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Abstract

We consider a class of ballistic, multidimensional random walks in random environments where
the environment satisfies appropriate mixing conditions. Continuing our previous work [2] for the
law of large numbers, we prove here that the fluctuations are gaussian when the environment is
Gibbsian satisfying the “strong mixing condition” of Dobrushin and Shlosman and the mixing rate is
large enough to balance moments of some random times depending on the path. Under appropriate
assumptions the CLT applies in both non-nestling and nestling cases, and trivialy in the case of
finite-dependent environments with “strong enough bias”. Our proof makes use of the asymptotic
regeneration scheme introduced in [2]. When the environment is only weakly mixing, we can only
prove that if the fluctuations are diffusive then they are necessarily Gaussian.
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1 Introduction and Main Statements

1.1 Introduction

Fix an integer d > 1, let S denote the set of 2d-dimensional probability vectors, and set 2 = SZ°,
We consider all w € Q as an “environment” for the random walk that we define below in (1.1), and
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we denote by w(z,") = {w(2, 2 +€)}ecza, ¢j=1 the coordinate of w € Q2 corresponding to z € 74, The

random walk in the environment w started at z € Z¢ is the Markov Chain {X,} = {X,;n > 0}
with state space Z¢ such that Xy = z and

P (Xpi1=z+elXn=2)=w(z,z+e), ecZlle=1. (1.1)

Let P be a probability measure on 2, stationary and ergodic with respect to the shifts in Z%. We
denote by P? = P ® P? the joint law on Q x (Z9)N of {X,,}, and w. The process {X,,} under P?, is
called the random walk in random environment (RWRE). We will denote by E* = Ep:, E% = Ep:
the expectations corresponding to P?, PZ, respectively.

Much is known about the RWRE when d = 1, see [16] for a recent review, including a discussion
of laws of large numbers and central limit theorems for product and non-product measures P. See
also [11] for recent stable limit results with d = 1 and non-product environments. In dimension
d > 1, when P is a product measure and in the ballistic regime, i.e. when there exists a deterministic
direction ¢ € S%! such that limsup X,, - £ /n = vy > 0, the law of large numbers was first derived
in the seminal paper [14] using a regenerative scheme. In the same context of P being a product
measure, the central limit theorem for {X,,} was obtained in [13], assuming uniform ellipticity and
Kalikow’s condition, using this regenerative scheme. Further development (in the ballistic case with
P a product measure) can be found in [15].

In the case of dependent environment, laws of large numbers have been obtained in [7], [8], [12],
with a rather mild dependence structure. More realistic dependence structures — including Gibbs
measures in the mixing regime — were considered in [10] and [2], where the law of large numbers
is proved. In [10], the author uses the approach of environment viewed from the point of view
of the particle, while in our previous [2] we introduce a coupling method to find an asymptotic
regenerative scheme.

Our goal in this paper is to adapt this latter technique to derive central limit theorems for the
RWRE when P is not a product measure. This provides then, to our knowledge, the first example
of RWRE’s in a dependent environment which do not exhibit finite range dependence, for which
CLT type statements hold.

1.2 Some Assumptions: Mixing, Ellipticity, Drift

In the sequel, we fix an £ € R? \ {0} such that £ has integer coordinates. With sign(0) = 0 and
{e;}%_, the canonical basis of Z, let

E: = {sign(£;)e; }&, \ {0} . (1.2)
Define the cone of vertex z € R%, direction £ and angle cos~!(¢),¢ € (0,1), by

C(z,6,¢)={yeRY; (y—=z)-£> {|ly—z||e]} . (1.3)
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We also need in the sequel the truncated ¢ cones defined as

Clz,6,¢(, M) ={y €R?; y € C(z,£,),(y —z) - £ < M};. (1.4)
In [2], we made the following two assumptions on the environment:
Assumption 1.5

(Al) P is stationary and ergodic, and satisfies the following mizing condition on £-cones: for all
positive ¢ small enough there exists a function ¢(r) — 0 such that any two events A, B with
T—00

P(A) >0, A€ o{w,;2-£<0} and B € o{w,;z € C(rL,£,()} it holds that

P(ANB)
—— = — P(B)| < £)).
COB) — p(w)| < o)
(A2) P is elliptic and uniformly elliptic with respect to £: P(w(0,e) > 0;]e| = 1) = 1, and there ezists

a k> 0 such that

P(minw(0,e) > 2k) =1.
e€ls

As described in [2], condition A1l is satisfied for a class of Gibbs random field satisfying the so
called weak mizing condition of Dobrushin and Shlosman. For the strong CLT results, we will need
a stronger notion of mixing, based on Dobrushin-Shlosman’s strong mizing condition. We introduce
next this notion, starting with the

Definition 1.6 Let k > 1, and let OA* = {z € A% dist (z,A) < k} be the k-boundary of A C Z°.
(dist and |.| both denote the Euclidean distance). A random field P is k-Markov if there exists a
family m of transition kernels — called specification — mp = wa([[,ep dwy| Fon) for finite A C Z4
such that

P((wg)gen € | Fae) =ma( - | Fon), P —as. (1.7)
In addition, a k-Markov field P is called strong-mixing if there exist constants v > 0, C < o©
such that for all finite subsets V C A C Z¢ and all y € A€,

sup { o (- | w) = 7a(- | &) lv; w0’ € Y, we =W VE £ y}} < C > exp(—ylz—yl), (1.8)
2€VE

with ||.||v = ||.||var,v the variational norm on V, ||u — v||y = sup{u(A) — v(A); A C 0((wz)zev)}-

The strong-mixing property holds for environments produced by a Gibbsian particle system
at equilibrium in the uniqueness regime at high enough temperatures, see [3, 9]. Strong-mixing
environments are weak-mixing, and by [2, Proposition 4.4], they are mixing on cones in the sense
of Assumption A1. Sumarizing this, we have (A1') = (A1) , where we set
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Assumption 1.9
(A1) P is a Gibbs, strong-mizing, Markov field.

