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Abstract

We apply the theory of products of random matrices to the analysis of multi-users commu-

nication channels similar to the Wyner model, that are characterized by short-range intra-cell

broadcasting. We study the fluctuations of the per-cell sum-rate capacity in the non-ergodic

regime and provide results of the type of central limit theorem (CLT) and large deviations (LD).

Our results show that the CLT fluctuations of the per-cell sum-rate Cm are of order 1/
√

m, where

m is the number of cells, whereas they are of order 1/m in classical random matrix theory. We also

show a LD regime of the form P(|Cm − C| > ε) ≤ e−mα with α = α(ε) > 0 and C = limm→∞ Cm,

as opposed to the rate e−m
2
α in classical random matrix theory.

I. Introduction

The Wyner model was introduced in [1]; one its extensions, the fading Wyner model, was

extensively studied and the existing literature (see [2]-[5] and references therein) focuses on
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the ergodic regime, which is a good approximation of the inter-symbol interference model

but can fail to represent the cellular model. Indeed, within acceptable communication delay,

often, the channel does not exhibit the adequate variability to be faithfully approximated by

an ergodic assumption, namely the delay in the communications can not accommodate many

independent realizations of the fading coefficients. See [6] and [7] for the relevant background

on the ergodic and non-ergodic regimes.

In this contribution, we focus on the non-ergodic regime where the channel coefficients

are assumed to be fixed during the transmission of a message. We consider the uplink of a

generalized “Wyner-like” cellular setup. According to Wyner’s setup, the cells are arranged

on a circle (or a line), and the mobile users “see” only a fixed number of Base Stations

(BSts), which are located close to their cell’s boundaries. All the BSts are assumed to be

connected through an ideal back-haul network to a central multi-cell processor (MCP), that

can jointly process the up-link received signals of all cell-sites, as well as pre-process the

signals to be transmitted by all cell-sites in the down-link channel. Under the assumption

that the channel varies quickly enough in an ergodic fashion, the per-cell sum-rate capacity

was addressed in [8].

Using the tools of the later article and results concerning the product of random matrices,

we consider the non-ergodic channel, that is, the fading coefficients are chosen randomly at

the beginning of all time and are known only at the receiver. As noted in [9], since the

transmitter does not know the Channel State Information (CSI), the Shannon capacity of

the channel is not the relevant quantity as it can be 0, in case of Rayleigh fading, for

example, because whatever rate R is chosen for broadcasting, there is a non-zero probability

that the realized channel is incapable of supporting it, even with arbitrarily long codeword

length. The relevant quantity is the outage probability, which is related to the study of

fluctuations of the sum-rate. We present results of type Central Limit Theorem (CLT) and

Large Deviations (LD) for the per-cell sum-rate.

Note that standard random matrices techniques ([10]) are not applicable because they

concern random matrices built from a number of independent random variables of the order

of the number of entries. As noted in [8], the limiting per-cell sum-rate depends on the

underlying fading distributions, unlike associated results in classical random matrix theory.

Our results show that the CLT fluctuations of the per-cell sum-rate Cm are of order 1/
√
m,
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where m is the number of cells, whereas they are of order 1/m in classical random matrix

theory (see [11] and references therein). We also show a LD regime of the form P(|Cm − C| >
ε) ≤ e−mα with α = α(ε) > 0 and C = limm→∞Cm as opposed to the rate e−m2α in classical

random matrix theory. (See Section B of the Appendix for review of the relevant result in

classical random matrix theory.)

The rest of the paper is organized as follows. In Section II, we state the problem and

the main results. In Section III, we prove the main results. Part of the proof requires heavy

computation, we therefore provide a partially computer-based proof. Concluding remarks are

given in Section IV. Refer to Sections C and D of the Appendix for the relevant background

on Lyapunov exponents theory and exterior products respectively.

II. Problem statement and main results

We first describe the communication setup and provide the necessary definitions and

notation. The main results are stated in Sub-section II-C.

A. Communication setup

In this paper we consider the following setup. m+d cells with K single antenna users per

cell are arranged on a line, where the m single antenna BSts are located in the cells. Starting

with the wideband (WB) transmission scheme where all bandwidth is devoted for coding

and all K users are transmitting simultaneously each with average power ρ, and assuming

synchronized communication, a vector baseband representation of the signals received at the

system’s BSts is given for an arbitrary time index i by

y(i) = Hmx(i) + z(i),

where x(i) is the (m + d)K complex Gaussian symbols vector, z(i) is the unitary complex

Gaussian additive noise vector. Note that the SNR is ρ. From now on, we omit the time

index i. Hm is the following m×K(m+ d) channel transfer matrix, which is a d+ 1 block

diagonal matrix defined by

Hm =




ζ1,1 ζ1,2 · · · ζ1,d+1 0 · · · 0

0 ζ2,2 · · · ζ2,d+1 ζ2,d+2

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 ζm,m ζm,m+1 · · · ζm,d+m



,
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where ζi,j are 1×K row vectors. Recall that Hm is chosen randomly at the beginning of all

time and kept fixed thereafter. For s ≥ d+1, we will denote by ζs the vector (ζs−d,s, . . . , ζs,s)

and we denote by π it distribution. We assume in the rest of the paper that for n ≥ d + 1

and 0 ≤ i ≤ d the vectors (ζn−i,n) are distributed according to πi. We define Ω = (ζn)n≥d+1

and P, the probability distribution on Ω associated to the above problem. We denote by E

the associated expectation. We also use the 2 norm for vectors and matrices. For matrices,

it is the Froebenius norm (i.e for a matrix A = (ai,j)1≤i,j≤m ‖A‖ =
√∑m

i,j=1 |ai,j|2), which

is a sub-multiplicative norm (i.e, for two matrices A and B, ‖AB‖ ≤ ‖A‖ ‖B‖.)
Throughout this paper, we assume a subset of the following hypotheses.

(H1) The vectors (ζj)j≥d+1 form an i.i.d sequence.

(H2) There exists ε > 0 such that for 0 ≤ i ≤ d, Eπi
|x|ε <∞ and Eπi

|x|−ε <∞.

(H3) If (x0, . . . , xd) is distributed according to π, then almost surely, x0x
†
d 6= 0.

(H4) The support of π is CK(d+1).

(H5) The support of π is RK(d+1).

B. Definitions and notations

Under (H4), we define F = C and under (H5), we define F = R.

For m ≥ 1 and λ > 0, we set Gm = HmH
†
m + λ Idm, where Idm is the m × m identity

matrix. Although Gm depends on λ, we will not write that dependence unless there is an

ambiguity. Under our assumptions, the system is a multiple access channel. Since we are

using Gaussian code-words, the per-cell sum-rate capacity is given by

Cm(ρ) =
1

m
log det

(
Idm +ρHmH

†
m

)
= log ρ+

1

m
(log detGm(λ)) , (II.1)

where λ = 1/ρ. See [8] and references therein for the relevant background.

We set for i ≥ 1

Ci =




ζd(i−1)+1,d(i−1)+1 ζd(i−1)+1,d(i−1)+2 · · · ζd(i−1)+1,di

0 ζd(i−1)+2,d(i−1)+2 · · · ζd(i−1)+2,di

...
. . .

. . .
...

0 · · · 0 ζdi,di



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and

Di =




ζd(i−2)+1,d(i−1)+1
† ζd(i−2)+2,d(i−1)+1

† · · · ζd(i−1),d(i−1)+1
†

0 ζd(i−2)+2,d(i−1)+2
† · · · ζd(i−1),d(i−1)+2

†

...
. . .

. . .
...

0 · · · 0 ζd(i−1),di
†



.

For all i ≥ 1, Ci are d× dK matrices and Di are dK × d matrices. We fix ζi,j with i ≤ 0 or

j ≤ 0 so that C1D1 = Idd.

