when the number of cells goes to infinity and calculate the high-SNR

slope in Theorem 2. Moreover, we give bounds on the high-SNR power offset in Proposition

3. In particular, we give a sequence of explicit upper- and lower-bounds; the gap between the

lower and the upper bounds is decreasing with the bounds’ order and complexity.

The rest of the paper is organized as follows. In Section II wepresent the problem statement

and main results. Section III includes a comprehensive review of previous works. Several ap-

plications of the main result are discussed in Section IV. Concluding remarks are included in

Section V. Various derivations and proofs are deferred to the Appendices.
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II. PROBLEM STATEMENT AND MAIN RESULTS

A. System Model

In this paper we consider a linear version of the cellular “soft-handoff” setup introduced in

[10][11], according to whichM + 1 cells withK single antenna users per cell are arranged on

a line, where theM single antenna BSs are located on the boundaries of the cells(see Fig. 1

for the special case ofM = 3). Starting with the WB transmission scheme where all bandwidth

is devoted for coding and allK users are transmitting simultaneously each with average power

ρ, and assuming synchronized communication, a vector baseband representation of the signals

received at the system’s BSs is given for an arbitrary time index by

y = HMx + n . (1)

TheM ×K(M + 1) channel transfer matrixHM is a two block diagonal matrix defined by

HM =

















a1 b1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 aM bM

















, (2)

where am and bm are 1 × K row vectors denoting the channel complex fading coefficients,

experienced by theK users of themth and(m+ 1)th cells, respectively, when received by the

mth BS antenna.n represents theM×M zero mean circularly symmetric Gaussian noise vector

n ∼ CN (0, IM).

We assume throughout that the fading processes are i.i.d. among different users and BSs, with

am,k ∼ πa and bm,k ∼ πb, and can be viewed for each user as ergodic processes with respect

to the time index. We denote byP the probability associated with those random sequences and

by E the associated expectation. We will be working throughout with a subset of the following

assumptions.

(H1) Eπa
(log |x|)2 <∞1 andEπb

(log |x|)2 <∞.

(H2) πa andπb are absolutely continuous with respect to Lebesgue measureon C.

(H3) There exists a realM such that ifx is distributed according toπa (resp.πb) then the

density of|x|2 is strictly positive on the interval[M;∞).

1A natural base logarithm is used throughout this work unlessexplicitly denoted otherwise.
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(H3’) There existma < Ma ∈ R
+ ∪ {∞} (resp.mb < Mb ∈ R

+ ∪ {∞}) such that ifx is

distributed according toπa (resp.πb) then the density of|x|2 and the Lebesgue-measure

on [ma;Ma] (resp.[mb;Mb]) are mutually absolutely continuous.

(H4) There exists a ball inC such that the Lebesgue measure outside that ball is absolutely

continuous with respect toπa andπb.

We further assume that the channel state information (CSI) is available to the MCP only,

while the transmitters know only the channel statistics, and cannot cooperate their transmissions

in any way. Therefore, independent zero mean circularly symmetric Gaussian codebooks conform

with the capacity achieving statistics, wherex denotes the(M + 1)K × 1 transmit vectorx ∼
CN (0, ρIMK), andρ is the average transmit power of each user2 (ρ is thus equal to the transmit

SNR of the users).

With the above assumptions, the system (1) is a multiple access channel (MAC). We are

interested in the per-cell sum-rate capacity

CM(P ) =
1

M
E (log det GM) [nats/channel use] , (3)

whereP , Kρ is the per-cell transmitted average power,

GM , IM + ρHMH
†
M , (4)

and the expectation is taken over the channel transfer matrix entries. (Here and in the sequel, for

a scalarz ∈ C, z† denotes the complex conjugate, while for a matrixA, A† denotes the matrix

with A†(i, j) = A(j, i)†.) The non-zero entries of theHermitian Jacobimatrix GM are equal to

[GM ]m,m−1 = ρ < bm−1; am > ,

[GM ]m,m = 1 + ρ
(

|am|2 + |bm|2
)

,

[GM ]m,m+1 = ρ < am+1; bm > ,

(5)

where out-of-range indices should be ignored, and for any two arbitraryL length vectorsa, b

we define< a; b >,
∑L

l=1 a
†
l bl, and |a|2 ,< a; a >.

2Note that since the channel transfer matrixHM is a column-regulargain matrix (see definition in [16]) whenM → ∞, the

capacity achieving statistics remains the same in this case, even if we allow the users to cooperate as long as they are unaware

of the CSI.
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Since we shall focus on the asymptotes of infinite number of cells M → ∞, boundary effects

can be neglected and symmetry implies that the rate (3) equals the maximum equal rate (or

symmetric capacity) supported by the channel [17].

The above description relates to the WB protocol where all users transmit simultaneously.

According to the intra-cell TDMA protocol only one user is simultaneously active per-cell,

transmitting1/K of the time using thetotal cell transmit powerP . In this case it is easily

verified that with no loss of generality, we can consider a single user per cell in terms of the

per-cell sum-rate, settingK = 1 in (1) and (2).

B. Analysis Difficulty

Many recent studies have analyzed the rates of various channels using results from (large)

random matrix theory (see [18] for a recent review). In thosecases, the number of random

variables involved is of the order of the number of elements in the matrixGM (or HM ), and

self-averaging is strong enough to ensure convergence of the empirical measure of eigenvalues,

and to derive equations for the limit (or its Stieltjes transform). In particular, this is the case if

the normalized continuous power profile ofHM , which is defined as

PM(r, t) , E(|[HM ]i,j |2) ;
i

M
≤ r <

i+ 1

M
,

j

(M + 1)K
≤ t <

j + 1

(M + 1)K
, (6)

converges uniformly to a bounded, piecewise continuous function asM → ∞, see e.g. [18,

Theorem 2.50] and [19] for fluctuation results. In the case under consideration here, it is easy to

verify that forK fixed,PM(r, t) doesnot converge uniformly, and other techniques are required.

C. Extreme SNR Regime Characterization

As mentioned earlier, the per-cell sum-rate capacity of the“soft-handoff” setup is known only

for certain limited cases to be elaborated in the next section, and in general analytical results are

hard to derive. As an alternative to deriving exact analytical results we focus here on extracting

parameters which characterize the channel rate under extreme SNR scenarios. The reader is

referred to [20] - [22] for an elaboration on the extreme SNR characterization.

a) The Low-SNR Regime:This regime is usually the operating regime for wide-band

systems [21].
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The average per-cell spectral efficiency in bits/sec/Hz, expressed as a function of the sys-

tem average transmit SNR,Eb/N0, is evaluated by solving the implicit equation obtained by

substituting

P = CM

(

Eb

N0

)

Eb

N0
(7)

in (3), whereCM (Eb/N0) = CM(P )/ log 2 stands for the uplink spectral efficiency measured in

[bits/sec/Hz]. The low-SNR regime is characterized through the minimum transmitEb/N0 that

enables reliable communications,
Eb

N0 min

,
log 2

ĊM(0)
, (8)

and the low-SNR spectral efficiency slope

S0 ,
2
[

ĊM(0)
]2

−C̈M(0)
, (9)

yielding the following low-SNR affine approximation

CM

(

Eb

N0

)

≈ S0

3|dB

(

Eb

N0

∣

∣

∣

∣

dB

− Eb

N0 min

∣

∣

∣

∣

dB

)

[bits/sec/Hz]. (10)

In the above definitions3|dB = 10 log10 2, and ĊM(0) and C̈M(0) are the first and second

derivatives (whenever exist) with respect toP of the per-cell sum-rate capacity, respectively,

evaluated atP = 0. Focusing on Gaussian channels with receiver CSI only, it can be shown [21]

that there is no need to calculate the two derivatives of the rate inP = 0, and that the low-SNR

parameters are simply given by

Eb

N0 min

=
MK log 2

tr
(

EH
†
MHM

) ; S0 =
2

M

(

tr
(

EH
†
MHM

))2

tr

(

E

(

H
†
MHM

)2
) . (11)

b) The High-SNR Regime:This is usually the operating regime for high-data rate (high

spectral efficiency) systems (that is the case actually in all 2.5/3 G standards).

The high-SNR regime is characterized through the high-SNR slope (also referred to as the

“multiplexing gain”, or “pre-log”)

S∞ , lim
P→∞

CM(P )

logP
= lim

P→∞
PĊM(P ) , (12)

and the high-SNR power offset

L∞ , lim
P→∞

1

log 2

(

logP − CM(P )

S∞

)

, (13)
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yielding the following affine capacity approximation

CM(P ) ≈ S∞ log 2

3|dB
(P |dB − 3|dBL∞) . (14)

Note that the high-SNR approximation reference channel here is that of a single isolated cell,

with no fading, and total average transmit powerP .

The high-SNR characterization of the per-cell sum-rate supported by the “soft-handoff” uplink

channel is known only in certain limited scenarios (see Section III) and is the main focus of

this work.

D. Main Results

Recall the definition ofCM(P ), c.f. (3). Starting with intra-cell TDMA scheme where only

one user is active per-cell transmitting with powerP we have the following.

Theorem 1 [intra-cell TDMA schemeK = 1, high-SNR characterization] Assume (H1) and

(H2) .

a) For everyP > 0, CM(P ) converges asM goes to infinity. We call the limitC(P ).

b) We get the following bounds onC(P ),

max(Eπa
log(1 + P |x|2),Eπb

log(1 + P |y|2)) ≤ C(P ) ≤ Eπa,πb
log(1 + P (|x|2 + |y|2)).

c) Further assume [(H3) or (H3’)]. AsP goes to infinity,

C(P ) = logP + 2 max (Eπa
log |x| ,Eπb

log |x|) + o(1).

In particular, S∞ = 1 andL∞ = −2 max (Eπa
log2 |x| ,Eπb

log2 |x|).

Note that point c) shows that the lower bound of point b) is tight in the high-SNR regime.

