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Abstract. We consider the spectral properties of a class of reg-

ularized estimators of (large) empirical covariance matrices corre-
sponding to stationary (but not necessarily Gaussian) sequences,
obtained by banding. We prove a law of large numbers (similar
to that proved in the Gaussian case by Bickel and Levina), which
implies that the spectrum of a banded empirical covariance matrix
is an efficient estimator. Our main result is a central limit theorem
in the same regime, which to our knowledge is new, even in the
Gaussian setup.

1. Introduction

We consider in this paper the spectral properties of a class of reg-
ularized estimators of (large) covariance matrices. More precisely, let
X = X(p) be a data matrix of n independent rows, with each row
being a sample of length p from a stationary sequence {Zj} whose co-
variance sequence satisfies appropriate regularity conditions (for details
on those, see Assumption 2.2). Let XT X denote the empirical covari-
ance matrix associated with the data. Following [BL06], to which we
refer for background and further references, we consider regularization
by banding, i. e., by replacing those entries of XT X that are at distance
b = b(p) away from the diagonal by 0. Let Y = Y (p) denote the thus
regularized empirical matrix. For the empirical measure of eigenvalues
of Y , in the situation where n → ∞, p → ∞, b → ∞ and b/n → 0
with b ≤ p, we give in Theorem 2.6 a law of large numbers (showing
that the empirical measure is an efficient estimator of the spectrum
of the stationary sequence {Zj}), and in Theorem 2.7 a central limit
theorem. We defer to Section 9 comments on possible extensions of
our approach, as well as on its limitations. We note that in the par-
ticular case of Gaussian data matrices with explicit decay rate of the
covariance sequence, and further assuming b ∼ (

√
n/ log p)α for some

constant α > 0, the law of large numbers is contained (among many
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other things) in [BL06, Theorem 1]. But even in that case, to our
knowledge, our central limit theorem (Theorem 2.7) is new.

2. The model and the main results

Throughout, let p be a positive integer, let b = b(p) and n = n(p)
be positive numbers depending on p, with n an integer. (Many objects
considered below depend on p, but we tend to suppress explicit refer-
ence to p in the notation.) We assume the following concerning these
numbers:

Assumption 2.1. As p → ∞, we have b → ∞, n → ∞ and b/n → 0,
with b ≤ p.

For any sequence of random variables U1, . . . , Un, we let C(U1, . . . , Un)
denote their joint cumulant. (See Section 4 below for the definition of
joint cumulants and a review of their properties.) Let

{Zj}∞j=−∞

be a stationary sequence of real random variables, satisfying the fol-
lowing conditions:

Assumption 2.2.

E(|Z0|k) < ∞ for all k ≥ 1 ,(1)

EZ0 = 0 ,(2)
∑

j1

· · ·
∑

jr

|C(Z0, Zj1, . . . , Zjr
)| < ∞ for all r ≥ 1 .(3)

We refer to (3) as joint cumulant summability. In Subsection 2.8 below
we describe a class of examples of sequences satisfying Assumption 2.2.

2.3. Random matrices. Let

{Z(i)
j }∞i,j=−∞

be an i.i.d. family of copies of {Zj}∞j=−∞. Let X = X(p) be the n-by-p
random matrix with entries

X(i, j) = Xij = Z
(i)
j /

√
n.

Let B = B(p) be the p-by-p deterministic matrix with entries

B(i, j) = Bij =

{
1 if |i − j| ≤ b,
0 if |i − j| > b.

Let Y = Y (p) be the p-by-p random symmetric matrix with entries

(4) Y (i, j) = Yij = Bij(X
T X)ij
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and eigenvalues {λ(p)
i }p

i=1. Let

(5) L = L(p) = p−1

p
∑

i=1

δ
λ
(p)
i

be the empirical measure of the eigenvalues of Y . Our attention will
be focused on the limiting behavior of L as p → ∞.

2.4. The measure νZ. For integers j let

(6) R(j) = Cov(Z0, Zj).

Since C(Z0, Zj) = Cov(Z0, Zj), a consequence of (3) is the existence of
the spectral density fZ : [0, 1] → R associated with the sequence {Zj},
defined to be the Fourier transform

fZ(θ) =
∑

j∈Z

e2πijθR(j).

By the Szegö limit theorem [GS58], the empirical measure of the eigen-
values of the matrix R(|i − j|)N

i,j=1 converges to the measure νZ :=

m ◦ f−1
Z on R, where m denotes Lebesgue measure on [0, 1]. It is im-

mediate to check from the definition that all moments of νZ are finite
and are given by

∫

R

xkνZ(dx) =

∫ 1

0

fZ(θ)kdθ = R ⋆ R ⋆ · · · ⋆ R
︸ ︷︷ ︸

k

(0)(7)

=
∑

i1,...,ik∈Z

i1+···+ik=0

Cov(Z0, Zi1) · · ·Cov(Z0, Zik) ,

where ⋆ denotes convolution:

(F ⋆ G)(j) =
∑

k∈Z

F (j − k)G(k),

for any two summable functions F, G : Z → R. Note that (7) could
just as well serve as the definition of νZ .

2.5. The coefficients Qij and R
(m)
i . With notation as in (3,6,7), for

integers m > 0 and all integers i and j, we write

(8) Qij =
∑

ℓ∈Z

C(Zi, Z0, Zj+ℓ, Zℓ), R
(m)
i = R ⋆ · · · ⋆ R

︸ ︷︷ ︸

m

(i), R
(0)
i = δi0.

By (3) the array Qij is well-defined and summable:

(9)
∑

i,j∈Z

|Qij | < ∞.
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The array Qij is also symmetric:

(10) Qij =
∑

ℓ∈Z

C(Zi−ℓ, Z−ℓ, Zj, Z0) = Qji,

by stationarity of {Zj} and symmetry of C(·, ·, ·, ·) under exchange of
its arguments.

The following are the main results of this paper.