For i ≥ 1, we denote by ∆i the following matrix
 −

(
CiC

†
i + λ Idd

)
(CiDi)

−1† −CiDi +
(
CiC

†
i + λ Idd

)
(CiDi)

−1†D†
iDi

(CiDi)
−1† − (CiDi)

−1†D†
iDi




and define Ξi =
∧d ∆i. Note that Ξi has size

(
2d

d

)
. See Section C of the Appendix for the

relevant background on exterior products.

For a given integer k ≥ 1, we denote by Gl(k,F) the group of invertible matrices on F of

size k. A semi-group of Gl(k,F) is a subset of Gl(k,F) which is stable under multiplication.

Let T be the smallest closed (in the topological sense) semi-group in Gl(
(
2d

d

)
,F) which

contains the support of the law of the matrices Ξi. We denote by e1, . . . , e2d the canonical

basis of F2d and we denote f , e1 ∧ · · · ∧ ed and g , ed+1 ∧ · · · ∧ e2d.

We denote by H0 the minimal subspace of F(2d
d ) that contains f and that is stable under

the action of T . We denote by d0 its dimension. Moreover, for i ≥ 1, since H0 is stable

under Ξi, we can define the restriction of Ξi to H0: Ξ̃i. Finally, let T̃ be the smallest closed

semi-group in Gl(d0,F) which contains the support of the law of the matrices Ξ̃i.

Definition II.2. Given a subset S of Gl(k,F), we say that S is strongly irreducible if there

does not exist a finite family of proper linear subspaces of Fk, V1, V2, . . . , Vk such that for any

M in S,

M (V1 ∪ · · · ∪ Vk) = V1 ∪ · · · ∪ Vk.

Definition II.3. Given a subset S of Gl(k,F), we say that S is contracting if there exists a

sequence (Mn)n∈N
in S such that ‖Mn‖−1Mn converges to a matrix of rank one.

Remark II.4. Assume [(H4) or (H5)]. We consider 1 ≤ K1 ≤ K2. Denote by H0(K1) and

T̃ (K1) (resp. H0(K2) and T̃ (K2)) the sets H0 and T̃ for K = K1 (resp. K = K2). Then
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H0(K1) ⊂ H0(K2) and T̃ (K1) ⊂ T̃ (K2). In particular, if H0(K1) = H0(K2) and T̃ (K1) is

strongly irreducible, then T̃ (K2) is also strongly irreducible.

C. Main results

We first state in Theorem II.5 the results for all d under the condition that T̃ is strongly

irreducible. This condition is verified for d = 1, 2 as stated in Corollary II.6. See Section C

of the Appendix for the definition of the Lyapunov exponent γ
(
Ξ̃
)
.

Theorem II.5. Assume (H1), (H2), (H3) and [(H4) or (H5)], and set λ = 1/ρ. We assume

moreover that T̃ is strongly irreducible.

1. Almost surely

Cm(ρ) −−−→
m→∞

log ρ+ Eπ log
∣∣∣ζ0ζ†d

∣∣∣ +
1

d
γ
(
Ξ̃
)

, C(ρ),

where the expectation is taken such that (ζ0, . . . , ζd) is distributed according to π.

2.
√
m (Cm(ρ) − Cρ) converges in law to a centered normal random variable of variance

σ2(ρ) > 0.

3. For all ε > 0, there exists α = α(ε) > 0 such that

lim sup
m→∞

1

m
log P (|Cm(ρ) − C(ρ)| > ε) < −α.

With Propositions III.14 and III.18, we get the following corollary.

Corollary II.6. Assume (H1), (H2), (H3) and [(H4) or (H5)]. For d = 1, 2, for all ρ ∈
(0,∞), for all K ≥ 1, T̃ is strongly irreducible, therefore the conclusions of Theorem II.5

hold.

Point 3 of Theorem II.5 shows an upper bound in the LD regime of the form P(|Cm − C| >
ε) ≤ e−mα with α = α(ε) > 0. This rate is indeed the correct rate as shown by the following

proposition.

Proposition II.7. Assume (H1) and [(H4) or (H5)]. There exists α′ > 0 such that

lim inf
n→∞

1

m
log P

(
|Cm(ρ) − C(ρ)| ≥ C(ρ)

2

)
≥ −α′. (II.8)

The proof is postponed to Section A of the Appendix
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III. Proof of the main results

A. Proof of Theorem II.5

In order to prove Theorem II.5, we combine Lemma III.2 from [8] with results from [12].

In order to apply those result, we need the contractivity of T̃ (see Definition II.3), which is

given by the following lemma.

Lemma III.1. T̃ is contracting.

Proof: Taking ζi,i = (1, 0, . . . , 0), ζi,i+d = (ε, 0, . . . , 0), with ε > 0 and ζi,i+s = (0, . . . , 0)

for 1 ≤ s ≤ d−1 (that is Cε = Idd and Dε = ε Idd), we get that the following matrix belongs

to T .

Ξε ,

d∧

 −(1 + λ)ε−1 Idd λε Idd

ε−1 Idd −ε Idd


 .

When ε goes to 0, ‖Ξεf‖ grows like ε−d whereas for f ′ another vector of the canonical basis

of F(2d
d ), ‖Ξεf ′‖ grows like εd′ with d′ > −d. Therefore,

‖Ξεf ′‖
‖Ξεf‖ −−→

ε→0
0.

Denote by f̃ ′ the orthogonal projection of f ′ on H0. Since Ξ̃εf = Ξεf and
∥∥∥Ξ̃εf̃ ′

∥∥∥ ≤ ‖Ξεf ′‖,
∥∥∥Ξ̃εf̃ ′

∥∥∥
∥∥∥Ξ̃εf

∥∥∥
−−→
ε→0

0.

Since the orthogonal projection of the canonical basis of F(2d
d ) on H0 is a generating system

of H0, Ξ̃ε/
∥∥∥Ξ̃ε

∥∥∥ converges to a matrix of rank 1.

The following lemma is proved in [8, (A.9) and proof of Proposition IV.2].

Lemma III.2. Define for i ≥ 1,

P1(i) =


−CiDi −CiC

†
i − λ Idd

0d Idd




and

P2(i) =



 0d Idd

(CiDi)
−1† − (CiDi)

−1†D†
iDi



 ,
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then,

1

nd
log det(Gnd) =

1

nd

nd∑

i=1

log
∣∣∣ζi,i+dζ

†
i+d,i+d

∣∣∣

+
1

nd
log

∣∣∣∣∣g
†

d∧
P2(n + 1)Ξn · · ·Ξ2

d∧
P1(1)g

∣∣∣∣∣ .

Lemma III.2 is based on the Thouless formula, which relates the determinant of a large

random bande matrix to the product of fixed-size random matrices (See [8] and references

therein).

We continue with the proof of Theorem II.5. Note that for i ≥ 1, ∆i = P1(i)P2(i),

therefore,

g†
d∧
P2(n + 1)Ξn · · ·Ξ2

d∧
P1(1)g = g†

d∧
P−1

1 (n+ 1)Ξn+1 · · ·Ξ1

d∧
P−1

2 (1)g.

However,

P−1
1 (i) =



−(CiDi)
−1 −(CiDi)

−1(CiC
†
i + λ Idd)

0d Idd





and

P−1
2 (i) =


D

†
iDi (CiDi)

†

Idd 0d


 .

therefore,

g†
d∧
P−1

1 (n+ 1) = g† and
d∧
P−1

2 (1)g = det (Cn+1Dn+1)
† f.

