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Abstract

Let T denote a rooted b-ary tree and let {Sv}v∈T denote a branching random walk
indexed by the vertices of the tree, where the increments are i.i.d. and possess a
logarithmic moment generating function Λ(⋅). Let mn denote the minimum of the
variables Sv over all vertices at the nth generation, denoted by Dn. Under mild con-
ditions, mn/n converges almost surely to a constant, which for convenience may be
taken to be 0. With S̄v = max{Sw : w is on the geodesic connecting the root to v},
define Ln = minv∈Dn S̄v. We prove that Ln/n

1/3 converges almost surely to an explicit
constant l0. This answers a question of Hu and Shi.

1 Introduction

A branching random walk, as its name suggests, is a process describing a particle
performing random walk while branching. In this paper, we consider the 1-dimensional
case as follows. At time 0, there is one particle at location 0. At time 1, the particle
splits into b particles (b ∈ Z+ deterministic and b ≥ 2 to avoid trivial cases), each of
which moves independently to a new position according to some distribution function
F (x). Then at time 2, each of the b particles splits again into b particles, which
again move independently according to the distribution function F (x). The splitting
and moving continue at each integer time and are independent of each other. This
procedure produces a 1-dimensional branching random walk.

To describe the relation between particles, we associate to each particle a vertex
in a b-ary rooted tree T = {V,E} with root o, where each vertex has b children; V is
the set of vertices in T and E is the set of edges in T. The root o is associated with
the original particle. The b children of a vertex v ∈ V correspond to the b particles
from the splitting of the particle corresponding to v. In particular, the vertices whose
distance from o is n, denoted by Dn, correspond to particles at time n. To describe
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the displacement between particles, we assign i.i.d. random variables Xe with common
distribution F (x) to each edge e ∈ E. (Throughout, we let e = uv denote the edge
e connecting two vertices u, v ∈ V .) For each vertex v ∈ V , we use ∣v∣ to denote its
distance from o and use vk to denote the ancestor of v in Dk for any 0 ≤ k ≤ ∣v∣. Then
the positions of particles at time n can be described by {Sv∣v ∈ Dn}, where for v ∈ Dn,
Sv =

∑n−1
i=0 Xvivi+1 .

The limiting behavior of the maximal displacement Mn = maxv∈Dn Sv or the min-
imal displacement mn = minv∈Dn Sv as n → ∞ has been extensively studied in the
literature (See in particular Bramson [2],[3], Addario-Berry and Reed [1], and references
therein.) Throughout this paper, we assume that

Ee�Xe <∞ for some � < 0 and some � > 0. (1)

Then the Fenchel-Legendre transform of the log-moment generating function Λ(�) =
logEe�Xe ,

Λ∗(x) = sup
�∈R

(�x− Λ(�)), (2)

is the large deviation rate function (see [4, Ch. 1,2]) of a random walk with step
distribution F (x). In addition to (1), we also assume that, for some �− < 0 and
�+ > 0 in the interior of {� : Λ(�) <∞},

�±Λ′(�±)− Λ(�±) = log b, (3)

which implies that Λ∗(Λ′(�±)) = log b. These assumptions imply that

M := lim
n→∞

Mn

n
= Λ′(�+) and m := lim

n→∞

mn

n
= Λ′(�−) a.s. . (4)

See [1] for more details on (4).
The offset of the branching random walk is defined as the minimal deviation of the

path up to time n from the line leading to mn (roughly, the minimal position at time
n). Explicitly, set

Ln = min
v∈Dn

n
max
k=0

(Svk −mk). (5)

Without loss of generality, subtracting the deterministic constant Λ′(�−) from each
increment {Xe}, we can and will assume that

m = Λ′(�−) = 0. (6)

Under this assumption, (3) and (5) simplify to

−Λ(�−) = log b, (3′)

Ln = min
v∈Dn

n
max
k=0

Svk . (5′)

In the process of studying random walks in random environments on trees, Hu and Shi
[5] (2007) discovered that the offset has order n1/3 in the following sense: there exist
constants c1, c2 > 0 such that

c1 ≤ lim inf
n→∞

Ln

n1/3
≤ lim sup

n→∞

Ln

n1/3
≤ c2. (7)

They raised and advertised the question as to whether the limit of Ln/n
1/3 exists. In

this note, we answer this affirmatively and prove the following.
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Theorem 1. Under assumption (1) and (3) and with l0 =
3