Theorem 2.6 (Law of large numbers). Let Assumptions 2.1 and 2.2
hold. Let L = L(p) be as in (5). Let νZ be as in (7). Then: L converges
weakly to νZ , in probability.

In other words, Theorem 2.6 implies that L is a consistent estimator
of νZ , in the sense of weak convergence.

Theorem 2.7 (Central limit theorem). Let Assumptions 2.1 and 2.2

hold. Let Y = Y (p) be as in (4). Let Qij and R
(m)
i be as in (8). Then:

The process
{√

n

p
(trace Y k −E trace Y k)

}∞

k=1

converges in distribution as p → ∞ to a zero mean Gaussian process
{Gk}∞k=1 with covariance specified by the formula

(11)
1

kℓ
EGkGℓ = 2R

(k+ℓ)
0 +

∑

i,j∈Z

R
(k−1)
i QijR

(ℓ−1)
j .

Note that the “correction” Qij vanishes identically if {Zj} is Gaussian,
cf. Lemma 4.1.2 below.

2.8. Some stationary sequences satisfying Assumption 2.2. Fix
a summable function h : Z → R and an i.i.d. sequence {Wℓ}∞ℓ=−∞ of
mean zero real random variables with moments of all orders. Now
convolve: put Zj =

∑

ℓ h(j + ℓ)Wℓ for every j. It is immediate that (1)
and (2) hold. To see the summability condition (3) on joint cumulants,
assume at first that h has finite support. Then, by standard properties
of joint cumulants (the main point is covered by Lemma 4.1.1 below),
we get the formula

(12) C(Zj0, . . . , Zjr
) =

∑

ℓ

h(j0 + ℓ) · · ·h(jr + ℓ)C(W0, . . . , W0
︸ ︷︷ ︸

r+1

),

which leads by a straightforward limit calculation to the analogous
formula without the assumption of finite support of h, whence in turn
verification of (3).
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2.9. Structure of the paper. The proofs of Theorems 2.6 and 2.7
require a fair number of preliminaries. We provide them in the next
few sections. In Section 3, we introduce some notation involving set
partitions, and prove Proposition 3.2, which summarizes the properties
of set partitions that we need. In spirit, if not in precise details, this
section builds on [AZ06]. In Section 4, we introduce joint cumulants
and the Möbius inversion formula relating cumulants to moments, and
in Section 5 we use the latter to calculate joint cumulants of random
variables of the form traceY k by manipulation of set partitions—see
Proposition 5.2. In Section 6 we carry out some preliminary limit calcu-
lations in order to identify the dominant terms in the sums representing
joint cumulants of random variables of the form traceY k. Finally, the
proofs of Theorems 2.6 and 2.7 are completed in Sections 7 and 8,
respectively.

3. A combinatorial estimate

3.1. Set partitions. Given a positive integer k, we define Part(k) to
be the family of subsets of the power set 2{1,...,k} consisting of sets Π
such that (i) ∅ 6∈ Π, (ii)

⋃

A∈Π A = {1, . . . , k}, and (iii) for all A, B ∈ Π,
if A 6= B, then A∩B = ∅. Elements of Part(k) are called set partitions
of {1, . . . , k}, or context permitting simply partitions. Sometimes we
call members of a partition parts. Given Π, Σ ∈ Part(k), we say that
Σ refines Π (or is finer than Π) if for every A ∈ Σ there exists some
B ∈ Π such that A ⊂ B. Given Π, Σ ∈ Part(k), let Π ∨ Σ ∈ Part(k)
be the least upper bound of Π and Σ, i. e., the finest partition refined
by both Π and Σ. We call Π ∈ Part(k) a perfect matching if every
part of Π has cardinality 2. Let Part2(k) be the subfamily of Part(k)
consisting of partitions Π such that every part has cardinality at least 2.
The cardinality of a set S is denoted #S, and ⌊x⌋ denotes the greatest
integer not exceeding x.

Proposition 3.2. Let k be a positive integer. Let Π0, Π1, Π ∈ Part2(2k)
be given. Assume that Π0 and Π1 are perfect matchings. Assume that
#Π0 ∨ Π1 ∨ Π = 1. Then we have

(13) #Π0 ∨ Π + #Π1 ∨ Π ≤ 1 + #Π ≤ k + 1,

and furthermore,

(14) r > 1 ⇒ #Π0 ∨ Π + #Π1 ∨ Π ≤ k + 1 − ⌊r/2⌋,
where r = #Π0 ∨ Π1.

The proposition is very close to [AZ06, Lemma 4.10], almost a refor-
mulation. But because the setup of [AZ06] is rather different from the
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present one, the effort of translation is roughly equal to the effort of di-
rect proof. We choose to give a direct proof in order to keep the paper
self-contained. The proof will be finished in Subsection 3.6. In Sec-
tion 9, we provide some comments concerning possible improvements
of Proposition 3.2.

3.3. Graphs. We fix notation and terminology. The reader is encour-
aged to glance at Figure 3.6 when reading the rest of this section for
an illustration of the various definitions in a concrete example.

3.3.1. Basic definitions. For us a graph G = (V, E) is a pair consisting
of a finite set V and a subset E ⊂ 2V of the power set of V such
that every member of E has cardinality 1 or 2. Elements of V are
called vertices and elements of E are called edges. A walk w on G is a
sequence w = v1v2 · · · vn of vertices of G such that {vi, vi+1} ∈ E for
i = 1, . . . , n − 1, and in this situation we say that the initial point v1

and terminal point vn of the walk are joined by w. A graph is connected
if every two vertices are joined by a walk. For any connected graph,
#V ≤ 1 + #E. A graph G = (V, E) is called a tree if connected and
further #V = 1 + #E. Alternatively, a connected graph G = (V, E) is
a tree if and only if there exists no edge e ∈ E such that the subgraph
G′ = (V, E \ {e}) gotten by “erasing” the edge e is connected.

For future reference, we quote without proof the following elementary
lemma.

