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Abstract

In this paper we study the spectrum of certain large randommiifian Jacobi matrices. These
matrices are known to describe certain communication setlp particular we are interested in an
uplink cellular channel which models mobile users expamieg a soft-handoff situation under joint
multicell decoding. Considering rather general fadingistias we provide a closed form expression
for the per-cell sum-rate of this channel in high-SNR, wharirdra-cell TDMA protocol is employed.
Since the matrices of interest atédiagonal, their eigenvectors can be considered as sequences with
second order linear recurrence. Therefore, the problemdaaed to the study of the exponential growth
of products of two by two matrices. For the case whareisers are simultaneously active in each cell,
we obtain a series of lower and upper bound on the high-SNRepafiset of the per-cell sum-rate,

which are considerably tighter than previously known baind

I. INTRODUCTION

The growing demand for ubiquitous access to high-data rteices, has produced a huge

amount of research analyzing the performance of wirelessnmonications systems. Cellular

October 11, 2007 DRAFT



systems are of major interest as the most common method éetddng continuous services to
mobile users, in both indoor and outdoor environments. figgkes for providing better service
and coverage in cellular mobile communications are culydyging investigated by industry and
academia. In particular, the use of joint multi-cell pragiag (MCP), which allows the base-
stations (BSs) to jointly process their signals, equividyeareating a distributed antenna array,
has been identified as a key tool for enhancing system peaioece (see [1][2] and references
therein for surveys of recent results on multi-cell procags

Most of the works on the uplink channel of cellular systemaldeith a single-cell setup.
References that consider multi-cell scenarios tend to tadomplex multi-cell system models
which render analytical treatment extremely hard (if notpossible). Indeed, most of the results
reported in these works are derived via intensive numemedtulations which provide little
insight into the behavior of the system performance as atiommf various key parameters
(e.g. [3]-[8]).

Motivated by the fact that mobiles users in a cellular systeae” only a small number of
BSs, and by the desire to provide analytical results, aactie analytically tractable model for
a multi-cell system was suggested by Wyner in [9] (see al$dojdan earlier relevant work). In
this model, the system’s cells are ordered in either an tefiimear array, or in the familiar two-
dimensional hexagonal pattern (also infinite). It is assittat only adjacent-cell interference
is present and characterized by a single parameter, a gdalitora € [0, 1]. Considering non-
fading channels and a “wideband” (WB) transmission schemmere all bandwidth is available
for coding (as opposed t@ndomspreading), the throughput obtained with optimum and linea
MMSE joint processing of the received signals frath cell-sites are derived. Since it was first
presented in [9], “Wyner-like” models have provided a framek for many works analyzing
various transmission schemes in both the uplink and dowrdirannels (see [2] and references
therein).

In this work we consider a simple “Wyner-like” cellular sptypresented in [10] (see also
[11]). According to this setup, the cells are arranged orréesi(or a line), and the mobile users
“see” only the two BSs which are located on their cell's boamek. All the BSs are assumed
to be connected through an ideal backhaul network to a demiwdti-cell processor (MCP),
that canjointly process the uplink received signals of all cell-sites, al§ a® pre-process the

signals to be transmitted by all cell-sites in the downlitiacnel. The users are hence in what
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is referred to as a “soft-handoff” situation, which is vergnemon in practical real-life cellular
systems, and is therefore of real practical as well as thieatdanterest (see for example [12]
for a recent survey on handoff schemes). With simplicity am@lytical tractability in mind,
and in a similar manner to previous work, the model provideshaps the simplest framework
for a soft-handoff setting in a cellular system, that stpresents real-life phenomena such as
intercell interference and fading.

Unfortunately, the analysis of “Wyner-like” models in gealeand the “soft-handoff” setup in
particular presents some analytical difficulties (see iBedi-B) when fading is present. These
difficulties render conventional analysis methods suclaegelrandom matrix theory impractical.
Indeed the per-cell sum-rate rates supported by MCP in thekughannel of the “soft-handoff”
setups are known only for limited scenarios such as noméadhannels, phase-fading channels,
fading channels but with large number of users per-cell,Rageigh fading channels with single
user active per-cell [10][11][13]. The latter result is dizea remarkable early work by Narula
[14] dealing with the capacity of a two-tap time variant ISlacnel. Calculating the per-cell
sum-rate capacity supported by the uplink channel of thé-tsandoff” setup in the presence
of generalfading channels (not necessarily Rayleigh fading chapnelsen finite number of
users are active simultaneously in each cell remains an ppasiem (see [11][15] for bounds
on this rate). As will be shown in the sequel, this problemlasely related to calculating the
spectrum of certain large random Hermitian Jacobi matri¢ée high-SNR characterization of
the sum-rate capacity, previously unknown, is the main soclthis work.

In particular we calculate the high-SNR slope and powerebftd the rate with a single user
active per-cell (intra-cell TDMA) under a rather generidifag distribution. We also prove the
following results for any given number of active users pellzcWe prove the existence of a
limiting sum-rate capacity when the number of cells goesfmity and calculate the high-SNR
slope in Theorem 2. Moreover, we give bounds on the high-SNRep offset in Proposition
3. In particular, we give a sequence of explicit upper- andelebounds; the gap between the
lower and the upper bounds is decreasing with the bound€radd complexity.

The rest of the paper is organized as follows. In Section lipnesent the problem statement
and main results. Section Il includes a comprehensiveevewf previous works. Several ap-
plications of the main result are discussed in Section IVn@ading remarks are included in

Section V. Various derivations and proofs are deferred eoAppendices.
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Il. PROBLEM STATEMENT AND MAIN RESULTS
A. System Model

In this paper we consider a linear version of the cellularftb@andoff’ setup introduced in
[10][11], according to which\/ + 1 cells with K single antenna users per cell are arranged on
a line, where theV/ single antenna BSs are located on the boundaries of the(selisFig. 1
for the special case a¥/ = 3). Starting with the WB transmission scheme where all badtiwi
is devoted for coding and alk users are transmitting simultaneously each with averageepo
p, and assuming synchronized communication, a vector badetggpresentation of the signals

received at the system’s BSs is given for an arbitrary tindeinby

The M x K (M + 1) channel transfer matrid ,, is a two block diagonal matrix defined by

a b1 0 0

wherea,, and b,, are 1 x K row vectors denoting the channel complex fading coeffisient
experienced by thé users of thenth and(m + 1)th cells, respectively, when received by the
mth BS antennan represents thé/ x M zero mean circularly symmetric Gaussian noise vector
n ~ CN(0,1y).

We assume throughout that the fading processes are i.igh@uiifferent users and BSs, with
A ~ T, andb,, , ~ m, and can be viewed for each user as ergodic processes wphctes
to the time index. We denote ¥ the probability associated with those random sequences and
by E the associated expectation. We will be working throughoitit \& subset of the following
assumptions.

(H1) E,, (log|z|)* < oot andE,, (log|z|)* < occ.
(H2) m, andm, are absolutely continuous with respect to Lebesgue measute
(H3) There exists a reaM such that ifx is distributed according tar, (resp.m;) then the

density of|z|? is strictly positive on the intervglM; oo).

A natural base logarithm is used throughout this work unkegglicitly denoted otherwise.
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(H3) There existm, < M, € RT U {oo} (resp.m;, < M, € RT U {oo}) such that ifx is
distributed according tar, (resp.m;) then the density of:c|2 and the Lebesgue-measure
on [m,; M,] (resp.[my; M,]) are mutually absolutely continuous.

(H4) There exists a ball i€ such that the Lebesgue measure outside that ball is abigolute
continuous with respect te, and .

We further assume that the channel state information (CSBvailable to the MCP only,
while the transmitters know only the channel statisticgl eannot cooperate their transmissions
in any way. Therefore, independent zero mean circularlyragtnic Gaussian codebooks conform
with the capacity achieving statistics, whetedenotes thé A/ + 1)K x 1 transmit vectorr ~
CN (0, pI k), andp is the average transmit power of each usér is thus equal to the transmit
SNR of the users).

With the above assumptions, the system (1) is a multiplesscchannel (MAC). We are

interested in the per-cell sum-rate capacity

Cu(P) = %E (logdet Gjs) [nats/channel use] , (3)

where P £ Kp is the per-cell transmitted average power,
Gu 2 Iy +pHyHY, (4)

and the expectation is taken over the channel transfer xnatitries. (Here and in the sequel, for
a scalarz € C, z' denotes the complex conjugate, while for a matfix A" denotes the matrix

with AT(i,7) = A(j,4)7.) The non-zero entries of thgermitian Jacobimatrix G ,; are equal to

G ] =p<by_1;a, >,

m,m—1

[GM]m,m—i—l = p < Qp+1; bm >,
where out-of-range indices should be ignored, and for any avbitrary L length vectorsa, b

we define< a;b >2 >°" alb, and|a|® £< a;a >.

Note that since the channel transfer matF, is acolumn-regulargain matrix (see definition in [16]) whef — oo, the
capacity achieving statistics remains the same in this, @am if we allow the users to cooperate as long as they angaraa
of the CSI.
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Since we shall focus on the asymptotes of infinite number bi§ ¢ — oo, boundary effects
can be neglected and symmetry implies that the rate (3) sghal maximum equal rate (or
symmetric capacity) supported by the channel [17].

The above description relates to the WB protocol where arsisransmit simultaneously.
According to the intra-cell TDMA protocol only one user israiltaneously active per-cell,
transmitting1 /K of the time using theotal cell transmit powerP. In this case it is easily
verified that with no loss of generality, we can consider aglgiruser per cell in terms of the

per-cell sum-rate, settingd = 1 in (1) and (2).