√
3�2�2

Q

−2�−
, it holds that

lim
n→∞

Ln

n1/3
= l0 a.s. . (8)

In the expression for l0, �− < 0 by the definition (3) and �2
Q is a certain variance

defined in (10).
The proof of the theorem is divided into two parts - the lower bound (25) and the

upper bound (37). In Section 2, we review a result from Mogul’skii [7], which will
be the key estimate in our proof. In Section 3, we apply a first moment argument
(with a twist) in order to study the minimal positions for intermediate levels with the
restriction that the walks do not exceed ln1/3 for some l > 0 at all time. This yields
the lower bound for Ln. In section 4, we apply a second moment argument to lower
bound P (Ln ≤ ln1/3) for certain values of l. Compared with standard applications of
the second moment method in related problems, the analysis here requires the control
of second order terms in the large deviation estimates. Truncation of the tree is then
used to get independence and complete the proof of the upper bound.
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a related but slightly different method [6]. In particular, their work handles also the
case of Galton–Watson trees. We thank Y. Hu for discussing this problem with one of
us (O.Z.) and for providing us with the reference [7], which allowed us to skip tedious
details in our original proof.

2 An Auxiliary Estimate: the absorption prob-

lem for random walk

We derive in this section some estimates for random walk with i.i.d. increments {Xi}i≥1

distributed according to a law P with P ((−∞, x]) = F (x) satisfying (1), (3) and (6).
Define

Sn(t) =
X0 +X1 + ⋅ ⋅ ⋅+Xk

n1/3
for

k

n
≤ t < k + 1

n
, k = 0, 1, . . . , n− 1,

where X0 = 0. Note that due to (6), EXi > 0. Introduce the auxiliary law

dQ

dP
= e�−X1−Λ(�−). (9)

Under Q, EQX1 = 0. The variance of X1 under Q is denoted by

�2
Q = EQX

2
1 . (10)

In the following estimates, f1(t) and f2(t), which may take the value ±∞, are right-
continuous and piecewise constant functions on [0, 1]. G = ∪0≤t≤1{(f1(t), f2(t)) × t}
is a region bounded by f1(t) and f2(t). Assume also that G contains the graph of a
continuous function.
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Theorem 2. (Mogul’skii [7, Theorem 3]) Under the above assumptions,

Q(Sn(t) ∈ G, t ∈ [0, 1]) = e−
�2�2Q

2
H2(G)n1/3+o(n1/3), (11)

where

H2(G) =

∫ 1

0

1

(f1(t)− f2(t))2
dt. (12)

In the following, we will need to control the dependence of the estimate (11) on the
starting point.

Corollary 1. With notation and assumptions as in Theorem 2, for any � > 0, there
is a � > 0 such that, for any interval I ⊂ (f1(0), f2(0)) with length ∣I∣ ≤ �, we have

sup
x∈I

Q(x+ Sn(⋅) ∈ G) ≤ e−(
�2�2Q

2
H2(G)−�)n1/3+o(n1/3). (13)

Proof Let I = (a, b) and Gx := ∪0≤t≤1{(f1(t)− x, f2(t)− x)× t} be the shift of G by
x. Set G′ = Ga ∪Gb. We have

sup
x∈I

Q(x+Sn(⋅) ∈ G) = sup
x∈I

Q(Sn(⋅) ∈ Gx) ≤ Q(Sn(⋅) ∈ G′) = e−
�2�2Q

2
H2(G′)n1/3+o(n1/3) .

Since H2(G′) =
∫ 1

0
1

(f2(t)−f1(t)+(b−a))2
dt ↑ H2(G) as ∣I∣ = (b − a) → 0 uniformly in the

position of I, the lemma is proved.

3 Lower Bound

Consider the branching random walk up to level n. In this and the next section, we
estimate the number of particles that stay constantly below ln1/3, i.e.,

N l
n =

∑
v∈Dn

1{S
vk
≤ln1/3 for k=0,1,...,n}. (14)

In order to get a lower bound on the offset, we apply a first moment method with
a small twist: while it is natural to just calculate the first moment of N l

n, such a
computation ignores the constraint on the number of particles at level k imposed by
the tree structure. In particular, EN l

n for branching random walks is the same as the
one for bn independent random walks. An easy first and second moment argument
shows that the limit in (8) is 0 for bn independent random walks, and thus no useful
upper bound can be derived in this way.