Lemma 3.3.2 (Parity principle). Let w = v1 · · · vn be a walk on a tree
T = (V, E) beginning and ending at the same vertex, i. e., such that
v1 = vn. Then w visits every edge of T an even number of times, i. e.,

#{i ∈ {1, . . . , n − 1} | {vi, vi+1} = e}
is an even number for every e ∈ E.

3.4. Reduction of Π0 and Π1 to standard form. After relabeling
the elements of {1, . . . , 2k}, we may assume that for some positive
integers k1, . . . , kr summing to k we have

Π0 ∨ Π1 = {(Kα−1, Kα] ∩ Z | α = 1, . . . , r},
where Kα = 2

∑

β<α kβ for α = 0, . . . , r, and after some further rela-
beling, we may assume that

Π0 = {{2i − 1, 2i} | i = 1, . . . , k}.
It is well-known (and easily checked) that for any perfect matchings
Σ0, Σ1 ∈ Part2(2k), the graph ({1, . . . , 2k}, Σ0 ∪Σ1) is a disjoint union
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of #Σ0 ∨ Σ1 graphs of the form

({1, 2}, {{1, 2}}), ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {4, 1}}),
({1, 2, 3, 4, 5, 6}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}})

and so on. (The intuition is that the members of Σ0 and Σ1 “join
hands” alternately to form cycles.) Thus, after a final round of rela-
beling, we may assume that

Π1 =
r⋃

α=1

(

{{i(α)
2kα

, i
(α)
1 }} ∪ {{i(α)

2ν , i
(α)
2ν+1} | ν = 1, . . . , kα − 1}

)

,

where i
(α)
ν = Kα−1 + ν. Note that

Π0 =
r⋃

α=1

{{i(α)
2ν−1, i

(α)
2ν } | ν = 1, . . . , kα},

Π0 ∨ Π1 = {{i(α)
1 , . . . , i

(α)
2kα

} | α = 1, . . . , r}
in terms of the notation introduced to describe Π1.

3.5. Graph-theoretical “coding” of Π.

3.5.1. Construction of a graph G. For i = 0, 1, let

ϕi : {1, . . . , 2k} → Vi

be an onto function such that Πi ∨ Π is the family of level sets for ϕi.
Assume further that V0 ∩ V1 = ∅. We now define a graph G = (V, E)
by declaring that

V = V0 ∪ V1, E = {{ϕ0(i), ϕ1(i)} | i = 1, . . . , 2k}.
Lemma 3.5.2. G is connected.

Because ϕi(j) = ϕi(ℓ) for i = 0, 1 if j, ℓ belong to the same part of
Π, we must have #E ≤ #Π. Further, #Π ≤ k since Π ∈ Part2(2k).
Thus, using Lemma 3.5.2 in the first inequality, we have

#Π0 ∨ Π + #Π1 ∨ Π = #V ≤ 1 + #E ≤ 1 + #Π ≤ k + 1 ,

which proves inequality (13) of Proposition 3.2.

Proof of Lemma 3.5.2. Suppose rather that we have a decomposition
V = X ∪ Y where X ∩ Y = ∅, X 6= ∅, Y 6= ∅, and no edge of G joins a
vertex in X to a vertex in Y . Consider the subsets

I = ϕ−1
0 (V0 ∩ X) ∪ ϕ−1

1 (V1 ∩ X), J = ϕ−1
0 (V0 ∩ Y ) ∪ ϕ−1

1 (V1 ∩ Y )

of {1, . . . , 2k}. Clearly I ∪ J = {1, . . . , 2k}, I 6= ∅, and J 6= ∅. We
claim that I ∩ J = ∅. Suppose rather that there exists i ∈ I ∩ J .
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Then we must either have ϕ0(i) ∈ V0 ∩ X and ϕ1(i) ∈ V1 ∩ Y , or else
ϕ1(i) ∈ V1 ∩ X and ϕ0(i) ∈ V0 ∩ Y . In either case we have exhibited
an edge of G connecting a vertex in X to a vertex in Y , which is a
contradiction. Therefore I ∩ J = ∅. Thus the set {I, J} ∈ Part(k) is a
partition refined by both Π0 ∨ Π and Π1 ∨ Π, which is a contradiction
to #Π0 ∨ Π1 ∨ Π = 1. Therefore G is connected. �

Lemma 3.5.3. There exist walks

w(α) = v
(α)
1 · · · v(α)

2kα+1 for α = 1, . . . , r

on G such that

v
(α)
1 = v

(α)
2kα+1, {ϕ0(i

(α)
ν ), ϕ1(i

(α)
ν )} =

{

{v(α)
ν , v

(α)
ν+1} if ν < 2kα,

{v(α)
2kα

, v
(α)
1 } if ν = 2kα,

for α = 1, . . . , r and ν = 1, . . . , 2kα.

Proof. We define

v(α)
ν =







ϕ1(i
(α)
ν ) if ν is odd and ν < 2kα,

ϕ0(i
(α)
ν ) if ν is even,

ϕ1(i
(α)
1 ) if ν = 2kα + 1,

for α = 1, . . . , r and ν = 1, . . . , 2kα + 1. Clearly we have v
(α)
1 = v

(α)
2kα+1.

Recalling that ϕ0 by construction is constant on the set {i(α)
1 , i

(α)
2 } ∈ Π0,

we see that

{ϕ1(i
(α)
1 ), ϕ0(i

(α)
1 )} = {ϕ1(i

(α)
1 ), ϕ0(i

(α)
2 )} = {v(α)

1 , v
(α)
2 }.

By similar considerations one checks the remaining claims of the lemma.
We omit further details. �

Lemma 3.5.4. Assume that r > 1. For every A ∈ Π0∨Π1 there exists
an index m ∈ A, a set A′ ∈ Π0 ∨ Π distinct from A and an index
m′ ∈ A′ such that {ϕ0(m), ϕ1(m)} = {ϕ0(m

′), ϕ1(m
′)}.