We will also need some conditions on the environment ensuring the ballistic nature of the walk.
Let U be a finite, connected subset of Z%, with 0 € U, let Fyc = o{w, : z ¢ U} , and define on
U U QU an auxiliary Markov chain with transition probabilities

( Tye
B |3 1, aole s+ e)|fUc]
n=0
A , eUlel=1
Py(z,5+¢) =4 Ty €U lel (1.10)
EO Z 1{Xn:l‘}|FUc
n=0
1 z€dlU,e=0

where Tyye = min{n > 0 : X, € 0U}. This chain is known as Kalikow’s Markov chain [6]. We will
denote by dy(z) = Djel=1 ePy(z,z + e) the Kalikow drift, and d(z,w) = > e|=1 ew(z, T + €) the
RWRE’s drift at z.

In addition to Al and A2, we will assume one of the two following drift conditions, which
ensure a ballistic behavior for the walk:

Assumption 1.11

(A3) Kalikow’s condition: There exists a 6(¢) > 0 deterministic such that

inf dy(x)-£> P —a.s.
U’I;IEUdU(IE) £>6(0), a.s

The infimum is taken over all connected finite subsets of Z¢ containing 0.
g

(A4) Non-nestling condition: There exists a §(£) > 0 such that

d(z,w)-£>d6¢),P — a.s.

Clearly, (A4) is stronger than (A3). Both conditions imply that lim, . X, - £ = co P°-a.s.

1.3 Asymptotic Regenerative Scheme

In this section, we recall some constructions and results from [2].
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First, we define the RWRE on an enlarged space, depending on the vector £ with integer
coordinates: instead of considering the law P° = P ® P2 on the canonical space 2 x (Z9)N, we
consider the following probability measure

PP=PoQ®P,, onQxWNx(ZH",

with W = {0} U &z and & from (1.2)): @ is a product measure, such that with ¢ = (e1,€2,...)
denoting an element of WY, Q(e; = €) = &, for e € &, while Q(e; = 0) = 1 — x|&|. For each
fixed w, ¢, ?Z,,S is the law of the Markov chain {X,} with state space 74, such that Xy = 0 and,
for every z,e € Z4, |e| = 1,

Licnn=0}

ﬁg’g(Xn_}.l =z+e | Xn :Z) = 1{5n+1:e} + 1_ K;|5*|
(3

[w(z, z+€) — fcl{eegé}] . (1.12)

The point is that, the law of {X,} under Q ® ?Z,g coincides with its law under PJ, while its law

under P’ coincides with its law under P°.

We fix now a particular sequence of ¢ in & of length |[¢|; with sum equal to £: for definiteness,
we take £ = (51,...,5‘&1) with &1 = & = e Ely| = sign(f1)er , €p41 = Ep42 = e Elly ] =
sign(f2)ea ... Egy—|eg+1 = ---Ejg; = sign(£g)eq .. We assume, through the whole paper, ( > 0
small enough such that

E1,E1 + By Bl . By, = L€ C(0,4,C) , (1.13)
and such that (A1) above is satisfied.
For L € |¢|;N* we will denote by 1) the vector
el = (g,¢,...,¢)

of dimension L. Define
D' = inf{n >0: X, ¢ C(Xo,2,0)} . (1.14)

Assumption (A3) implies P°(D" = oo|wg, z - £ < 0) is bounded away from 0. For all L € |¢|1N, set
So = 0 and, using 0, to denote time shift, set

S = inf{n >L:X, -£>max{X,,-£: m<n—L}, (enp,---,En1) = E(L)} < oo,

Ry =D'0f5 + 51 < o0. (1.15)

Note that the random times S1, R;, depend on both {X,,}, and {&, }. Define further, by induction
for £ > 1,

Ski1 = inf{n >Rp:Xpr-£>max{Xpy-£: m<n—L}, (ent,---r6n1) = é(L)} <oo,

Rip1=D'005  + Sk < oo,
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These variables are stopping times for the pair { X, e, }, (depending on L), with
0=S50<S1 <R <S<---<o00

and the inequalities are strict if the left member is finite. Also, since X, - £ —; 500 00, Sgy1 iS
P’-a.s. finite on the set {Rj < co}. Define:

T =8k <oo, withK =inf{k>1:5) < oo, By = oo} < 0.

(L)

This random time 7; " is the first time n when the walk performs as follow: at time n — L it has
reached a record value in the direction +/, then it travels using the e-sequence only up to time n,
and from time n on, it does not exit the positive cone C(X,,, 4, () with vertex X,,. The advantage

in considering Ti(L), is that at these times, the RWRE travels |L|; time units in the direction £,
without learning any information about the environment, allowing for decorrelation.