B. Analysis Difficulty

Many recent studies have analyzed the rates of various ellemsing results from (large)
random matrix theory (see [18] for a recent review). In thasses, the number of random
variables involved is of the order of the number of elementshie matrixG,, (or H,,), and
self-averaging is strong enough to ensure convergenceeoéripirical measure of eigenvalues,
and to derive equations for the limit (or its Stieltjes trimmm). In particular, this is the case if

the normalized continuous power profile &f ,;, which is defined as

i i+1 j J+1
Pu(rt) SE(Husl) <7< Gripr < < G DR

converges uniformly to a bounded, piecewise continuoustion asM — oo, see e.g. [18,

(6)

Theorem 2.50] and [19] for fluctuation results. In the casdenrconsideration here, it is easy to

verify that for K fixed, Py, (r, t) doesnot converge uniformly, and other techniques are required.

C. Extreme SNR Regime Characterization

As mentioned earlier, the per-cell sum-rate capacity of‘sodt-handoff” setup is known only
for certain limited cases to be elaborated in the next sectiad in general analytical results are
hard to derive. As an alternative to deriving exact anadftresults we focus here on extracting
parameters which characterize the channel rate undernegti®\NR scenarios. The reader is
referred to [20] - [22] for an elaboration on the extreme SNfRracterization.

a) The Low-SNR RegimeThis regime is usually the operating regime for wide-band

systems [21].
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The average per-cell spectral efficiency in bits/sec/Hpressed as a function of the sys-
tem average transmit SNHy,/N,, is evaluated by solving the implicit equation obtained by

substituting

B B\ L
r-cu() % ®
in (3), whereC,,(Ey/Ny) = Cp(P)/ log2 stands for the uplink spectral efficiency measured in
[bits/sec/Hz]. The low-SNR regime is characterized thfotige minimum transmitz, /N, that

enables reliable communications,
Ey, A log2

- = , 8
N(]min CM(O) ( )
and the low-SNR spectral efficiency slope
. 2
, 2[Cn0)]
So = ——=—7, 9)
—Cy(0)
yielding the following low-SNR affine approximation
Ey So B, E, .
— = = - = t Hz|. 1
Cumr (No) 3 (No o Nown dB) [bits/sec/Hz| (20)

In the above definitions|qs = 10log,, 2, and C,;(0) and C,,(0) are the first and second
derivatives (whenever exist) with respect b of the per-cell sum-rate capacity, respectively,
evaluated a” = 0. Focusing on Gaussian channels with receiver CSI only,ntimshown [21]
that there is no need to calculate the two derivatives of éte in P = 0, and that the low-SNR

parameters are simply given by

E,  MKlog?2
Nowin — tr <EH}4HM)

o (i (EHTMHM))2
2

M, (E (HLHM) ) |

b) The High-SNR Regimerhis is usually the operating regime for high-data rate Ithig

So = (11)

spectral efficiency) systems (that is the case actuallyli2.&f3 G standards).
The high-SNR regime is characterized through the high-SMiRes(also referred to as the

“multiplexing gain”, or “pre-log”)

Soo 2 lim CulP) _ iy PCy(P) (12)
P—oo log P—oo
and the high-SNR power offset
: Cu(P)
A _
Lo = Jim 1003 (logp S ) (13)
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yielding the following affine capacity approximation

S, log 2
CM<P) ~ B‘ng

Note that the high-SNR approximation reference channet inethat of a single isolated cell,

(Plas — 3|deLoo) - (14)

with no fading, and total average transmit power
The high-SNR characterization of the per-cell sum-ratgpsued by the “soft-handoff” uplink
channel is known only in certain limited scenarios (see iSeclil) and is the main focus of

this work.

D. Main Results

Recall the definition ofC,,(P), c.f. (3). Starting with intra-cell TDMA scheme where only

one user is active per-cell transmitting with powerwe have the following.

Theorem 1 [intra-cell TDMA schemeK = 1, high-SNR characterization] Assume (H1) and
(H2).

a) For everyP > 0, C'y/(P) converges as\/ goes to infinity. We call the limit’(P).

b) We get the following bounds dri(P),

max(Er, log(1 + P |2[*), Er, log(1 + P y|*)) < C(P) < Eq, x, log(1 + P(|z[* + [y[)).
c) Further assume [(H3) or (H3")]. AsP goes to infinity,
C(P) =log P + 2max (E,, log|z|,E,, log|z|) + o(1).
In particular, S, =1 and £, = —2max (E,, log, |z| , E,, log, |z]).

Note that point c) shows that the lower bound of point b) itim the high-SNR regime.
Proof: The proof of points a) and c) follows from Theorem 5 of Appendi, where we

prove that the variabl€,,;(P) £ 1/M log det G, converges almost surely. Note however that

M
1 1 2 2
0< - logdet Gay <+ log (14 pllanl* + b)) (15)

m=1

and the second inequality is due to Hadamard's inequalitystmi-positive definite (SPD)
hermitian matrices. With (H1), it follows thaf,,(P) is uniformly integrable, and hence the
almost sure convergence implies convergence in expeoctd®ecalling that,,(P) = E Cy,(P)

completes the proof of point a) and c).
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Let us show point b) using the tools of [23]. We first show thedo bound. We considen,

x andy as in (1).

Cu(P) = -1 (x5 y|(ai)r<i<m, (bi)1<i<m)

Sl

M
Z I (g5 y|(2i)1<i<j, (@i)1<i<ars (bi)1<i<mr)

—_

<

> Z I (xj59-1|(%i)1<icjs (@i)1<i<mrs (bi)1<i<mr)

Sk

<
Il
—_

(w3 b1y + njalbj),

<
Il
-

I
S

which is the per-cell sum-rate capacity of a single userngdihannel. Therefore, the lower
bound is [24]E,, log(1 + P|y|*). As argued in the proof of Theorem 5 in Appendix A, we
can exchange the role af, andr,, thereby getting the claimed lower bound. Finally, the uppe
bound of b) follows immediately from Hadamard’s inequalfity SPD hermitian matrices. B

In the proof of Theorem 5 (intra-cell TDMA scheme), we useasldrom the theory of
product of random matrices. Note thét,(P) = 1/M Zn”le log(1 + PA,,) where {\,,}*_,
are the eigenvalues CHMHR[, and the analysis of capacity hinges upon the study of sgectr
properties ofHMHL. The main idea is to link the spectral properties of the fattetrix
with the exponential growth of the elements of its eigerwez:tSinceHMHL is a Hermitian
Jacobimatrix, hence tridiagonal, its eigenvectors can be comsitlas sequences with second
order linear recurrence. Therefore, the problem boils demtie study of the exponential growth
of products of two by two matrices. This is closely relatedie evaluation of the top Lyapunov
exponent of the product; The explicit link betwe€n (P) and the top Lyapunov exponent is the
Thouless formula (see [25] or [26]), a version of which weyarin Appendix D. We emphasize
however that we do not use the Thouless formula or Lyapunpements explicitly in the proof
of Theorem 5.

Like in the result of Narula [14] described below in Sectidin dur approach uses the analysis
of a certain Markov Chain. Unlike [14], we are not able to éxigly evaluate the invariant
measure of this chain. Instead, we use the theory of Har@snshto both prove convergence
and continuity results for the chain. The appropriate dedfins are introduced in the course of

proving Theorem 5.
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We remark that Theorem 1 continues to hold in a real setup,ishé instead of (H2), we
assume
(H2") =, and m, are supported ofR and are absolutely continuous with respect to Lebesgue

measure orR.

Since the argument is identical, we do not discuss this aaskef. It is also noted that unlike
the non-fading case, where intra-cell TDMA scheme is opti(sae [9]), it is proved to be
suboptimal forK > 1 in the presence of fading [27], yet TDMA it is one of the mosintonon
access protocols in cellular systems.

Turning to the WB scheme (which is the capacity achievingesah [27]), where all the
bandwidth is used for coding, and al' users are transmitting simultaneously with average
power p (and total cell average powet = Kp), we have the following less explicit high-SNR

characterization.

Theorem 2 [WB schemeX > 1, high-SNR characterization] Assume (H1), (H2) and (H4)Y an
K >1.

a) For everyP > 0, Cy(P) converges as\/ goes to infinity. We call the limit’(P).

b) We get the following bounds ari(P),

max(Elog(1+ Plal’ /K),Elog(1+ P|b|* /K)) < C(P) < Elog(1 + P(|la|* + |b]*)/K),

where the expectation is taken in the following way: the mndvariablesa and b are
independent, and (resp.b) is a complexK -vector whose coefficients are independent
and distributed according ta, (resp.m).

c) As P goes to infinity,

e+ |b?
C(P) =log P + Elog e o(1), (16)
where the expectation is taken in the following way: the mndvariablese and b

are independent, andé is a complexKk-vector whose coefficients are independent and
distributed according tor,. The law ofe is mq, which is the unique invariant probability

of the Markov chain defined by

w4 |bp_i1]?sin®(ay, b,
enp1 = ||’ (6 * lbo-y["sin*(a 1’) , (17)

€n + |bn—1|2
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where for any two arbitrary equal length vectass b,

< a;b >

) A
sin“(a,b) =1
(@) jaf* [b]”

(18)

: _ _ e+|b|?
In particular, S, =1 and £, = —Elog, ( =3 ).