Proof: The proof of points a) and c) follows from Theorem 5 of Appendix A, where we

prove that the variableCM(P ) , 1/M log det GM converges almost surely. Note however that

0 ≤ 1

M
log det GM ≤ 1

M

M
∑

m=1

log
(

1 + ρ(|am|2 + |bm|2)
)

, (15)

and the second inequality is due to Hadamard’s inequality for semi-positive definite (SPD)

hermitian matrices. With (H1), it follows thatCM(P ) is uniformly integrable, and hence the

almost sure convergence implies convergence in expectation. Recalling thatCM(P ) = E CM (P )

completes the proof of point a) and c).
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Let us show point b) using the tools of [23]. We first show the lower bound. We considern,

x andy as in (1).

CM(P ) =
1

M
I (x; y|(ai)1≤i≤M , (bi)1≤i≤M)

=
1

M

M
∑

j=1

I (xj ; y|(xi)1≤i<j , (ai)1≤i≤M , (bi)1≤i≤M)

≥ 1

M

M
∑

j=1

I (xj ; yj−1|(xi)1≤i<j, (ai)1≤i≤M , (bi)1≤i≤M)

=
1

M

M
∑

j=1

I(xj ; bj−1xj + nj−1|bj−1),

which is the per-cell sum-rate capacity of a single user fading channel. Therefore, the lower

bound is [24]Eπb
log(1 + P |y|2). As argued in the proof of Theorem 5 in Appendix A, we

can exchange the role ofπa andπb, thereby getting the claimed lower bound. Finally, the upper

bound of b) follows immediately from Hadamard’s inequalityfor SPD hermitian matrices.

In the proof of Theorem 5 (intra-cell TDMA scheme), we use ideas from the theory of

product of random matrices. Note thatCM (P ) = 1/M
∑M

m=1 log(1 + Pλm) where {λm}M
m=1

are the eigenvalues ofHMH
†
M , and the analysis of capacity hinges upon the study of spectral

properties ofHMH
†
M . The main idea is to link the spectral properties of the latter matrix

with the exponential growth of the elements of its eigenvectors. SinceHMH
†
M is a Hermitian

Jacobi matrix, hence tridiagonal, its eigenvectors can be considered as sequences with second

order linear recurrence. Therefore, the problem boils downto the study of the exponential growth

of products of two by two matrices. This is closely related tothe evaluation of the top Lyapunov

exponent of the product; The explicit link betweenCM(P ) and the top Lyapunov exponent is the

Thouless formula (see [25] or [26]), a version of which we prove in Appendix D. We emphasize

however that we do not use the Thouless formula or Lyapunov exponents explicitly in the proof

of Theorem 5.

Like in the result of Narula [14] described below in Section III, our approach uses the analysis

of a certain Markov Chain. Unlike [14], we are not able to explicitly evaluate the invariant

measure of this chain. Instead, we use the theory of Harris chains to both prove convergence

and continuity results for the chain. The appropriate definitions are introduced in the course of

proving Theorem 5.
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We remark that Theorem 1 continues to hold in a real setup, that is if instead of (H2), we

assume

(H2’) πa and πb are supported onR and are absolutely continuous with respect to Lebesgue

measure onR.

Since the argument is identical, we do not discuss this case further. It is also noted that unlike

the non-fading case, where intra-cell TDMA scheme is optimal (see [9]), it is proved to be

suboptimal forK > 1 in the presence of fading [27], yet TDMA it is one of the most common

access protocols in cellular systems.

Turning to the WB scheme (which is the capacity achieving scheme [27]), where all the

bandwidth is used for coding, and allK users are transmitting simultaneously with average

powerρ (and total cell average powerP = Kρ), we have the following less explicit high-SNR

characterization.

Theorem 2 [WB schemeK > 1, high-SNR characterization] Assume (H1), (H2) and (H4), and

K > 1.

a) For everyP > 0, CM(P ) converges asM goes to infinity. We call the limitC(P ).

b) We get the following bounds onC(P ),

max(E log(1 +P |a|2 /K),E log(1 +P |b|2 /K)) ≤ C(P ) ≤ E log(1 +P (|a|2 + |b|2)/K),

where the expectation is taken in the following way: the random variablesa and b are

independent, anda (resp. b) is a complexK-vector whose coefficients are independent

and distributed according toπa (resp.πb).

c) AsP goes to infinity,

C(P ) = logP + E log

(

e+ |b|2
K

)

+ o(1) , (16)

where the expectation is taken in the following way: the random variablese and b

are independent, andb is a complexK-vector whose coefficients are independent and

distributed according toπb. The law ofe is m0, which is the unique invariant probability

of the Markov chain defined by

en+1 = |an|2
(

en + |bn−1|2 sin2(an, bn−1)

en + |bn−1|2

)

, (17)
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where for any two arbitrary equal length vectorsa, b,

sin2(a, b) , 1 − |< a; b >|2

|a|2 |b|2
. (18)

In particular, S∞ = 1 andL∞ = −E log2

(

e+|b|2

K

)

.

As with the caseK = 1, point a) and c) of Theorem 2 follow from the almost sure convergence

stated in Theorem 21 of Appendix C, using (H1) and (15). As with Theorem 5, we do not use

the Thouless formula or Lyapunov exponents explicitly in the proof of Theorem 21. The proof

of point b) is the same as the proof of Theorem 1.b). It is worthmentioning that in contrast to

Theorem 1, the non-asymptotic lower bound b) is not tight in general for large SNR. This is

since it is an increasing function ofK and converges to a rate of a single-user Gaussian scalar

channel, which is smaller than the asymptotic rate of (23).

Note that although the roles of the sequences{an} and{bn} in (17) are not symmetric, the

expression (16) is symmetric inπa andπb, as is the case forK = 1.

We conclude this section by noting that while Theorem 2 (WB schemeK > 1) does not give

explicit expressions for the high-SNR power offset as Theorem 1, its proof leads immediately to

easily computable bounds. In the following, the notation isas in Theorem 2, and we leten(a)

denote the Markov chain (17), with initial conditione0(a) = a.

Proposition 3 Assume (H1), (H2) and (H4), andK > 1. Then,

E log

(

en(0) + |b|2
K

)

≤ lim
P→∞

[C(P ) − logP ] ≤ E log

(

en(∞) + |b|2
K

)

,

where the expectation is taken in the following way.en(0) (resp.en(∞)) andb are independent.

b is a complexK-vector whose coefficients are independent and distributedaccording toπb.

en(0) (resp.en(∞)) is then-th step of the Markov chain defined by (17) with initial condition

e0(0) = 0 (resp.e0(∞) = ∞).

Indeed, since the expression (17) foren+1 is monotone increasing inen, the law ofe in Theorem

2 is stochastically dominated below by the law ofen with intial condition0, and stochastically

dominated above by the law ofen with initial condition∞. That same monotonicity also shows

that the sequences of laws ofen(0) (resp.,en(∞)) are monotone increasing (resp., decreasing)

with respect to stochastic order.
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As a direct consequence of Proposition 3 withn = 1 and (13), we get the following bounds

on the high-SNR power offset

−E log2

(

|a|2 + |b|2
K

)

≤ L∞ ≤ −E log2

(

|a|2 sin2(a, b) + |b′|2
K

)

, (19)

where the expectation is taken in the following way:a, b andb′ are independent, anda (resp.

b, b′) is a complexK-vector whose coefficients are independent and distributedaccording toπa

(resp.πb). Note that forK going to infinity, if we assumeπa = πb and zero mean, thensin2(a, b)

converges to 1, therefore the ratio between the upper- and lower-bound of (19), converges to 1,

which also agrees with the asymptotic result of (37).

Numerical Results:In Figures 2 and 3 we present the high-SNR power offset boundsof

Proposition 3 in the special case of Rayleigh fading (real and imaginary parts are independent

Gaussian random variables with zero mean and variance1/
√

2), for K = 2 andK = 10 users

per-cell respectively. The curves are produced by Monte Carlo simulation with105 samples. The

figures include also the lower bound of [11], see (38), and theasymptotic results (and lower

bound) for large number of users per-cellL∞ = −1 (achieved by takingK to infinity in (38)).

Examining the figures it is observed that the new bounds are getting tighter with their ordern

and that the new lower bound is tighter than (38) already forn = 2. Moreover, fixing the order

n, the new bounds are getting tighter with the number of users per-cell K. This observation

is also evident from Fig. 4, where the bounds are plotted for afixed ordern = 2 versus the

number of users per-cellK. Finally, since the upper bound of Fig. 2 is negative, we conclude

that the presence of Rayleigh fading is beneficial over non-fading channels in the high-SNR

region already forK = 2. (See [11] for a similar conclusion in the low-SNR region.)

III. B ACKGROUND, PREVIOUS RESULTS AND BOUNDS

In this section we briefly summarize previous work on the “soft-handoff” uplink cellular model

introduced in [10][11]. For conciseness, we restrict the discussion to the case whereπa = πb.

Most of the results in the sequel can be extended to include the general case whereπa 6= πb.

Starting with non-fading channels (i.e., whenπa and πb are singletons at 1), the per-cell

sum-rate capacity of the uplink channel is given forM → ∞ by [11]

Rnf = log

(

1 + 2P +
√

1 + 4P

2

)

. (20)
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This rate is achieved by any symmetric intra-cell protocol with average transmit power ofP

(e.g. intra-cell TDMA, and WB protocols). It is noted that the same result holds also for phase

fading processes [13].

The extreme SNR characterization of (20) is summarized for the non-fading setup by

S0 =
4

3
,

Eb

N0 min

=
log 2

2
, S∞ = 1 , L∞ = 0 . (21)

Returning to the flat fading setup, the channel coefficients are taken as i.i.d. random variables,

denoting by

m1 , E(am,k) = E(bm,k) ; m2 , E(|am,k|2) = E(|bm,k|2)

m4 , E(|am,k|4) = E(|bm,k|4) ; K ,
m4

m2
2

, ∀ m, k (22)

the mean, second power moment, fourth power moment and the kurtosis of an individual fading

coefficient.

