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Abstract

We apply the theory of random Schrödinger operators to the analysis of multi-users commu-

nication channels similar to the Wyner model, that are characterized by short-range intra-cell

broadcasting. With H the channel transfer matrix, HH
† is a narrow-band matrix and in many

aspects is similar to a random Schrödinger operator. We relate the per-cell sum-rate capacity

of the channel to the integrated density of states of a random Schrödinger operator; the latter

is related to the top Lyapunov exponent of a random sequence of matrices via a version of the

Thouless formula. Unlike related results in classical random matrix theory, limiting results do

depend on the underlying fading distributions. We also derive several bounds on the limiting

per-cell sum-rate capacity, some based on the theory of random Schrödinger operators, and some

derived from information theoretical considerations. Finally, we get explicit results in the high-

SNR regime for some particular cases.
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I. Introduction

The growing demand for ubiquitous access to high-data rate services, has produced a

huge amount of research analyzing the performance of wireless communications systems.

Techniques for providing better service and coverage in cellular mobile communications

are currently being investigated by industry and academia. In particular, the use of joint

multi-cell processing (MCP), which allows the base-stations (BSts) to jointly process their

signals, equivalently creating a distributed antenna array, has been identified as a key tool

for enhancing system performance (see [1][2] and references therein for surveys of recent

results on multi-cell processing).

Motivated by the fact that mobile users in a cellular system “see” only a small number

of BSts, and by the desire to provide analytical results, an attractive analytically tractable

model for a multi-cell system was suggested by Wyner in [3] (see also [4] for an earlier

relevant work). In this model, the system’s cells are ordered in either an infinite linear

array, or in the familiar two-dimensional hexagonal pattern (also infinite). It is assumed that

only adjacent-cell interference is present and characterized by a single parameter, a scaling

factor α ∈ [0, 1]. Considering non-fading channels and a “wideband” (WB) transmission

scheme, where all bandwidth is available for coding (as opposed to random spreading),

the throughputs obtained with optimum and linear MMSE joint processing of the received

signals from all cell-sites are derived in [3]. Since it was first presented, “Wyner-like” models

have provided a framework for many works analyzing various transmission schemes in both

the up-link and down-link channels (see [1][5] and references therein).

In this paper we consider a generalized “Wyner-like” cellular setup and study its per-cell

sum-rate capacity. According to Wyner’s setup, the cells are arranged on a circle (or a line),

and the mobile users “see” only a fixed number of BSts which are located close to their cell’s

boundaries. All the BSts are assumed to be connected through an ideal back-haul network

to a central multi-cell processor (MCP), that can jointly process the up-link received signals

of all cell-sites, as well as pre-process the signals to be transmitted by all cell-sites in the

down-link channel. The model is characterized by short-range intra-cell broadcasting. Thus,

if we denote by H the channel transfer matrix, then HH† is in many aspects similar to a

random Schrödinger operator. More specifically, the per-cell sum-rate capacity of the channel
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is a function of the integrated density of state of HH†, which in turn is related to the top

Lyapunov exponent of a random sequence of matrices via a version of the Thouless formula.

Unlike associated results in classical random matrix theory, limiting results do depend on

the underlying fading distributions.

As an application of our result and motivated by the fact that future cellular systems

implicitly assume high-SNR configurations mandatory for high data rate services, we get

explicit results in the high-SNR regime for some particular cases.

The rest of the paper is organized as follows. In Section II, we present the problem

statement. In Section III, we prove the convergence of the per-cell sum-rate capacity when the

number of cells and BSts goes to infinity and we express the limit in terms of the Lyapunov

exponent of a sequence of random matrices (Theorem III.1). In Section IV, we give several

reformulations of this result that yields a particularly simple expression in the high-SNR

regime. In Section V, we give different bounds on the per-cell sum-rate capacity, some of

which are based on the theory of product of random matrices, and some on information

theoretical considerations. In Section VI, we specialize the results and make them explicit in

some particular cases. Finally in Section VII we discuss some open problems using numerical

simulations. The relevant background on the theory of Lyapunov exponents is given in

Appendix A1, and the relevant background on exterior products is given in Appendix C.

Several proofs are postponed to Appendices A2, A3 and B. The per-cell sum-rate capacity

of the non-fading channels is derived in Appendix D.

II. Problem statement

In this paper we consider the following setup. m+d cells with K single antenna users per

cell are arranged on a line, where the m single antenna BSts are located in the cells. Starting

with the WB transmission scheme where all bandwidth is devoted for coding and all K users

are transmitting simultaneously each with average power ρ, and assuming synchronized

communication, a vector baseband representation of the signals received at the system’s

BSts is given for an arbitrary time index i by

y(i) = Hm(i)x(i) + z(i), (II.1)

where x(i) is the (m+ d)K complex Gaussian symbols vector, z(i) is the unitary complex

Gaussian additive noise vector. Note that the SNR is ρ. From now on, we omit the time
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index i. Hm is the following m×K(m+ d) channel transfer matrix, which is a d+ 1 block

diagonal matrix defined by

Hm =




ζ1,1 ζ1,2 · · · ζ1,d+1 0 · · · 0

0 ζ2,2 · · · ζ2,d+1 ζ2,d+2

...
...

. . .
. . .