To address this issue, we use a more delicate first moment argument. Namely, we
look at the vertices not only at level n but also at some intermediate levels. Divide
the interval [0, n] into 1/� equidistant levels, with 1/� an integer. Define recursively,
for any � > 0,{

s0 = 0, w0 = l + �;

sk = sk−1 −
�2�2

Q

2�−w2
k−1

�, wk = l + � − sk for k = 1, . . . , 1
� .

(15)
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For particles staying below ln1/3, sk will be interpreted as values such that the walks
between times k�n and (k+1)�n never go below (sk−�)n1/3, and wkn

1/3 will correspond
to the width of the window Wk = ((sk − �)n1/3, ln1/3) that we allow between level k�n
and (k + 1)�n, when considering those walks that do not go below (sk − �)n1/3 or go
above ln1/3.

Before calculating the first moment, consider the recursion (15) for sk. Rewrite it
as

sk = sk−1 −
�2�2

Q

2�−(l + � − sk−1)2
�. (16)

This is an Euler’s approximation sequence for the solution of the following differential
equation

s′(t) = −
�2�2

Q

2�−(�− s(t))2
, s(0) = 0, (17)

where � = l + �. The above initial value problem has the solution s�(t) = � +

3

√
−3�2�2

Q

2�−
t− �3. Here we find

l0 =
3

√
3�2�2

Q

−2�−
(18)

such that sl0(1) = l0. For any l1 < l0, we can choose � > 0 and l1 + � < l0. In this
case, sl1+�(1) > l1 + � > l1. If we choose such l1 and � in (15), it is easy to check that

the sequence {sk}
1
�
k=0 will be greater than l1 somewhere in the sequence. Define

K = min{k : sk ≥ l1}. (19)

For fixed 
 > 0 small enough, we can choose � small such that

K� < 1− 
. (20)

For k < K − 1, let Zk denote the number of vertices v between level k�n and (k+ 1)�n
with Sv < (sk − �)n1/3. Denote by ZK−1 the number of vertices w between level
(K − 1)�n and n with Sw < (sK−1 − �)n1/3. Denote by Z the number vertices v ∈ Dn
whose associated walks stay in Wk between level k�n and (k+1)�n for k < K and then
stay in WK−1 up to level n. Explicitly,

Z0 =

⌊�n⌋∑
i=1

∑
v∈Di

1{Sv<−�n1/3}, (21)

Zk =

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

∑
v∈Di

1{Sv<(sk−�)n1/3, S
vd
∈Wj for j�n≤d≤(j+1)�n and j<k}, 0 < k < K − 1,(22)

ZK−1 =

n∑
i=⌊K�n⌋+1

∑
v∈Di

1{Sv<(sK−1−�)n1/3, S
vd
∈Wj for j�n≤d≤(j+1)�n and j<K−1}, (23)

Z =
∑
v∈Dn

1{S
vd
∈Wj for j�n≤d≤(j+1)�n and j<K, S

vd
∈WK−1 for K�n≤d≤n}. (24)
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Figure 1: The relation between Zk’s and sk’s.

Observe that N l1
n ≤

∑K−1
k=0 Zk +Z. Using Theorem 2, we provide upper bounds for the

first moment of the Zks and Z. Starting with Z0, we have

EZ0 =

⌊�n⌋∑
i=1

biE1{Si<−�n1/3} =

⌊�n⌋∑
i=1

biEQe
−�−Si+iΛ(�−)1{Si<−�n1/3}

≤
⌊�n⌋∑
i=1

e�−�n
1/3
EQ1{Si<−�n1/3} ≤

⌊�n⌋∑
i=1

e�−�n
1/3 ≤ e�−�n1/3+o(n1/3),

where we used the change of measure (9) in the second equality, and (3′) and the fact
that �− < 0 in the first inequality. For 0 < k < K − 1, using again the change of
measure (9), we get

EZk =

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

biE1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}

=

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

EQe
−�−Si1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}

≤ e−�−(sk−�)n1/3
⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

EQ1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}.

Therefore,

EZk ≤ e−�−(sk−�)n1/3
⌊(k+1)�ni⌋∑
i=⌊k�n⌋+1

Q(Sd ∈Wj for j�n ≤ d ≤ (j + 1)�n and j < k)

= e−�−(sk−�)n1/3
⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

e
−

∑k−1
j=0

�2�2Q

2w2
j

�n1/3+o(n1/3)

≤ e
−�−(sk−�)n1/3−

∑k−1
j=0

�2�2Q

2w2
j

�n1/3+o(n1/3)
= e�−�n

1/3+o(n1/3),
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where (11) with the choice of G = {∪k−1
j=0Wj/n

1/3×[j�, (j+1)�)}∪{(−∞,∞)×[k�, 1]} is
applied in the first equality, and (15) in the second. The calculation of EZK−1 is almost
the same as EZk except that we replace the summation limits above by (K − 1)�n+ 1
and n and that we replace the k in the summand by K − 1. Thus, we get the same
upper bound for EZK−1,

EZK−1 ≤ e�−�n
1/3+o(n1/3).