As with the case{ = 1, point a) and c) of Theorem 2 follow from the almost sure cogeace
stated in Theorem 21 of Appendix C, using (H1) and (15). Adawiheorem 5, we do not use
the Thouless formula or Lyapunov exponents explicitly ie firoof of Theorem 21. The proof
of point b) is the same as the proof of Theorem 1.b). It is wonémntioning that in contrast to
Theorem 1, the non-asymptotic lower bound b) is not tight é@meyal for large SNR. This is
since it is an increasing function df and converges to a rate of a single-user Gaussian scalar
channel, which is smaller than the asymptotic rate of (23).

Note that although the roles of the sequenfes} and {b,} in (17) are not symmetric, the
expression (16) is symmetric im, andr, as is the case foK = 1.

We conclude this section by noting that while Theorem 2 (WBesce K’ > 1) does not give
explicit expressions for the high-SNR power offset as Thaod, its proof leads immediately to
easily computable bounds. In the following, the notatiomassin Theorem 2, and we lef,(a)

denote the Markov chain (17), with initial conditien(a) = a.

Proposition 3 Assume (H1), (H2) and (H4), and > 1. Then,

2 2
Elog (M) < lim [C(P) — log P] < Elog (M) ,

where the expectation is taken in the following way0) (resp.e,(c0)) and b are independent.
b is a complexK-vector whose coefficients are independent and distribatambrding to.
en(0) (resp.e,(o0)) is then-th step of the Markov chain defined by (17) with initial cdiufi

eo(0) = 0 (resp.ep(00) = 0).

Indeed, since the expression (17) qr.; is monotone increasing i#),, the law ofe in Theorem

2 is stochastically dominated below by the laweqfwith intial condition0, and stochastically
dominated above by the law ef, with initial condition co. That same monotonicity also shows
that the sequences of laws @f(0) (resp.,e,(c0)) are monotone increasing (resp., decreasing)

with respect to stochastic order.
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As a direct consequence of Proposition 3 with= 1 and (13), we get the following bounds

on the high-SNR power offset

2 2 2 .. 9 712
_Elog, (\a| 10 ) < Elog, (\a| sin?(a, b) + b ) 19)

K

where the expectation is taken in the following way:b and b’ are independent, and (resp.
b, b') is a complexk -vector whose coefficients are independent and distribatedrding tor,
(resp.m,). Note that forK going to infinity, if we assume, = 7, and zero mean, thesin?(a, b)
converges to 1, therefore the ratio between the upper- amdribound of (19), converges to 1,
which also agrees with the asymptotic result of (37).

Numerical Results:In Figures 2 and 3 we present the high-SNR power offset bouwrfids
Proposition 3 in the special case of Rayleigh fading (rea mmaginary parts are independent
Gaussian random variables with zero mean and variarig®), for K = 2 and K = 10 users
per-cell respectively. The curves are produced by MontéoGamulation with105 samples. The
figures include also the lower bound of [11], see (38), andasygmptotic results (and lower
bound) for large number of users per-cé€ll, = —1 (achieved by taking< to infinity in (38)).
Examining the figures it is observed that the new bounds attengdighter with their ordem
and that the new lower bound is tighter than (38) alreadynrfer 2. Moreover, fixing the order
n, the new bounds are getting tighter with the number of userscell K. This observation
is also evident from Fig. 4, where the bounds are plotted fdixed ordern = 2 versus the
number of users per-celk. Finally, since the upper bound of Fig. 2 is negative, we tate
that the presence of Rayleigh fading is beneficial over raatirfy channels in the high-SNR

region already forK' = 2. (See [11] for a similar conclusion in the low-SNR region.)

I1l. BACKGROUND, PREVIOUS RESULTS AND BOUNDS

In this section we briefly summarize previous work on the tgwindoff” uplink cellular model
introduced in [10][11]. For conciseness, we restrict thecdssion to the case whetg = .
Most of the results in the sequel can be extended to includgémeral case where, # .

Starting with non-fading channels (i.e., whep and =, are singletons at 1), the per-cell

sum-rate capacity of the uplink channel is given fdr— oo by [11]

1+2P+\/1+4P)

(20)

Rnf = lOg < 9
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This rate is achieved by any symmetric intra-cell protocahwaverage transmit power aP
(e.g. intra-cell TDMA, and WB protocols). It is noted thaktBame result holds also for phase
fading processes [13].

The extreme SNR characterization of (20) is summarizedHerrton-fading setup by

4 E, log 2
So=5, ~ = ;
3 N(]min 2

Returning to the flat fading setup, the channel coefficierdgaken as i.i.d. random variables,

Se=1, Lo=0. (21)

denoting by

my £ E(ami) = Ebmi) 5 ma £ E(|amul”) = E(|bmsl”)
a2 E|amel) = E(lbmgl) ; K2 % , Vom,k (22)
the mean, second power moment, fourth power moment and tieskaiof an individual fading
coefficient.

The per-cell sum-rate capacity of the WB scheme with fi¥édnd increasing number of

users and celld/, K — oo, is given by [11}

L+ 2Pmy + /14 4Pmy + 4P2(m} — ")

Ry, = log 5 (23)
The rate is maximized for a zero mean fading distribution endiven by
Ryp_t = 10g(1 + QmQP) . (24)

Comparing (20) and (24) (witln, = 1), it follows that the presence of fading is beneficial in
case the number of users is large. We note that (23) is alsersho[11] to upper bound the
respective rate for any finite number of uséfs

Returning to the intra-cell TDMA K = 1), for which standard random matrix theory is not
suitable (see Sec. II-B), the powerful moment bounding nege employed in [27] for the
Wyner model, can be utilized to obtain lower and upper bouwndshe per-cell sum-rate.

An alternative approach which replaces the role of the dargualues with the diagonal
elements of theCholeskydecomposition of the the matri& ,;, was presented by Narula [14]

for a two diagonal nonzero channel matrt®l ,; whose entries are i.i.d. zero-mean complex

3Here, the number of uset& is taken to infinity and then the number of cel$ is taken to infinity.
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Gaussian (Rayleigh fading). Originally, Narula had stddilee capacity of a time varying two
taps inter-symbol-interference (ISI) channel, where thanmel coefficients are i.i.d. zero-mean
complex Gaussian. With the above assumptions regardingSthehannel coefficients it is easy
to verify that the capacity of this model is equal to the peli-sum-rate capacity of an uplink
intra-cell TDMA scheme employed in the “soft-handoff” mdde

Following [14], we use the&Choleskydecomposition applied to the covariance matrix of the
uplink intra-cell TDMA scheme output vectdr,, = L, DU ,;, whereL,,; (resp.U ;) is a
lower triangular (resp. upper triangular) matrix with 1 dretdiagonal. The diagonal entries of

G, are given (withK = 1) by

2
dm:1+P|am|2+P|bm|2<1—P|CZ”7_1|> ,m=2,....M, (25)
m—1
where the initial condition of (25) id; = 1+ P|a|* + P |b,|*. Thus, the diagonal entrigsi,,, }
form a discrete-time continuous space Markov chain; N&ulaain observation was that this

chain possesses a unique ergodic stationary distribugiven by

h(@z% a1, (26)

where E{z) = f;o O"p( Ldt is the exponential integral function. Further, as is provredl14],
the strong law of large numbers (SLLN) holds for the sequeficgd,,} as M — oo. Hence,
the average per-cell sum-rate capacity of the intra-celMPDscheme { = 1) can be expressed

as 1
Ridma—r = lim E (M log det GM)

M—o0

. 1
= lim E <Mlogdet (LMDMUM)) (27)

M—o0

el ) s

where the last expectation is taken with respecffc), as defined in (26). In particular,

_ [ (log(x))%e"?
thma—f—/1 de- (28)

Narula’s approach is based on an explicit calculation ofitlariant distributionf,;, and is thus
tied to Rayleigh fading. Modifications of key parameterscfsas the entries’ PDF, and the
number of nonzero diagonals) lead to analytically intrldaexpressions.
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Another result derived by following the footsteps of [14]da upper bound on the per-cell
sum-rate of the WB scheme with finit€ and infinite number of celld/ — oo, in the presence

of a general fading distribution, given by

(29)

1+ 2Py + /1 +4Pmy + 4P2 (1 L) (m3 - m14))
2

Rypi—t < log (
and in the special case of zero mean unit powetr & 0, m, = 1) fading distribution (e.g.

Rayleigh fading) the bound reduces to
14+2P+ /(1 +2P)% — (4P2/K)>

(30)

Rypi—r < log ( 5

This result which is proved in [14] fof{ = 1 (intra-cell TDMA protocol) and expanded to an
arbitrary K in [15], is derived by noting that the average of the deteantnof the received

vector covariance matriks,,; can be recursively expressed by
E(det G,,) = A E(det G,,,—1) — B E(det G,,—2) ; m=3,....M , (32)
with initial conditions
E(detG)=A ; E(detG,) = A>— B, (32)

where
P2

See Appendix E for more details. The solution to (31) is gitsgn

(m3 + (K = 1) fm|*) . (33)

E(detG,,) =@ ™ — ¢ s, (34)
where
r:%(/H—\/A?—ALB) : s:%<A—\/A2—4B> , (35)

are real and positive, angd, ¢ are determined by the initial conditions (32). Finally, 49

derived by the following set of inequalities
. 1 . 1
Rkt = A}linoo ME (logdet Gyy) < ]&Enoo o logE (det Gpy) =logr , (36)

where the inequality is due to Jensen’s inequality, anddkedquality follows from the fact that
r > s, andM — oo. In the case of = 1, the upper bound of (30) coincides with the per-cell

sum-rate capacity of the non-fading setup (20). Thus, tlesgnce of Rayleigh fading decreases
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the rates of the intra-cell TDMA protocol supported by theftshandoff” model. Nevertheless,
it is shown in [11] that already fo¥X = 2 the presence of fading may be beneficial at least
for low SNR values. The tightness of the bound is demonstratenoting the forK — oo it
coincides with the asymptotic expression of (23).