. . . 0

0 · · · 0 ζm,m ζm,m+1 · · · ζm,d+m



,

where ζi,j are 1×K row vectors. For s ∈ N
∗, we will denote by ζs the vector (ζs−d,s, . . . , ζs,s)

and we denote by π it distribution. We assume in the rest of the paper that for n ∈ N
∗ and

0 ≤ i ≤ d the vectors (ζn−i,n) are distributed according to πi. We define Ω = (ζn)n∈N∗ and

P, the probability distribution on Ω associated to the above problem. We denote by E the

associated expectation. We also use the 2 norm for vectors and matrices. For matrices, it is

the Froebenius norm, which is a sub-multiplicative norm.

Throughout this paper, we assume a subset of the following hypotheses.

(H1) The vectors (ζj)j∈N∗ form a stationary ergodic sequence.

(H2) There exists ε > 0 such that for 0 ≤ i ≤ d, Eπi
|log |x||1+ε <∞.

(H3) If (x0, . . . , xd) is distributed according to π, then almost surely, x0x
†
d 6= 0.

For m ∈ N
∗ and λ > 0, we set Gm = HmH

†
m + λ Idm, where Idm is the m ×m identity

matrix. Although Gm depends on λ, we will not write that dependence unless there is an

ambiguity. Under the assumption that Hm(i) is ergodic with respect to the time index i, that

the Channel State Information (CSI) is known at the receiver whereas the users know the

statistics of the CSI, and that the channel varies fast enough so as to allow each transmitted

codeword to experience a large number of fading states, we follow [1] and study the per-cell

sum-rate capacity that is given by the following formula ([6])

Capm(ρ) =
1

m
E log det

(
Id +ρHmH

†
m

)
= log ρ+

1

m
E (log detGm(λ)) , (II.2)

where λ = 1/ρ.
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III. Main result

We set for i ∈ N
∗

Ci =




ζd(i−1)+1,d(i−1)+1 ζd(i−1)+1,d(i−1)+2 · · · ζd(i−1)+1,di

0 ζd(i−1)+2,d(i−1)+2 · · · ζd(i−1)+2,di

...
. . .

. . .
...

0 · · · 0 ζdi,di




and

Di =




ζd(i−2)+1,d(i−1)+1
† ζd(i−2)+2,d(i−1)+1

† · · · ζd(i−1),d(i−1)+1
†

0 ζd(i−2)+2,d(i−1)+2
† · · · ζd(i−1),d(i−1)+2

†

...
. . .

. . .
...

0 · · · 0 ζd(i−1),di
†



.

For all i ∈ N
∗, Ci are d × dK matrices and Di are dK × d matrices. We fix ζi,j with i ≤ 0

or j ≤ 0 so that C1D1 = Idd,d.

We thereby get the following block description of H

Hdn =




C1 D†
2 0d,dK · · · 0d,dK

0d,dK C2 D†
3

. . .
...

...
. . .

. . .
. . . 0d,dK

0d,dK · · · 0d,dK Cn D†
n+1



,

where 0d,dK is the d× dK zero matrix.

Under the hypothesis (H2), in order to study the limit in m of Capm(ρ), it is enough to

study Capnd(ρ) (see Remark A.13 following the proof of Lemma A.6). We get the following

block representation of Gdn:

Gdn =




C1C
†
1 +D†

2D2 + λ Idd (C2D2)
† 0d 0d

C2D2

. . .
. . . 0d

0d

. . .
. . . (CnDn)†

0d 0d CnDn CnC
†
n +D†

n+1Dn+1 + λ Idd



.

Note that under (H3), for all i ∈ N
∗, CiDi is a d× d invertible matrix.
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For i ∈ N
∗, we denote by Mi the following matrix


 0d Idd

−(Ci+1Di+1)
−1†CiDi −(Ci+1Di+1)

−1†
(
CiC

†
i +D†

i+1Di+1 + λ Idd

)



and denote Ni =
∧dMi. Moreover, γ(N) denotes the top Lyapunov exponent associated

with {Ni}, i.e.

γ(N) , lim
n→∞

1

n
log ‖Nn · · ·N1‖ .

Note that by Theorem A.1, γ(N) is deterministic. See Appendix A1 for the definitions

concerning the Lyapunov exponents and Appendix C for the relevant background on exterior

products. Recall that (Mi)i∈N∗ and (Ni)i∈N∗ depend on λ.

Theorem III.1. Assume (H1), (H2) and (H3), and set λ = 1/ρ.

1. We have

Capm(ρ) −−−→
m→∞

log ρ+ Eπ log
∣∣∣ζ0ζ†d

∣∣∣+ 1

d
γ (N) , Cap(ρ),

where the expectation is taken such that (ζ0, . . . , ζd) is distributed according to π.

2. As ρ goes to infinity,

Cap(ρ) = log ρ+ Eπ log
∣∣∣ζ0ζ†d

∣∣∣+ 1

d
γ (N(λ = 0)) + o(1).

The theorem is proved in Appendix A.

As an alternative to deriving exact analytical results we will also be interested in extracting

parameters that characterize the channel rate in the high-SNR regime [7]; such parameters

are the high-SNR slope (also referred to as the “multiplexing gain”)

S∞ , lim
ρ→∞

Cap(ρ)

log(Kρ)
,

and the high-SNR power offset

L∞ , lim
ρ→∞

1

log 2

(
log(Kρ) − Cap(ρ)

S∞

)
,

yielding the following affine capacity approximation

Cap(ρ) ≈ S∞ log 2

3|dB

(Kρ|dB − 3|dBL∞) .