Using that

log |detCn+1Dn+1| =

(n+1)d∑

i=nd+1

log
∣∣∣ζi,i+dζ

†
i+d,i+d

∣∣∣ ,

we get

1

nd
log det(Gnd) =

1

nd

(n+1)d∑

i=1

log
∣∣∣ζi,i+dζ

†
i+d,i+d

∣∣∣+
1

nd
log
∣∣g†Ξn+1 · · ·Ξ1f

∣∣ .

Denoting by g̃ the orthogonal projection of g on H0, we get

1

nd
log det(Gnd) =

1

nd

(n+1)d∑

i=1

log
∣∣∣ζi,i+dζ

†
i+d,i+d

∣∣∣ +
1

nd
log
∣∣∣g̃†Ξ̃n+1 · · · Ξ̃1f

∣∣∣ . (III.3)
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By the Law of Large Number (LLN), almost surely,

1

nd

(n+1)d∑

i=1

log
∣∣∣ζi,i+dζ

†
i+d,i+d

∣∣∣ −−−→
n→∞

Eπ log
∣∣∣ζ0ζ†d

∣∣∣ . (III.4)

By [12, Corollary A.VI.2.3(i)], almost surely

1

nd
log
∣∣∣g̃†Ξ̃n+1 · · · Ξ̃1f

∣∣∣ −−−→
n→∞

1

d
γ
(
Ξ̃
)
,

which together with (III.3) and (III.4) proves point 1.

Remark III.5. Note that [12] consider real matrices but as stated in Remark A.V.8.3, the

results apply verbatim to the complex case.

Continuing with the proof of Theorem II.5, denote for i ≥ 1,

Ξ′
i =




id∏

s=(i−1)d+1

ζi,i+dζ
†
i+d,i+d


 Ξ̃i,

and let T ′ be the smallest closed semi-group in Gl(d0,F) which contains the support of the

law of the matrices Ξ′
i. Then

1

nd
log det(Gnd) =

1

nd
log
∣∣g̃†Ξ′

n+1 · · ·Ξ′
1f
∣∣ .

Note that T̃ is strongly irreducible and contracting. Therefore, by (H3), T ′ is also strongly

irreducible and contracting, therefore, by [12, Corollary A.VI.2.3(i)], 1/(
√
nd) log det(Gnd)

converges in law to a centered Gaussian random variable with non-zero variance. That

finishes the proof of point 2.

Fix ε > 0. By [12, Theorem A.VI.6.2], there exist α > 0 such that

lim sup
n→∞

1

n
log P

(∣∣∣∣
1

nd
log
∥∥Ξ′

n+1 · · ·Ξ′
1f
∥∥− 1

d
γ (Ξ′)

∣∣∣∣ > ε/2

)
< −α.

Moreover, as show in [12] in the course of the proof of Proposition A.VI.2.2, there exists

η > 0 and β > 0 such that for n large enough, almost surely,
∥∥Ξ′

n+1 · · ·Ξ′
1f
∥∥

∣∣g̃†Ξ′
n+1 · · ·Ξ′

1f
∣∣ ≤ ηnβ,

that is

0 ≤ 1

nd
log

∥∥Ξ′
n+1 · · ·Ξ′

1f
∥∥

∣∣g̃†Ξ′
n+1 · · ·Ξ′

1f
∣∣ ≤

log η + β logn

nd
.
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Therefore, for n large enough,
∣∣∣∣

1

nd
log
∥∥Ξ′

n+1 · · ·Ξ′
1f
∥∥− 1

nd
log
∣∣g̃†Ξ′

n+1 · · ·Ξ′
1f
∣∣
∣∣∣∣ ≤ ε/2.

This finishes the proof of point 3.

�

B. Strong irreducibility and proof of Corollary II.6 for d = 1

We deal with the case d = 1 separately because effective computation is possible. We will

deal with the general case in the next sub-section.

Proposition III.6. Set d = 1. Assume (H1), (H2), (H3) and [(H4) or (H5)]. Then H0 = F2

and T̃ is strongly irreducible.

Proof: Using Remark II.4, it is enough to do the proof in the case K = 1.

For i ≥ 1, we get:

Ξi =
1

ζi−1,iζ
†
i,i



− |ζi,i|2 − λ −
∣∣∣ζi,iζ†i−1,i

∣∣∣
2

+
(
|ζi,i|2 + λ

)
|ζi−1,i|2

1 − |ζi−1,i|2



 .

For u, v ∈ F, not both equal to 0,

Ξi


u
v


 =

1

ζi−1,iζ
†
i,i


−u

(
|ζi,i|2 + λ

)
+ vλ |ζi−1,i|2

u− v |ζi−1,i|2


 .

For any given ζi−1,i the vector space generated by


Ξi


1

0






ζi,i∈F

is F2, therefore, H0 =

F2.

Let us show that T̃ is strongly irreducible by contradiction. Assume that there exist

V1, . . . , Vk linear subspaces of F2 of dimension 1 such that for all M in T̃ ,

M(V1 ∪ · · · ∪ Vk) = V1 ∪ · · · ∪ Vk.

Take


u
v


 ∈ V1 such that (u, v) 6= (0, 0). If u 6= 0, then for any given ζi−1,i the vector space

generated by


Ξi


u
v






ζi,i∈F

is F2, which gives a contradiction. If u = 0, then Ξi


u
v


 and
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
 λ

−1


 are collinear, therefore,


 λ

−1


 ∈ V1 ∪ · · · ∪ Vk.

For any given ζi−1,i, the vector space generated by


Ξi


 λ

−1






ζi,i∈F

is F2, which gives a

contradiction.

C. Proof of Corollary II.6 by a computer based proof for general d

We first give an algorithm that allows us to prove irreducibility if we already know H0.

Then, we give an algorithm that allows us to find H0.

1) Proving strong irreducibility: For d > 1, it is difficult to prove strong irreducibility by

direct study of Ξi as we have done for d = 1. Indeed, the size of Ξi,
(
2d

d

)
grows very quickly.

Therefore, we provide here a computerized proof of strong irreducibility.

Consider Ĥ, a subspace of F(2d

d ) that contains f and is stable under the action of T . We

denote by d̂ its dimension. Moreover, we can define the restriction of Ξi to Ĥ: Ξ̂i. Finally,

let T̂ be the smallest closed semi-group in Gl
(
d̂,F
)

which contains the support of the law

of the matrices Ξ̂i. Denote by X the support of the law of the Ξ̂i. If the following algorithm

succeeds then, for all λ ∈ (0,∞), T̂ is strongly irreducible.

The heart of the algorithm is Lemma III.10 that states that T̂ is strongly irreducible if we

can find elements of X that verify a certain condition. The algorithm generates elements of

X at random and checks whether they verify that condition. Once such elements have been

found, the algorithm stops.

Take p ≥ 1 a parameter. We denote by φ the function that to a matrix of size d̂ × d̂

associates a vector of size d̂2, which is the list of its entries.

Algorithm III.7.
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1. Produce at random 2pd̂ samples from X , Ξ̂i,j,k for 1 ≤ i ≤ p, 1 ≤ j ≤ d̂2 and

k = 1, 2.

2. For k = 1, 2, compute formally (i.e. as explicit function of λ)

ψk(λ) := det
(
φ
(
Ξ̂p,1,k · · · Ξ̂1,1,k

)
, . . . , φ

(
Ξ̂

p,d̂2,k
· · · Ξ̂1,d̂2,k

))
.

3. For k = 1, 2, ψk(λ) is a polynomial in λ. Define

ψ̃k(λ) =
ψk(λ)

λl
,

where l is the largest integer such that λl divides ψk(λ).

4. Compute the discriminant of ψ̃1(λ) and ψ̃2(λ)

• If the discriminant is not 0, return “SUCCES”

• If the discriminant is 0, return “FAILURE”

Remark III.8. In step 2, the computation is formal because λ is a parameter. It is done

using the Mathematica software.