The extreme SNR characterization of the WB rate fér— oo in the presence of a general

fading distribution is summarized by [11]

_ 2 . E; _ log2
SO - L+‘ml‘4+1 ’ ngin - 27;57/2
KT e (37)
Se<l:  —log, <m2+\/(1_%) (m%—\m1|4)) <.

The bounds of the high-SNR parameters are tightAor> 1. For the special case of Rayleigh
fading the extreme SNR characterization are given by [11]

g 2. B, _ log2
0 1+%’ NOmin1 2 (38)
S—1: —10g2<1+ 1—§)§£w§$,

where~ = 0.5772 is the Euler-Mascheroni constant. It is noted that the rightjuality of the
high-SNR power offset is tight foik = 1, while the left inequality is tight fork’ > 1. The
beneficial effects of Rayleigh fading and increasing nundfersers are evident when compared
to the non-fading extreme-SNR parameters of the respentivefading setup (21).

To conclude this section we emphasize that calculatingtexgaressions for the high-SNR
parameters of the WB protocol rate with finite nhumber of ugses-cell andgeneral fading

distribution remains an open problem.

IV. APPLICATIONS

In this section we present several applications of the mesualts presented in this work (see
Section 1I-D).
c) Intra-Cell TDMA and Rayleigh FadingAssuming that only one user is active per-cell
K =1 and symmetric Rayleigh fading channels (ir¢,> and,> are exponential distributions
with parameter 1), the high-SNR power offset is given actwydo Theorem 1, by
-1 ©

LOO = — max (E(10g2 |a‘2)7E(10g2 |b‘2)) - @ 0

elogx dr = —— (39)
log 2
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where the last equality is due to [28, pp. 567, formula 4.BBXbviously this result coincides
with the high-SNR power-offset derived by applying the diéfm of £, (see (13)) directly to
the exact expression derived in [14] (see expression (28)).

Note that the same result holds if an attenuation factor d¢eddo one of the fading paths,
e.g.b,, = ab,, whereb,, ~ CN(0,1) anda € [0, 1]; this follows directly from Theorem 1, but
not from [14], which requires symmetric fading paths (e= 1).

d) Intra-Cell TDMA and General Fading StatisticConsider the following single user

single-input single-output (SISO) flat fading channel farabitrary time index
y=ar+n, (40)

wherez is the input signalz ~ CN(0, P), andn is the additive circularly symmetric Gaussian
noisen ~ CAN(0,1). In addition, a is the fading coefficientz ~ w, satisfying conditions
(H1)...(H3) and known only to the receiver (receiver CSIssAaming that the fading process is

also ergodic in the time domain, the ergodic capacity of thenoel is given by [24]
C = E,, log(1+ Plal’) , (41)

where the expectation is taken over the fading distributign Accordingly, under the mild
conditions (H1)...(H3), the high-SNR regime of this chdnsecharacterized by

So=1 : Lo=-E, log,la* . (42)

Using Theorem 1, we can now establish the following analogiyvben the multi-cell setup and
the SISO channel at hand.

Corollary 4 The high-SNR characterization of the intra-cell TDMA peltsum-rate supported

by the “soft-handoff’ setup with fading distributions, 7, such that&., log, |a|* > E., log, [b 2

coincides with those of a scalar single-user fading chamigh fading distributionr,.

This observation allows us to use the vast body of work domettie celebrated scalar flat
fading channel [24]. In particular, the high-SNR charagggion of flat fading channels with
the following fading statistics have been considered ivipres works: (a) Rayleigh distribution,
(b) Rice distribution, (c) log-normal distribution, and)(Makagami distribution (see [24] and

references therein).
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e) Intra-Cell TDMA and Opportunistic Schedulinghroughout this work we have assumed
that the instantaneous channel state information is knammmé MCP receiver only. Here we
further assume that some sort of ideal feedback channekitahle between the MCP receiver
and the K’ mobile users included in each cell. This feedback channekeéd to schedule the
“pest” local user in each cell for transmission during therent time slot. In other words, in
each cell the user with the strongest channel fade towael881located on the right boundary
of each cell is scheduled for transmissianith power P. Hence, the index of the selected user
in the mth cell reads

k= argmax|am,k|2 m=1,2,...,M . 43)
k=12,..K

The resultingM x (M + 1) channel transfer matrid ,; of this scheduling scheme is a two
diagonal matrix with independent entries. The probabiignsity function of the main diagonal

i.i.d. entries’ amplitudes is given by
dﬂ'K"a‘z = Kﬁﬁgldﬂm‘z , (44)

following the maximum order statistics [30]. On the othendathe i.i.d. entries of the second
non-zero diagonal are distributed according to the origiading statisticsr,.

Assuming thafer,‘a‘Q andm, satisfy conditions (H1)...(H3), we can apply Theorem 1 idesr
to derive the high-SNR characteristics of the per-cell sate-achievable by this opportunistic
scheduling

So=1 ; L, =-—max (E”K,\aﬁ (logy y), Ex, (log, |b|2)> : (45)
For Rayleigh fading channels and in the case where the nuaihesers per-cell is larg&” > 1,

we can use the well known fact that the square of the maximutinedk” amplitudes behaves like
log K with high-probability (see [31]). Hence, the rate high-SN&wver offset of this scheme is

Lo ~ —log,log K , (46)

revealing a multi-user diversity gain dbglog K. It is noted that allowing additional power
control to this scheme will yield better performances. Hegrewe are unable to apply Theorem
1 for this situation. Finally, choosing the BS located onrilgdt boundary of the cell is arbitrary;

taken the BS located on the left boundary of the cell yieldsdhme results.

4See [29] for a similar scheduling deployed in the Wyner datwplink channel.

®Since the right most cell indexed (M+1), has no BS on its rightindary it randomly schedules a user for transmission.
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V. CONCLUDING REMARKS

In this paper we study the high-SNR characterization of teegell sum-rate capacity of
the “soft-handoff” uplink cellular channel with multi-dgbrocessing. Taking advantage of the
special topology induced by the setup, the problem reducethd study of the spectrum of
certain large random Hermitian Jacobi matrices. For theaioell TDMA protocol where only
one user is active simultaneously per-cell we provide arctegkbnsed form expression for the
per-cell sum-rate high-SNR power offset for rather genéading distribution. Examining the
result, it is concluded that in the high-SNR regime, the mitehe cellular setup at hand is
equivalent to the one of a single user SISO channel with amfi@lding statistics.

Turning to the capacity achieving WB protocol, where Allusers are active simultaneously
in each cell, we derive a series of lower and upper boundsdadate. These bounds are shown
(via Monte-Carlo simulations) to be tighter than previgushown bounds.

Note that in Theorem 2 points a) and c) and in Proposition 3take the fading coefficients
relative to the users of one cell to be independent. Thosaltsesontinue to be true if we
assume correlation between the fading coefficients r@ativthe users of the same cell (but
independence between cells). The proof is identical to thefpgiven in the paper.

Some of the analysis reported here can be extended to intledsase wherér,, is (2p—1)-
diagonal for some» > 2 (e.g.p = 3 for the channel matrix of the Wyner model), using an
adaptation of the “Thouless formula for the strip” derivetymally in [32]. Using this approach,
bounds similar to those of Prop. 3 may be provided on the #étails will appear elsewhere
[33].
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APPENDIX
A. Proof of Theorem 1

In order to streamline the proof we somewhat modify notatidfe consider two random
sequences of complex numbedis,) and (b,). The (a,) (resp.(b,)) are i.i.d of lawr, (resp.
m) and the(a,) are independent of thé,). We setQ = ((a,), (b,)). We denote byP the
probability associated with those random sequences arid ttne associated expectation. For a

given integerm, we consider a channel transfer mat#k,, of size M x (M + 1).

a b 0 --- 0
0
H) =
0

We consider the following variable

Cot(P) = % tr {1og <I n PHMHTM> } .

Note that,
|&1|2+|bl|2 a;bl 0 0
azbl |CL2|2 + |b2|2 agbZ
HMH;[\/[ = 0 0
ah b
t 2 2
0 0 aMbM_l |aM| +|bM|

With this notation, as explained in Section II-D, Theoremollaws from the following.

Theorem 5 [K = 1] Assume (H1) and (H2).

a) For everyp > 0, Cy/(P) convergesP-a.s asM goes to infinity. We call the limi(P).
b) Further assume [(H3) or (H3’)]. A® goes to infinity,

C(P) =log P + 2max (E,, log |z| ; E,, log |z|) + o(1).

Proof of Theorem SVithout loss of generality, in the proof we can assume

(H5) E,, log|z| < E, log |x|.

October 11, 2007 DRAFT



21

Indeed, we may exchange the role of entigsndd; for 1 < i < M by a right-left reflection,
namely the transformatiof; = by;_;11, Bj =ay—j+1, 1 <j <M.

For part a), only (H1) and (H2) are needed. Since part a) isrsaeguence of general facts
concerning products of random matrices and does not use wiuttte special structure in the
problem, we bring it in Appendix D.