A direct consequence of Theorem III.1 is the following high-SNR characterization.
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Corollary III.2. Assume (H1), (H2) and (H3). Then S∞ = 1 and

L∞ =
1

log 2

[
logK − Eπ log

∣∣∣ζ0ζ†d
∣∣∣− 1

d
γ(N(λ = 0))

]
.

IV. Reformulations

We now derive alternative formulations for γ(N) in Subsection IV-A and for γ(N(λ = 0))

(which characterizes the hign-SNR regime), in Subsection IV-B.

A. Non-asymptotic results

In order to study γ(N), we express it as the Lyapunov exponent of simpler matrices. For

i ≥ d+ 1, we define the following random matrices.

mi =




0 1 0 0
...

. . .
. . . 0

0 · · · 0 1

− ζ̃i,i−d

ζ̃i,i+d

· · · · · · − ζ̃i,i+d−1

ζ̃i,i+d



,

where ζ̃i,l is the coefficient in position (i, l) in Gdn, and set

ni =
d∧

mi.

Note that (mi)i≥d+1 and (ni)i≥d+1 depend on λ. We get the following proposition, whose

proof is given in Appendix B1.

Proposition IV.1. Assume (H1), (H2) and (H3). Then, Ni = nid · · · n(i−1)d+1. Therefore,

for every λ ≥ 0, γ(N) = dγ(n), hence,

Cap(ρ) = log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ γ (n) .

Note that for a given i ∈ N, Ni depends on ζd(i−1)+1, . . . , ζ(d+1)i, that is, the fading

coefficients of 2d different cells. We now want to reduce the product of the Ni to a product

of random matrices (that we denote by Ξi) depending on the fading coefficients of only d

cells. Then we reduce it further to a product of random matrices (that we denote by ξi)

depending on the fading coefficients of only one cell.

By doing so, we achieve two goals: first, we express γ(N) as the Lyapunov exponent of

simpler matrices. Second, if the fading coefficients are i.i.d for different cells, then the Ξi
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and the ξi are i.i.d. Products of i.i.d random matrices have been studied extensively (see for

example [8]), moreover, their study can be reduced to the study of a Markov chain on an

appropriate space, which can lead to actual analytic expressions (see [5] for an example of

study of such a Markov chain).

For i ∈ N
∗, we denote by ∆i the following matrix


 −

(
CiC

†
i + λ Idd

)
(CiDi)

−1† −CiDi +
(
CiC

†
i + λ Idd

)
(CiDi)

−1†D†
iDi

(CiDi)
−1† − (CiDi)

−1†D†
iDi




and define Ξi =
∧d ∆i.

For i ≥ d+ 1, we denote by δi the following matrix



− ζi−d+1,i

ζi−d,i

...

− ζi−1,i

ζi−d,i

Idd−1 0d−1,d

− λ+|ζi,i|
2

ζi−d,iζ
†
i,i

01,d−1 λ
ζ†
i−d,i

ζ†i,i
· · · λ

ζ†i−1,i

ζ†i,i

0d−1,1 0d−1,d−1 0d−1,1 Idd−1

1

ζi−d,iζ
†
i,i

01,d−1 − ζ†
i−d,i

ζ†i,i
· · · − ζ†i−1,i

ζ†i,i




and define ξi =
∧d δi. Note that (∆i)i∈N∗ , (Ξi)i∈N∗ , (δi)i∈N∗ and (ξi)i∈N∗ depend on λ.

Proposition IV.2. Assume (H1), (H2) and (H3).

1. For every λ ≥ 0, γ(Ξ) = γ(N), hence,

Cap(ρ) = log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ 1

d
γ (Ξ) .

2. Assume K = 1. Then,

∆i = δid · · · δ(i−1)d+1.

Therefore, for every λ ≥ 0, γ(N) = dγ(ξ), hence,

Cap(ρ) = log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ γ (ξ) .
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Remark IV.3. Note that for K = 1, for all i ∈ N
∗,

(CiDi)
−1† = C−1†

i D−1†
i ,

and therefore,

∆i =


 −CiD

−1†
i − λ(CiDi)

−1† λC−1†
i Di

(CiDi)
−1† −C−1†

i Di


 .

Proof: Let us start by proving point 1. We define for i ∈ N
∗,

P1(i) =


−CiDi −CiC

†
i − λ Idd

0d Idd




and

P2(i) =


 0d Idd

(CiDi)
−1† − (CiDi)

−1†D†
iDi


 ,

so that for all i ∈ N
∗, Mi = P2(i+1)P1(i). For i ∈ N

∗, ∆i is defined so that ∆i = P1(i)P2(i).

Then, for all n ∈ N
∗,

Mn . . .M1 = P2(n+ 1)P1(n)P2(n)P1(n− 1) · · ·P2(2)P1(1)

= P2(n+ 1)∆n · · ·∆2P1(1).

and

‖Nn . . . N1‖ =

∥∥∥∥∥

d∧
P2(n+ 1)Ξn · · ·Ξ2

d∧
P1(1)

∥∥∥∥∥

≤
∥∥∥∥∥

d∧
P2(n+ 1)

∥∥∥∥∥ ‖Ξn · · ·Ξ2‖
∥∥∥∥∥

d∧
P1(1)

∥∥∥∥∥ .

Therefore, γ(N) ≤ γ(Ξ). Since P1(1) and P2(n + 1) are invertible, we get the opposite

inequality and point 1 is proved.

The proof of point 2 is postponed to Appendix B2.

B. Results in high-SNR regime

Proposition IV.4. Assume (H1), (H2) and (H3). Assume moreover that K = 1.