The per-cell sum-rate capacity of the WB scheme with fixedP and increasing number of

users and cellsM,K → ∞, is given by [11]3

Rwb−f = log





1 + 2Pm2 +
√

1 + 4Pm2 + 4P 2(m2
2 − |m1|4)

2



 . (23)

The rate is maximized for a zero mean fading distribution andis given by

Rwb−f = log(1 + 2m2P ) . (24)

Comparing (20) and (24) (withm2 = 1), it follows that the presence of fading is beneficial in

case the number of users is large. We note that (23) is also shown in [11] to upper bound the

respective rate for any finite number of usersK.

Returning to the intra-cell TDMA (K = 1), for which standard random matrix theory is not

suitable (see Sec. II-B), the powerful moment bounding technique employed in [27] for the

Wyner model, can be utilized to obtain lower and upper boundson the per-cell sum-rate.

An alternative approach which replaces the role of the singular values with the diagonal

elements of theCholeskydecomposition of the the matrixGM , was presented by Narula [14]

for a two diagonal nonzero channel matrixHM whose entries are i.i.d. zero-mean complex

3Here, the number of usersK is taken to infinity and then the number of cellsM is taken to infinity.
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Gaussian (Rayleigh fading). Originally, Narula had studied the capacity of a time varying two

taps inter-symbol-interference (ISI) channel, where the channel coefficients are i.i.d. zero-mean

complex Gaussian. With the above assumptions regarding theISI channel coefficients it is easy

to verify that the capacity of this model is equal to the per-cell sum-rate capacity of an uplink

intra-cell TDMA scheme employed in the “soft-handoff” model.

Following [14], we use theCholeskydecomposition applied to the covariance matrix of the

uplink intra-cell TDMA scheme output vectorGM = LMDMUM , whereLM (resp.UM ) is a

lower triangular (resp. upper triangular) matrix with 1 on the diagonal. The diagonal entries of

GM are given (withK = 1) by

dm = 1 + P |am|2 + P |bm|2
(

1 − P
|am−1|2
dm−1

)

, m = 2, . . . ,M , (25)

where the initial condition of (25) isd1 = 1+P |a1|2 +P |b1|2. Thus, the diagonal entries{dm}
form a discrete-time continuous space Markov chain; Narula’s main observation was that this

chain possesses a unique ergodic stationary distribution,given by

fd(x) =
log(x)e−

x
P

Ei
(

1
P̄

)

P
; x ≥ 1 , (26)

where Ei(x) =
∫∞

x

exp(−t)
t

dt is the exponential integral function. Further, as is provedin [14],

the strong law of large numbers (SLLN) holds for the sequence{log dm} asM → ∞. Hence,

the average per-cell sum-rate capacity of the intra-cell TDMA scheme (K = 1) can be expressed

as

Rtdma−f = lim
M→∞

E

(

1

M
log det GM

)

= lim
M→∞

E

(

1

M
log det (LMDMUM)

)

= lim
M→∞

E

(

1

M

M
∑

m=0

log dm

)

= Eπd
(log d) ,

(27)

where the last expectation is taken with respect tofd(x), as defined in (26). In particular,

Rtdma−f =

∫ ∞

1

(log(x))2e−
x
P

Ei
(

1
P

)

P
dx . (28)

Narula’s approach is based on an explicit calculation of theinvariant distributionfd, and is thus

tied to Rayleigh fading. Modifications of key parameters (such as the entries’ PDF, and the

number of nonzero diagonals) lead to analytically intractable expressions.
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Another result derived by following the footsteps of [14] isan upper bound on the per-cell

sum-rate of the WB scheme with finiteK and infinite number of cellsM → ∞, in the presence

of a general fading distribution, given by

Rwbk−f ≤ log





1 + 2Pm2 +
√

1 + 4Pm2 + 4P 2
(

1 − 1
K

) (

m2
2 − |m1|4

)

2



 . (29)

and in the special case of zero mean unit power (m1 = 0, m2 = 1) fading distribution (e.g.

Rayleigh fading) the bound reduces to

Rwbk−f ≤ log

(

1 + 2P +
√

(1 + 2P )2 − (4P 2/K)

2

)

. (30)

This result which is proved in [14] forK = 1 (intra-cell TDMA protocol) and expanded to an

arbitrary K in [15], is derived by noting that the average of the determinant of the received

vector covariance matrixGM can be recursively expressed by

E(det Gm) = A E(det Gm−1) −B E(det Gm−2) ; m = 3, . . . ,M , (31)

with initial conditions

E(det G1) = A ; E(det G2) = A2 − B , (32)

where

A = 1 + 2Pm2 ; B =
P 2

K

(

m2
2 + (K − 1) |m1|4

)

. (33)

See Appendix E for more details. The solution to (31) is givenby

E(det Gm) = ϕ rm − φ sm , (34)

where

r =
1

2

(

A +
√
A2 − 4B

)

; s =
1

2

(

A−
√
A2 − 4B

)

, (35)

are real and positive, andϕ, φ are determined by the initial conditions (32). Finally, (29) is

derived by the following set of inequalities

Rwbk−f = lim
M→∞

1

M
E (log det GM) ≤ lim

M→∞

1

M
log E (det GM) = log r , (36)

where the inequality is due to Jensen’s inequality, and the last equality follows from the fact that

r > s, andM → ∞. In the case ofK = 1, the upper bound of (30) coincides with the per-cell

sum-rate capacity of the non-fading setup (20). Thus, the presence of Rayleigh fading decreases
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the rates of the intra-cell TDMA protocol supported by the “soft-handoff” model. Nevertheless,

it is shown in [11] that already forK = 2 the presence of fading may be beneficial at least

for low SNR values. The tightness of the bound is demonstrated by noting the forK → ∞ it

coincides with the asymptotic expression of (23).

The extreme SNR characterization of the WB rate forM → ∞ in the presence of a general

fading distribution is summarized by [11]

S0 = 2
K
2K

+
|m1|

4

2m2
2

+1
; Eb

N0 min
= log 2

2m2

S∞ ≤ 1 ; − log2

(

m2 +
√

(

1 − 1
K

) (

m2
2 − |m1|4

)

)

≤ L∞ .

(37)

The bounds of the high-SNR parameters are tight forK ≫ 1. For the special case of Rayleigh

fading the extreme SNR characterization are given by [11]

S0 = 2
1+ 1

K

; Eb

N0 min
= log 2

2

S∞ = 1 ; − log2

(

1 +
√

1 − 1
K

)

≤ L∞ ≤ γ

log 2
,

(38)

whereγ ≈ 0.5772 is the Euler-Mascheroni constant. It is noted that the rightinequality of the

high-SNR power offset is tight forK = 1, while the left inequality is tight forK ≫ 1. The

beneficial effects of Rayleigh fading and increasing numberof users are evident when compared

to the non-fading extreme-SNR parameters of the respectivenon-fading setup (21).

To conclude this section we emphasize that calculating exact expressions for the high-SNR

parameters of the WB protocol rate with finite number of usersper-cell andgeneral fading

distribution remains an open problem.

IV. A PPLICATIONS

In this section we present several applications of the main results presented in this work (see

Section II-D).

c) Intra-Cell TDMA and Rayleigh Fading:Assuming that only one user is active per-cell

K = 1 and symmetric Rayleigh fading channels (i.e.π|a|2 andπ|b|2 are exponential distributions

with parameter 1), the high-SNR power offset is given according to Theorem 1, by

L∞ = −max
(

E(log2 |a|2),E(log2 |b|2)
)

=
−1

log 2

∫ ∞

0

e−x log x dx =
γ

log 2
(39)
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where the last equality is due to [28, pp. 567, formula 4.331.1]. Obviously this result coincides

with the high-SNR power-offset derived by applying the definition of L∞ (see (13)) directly to

the exact expression derived in [14] (see expression (28)).

Note that the same result holds if an attenuation factor is added to one of the fading paths,

e.g. b̃m = αbm wherebm ∼ CN (0, 1) andα ∈ [0, 1]; this follows directly from Theorem 1, but

not from [14], which requires symmetric fading paths (i.e.α = 1).

d) Intra-Cell TDMA and General Fading Statistic:Consider the following single user

single-input single-output (SISO) flat fading channel for an arbitrary time index

y = ax+ n , (40)

wherex is the input signalx ∼ CN (0, P ), andn is the additive circularly symmetric Gaussian

noise n ∼ CN (0, 1). In addition, a is the fading coefficienta ∼ πa satisfying conditions

(H1). . . (H3) and known only to the receiver (receiver CSI). Assuming that the fading process is

also ergodic in the time domain, the ergodic capacity of the channel is given by [24]

C = Eπa
log(1 + P |a|2) , (41)

where the expectation is taken over the fading distributionπa. Accordingly, under the mild

conditions (H1). . . (H3), the high-SNR regime of this channel is characterized by

S∞ = 1 ; L∞ = −Eπa
log2 |a|2 . (42)

Using Theorem 1, we can now establish the following analogy between the multi-cell setup and

the SISO channel at hand.

Corollary 4 The high-SNR characterization of the intra-cell TDMA per-cell sum-rate supported

by the “soft-handoff” setup with fading distributionsπa, πb such thatEπa
log2 |a|2 > Eπb

log2 |b|2,
coincides with those of a scalar single-user fading channelwith fading distributionπa.

This observation allows us to use the vast body of work done for the celebrated scalar flat

fading channel [24]. In particular, the high-SNR characterization of flat fading channels with

the following fading statistics have been considered in previous works: (a) Rayleigh distribution,

(b) Rice distribution, (c) log-normal distribution, and (d) Nakagami distribution (see [24] and

references therein).
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e) Intra-Cell TDMA and Opportunistic Scheduling:Throughout this work we have assumed

that the instantaneous channel state information is known to the MCP receiver only. Here we

further assume that some sort of ideal feedback channel is available between the MCP receiver

and theK mobile users included in each cell. This feedback channel isused to schedule the

“best” local user in each cell for transmission during the current time slot4. In other words, in

each cell the user with the strongest channel fade towards the BS located on the right boundary

of each cell is scheduled for transmission5 with powerP . Hence, the index of the selected user

in themth cell reads

k̃m = argmax
k=1,2,...K

|am,k|2 m = 1, 2, . . . ,M . (43)

The resultingM × (M + 1) channel transfer matrix̃HM of this scheduling scheme is a two

diagonal matrix with independent entries. The probabilitydensity function of the main diagonal

i.i.d. entries’ amplitudes is given by

dπK,|a|2 = KπK−1

|a|2
dπ|a|2 , (44)

following the maximum order statistics [30]. On the other hand, the i.i.d. entries of the second

non-zero diagonal are distributed according to the original fading statisticsπb.