We estimate EZ similarly as follows. First, use the change of measure (9) to get

EZ = bnE1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

= EQe
−�−Sn1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

≤ e−�−l1n
1/3
EQ1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}.

Then, applying (11) with G = {∪K−1
j=0 Wj/n

1/3× [j�, (j+ 1)�)}∪{WK−1/n
1/3× [K�, 1]}

in the first equality, we get

EZ ≤ e−�−l1n
1/3
EQ1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

= e
−�−l1n1/3−

∑K−1
i=0

�2�2Q

2w2
i

�n1/3−
�2�2Q

2w2
K−1

(1−K�)n1/3+o(n1/3)

≤ e
−


�2�2Q

2l21
n1/3+o(n1/3)

,

where the last inequality is obtained by noting that l1 ≤ SK = −
∑K−1

i=0

�2�2
Q

2�−w2
i
� by (19)

and (15), and then recalling (20) and wK−1 < l1.

In conclusion, we proved that E(
∑K−1

k=0 Zk + Z) ≤ e−c3n
1/3+o(n1/3) for some 0 <

c3 < min{−�−�, 

�2�2

Q

2l21
}. Since

∑K−1
k=0 Zk +Z is an integer valued random variable, we

have

P (
K−1∑
k=0

Zk + Z > 0) = P (
K−1∑
k=0

Zk + Z ≥ 1) ≤ E(
K−1∑
k=0

Zk + Z) ≤ e−c3n1/3+o(n1/3).

By the Borel-Cantelli lemma, we have
∑K−1

k=0 Zk + Z = 0 a.s. for all large n. So is
N l1
n = 0, which means that Ln > l1n

1/3 a.s. for all large n. Since l1 < l0 is arbitrary,
we conclude that

lim inf
n→∞

Ln

n1/3
≥ l0 a.s.. (25)

This completes the proof of the lower bound in Theorem 1.

4 Upper Bound

4.1 A Second Moment Method Estimate

In this section, we consider any fixed l2 > l0. A second moment argument will provide
a lower bound for the probability that we can find at least one walk which stays in
the interval Wk between level k�n and (k + 1)�n for all k. A truncation (of the tree)
argument will complete the proof of the upper bound.
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As a first step, consider the sequence {sk} in (15) with l2 > l0. Then for any � > 0,
it is easy to see that sl2+�(t) is increasing and convex for 0 ≤ t ≤ 1. Thus in Euler’s
approximation,

s 1
�
< sl2+�(1) < sl2(1) < l2. (26)

It follows from (15) that

wk ≥ � for all 0 ≤ k ≤ 1

�
− 1. (27)

Define Ñ l2
n as follows.

Ñ l2
n =

∑
v∈Dn

1{S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}.

We will apply second moment method to Ñ l2
n . EÑ l2

n is calculated the same way as

EZ in the previous section. But this time we consider G = {∪
1
�
−1

j=0 Wj/n
1/3 × [j�, (j +

1)�)} ∪ {(l2 −Δl2, l2)× {1}} in (11) with Δl2 → 0, so

EÑ l2
n = bnE1{Sj∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

= EQe
−�−Sn1{Sj∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

= e
(−�−l2−

∑ 1
�−1

k=0

�2�2Q

2w2
k

�)n1/3+o(n1/3)
. (28)

From (26) and the definition (15) of sk, −�−l2−
∑ 1

�
−1

k=0

�2�2
Q

2w2
k
� > 0 and thus EÑ l2

n →∞.

Therefore, we will be ready to apply the second moment method after the following
calculations.