1. For i ∈ N
∗, we set Ψ1

i = CiD
−1†
i and Ψ2

i = C−1†
i Di. Then

L∞ =
−1

log 2

[
Eπ log

∣∣∣ζ0ζ†d
∣∣∣+ 1

d
max
0≤i≤d

(
γ

(
i∧

Ψ1

)
+ γ

(
d−i∧

Ψ2

))]
.
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2. For i ≥ d+ 1, we set

ψ1
i =




− ζi−d+1,i

ζi−d,i

...

− ζi,i

ζi−d,i

Idd−1

01,d−1




and ψ2
i =




− ζi−1,i

ζi,i

...

− ζi−d,i

ζi,i

Idd−1

01,d−1




†

.

Then,

L∞ =
−1

log 2

[
Eπ log

∣∣∣ζ0ζ†d
∣∣∣+ max

0≤i≤d

(
γ

(
i∧
ψ1

)
+ γ

(
d−i∧

ψ2

))]
.

Remark IV.5. 1. Recall that for a stationary ergodic sequence of complex random ma-

trices (Xi)i∈N∗ of size d,

γ

(
0∧
X

)
= 0 and γ

(
d∧
X

)
= E log |detX1| .

2. Note that if for 0 ≤ i ≤ d, πi = πd−i and the vectors (ζi)i∈N∗ are i.i.d, then (ψ1
i )i≥d+1

and ((ψ2
i )

†)i≥d+1 have the same distribution and (ψ2
i )i≥d+1 and ((ψ2

i )
†)i≥d+1 have the

same Lyapunov exponents. Therefore, as ρ goes to infinity,

L∞ =
−1

log 2


Eπ log

∣∣∣ζ0ζ†d
∣∣∣+ γ




⌈d/2⌉∧
ψ1


+ γ




⌊d/2⌋∧
ψ1




 .

Proof: Using Corollary III.2 and Proposition IV.2, in order to prove point 1, we only

have to prove that

γ(Ξ(λ = 0)) = max
0≤i≤d

(
γ

(
i∧

Ψ1

)
+ γ

(
d−i∧

Ψ2

))
. (IV.6)

Recall that γ(Ξ) = γ1(∆) + · · · + γd(∆) and that

∆i(λ = 0) =


 −Ψ1

i 0d,d

(CiDi)
−1† −Ψ2

i


 .

By Proposition A.5, the sequence γ1(∆(λ = 0)), . . . , γ2d(∆(λ = 0)) is equal up to the

order to the sequence

γ1(Ψ
1), . . . , γd(Ψ

1), γ1(Ψ
2), . . . , γd(Ψ

2).

Therefore, (IV.6) is a direct consequence of γ(Ξ(λ = 0)) = γ1(∆(λ = 0))+· · ·+γd(∆(λ = 0))

and γ
(∧i Ψ1,2

)
= γ1(Ψ

1,2) + · · · + γi(Ψ
1,2).
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The proof of point 2 goes along the same lines using the fact that

δi(λ = 0) =


 −ψ1

i 0d,d

ψ3
i −ψ̃2

i


 ,

where

ψ̃2
i =




0 0 1

0 . .
.

0

1 0 0


ψ2

i




0 0 1

0 . .
.

0

1 0 0


 and ψ̃3

i =


 0d−1,1 0d−1,d−1

1

ζi−d,iζ
†
i,i

01,d−1


 ,

therefore, the Lyapunov exponents of ψ̃2 and ψ2 are the same.

V. Bounds on the capacity

A. Bounds on the top Lyapunov exponent

We use the Fröbenius norm on the matrices, it is a sub-multiplicative norm, therefore, we

can apply (A.3) to the different formulations of the capacity to get the following proposition.

Proposition V.1. Assume (H1), (H2) and (H3).

1. For λ = 1/ρ and p ≥ 1,

Cap(ρ) ≤ log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ 1

dp
E log ‖Np(λ) · · ·N1(λ)‖ .

2. For λ = 1/ρ and p ≥ 1,

Cap(ρ) ≤ log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ 1

p
E log ‖np(λ) · · · n1(λ)‖ .

3. For λ = 1/ρ and p ≥ 1,

Cap(ρ) ≤ log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ 1

dp
E log ‖Ξp(λ) · · ·Ξ1(λ)‖ .

4. Assume K = 1. For λ = 1/ρ and p ≥ 1,

Cap(ρ) ≤ log ρ+ Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣+ 1

p
E log ‖ξp(λ) · · · ξ1(λ)‖ .

Moreover, the bounds are tight as p goes to infinity.

The bound of point 2 with p = 1 can be reformulated as follows.

Corollary V.2. For λ = 1/ρ,

Cap(ρ) ≤ log ρ+
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1

2
E log

[(
2d− 2

d− 1

)


2d∑

l=2

∣∣∣∣∣∣

(l−1)∧d∑

t=(l−d−1)∨0

ζd+1,d+t+1ζ
†
l,d+t+1 + λ1(l=d+1)

∣∣∣∣∣∣

2
+

(
2d− 1

d

)(∣∣∣ζd+1,d+1ζ
†
1,d+1

∣∣∣
2

+
∣∣∣ζd+1,2d+1ζ

†
2d+1,2d+1

∣∣∣
2
)]

.

The proof is postponed to Appendix B3.