In other words, if r > 1, then for every walk w(α), there is an edge e of
G and another walk w(α′) such that both w(α) and w(α′) visit e.

Proof. Because #Π0 ∨Π1 ∨Π = 1, given A ∈ Π0 ∨Π1, there must exist
A′ ∈ Π0 ∨ Π1 distinct from A and a set B ∈ Π such that A ∩ B 6= ∅
and A′ ∩ B 6= ∅. Choose m ∈ A ∩ B and m′ ∈ A′ ∩ B. Because the
functions ϕ0 and ϕ1 are constant on the set B, we are done. �
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3.6. Completion of the proof of Proposition 3.2. We have seen
that Lemma 3.5.2 proves inequality (13). We just have to prove in-
equality (14). Assume that r > 1 for the rest of the proof. Consider
the graph G = (V, E) as in Subsection 3.5. Let E ′ ⊂ E be such
that T = (V, E ′) is a tree (such a choice is possible because G is con-
nected). It will be enough to show that #E ′ ≤ k − r/2. Now we
adapt to the present situation a device (“edge-bounding tables”) in-
troduced in the proof of [AZ06, Lemma 4.10]. Let us call a function
f : {1, . . . , 2k} → {0, 1} a good estimator under the following condi-
tions:

• For all i ∈ {1, . . . , 2k}, if f(i) = 1, then {ϕ0(i), ϕ1(i)} ∈ E ′.
• For each e ∈ E ′ there exist distinct i, j ∈ {1, . . . , 2k} such that

e = {ϕ0(i), ϕ1(i)} = {ϕ0(j), ϕ1(j)} and f(i) = f(j) = 1.
• For each e ∈ E ′ and A ∈ Π0 ∨ Π1, if there exists ℓ ∈ A such

that e = {ϕ0(ℓ), ϕ1(ℓ)}, then there exists ℓ′ ∈ A such that
e = {ϕ0(ℓ

′), ϕ1(ℓ
′)} and f(ℓ′) = 1.

For a good estimator f we automatically have 1
2

∑
f(i) ≥ #E ′. By

definition a good estimator is bounded above by the indicator of the set
{i ∈ {1, . . . , 2k} | {ϕ0(i), ϕ1(i)} ∈ E ′}, and such an indicator function
is an example of a good estimator. Fix now any good estimator f .

Suppose that on some set A = {i(α)
1 , . . . , i

(α)
2kα

} ∈ Π0 ∨ Π1 the function

f is identically equal to 1. Then the corresponding walk w(α) on G is a
walk on T , and by the Parity Principle (Lemma 3.3.2) visits every edge
of T an even number of times. Select m ∈ A as in Lemma 3.5.4. Let
g be the function agreeing with f everywhere except that g(m) = 0.
Then g is again a good estimator. Continuing in this way we can
construct a good estimator not identically equal to 1 on any of the sets
A ∈ Π0 ∨ Π1, whence the desired estimate #E ≤ k − r/2. �

The following figure illustrates the various objects studied in this
section.

4. Joint cumulants

4.1. Definition. Let X1, . . . , Xk be real random variables defined on a
common probability space with moments of all orders, in which case the
characteristic function E exp(

∑k
j=1 itjXj) is an infinitely differentiable

function of the real variables t1, . . . , tk. One defines the joint cumulant
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a b c d

G

e

c db

e

a

Π0 ∨Π1

Π1

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Π0

9 10 7 87 8 1 23 4 5 61 2 9 103 4 5 6

Π

9 101 2 3 4 5 6

9 107 8

7 8

1 2 3 4 5 6

Π0 ∨ Π

Π1 ∨ Π

Figure 1. Two different partitions Π for which k = 5,
k1 = 2, k2 = 3, such that both are associated to the same
graph G = (V, E), where V = {a, b, c, d, e}. Note that
both partitions generate walks eaebe and ebecede on G.

C(X1, . . . , Xk) by the formula

C(X1, . . . , Xk) = C{Xi}k
i=1

= i−k ∂k

∂t1 · · ·∂tk
log E exp

(
k∑

j=1

itjXj

)∣
∣
∣
∣
∣
t1=···=tk=0

.

(The middle expression is a convenient abbreviated notation.) The
quantity C(X1, . . . , Xk) depends symmetrically and R-multilinearly on
X1, . . . , Xk. Moreover, dependence is continuous with respect to the
Lk-norm. One has in particular

C(X) = EX, C(X, X) = VarX, C(X, Y ) = Cov(X, Y ).

The following standard properties of joint cumulants will be used.
Proofs are omitted.

Lemma 4.1.1. If there exists 0 < ℓ < k such that the σ-fields σ{Xi}ℓ
i=1

and σ{Xi}k
i=ℓ+1 are independent, then C(X1, . . . , Xk) = 0.

Lemma 4.1.2. The random vector X1, . . . , Xk has a Gaussian joint
distribution if and only if C(Xi1 , . . . , Xir) = 0 for every integer r ≥ 3
and sequence i1, . . . , ir ∈ {1, . . . , k}.
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4.2. Combinatorial description of joint cumulants. As above, let
X1, . . . , Xk be real random variables defined on a common probability
space with moments of all orders. Let Π ∈ Part(k) also be given. We
define

CΠ(X1, . . . , Xk) = CΠ{Xi}k
i=1 =

∏

A∈Π

C{Xi}i∈A,

E Π(X1, . . . , Xk) = E Π{Xi}k
i=1 =

∏

A∈Π

E
∏

i∈A

Xi.

(The middle expressions are convenient abbreviations.) Note that if
X1, . . . , Xk are zero mean random variables, then CΠ(X1, . . . , Xk) van-
ishes unless Π ∈ Part2(k). The formula

(15) EX1 · · ·Xk =
∑

Π∈Part(k)

CΠ(X1, . . . , Xk)

is well-known, and anyhow can be verified in a straightforward way
by manipulating Taylor expansions of characteristic functions. More
generally we have the following lemma, whose proof can be found in
[Shir, p. 290].