Part b) uses the theory of Markov chains and is specific to #émecolar matrixH ;. We note
that as a by product of this approach, we obtain a second @opért a), however under the
additional assumption [(H3) or (H3’)]. We provide a proof Ofieorem 5 under the assumptions
(H1), (H2) and [(H3) or (H3")] in Appendices A and B.

The structure of the proof is as follows. We first introduceaaxiliary sequence which allows
us to reformulate the problem in terms of a special MarkovrchBhe study of the latter, which
forms the bulk of the proof of Theorem 5, is carried out in 8etB.

1) Auxiliary sequenceWe begin with a technical lemma.

Lemma 6 Assume (HZ)P-a.s,HMHR[ does not have multiple eigenvalues.

Proof: We let D denote the discriminant QHMH}'V[, it is a polynomial in
{lai]* + [b:)?*, aiy1bl, al, b} which vanishes when there is a multiple eigenvalue. Thegefio
is a polynomial inRa;, Sa;, b; and Ib; It is not identically 0 because fdr, = 0 anda; = 1,
the eigenvalues oHMH}'VI are distinct. The result follows directly from the follovgiemma

which is an easy consequence of Fubini’s theorem. [ |

Lemma 7 Let ) be a function fromC” to C. We assume thap is not identically 0 and that
Q(z1,...,z,) Is a polynomial in theéRz; and theSz;. Then the set of the roots §f has Lebesgue

measure 0.

In the sequel, we denote by > ... > \,, the ordered eigenvalues dHMHEM. For a given
A, we consider the following sequence (indexedryof complex numbers (the dependence in

A will only be mentioned when it is relevant)y, = 0, z; = 1, and forn > 1,
anbiz—lxn—l + (|an|2 + ‘bn‘2>xn + aiH-lbnan = Ay,

that is

A—lanl” = |ba*  aub_
n

Tn—1- (47)

Tnt1 =

aIL+1bn a’jz-l—lbn
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Note thatz,;.1(A) = 0 if and only if A is an eigenvalue oiHMH}'VI. Moreover,z, ., IS a
polynomial in \ of degreen with highest coefficient / [, (al,,b;). One can thus write using

Lemma 6

xn-l—l()\) H z—l—l i H P— a.s
=1

=1

Hence, for\ = —1/P,
M
1 1
Cu(P) =log(P) + i log |zp41(N)] + i ;log |a;10;] P—as (48)
By the Law of Large Numbers (LLN),
hm — Zlog |a;+1b;| = E;, log|z| + Er, log|z| P —as
Because of (48), to prove Theorem 5, we only need to show tlheviog lemma.

Lemma 8 Assume (H1), (H2) and [(H3) or (H3')]
a) For every\ < 0, Llog|z,41(\)| convergesP-a.s asn goes to infinity. The limit isy(\),
the Lyapunov exponent defined by (62).
b) Assume further (H5). Theq(\) converges tdE,, log|z| — E,, log|z| as A goes to 0.

2) Reduction to a Markov chairiTo prove Lemma 8, we take, £ Tn/Tn_1, fOr n > 2. Note
that by (47) and (H2)P-a.s,z, # 0, hencec, is well defined and non-zero. By (47), we get
- |an|2 - |bn|2 anbiz—l

Cn+1 = 7 T .
Ay qbp Cr Gy 4 1bn,

Let d, = c,alb, 1. Then,

2 2 |an|2|bn—1|2 2 2 |bn—1|2

Lete, = (1 + %) Thend, .1 = A — |b,|* — |an|” en, and

—A -+ |an_1|2 €n—1

: (49)
—A + |bn—1|2 + |a'n—1|2 €n—1

n —

with the initial conditions, ) )
A= a|" =[]
Co = 3

a,;bl
d2 =\— ‘bl‘z - |a1|2.
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ds € R anddy < — |bl|2, hence0 < e; < 1. From (49) we conclude that for all, ¢, € R and

0 < e, < 1. Now, for all n,
d, b1

Cp = .
aTnbn_l ap  €p — 1
Then,

1 1 n+1

ool = 53 logled
1 n+1 b (50)

== Z (log = og(1 — ei))

N3 @i

% E?:zl log
Markov chaine,,.

bi—1
a;

converges t&,, log|z| — E,, log |x| by the LLN. We now study in details the

B. Study of the Markov chai#), and proof of Lemma 8

For simplicity, we write§ = —)\ and we re-index the chain so that it starts frep As in
(49),
_ 0+ |otn_1|2 En_1

8+ bna? + lan 1 en s
We denote byP,., the law of the sequence starting fragand byE,, the associated expectation.

(51)

n

Proposition 9 Assume (H2) and [(H3) or (H3")]. The Markov chai) has a unique stationary
probability, say,us and for s € L' (u;), for every starting point, € [0,1], P, -a.s,

1 n
— E s(e;) —— | sdus.
n =0 nee
Proof: We start with two lemmas that will be proved later on.

Lemma 10 For «, 3,0 € R*, we define the function, s (we suppres® from the notation)

such that fore € [0, 1]
0+ ae

T 5+ B+ae
For any givene € [0, 1], we define the sequence,(e)) by 6, = e and forn > 1, 6,(e) =

¢a,ﬁ(e>

ba,8(0,-1(€)). Then,p, s has exactly one fixed point i0, 1], sayx, s, andé,(e) converges to

Ka3- Moreover, the convergence is uniform in the starting painthe following sense:
(Ve > 0)(3ng € N)(Ve € [0,1])(Vn > ng)(|0n(e) — Ka gl < €).
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Finally if a1 < ay and 8, > 52, thenk,, g, < Kay 8,

Lemma 11 Assume (H2) and [(H3) or (H3)].

a) For ¢y € [0, 1], there exist two sequencéd),(eq)) and (6% (eg)) in [0,1] such that the law
of e,, underP,, and the Lebesgue-measure [@&! (¢y)), (6%(ey))] are mutually absolutely
continuous.

b) (61(eo)) and (62 (eo)) converge to, sap' and ©? respectivelyP' and ©? are independent
of ey and ©! < ©2. Finally, the convergence is uniform in the starting pointthe sense
of Lemma 10.

c) If e € [©!,07], then for alln, the law ofe,, under P, is absolutely continuous with

respect to the Lebesgue-measure[©n, ©2].

We recall some definitions from the theory of Harris Markovaits, which will be used

extensively in the proof. We refer the reader to [34] for tkeéevant background.

Definition 12 Denote by(r,,) a Markov chain on/ an interval ofR. Setl a probability measure
on I, it is anirreducibility measuref for all measurable setd such thati(A) > 0 and for all
rog €1

(3n) P,y (rp, € A) > 0.

[ is a maximal irreducibility measurd it satisfies the following conditions:
« [ is an irreducibility measure.
« For any other irreducibility measuré, I’ is absolutely continuous with respect ito
e If I(A)=0theni{ry: (3In) P, (r, € A) >0} =0.
« For any irreducibility measuréd’, [ is equivalent to

e e}

/ V)Y %RO (ri € ).

I i=0
Definition 13 Denote by(r,) a Markov chain onl an interval ofR. A setA is called Harris
recurrentif for all r, € A, P,,-a.s, the chainr, visits A an infinite number of times. The chain
(rn) is calledHarris recurrenif given a maximal irreducibility measure every measurable set

A such that/(A) > 0 is Harris recurrent.

Definition 14 Denote by(r,) a Markov chain on/ an interval of R. Denote byl a maximal

irreducibility measure. For every measurable sesuch that/(A) > 0 we denote by, the time
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when the chair(r,,) entersA. A measurable seB is calledregularif for every measurable set
A such thatl/(A) > 0,

sup E,,(14) < 0.
ro€B

Definition 15 Denote by(r,) a Markov chain on/ an interval of R. Denote byA and B two

measurable sets. We say thatis uniformly accessiblérom A if there exists arr > 0 such that

inf P,,((3In) r, € B) > ¢.

ro€A
We continue with the proof of Proposition 9. Denote lothe Lebesgue-measure @', ©2].
By [34, Theorem 17.0.1], it is enough to prove that the Markbgine,, is [-irreducible, positive
Harris with invariant probability:s. Denote5* the set of Lebesgue-measurable subsefs,df

with positive/-measure. Here is a technical lemma that will be proved later

Lemma 16 Assume (H2) and [(H3) or (H3')]. For allB € B*, there exists, = ny(B) such
that for all n > ny,
pn = inf P, (e, € B) > 0.

e0€[0,1]

We continue with the proof of Proposition 9.

Step 1: The Markov chaia, is [-irreducible, Harris and admits an invariant measure urgqu
up to a constant multipleBy Lemma 16, fore, € [0, 1] and B € B*, the chain has a positive
probability to reachB in n, steps starting from,. Therefore, the Markov chai, is [-irreducible
and by Lemma 11 c),is a maximal irreducibility measure for the chain For a givenB € BT,
by Lemma 16, the chain, has a probability at leasgt,, to reachB in n, steps, hence the chain
will eventually reachB and hence come back # an infinite number of times, therefom® is
Harris-recurrent and the Markov chadp is Harris. By [34, Theorem 10.0.1], the Markov chain

e, admits an invariant measure unique up to a constant multiple

Step 2: The Markov chain, is aperiodic.By [34, Theorem 5.4.4], there exists an integer
the period of the chain, such that there exist disjoint mesdsda setsD,, ..., D,_; such that

« Fori=0...d—1,if ¢; € D;, thenP,,(e;11 € D;11) =1 (mod d).

e L((UL,Dy)°) =0.
By Lemma 11, forn; > n, large enough and > n,, the Lebesgue-measure dn= [(20! +

0%)/3, (0'+26?)/3] is absolutely continuous with respect to the lanepfunderP,,. Therefore,
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foranyn > ny, if e, € D;, thenJ C D;, and then, itd > 1,¢,,, € D;;; andthus alsd C D1,

a contradiction. Hencel = 1.