B. Other bounds

Proposition V.3. Assume (H1) and (H2). For λ = 1/ρ,

max
(
Eπ0

log
(
λ+ |ζ0|2

)
,Eπd

log
(
λ+ |ζd|2

))
≤ Cap(ρ) − log ρ ≤

E log
(
λ+ |ζ1,1|2 + · · · + |ζ1,d+1|2

)
.

Proof: The upper bound is a consequence of Hadamard’s inequality for semi-positive

definite Hermitian matrices. Indeed,

1

m
log detGm(λ) ≤ 1

m

m∑

i=1

log
(
λ+ |ζi,i|2 + · · · + |ζi,i+d|2

)
.

Let us show the lower bound of point V.3 using the tools of [9].

Capm(ρ) =
1

m
I (x,y|(ζi,i)1≤i≤m, . . . , (ζi,i+d)1≤i≤m)

=
1

m

m∑

j=1

I (xj,y|(xi)1≤i<j, (ζi,i)1≤i≤m, . . . , (ζi,i+d)1≤i≤m)

≥ 1

m

m∑

j=1

I (xj, yj−d|(xi)1≤i<j, (ζi,i)1≤i≤m, . . . , (ζi,i+d)1≤i≤m)

=
1

m

m∑

j=1

I (xj, ζj−d,jxj + nj−d|ζj−d,j) ,

which is the per-cell sum-rate capacity of a single user fading channel. Therefore, the lower

bound is Eπd
log
(
1 + ρ |ζd|2

)
.

The role of the distributions π0 and πd can be exchanged by a right-left reflection, namely

the transformation ζ ′i,j = ζm−i+1,m+d−j+1. Thus, we get the lower bound.

In the end of this section, we slightly modify the setting, by considering m cells with

K single antenna users per cell and m + d single antenna BSts. The communication is
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characterized by the following (m+ d) ×Km channel transfer matrix Hm, which is a d+ 1

block diagonal matrix defined by,

Hm =




ζ1,1 0 · · · 0

ζ2,1 ζ2,2

...
...

...
. . . 0

ζd+1,1 ζd+1,2 ζm,m

0 ζd+2,2 ζm+1,m

...
. . .

...

0 · · · 0 ζd+m,m




,

where ζi,j are 1 ×K row vectors.

We consider the per-cell sum-rate capacity Capm(ρ) that is given by (II.2). We denote by

Cap(ρ) the limit of Capm(ρ) as m tends to infinity.

Note that in the limit, this setting is equivalent to the setting we define in Section II. In

particular, the normalization by 1/m or 1/(m+ d) is equivalent.

Proposition V.4. For all n ∈ N
∗,

n

n+ d
Capn

(
n+ d

n
ρ

)
≤ Cap(ρ) ≤ Capn(ρ).

Moreover, the bounds are tight as n goes to infinity.

Note that taking the upper bound for n = 1, one gets the upper bound of Proposition

V.3.

Proof: Number the cells from 1 to m and the antennas from 1 to m+ d.

Upper bound. Take 1 ≤ n ≤ m. Define the matrix H1
m (resp. H2

m) of size (m + d) ×Kn

(resp. (m + d) × K(m − n)) to be the matrix whose columns are the Kn first columns of

Hm (resp. the K(m−n) last columns of Hm), such that Hm =
(
H1

m H2
m

)
. Note that H1

m

and H2
m are distributed like


 Hn

0(m−n)×Kn


 and


 0n×K(m−n)

Hn


 ,

respectively.
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Denote by x
1 (resp. x

2) the vector of size Kn (resp. K(m − n)) of symbols sent by the

users of cells 1 to n (resp. the cells n+1 to m). Note that x
1 and x

2 are independent. Then

(omitting the time index), (II.1) is equivalent to

y = H1
mx

1 +H2
mx

2 + z,

where y and z are vectors of size m+ d.

mCapm(ρ) = I(x1,x2; y)

= I(x1; y) + I(x2; y|x1)

≤ I(x1; y,x2) + I(x2; y|x1)

= I(x1; y|x2) + I(x2; y|x1),

where in the second equality we used the chain rule for mutual information, in the inequality

we used the fact that adding x
2 increases the mutual information, and the last equality is

due to the independence of x
1, x

2 (and therefore, I(x1; x2) = 0). Denote by z
1 (resp. z

2)

the n + d first coordinates (resp. the m − n last coordinates) of z. Using the fact that x
1,

x
2, z

1, and z
2 are independent, one gets,

I(x1; y|x2) = I(x1; (H1
mx

1 + z)|x2)

= I(x1; (H1
mx

1 + z))

= h(H1
mx

1 + z) − h(z)

= h(Hnx
1 + z

1) + h(z2) −
(
h(z1) + h(z2)

)

= nCapn(ρ).

Therefore,

mCapm(ρ) ≤ nCapn(ρ) + (m− n)Capm−n(ρ).

Take k ∈ N
∗, by induction,

(nk)Capnk(ρ) ≤ (nk)Capn(ρ).

Dividing by nk and taking k to infinity in the LHS gives the upper bound.

Lower bound. Take k ∈ N
∗ and consider k(n+ d) users and their corresponding antennas.

For every group of n + d users, silence the d last users and redistribute their power to the
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n first users so that their SNR becomes (n+ d/n)ρ (the average SNR is still ρ). See Figure

1 for an illustration. Since asymptotically, the equal power distribution among the users is

optimal [10, Appendix C], we get that the new system has a lower capacity. Therefore, for

k going to infinity,

(nk)Capn

(
n+ d

n
ρ

)
≤ k(n+ d)Capk(n+d)(ρ).