Under (Al,2,3), and if ¢ < §(£)/(3|¢]), then Tl(L),TQ(L),... are finite P*-a.s. for large L. For
L € |¢|;N* we define T(gL) =0, and for k > 1,

0 (D)X - ( X - XAL)) , (1.16)

(A rescaling by the factor x” is needed in order to keep the variables ?,(CL) , YI(CL) of order 1 as L — o0.)

The above random times yield an asymptotic (in the limit L — 00) regenerative structure, which
can be expressed in term of the following coupling, see Section 3 in [2]:
Coupling: We can enlarge once again our probability space [and we will continue to denote by

P’ annealed probabilities in this larger space], where is defined the sequence {(?z(L),Y,(-L))},-Zl, in
order to support also:

e a sequence {(?i(L),XZ.(L),AEL))}izl of i.i.d. random vectors (with values in K“N* x k7% x {0,1})

where AEL) € {0,1} is such that

(A = 1) = /(L) = 2[F°(D' = o0) — $(L)]'$(D), (1.17)
such that the law of (?1(L),)~(§L)) is identical to the law of (TI(L),X§L)) under the measure
F0[ : |DI = 00]7

¢ and another sequence {(Zi(L), YZ’(L))}Z'ZI such that

F X = 0= A ED, )+ 2P 2, v ),

I

1

and such that AZ(-L) is independent of {?J(L }i<i-1, {XJ(-L))}jSi_l, {AE-L) }j<i—1 and of (Z(L),Yi(L)).
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The joint law of the variables {(Zi(L),YZ-(L))}iZl is complicated, but \Yi(L)| < ZZ-(L) and |A§L) Zi(L)| <

?gL). In [2], we used the following integrability condition:
Assumption 1.18

(A5) There exist an o > 2 and M = M (L) such that ¢'(L)Y/* M (L)Y = 0 (with1/o/ =1-1/a),
—00

and
F’( E(F)® | D' =00, F) > M ) =0, (1.19)

where Fl' = o(w(y,-) 1 £-y < —L).
We now recall the law of large numbers [2].

Theorem 1 Assume either (A1,2,3) and (A5) for some a > 1, or (A1,2,4). Then, there exists
a deterministic vector v with v-£ > 0 such that

Xn
lim — =wv, P°—a.s..
n—oo 1,

Moreover, we give in Section 5 of [2], various non-nestling examples where (.A5) hold: In the course
of Theorem 5.1 therein, we prove that, under condition (A3) with sufficiently large d, M (L) grows
at most exponentially. More precisely, for § > §; (s, a),

ML)y <e™, L>1, (1.20)

with m = m(k, a, ) finite. (The proof, given for &« = 2 in [2], extends to a > 2.)

1.4 Main Result

Under strong mixing assumptions of the form of Assumption (LA1"), we can give a full invariance
principle for the RWRE, and a law of large numbers, under integrability conditions slightly weaker
than (A5). Namely, set

Assumption 1.21
(A5') There exist an o > 2 and M = M (L) such that
F’( E(F)® | D' =00, FE) > M ) =0, (1.22)

where Fl' = o(w(y,-) 1 £-y < —L).
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We can now state out main result:

Theorem 2 (Annealed CLT, strong mixing) .

Assume (A1',2,3,5"). Then there exist a deterministic, non-degenerate covariance matriz R and
a deterministic vector v such that under P°, with Sy(t) := [Xiny — vt]/\/n, the path Sy(t), taking
values in the space of right continuous functions possessing left limits equipped with the supremum
norm, converges weakly to a standard Brownian motion of covariance R.

Note that when strong mixing is available, Theorem 2 yields the law of large numbers under weaker
integrability assumptions than those used in Theorem 1.

Remark: It is worthwhile to note that the statement of Theorem 2 and its proof carry over to

the case where P is the marginal on S%* of a strong mixing Gibbs Markov field on (Sxs )Zd with
S’ any compact Polish space. In the sake of aleviating notations, we do not pursue this remark
further.

Our results for mixing environments satisfying only (A1) are considerably weaker. With M (L)
from (A5), ¢/(L) from (A1) and (1.17), we will assume the existence of sequences L = L(n) and
kn = k(L(n),n) —n—0o 00 such that

M(L)

h:LTak'y(l%_l) n—00

0, (1.23)

and

M(L)a¢'(L)a"/k Lhy — 0. (1.24)

n—oo

Theorem 3 (Annealed Gaussian behaviour, weak mixing) .
a) Assume (A1,2,3,5). Further, assume that sequences L = Ly, and ky, can be found that satisfy
(1.28), (1.24), and the additional condition

n

W n:;o 1. (125)

Then, there ezist a sequence of deterministic vectors v(n), with lim,_,, v(n) = v, and a sequence
of deterministic, positive definite, symmetric matrices R, defined in (3.17) below, such that with
R, (w) = w' R,w,

lim
n—o0

=0 (1.26)

B (Xn S w —\/%v(n) o x) _@0<N(O’Rn(w)) < :1:)

for all z € R and all w € R*. (According to the context, we denote by N(a,B) the Normal
distribution of mean a and covariance matriz B, or a r.v. with this law.)

b) If (1.23) and (1.24) hold with L — oo, ky, = ki, = L for some constant ¢ > 0, then one can
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find sequences Ly, € |£1N* and k, = k(Ly,n) satisfying (1.23), (1.24) and (1.25).