Assuming thatπK,|a|2 andπb satisfy conditions (H1). . . (H3), we can apply Theorem 1 in order

to derive the high-SNR characteristics of the per-cell sum-rate achievable by this opportunistic

scheduling

S∞ = 1 ; L∞ = −max
(

Eπ
K,|a|2

(log2 y),Eπb
(log2 |b|2)

)

. (45)

For Rayleigh fading channels and in the case where the numberof users per-cell is largeK ≫ 1,

we can use the well known fact that the square of the maximum oftheK amplitudes behaves like

logK with high-probability (see [31]). Hence, the rate high-SNRpower offset of this scheme is

L∞ ≈ − log2 logK , (46)

revealing a multi-user diversity gain oflog logK. It is noted that allowing additional power

control to this scheme will yield better performances. However, we are unable to apply Theorem

1 for this situation. Finally, choosing the BS located on theright boundary of the cell is arbitrary;

taken the BS located on the left boundary of the cell yields the same results.

4See [29] for a similar scheduling deployed in the Wyner cellular uplink channel.

5Since the right most cell indexed (M+1), has no BS on its rightboundary it randomly schedules a user for transmission.
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V. CONCLUDING REMARKS

In this paper we study the high-SNR characterization of the per-cell sum-rate capacity of

the “soft-handoff” uplink cellular channel with multi-cell processing. Taking advantage of the

special topology induced by the setup, the problem reduces to the study of the spectrum of

certain large random Hermitian Jacobi matrices. For the intra-cell TDMA protocol where only

one user is active simultaneously per-cell we provide an exact closed form expression for the

per-cell sum-rate high-SNR power offset for rather generalfading distribution. Examining the

result, it is concluded that in the high-SNR regime, the rateof the cellular setup at hand is

equivalent to the one of a single user SISO channel with similar fading statistics.

Turning to the capacity achieving WB protocol, where allK users are active simultaneously

in each cell, we derive a series of lower and upper bounds to the rate. These bounds are shown

(via Monte-Carlo simulations) to be tighter than previously known bounds.

Note that in Theorem 2 points a) and c) and in Proposition 3, wetake the fading coefficients

relative to the users of one cell to be independent. Those results continue to be true if we

assume correlation between the fading coefficients relative to the users of the same cell (but

independence between cells). The proof is identical to the proof given in the paper.

Some of the analysis reported here can be extended to includethe case whereGM is (2p−1)-

diagonal for somep > 2 (e.g. p = 3 for the channel matrix of the Wyner model), using an

adaptation of the “Thouless formula for the strip” derived originally in [32]. Using this approach,

bounds similar to those of Prop. 3 may be provided on the rate.Details will appear elsewhere

[33].
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APPENDIX

A. Proof of Theorem 1

In order to streamline the proof we somewhat modify notation. We consider two random

sequences of complex numbers(an) and (bn). The (an) (resp. (bn)) are i.i.d of lawπa (resp.

πb) and the(an) are independent of the(bn). We setΩ , ((an), (bn)). We denote byP the

probability associated with those random sequences and byE the associated expectation. For a

given integern, we consider a channel transfer matrixHM of sizeM × (M + 1).

HM =

















a1 b1 0 · · · 0

0
. .. . . . . . .

...
...

. .. . . . . . . 0

0 · · · 0 aM bM

















.

We consider the following variable

CM(P ) =
1

M
tr
{

log
(

I + PHMH
†
M

)}

.

Note that,

HMH
†
M =























|a1|2 + |b1|2 a†2b1 0 · · · 0

a2b
†
1 |a2|2 + |b2|2 a†3b2

. . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . a†MbM−1

0 · · · 0 aMb
†
M−1 |aM |2 + |bM |2























.

With this notation, as explained in Section II-D, Theorem 1 follows from the following.

Theorem 5 [K = 1] Assume (H1) and (H2) .

a) For everyρ > 0, CM (P ) convergesP-a.s asM goes to infinity. We call the limitC(P ).

b) Further assume [(H3) or (H3’)]. Asρ goes to infinity,

C(P ) = logP + 2 max (Eπa
log |x| ; Eπb

log |x|) + o(1).

Proof of Theorem 5Without loss of generality, in the proof we can assume

(H5) Eπa
log |x| ≤ Eπb

log |x|.
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Indeed, we may exchange the role of entriesai andbi for 1 ≤ i ≤M by a right-left reflection,

namely the transformation̂aj = bM−j+1, b̂j = aM−j+1, 1 ≤ j ≤M .

For part a), only (H1) and (H2) are needed. Since part a) is a consequence of general facts

concerning products of random matrices and does not use muchof the special structure in the

problem, we bring it in Appendix D.

Part b) uses the theory of Markov chains and is specific to the particular matrixHM . We note

that as a by product of this approach, we obtain a second proofof part a), however under the

additional assumption [(H3) or (H3’)]. We provide a proof ofTheorem 5 under the assumptions

(H1), (H2) and [(H3) or (H3’)] in Appendices A and B.

The structure of the proof is as follows. We first introduce anauxiliary sequence which allows

us to reformulate the problem in terms of a special Markov chain. The study of the latter, which

forms the bulk of the proof of Theorem 5, is carried out in Section B.

1) Auxiliary sequence:We begin with a technical lemma.

Lemma 6 Assume (H2).P-a.s,HMH
†
M does not have multiple eigenvalues.

Proof: We letD denote the discriminant ofHMH
†
M , it is a polynomial in

{|ai|2 + |bi|2 , ai+1b
†
i , a

†
i+1bi} which vanishes when there is a multiple eigenvalue. Therefore, it

is a polynomial inℜai, ℑai, ℜbi andℑbi It is not identically 0 because forbi = 0 andai = i,

the eigenvalues ofHMH
†
M are distinct. The result follows directly from the following lemma

which is an easy consequence of Fubini’s theorem.

Lemma 7 Let Q be a function fromC
n to C. We assume thatQ is not identically 0 and that

Q(z1, . . . , zn) is a polynomial in theℜzi and theℑzi. Then the set of the roots ofQ has Lebesgue

measure 0.

In the sequel, we denote byλ1 ≥ . . . ≥ λM the ordered eigenvalues ofHMH
†
M . For a given

λ, we consider the following sequence (indexed byn) of complex numbers (the dependence in

λ will only be mentioned when it is relevant):x0 = 0, x1 = 1, and forn ≥ 1,

anb
†
n−1xn−1 + (|an|2 + |bn|2)xn + a†n+1bnxn+1 = λxn,

that is

xn+1 =
λ− |an|2 − |bn|2

a†n+1bn
xn − anb

†
n−1

a†n+1bn
xn−1. (47)
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Note thatxM+1(λ) = 0 if and only if λ is an eigenvalue ofHMH
†
M . Moreover,xn+1 is a

polynomial inλ of degreen with highest coefficient1/
∏n

i=1(a
†
i+1bi). One can thus write using

Lemma 6

xn+1(λ) =

n
∏

i=1

(a†i+1bi)
−1

n
∏

i=1

(λ− λi) P − a.s,

Hence, forλ = −1/P ,

CM (P ) = log(P ) +
1

M
log |xM+1(λ)| + 1

M

M
∑

i=1

log |ai+1bi| P − a.s. (48)

By the Law of Large Numbers (LLN),

lim
M→∞

1

M

M
∑

i=1

log |ai+1bi| = Eπa
log |x| + Eπb

log |x| P − a.s.

Because of (48), to prove Theorem 5, we only need to show the following lemma.

Lemma 8 Assume (H1), (H2) and [(H3) or (H3’)]

a) For everyλ < 0, 1
n

log |xn+1(λ)| convergesP-a.s asn goes to infinity. The limit isγ(λ),

the Lyapunov exponent defined by (62).

b) Assume further (H5). Thenγ(λ) converges toEπb
log |x| − Eπa

log |x| as λ goes to 0.

2) Reduction to a Markov chain:To prove Lemma 8, we takecn , xn/xn−1, for n ≥ 2. Note

that by (47) and (H2),P-a.s,xn 6= 0, hencecn is well defined and non-zero. By (47), we get

cn+1 =
λ− |an|2 − |bn|2

a†n+1bn
− anb

†
n−1

cna
†
n+1bn

.

Let dn = cna
†
nbn−1. Then,

dn+1 = λ− |an|2 − |bn|2 −
|an|2 |bn−1|2

dn

= λ− |bn|2 − |an|2
(

1 +
|bn−1|2
dn

)

.

Let en =
(

1 + |bn−1|
2

dn

)

. Thendn+1 = λ− |bn|2 − |an|2 en, and

en =
−λ+ |an−1|2 en−1

−λ + |bn−1|2 + |an−1|2 en−1

, (49)

with the initial conditions,

c2 =
λ− |a1|2 − |b1|2

a†2b1
;

d2 = λ− |b1|2 − |a1|2 .
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d2 ∈ R andd2 < − |b1|2, hence,0 < e2 < 1. From (49) we conclude that for alln, en ∈ R and

0 < en < 1. Now, for all n,

cn =
dn

a†nbn−1

=
b†n−1

an

†
1

en − 1
.

Then,

1

n
log |xn+1| =

1

n

n+1
∑

i=2

log |ci|

=
1

n

n+1
∑

i=2

(

log

∣

∣

∣

∣

bi−1

ai

∣

∣

∣

∣

− log(1 − ei)

)

(50)

1
n

∑n+1
i=2 log

∣

∣

∣

bi−1

ai

∣

∣

∣
converges toEπb

log |x|−Eπa
log |x| by the LLN. We now study in details the

Markov chainen.