Proposition III.9. If there exists p ≥ 1 such that Algorithm III.7 is successful, then for all

λ ∈ (0,∞), T̂ is strongly irreducible. Moreover, Ĥ = H0.

Proof: Let us use the following lemma whose proof is postponed to the end of the

section.

Lemma III.10. For a given λ, if there exist Ξ̂i,j ∈ X for 1 ≤ i ≤ p and 1 ≤ j ≤ d̂2 such

that

det
(
φ
(
Ξ̂p,1 · · · Ξ̂1,1

)
, . . . , φ

(
Ξ̂

p,d̂2 · · · Ξ̂1,d̂2

))
6= 0,

then T̂ is strongly irreducible for this λ.

The discriminant of two polynomials vanishes if and only if those polynomials have a

common root. Assume that Algorithm III.7 is successful. By Step 4, ψ̃1(λ) and ψ̃2(λ) have

no common root. By Step 3, ψ1(λ) and ψ2(λ) have no common root except for 0. Therefore,

for a given λ ∈ (0,∞), ψ1(λ) 6= 0 or ψ2(λ) 6= 0, hence, by Lemma III.10, T̂ is strongly

irreducible for this λ. Let us show that Ĥ = H0. Ĥ contains f and is stable under the action

of T , therefore H0 ⊂ Ĥ. H0 is stable under the action of T̂ therefore, if it is a strict subset
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of Ĥ, then it contradicts the fact that T̂ is strongly irreducible.

Remark III.11. Note that a posteriori, the fact that Ĥ = H0 tells us that T̂ = T̃ and d̂ = d0

Proof of Lemma III.10: In this proof, λ is fixed. Let us assume that T̂ is not strongly

irreducible and let us show that for all Ξ̂i,j (1 ≤ i ≤ p and 1 ≤ j ≤ d̂2),

det
(
φ
(
Ξ̂p,1 · · · Ξ̂1,1

)
, . . . , φ

(
Ξ̂

p,d̂2 · · · Ξ̂1,d̂2

))
= 0.

Consider a finite family of proper linear subspaces of Cd, V1, V2, . . . , Vk such that for any M

in T̂ ,

M (V1 ∪ · · · ∪ Vk) = V1 ∪ · · · ∪ Vk. (III.12)

Denote by x a non zero vector in V1 and by yi a non zero vector in V ⊥
i for 1 ≤ i ≤ k. Define

moreover the following function on X p:

Ri

(
Ξ̂1, . . . , Ξ̂p

)
= y†i Ξ̂p · · · Ξ̂1x.

By (III.12), the function R1 · · ·Rk is uniformly 0. The matrices of X are polynomial

functions of the real and imaginary parts of the fading coefficients, therefore, Ri (1 ≤ i ≤ k)

are polynomial functions of the real and imaginary parts of the fading coefficients, hence,

since the product of the functions Ri (1 ≤ i ≤ k) is zero, there exists 1 ≤ i0 ≤ k such

that the function Ri0 is uniformly 0. Thus, for all 1 ≤ j ≤ d̂2, there is a linear dependency

between the entries of Ξ̂p,j · · · Ξ̂1,j, that is, between the entries of φ
(
Ξ̂p,j · · · Ξ̂1,j

)
. We have

proved that if T̂ is not strongly irreducible, then

det
(
φ
(
Ξ̂p,1 · · · Ξ̂1,1

)
, . . . , φ

(
Ξ̂

p,d̂2 · · · Ξ̂1,d̂2

))
= 0.

Remark III.13. We want the computation to be exact, therefore, we draw samples of X such

that the ζi,j are complex integers (of the form a+ ib such that a and b are real integers).

We applied Algorithm III.7 with p = 2, Ĥ = C(4

2
) and for K = 1 and d = 2 and it

was successful. See Section E of the Appendix for the matrices Ξ̂i,j,k that were randomly

generated by the algorithm. With Remark II.4, we therefore get the following proposition.

Proposition III.14. Assume (H1), (H2), (H3), (H4), and d = 2, then, for all λ ∈ (0,∞),

for all K ≥ 1, H0 = C(2d

d ) and T̃ is irreducible.
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2) Finding H: In the cases when H0 is a proper subspace of F(2d

d ), it is not obvious how

to get a hold of it. We therefore give an algorithm that allows us to do so, if the following

algorithm stops, it gives H0.

The idea is to randomly generate vectors in H0 by applying Ξ to f until we get enough

of them in the sense that they generate an invariant subspace that contains f .

For K ≥ 1, denote by ΞK the matrix valued function such that for i ∈ N, Ξi = ΞK (ζ i) .

Note that ΞK is also a function of λ although we do not write it explicitly. Denote by X (1)

the support of the law of the Ξi(λ = 1) for K = 1.

Algorithm III.15.

1. Define E = ∅.
2. Produce at random

(
2d

d

)
samples of Ξf for Ξ ∈ X (1), and add them to the set E.

3. Compute the span of E and denote it by H. Denote by d1 its dimension.

4. • If f ∈ H, continue.

• Else, go back to step 2.

5. Compute a base of F(2d

d ) which is a union of a base of H and a base of its orthogonal.

Denote by B the base-changing matrix

6. Formally compute the matrix valued function B−1ΞKB.

7. • If the last
(
2d

d

)
− d1 elements of the first d1 columns are 0, STOP.

• Else, go back to step 2.

Note that the formal computations are done using the Mathematica software.

Proposition III.16. If Algorithm III.15 stops, then for all λ and K, H is a subspace of

F(2d

d ) that contains f and that is invariant under the action of M. Moreover, for all λ except

for maybe a finite number of values, for all K, H is minimal, that is H = H0(λ).

Proof: Step 4 ensure that f ∈ H. Step 7 ensure that for all λ, H is invariant under the

action of T .

For λ = 1 and K = 1, any subspace of F(2d

d ) that contains f and that is invariant under

the action of T must contain E and therefore must contain H, hence, H is minimal for λ = 1

and K = 1. Let us show that it is true for all λ, except for a finite number of values and

for all K. Using remark II.4, we only need to prove that H is minimal for all λ except for
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maybe a finite number of values and K = 1.

Consider the determinant of the orthogonal projections of the vectors Ξ(ζd+1)f1, . . . ,

Ξ(ζd+d1)f1 onto H. It is a deterministic polynomial function of λ and of the real and

imaginary parts of the ζi,j for d + 1 ≤ j ≤ d + d1 and j − d ≤ i ≤ j. We denote by

Q(ζd+1, . . . , ζd+d1, λ) that polynomial function. Note that

Q(·, λ) 6≡ 0 ⇒ H is minimal for λ.

The fact that H is minimal for λ = 1 means that Q is a non zero polynomial. We write

Q(ζd+1, . . . , ζd+d1, λ) =

p∑

i=1

Q̃i(λ)Ri(ζ
d+1, . . . , ζd+d1),

where the Ri are non-zero monomials in the real and imaginary parts of the ζi,j and the

Q̃i are polynomials in λ. Q(·, λ) ≡ 0 if and only if for all i, Q̃i(λ) = 0. Since only a finite

number of values can satisfy the second condition, for all λ, except for a finite number of

values, H is minimal.

In the real case, we applied Algorithm III.15 for d = 2 and it stops, giving the following

basis of H0:

{e1 ∧ e2, e1 ∧ e4, e2 ∧ e3, e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4}, (III.17)

where {e1, e2, e3, e4} is the canonical basis of R
4.

We then applied Algorithm III.7 with p = 2 and for K = 1 and d = 2 and it was successful.

See Section E of the Appendix for the matrices Ξ̂i,j,k that were randomly generated by the

algorithm. We therefore get the following proposition.