Step 3: The seln, 1] is regular for the Markov chaire,,. Take B € B*. By Lemma 16, the
time it will take for the chaine,, to enter B is a.s bounded above hy, times a geometric
random variable of parametey,,, hence it expectation is bounded abovergyp,,,, hencel0, 1]

is regular.

Now we apply [34, Theorem 13.0.1] and get that the Markov rthai is positive Harris,

hence has a unique invariant probability that we dengte

Proof of Lemma 16:
The Lebesgue-measure @', ©?] is regular hence there exists an- 0 such thatB N[O +
g,0? — ¢] has positive Lebesgue-measure. By Lemma 11 a) and b), weakam¢ such that
for any givenn > ny and any given starting pointy, P, (e, € B) > 0. Fix n > ny. Set

¥(eg) = Pey(en, € B). By (H2), ¢ is a continuous function ofv, 1]. By compactness,

inf P, (e, € B) > 0.

eo€[0,1]

Proof of Lemma 11:Let us start assuming (H3’).
a) We first assume that1,, M, € R*. We use the notation of Lemma 10. Fay € [0, 1]
andn, we defined),(eq) = ¢y, v, (o) ande?(eo) = P'hy, m, (€0), Whereo™ is then-th iteration
of the function¢. Note that forel < e, € [0, 1], al < ay € RT and 51 < 3, € RT,

¢ : [61762] X [041,042] X [61752] - [¢a1752<€1>7¢a2,ﬁ1(62)]
(x7a76) — ¢aﬁ(e>

is well defined and onto and the inverse image of an intervathvis not a singleton has positive
Lebesgue-measure. Therefore, by induction, the Lebesmasure on[d!, 6?] is absolutely
continuous with respect to the law ef underP.,. Moreover, by (H2) and (51), the Lebesgue-
measure oné;, 62] and the law ofe,, underP,, are mutually absolutely continuous.

b) It is a direct consequence of Lemma 10 and we@€t= k,,, o1, aNd O = Kpq, 1, BY

Lemma 10 and (H3")fm, m, < Kmt,m,, henceO! < 62,
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C) ¢m..Mm, IS INCreasing ands,,, »1, a fixed point hence ifs,,, »1, < eo, then for alln,
KmatM, < 01(eo). In the same way, for alh, ki, m, > 602 (eo)-

If M, = oo (resp.M;, = oo), we take for alln > 1, 62 =1 (resp.6. = 0) and©? = 1 (resp.
©! = 0) and the proof is the same.

Let us now assume (H3). The proof is the same with forrall> 1 and alle, € [0, 1],
0l (eo) =0, for all n > 1 and alley € [0, 1] (except forn = 1 andey = 0), 6%(eg) = 0. We get
Ol =0ande? =1. |

Proof of Lemma 10:Fore € [0, 1],

_ak
(6 + B+ ae)?

w5 Is decreasing andy, (1) < 1. If ¢, 5(0) < 1, theng, s is contracting hence admits a fixed

¢/a,ﬁ(€) =

point and its iteration on any starting point converges ® fiked point. Supposeg;, ;(0) > 1.
Denote bye the only point of[0, 1] such that¢], 5(e) = 1. Set ¢, 5(e) = d(e)as — €. Then
$a,8(0) > 0, ¢ (1) < 0, and ¢, is increasing on0,e] and decreasing off, 1|. Hence,
$a.5(€) > 0 and ¢, 5 is 0 on exactly one point which is a fixed point for, 5. We denote that
fixed pointk, g. If e € [kq g, 1], SiNCeP, 5 is increasing, for alk, 0, (e) € (ko p, 1] and ¢, 5 is
contracting onk, g, 1] henced, (e) converges tas, 5. If e € [0, K, 5], for all n, 8,,(e) € [0, ka4,
and ¢, 5 is non-negative on that interval, hengg¢) is non-decreasing. Therefore, it converges
and sinceg, g is continuous, the only possible limit is, 3. To prove the uniformity in the

starting point, we use the fact thag, ; is increasing, hence for afl € [0, 1] andn,
0,(0) < ,(e) <0,(1).

That gives the uniformity. Finally, assumea < a, and 5, > (. ¢, 5(e) is non-decreasing in
«, decreasing i and non-decreasing inhence by inductiong;; 5 (0) < ¢7, 5,(0), whereg”

is then-th iteration of the functiony. Hence,kq, 5, < Kao o If Koy g = Kas, g, then

Koy,p = ¢al,ﬁ1 (Hc‘fl,ﬁl) < ¢a2,ﬁ2 (Hc‘fl,ﬁl) = ¢a2752<’%a2752> = Kag,B2>

which gives a contradiction.
[ |
We continue with the proof of Lemma 8. Recall thaK e, < 1, henceus is stochastically

dominated by an atom dt y; is the invariant measure, since the functions(-) is increasing
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in e, s is stochastically dominated by the law of the chain startetl @fter one step:

5 2 2
T B T e e
(5+|b0| +|CLO| ‘b0| +\a0\

Thus, denoting byr, the law of ol and using (H1),

[bo|*+lao|*”’

l/—bgl—@@m@)g/ngﬂ—me@)<xx

That is
—log(1 — ) € L!(15). (52)
With Proposition 9, we get
1 n+1 1
=3 —log(l—er) — [ —log(1—x)dus(z)  Pe,—as (53)
n n—oo 0

k=2
With (50), it gives a proof of Lemma 8 a).

Let us prove Lemma 8 b). Take> 0 ande > 0 small.
1
| 1os1 = 2)dsta)
0

- /06 —log(1 — z)dpus(z) +/ o log(1 — x)dus(x) + /1_ —log(1 — z)dus(z)  (54)

< —elog(l— &) = logus(le, 1) + | ~log(1 - )ds(a).

1-n

By (52), the last term converges to 0 agjoes to 0. By (50), (53) and (54), to prove Lemma 8

b), we only have to prove that for any givern> 0,

ps(le, 1)) — 0.

For that, by Proposition 9, we need to show that the proportibthe time that the chain,

spends above converges to O as goes to 0. We také® < ¢ < g9 < 1, wheree, will be

chosen later. We consider the Markov chajn2 loge, and the random functiop, such that
Zn = gn(zn—1). It is enough to show that the proportion of the time thatspends abovég e

goes to0 asé goes to0. Let us couplez, with another Markov chainv,,, such thatw, > z,

a.s. and that the proportion of the time that spends abovégc goes to0 asd goes to0.

For that, we need good information on the jumps:pf
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Lemma 17 Assume (H1) and (H5). Set

5
= log (e + |an_1|2> —log (8 + |ba_i|” + |an_1]?e) .

(Vo > 0) (Fe’ > 0) (Vx > loge’)
a) Ej,(r) <0,
. A 2 21\ 2 21\ 2
b) Varj,(z) <V =E <(log(|an_1| + |61 )) + (log(|an_1| )) ) + C.
C is a constant independent of everythiagis a function of§ but we will not write it to keep
the notation clear. Moreover,

lime = 0.
0—0

The proof will be done at the end of the section.
We continue with the proof of Lemma 8 b). We take> 0 such that) < ¢’ < e < ¢y < 1.
We definew,, in a way that it stays betweelngs’ and 0. Setwy, = z, for 6 small enough,

wy > loge’. Forz € [loge’; 0], denote

hn(2) = gn(x) — Bjn(2) = gn(2).

That is
5 2
e + |an—1|
h,(x) =x + 1o € -
(@) & <5+ bt + |an_1|26w>
5 : (55)
ey + |an—1|
Elog — 5 .
O+ [bpoa|” + |an—1]"e®
Note that
E(hn<zn—1) - Zn—l‘zn—1> = 0. (56)

o If hyp(wy—1) >0, setw, = 0.

o If hy(w,_1) <loge’, setw, =loge’.

. Otherwise, set,, = h,(w,_1).

In the first two case, we say that the chairtrisncated Note that for alln, w,, > z,. Indeed,
eitherw,, = 0 > z, or w, > hy(wu—1) > go(Wn-1) > gn(2n-1) = 2, Dy induction and using
the fact thatg, is a.s non-decreasing. Therefore, the proportion of the tihat the chainv,

spends abovévg ¢ is larger that the proportion of the time that chainspends abovég e.
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Proposition 18 Assume (H2).

a) The Markov chainv,, has a unique stationary probability, says and fors € L*(vs), for

every starting pointy, € [loge’, 0], P,,-a.s,
1 n
— Z s(w;) —— [ sduvs.
n =0 n—oo
b) We denotel” the return time td), starting from0. Thenvs(0) = 1/E(7".

Proof: See [34] and Definitions 12-15 for the theory of Harris Marlahains that we will
use extensively in the proof. Define the following probapilneasure orjloge’, 0]. For B a

Borel set,

o)
=0

I(B)£> 2n1+1P0(wn € B).

n

Let us prove that the Markov chain, is [-irreducible, positive Harris with invariant probability
vs. By [34, Theorem 17.0.1], that will prove a). We use the faflog lemma that will be proved

later on.

Lemma 19 Assume (H2).

a) There existc > 0 and # > 0 such that for allz € [log¢’; 0],
P(hp(x) > 2 +¢) > 0.

b) SetN = [‘lo%w 0 is a recurrent point for the chaiw, and the time between two visits

at 0 is a.s bounded above by times a geometric random variable of paramefér.