Dividing by k(n+ d) and taking k to infinity in the LHS gives the lower bound.

C. Numerical comparison of the bounds

We first compare the bound of Corollary V.2 and the bounds of Proposition V.3. Note

that by the ergodic theorem, the upper-bound of Proposition V.3 grows like log d, whereas

in the bound of Corollary V.2, the part log
(
2d−1

d

) ∣∣∣ζd+1,d+1ζ
†
1,d+1

∣∣∣
2

alone already grows like

d. Nevertheless, it is not necessarily true that the upper-bound of Proposition V.3 is better

that the one of Corollary V.2 for all d and all fading distributions.

In Figure 2, we present the bounds of Corollary V.2 and Proposition V.3 in the special case

of Rayleigh fading (real and imaginary parts are independent Gaussian random variables

with zero mean and variance 1/
√

2). The curves are produced by Monte Carlo simulation

with 106 samples. We see that in this case, even for d small, the upper-bound of Proposition

V.3 is better than the one of Corollary V.2.

In Figures 3 and 4, we compare the bounds of Proposition V.1, point 1 and 3, Proposition

V.3 and Proposition V.4 in the special case of Rayleigh fading (real and imaginary parts

are independent Gaussian random variables with zero mean and variance 1/
√

2). The curves

are produced by Monte Carlo simulations with 105 samples.

Note that in the case d = 2, for K = 1, the bounds of Proposition V.1, point 3 are better

than those of point 1, whereas for K > 1, it is the opposite.

We see that in the case d = 2, for K = 4 and K = 10, the upper-bound of Proposition

V.3 is very close to the capacity and the upper-bounds of Proposition V.1.1 are getting tight

very rapidly.

In the case d = 2, we want to compare the random-fading channel with the non-fading

channel. See Appendix D for the per-cell sum-rate capacity of the non-fading channel. The

comparison is done in Figure 4; in the eight cases that we consider, the random-fading

channel is better than the non random one.
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VI. Results for particular cases in the high-SNR regime

A. Case d = 1

As a direct application of Proposition IV.4 in the case d = 1 and K = 1, we get the

following result.

Proposition VI.1. Assume (H1), (H2) and (H3). Then

L∞ =
−1

log 2
[2 max (Eπ0

log |ζ0| ; Eπ1
log |ζ1|)] .

Note that a similar result was already proved by other techniques in [5] under much

stronger hypothesis, in particular, independence of the fading coefficients was assumed there.

In contrary, our result depends only on the marginal distributions of the fading coefficients

and is valid for a larger class of joint distributions.

We want to compare the per-cell sum-rate capacity of the random-fading and non-fading

channels. For a random variable ζ, by Jensen’s inequality,

E log |ζ|2 ≤ log E |ζ|2 .

Therefore, under the constraints Eπ0
|ζ0|2 ≤ 1 and Eπ1

|ζ1|2 ≤ 1, the non-fading channel

achieves the best per-cell sum-rate capacity in the high SNR regime.

B. Case d = 2

We now assume that d = 2 and K = 1 and that the fading coefficients have the following

form; for i ∈ N
∗,

ζi−2,i = αai , ζi−1,i = βbi and ζi,i = ci,

where ai, bi and ci are random variable distributed according to πa, πb and πc respectively

and α and β are parameters such that α > 0 and β ≥ 0. Moreover, take the following

normalization that can always be achieved by modifying α and β.

Eπa
log |a1| = Eπb

log |b1| = Eπc
log |c1| .

We use the notation of Proposition IV.4.
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Proposition VI.2. Assume that (ai, bi, ci)i∈N∗ is a stationary ergodic sequence such that

for all i ∈ N
∗, almost surely, ai and ci are non zero and that their exist ε > 0 such that

Eπa
(log |a1|)1+ε, Eπb

(log |b1|)1+ε and Eπc
(log |c1|)1+ε are finite.

Then, there exist a domain D ⊂ (0, 1]× [0, 1] such that for all (x, y) ∈ D, (0, x)× [0, y) ⊂ D
and for all (α, β) ∈ D, as ρ goes to infinity,

L∞ =
−2

log 2
Eπa

log |a| . (VI.3)

The proof is postponed to Appendix B4.

Remark VI.4. 1. The set D is not maximal in the sense that (VI.3) may hold for couples

(α, β) /∈ D.

2. Note that for (α, β) ∈ D, in the high-SNR regime, the lower bound of Proposition V.3

is tight.

3. The proof will yield an effective construction of D, which allows us to find many

points in D. Indeed, we construct (fp)p∈N∗ a family of functions on (0, 1] × [0, 1] with

the following property: if there exists p ∈ N
∗ such that fp(α, β) ≤ 0, then (VI.3) holds.

4. Note that (VI.3) does not hold when α > 1, indeed, as it will appear in the course of

the proof, as ρ goes to infinity,

Cap(ρ) ≥ log ρ+ 2Eπa
log |a| + logα.

We conjecture that (VI.3) does not hold when β > 1 either.

Let us apply Proposition VI.2 to the case where (ai, bi, ci)i∈N∗ are independent Rayleigh

distributed coefficients. In Figure 5, we plot points for which f20 is less or equal to -0.05

(Monte Carlo simulations realized with 105 samples). Therefore, (VI.3) holds for (α, β) in

the stripped region and in particular for α, β ≤ 0.4. Note that in this case, the power offset

is

L∞ =
γ

log 2
,

where γ is the Euler constant.