B. Study of the Markov chainen and proof of Lemma 8

For simplicity, we writeδ , −λ and we re-index the chain so that it starts frome0. As in

(49),

en =
δ + |an−1|2 en−1

δ + |bn−1|2 + |an−1|2 en−1

. (51)

We denote byPe0
the law of the sequence starting frome0 and byEe0

the associated expectation.

Proposition 9 Assume (H2) and [(H3) or (H3’)]. The Markov chainen has a unique stationary

probability, say,µδ and for s ∈ L1(µδ), for every starting pointe0 ∈ [0, 1], Pe0
-a.s,

1

n

n
∑

i=0

s(ei) −−−→
n→∞

∫

sdµδ.

Proof: We start with two lemmas that will be proved later on.

Lemma 10 For α, β, δ ∈ R
+, we define the functionφα,β (we suppressδ from the notation)

such that fore ∈ [0, 1]

φα,β(e) =
δ + αe

δ + β + αe
.

For any givene ∈ [0, 1], we define the sequence(θn(e)) by θ0 = e and for n ≥ 1, θn(e) =

φα,β(θn−1(e)). Then,φα,β has exactly one fixed point in[0, 1], sayκα,β , and θn(e) converges to

κα,β. Moreover, the convergence is uniform in the starting pointin the following sense:

(∀ε > 0)(∃n0 ∈ N)(∀e ∈ [0, 1])(∀n ≥ n0)(|θn(e) − κα,β| < ε).
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Finally if α1 < α2 and β1 > β2, thenκα1,β1
< κα2,β2

.

Lemma 11 Assume (H2) and [(H3) or (H3’)].

a) For e0 ∈ [0, 1], there exist two sequences(θ1
n(e0)) and (θ2

n(e0)) in [0, 1] such that the law

of en underPe0
and the Lebesgue-measure on[(θ1

n(e0)), (θ
2
n(e0))] are mutually absolutely

continuous.

b) (θ1
n(e0)) and (θ2

n(e0)) converge to, sayΘ1 andΘ2 respectively,Θ1 andΘ2 are independent

of e0 and Θ1 < Θ2. Finally, the convergence is uniform in the starting point in the sense

of Lemma 10.

c) If e0 ∈ [Θ1,Θ2], then for all n, the law ofen under Pe0
is absolutely continuous with

respect to the Lebesgue-measure on[Θ1,Θ2].

We recall some definitions from the theory of Harris Markov chains, which will be used

extensively in the proof. We refer the reader to [34] for the relevant background.

Definition 12 Denote by(rn) a Markov chain onI an interval ofR. Setl a probability measure

on I, it is an irreducibility measureif for all measurable setA such thatl(A) > 0 and for all

r0 ∈ I

(∃n) Pr0
(rn ∈ A) > 0.

l is a maximal irreducibility measureif it satisfies the following conditions:

• l is an irreducibility measure.

• For any other irreducibility measurel′, l′ is absolutely continuous with respect tol.

• If l(A) = 0 then l{r0 : (∃n) Pr0
(rn ∈ A) > 0} = 0.

• For any irreducibility measurel′, l is equivalent to
∫

I

l′(dr0)

∞
∑

i=0

1

2i
Pr0

(ri ∈ ·).

Definition 13 Denote by(rn) a Markov chain onI an interval ofR. A setA is called Harris

recurrentif for all r0 ∈ A, Pr0
-a.s, the chainrn visitsA an infinite number of times. The chain

(rn) is calledHarris recurrentif given a maximal irreducibility measurel, every measurable set

A such thatl(A) > 0 is Harris recurrent.

Definition 14 Denote by(rn) a Markov chain onI an interval ofR. Denote byl a maximal

irreducibility measure. For every measurable setA such thatl(A) > 0 we denote byτA the time
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when the chain(rn) entersA. A measurable setB is called regularif for every measurable set

A such thatl(A) > 0,

sup
r0∈B

Er0
(τA) <∞.

Definition 15 Denote by(rn) a Markov chain onI an interval ofR. Denote byA andB two

measurable sets. We say thatB is uniformly accessiblefromA if there exists anε > 0 such that

inf
r0∈A

Pr0
((∃n) rn ∈ B) ≥ ε.

We continue with the proof of Proposition 9. Denote byl the Lebesgue-measure on[Θ1,Θ2].

By [34, Theorem 17.0.1], it is enough to prove that the Markovchainen is l-irreducible, positive

Harris with invariant probabilityµδ. DenoteB+ the set of Lebesgue-measurable subsets of[0, 1]

with positive l-measure. Here is a technical lemma that will be proved lateron.

Lemma 16 Assume (H2) and [(H3) or (H3’)]. For allB ∈ B+, there existsn0 = n0(B) such

that for all n ≥ n0,

pn , inf
e0∈[0,1]

Pe0
(en ∈ B) > 0.

We continue with the proof of Proposition 9.

Step 1: The Markov chainen is l-irreducible, Harris and admits an invariant measure unique

up to a constant multiple.By Lemma 16, fore0 ∈ [0, 1] andB ∈ B+, the chain has a positive

probability to reachB in n0 steps starting frome0. Therefore, the Markov chainen is l-irreducible

and by Lemma 11 c),l is a maximal irreducibility measure for the chainen. For a givenB ∈ B+,

by Lemma 16, the chainen has a probability at leastpn0
to reachB in n0 steps, hence the chain

will eventually reachB and hence come back toB an infinite number of times, thereforeB is

Harris-recurrent and the Markov chainen is Harris. By [34, Theorem 10.0.1], the Markov chain

en admits an invariant measure unique up to a constant multiple.

Step 2: The Markov chainen is aperiodic.By [34, Theorem 5.4.4], there exists an integerd,

the period of the chain, such that there exist disjoint measurable setsD0, . . . , Dd−1 such that

• For i = 0 . . . d− 1, if ei ∈ Di, thenPei
(ei+1 ∈ Di+1) = 1 (mod d).

• l
(

(∪d
i=1Di)

c
)

= 0.

By Lemma 11, forn1 ≥ n0 large enough andn ≥ n1, the Lebesgue-measure onJ , [(2Θ1 +

Θ2)/3, (Θ1+2Θ2)/3] is absolutely continuous with respect to the law ofen underPe0
. Therefore,
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for anyn ≥ n1, if en ∈ Di, thenJ ⊂ Di, and then, ifd > 1, en+1 ∈ Di+1 and thus alsoJ ⊂ Di+1,

a contradiction. Hence,d = 1.

Step 3: The set[0, 1] is regular for the Markov chainen. TakeB ∈ B+. By Lemma 16, the

time it will take for the chainen to enterB is a.s bounded above byn0 times a geometric

random variable of parameterpn0
, hence it expectation is bounded above byn0/pn0

, hence[0, 1]

is regular.

Now we apply [34, Theorem 13.0.1] and get that the Markov chain en is positive Harris,

hence has a unique invariant probability that we denoteµδ.

Proof of Lemma 16:

The Lebesgue-measure on[Θ1,Θ2] is regular hence there exists anε > 0 such thatB ∩ [Θ1 +

ε,Θ2 − ε] has positive Lebesgue-measure. By Lemma 11 a) and b), we can taken0 such that

for any givenn ≥ n0 and any given starting pointe0, Pe0
(en ∈ B) > 0. Fix n ≥ n0. Set

ψ(e0) = Pe0
(en ∈ B). By (H2), ψ is a continuous function on[0, 1]. By compactness,

inf
e0∈[0,1]

Pe0
(en ∈ B) > 0.

Proof of Lemma 11:Let us start assuming (H3’).

a) We first assume thatMa,Mb ∈ R+. We use the notation of Lemma 10. Fore0 ∈ [0, 1]

andn, we defineθ1
n(e0) = φn

ma,Mb
(e0) andθ2

n(e0) = φn
Ma,mb

(e0), whereφn is then-th iteration

of the functionφ. Note that fore1 ≤ e2 ∈ [0, 1], α1 < α2 ∈ R+ andβ1 < β2 ∈ R+,

ψ : [e1, e2] × [α1, α2] × [β1, β2] −→ [φα1,β2
(e1), φα2,β1

(e2)]

(x, α, β) 7−→ φα,β(e)

is well defined and onto and the inverse image of an interval which is not a singleton has positive

Lebesgue-measure. Therefore, by induction, the Lebesgue-measure on[θ1
n, θ

2
n] is absolutely

continuous with respect to the law ofen underPe0
. Moreover, by (H2) and (51), the Lebesgue-

measure on[θ1
n, θ

2
n] and the law ofen underPe0

are mutually absolutely continuous.

b) It is a direct consequence of Lemma 10 and we getΘ1 = κma,Mb
andΘ2 = κMa,mb

. By

Lemma 10 and (H3’),κma,Mb
< κMa,mb

, henceΘ1 < Θ2.
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c) φma,Mb
is increasing andκma,Mb

a fixed point hence ifκma,Mb
≤ e0, then for all n,

κma,Mb
≤ θ1

n(e0). In the same way, for alln, κMa,mb
≥ θ2

n(e0).

If Ma = ∞ (resp.Mb = ∞), we take for alln ≥ 1, θ2
n = 1 (resp.θ1

n = 0) andΘ2 = 1 (resp.

Θ1 = 0) and the proof is the same.

Let us now assume (H3). The proof is the same with for alln ≥ 1 and all e0 ∈ [0, 1],

θ1
n(e0) = 0, for all n ≥ 1 and alle0 ∈ [0, 1] (except forn = 1 and e0 = 0), θ2

n(e0) = 0. We get

Θ1 = 0 andΘ2 = 1.

Proof of Lemma 10:For e ∈ [0, 1],

φ′
α,β(e) =

αβ

(δ + β + αe)2
.

φ′
α,β is decreasing andφ′

α,β(1) < 1. If φ′
α,β(0) < 1, thenφα,β is contracting hence admits a fixed

point and its iteration on any starting point converges to the fixed point. Supposeφ′
α,β(0) ≥ 1.