¢) In the finite-dependence case (ie, ¢'(L) = 0 for L > Lg), we can keep L = Lg fized. In this
case, v(n) = v and R, = R, a positive definite matriz independent of n, and the statement is the
standard central limit theorem:

R™Y%(X, —nv) — N(0,I1d)  in law.

Remark: In view of (1.20), we see that conditions (A1,2,3,5) with § > d; and ¢(r) < e 7"
with large enough ~y ensures that part b) of Theorem 3 applies. Hence, Theorem 3 applies to both
non-nestling and nestling walks. On the other hand, we do not control in any way the convergence
or non-degeneracy of the sequence of covariances R,, and cannot rule out sub or super diffusive
behaviour in the generality of assumption A1.

2 Proof of Theorem 2

The key to the proof in the strong mixing case is to consider the sequence of truncated cones of the
environment produced by the regeneration times. To formalize this, define the space 7 of truncated
cone environments and paths as

T = U {M} x Py x SCOLGM)
M=y-£>0,yczZ4
where the space of finite paths in the truncated cone C(0,4,¢(, M) (cf (1.4)) is defined as
Pu = {Q = (.771,... ,.’I?k) € C(O,E,C,M)N* 29 =0, |~77i—|—1 - .’L‘z‘ = 1}.

Set T = T U{s}, where s is an extra stop symbol. We set W = TN as the space of infinite words
consisting of finite truncated cones environments and finite cone based paths, with the restriction
that if w; = s then w; = s for all j > 4. Note that finite words of length £ can be naturally viewed
as elements of W by setting w; = s for all ¢ > k. VW inherits naturally a Borel structure that makes
it into a measure space. We further define on W a lexicographic distance as

d(w,w') — 9— min{iw;Fw;}

Next, we fix L and note that the sequence ¢ = Tk(:i)l — T,SL), k > 1, and the RWRE path X,, define

an element r = (r1,72,...) € W via

Tk = (tk - L, {XijgL) - XTISL)}jzl,...,tk—La{wy}yeC(X () bG(X (1) =X (L))-z—zL)> ) (2.1)
Tk Tk+1 Tk

where £, = L|¢|?/|¢|, is an integer by our restriction on the allowed L and £. However, this will
not be particularly useful to us as we think of W as a sequence of T valued symbols extending
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Figure 1: The sequence r = (r1,72,...), with £ = (1,0,...,0). The hyperplane (to the right of the
origin) is determined by the first regeneration location XT(L), and H; is determined by the path
1

up to that location and the environment to the left of this first hyperplane. Shown are the cones
C1,C5,C5 as in the proof of Lemma, 2.2, the random walk path inside the cones, and the directed
paths between the cones (of length L) determined by the sequence e.

backward in time, and it will be convenient to think of r as defining a sequence of words wk) =
(ThkyTh 15-+-57T1,8,...) € T*. Further, recall from [2] the sigma-fields

L
Hi =0 (1Y, Xo,e0, X1, 6 oy X {wly, )i £y < £- X 0 = LIEP/|E1})

L L
Hi = 0(71( bonP, Xoeo, X1, e, _pX,m, {wly, )ity <l-X a —L|f|2/|€|1}) ;
and set

u:{(mayla"'aymawl);mz ]-ayz EZd’|yi+1 _yll = 17yme>ylea Vi <m,

w/ € SZd\{z:z-€>ym-£}}_
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Then, P° induces a probability distribution Q° on U such that, for B € Hq, B = Usen, zezaBt,z
with By, = BN {r{"”) =L =1,X 1, , =z}, one has
(L) _

Q@ (By) = P((r" = L, X1,..., X1, {wy }ye<zt) € By),

and the law P°(-|#;) induces on the sequence r a probability distribution such that the (random)
kernels Ay ;(-|wi—1,..., w2, w1), u € U are well defined by the following: for each integer k, each

measurable A C 7%, and each measurable B € 1,

E° [15P°((r1,...,mk) € A|H1)] /Q° du/ /IAHhuzdu,\u, LyevrsUl).

(To define the kernels h,, ;, simply note that that @O(rk € A|Hy) defines a measurable function on
U x T*1, which is exactly hy i (Alti—1,...,u1))-

The following lemma is crucial to our approach.

Lemma 2.2 Let i’ > i, u') = (u;,...,u1) and u'(” (ujy,...,uy) be such that u;_; = u;,_j for
7 =0,...4%9. Then,

Sup B (-1u®) = hug g1 (| ) |var < $li0L) - (2.3)

u,u’ €U

Proof of Lemma 2.2: The proof is a modification of the argument in [2, Lemma 2.13], using the
strong mixing assumption. Especially the case i = i’ = ip = 1, is a slight variation of the proof
given in [2, Lemma 2.13].

For ¢,y @) from u, v’ infinite sequences in T we observe that the maximum over 4,7’ > i of the
left- hand side of (2.3) is achieved with 7 = i’ = iy, therefore we need to consider only the latter
case.