C. Artificial fading

In the frame of non-fading channels, we consider artificial fading, that is, every user uses a

pseudo-random fading and multiplies its signal by this artificial fading. The fading coefficients
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then have the following form, for i ∈ N
∗ and 0 ≤ s ≤ d,

ζi,i+s = αsPi+s,

where α0, . . . αd are non random positive numbers and Pi , i ∈ N
∗ are stationary ergodic

pseudo-random complex row vectors of size K distributed according to a law denoted by

πP . We moreover assume that for all i ∈ N
∗, almost surely, the coefficients of Pi are non

zero and that EπP
‖P1‖2 = 1.

In [11], it is proved that in the case d = 2, the per-cell sum-rate capacity is smaller with

artificial fading. Indeed, had such a procedure helped, then it would be used in non-fading

situations to enhance capacity. It is evident then that it is deleterious, as the expression in

Proposition VI.5 exhibits.

We consider the high-SNR regime and derive the explicit influence of the artificial fading.

Proposition VI.5. Denote by L0
∞ the power off-set without artificial fading (that is, Pi =

(1, . . . , 1) almost surely) and by L∞ the power off-set with artificial fading. Then,

L∞ = L0
∞ − 1

log 2
EπP

log ‖P1‖2 .

Remark VI.6. By Jensen’s inequality, we get that L∞ ≥ L0
∞, therefore, in the high-SNR

regime, the per-cell sum-rate capacity is smaller with artificial fading.

Proof: We set until the end of the proof λ = 0. Using Corollary III.2 and Proposition

IV.2,

L∞ =
1

log 2

[
logK − Eπ log

∣∣∣α0α
†
d

∣∣∣− EπP
log ‖P1‖2 − 1

d
γ(∆)

]
,

whereas

L0
∞ =

1

log 2

[
logK − Eπ log

∣∣∣α0α
†
d

∣∣∣− 1

d
γ
(
∆̃
)]

,

where
(
∆̃i

)
i∈N∗

denote the matrices without artificial fading. Therefore, we only have to

prove that for i ∈ N
∗, ∆i does not depend on (Pi)i∈N∗ . In the case K = 1, ∆i = δid · · · δ(i−1)d+1

and for i ≥ d+1, δi does not depend on (Pi)i∈N∗ , therefore, ∆i does not depend on (Pi)i∈N∗ .

Let us assume K > 1. Using Proposition IV.2, we only have to prove that for i ∈ N
∗, ∆i

does not depend on (Pi)i∈N∗ .
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Ci =




α0Pd(i−1)+1 α1Pd(i−1)+2 · · · αd−1Pdi

0 α0Pd(i−1)+2 · · · αd−2Pdi

...
. . .

. . .
...

0 · · · 0 α0Pdi




and

Di =




αdPd(i−1)+1
† αd−1Pd(i−1)+1

† · · · α1Pd(i−1)+1
†

0 αdPd(i−1)+2
† · · · α2Pd(i−1)+2

†

...
. . .

. . .
...

0 · · · 0 αdPdi
†



.

Let us define another channel transfer matrix H̃m by K̃ = 1 and for i ∈ N
∗ and 0 ≤ s ≤ d,

ζ̃i,i+s = αs ‖Pi+s‖ .

In the same manner, we define C̃i, D̃i and ∆̃i. A straight forward verification shows that for

i ∈ N
∗

CiC
†
i = C̃iC̃

†
i , CiDi = C̃iD̃i and D†

iDi = D̃†
i D̃i.

Moreover, since ∆i is a function of CiC
†
i , CiDi and D†

iDi, ∆i = ∆̃i. However, since K̃ = 1,

we have already proved that ∆̃i does not depend on (Pi)i∈N∗ , therefore, ∆i does not depend

on (Pi)i∈N∗ .

VII. Numerical simulations

A. Influence of the correlation

We assume that the fading coefficients are Rayleigh distributed (real and imaginary

parts are independent Gaussian random variables with zero mean and variance 1/
√

2) and

independent for different users. We are interested in the following question, which of the non-

fading channel and the Rayleigh fading channel gives a higher per-cell sum-rate capacity.

In the case d = 2, λ = 0.1, 1 and K = 1, 2, 4, 10, with all fading coefficients independent,

it is shown in Subsection V-C that the Rayleigh fading is beneficial.

In the case d = 1 if we assume independence between the ζi,j, it is known that Rayleigh

fading is beneficial over non-fading channels in the high-SNR region already for K = 2 ([5]).
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If we assume that for i ∈ N
∗, ζi−1,i = ζi,i, then, the sum-rate per-cell capacity is less than

the one of a non-fading channel (see Subsection VI-C and [11]). We investigate the following

question: what is the maximal level of correlation between ζi−1,i and ζi,i that still provides

benefit over the non-fading channel. See Appendix D for the derivation of the capacity of

the non-fading channels. We denote by c the correlation between the real (resp. imaginary)

part of ζi,i and the real (resp. imaginary) part of ζi−1,i

In Figure 6 we present the bounds of Proposition V.1.1 and Proposition V.4 in the

special case of Rayleigh fading. In Figure 7 we present the bounds of Proposition V.1.1 and

Proposition V.4 in the following special case: ζi,i is Rayleigh distributed, ζi−1,i is α ∈ [0, 1]

times a Rayleigh distributed random variable. In both cases, the curves are produced by

Monte Carlo simulation with 105 samples.