Denote bye the only point of [0, 1] such thatφ′
α,β(e) = 1. Set φ̃α,β(e) = φ(e)α,β − e. Then

φ̃α,β(0) > 0, φ̃α,β(1) ≤ 0, and φ̃α,β is increasing on[0, e] and decreasing on[e, 1]. Hence,

φ̃α,β(e) > 0 and φ̃α,β is 0 on exactly one point which is a fixed point forφα,β. We denote that

fixed pointκα,β. If e ∈ [κα,β, 1], sinceφα,β is increasing, for alln, θn(e) ∈ [κα,β, 1] andφα,β is

contracting on[κα,β, 1] henceθn(e) converges toκα,β. If e ∈ [0, κα,β], for all n, θn(e) ∈ [0, κα,β],

and φ̃α,β is non-negative on that interval, henceθn(e) is non-decreasing. Therefore, it converges

and sinceφα,β is continuous, the only possible limit isκα,β . To prove the uniformity in the

starting point, we use the fact thatφα,β is increasing, hence for alle ∈ [0, 1] andn,

θn(0) ≤ θn(e) ≤ θn(1).

That gives the uniformity. Finally, assumeα1 < α2 andβ1 > β2. φα,β(e) is non-decreasing in

α, decreasing inβ and non-decreasing ine hence by induction,φn
α1,β1

(0) ≤ φn
α2,β2

(0), whereφn

is then-th iteration of the functionφ. Hence,κα1,β1
≤ κα2,β2

. If κα1,β1
= κα2,β2

, then

κα1,β1
= φα1,β1

(κα1,β1
) < φα2,β2

(κα1,β1
) = φα2,β2

(κα2,β2
) = κα2,β2

,

which gives a contradiction.

We continue with the proof of Lemma 8. Recall that0 ≤ en ≤ 1, henceµδ is stochastically

dominated by an atom at1. µδ is the invariant measure, since the functionφα,β(·) is increasing
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in e, µδ is stochastically dominated by the law of the chain started at 1 after one step:

µδ � L
(

δ + |a0|2

δ + |b0|2 + |a0|2

)

� L
(

|a0|2

|b0|2 + |a0|2

)

.

Thus, denoting byπ0 the law of |a0|
2

|b0|
2+|a0|

2 , and using (H1),
∫

− log(1 − x)dµδ(x) ≤
∫

− log(1 − x)dπ0(x) <∞.

That is

− log(1 − ·) ∈ L
1(µδ). (52)

With Proposition 9, we get

1

n

n+1
∑

k=2

− log(1 − ek) −−−→
n→∞

∫ 1

0

− log(1 − x)dµδ(x) Pe2
− a.s. (53)

With (50), it gives a proof of Lemma 8 a).

Let us prove Lemma 8 b). Takeη > 0 andε > 0 small.
∫ 1

0

− log(1 − x)dµδ(x)

=

∫ ε

0

− log(1 − x)dµδ(x) +

∫ 1−η

ε

− log(1 − x)dµδ(x) +

∫ 1

1−η

− log(1 − x)dµδ(x)

≤ −ε log(1 − ε) − log ηµδ([ε, 1]) +

∫ 1

1−η

− log(1 − x)dµδ(x).

(54)

By (52), the last term converges to 0 asη goes to 0. By (50), (53) and (54), to prove Lemma 8

b), we only have to prove that for any givenε > 0,

µδ([ε, 1]) −−→
δ→0

0.

For that, by Proposition 9, we need to show that the proportion of the time that the chainen

spends aboveε converges to 0 asδ goes to 0. We take0 < ε < ε0 < 1, where ε0 will be

chosen later. We consider the Markov chainzn , log en and the random functiongn such that

zn = gn(zn−1). It is enough to show that the proportion of the time thatzn spends abovelog ε

goes to0 as δ goes to0. Let us couplezn with another Markov chainwn, such thatwn ≥ zn

a.s. and that the proportion of the time thatwn spends abovelog ε goes to0 asδ goes to0.

For that, we need good information on the jumps ofzn.
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Lemma 17 Assume (H1) and (H5). Set

jn(zn−1) , zn − zn−1

= log

(

δ

ezn−1
+ |an−1|2

)

− log
(

δ + |bn−1|2 + |an−1|2 ezn−1
)

.

(∀δ > 0) (∃ε′ > 0) (∀x ≥ log ε′)

a) Ejn(x) ≤ 0,

b) Var jn(x) ≤ V , E

(

(

log(|an−1|2 + |bn−1|2)
)2

+
(

log(|an−1|2)
)2
)

+ C.

C is a constant independent of everything.ε′ is a function ofδ but we will not write it to keep

the notation clear. Moreover,

lim
δ→0

ε′ = 0.

The proof will be done at the end of the section.

We continue with the proof of Lemma 8 b). We takeδ > 0 such that0 < ε′ < ε < ε0 < 1.

We definewn in a way that it stays betweenlog ε′ and 0. Setw0 = z0, for δ small enough,

w0 > log ε′. For x ∈ [log ε′; 0], denote

hn(x) = gn(x) − Ejn(x) ≥ gn(x).

That is

hn(x) = x+ log

(

δ
ex + |an−1|2

δ + |bn−1|2 + |an−1|2 ex

)

−

E log

(

δ
ex + |an−1|2

δ + |bn−1|2 + |an−1|2 ex

)

.

(55)

Note that

E(hn(zn−1) − zn−1|zn−1) = 0. (56)

• If hn(wn−1) > 0, setwn = 0.

• If hn(wn−1) < log ε′, setwn = log ε′.

• Otherwise, setwn = hn(wn−1).

In the first two case, we say that the chain istruncated. Note that for alln, wn ≥ zn. Indeed,

eitherwn = 0 ≥ zn or wn ≥ hn(wn−1) ≥ gn(wn−1) ≥ gn(zn−1) = zn, by induction and using

the fact thatgn is a.s non-decreasing. Therefore, the proportion of the time that the chainwn

spends abovelog ε is larger that the proportion of the time that chainzn spends abovelog ε.
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Proposition 18 Assume (H2).

a) The Markov chainwn has a unique stationary probability, say,νδ and for s ∈ L1(νδ), for

every starting pointw0 ∈ [log ε′, 0], Pw0
-a.s,

1

n

n
∑

i=0

s(wi) −−−→
n→∞

∫

sdνδ.

b) We denoteT the return time to0, starting from0. Thenνδ(0) = 1/E0T .

Proof: See [34] and Definitions 12-15 for the theory of Harris Markovchains that we will

use extensively in the proof. Define the following probability measure on[log ε′, 0]. For B a

Borel set,

l(B) ,

∞
∑

n=0

1

2n+1
P0(wn ∈ B).

Let us prove that the Markov chainwn is l-irreducible, positive Harris with invariant probability

νδ. By [34, Theorem 17.0.1], that will prove a). We use the following lemma that will be proved

later on.

Lemma 19 Assume (H2).

a) There existc > 0 and θ > 0 such that for allx ∈ [log ε′; 0],

P (hn(x) ≥ x+ c) > θ.

b) SetN =
⌈

− log ε′

c

⌉

. 0 is a recurrent point for the chainwn and the time between two visits

at 0 is a.s bounded above byN times a geometric random variable of parameterθN .

We continue with the proof of Lemma 18. The sets which have positive l-measure are exactly

the sets that have a positive probability to be visited starting from 0. Moreover 0 is a recurrent

point. Therefore, the Markov chainwn is l-irreducible andl is a maximal irreducibility measure.

Moreover, takeB with positive l-measure,B is uniformly accessible from{0}. Therefore, we

can apply [34, Theorem 9.1.3 (i)] and since 0 is Harris-recurrent, B is also Harris-recurrent,

therefore, the chainwn is Harris-recurrent. By Lemma 19 b), the time between two visits at 0

has finite expectation (bounded above byN/θn). Therefore, by [34, Theorem 10.2.2], the chain

wn is positive-Harris and admits a unique invariant probability measure. That finishes the proof

of point a). The point b) is a consequence of

1 = νδ([log ε′, 0]) = νδ(0)E0[T ],
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which comes from [34, Theorem 10.0.1], which we apply toA = {0}, which has positive

l-measure.

Proof of Lemma 19:a) We consider hereδ ≥ 0. We denote bySupp(X) the support of

the law of a random variableX. We takeδ0 small enough. We consider forx ∈ [log ε′; 0] the

function

φ(x) = max{y; y ∈ Supp(hn(x) − x)},

which by (H2) and (55) is a continuous function ofx. Moreover, sinceE(hn(x) − x) = 0, φ is

strictly positive. By compactness, there existsc > 0 such that forx ∈ [log ε′; 0],

φ(x) > 2c,

P(hn(x) ≥ x+ c) > 0.

By (H2) and (55),P(hn(x) ≥ x+ c) is continuous and once again, by compactness, there exists

θ > 0 such that forx ∈ [log ε′; 0] ,

P(hn(x) ≥ x+ c) > θ.

b) If there are at leastN steps in a row such thathn(wn−1) ≥ x+ c, then the chain reaches0.

By the point a), that happens with probability at leastθN > 0, hence0 is a recurrent point for

the chainwn and the time between two visits at 0 is a.s bounded above byN times a geometric

random variable of parameterθN .

We continue with the proof of Lemma 8 b). By Proposition 18 a),to prove that the proportion

of the time thatwn spends abovelog ε goes to0 as δ goes to0, we only need to prove that

νδ([log ε, 0]) −−→
δ→0

0.

Let us first prove thatET −−→
δ→0

∞, which by Proposition 18 b) will prove that

νδ(0) −−→
δ→0

0.

We use the following lemma.

Lemma 20 Assume (H2).

a) There existu > 0 and α > 0 dependent onε and independent ofδ such that for all

x ∈ [2 log ε; 0],

P (hn(x) ≥ x+ u) > α.
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b) There existv > 0 and β > 0 dependent onε and independent ofδ such that

P (log ε < h1(0) < −v) > β.

The lemma will be proved later on.

We continue with the proof of Lemma 8 b). We denoteA the eventlog ε < h1(0) < −v. On

A, we define the stopping time

T̃ = 1 + inf{n ≥ 1; hn+1(wn) > 0 or hn+1(wn) < log ε′}.