We first note that the values u, u1, ..., u; determine a sequence of points Z; € Z% and times t; € N,
that encode the regeneration locations and times. More precisely, if v = (m,y1,...,Ym,wsn,) for
the appropriate half space H, = {z;z - £ < y, - £}, and if u; = (mz,xgz), .. a:,(c),wc) for some
truncated cone C;, we let p denote the projection on T given by p(u;) = (m;, xg ), ol )) Then,

the regeneration locations and times are equal to

%
o= Ym+ LO/|El1, T =Zioy + [z + Le/ll1), Ti=m+ L+ [kj+I].
7=1

In fact, from (p(u),p(u1),...p(u;)), the whole path on the time interval [0, ;] can be reconstructed:
we denote by Z = Z[(p(u), p(u1),...p(u;))] this finite path — in particular, Z(tx) = Z.
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Let A be a measurable subset of 7, and write for short 14 = 1,,c4, where g is defined by (2.1)
for £k =0, with 'réL) = 0.

Let also F' > 0 be a #;-measurable bounded random variable [resp., G > 0 bounded measurable
on o(ry,...7;)]. Then for all py € p(T),]_)(i) € p(T)?, there exist random variables F,, [resp., Gyl

measurable with respect to o({w(y, );y - £ < ym - £},{ex;1 < k < m}) [resp., c({w(y, );y EiU}]
such that, on the event {p(r¢) = po} it holds F' = F,, [resp., on the event {p(ry) = pr,1 < k < i}
it holds G = G »]. Throughout, we use the notation U = Uj':l(Cz‘ + Zj—1), and we define the

events C(po) = { Xy = ;0 < k <o}, B(pW) = {Xpi5, — Xy = Fisdp — T30 < k < T — fo} with
z = z[(p(u),p(u1), - .. p(u;))]- By the Markov property,

=0 =0

E (FG ].A o 071(41:%) =E (FG lAﬂ{D’:oo} o 071(4%2) =

= > EpgBy, (Fp, Loo) Gy 1pp) Laninr=co} © 0,
(po,p)ep(T)i+1

Z Epgq [ e(Fpole )Gg(i)lB(B(i)) X ?Z,’;%S(A m{D/ _ oo})]

po,p(¥)

= Epsg [EP®Q (E‘;E(Fpo Lo(0) G Lipn) X Py e (A [(UD' = o0}) |w:,2 € U)]
po,p(®

= > Breq|Cpop % Eraq (FpuPus(Cr0) x Py, o (A D' = o0}) |w., 2 € U) |
po,p(¥)

where we have set

= =0 ; . _
Gop® = Gy Py (B(I_?(Z))|Xl,l < tg, X, = wo) :

which is o(w,, z € U)-measurable. Define h@,i+1(-|g(i)) the conditional law of r; 1 given r1,...7y,
and define also p4 by

pa=" Braq |Gy X Covpipu, cv) { Potg, e (A WD = 00} Fpu Pl o (Clmo) }]  (2.4)
0,p®

allowing to write

(FG 14080 (L))
1+1
=pa + Z Epgq [épo,l_,mx
po,p®
Epgq (?f:i,ag.s(Aﬂ{D, = 00}) |wz, 2 € U) X Epgq (Fpoﬁg,a(c(pﬂ)) Wz, 2 € U)]
=pa+ Y Fpaq [hoi1(Alu®)Gyy 16 Eraq (FpoPes (C(po)) |wzy2 € U)] (2.5)

DO B(’)
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where we have used that

Breq (Pug, (A D' = oo})

ory2 €U) = g (Alu)

holds on the set B (1_)(i)) (N C(po), by definition of hy,,; and since the sequence ¢ is i.i.d. Observe
at this point that, by definition of Fpo,@po,

E°(FGhy; 1 (Alr®) = 3 E(hg 41 (Au®)G o L0 Fpo Lo

po,p®)
= > B ki1 (A1) Gy 0 Brag (Fpo Pore(Clpo)) |z € U)| - (26)
po,p®
Thus, (2.5) reads
E'(FG 1400 (1)) = pa+E (FGhy ;1 (Alr®)) (2.7)
i+1

The crucial point to observe is that since g is measurable with respect to o(wz,z € Ciy1 + Z;), the
strong mixing property (1.8) implies that, a.s.,

|E(g|we,z € Hy UU) — E(glwg,z € U)| < ¢(iL)||glloo ,
with ¢(r) = C'e~""/2. Hence, since f is measurable with respect to o(wy,z € H,), this results in
|E(f9lws, z € U)) — E(f|wz, z € U)E(glwg,x € U)| < ¢(iL) E(|f||we, z € U)l|glloo ,
replacing [2, Equation (1.5)]. Hence, from (2.4),(2.6)
pal < SGLE(FG).
Finally one obtains from (2.7)

E°(FG 1406 1)) = E'(FGho,i1 (Alr™))| < ¢(iL)E"(FG) ,

i+1
which is enough to prove the lemma. ]

Lemma 2.2 allows us to have, with M7(7) denoting the space of probability measures on 7:

Lemma 2.8 There ezxists a measurable kernel h : W — M1(T) such that

sup [P o (-lw) = h(-|w')lvar < ¢(L), (2.9)
k>iueld weTk— 1w eW:d(w,w’) <24

and
sup 1A (-|w) = h(-|w")lvar < 24(kL). (2.10)
weEW,w'eW:d(w,w')<2-k
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Proof Fix u € Y and w = (wy,ws,...) € W, setting w¥) = (wy,...w;). Note that by Lemma 2.2,
the sequence (hu,k(-\w(’“_l)), k > 1) forms a Cauchy sequence with respect to the variation distance
between elements of M7 (7), with

sup ||hu,lc('|w(k_1)) - hu’,k’('|w(k1_1))||Var < ¢((kl AEK)L).