Lemma 4.2.1. With X1, . . . , Xk as above, and for all Π ∈ Part(k), we
have

(16) E Π{Xi}k
i=1 =

∑

Σ∈Part(k)
Σ refines Π

CΣ{Xi}k
i=1,

(17) CΠ{Xi}k
i=1 =

∑

Σ∈Part(k)
Σ refines Π

(−1)#Σ−1(#Σ − 1)!E Σ{Xi}k
i=1.

We will use the following algebraic fact to compute joint cumulants.
For a proof see, e.g., [St97, Example 3.10.4].

Lemma 4.2.2 (Möbius Inversion for the poset Part(k)). Let A be an
abelian group and let f, g : Part(k) → A be functions. Then we have

(18)







(∀Σ ∈ Part(k)) f(Σ) =
∑

Π∈Part(k)
Π refines Σ

g(Π)






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if and only if

(19)







(∀Π ∈ Part(k)) g(Π) =
∑

Σ∈Part(k)
Σ refines Π

(−1)#Σ−1(#Σ − 1)!f(Σ)







.

In applications below we will simply have A = R.

5. Cumulant calculations

In the context of matrix models, cumulants are useful because they
allow one to replace enumeration over arbitrary graphs by enumeration
over connected graphs. We wish to mimick this idea in our context.
We first describe the setup, and then perform some computations that
culminate in Proposition 5.2, which gives an explicit formula for joint
cumulants of random variables of the form traceY k.

5.1. The setup. An (n, k)-word i is by definition a function

i : {1, . . . , k} → {1, . . . , n}.
Given Π ∈ Part(k) and an (n, k)-word i, we say that i is Π-measurable if
i is constant on each set belonging to Π. Similarly and more generally,
we speak of the Π-measurability of any function i : {1, . . . , k} → Z.

Let r be a positive integer. Let k1, . . . , kr be positive integers and
put k = k1 + · · ·+ kr. Let special perfect matchings Π0, Π1 ∈ Part(2k)
be defined as follows:

Π0 = {{1, 2}, {3, 4}, . . . , {2k − 3, 2k − 2}, {2k − 1, 2k}},
Π1 = {{2, 3}, . . . , {K1, 1}, {K1 + 2, K1 + 3}, . . . , {K2, K1 + 1},

, . . . , {Kr−1 + 2, Kr−1 + 3}, . . . {Kr, Kr−1 + 1}},
where Ki = 2

∑i
j=1 kj for i = 1, . . . , r. (Thus Π0 and Π1 are in the

standard form discussed in Subsection 3.4 above.) To abbreviate, for
any Π ∈ Part(2k) and (p, 2k)-word j, put

B(j) =

2k∏

α=1

B(j(2α − 1), j(2α)), CΠ(j) = CΠ(Zj(1), . . . , Zj(2k)).

Note that, on the one hand, B(j) depends on p even though the notation
does not show the dependence. Note that, on the other hand, CΠ(j) is
independent of p. Indeed, CΠ(j) remains well-defined by the formula
above for any function j : {1, . . . , 2k} → Z

Concerning the numbers CΠ(j) we record for later reference the fol-
lowing consequence of the joint cumulant summability hypothesis (3)
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and the stationarity of {Zj}. The proof is immediate from the defini-
tions and therefore omitted. Let Z

Π be the subgroup of Z
2k consisting

of functions on {1, . . . , 2k} constant on each part of Π.

Lemma 5.1.1. For every j : {1, . . . , 2k} → Z, (i) the value of CΠ(j) de-
pends only on the coset of Z

Π to which j belongs and moreover
(ii) we have

∑

j∈Z2k/ZΠ

|CΠ(j)| < ∞.

The lemma will be the basis for our limit calculations.
Our immediate goal is to prove the following result.

Proposition 5.2. With the previous notation, we have

(20)

C(trace Y k1 , . . . , traceY kr)

=
∑

Π∈Part2(2k)
s.t. #Π0 ∨Π1 ∨Π = 1

n−k+#Π0∨Π
∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)CΠ(j).

Proof of Proposition 5.2. The proof involves an application of the Möbius
Inversion formula (Lemma 4.2.2). First, we have
(21)

E (trace Y k1) · · · (trace Y kr)

=
∑

i:(n, 2k)-word s.t. i
is Π0-measurable

∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)E

2k∏

α=1

X(i(α), j(α))

=
∑

i:(n, 2k)-word s.t. i
is Π0-measurable

∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)
∑

Π∈Part(2k)

CΠ{X(i(α), j(α))}2k
α=1

=
∑

i:(n, 2k)-word s.t. i
is Π0-measurable

∑

j:(p, 2k)-word s.t. j
is Π1-measurable

n−kB(j)
∑

Π∈Part2(2k)
s.t. i is Π-measurable

CΠ(j)

=
∑

Π∈Part2(2k)

n−k+#Π0∨Π
∑

j:(p, 2k)-word
s.t. j is Π1-measurable

B(j)CΠ(j)

We next define an embedding of Part(r) in Part(2k). It will be
convenient to use π, σ to denote elements of Part(r) and Π, Σ to denote
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elements of Part(2k). (Also we use upper case Roman letters for subsets
of {1, . . . , 2k} and lower case Roman letters for subsets of {1, . . . , r}.)
Put

A1 = {1, . . . , K1}, . . . , Ar = {Kr−1 + 1, . . . , Kr},
so that

Π0 ∨ Π1 = {A1, . . . , Ar}.
Given a ⊂ {1, . . . , r}, let a∗ =

⋃

i∈a Ai, and given σ ∈ Part(r), let

T (σ) = {a∗ | a ∈ σ} ∈ Part(2k).

Via T the poset Part(r) maps isomorphically to the subposet of Part(2k)
consisting of partitions refined by Π0 ∨ Π1.