E(Ñ l2
n )2 = E

∑
u,v∈Dn

1{S
uj
,S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

=
n−1∑
ℎ=0

E
∑

u,v∈Dn
u∧v∈Dℎ

1{S
uj
,S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1} + EÑ l2

n . (29)

In the last expression above, u ∧ v is the largest common ancestor of u and v. Write
ℎ = q�n+ r for 0 ≤ q ≤ 1

� − 1 and 0 ≤ r < �n. There are b2n−ℎ−1(b− 1) indices in the
second sum in the right side of (29). We estimate the probability for one such pair to
stay in Wk’s. In order to simplify the notation, define

p1(0, ℎ, x) = P (Sℎ ∈ dx, Sj ∈Wk, for k�n ≤ j ≤ (k + 1)�n ∧ ℎ, k = 0, . . . , q),

p2(ℎ, x, n, y) = P (Sn ∈ dy, Sj ∈Wk, for ℎ∨k�n ≤ j ≤ (k+1)�n, k = q, . . . , n∣Sℎ = x).

Similarly, define q1(0, ℎ, x) and q2(ℎ, x, n, y) to be the probability of the same events
under Q. Then we have
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E(Ñ l2
n )2 = EÑ l2

n +

n−1∑
ℎ=0

b2n−ℎ−1(b− 1)

∫
Wq

(

∫
Wn

p2(ℎ, x, n, y)dy)2p1(0, ℎ, x)dx

= EÑ l2
n +

n−1∑
ℎ=0

b2n−ℎ−1(b− 1)

∫
Wq

(

∫
Wn

e−�−(y−x)+(n−ℎ)Λ(�−)q2(ℎ, x, n, y)dy)2

⋅e−�−x+ℎΛ(�−)q1(0, ℎ, x)dx

≤ EÑ l2
n +

n−1∑
ℎ=0

b− 1

b
e(−2�−l2+�−(sq−�))n1/3

⋅
∫
Wq

(

∫
Wn

q2(ℎ, x, n, y)dy)2q1(0, ℎ, x)dx. (30)

We now provide an upper bound for the integral term in the right side of (30). We
have ∫

Wq

(

∫
Wn

q2(ℎ, x, n, y)dy)2q1(0, ℎ, x)dx

≤ ( sup
x∈Wq

∫
Wn

q2(ℎ, x, n, y)dy)2

∫
Wq

q1(0, ℎ, x)dx

≤ ( sup
x∈Wq

∫
Wn

∫
Wq+1

q2(ℎ, x, (q + 1)�n, z)q2((q + 1)�n, z, n, y)dzdy)2

∫
Wq

q1(0, q�n, x)dx

≤ ( sup
x∈Wq

∫
Wq+1

q2(ℎ, x, (q + 1)�n, z)q2((q + 1)�n, z, n,Wn)dz)2e
−

∑q−1
k=0

�2�2Q

2w2
k

n1/3+o(n1/3)

≤ ( sup
x∈Wq

∑
i

∫
Ii

q2(ℎ, x, (q + 1)�n, z)q2((q + 1)�n, z, n,Wn)dz)2e
−

∑q−1
k=0

�2�2Q

2w2
k

n1/3+o(n1/3)

≤ (
∑
i

sup
z∈Ii

q2((q + 1)�n, z, n,Wn))2e
−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3+o(n1/3)
. (31)

In the above, ∪iIi = Wq+1. Due to (13), for any small �1 > 0, we can choose a finite
number of Iis and ∣Ii∣ ≤ �1n

1/3 such that for each i,

sup
z∈Ii

(q2((q + 1)�n, z, n,Wn) ≤ e
−(

∑ 1
�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)
.

After splitting
∑n−1

ℎ=0 to
∑ 1

�
−1

q=0

∑�n−1
r=0 in (30), we obtain the upper bound for E(Ñ l2

n )2

as follows,

E(Ñ l2
n )2 ≤ EÑ l2

n +

1/�−1∑
q=0

e
(−2�−l2+�−(sq−�))n1/3−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3−2(
∑ 1

�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)

≤
1/�−1∑
q=0

e
(−2�−l2+�−(sq−�))n1/3−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3−2(
∑ 1

�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)
. (32)
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With the bounds for EÑ l2
n (28) and E(Ñ l2

n )2 (32), we have

P (Ñ l2
n > 0) ≥ (EÑ l2

n )2

E(
˜
N l2
n )2
≥ 1∑1/�−1

q=0 e
(�−(sq−�)+

∑q−1
k=0

�2�2
Q

2w2
k

�+2
�2�2

Q

2w2
q
�+2�1)n1/3+o(n1/3)

=
1∑1/�−1

q=0 e
(−�−�+

�2�2
Q

w2
q
�+2�1)n1/3+o(n1/3)

≥ e(�−�−
�2�2Q

�2
�−2�1)n1/3+o(n1/3)