u,u’ , weWw

The existence of a limit h,,(-|w) follows from completeness of M;(7), together with the estimate

sup || g (fw® D) = By (Jw)var < S(KL).
u,u , wEW K>k

One deduces that h, in fact does not depend on u, and the estimate in (2.10). (

We next note that the kernel h and initial condition w € W determine a Markov chain {w(n)},>0
with state space W, with law denoted P,(-). Indeed, with y € 7, w € W, define yw € W by
setting (yw); = y and (yw); = w;—y for ¢+ > 2. Then, with w(n) € W, let y(n + 1) be distributed
according to h(-|w(n)), and set w(n + 1) = (y(n + 1)w(n)). Further, by Lemma 2.8, the Markov
chain satisfies conditions FLS(7,1) and M(1) of [5, Pages 47,51]. Hence, by [5, Theorem 2.27],
it is uniformly ergodic and possesses a unique invariant distribution. Further, for y € 7 with
y = (m,z,8) € T and z = (z1,...,%p), define f(y) = z,,. Fatou’s lemma and condition (.A5’)
then imply the integrability condition

sup / 1 ()| h(dylw) < oo (2.11)

Further, setting g(y) = m, the law of large numbers ([5, Proposition 4.1.1 and Theorem 4.1.2]) and
another application of (A5’) imply that

% 3~ 9(w()1) a0 O % 3 F(w(i)1) nesoe o, (2.12)

almost surely, with C1, Cy being deterministic and equal to the expectation of g(w1), f(w1), respec-
tively, under the unique invariant measure mentioned above.

Next, by [5, Theorem 4.1.5] and (2.11), and the ¢ mixing of the sequence f(w(i);) ensured by [5,
Theorem 2.1.5], the invariance principle holds, under P, for Z,(t), where

[n1]
Zu(0) = = S w(i)) = Caglw(i))/C1].

with variance that does not depend on the initial condition w.

It thus remains to transfer the statement of the invariance principle from the Markov chain
{w(n)}n>0 to the original sequence S,. Toward this end, define

CQTIEL)
XT,EL) e

\/ﬁ 7

gn(k) =
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and recall that by [2, Lemma 3.13], there exist deterministic positive sequences £z, and n;, — 0
such that

lim supn*1|7'7(LL) — Bk ol <, P°—a.s., liLm inf B, > tay > 0, (2.13)
—00

n—oo

see [2, (3.6)] for the last fact. We assume throughout that L is chosen large enough such that both
#(L) < 1 and g, < tay/2.

Next, fix e € (0,1) and w € W. Due to Lemma 2.8, and the fact that ), ¢(kL) < oo, one may find
a sequence ko(e) < oo (with kg(e) — oo as € — 0) such that it is possible to construct a probability
space with probability measure denoted P (both depending on €, w) on which there exist:

e a sequence (1), distributed according to P’(r € -|H;), with r from (2.1),

e a sequence w(n) distributed according to P,

such that
P(3k > d(e) : rp # w(k);) < €. (2.14)
Indeed, in view of Lemma 2.8, we can recursively couple (r4); and (w(k))g so that

P(riy1 = w(i + 1)1|r1, ... ri,w(l)1,...w(i)1) > 1 — ¢(kL) on {r; =w(l)1,s >1>i—k+1}.
Then, (2.14) follows easily form ), ¢(kL) < oo.

Further, note that P°-a.s., Vé > 0,

=~

P

sﬁp sup [‘Xt — XTIEL) . + ‘t — T,EL)” > 25v/n ‘7—[1

=10 <o)

< nsupP’ (‘T,Ei)l - TlgL)‘ > dv/n |?-lk>
k=1

IN

nesssup P’ (Tl(L) > 6y/n|D' = oo,.7-"0L)

n w0 [ (L) | 1y I
[ — —
(6\/ﬁ)aesssup E ((’r1 )| D" = o0, Fy )
nM(L)k=L
< ——— — . .

For any fixed T deterministic, set Jr = 2(T + 1)/tayk~~. Note that, by construction and in view

of (2.14),
(k) = 8,(6(e)) — Zn (%) Lz, (?)

P sup >0 <e. (2.16)
d(e)<k<nJr 1
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Further,
P°(sup | X¢|1 > 6v/n) < PO(Ir Y| > 6v/m) —nseo 0. (2.17)
tSTI(L)
It follows from (2.15), (2.16) and (2.17), by taking first n — oo and then ¢ — 0, that the invariance

principle for Z, carries over to an invariance principle, under the measure P°, for S’n([tn]), on the
interval 0 < ¢t < Jp, with the same non-degenerate limit covariance. On the other hand, by the law
of large numbers (2.12) and (2.15),

—o 7P k ~ 70 k
limsupP’ | sup |2 — —Co—|> 6| <limsuplimsupP | sup |[E— —Co=|>d| =0, (2.18)
n—00 k<nJp| T n e—0 n—00 k<nJp| T n
while, by (2.14),
lim sup@o(Tr(L?T < Tn) < limsuplim supIP’(Tr(j)T <Tn)=0. (2.19)
n—o0 =0 n—o0

Hence, by the stability of the invariance CLT by random time changes [1, Theorem 14.4] together
with (2.15), one concludes the invariance principle for Sy (t) — Cat/C). L

3 Proof of Theorem 3

Throughout this section, we assume without further mentioning it (A1,2,3,5).