Proposition III.18. Assume (H1), (H2), (H3), (H5), and d = 2, then, for all λ ∈ (0,∞),

for all K ≥ 1, H0 has dimension 5 and T̃ is irreducible. Moreover, a basis of H0 is

{e1 ∧ e2, e1 ∧ e4, e2 ∧ e3, e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4}.

Remark III.19. It may seem surprising that under (H4), H0 is C(4

2
) whereas under (H5), H0

is a proper subspace. As an explanation, let us give the entry (6, 1) of B−1ΞKB where B is

the base-changing matrix for the base

{e1 ∧ e2, e1 ∧ e4, e2 ∧ e3, e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e3 + e2 ∧ e4}.
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(
B−1ΞKB

)
6,1

=
ζ†2(i−1)+2,2(i−1)+2ζ2(i−2)+2,2(i−1)+2

ζ†2(i−1)+1,2(i−1)+1ζ2(i−2)+1,2(i−1)+1

Im
(
ζ†2(i−1)+1,2(i−1)+2ζ2(i−1)+2,2(i−1)+2

)
.

We can see that under (H5), that entry is identically 0.

IV. Concluding remarks

Using the tools of [8] and strong results in product of random matrices theory, we have

proved results of type Central Limit Theorem (CLT) and Large Deviations (LD) for the

non-ergodic uplink channel in a Wyner-type setup.

We first proved general CLT and LD result under a condition of strong irreducibility

(Theorem II.5) and then showed that this condition is verified for d = 1, 2 (Corollary II.6)

by a direct proof for d = 1 and by a computer based proof for d = 2. We conjecture that

this condition is verified for all d.

Conjecture IV.1. For all d ≥ 1, ρ ∈ (0,∞), K ≥ 1, T̃ is strongly irreducible, therefore the

conclusions of Theorem II.5 hold.

Our results show that the CLT fluctuations of the per-cell sum-rate are of order 1/
√
m,

where m is the number of cells, whereas they are of order 1/m in classical random matrix

theory. We also show a LD regime of the form P(|Cm − C| > ε) ≤ e−mα with α = α(ε) > 0

as opposed to the rate e−m2α in classical random matrix theory.

Added in Proof: The conjecture has now been proved by P. Bougerol (personal communi-

cation).
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Appendix

A. Proof of Proposition II.7

Denote by B the ball of center 0 and radius
√

C(ρ)
3ρ

in FK(d+1). By [(H4) or (H5)], π(B) > 0.

We will show that (II.8) holds with α′ = − log (π(B)).

Let us first show that if for all 1 ≤ i ≤ m+d, ζ i ∈ B, then, |Cm(ρ) − C(ρ)| > C(ρ)/2. In-

deed, we denote Mm = IdK(m+d) +ρH†
mHm so that Cm(ρ) = 1/m log detMm. By Hadamard’s

inequality for semi-positive definite Hermitian matrices,

Cm(ρ) ≤ 1

m

(m+d)K∑

i=1

logMm(i, i)

=
1

m

m+d∑

j=1

K∑

k=1

logMm((j − 1)K + k, (j − 1)K + k).

Note that

Mm((j − 1)K + k, (j − 1)K + k) = 1 + ρ
d∑

s=0

|ζj−s,j(k)|2 ,

therefore,

logMm((j − 1)K + k, (j − 1)K + k) ≤ ρ
d∑

s=0

|ζj−s,j(k)|2 .

Thus

Cm(ρ) ≤ 1

m

m+d∑

j=1

K∑

k=1

d∑

s=0

ρ |ζj−s,j(k)|2 ≤
1

m

m+d∑

j=1

ρ
∥∥ζj
∥∥2

2
.

We take m large enough such that (m+ d)/m ≤ 3/2. If for all 1 ≤ i ≤ m+ d, ζ i ∈ B, then,

Cm(ρ) ≤ C(ρ)/2 and therefore,

|Cm(ρ) − C(ρ)| ≥ C(ρ)/2.

By (H1), the probability that for all 1 ≤ i ≤ m+ d, ζ i ∈ B is exactly e−α′(m+d), therefore,

for m large enough

1

m
log P

(
|Cm(ρ) − C(ρ)| ≥ C(ρ)

2

)
≥ −m+ d

m
α′.

Since (m+ d)/m converges to 1 as m goes to infinity, the claim follows.

�
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B. Concentration for Wishart-type random matrices

In this section, we present a result of [13] that will allow us to compare the LD result

of Theorem II.5.3 with result of classical random matrix theory. In order to facilitate the

comparison, we reformulate it in a form similar to Theorem II.5.3.

We consider a random channel H of size N ×M . Denote by (Hi,j) for 1 ≤ i ≤ N and

1 ≤ j ≤M the entries of H . We assume that for 1 ≤ i ≤M and 1 ≤ j ≤ N ,

Hi,j =
1√

N +M
hi,j,

where hi,j is a complex random variable whose distribution is Pi,j. We suppose moreover

that under Pi,j, real and imaginary parts are independent. We consider the per-cell sum-rate

capacity

CapN,M(ρ) ,
1

N
Tr
{
log
(
Id +ρHH†

)}
.

We moreover assume that N and M go to infinity such that N/M converge to a non-zero

constant. By [14], ECapN,M(ρ) converges to a constant that we denote by Cap(ρ).

Refer to [13] for the definition of the logarithmic Sobolev inequality. Note that the Gaus-

sian law satisfies this inequality.

Proposition A.1 ([13]). Assume that the (Pij, 1 ≤ i ≤ N, 1 ≤ j ≤ M) satisfy the logarithmic

Sobolev inequality with uniform constant c. Then for any δ > 0,

lim sup
n→∞

1

N2
log
(
P

N,M(|CapN,M(ρ) − Cap(ρ)| ≥ δ)
)
≤ − 1

8cρ
δ2.

Proof: We apply [13, Corollary 1.] with f(x) = log(1 + ρx). The Lipschitz constant of

g(x) = f(x2) is
√
ρ therefore

P
N,M(|CapN,M(ρ) − ECapN,M(ρ)| ≥ δ/2) ≤ 2e−

1

8cρ
N2δ2

.

Then, for N and M large enough, |ECapN,M(ρ) − Cap(ρ)| ≤ δ/2 and therefore,

P
N,M(|CapN,M(ρ) − Cap(ρ)| ≥ δ) ≤ P

N,M(|CapN,M(ρ) − ECapN,M(ρ)| ≥ δ/2)

≤ 2e−
1

8cρ
N2δ2

.

Note that by using the tools of the proof of Proposition II.7, we can show that the right

decay rate is indeed e−N2α with α > 0.
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C. Lyapunov exponents theory

We use the theory of product of random matrices. For a general introduction to the aspects

of the theory we use here, the reader may consult [15], [12], [16], [17], [18] or [19]. See Section

D of the Appendix for the relevant background on exterior products.

Theorem A.2 (Furstenberg H., Kesten H. (1960)). Consider a stationary ergodic sequence

of complex random matrices (Xi)i≥1 of size p and any norm on the matrices. Assume moreover

that

E log+ ‖X1‖ <∞,

then a.s, n−1 log ‖Xn · · ·X1‖ converges to a constant:

lim
n→∞

1

n
log ‖Xn · · ·X1‖ , γ(X).

We define p constants γ1(X), . . . , γp(X) such that for 1 ≤ i ≤ p,

γ

(
i∧
X

)
= γ1(X) + · · ·+ γi(X).

Proposition A.3.

γ1(X) ≥ · · · ≥ γp(X).

The constants γ1(X) ≥ · · · ≥ γp(X) are called the Lyapunov exponents and γ(X) = γ1(X)

is called the top Lyapunov exponent.