We are ready to apply the Möbius Inversion formula (Lemma 4.2.2).
Consider the real-valued functions f and g on Part(r) defined as follows:

(22) g(π) =
∑

Π∈Part(2k)
Π0∨Π1∨Π=T (π)

n−k+#Π0∨Π
∑

j:(p, 2k)-word
s.t. j is Π1-measurable

B(j)CΠ(j)

and

(23) f(σ) =
∑

π∈Part(r)
π refines σ

g(π) .

Now π refines σ if and only if T (π) refines T (σ). Therefore we have

(24) f(σ) =
∑

Π∈Part(2k)
Π0 ∨ Π1 ∨Π refines T (σ)

n−k+#Π0∨Π
∑

j:(p, 2k)-word
s.t. j is Π1-measurable

B(j)CΠ(j) .

Using (23) and applying Lemma 4.2.2, it follows that for any
π ∈ Part(r),

(25) g(π) =
∑

σ∈Part(r)
σ refines π

(−1)#σ−1(#σ − 1)!f(σ).

An evident modification of the calculation (21) above gives for every
σ ∈ Part(r) that E σ(trace Yk1, . . . , trace Y kr) equals the right side of
(24), and therefore equals f(σ). Thus, (25), when compared with (17),
shows that

g({{1, . . . , r}}) = C(trace Y k1 , . . . , traceY kr),

which is exactly what we wanted to prove. �
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6. Limit calculations

We continue in the setting of Proposition 5.2. We find the order of
magnitude of the subsum of the right side of (20) indexed by Π and
compute limits as p → ∞ in certain cases.

Proposition 6.1. Fix Π ∈ Part2(2k) such that #Π0∨Π1 ∨Π = 1. We
have

(26)
∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)CΠ(j) = Op→∞

(
pb−1+#Π1∨Π

)

where the implied constant depends only on Π0, Π1 and Π.

Before commencing the proof of the proposition we record an ele-
mentary lemma which expresses in algebraic terms the fact that a tree
is connected and simply connected. We omit the proof. We remark
that a tree can have no edges joining a vertex to itself.

Lemma 6.1.1. Let T = (V, E) be a tree with vertex set V ⊂ {1, . . . , 2k}.
For each function j : V → Z define δj : E → Z by the rule

δj({α, β}) = j(β) − j(α)

for all α, β ∈ V such that α < β and {α, β} ∈ E. Then: (i) δj = 0
implies that j is constant. (ii) For every k : E → Z there exists
j : V → Z unique up to addition of a constant such that δj = k.

We will refer to δ as the increment operator associated to the tree T .

Proof of Proposition 6.1. We begin by constructing a tree T to which
Lemma 6.1.1 will be applied. Let Ẽ2 be the set consisting of all two-
element subsets of parts of Π. With

V = {1, . . . , 2k},
consider the graphs

G012 = (V, Π0 ∪ Π1 ∪ Ẽ2), G12 = (V, Π1 ∪ Ẽ2), G2 = (V, Ẽ2).

By hypothesis the graph G012 is connected, and further, the number of
connected components of G12 (resp., G2) equals #Π1 ∨Π (resp., #Π).
Now choose E2 ⊂ Ẽ2 so that T2 = (V, E2) is a spanning forest in G2,
i. e., a subgraph with the same vertices but the smallest number of
edges possible consistent with having the same number of connected
components. Then choose E1 ⊂ Π1 such that T12 = (V, E1 ∪ E2)
is a spanning forest in G12, and finally choose E0 ⊂ Π0 such that
T012 = (V, E0 ∪ E1 ∪ E2) is a spanning tree in G012. By construction,
the sets Ei, i = 0, 1, 2, are disjoint. Note that Lemma 6.1.1 applies not
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only to T012, but also to the connected components of T12 and T2. Note
that

(27) #E0 = −1 + #Π1 ∨ Π

by construction. Hereafter we write simply T = T012.
The bound in (26) will be obtained by relaxing some of the con-

straints concerning the collection of words j over which the summation
runs. We will work with the increment operator δ associated to T by
Lemma 6.1.1. For i = 0, 1, 2 let Si be the abelian group (independent
of p) consisting of functions j : V → Z such that

• j(1) = 0,
• δj is supported on the set Ei.

Also let

S−1 = {j : V → Z | δj = 0} = {j : V → Z | j : constant},
which is independent of p. Recall that for any partition Π, Z

Π is the
subgroup of Z

2k consisting of functions on {1, . . . , 2k} constant on each
part of Π. By Lemma 6.1.1 applied to T and also to the connected
components of T12 and T2, we have

(28)
Z

2k = S−1 ⊕ S0 ⊕ S1 ⊕ S2,
Z

Π = S−1 ⊕ S0 ⊕ S1,
Z

Π1∨Π = S−1 ⊕ S0.

Let S
(p)
0 ⊂ S−1 ⊕ S0 be the subset (depending on p) consisting of

functions j : V → Z such that

• j(1) ∈ {1, . . . , p},
• |δj(e)| ≤ b for all e ∈ E0.

Now if j is a Π1-measurable (p, 2k)-word such that B(j) does not vanish,
then the following hold:

• j(1) ∈ {1, . . . , p},
• |δj(e)| ≤ b for e ∈ E0(because E0 ⊂ Π0),(29)

• δj(e) = 0 for e ∈ E1 (because E1 ⊂ Π1).

By (28) it follows that a Π1-measurable (p, 2k)-word j such that B(j)

does not vanish has a unique decomposition j = j0 + j2 with j0 ∈ S
(p)
0

and j2 ∈ S2, and moreover we necessarily have

(30) CΠ(j) = CΠ(j2)

by Lemma 5.1.1(i) and the Π-measurability of j0.
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We now come to the end of the proof. We have
∑

j:(p, 2k)-word
s.t. j is

Π1-measurable

|B(j)CΠ(j)| ≤ #S
(p)
0

∑

j∈S2

|CΠ(j)|

≤ p(2b + 1)−1+#Π1∨Π
∑

j∈S2

|CΠ(j)|

at the first inequality by (28,30) and at the second inequality by the

evident estimate for #S
(p)
0 based on (27). Finally, finiteness of the sum

over S2 follows from (28) and Lemma 5.1.1(ii). �

We note in passing that in the proof of Proposition 6.1, we over-
estimated the left side of (26) by requiring in (29) that |δj(e)| ≤ b only
for e ∈ E0, rather than for all e ∈ Π0.