Fix a direction w. The following preliminary lemma is easily proved

Lemma 3.1 Assume (1.23). Then, with T = > #B)

i=1Ti
(L)
_Oka — 1 in probability (3.2)
BT
Proof: Recall that :
B > 0 >0, forall L large (3.3)
by [2, (3.6)]. Now Tk(f) = Zfil ?J(L), and the ?J(L) are i.i.d. by construction. Further, by A5,

B (0)" <B (50) < M)}

and hence, by (1.23),
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Set

~ L E
S'r(nL):ZXi(L) ;o ovp =
i=1
and
rg, = r(w) = Var (w : [XfL) — 7~'1(L)’UL]) .
We recall from [2] that vy — v as L — oo. For fixed ¢ > 0, define
w- ($0 - 1w,

Vo (VL Vest)

72 (w) = 2 (w) (n) ==

The following lemma, is the heart of our argument. Let denote by £(Z) the law of a random variable
Z, and by p the Prohorov distance between probability measures.

Lemma 3.4 Assume k,, satisfies (1.23), and set
As(w) == {n 1 > 6L},
Then,

lim lim sup p (,c (sz> (w)) N (o, (1A5(w) (1) + Lag () () +% ))) —0. (3.5)

Proof of Lemma 3.4

Assume the statement does not hold true, that is that for some 1 > 0 the left hand side of (3.5) is
larger than 1. Then, one may find § > 0 arbitrarily small and a sequence ny = ng(d,e1) such that
(we write L = Ly, )

p (£ (20w (L) + L[5 ) NOD) > S @)

Then, fixing §; < 4, either one of the following occurs:

a) There exists a further subsequence, still denoted by ng, such that both (3.6) and n; € As(w) .

b) There exists a further subsequence, still denoted by ng, such that both (3.6) and ny € As(w)°N
As, (w) .

c) There exists a further subsequence, still denoted by ny, such that both (3.6) and ny € As, (w)€.
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Treating first case a), one applies the Lindeberg-Feller theorem (see e.g. [4, pg, 116, Theorem 4.5]).

Indeed, one has on Ay that Z(gL) (w) = Z(gL) (w) and

Dy S BP0y
Z5 ' (w) = t ! =: Yir
i=1 VEnTL i=1

and Y B’V =1.

Next, we see that on Ay, using Holder’s and then Chebycheff’s inequalities in the first and second

inequalities and A5 in the third,

kn (L)  ~(L) 2
—0 —0 w - X — T v
Z]E (Y;?L ‘ l‘Yi’LbE) =k ([ ( 1 T 1 L)] 1Iw-()-(§L)*‘F§L)vL)| )
=1 L TZE\/H
e b gof[w &Y ") i
= (ev/k)a2 riﬂ
1 =0 ~(L)a
< E
= (e kn)a—Q(TL)a/2 (7'1 )

(3.7)

Using (1.23), one sees that the RHS in (3.7) converges to 0 with n — oo. This is enough in order to

apply the Lindeberg-Feller theorem and conclude that for sequences {n;} in As, Z(gL) (w) converges

in distribution to a standard Gaussian, contradicting (3.6).

Considering next case b), the same argument as above proves that Z(gL) (w)+/dk! /Ty, converges

in distribution to a standard Gaussian. Hence, since the factor multiplying ZéL)(w) is uniformly

bounded below by 1 on A$,

p (E (Z(EL) (w)) AV k= Lrp N(O, 1)) — 0,

k—o0
which again contradicts (3.6).

Finally, the proof of case c) is a variance computation: Indeed, note that in that case,

Var (Z(gL) (w)) = g;—LL < %

In particular, with §y denoting the atom at 0, since

0
sup {P(Ma do); 4 probabilitymeasure on R, / 2dp < fl} 5_)0 0
1—
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and

sup {p(Mo,a?),cso);a? < ‘5—1} 0,

I 61—0
we can choose d1 small enough (as function of €; and nothing else) such that the triangle inequality
yields a contradiction to (3.6). 0
The next step involves transfering results from S'I(CL) to X ). Toward this end, define the random
n B

variable
o (g 00)

kLT /T V KL

Lemma 3.8 Assume k,, such that (1.28) and (1.24) hold. Then,

Wi, = Wi (w,6) :==

o TL -
lim limsup p (£ (W2) N (0. (Lay) +Lagr 5z ) )) = - (3.9)
Proof: Recall that
kn
i = w B 4 S AP (7P 4 2P, (3.10)
i=1
and
XT(L) =K LS](CL) + Z KI*LAZ(_L) [_X(L) + }/'Z(L)]
Fn i=L
Since |X | 7~'( ) and |YZ.(L)| < ZZ.(L), Lemma 3.8 follows from Lemma 3.4 and [2] as soon as one
shows that o
L
S AR vy (3.11)
VEn kL
and

Fn A(L) (L)
A 4 Py (3.12)

iz:; kil

Let us prove (3.12), the proof of (3.11) being similar. We have

kn,
B’ Al z®), [ - L < e T, supE (AL ZH)) < Vi L E (AP supE ((AZ(L)ZZ.(L))"‘)
n 2

i=1 i

< Vknk L M(L)a¢'(L)=

by (1.24). O

|._.
d

— 0,
L—o0

1
a
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We have completed the preliminaries to