We now condition on the eventA and onx0 = h1(0), denote byP̃ and Ẽ the associated

probability and expectation.̃T ≤ T is the first time the chain is truncated. Moreover, forn < T̃ ,

wn = hn(wn−1), so with (56), by classical martingale arguments,

Ẽ
(

hT̃ (wT̃−1)
)

= x0.

We denote byA0 the event thatwn reacheslog ε′ before 0, we setp = P̃(A0), X0 =

Ẽ
(

hT̃ (wT̃−1)|Ac
0

)

andX1 = Ẽ
(

hT̃ (wT̃−1)|A0

)

.

x0 = pX1 + (1 − p)X0.

p =
X0 − x0

X0 −X1
.

X0 ≥ 0 andX1 ≤ log ε′ ≤ log ε < x0 < −v hence,

p ≥ −x0

−X1

≥ v

−X1

. (57)

UsingX1 ≤ log ε′, (57) andw2
n − V n, which is a super-martingale by Lemma 17 b),

Ẽ(T ) ≥ Ẽ(T̃ ) ≥ Ẽ
(

hT̃ (wT̃−1)
)2 − x2

0

V

≥ pX2
1 + (1 − p)X2

0 − x2
0

V

≥ pX2
1 − x2

0

V

≥ v(−X1) − x2
0

V

≥ v(− log ε′) − x2
0

V
.

October 11, 2007 DRAFT



33

We integrate overx0 and useP(A) > β andE(h1(0)2|A) < (log ε)2.

E(T |A) ≥ v(− log ε′) − E(h1(0)2|A)

V
.

E(T ) ≥ β
v(− log ε′) − (log ε)2

V
.

We have proved thatET −−→
δ→0

∞, which proves thatνδ(0) −−→
δ→0

0.

Using Lemma 20 and the invariance ofνδ, let us prove by induction that forN ≤
⌈

− log ε

u

⌉

,

νδ ([−Nu; 0]) ≤ α−Nνδ(0).

νδ([−(N − 1)u; 0]) ≥
∫

νδ(dw0)Pw0
(w1 ∈ [−(N − 1)u; 0])

≥
∫

[−Nu;0]

νδ(dw0)Pw0
(w1 ∈ [−(N − 1)u; 0])

≥
∫

[−Nu;0]

νδ(dw0)Pw0
(h1(w0) ≥ u+ w0)

≥ ανδ([−Nu; 0]).

Therefore,

νδ ([log ε; 0]) ≤ α⌈− log ε

u ⌉νδ(0).

So,

νδ ([log ε; 0]) −−→
δ→0

0.

That concludes the proof of Lemma 8 b).

Proof of Lemma 20:We consider hereδ ≥ 0. We denote bySupp(X) the support of the

law of a random variableX. We takeδ0 small enough.

a) We consider forx ∈ [2 log ε; 0] and0 ≤ δ ≤ δ0 the function

φ(x, δ) = max{y; y ∈ Supp(hn(x) − x)},

which by (H2) is a continuous function of(x, δ) because(hn(x) − x) is continuous in(x, δ).

Moreover, sinceE(hn(x) − x) = 0, φ is strictly positive. By compactness, there existsu > 0

such that forx ∈ [2 log ε; 0] and0 ≤ δ ≤ δ0,

φ(x, δ) > 2u,

P(hn(x) ≥ x+ u) > 0.
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By (H2), P(hn(x) ≥ x + u) is continuous and once again, by compactness, there existsα > 0

such that forx ∈ [2 log ε; 0] and0 ≤ δ ≤ δ0,

P(hn(x) ≥ x+ u) > α.

b) For all 0 ≤ δ ≤ δ0, there existε0 > 0 andv > 0 such thatP(log ε0 < h1(0) < −v) > 0. Like

in the proof of a, by (H2), we can choseε0 > 0 andv > 0 continuous inδ. By compactness, we

can choseε0 > 0 andv > 0 independent ofδ such that for all0 ≤ δ ≤ δ0, P(log ε0 < h1(0) <

−v) > 0 and like in the proof of a), by (H2), that probability can be chosen continuous inδ.

Therefore, by compactness again, there existsβ > 0 dependent onε and independent ofδ such

that P(log ε0 < h1(0) < −v) > β. Takeε < ε0, we haveP(log ε < h1(0) < −v) > β.

Proof of Lemma 17: Note that by (H1),V < ∞. jn(x) is a non-increasing continuous

function of x and so isEjn(x). Ejn(0) < 0, hence givenδ, there exist0 < ε′ < 1 such that

Ejn(log ε′) ≤ 0, and forx ≥ log ε′, Ejn(x) ≤ 0. That gives point 1. For point 2, takeC such

that for all x ≥ 0,

(log(x+ 1))2 ≤ (log(x))2 + C.

To prove thatlimδ→0 ε
′ = 0, it is enough to prove that for a givenL < 0, we can findδ small

enough such thatEjn(L) ≤ 0. That is true because for a givenL, Ejn(x) is a continuous function

of δ which, by (H4) is negative forδ = 0.

C. Proof of Theorem 2

We reformulate the problem in the spirit of Appendix A. LetK > 1. The ai (resp.bi) are

now independent complex vectors of sizeK whose coefficients are independent and distributed

according toπa (resp. πb). We denote byP the probability associated with those random

sequences and byE the associated expectation. We consider the followingM × K(M + 1)

channel transfer matrix:

HM =

















a1 b1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 aM bM

















.

We consider the following variable

CM(P ) =
1

M
tr

{

log

(

I +
P

K
HMH

†
M

)}

,
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whereP = Kρ. Note that,

HMH
†
M =























|a1|2 + |b1|2 < a2; b1 > 0 · · · 0

< a2; b1 >
† |a2|2 + |b2|2 < a3; b2 >

. . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . < aM ; bM−1 >

0 · · · 0 < aM ; bM−1 >
† |aM |2 + |bM |2























,

where|ai|2 =
∑K

k=1 |ai,k|2 and< ai, bj >=
∑K

k=1(ai,k)
†bj,k.

Theorem 21 Assume (H1), (H2) and (H4)

a) For everyρ > 0, CM (P ) convergesP-a.s asM goes to infinity. We call the limitC(P ).

b) AsP goes to infinity,

C(P ) = logP + E log

(

e+ |b|2
K

)

+ o(1),

where the expectation is taken in the following way.e andb are independent.b is a complex

K-vector whose coefficients are independent and distributedaccording toπb. The law of

e is m0, which is the unique invariant probability of the Markov chain defined by

en+1 = |an|2
(

en + |bn−1|2 sin2(an, bn−1)

en + |bn−1|2

)

.

The rest of this appendix is devoted to the proof of Theorem 21.

As in Appendix A, we define the sequencexn as follows.x0 = 0, x1 = 1, and forn ≥ 1,

xn+1 =
λ− |an|2 − |bn|2
< an+1; bn >

xn − < an; bn−1 >
†

< an+1; bn >
xn−1. (58)

We get, like in (48), forλ = −1/ρ,

CM(P ) = log(P/K) +
1

M
log |xM+1(λ)| + 1

M

M
∑

i=1

log |< ai+1; bi >| P − a.s. (59)

Set cn , xn/xn−1, for n ≥ 2. By (58), we get

cn+1 =
λ− |an|2 − |bn|2
< an+1; bn >

− < an; bn−1 >
†

cn < an+1; bn >
.

Let dn = cn < an; bn−1 >. Then,

dn+1 = λ− |an|2 − |bn|2 −
|< an; bn−1 >|2

dn

= λ− |bn|2 − |an|2
(

1 +
|bn−1|2 cos2(an, bn−1)

dn

)

,

October 11, 2007 DRAFT



36

where

cos2(an, bn−1) , |< an; bn−1 >|2 / |an|2 |bn−1|2 .

Note that0 ≤ cos2 ≤ 1. Let en = −dn − |bn−1|2.

en+1 = −λ+ |an|2
(

en + |bn−1|2 sin2(an, bn−1)

en + |bn−1|2

)

, (60)

where sin2 , 1 − cos2. With the initial conditions,d2 < − |b1|2, hencee2 > 0 and for all n,

en > 0. Note that(en) is a Markov chain and that for alln, en is independent ofan andbn−1.

By (59), we get

CM(P ) = log(P/K) +
1

M

M+1
∑

i=2

log |ci(λ)| + 1

M

M
∑

i=1

log |< ai+1; bi >|

= log(P/K) +
1

M

M+1
∑

i=2

log(|di|) + o(1)

= log(P ) +
1

M

M+1
∑

i=2

log

(

ei(λ) + |bi−1|2
K

)

+ o(1)

(61)

We only need to study the Markov chain(en, bn−1). For convenience, we setδ = −λ and we

allow δ = 0. We also assume without loss of generality that the chain starts at (e1, b0).

Proposition 22 Assume (H2) and (H4). Takeδ ≥ 0. The Markov chain(en(δ), bn−1) has a

unique stationary probability, say,µδ and for s ∈ L1(µδ), for every starting point(e1, b0) ∈
R+ × CK , P(e1,b0)-a.s,

1

n

n
∑

i=0

s(ei, bi−1) −−−→
n→∞

∫

sdµδ.

Moreover,µδ is weakly continuous inδ = 0.

Proof: We consider the Markov chain(en) on the compact[0,∞]. By (60), for n ≥ 1 and

e ∈ [0,∞], Pe(en = ∞) = 0. Consider (60), by (H2), fore1 ∈ [0,∞), the law ofe2 underPe1
is

absolutely continuous with respect to the Lebesgue measureon [δ,∞]. Moreover, by (H4), the

law of e2 underPe1
and the Lebesgue measure on[δ,∞] are mutually absolutely continuous.

Therefore, fore1 ∈ [0,∞) and n ≥ 3, the law of en underPe1
and the Lebesgue measure

on [δ,∞] are mutually absolutely continuous. That fact allows us to prove like in Appendix

B that the Markov chain(en) is l-irreducible, positive Harris with invariant probabilitymδ,
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where l is the Lebesgue measure on[δ,∞]. SincePe(en = ∞) = 0, mδ does not charge{∞}.