= e−�2n
1/3+o(n1/3), (33)

where �2 := −�−� +
�2�2

Q

�2
�+ 2�1, and we use (15) in the first equality and wq ≥ � (see

(27)) in the last inequality. We can make �2 arbitrarily small by first choosing � small
then choosing � and �1 small. Therefore, we get

P (Ln ≤ l2n1/3) ≥ P (Ñ l2
n > 0) ≥ e−�2n1/3+o(n1/3). (34)

4.2 A Truncation Argument

In view of the lower bound (34), we truncate the tree at level ⌊�3n1/3⌋ = ⌊2�2n1/3/log b⌋
to get b⌊�3n

1/3⌋ ≥ e2�2n1/3
/b independent branching random walks. We take care of the

path before and after level ⌊�3n1/3⌋ separately.
Define Lvn similarly as Ln for each branching random walk starting from v ∈

D⌊�3n1/3⌋. Then

P (Lvn > l2n
1/3 for every v) = (1− P (Ln ≤ l2n1/3))b

⌊�3n
1/3⌋

≤ (1− e−�2n1/3+o(n1/3))e
2�2n

1/3
/b ≤ e−e�2n

1/3+o(n1/3)
,(35)

when n is large. By the Borel-Cantelli lemma, the above double exponential guarantees
that almost surely for all large n, there exists a v ∈ D⌊�3n1/3⌋ such that

Lvn ≤ l2n1/3. (36)

This is an upper bound for the deviation of paths after level ⌊�3n1/3⌋. We also need to
control the paths before that level, which is a standard large deviation computation.
Indeed, for q integer (later, we take q = ⌊�3n1/3⌋), set

Z̃q =

q∑
k=1

∑
v∈Dk

1{Sv≥2Mq}.

Recall the definition for M in (4). Let Q′ be defined by dQ′

dP = e�+Xe−Λ(�+). We have

EZ̃q =

q∑
k=1

bkE1{Sk≥2Mq} =

q∑
k=1

bkEQ′e
−�+Sk+kΛ(�+)1{Sk≥2Mq}

≤
q∑

k=1

bke−2�+Mq+kΛ(�+)EQ′1{Sk≥2Mq}
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≤
q∑

k=1

bke−�+Mk+kΛ(�+)e−�+Mq = e−�+Mq+o(q),

where, in the last equality, we use the definitions of M and �+ (see (3) and (4)). It
follows that

P (Z̃q ≥ 1) ≤ EZ̃q ≤ e−�+Mq+o(q).

Again by the Borel-Cantelli lemma, Z̃q = 0 for all large q almost surely. Taking
q = ⌊�3n1/3⌋ and combining with (36), we obtain that

Ln ≤ Ln+⌊�3n1/3⌋ ≤ (l2 + 2M�3)n1/3

is true for all large n almost surely. That is,

lim sup
n→∞

Ln

n1/3
≤ l2 + 2M�3 a.s..

Since �3 > 0 and l2 > l0 are arbitrary, we conclude that

lim sup
n→∞

Ln

n1/3
≤ l0 a.s.. (37)

Together with (25), this completes the proof of Theorem 1.

5 Concluding Remarks

5.1 The Curve s(t) of (17)

We comment in this subsection on the appearance of the curve s(t) of (17) as a solution
to an appropriate variational principle. By the computation in Section 2, s(t)n1/3

denotes the minimal possible position for vertices at level tn. However, in Section 3, it
is not apriori clear that s(t) will be our best choice. To see why this must indeed be the
best choice for the upper bound argument, let us consider a general curve �(t) ≤ l2 as
the lower bound for the region. Examining the second moment computation, we need

max
t
{−�(t) +

∫ t

0

c

(l2 − �(u))2
du} ≤ 0

to make the argument work, where c is some constant. Define w(t) = l2 − �(t) ≥ 0.
The above condition is equivalent to

l2 ≥ max
t
{w(t) +

∫ t

0

c

w(u)2
du}.

Therefore, the best (smallest) upper bound that we can hope is the result of the
following optimization problem

min
w:(0,1)→R+

max
t
{w(t) +

∫ t

0

c

w(u)2
du}. (38)

The solution to this variational problem, denoted by w∗(⋅), satisfies s(t) = l2 − w∗(t).

11



5.2 Generalizations

The approach in this note seems to apply, under natural assumptions, to the situation
where the b-ary tree is replaced by a Galton-Watson tree whose offspring distribution
possesses high enough exponential moments. We do not pursue such an extension here.
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