We will also use the three following properties:

1. For any sub-multiplicative norm, for p ≥ 1

γ(X) ≤ 1

p
E log ‖Xp · · ·X1‖ , (A.4)

and the limit of the RHS as p goes to infinity is γ(X).

2.
1

p
E log |detX1| ≤ γ(X). (A.5)

3. Assume that the matrices (Xi)i≥1 are i.i.d, then for all 1 ≤ i ≤ p, γi(X) = γi(X
†).

Finally, we quote the following proposition [20, Proposition 1].
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Proposition A.6. Consider a stationary ergodic sequence of complex random matrices

(Xi)i≥1 of size p and any norm on the matrices. Assume moreover that

E log+ ‖X1‖ <∞.

Finally, assume that there exist three sequences of random matrices (X1
i )i≥1, (X2

i )i≥1, (X3
i )i≥1,

of respective sizes k × k, (p − k) × k and (p − k) × (p − k), for 1 ≤ k ≤ p − 1, such that

almost surely, for all i ≥ 1

Xi =


 X1

i 0k,p−k

X2
i X3

i


 .

Then, γ1(X), . . . , γp(X) is equal up to the order to the sequence

γ1(X
1), . . . , γk(X

1), γ1(X
3), . . . , γp−k(X

3).

D. Exterior product

In this section we give the material on exterior products. We provide only the properties

relevant to the paper, see [21, Chapter XVI.6-7] and [12, Chapter A.III.5] for more details.

Proposition A.7. For 0 ≤ k ≤ p, the exterior product of k vectors in Fp, v1, . . . , vk is

denoted by v1 ∧ · · ·∧ vk. It is a vector of the exterior product of degree k of Fp that we denote

by
∧k

F
p.
∧k

F
p is a F-vector space of dimension

(
k

p

)
.

The exterior product v1, . . . , vk is a multi-linear (i.e. linear in every vi, 1 ≤ i ≤ k) and

anti-symmetric (i.e. vσ(1) ∧ · · · vσ(k) = ε(σ) for σ permutation of {1, . . . , k} and ε(σ) its

signature) function.

If e1, . . . , ep is a basis of F
p, then (ei1 ∧ · · · ∧ eik |1 ≤ i1 < · · · < ik ≤ p) is a basis of

∧k
F

p.

The later is called the canonical basis of
∧k

Fp if e1, . . . , ep is the canonical basis of Fp.

If M is a matrix of size p× q, the exterior product of M that we denote by
∧k M is a map

from
∧k

Fq to
∧k

Fp such that

k∧
M (v1 ∧ · · · ∧ vk) = Mv1 ∧ · · · ∧Mvk.

Finally, for two matrices M and N ,
∧k (MN) =

∧k (M)
∧k (N).

Proposition A.8. If X is a square matrix of size p, then
p∧
X = detX.
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Moreover, for q ≤ p,

det

q∧
X = (detX)(

p−1

q−1
) .

Proposition A.9. For p vectors e1, . . . , ep, we denote by
(
e1 · · · ep

)
the matrix whose

columns are e1, . . . , ep. Then

e1 ∧ · · · ∧ ep =

p∧(
e1 · · · ep

)
.

The last proposition can be used to actually compute the entries of the wedge product of

a matrix. Indeed, if X is a matrix of size p, we denote by e1, . . . , ep the canonical basis of

Fp. For q ≤ p, we want to compute the entries of
∧q X along the basis {ei1 ∧ · · · ∧ eiq ; 1 ≤

i1 < · · · < iq ≤ p}.
(
ej1 ∧ · · · ∧ ejq

)† q∧
X
(
ei1 ∧ · · · ∧ eiq

)
=

q∧(
ej1 · · · ejq

)† q∧
X

q∧(
ei1 · · · ejq

)

det

((
ej1 · · · eiq

)†
X
(
ei1 · · · eiq

))

E. Matrices generated in the proof of Propositions III.14 and III.18

In this section, we give the matrices that where generated by the computerized proof of

Propositions III.14 and III.18 by Algorithm III.7. For i = 1, 2, 1 ≤ j ≤ d̂2 and k = 1, 2,

Ξi,j,k =

2∧
∆i,j,k,

∆i,j,k =


 −Ci,j,kD

−1†
i,j,k − λ(Ci,j,kDi,j,k)

−1† λC−1†
i,j,kDi,j,k

(Ci,j,kDi,j,k)
−1† −C−1†

i,j,kDi,j,k


 ,

Ci,j,k =


ζ3,3i,j,k

ζ3,4i,j,k

0 ζ4,4i,j,k


 and Di,j,k =


ζ1,3

†
i,j,k ζ2,3

†
i,j,k

0 ζ2,4
†
i,j,k


 .

Note that the expression of ∆i,j,k as a function of Ci,j,k and Di,j,k was simplified using the

fact that if K = 1, then (Ci,j,kDi,j,k)
−1† = C−1†

i,j,kD
−1†
i,j,k. In the proof of Proposition III.14,

Ξ̂i,j,k = Ξi,j,k. In the proof of Proposition III.18, Ξ̂i,j,k is Ξi,j,k restricted to the basis given

by (III.17). The coefficients ζ are given in the following tables.

For the proof of Proposition III.14, d̂ = 6 and the coefficients ζ are as follows:
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j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