We continue with the proof of Lemma 18. The sets which havetiged-measure are exactly
the sets that have a positive probability to be visited istgrirom 0. Moreover 0 is a recurrent
point. Therefore, the Markov chain, is I-irreducible and is a maximal irreducibility measure.
Moreover, takeB with positive [-measure,B is uniformly accessible fron{0}. Therefore, we
can apply [34, Theorem 9.1.3 (i)] and since 0O is Harris-resntr;, B is also Harris-recurrent,
therefore, the chaimw,, is Harris-recurrent. By Lemma 19 b), the time between twatviat O
has finite expectation (bounded above Byd"). Therefore, by [34, Theorem 10.2.2], the chain
w, is positive-Harris and admits a unique invariant prob&pitheasure. That finishes the proof

of point a). The point b) is a consequence of
1 =w;s([loge’, 0]) = vs(0)Eo[T],
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which comes from [34, Theorem 10.0.1], which we apply 40= {0}, which has positive
I-measure. |

Proof of Lemma 19:a) We consider heré > 0. We denote bySupp(X) the support of
the law of a random variabl&’. We taked, small enough. We consider far € [loge’; 0] the
function

P(x) = max{y;y € Supp(h,(z) — z)},

which by (H2) and (55) is a continuous function of Moreover, sincéE(h,(z) —x) =0, ¢ is

strictly positive. By compactness, there exists 0 such that forz € [loge’; 0],
o(z) > 2,
P(h,(x) > x+c¢) > 0.

By (H2) and (55),P(h,(z) > x + ¢) is continuous and once again, by compactness, there exists
¢ > 0 such that forx € [loge’; 0] ,

P(hy(z) > +¢) > 6.

b) If there are at leas¥ steps in a row such that,(w,,_1) > x + ¢, then the chain reachés
By the point a), that happens with probability at lea%t> 0, hence0 is a recurrent point for
the chaimw,, and the time between two visits at 0 is a.s bounded abov¥ ynes a geometric
random variable of parametér’. [ |

We continue with the proof of Lemma 8 b). By Proposition 18ta)prove that the proportion

of the time thatw,, spends abovébg c goes to0 asd goes to0, we only need to prove that

vs([loge, 0]) o~ 0.

Let us first prove thakET pee which by Proposition 18 b) will prove that

v5(0) e 0.

We use the following lemma.

Lemma 20 Assume (H2).

a) There existu > 0 and a« > 0 dependent orr and independent of such that for all
x € [2loge; 0],
P(h,(z) > x+u) > a.
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b) There existv > 0 and 3 > 0 dependent om and independent aof such that
P (loge < hi(0) < —v) > 3.

The lemma will be proved later on.
We continue with the proof of Lemma 8 b). We denotethe eventloge < h;(0) < —v. On

A, we define the stopping time

T=1+1inf{n > 1;h,1(w,) > 0 Or hyyi(w,) < loge'}.

We now condition on the eventl and onz, = h,(0), denote byP and E the associated
probability and expectatiorl < T is the first time the chain is truncated. Moreover, fox T,

wy, = hy(w,_1), S0 with (56), by classical martingale arguments,

E (h#(wz_y)) = 0.

We denote byA, the event thatw, reacheslogs’ before 0, we setp = P(Ao), Xy =
E (h#(wz_,)|A5) and Xy = E (hp(wz_y)|Ao).

XTog = le + (1 —p)Xo.

. XO—.CL'O
C Xo— Xy

Xo>0and X, <loge <loge < xy < —v hence,

p

(57)

Using X; < log¢’, (57) andw? — Vn, which is a super-martingale by Lemma 17 b),

E (hi(wg_,))" — 23

E(T) > E(T) >
o pXP+ (1= p)X§ — af
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We integrate over, and useP(A) > § andE(h,(0)%|.A) < (loge)?.
v(—loge’) —E(h1(0)*]A)

E(T|A) > 7 .
v(—loge’) — (loge)?
E(T) = p % :

We have proved thdET O which proves that;(0) 7 0.

Using Lemma 20 and the invariance mf, let us prove by induction that fok < (%}

vs ([=Nu; 0]) < aNs(0).
vs([=WN = Dw; 0]) = /Vé(dw(J)Pwo(wl € [-(NV = 1)u;0])
> /[_Nu;o] s(dwo) Py (w1 € [—(N — 1)u; )
> /[_Nu;o] s (duwo) Py (1 (tw0) =  + wo)

> avs([—Nwu; 0]).

Therefore,

—loge

vs ([log ;0]) < al == 115(0).

So,

vs ([loge; 0]) 7 0.

That concludes the proof of Lemma 8 b).
Proof of Lemma 20:We consider heré > 0. We denote bySupp(X) the support of the
law of a random variableX. We taked, small enough.

a) We consider for: € [2loge; 0] and0 < 6 < §, the function

P(x,0) = max{y;y € Supp(hn(z) — x)},

which by (H2) is a continuous function dfr, §) becauseh,(x) — x) is continuous in(z, d).
Moreover, sincek(h,(z) — z) = 0, ¢ is strictly positive. By compactness, there exists> 0
such that forz € [21loge; 0] and0 < § < dy,

¢(z,6) > 2u,
P(h,(z) > x4+ u) > 0.
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By (H2), P(h,(xz) > x 4+ u) is continuous and once again, by compactness, there exist$
such that forz € [21loge; 0] and0 < § < dy,

P(h,(z) > x4+ u) > a.

b) For all0 < § < §y, there exist, > 0 andv > 0 such thatP(logey < h1(0) < —v) > 0. Like
in the proof of a, by (H2), we can chosg > 0 andv > 0 continuous in. By compactness, we
can chose, > 0 andv > 0 independent ob such that for all0 < § < g, P(logey < hq1(0) <
—v) > 0 and like in the proof of a), by (H2), that probability can beoshn continuous in.
Therefore, by compactness again, there exists 0 dependent om and independent aof such
thatP(logey < h1(0) < —v) > (. Takee < gy, we haveP(loge < hi(0) < —v) > . u

Proof of Lemma 17: Note that by (H1),VV < oc. j,(x) is a non-increasing continuous
function of z and so isEj,(z). Ej,(0) < 0, hence givery, there exist0 < ¢’ < 1 such that
Ej,(loge’) <0, and forz > loge’, Ej,(x) < 0. That gives point 1. For point 2, také such
that for all z > 0,

(log(z + 1))* < (log(2))* + C.

To prove thatlim;_,¢’ = 0, it is enough to prove that for a giveh < 0, we can findd small
enough such thdtj, (L) < 0. That is true because for a givénEj, () is a continuous function
of § which, by (H4) is negative fod = 0. [ |

C. Proof of Theorem 2

We reformulate the problem in the spirit of Appendix A. L&t > 1. The a; (resp.b;) are
now independent complex vectors of sikewhose coefficients are independent and distributed
according tor, (resp.m,). We denote byP the probability associated with those random
sequences and bl the associated expectation. We consider the followddgx K (M + 1)

channel transfer matrix:

a b1 0 0
0
H, =
0
0 0 a ) b]\/[

We consider the following variable

1 P
Cu(P) = 57t {log (I + ?HMHL) } ,
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where P = Kp. Note that,

lai]> + |bi]> < agb; > 0 0
< ag; by >T |CL2|2 + \b2|2 < as; by > : :
HyH', = 0 0 ;
< ap; by >
0 e 0 < ap; by >t |CLM|2 + \bM|2

where|a;|® = S8 |aix)® and < a;, b; >= S0 (a;) b

Theorem 21 Assume (H1), (H2) and (H4)

a) For everyp > 0, Cy/(P) convergesP-a.s asM goes to infinity. We call the lim(P).
b) As P goes to infinity,

K
where the expectation is taken in the following wagndb are independent is a complex
K-vector whose coefficients are independent and distribatedrding tor,. The law of
e is mg, which is the unique invariant probability of the Markov amalefined by

2 én + |bn—1‘28in2(an7bn—1>
ent1 = |an| 5 )
€n + |bn—1|

The rest of this appendix is devoted to the proof of Theorem 21

2
C(P) =1log P + Elog <e + bl ) +o(1),

As in Appendix A, we define the sequeneg as follows.zy = 0, z; = 1, and forn > 1,
A= la, | — b, < ap;b, g >T
x —

Tkl = T Ani1; b, > 7" < api;b, > Tt (58)
We get, like in (48), forA = —1/p,
1 1 &
Cur(P) =log(P/K) + - log [tara (V)] + 1 z; log|< aiq;b: > P—as (59

Setc, = 2, /,_1, for n > 2. By (58), we get
A= lanl = |bal* < @n;buy >
< Qpy1; bn > Cp < an—l—l;bn >.

Cnt1 =

Letd, =c¢, < a,;b,_1 >. Then,

‘< Qan,; bn—l >|2
dy,

by_1|” cos®(an, b
= b~ Jan <1+' i ol b ”),

dos1 = A = lan|” = [ba|" —

dy,
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where
082 (@, bp_1) 2 |< @y by_y >/ @] |ba_y| .
Note that0 < cos? < 1. Lete, = —d,, — |b,_1|°.

en + [bu_i|* sin?(an, bn_1)>

(60)
€n + |bn—1 |2

€nt1 = A+ ‘a’n‘z (
wheresin? £ 1 — cos?. With the initial conditionsd, < — \b1|2, hencee, > 0 and for alln,
e, > 0. Note that(e,,) is a Markov chain and that for all, e, is independent o&,, andb,,_;.