Proposition 6.2. We continue under the hypotheses of the preceding
proposition, and now make the further assumption that #Π1 ∨ Π = 1.
Then: We have

(31)
∑

j:(p, 2k)-word s.t. j
is Π1-measurable

(1 − B(j))CΠ(j) = op→∞(p).

Proof. We continue in the graph-theoretical setup of the proof of the
preceding proposition. But now, under our additional hypothesis that

#Π1 ∨Π = 1, the set E0 is empty, and hence the set S
(p)
0 is now simply

the set of constant functions on {1, . . . , 2k} taking values in the set
{1, . . . , p}. Fix ǫ > 0 arbitrarily and then choose a finite set F ⊂ S2

such that
∑

j∈S2\F
|CΠ(j)| < ǫ. Let

N = max{|j(α) − j(β)| | α, β ∈ {1, . . . , 2k}, j ∈ F}.
Let j be a Π1-measurable (p, 2k)-word and write j = j0 + j2 with j0 a
constant function with values in {1, . . . , p} and j2 ∈ S2. If j2 ∈ F then,
provided p is large enough to guarantee that b > N , we automatically
have B(j) = 1. Thus the sum in question is bounded in absolute value
by ǫp for p ≫ 0. Since ǫ is arbitrary, the proposition is proved. �

The proof of the following proposition is immediate from the defini-
tions and therefore omitted.

Proposition 6.3. Under exactly the same hypotheses as the preceding
proposition we have

(32) lim
p→∞

1

p

∑

j:(p, 2k)-word s.t. j
is Π1-measurable

CΠ(j) =
∑

j∈ZΠ1/ZΠ1∨Π

CΠ(j).
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Lemma 5.1.1 guarantees that the sum on the right is well-defined.

7. Proof of the law of large numbers

This section is devoted to the proof of Theorem 2.6. The main point
of the proof is summarized by the following result.

Proposition 7.1. Let Assumptions 2.1 and 2.2 hold. Let Y = Y (p) be

as in (4). Let R
(k)
0 be as in (8). Then: We have

(33) lim
p→∞

p−1E trace Y k = R
(k)
0

for every integer k > 0.

From the case r = 2 of Proposition 8.1, which is proved in the next
section, it follows that

(34) lim
p→∞

Var

(
1

p
trace Y k

)

= 0

for all integers k > 0. Arguing just as at the end of the proof of [AZ06,
Theorem 3.2], one can then deduce Theorem 2.6 from equations (7),
(33), and (34). We omit those details. Thus, to finish the proof of
Theorem 2.6, we just have to prove Proposition 7.1. (There will be no
circularity of reasoning since the proof of Proposition 8.1 does not use
Theorem 2.6.)

Proof of Proposition 7.1. Back in the setting of Proposition 5.2 with
r = 1, we have

1

p
E trace Y k =

∑

Π∈Part2(2k)

p−1n−k+#Π0∨Π
∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)CΠ(j).

For fixed Π ∈ Part2(2k) the contribution to the total sum is

O

(

n−1−k+#Π0∨Π+#Π1∨Π

(
b

n

)−1+#Π1∨Π
)

by Proposition 6.1. Thus, in view of Proposition 3.2, specifically es-
timate (13), in order to evaluate the limit in question, we can throw
away all terms save those associated to Π = Π0. We therefore have

(35) lim
p→∞

1

p
E trace Y k =

∑

j∈ZΠ1/ZΠ0∨Π1

CΠ0(j)

by Propositions 6.2 and 6.3. Recalling that R(j − i) = C(Zi, Zj), and
writing

j = (j1, j2, j2, . . . , jk, jk, j1)
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we have

CΠ0(j) = R(j2 − j1) · · ·R(jk − jk−1)R(j1 − jk),

and hence
∑

j∈ZΠ1/ZΠ0∨Π1

CΠ0(j) =
∑

j2,...,jk∈Z

R(j2−j1) · · ·R(jk−jk−1)R(j1−jk) = R
(k)
0

for any fixed j1 ∈ Z. The proof of (33) is complete. �

8. Proof of the central limit theorem

This section is devoted to the proof of Theorem 2.7. The main point
of the proof is summarized by the following proposition.

Proposition 8.1. Let Assumptions 2.1 and 2.2 hold. Let Y = Y (p) be

as in (4). Let Qij and R
(m)
i be as in (8). Then: For each integer r ≥ 2,

and all positive integers k1, . . . , kr, we have

lim
p→∞

(
n

p

)r/2

C(trace Y k1 , . . . , traceY kr)

=







0 if r > 2,

k1k2

(

2R
(k1+k2)
0 +

∑

i,j

R
(k1−1)
i QijR

(k2−1)
j

)

if r = 2.

In view of Lemma 4.1.2, in order to finish the proof of Theorem 2.7 by
the method of moments, we just have to prove Proposition 8.1.