Proof of Theorem 3 The main issue is to control the error between X,, and XT(L). In view of
kn,

3.10), note that E’ 1~(L) = knEO?(L) > kn tav 51 the argument in 2] (equation below (3.16)) shows
kn 1 2
that

—o|T(L) . —LTISL)|
B Rl . (3.13)
fLE T]S ) n—o0

Now, take ¢, = x 2Lk [rp V 6x1]. We start by showing that for all z,

L —o (X, w—nvg - w -0 TL _
5 e | ( Ve © ””) —F (W (0 (L) + Lagen () 57) ) <) =
(3.14)
We have Vz, d1, do,
(L)
_ . — . _ T
PO(an nuvy, wS.’L‘)SPO< kn _1>52>
Ve n
-, TIgL) | Xn "LU—XTIEL) -w—nvL-w-i-T(f)vL - w|
P 1| < 4§ n )
+ n < 09, \/C_n > 01,
_o XTlgL) cw — ’r,gf)'uL -w
+ P “ <z 4941 | = I4+IT+IIL 3.15
Vo (319

Using (3.13), (1.25), Lemma 3.1 and the estimates in Lemma 3.8, I — 0 as n — oo. By Lemma 3.8,
IIT — ®(d1 + ). So, using a similar lower bound on the left most probability in (3.15), using the
continuity of ®(-) and boundedness of the variance in (3.9), the claim (3.14) follows as soon as we
prove that

lim limsup limsup II=0.
0120 5,50 n—ooo

_ . _LFo(L)
Recall that B°#) > tav for I large. Let J =<4 : LR 1| < 265 ;. (We have k,, € J for
1 2 n
large n.)
Exactly as in the proof of (1.25),
_ ()
po 2 P° (ajng: <41 <52) — 0
n n—o0
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L
X(L)-w—X(L)-w—T( )
T Tk J

I < P°
<po+ (r;lg}c NG

)
UL-w—i-T,gf)vL-w‘ > %)

_ 01
—HP’O<max\/_‘]+1 T; ‘>E> =po+p1+p2. (3.16)

Concerning py, note that for n large, using (1.25)

4(5271,

| | < 0 1< 1oy n
J —%) K
E Tkn

K

for some constant c;. Hence,

— 8 — 1)
pr < c10ok,P’ (f‘&_Lﬂ(L) > 1\/c_n) + ¢182ky, sup P’ (A1Z§L)H_L > Ve

4 4
= P21 +D22
But
4%c1 69k
pog < —2t oL B (7)o
0fcn
CQ52M(L) knlﬁ)_aL < c209 M(L) 0
T 0fr VORE]e2 s —ar T 60692 1571 L2 Lo
due to (1.23). Similarly, using [2, (3.12)]
4%c100kn  _or Sy 1-a
< o TrmeR (o7 < . 2
P22 S n % K M(L) < C3 (5“/{,01//2 kn M(L) L:o)o 0
1én !
by (1.23)
It thus only remains to treat p;. As above, we can replace X’T(L) and T](L) by K]_LSJ(L) and kT ]-(L),
i
on a set which complement has probability smaller than
= 01,  =o N R A T
P’ X; (L) P YN O e
(]EJ\/_J | |>8)+ (I‘;’lea‘}(\/c—n] |] |>8)’
which tends to zero. Now, since S'J( ) T(L) f I(XJ(L) - %](L)UL) is a series of i.i.d. random

variables, one has using Kolmogorov’s 1nequa11ty [4, Pg. 62] that

-L
P° (su? NG 5'( ) i — S,(c{:) Sw — T]-(L)’UL Sw —I—Téf)vL . w)‘ > 5—1>
je
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since 7, < 2@0(%1@))2 is bounded independently of L by A5. This completes the proof of (3.14).
We end by proving that (3.14) implies Theorem 3 with

-L
v(n) =vr, Rp(w)= _’:7@) Var (w . [XfL) - '?1(L)UL]> where L = L(n) . (3.17)
We argue by contradiction. If (1.26) does not hold for some w, take a subsequence nj such that
the left hand side is at least ¢ > 0. Moreover, going to a further subsequence if necessary, we
can assume that R,, (w) converges to a limit R(w) € [0,00]. If R(w) is positive and finite, this
& o mom(L)
would contradict (3.14). If R(w) = 0, then 5 #22=" Zka " _y iy [2, then Xa=noit ol
n vn
tend to 0 in probability, yielding another contradiction. Now, if R(w) = oo, the two terms in
Theorem (1.26) tend to the same limit 0,1/2,1 according to z < 0,z = 0,z > 0, yielding again a
contradiction. This proves part a) of Theorem (1.26).

Part b) of the Theorem follows by setting

logn ] b e n
¢+ log(1/k) MM’ " ,ﬁfL(n)EOﬂ(L(n)) ’

L:Lmy:{

where [z]|,, denotes the largest element of |£|;N* not larger than z. Then, k;, satisfy trivially (1.25),
but also (1.23), (1.24) and both sequences tend to oco. Indeed, EO%I(L(")) > tay/2, and

—o X"
limsup E 7~_1(L) = lim sup #

n—00 n—o0 v-l

(since the ratio of the two expectations tends to v - £, see sentence before Theorem 3.17 in [2]),

where X §L) - £ has exponential tails by Lemma (5.3) in [2].
O
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