We identifymδ and the measure it induces onR+. We denote byΠb the law of b. Since for

n ≥ 1, en andbn−1 are independent, the Markov chain(en, bn−1) is l×Πb-irreducible, positive

Harris with invariant probabilityµδ = mδ × Πb. By [34, Theorem 17.0.1], the Markov chain

(en(λ), bn−1) has a unique stationary probabilityµδ and fors ∈ L1(µδ), for every starting point

(e1, b0) ∈ R+ × CK , P(e1,b0)-a.s,

1

n

n
∑

i=0

s(ei, bi−1) −−−→
n→∞

∫

sdµδ.

Let us prove thatmδ converges weakly tom0 when δ converges to 0, which will finish the

proof. {mδ, δ ≥ 0} are measures on the compact[0,∞] hence it is enough to show thatm0

is the only limit point whenδ goes to 0. By (H2), for a pointx and an intervalA in [0,∞],

Pe1
(e2(δ) ∈ A) converges toPe1

(e2(0) ∈ A). It implies that a limit point must be an invariant

measure for the chain withδ = 0. The only possibility ism0.

By (60),mδ is stochastically dominated by the law of|an|2 + δ. Therefore, by (H1),(x, y) →
log(x+ y) ∈ L1(µδ). (61) and Proposition 22 conclude the proof of Theorem 21.

D. Product of random matrices

We prove Lemma 8 a) assuming only (H1) and (H2). We use the theory of product of random

matrices theory. For a general introduction to the aspects of the theory we use here, the reader

may consult [25], [26], [35]-[37].

Let us take|·| any norm onC2 and‖·‖ the associated operator norm on matrices. For a given

λ,




xn+1

xn



 =





λ−|an|
2−|bn|

2

a
†
n+1bn

−anb
†
n−1

a
†
n+1bn

1 0









xn

xn−1





For a, a′, b, b′ ∈ C − 0, we define the following invertible matrices

g(λ, a, a′, b, b′) ,





λ−|a|2−|b′|2

a′†b′
− ab†

a′†b′

1 0



 .

Finally, we define

gn(λ) , g(λ, an, an−1, bn−1, bn) =





λ−|an|
2−|bn|

2

a
†
n+1bn

−anb
†
n−1

a
†
n+1bn

1 0



 ,
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Mn , gn . . . g1.

So that




xn+1

xn



 = Mn





1

0



 .

Set E = (C − 0)4 which is a Borel set of a separable and complete metric space.Xn ,

(an+1, an, bn, bn−1) is a Markov chain onE , with invariant measureΠ , πa ×πa ×πb ×πb. With

(H1),

EΠ

(

log+ ‖g(λ, a, a′, b, b′)‖ + log+
∥

∥

∥
g(λ, a, a′, b, b′)

−1
∥

∥

∥

)

<∞.

Notice thatgn(λ) is a continuous function ofXn, therefore((Xn,Mn),Π) is a multiplicative

Markovian process. By [38, Example 1 and Proposition 2.5],1/n log ‖Mn(λ)‖ convergesP-

almost surely and inL1(Ω), we set

γ(λ) = lim
n→∞

1

n
log ‖Mn(λ)‖ . (62)

γ(λ) is the first Lyapunov exponent.

The L1(Ω) convergence already gives an easy upper bound forγ(λ). By the property of

operator norm,

γ(λ) ≤ EΠ log ‖g1(λ)‖ .

Moreover, we can refine that bound into a whole family of upperbounds, fork ∈ N,

γ(λ) ≤ 1

k
EΠ log ‖g1(λ)...gk(λ)‖ . (63)

Note that this upper bound is getting better ask increases and tight ask → ∞.

Let us now prove that
1

n
log |xn+1(λ)| −−−→

n→∞
γ(λ).

Definition 23 The multiplicative system((Xn,Mn),Π) is irreducible if there is no measurable

non-random family{V (X),X ∈ E} of proper subspaces ofC2 such that

MnV (X0) = V (Xn), P-a.s, ∀n ∈ N.

Lemma 24 Assume (H2). The multiplicative system((Xn,Mn),Π) is irreducible

The proof is an adaptation of the proof of [39, Proposition 6.1.1].
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Proof: The proof is by contradiction. Assume that there is a measurable family{V (X),X ∈
E} of proper subspaces ofC2 such that

g3V (X2) = V (X3), P-a.s., ∀n ∈ N.

We parameterize the proper subspaces ofC2 by





c

1



 for c in (−∞,∞]. There is a measurable

family {c(X),X ∈ E} such thatg3





c(X2)

1



 and





c(X3)

1



 are P-a.s. collinear. A direct

computation gives

c(a4, a3, b3, b2) =
λ− |a3|2 − |b3|2

a†4b3
− a3b

†
2

c(a3, a2, b2, b1)a
†
4b3

, P-a.s.,

that is

c(a3, a2, b2, b1) =
a3b

†
2

a†4b3

(

λ−|a3|
2−|b3|

2

a
†
4b3

− c(a4, a3, b3, b2)
) , P-a.s..

Note that the RHS does not depend ona2 andb1, hence,c(a, a′, b, b′) does not depend ona′ and

b′. Settingd(a, b) = a†b c(a, b), we get

d(a4, b3) = λ− |a3|2 − |b3|2 −
|a3|2 |b2|2
d(a3, b2)

, P-a.s.. (64)

The RHS does not depend ona4, hence,d(a, b) does not depend ona. From (64), we get

d(b2)

|b2|2
= − |a3|2

d(b3) − λ+ |a3|2 + |b3|2
, Pπ-a.s..

The RHS does not depend onb2, hence,d(b)/ |b|2 does not depend onb, setd(b) = L |b|2, where

L is a fixed constant. Then,

(L+ 1) |b3|2 = λ− |a3|2
(

1 +
1

L

)

, Pπ-a.s..

If L 6= −1, |b3|2 is a measurable function ofa3 and since it is also independent ofa3, it is a

constant, which is in contradiction with (H2). HenceL = −1, which gives a contradiction with

λ < 0.

By [38, Lemma 2.6], irreducibility implies that

lim
n→∞

1

n
log

∣

∣

∣

∣

∣

∣





xn+2

xn+1





∣

∣

∣

∣

∣

∣

= γ P − a.s.

The following lemma completes the proof.
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Lemma 25 Assume (H1).

lim
n→∞

1

n



log

∣

∣

∣

∣

∣

∣





xn+2

xn+1





∣

∣

∣

∣

∣

∣

− log |xn+1|



 = 0 P − a.s.

Proof:

log

∣

∣

∣

∣

∣

∣





xn+2

xn+1





∣

∣

∣

∣

∣

∣

− log |xn+1| = log

∣

∣

∣

∣

∣

∣





cn+2

1





∣

∣

∣

∣

∣

∣

≥ 0.

Let us prove that forε > 0, P





1
n

log

∣

∣

∣

∣

∣

∣





cn

1





∣

∣

∣

∣

∣

∣

≥ ε



 is a summable series, which by the Borel-

Cantelli Lemma will prove the lemma. We have

P





1

n
log

∣

∣

∣

∣

∣

∣





cn

1





∣

∣

∣

∣

∣

∣

≥ ε



 ≤ P

(

1

n
log (|cn| + 1) ≥ ε

)

≤ P (|cn| ≥ enε − 1)

≤ P
(

|cn| ≥ e
nε
2

)

≤ P

( |bn−1|
|an|

1

1 − en

≥ e
nε
2

)

≤ P

( |bn−1|
|an|

≥ e
nε
4

)

+ P

(

1

1 − en

≥ e
nε
4

)

. (65)

We analyze the right side of (65). We use the fact thatlog |an| and log |bn−1| have a second

moment by (H1) and that it does not depend onn. By the Bienaymé-Tchebicheff inequality, we

get

P

( |bn−1|
|an|

≥ e
nε
4

)

= P

(

log |bn−1| − log |an| ≥
nε

4

)

≤ 16E
(

(log |bn−1| − log |an|)2)

n2ε2
,

(66)

implying that the first term in the right side of (65) forms a summable series. Moreover

log
1

1 − en

≤ log
−λ + |bn−1|2 + |an−1|2

|bn−1|2
,

which has a second moment by (H1), hence, by a computation like (66) and the Bienaymé-

Tchebicheff inequality,P
(

1
1−en

≥ e
nε
4

)

is a summable series. The Borel-Cantelli Lemma applied

to the right side of (65) concludes the proof.
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E. Determinants of Jacobi Matrices

An interesting and useful characterization of anM ×M Jacobi matrix is that its determinant

can be expressed by the following recursive formula [40]

det Gm = [Gm]m,m det Gm−1 − [Gm]m,m−1[Gm]m−1,m det Gm−2 ; m = 3, . . . ,M , (67)

with
det G1 = [Gm]1,1

det G2 = [Gm]1,1[Gm]2,2 − [Gm]1,2[Gm]2,1 ,
(68)

whereGm is the principle submatrix ofGM , obtained by deleting its last(M −m) columns.

This characterization already used by Narula [14], can be easily proved by straight forward

calculation of the determinant ofGM , starting from its last row.

Examining (67), it is observed that the determinant of a square Jacobi matrix is dependent on

a weighted sum of its two largest principle matrices’ determinants only. Furthermore,det Gm−1

anddet Gm−2 are independent of the entries[Gm]m,m, [Gm]m,m−1, and [Gm]m+1,m.

It is worth mentioning that this approach can not be extendedfor matrices with a number of

non-zero diagonal higher than 3. Hence, a similar formula, can not be obtained even for five-

diagonal matrices and the resulting formula involvesO(M) determinants of submatrices (not

necessarily principle submatrices).
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Fig. 1. Soft-Handoff setup (M = 3)
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Fig. 2. High-SNR power offset bounds for Rayleigh fading,K = 2, and bounds ordern = 1, 2 · · · , 8
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Fig. 3. High-SNR power offset bounds for Rayleigh fading,K = 10, and bounds ordern = 1, 2 · · · , 8
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Fig. 4. High-SNR power offset bounds (ordern = 2) for Rayleigh, andK = 2, 3, 4, 6, 8, 10. Note that forK = 1,

L∞ =
γ

log 2
≈ 0.833.
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