j = 13

j = 14

j = 15

j = 16

j = 17

j = 18

j = 19

j = 20

j = 21

j = 22

j = 23

j = 24

j = 25

j = 26

j = 27

j = 28

j = 29

j = 30

j = 31

j = 32

j = 33

j = 34

j = 35

j = 36

k = 1

i = 1 i = 2

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

2 + 2i 2 + 2i 2 + i 1 + 2i 2 + i 1 + 2i

1 + i 1 + 2i 1 + i 1 + i 1 + 2i 2 + i

1 + i 1 + 2i 2 + 2i 2 + i 2 + i 2 + i

1 + 2i 2 + i 1 + 2i 1 + i 2 + i 2 + i

2 + i 2 + 2i 2 + i 2 + 2i 2 + 2i 1 + i

2 + i 1 + i 2 + i 2 + 2i 1 + 2i 2 + i

2 + i 2 + 2i 1 + i 1 + i 2 + 2i 2 + 2i

2 + i 1 + i 1 + 2i 1 + i 1 + 2i 2 + 2i

1 + 2i 1 + 2i 1 + i 2 + 2i 2 + 2i 2 + 2i

1 + i 2 + 2i 2 + 2i 1 + i 2 + 2i 2 + 2i

1 + i 1 + i 1 + i 2 + 2i 1 + i 2 + 2i

1 + 2i 1 + i 1 + i 1 + 2i 1 + 2i 1 + i

1 + i 2 + 2i 2 + 2i 1 + 2i 2 + i 2 + i

2 + 2i 1 + 2i 2 + 2i 1 + i 1 + 2i 2 + 2i

2 + 2i 1 + 2i 2 + i 1 + 2i 2 + i 2 + 2i

1 + i 2 + i 2 + i 1 + 2i 1 + 2i 1 + i

1 + 2i 2 + i 2 + i 1 + i 2 + 2i 2 + 2i

1 + 2i 2 + 2i 2 + 2i 1 + 2i 2 + i 2 + i

1 + i 1 + i 2 + 2i 2 + 2i 2 + i 2 + i

2 + 2i 2 + 2i 2 + 2i 2 + i 2 + i 1 + i

2 + i 2 + 2i 1 + 2i 2 + 2i 2 + 2i 2 + 2i

2 + i 2 + 2i 1 + 2i 2 + i 1 + 2i 1 + i

2 + 2i 2 + 2i 1 + 2i 2 + 2i 2 + 2i 2 + i

1 + i 1 + i 1 + i 2 + 2i 2 + 2i 1 + i

2 + 2i 1 + i 1 + i 2 + 2i 1 + i 1 + 2i

1 + i 1 + i 2 + i 1 + i 1 + 2i 1 + 2i

2 + i 1 + 2i 1 + 2i 1 + 2i 2 + 2i 1 + i

1 + i 2 + 2i 2 + i 1 + 2i 1 + 2i 1 + 2i

2 + 2i 1 + 2i 1 + i 2 + i 2 + 2i 2 + 2i

2 + 2i 1 + 2i 1 + i 1 + 2i 1 + i 2 + i

1 + 2i 2 + 2i 2 + 2i 1 + i 2 + 2i 2 + i

1 + 2i 2 + 2i 2 + 2i 1 + i 2 + i 1 + 2i

1 + 2i 1 + i 1 + 2i 1 + i 2 + 2i 1 + 2i

1 + 2i 2 + 2i 2 + 2i 2 + 2i 2 + i 1 + i

2 + 2i 2 + i 2 + i 1 + 2i 1 + i 2 + 2i

2 + 2i 2 + 2i 2 + 2i 2 + i 2 + 2i 2 + 2i

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

2 + 2i 2 + 2i 2 + i 2 + i 2 + i 1 + i

1 + 2i 1 + i 2 + i 2 + 2i 1 + i 2 + 2i

2 + i 1 + i 2 + i 2 + 2i 1 + i 2 + i

2 + i 2 + 2i 2 + 2i 2 + i 2 + 2i 2 + i

1 + i 2 + i 2 + i 2 + i 1 + 2i 2 + i

1 + 2i 1 + i 2 + 2i 1 + 2i 2 + 2i 2 + i

2 + 2i 1 + 2i 1 + 2i 1 + 2i 1 + i 2 + i

2 + 2i 1 + 2i 1 + 2i 1 + 2i 1 + 2i 2 + i

1 + 2i 2 + i 1 + i 2 + i 1 + 2i 1 + 2i

2 + i 1 + i 1 + 2i 1 + i 1 + 2i 2 + 2i

2 + i 1 + 2i 2 + 2i 2 + 2i 2 + 2i 2 + 2i

2 + i 1 + 2i 1 + 2i 2 + i 2 + i 1 + i

1 + i 2 + 2i 2 + 2i 1 + 2i 2 + i 1 + 2i

1 + i 2 + 2i 1 + i 2 + i 1 + 2i 1 + i

1 + 2i 2 + 2i 1 + i 1 + i 2 + 2i 1 + 2i

2 + 2i 1 + i 2 + i 1 + i 1 + 2i 1 + 2i

1 + i 2 + 2i 2 + i 2 + i 2 + i 2 + 2i

2 + 2i 2 + i 2 + i 1 + i 2 + i 1 + 2i

2 + i 1 + i 2 + i 1 + 2i 1 + i 2 + 2i

1 + 2i 2 + 2i 2 + 2i 1 + i 1 + i 2 + i

1 + i 2 + i 2 + 2i 2 + 2i 1 + 2i 2 + 2i

2 + 2i 2 + 2i 1 + 2i 1 + i 1 + 2i 1 + i

2 + i 2 + i 1 + 2i 2 + 2i 1 + 2i 2 + 2i

2 + 2i 1 + 2i 1 + 2i 1 + 2i 1 + i 2 + i

2 + i 2 + i 2 + i 1 + 2i 2 + 2i 2 + 2i

1 + i 1 + i 2 + i 1 + 2i 1 + 2i 1 + i

2 + i 2 + 2i 1 + 2i 2 + 2i 2 + 2i 2 + 2i

2 + i 2 + 2i 2 + i 1 + i 2 + i 2 + 2i

2 + 2i 2 + 2i 2 + 2i 1 + 2i 2 + 2i 1 + 2i

2 + i 1 + 2i 1 + 2i 1 + 2i 1 + 2i 2 + i

2 + 2i 1 + 2i 1 + i 1 + i 1 + 2i 1 + 2i

2 + i 1 + i 2 + 2i 2 + 2i 1 + i 1 + 2i

1 + i 2 + i 1 + 2i 1 + 2i 1 + 2i 1 + 2i

1 + i 1 + 2i 1 + i 2 + i 1 + i 1 + 2i

2 + 2i 1 + 2i 1 + 2i 1 + 2i 1 + 2i 2 + i

1 + 2i 2 + 2i 1 + i 2 + 2i 1 + 2i 1 + 2i
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j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