By (59), we get

M+1 M

1
Cur(P) =log(P/K) + - ; log |e;(A)] + — Zlog |< @if1;b; >|

= log(P/K) + = > los(ld]) + o(1) (61)

=2

M+1
_'_ bz
= log(P +—Zl <¢>+0(1)

We only need to study the Markov chaia,, b,_1). For convenience, we sét= —\ and we

allow § = 0. We also assume without loss of generality that the chairisséd (e, by).

Proposition 22 Assume (H2) and (H4). Tak& > 0. The Markov chain(e,(¢),b,_1) has a
unique stationary probability, say;s and for s € L'(us), for every starting pointe;, by) €

]R_,. X CK, IP’(eth)-a.s,
1 n
— Z s(e;, b)) —— [ sdus.
n =0 e
Moreover, 5 is weakly continuous ia = 0.

Proof: We consider the Markov chaife,,) on the compacio, co]. By (60), forn > 1 and
e € [0, 00}, P.(e, = 00) = 0. Consider (60), by (H2), foe; € [0, c0), the law ofe, underP., is
absolutely continuous with respect to the Lebesgue measuf& co|. Moreover, by (H4), the
law of e, under P, and the Lebesgue measure pnoo| are mutually absolutely continuous.
Therefore, fore; € [0,00) andn > 3, the law ofe, under P,, and the Lebesgue measure
on [§, o] are mutually absolutely continuous. That fact allows us ttove like in Appendix

B that the Markov chainle,) is Il-irreducible, positive Harris with invariant probabilitys,
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where! is the Lebesgue measure @hoo|. SincelP, (e, = oo) = 0, ms does not charggoo}.
We identify ms and the measure it induces @_. We denote by, the law ofb. Since for
n > 1, e, andb,_; are independent, the Markov chdi#,, b, ) is | x Ilp-irreducible, positive
Harris with invariant probabilityus; = ms x II,. By [34, Theorem 17.0.1], the Markov chain
(e(N), b,_1) has a unique stationary probability and fors € L'(us), for every starting point

(61, bo) e R, x CK, IP’(eth)-a.S,

1 n
— E s(e;, bi_1) —— [ sdus.
n n—00

i=0

Let us prove thatns; converges weakly ten, when converges to 0, which will finish the
proof. {ms,6 > 0} are measures on the compa@too| hence it is enough to show that,
is the only limit point whens goes to 0. By (H2), for a point and an intervald in [0, o],
P., (e2(6) € A) converges tdP,, (e2(0) € A). It implies that a limit point must be an invariant
measure for the chain with = 0. The only possibility ism,. [ |
By (60), ms is stochastically dominated by the law faf,|* + 6. Therefore, by (H1)(z,y) —
log(x +vy) € L'(us). (61) and Proposition 22 conclude the proof of Theorem 21.

D. Product of random matrices

We prove Lemma 8 a) assuming only (H1) and (H2). We use theyh#@roduct of random
matrices theory. For a general introduction to the aspefcteeotheory we use here, the reader
may consult [25], [26], [35]-[37].

Let us take|-| any norm onC? and ||-|| the associated operator norm on matrices. For a given

. Alan—fou®  _anby_s .
ntl = a‘n+1b” a‘n+1bn "
Ty 1 0 Tp—1

Fora,d, bt € C — 0, we define the following invertible matrices

Alal®= /12 abl
ghad pp) |
1 0
Finally, we define
Afan[2=fbul?  _anbl
A T T
gn()‘) = g()‘a Qpy Qp—1, bn—lv bn) = Ony1bn Ont10n 5

1 0
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So that

Set& = (C — 0)* which is a Borel set of a separable and complete metric spice=
(Gns1,n, by, by_1) is @ Markov chain or€, with invariant measurél £ 7, x 7, x m, x m,. With
(H1),

En (log" g\, a,a’,b,1)]| + log* Hg()\,a,a', b, b’)_1H> < .

Notice thatg,(\) is a continuous function oX,,, therefore((X,, M,),1I) is a multiplicative

Markovian process. By [38, Example 1 and Proposition 213} log || M, ()\)|| convergesP-
almost surely and i, (2), we set

() = lim log [ ML) (62)

n—oo M
~(A) is the first Lyapunov exponent.
The LL;(2) convergence already gives an easy upper boundyfay. By the property of

operator norm,
Y(A) < Enlog|lg, (M|l

Moreover, we can refine that bound into a whole family of upipeunds, fork € N,
1
7(A) < £ Enloglgy(A)...gx (Ml - (63)

Note that this upper bound is getting betterkamcreases and tight ds— oc.
Let us now prove that

1
—log |z (A)] ——— ().

n—oo

Definition 23 The multiplicative systert{ X ,,, M), II) is irreducible if there is no measurable

non-random famil{ V' (X), X € E} of proper subspaces d@? such that

M,V(X,) =V(X,), P-as VneN.

Lemma 24 Assume (H2). The multiplicative syst¢(X,, M, ),11) is irreducible

The proof is an adaptation of the proof of [39, Propositioh. B].
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Proof: The proof is by contradiction. Assume that there is a medseaifamily {V (X)), X €
E} of proper subspaces @ such that

g,V (X,) =V(X3), P-as, VneN.

We parameterize the proper subspace§bby C) for ¢ in (—o0, o0]. There is a measurable
1

. C(Xz) C(X3) . .
family {¢(X), X € E} such thatg, and are P-a.s. collinear. A direct
1 1

computation gives

c(ay, as, bz, by) = A~ |a3|2 — |bg|2 — agb; P-a.s
. alb:’» C(Cl3> as, by, bl)aj;b?, ’
that is ;
a3b
c(ag, az, by, by) = P S PERTIE 2 , P-a.s.
aybs (T — c(ay, as, bs,bz))

Note that the RHS does not dependarandb,, hencec(a,a’,b,0’) does not depend o and
V. Settingd(a, b) = a'b c(a,b), we get

2 2
by
dlas, bs) = A — JasP® — b — 102 pag 64
(a47 3) |a3| | 3| d(ag,bg) ) a.s ( )
The RHS does not depend an, henced(a, b) does not depend om From (64), we get
dlbs) _ — |a3|2 P,-a.s.

Bo*  d(bs) = A+ [as|* + [bs]*
The RHS does not depend 65 hence/(b)/ |b|* does not depend d setd(b) = L |b|*, where
L is a fixed constant. Then,

1
(L+1) s> = X — |as|? (1 + f) , Pras.

If L # —1, |bg\2 is a measurable function ef; and since it is also independent &f, it is a
constant, which is in contradiction with (H2). Henée= —1, which gives a contradiction with
A < 0. [ |
By [38, Lemma 2.6], irreducibility implies that
lim llog (mn+2) =7 P-as
noee Ln+1

The following lemma completes the proof.
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Lemma 25 Assume (H1).

1 Tn
lim — | log L log|zps1] | =0 P—as
noee Tnt1
Proof
Tn Cn,
log || " || —log |#asi] =log|{ ]| = 0.
Tnt1 1
Cn : : .
Let us prove that foe > 0, P %log > ¢ | is a summable series, which by the Borel-
1
Cantelli Lemma will prove the lemma. We have
1 Cn 1
P | —log > e SP(—log(\cn|+1)Ze)
n 1 n
<P(Jey| =™ —1)
<P (lea| > €7)
<P >ez
- ( 1—e, — )
| n— 1| 1 ne
<P +P >et |. (65)
la,| — 1—e,

We analyze the right side of (65). We use the fact that/a,| and log|b,_,| have a second
moment by (H1) and that it does not dependrorBy the Bienaymé-Tchebicheff inequality, we

bn ne
P | 1| >eh | =P (log|bn_1| —log|a,| > n—g)
jan] = N
_ 16E ((log [bn—1| = log |an)*)

n2€2
implying that the first term in the right side of (65) forms ansmable series. Moreover

get

(66)

Y

1 A+ b1 1P+ lan_1]?
log1 < log + lbn1]” + Jan—1|

— €n |bn—1|2
which has a second moment by (H1), hence, by a computatien(68) and the Bienaymeé-

Y

Tchebicheff inequality ( > e ) is a summable series. The Borel-Cantelli Lemma applied
to the right side of (65) concludes the proof. [ |

October 11, 2007 DRAFT



41

E. Determinants of Jacobi Matrices

An interesting and useful characterization of &hx M Jacobi matrix is that its determinant

can be expressed by the following recursive formula [40]
det Gm = [Gm]m,m det Gm—l - [Gm]m,m—l[Gm]m—l,m det Gm—2 ; m = 3, ey M s (67)

with
det G1 = [Gm]l,l
(68)
det Gy = [G)11[Gml22 — [Gml1,2[Gml21

where G, is the principle submatrix olz,,;, obtained by deleting its lagt\/ — m) columns.
This characterization already used by Narula [14], can k&lye@roved by straight forward
calculation of the determinant @ ,,, starting from its last row.

Examining (67), it is observed that the determinant of a sgjdacobi matrix is dependent on
a weighted sum of its two largest principle matrices’ detaants only. Furthermorelet G,,,_;
anddet G,,_, are independent of the entrié&,,],..m, [Gm|m.m-1, @A [G)m+1.m-

It is worth mentioning that this approach can not be exterfdednatrices with a number of
non-zero diagonal higher than 3. Hence, a similar formuda oot be obtained even for five-
diagonal matrices and the resulting formula involv@g\/) determinants of submatrices (not

necessarily principle submatrices).
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andK = 2,3,4,6,8,10. Note that forK = 1,
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