Proof of Proposition 8.1. Back in the setting of Proposition 5.2, this
time assuming r ≥ 2, we have
(36)

(
n

p

)r/2

C(trace Y k1 , . . . , trace Y kr)

=
∑

Π∈Part2(2k)
s.t. #Π0 ∨Π1 ∨Π = 1

p−r/2nr/2−k+#Π0∨Π
∑

j:(p, 2k)-word s.t. j
is Π1-measurable

B(j)CΠ(j),

and for fixed Π the contribution to the total sum is

O

(

p1−r/2nr/2−k−1+#Π0∨Π+#Π1∨Π

(
b

n

)−1+#Π1∨Π
)

by Proposition 6.1. In view of Proposition 3.2, specifically estimate
(14), we are already done in the case r > 2.
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For the rest of the proof assume r = 2. By the estimate immediately
above many terms can be dropped from the right side of the sum (36)
without changing the limit as p → ∞. The terms remaining can be
analyzed by means of Propositions 3.2, 6.2 and 6.3. We thus obtain
the formula

(37) lim
p→∞

n

p
C(traceY k1, trace Y k2) =

∑

Π∈Part2(2k)
s.t. #Π1∨Π=1

and#Π0∨Π=k−1

K(Π)

where

K(Π) =
∑

j∈ZΠ1/ZΠ1∨Π

CΠ(j).

It remains only to classify the Π’s appearing on the right side of (37)
and for each to evaluate K(Π).

We turn to the classification of Π appearing on the right side of (37).
Recall that in the setup of Proposition 5.2 with r = 2, we have

Π0 = {{1, 2}, . . . , {2k − 1, 2k}},
Π1 = {{2, 3}, . . . , {2k1, 1}, {2k1 + 2, 2k1 + 3}, . . . , {2k, 2k1 + 1}}.

The conditions

#Π0 ∨ Π = k − 1 , #Π1 ∨ Π = 1

dictate that we must have

(Π0 ∨ Π) \ Π0 = {A ∪ A′}, Π0 \ (Π0 ∨ Π) = {A, A′}
for some A, A′ ∈ Π0 with

A ⊂ {1, . . . , 2k1}, A′ ⊂ {2k1 + 1, . . . , 2k}.
There are exactly k1k2 ways of choosing such A and A′, and for each
such choice, there are exactly three possibilities for Π, two of which are
perfect matchings and one which has all parts of size 2 except for one
part of size 4. That is, either

(38) Π = (Π0 \ {A, A′}) ∪ {{min A, min A′}, {max A, max A′}}
or

(39) Π = (Π0 \ {A, A′})
⋃

{{min A, max A′}, {maxA, min A′}}
or

(40) Π = (Π0 \ {A, A′})
⋃

{A ∪ A′} .

Thus we have enumerated all possible Π’s appearing on the right side
of formula (37).
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We turn to the evaluation of K(Π) in the cases (38,39). In these
cases, simply because #Π ∨ Π1 = 1 and Π is a perfect matching, it is
possible to choose a permutation σ of {1, . . . , 2k} such that

Π1 = {{σ(2), σ(3)}, . . . , {σ(2k), σ(1)}},
Π = {{σ(1), σ(2)}, . . . , {σ(2k − 1), σ(2k)}},

and so we find in these cases that

(41) K(Π) = R
(k)
0

by a repetition of the calculation done at the end of the proof of Propo-
sition 7.1.

We turn finally to the evaluation of K(Π) in the case (40). In this
case there is enough symmetry to guarantee that K(Π) does not depend
on A and A′. We may therefore assume without loss of generality that

A = {2k1 − 1, 2k1}, A′ = {2k1 + 1, 2k1 + 2}
in order to evaluate K(Π). To compress notation we write

Cj1j2j3j4 = C(Zj1, Zj2, Zj3, Zj4), R
(m)
ij = R

(m)
j−i , Rij = R

(1)
ij .

Assume temporarily that k1, k2 > 1. Since Rij = C(Zi, Zj) we then
have for any fixed j1 ∈ Z that

K(Π) =
∑

j2,...,jk∈Z

Rj1j2 · · ·Rjk1−1jk1
Cjk1

j1jk1+1jk1+2
Rjk1+2jk1+3

· · ·Rjkjk1+1

and hence after summing over “interior” indices we have

(42) K(Π) =
∑

j2,j3,j4∈Z

R
(k1−1)
j1j2

Cj2j1j3j4R
(k2−1)
j4j3

=
∑

i,j

R
(k1−1)
i QijR

(k2−1)
j .

One can then easily check by separate arguments that (42) remains
valid when k1 or k2 or both take the value 1.

Together (37–42) complete the proof. �

9. Concluding comments

We have presented a combinatorial approach to the study of limits
for the spectrum of regularized covariance matrices. We have chosen to
present the technique in the simplest possible setting, i.e. the station-
ary setup. Some directions for generalizations of this setup are to allow
non-stationary sequences with covariances as in [KMS53], or to allow
for perturbations of the stationary setup, as in [BL06]. Especially in
the context of the LLN, the techniques we presented are likely to be
applicable also in these more general situations. To keep focused, how-
ever, we do not study these here. We also emphasize that unlike the
results in [BL06], we do not deal at all with the distance (in operator
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norm, or otherwise) between the banded empirical covariance matrix
Y , and the covariance matrix of the process {Zj}.

A natural question arising from the central limit theorem (Theorem
2.7) is whether an expression for Etrace Y k can be obtained. We recall
that in the context of classical Wishart matrices, compact formulae
for these quantities can be written down, see [AZ06] and references
therein. A similar attempt to provide such formulae here runs into
many subcases, depending on the relations between the parameters
p, n, b, and on the convergence rate in the summability condition (2.2),
and we have not been able to present the results of this analysis in
compact form. We thus omit entirely this topic.

We finally mention a combinatorial question arising from Proposi-
tion 3.2. In the setting of that proposition, it can be shown that for
perfect matchings Π the estimate

(43) #Π0 ∨ Π + #Π1 ∨ Π ≤ k + 2 − r

holds and is sharp. But (43) is too strong to hold in general, as is
shown by the example

Π0 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}},
Π1 = {{2, 3}, {1, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}},

Π = {{1, 5, 6}, {2, 7, 8}, {3, 9, 10}, {4, 11, 12}}
for which

#Π0 ∨ Π = #Π1 ∨ Π = 2, k = 6, r = 5,

and the same example leaves open the possibility that (14) is too weak.
How then can one sharpen (14)? The problem is open.
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