j = 13

j = 14

j = 15

j = 16

j = 17

j = 18

j = 19

j = 20

j = 21

j = 22

j = 23

j = 24

j = 25

j = 26

j = 27

j = 28

j = 29

j = 30

j = 31

j = 32

j = 33

j = 34

j = 35

j = 36

k = 2

i = 1 i = 2

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

1 + 2i 2 + i 2 + i 2 + 2i 2 + 2i 1 + i

1 + 2i 1 + i 2 + 2i 1 + 2i 2 + i 1 + 2i

1 + i 2 + i 2 + 2i 2 + 2i 1 + i 1 + i

2 + 2i 2 + 2i 1 + 2i 1 + i 1 + 2i 2 + 2i

1 + i 1 + i 2 + i 2 + i 1 + 2i 1 + 2i

2 + i 1 + i 2 + 2i 2 + i 2 + i 1 + i

2 + 2i 1 + i 2 + 2i 1 + i 1 + i 2 + i

2 + i 2 + 2i 2 + i 2 + i 1 + i 1 + 2i

2 + 2i 1 + i 2 + i 1 + i 1 + 2i 2 + 2i

1 + i 2 + i 2 + i 1 + 2i 2 + i 1 + i

1 + 2i 2 + 2i 1 + 2i 1 + 2i 1 + 2i 2 + i

1 + 2i 2 + i 2 + 2i 1 + 2i 1 + i 1 + i

1 + 2i 2 + i 2 + i 2 + 2i 1 + i 1 + 2i

1 + i 1 + 2i 1 + i 2 + i 1 + i 2 + 2i

1 + 2i 2 + i 1 + 2i 2 + 2i 1 + 2i 2 + 2i

1 + 2i 1 + 2i 1 + i 2 + 2i 1 + i 1 + i

2 + 2i 2 + i 2 + i 2 + i 1 + i 1 + 2i

2 + i 2 + i 1 + 2i 1 + 2i 1 + i 1 + 2i

1 + 2i 2 + 2i 1 + 2i 2 + 2i 1 + i 1 + i

1 + 2i 2 + 2i 1 + 2i 1 + i 1 + i 1 + 2i

1 + 2i 2 + i 2 + i 2 + i 2 + i 1 + i

2 + i 2 + i 1 + i 2 + i 1 + 2i 1 + i

1 + i 2 + i 1 + 2i 2 + 2i 1 + 2i 1 + 2i

1 + 2i 1 + 2i 1 + i 2 + i 1 + 2i 2 + 2i

2 + 2i 2 + i 1 + 2i 2 + 2i 1 + 2i 2 + i

1 + i 1 + i 1 + i 1 + i 2 + 2i 2 + 2i

1 + 2i 1 + i 1 + 2i 2 + i 2 + 2i 1 + 2i

2 + i 2 + i 2 + i 1 + 2i 2 + 2i 1 + 2i

2 + i 2 + 2i 2 + 2i 2 + 2i 2 + i 2 + 2i

2 + i 2 + 2i 1 + i 1 + 2i 2 + 2i 2 + 2i

2 + 2i 1 + 2i 1 + i 1 + i 1 + i 2 + i

2 + 2i 1 + i 2 + i 2 + 2i 2 + i 2 + i

2 + 2i 1 + 2i 1 + 2i 1 + 2i 1 + i 1 + i

2 + 2i 1 + 2i 1 + i 2 + 2i 1 + 2i 2 + i

2 + i 1 + i 2 + i 1 + 2i 1 + 2i 2 + i

2 + 2i 2 + i 2 + 2i 2 + 2i 2 + i 1 + i

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

1 + 2i 1 + i 1 + 2i 1 + i 1 + 2i 2 + 2i

1 + i 2 + 2i 1 + 2i 1 + i 2 + 2i 2 + 2i

2 + 2i 1 + i 1 + 2i 2 + 2i 1 + 2i 1 + i

2 + i 1 + 2i 2 + i 2 + 2i 2 + 2i 2 + i

1 + i 2 + 2i 1 + i 2 + 2i 1 + i 1 + i

1 + 2i 2 + i 2 + 2i 1 + 2i 1 + i 1 + i

2 + i 1 + 2i 2 + 2i 1 + 2i 1 + 2i 2 + 2i

1 + 2i 2 + 2i 2 + 2i 2 + 2i 2 + i 1 + i

1 + i 1 + 2i 2 + 2i 1 + 2i 2 + i 2 + 2i

1 + 2i 1 + i 2 + i 2 + i 2 + i 1 + i

1 + i 2 + i 2 + 2i 2 + i 1 + i 2 + i

2 + i 2 + i 2 + i 1 + i 2 + i 1 + i

1 + 2i 1 + 2i 2 + 2i 2 + 2i 1 + 2i 2 + i

1 + 2i 2 + 2i 2 + i 2 + i 1 + i 1 + 2i

2 + i 2 + i 2 + i 2 + 2i 2 + 2i 2 + i

2 + 2i 2 + i 1 + 2i 1 + 2i 2 + 2i 2 + i

2 + 2i 1 + i 2 + 2i 2 + 2i 1 + i 2 + i

2 + i 2 + 2i 1 + 2i 1 + 2i 1 + i 1 + i

2 + i 1 + 2i 1 + i 1 + i 2 + i 1 + i

1 + 2i 2 + 2i 1 + 2i 1 + 2i 2 + i 2 + 2i

1 + i 1 + 2i 2 + i 1 + i 1 + i 2 + 2i

1 + i 2 + i 1 + i 1 + 2i 1 + i 2 + i

1 + i 1 + 2i 2 + i 1 + 2i 2 + i 2 + 2i

2 + i 1 + 2i 1 + 2i 2 + i 1 + 2i 2 + i

2 + 2i 1 + i 2 + i 2 + 2i 1 + i 2 + 2i

1 + 2i 2 + i 1 + i 1 + 2i 1 + i 1 + 2i

1 + i 1 + 2i 1 + 2i 1 + 2i 2 + 2i 1 + i

1 + i 1 + i 1 + i 2 + 2i 1 + 2i 2 + 2i

1 + i 1 + 2i 1 + 2i 1 + 2i 2 + i 2 + 2i

1 + i 1 + i 2 + i 1 + 2i 1 + 2i 1 + 2i

1 + 2i 2 + i 2 + 2i 1 + 2i 1 + i 1 + i

2 + 2i 1 + i 2 + i 1 + i 2 + 2i 2 + 2i

1 + i 2 + 2i 2 + i 2 + 2i 1 + i 2 + i

2 + 2i 2 + 2i 1 + i 1 + 2i 2 + 2i 1 + 2i

2 + i 2 + 2i 2 + i 2 + i 1 + 2i 2 + i

1 + i 1 + i 1 + i 2 + i 2 + 2i 1 + i
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For the proof of Proposition III.18, d̂ = 5 and the coefficients ζ are as follows:

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

j = 13

j = 14

j = 15

j = 16

j = 17

j = 18

j = 19

j = 20

j = 21

j = 22

j = 23

j = 24

j = 25

k = 1

i = 1 i = 2

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

1 2 2 1 2 1

1 2 1 2 2 1

1 2 2 1 2 2

2 1 2 1 1 1

1 2 1 1 1 2

1 2 2 1 2 2

2 2 1 1 2 2

2 1 2 1 2 2

1 2 1 1 2 1

1 2 2 2 2 1

1 2 1 2 1 1

2 1 2 1 2 2

2 1 1 2 1 1

1 2 1 2 1 2

1 1 2 1 2 1

2 1 1 2 1 2

1 2 2 1 2 1

2 1 2 1 2 1

1 2 1 1 1 1

1 1 2 2 1 2

1 2 2 2 2 1

2 2 1 2 1 1

1 2 2 1 2 1

2 1 2 1 1 2

1 2 2 1 2 2

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

1 1 2 2 2 2

1 2 1 1 2 1

2 2 1 1 2 2

2 2 2 1 1 1

2 2 2 2 1 2

1 1 1 2 2 1

1 2 1 1 1 2

1 1 1 1 1 1

2 2 2 2 2 1

2 1 2 2 2 1

1 1 1 1 1 1

1 2 2 1 2 1

2 1 2 1 1 2

2 1 1 2 2 1

2 2 1 2 2 2

1 2 2 1 1 1

1 1 2 2 2 1

1 1 1 1 1 2

1 1 2 2 2 1

1 1 2 1 1 2

2 2 1 2 2 1

2 2 1 1 1 1

1 2 1 1 2 1

1 1 2 2 2 2

1 1 2 1 1 1
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j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

j = 13

j = 14

j = 15

j = 16

j = 17

j = 18

j = 19

j = 20

j = 21

j = 22

j = 23

j = 24

j = 25

k = 2

i = 1 i = 2

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

2 1 2 2 2 1

2 2 2 2 1 2

2 1 2 2 2 2

2 1 1 2 2 2

1 2 1 2 2 1

1 2 2 1 2 2

1 1 2 1 1 1

2 1 2 1 2 2

1 1 1 2 2 1

2 2 1 2 2 2

2 1 2 1 1 1

2 2 1 1 1 1

1 1 1 2 1 1

2 2 2 2 2 1

1 2 2 1 2 2

2 1 2 1 2 2

2 2 1 2 2 1

1 1 1 1 1 1

2 2 1 2 2 2

1 2 1 1 2 2

1 2 2 2 1 2

1 1 1 1 1 1

1 1 1 1 2 2

2 2 2 2 2 1

2 2 1 2 1 1

ζ1,3i,j,k
ζ2,3i,j,k

ζ3,3i,j,k
ζ2,4i,j,k

ζ3,4i,j,k
ζ4,4i,j,k

1 2 1 2 2 2

2 1 2 1 2 1

2 2 1 1 2 1

1 1 2 2 1 1

2 1 2 1 2 1

2 2 2 1 1 1

2 1 2 2 1 2

2 2 2 2 2 2

1 1 1 1 2 2

2 1 1 1 2 1

1 2 1 1 2 2

2 2 2 1 1 1

2 2 2 1 1 2

1 2 1 1 1 2

2 2 2 2 2 1

1 2 2 1 2 2

1 1 1 2 2 2

2 2 2 2 2 1

2 1 1 2 1 2

2 1 2 1 2 1

2 1 2 2 1 1

1 1 1 1 1 1

2 2 1 1 1 1

1 1 1 1 1 1

1 1 1 2 2 1
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XII—1982, vol. 1097 of Lecture Notes in Math., pp. 305–396, Berlin: Springer, 1984.

[18] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, vol. 297 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag,

1992.

[19] J. C. Watkins, “Limit theorems for products of random matrices: a comparison of two points of view,” in Random

matrices and their applications (Brunswick, Maine, 1984), vol. 50 of Contemp. Math., pp. 5–22, Providence, RI:

Amer. Math. Soc., 1986.

[20] H. Hennion, “Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires
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