We see that even with a correlation close to 1, fading still provides an advantage over

non-fading channel. Moreover, note that K large, high SNR and α close to 1 are conditions

in which the advantage of the fading is larger.

B. The asymmetric Wyner model

With the following specification, the model studied is the Rayleigh-fading Wyner model

([3]). We take d = 2 and the ζi,j independent with the following distributions. For i ∈ N
∗,

ζi,i+1 is Rayleigh distributed (real and imaginary parts are independent Gaussian random

variables with zero mean and variance 1/
√

2) and ζi,i (resp. ζi,i+2) is α ∈ [0, 1] times a

Rayleigh distributed random variable. The asymmetric (Rayleigh-fading) Wyner model is

similar to Rayleigh-fading Wyner with a slight modification. For i ∈ N
∗, ζi,i is Rayleigh

distributed and ζi,i+1 (resp. ζi,i+2) is α times a Rayleigh distributed random variable. Note

that in Subsection VI-B we prove that in the asymmetric case, the power offset for α ≤ 0.4

is γ/ log 2.

The two models are very similar and yet, in the non-fading case, the per-cell sum-rate

capacity is notably different (see Appendix D for the derivation of the capacity of the non-

fading channels). In Figure 8 we present the capacity of the two models without fading and

the bounds of Proposition V.4 for the two models with Rayleigh fading. We study one case

in moderate SNR (λ = 1) and one case in high SNR (λ = 10−4). The curves are produced

by Monte Carlo simulation with 105 samples.
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Note that in the high-SNR region, for the non-fading channel, the per-cell sum-rate

capacity is very different for symmetric and the asymmetric models, whereas the per-cell

sum-rate capacities for the symmetric and asymmetric Rayleigh-fading models are very close

(but not equal as shown in Figure 9 for λ = 10−4 and α = 0.5).

To understand better the influence of fading on the difference between the two models,

we present in Figure 10 the bounds of Proposition V.4 for the capacity of the two models

(symmetric and asymmetric) with the following fading: the modulus is uniformly distributed

between 1−ε and 1+ε and the phase is uniformly distributed between 0 and 2επ, where ε is

a parameter between 0 and 1. Note that for ε = 0, there is no fading and for ε = 1, the fading

is uniformly distributed on the disc of center 0 and of radius 2. The curves are produced by

Monte Carlo simulation with 105 samples. We notice that the difference between the two

models decreases between ε = 0 and ε = 0.5 and that in high-SNR, it increases slightly

between ε = 0.5 and ε = 1.

VIII. Concluding Remarks

In this paper, we study the per-cell sum-rate capacity of a channel communication with

multiple cell processing. The main tools is a version of the Thouless formula for the strip

which we prove in the article. It allows us to prove that the per-cell sum-rate capacity

converges as the number of cells and antennas goes to infinity. We give several expressions

of the limiting capacity in terms of Lyapunov exponents and several bounds on the per-cell

sum-rate capacity.

We apply those results to several examples of communication channels and get insight

on the evolution of the capacity as a function of the key parameters of the problem. In

particular, in the high-SNR regime, some explicit formulas are derived.

Note that the model here applies verbatim to randomly varying intersymbol interference

channels.

Some of the tools of this article can be used to derive CLT-type results on the capacity

in order to study the outage-probability. Details will appear elsewhere [12].
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Appendix

A. Random Schrödinger operators techniques

1) Lyapunov exponents theory: We use the theory of product of random matrices. For a

general introduction to the aspects of the theory we use here, the reader may consult [8],

[13], [14], [15], [16] or [17]. See appendix C for the relevant background on exterior products.

Theorem A.1 (Furstenberg H., Kesten H. (1960)). Consider a stationary ergodic sequence of

complex random matrices (Xi)i∈N∗ of size p and any norm on the matrices. Assume moreover

that

E log+ ‖X1‖ <∞,

then a.s, n−1 log ‖Xn · · ·X1‖ converges to a constant:

lim
n→∞

1

n
log ‖Xn · · ·X1‖ , γ(X).

We define p constants γ1(X), . . . , γp(X) such that for 1 ≤ i ≤ p,

γ

(
i∧
X

)
= γ1(X) + · · · + γi(X).

Proposition A.2.

γ1(X) ≥ · · · ≥ γp(X).

The constants γ1(X) ≥ · · · ≥ γp(X) are called the Lyapunov exponents and γ(X) = γ1(X)

is called the top Lyapunov exponent.

We will also use the three following properties:

1. For any sub-multiplicative norm, for p ∈ N
∗

γ(X) ≤ 1

p
E log ‖Xp · · ·X1‖ , (A.3)

and the limit of the RHS as p goes to infinity is γ(X).

2.
1

p
E log |detX1| ≤ γ(X). (A.4)
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3. Assume that the matrices (Xi)i∈N∗ are i.i.d, then for all 1 ≤ i ≤ p, γi(X) = γi(X
†).

Finally, we quote the following proposition [18, Proposition 1].

Proposition A.5. Consider a stationary ergodic sequence of complex random matrices

(Xi)i∈N∗ of size p and any norm on the matrices. Assume moreover that

E log+ ‖X1‖ <∞.

Finally, assume that there exist three sequences of random matrices (X1
i )i∈N∗, (X2

i )i∈N∗,

(X3
i )i∈N∗, of respective sizes k× k, (p− k)× k and (p− k)× (p− k), for 1 ≤ k ≤ p− 1, such

that almost surely, for all i

Xi =


 X1

i 0k,p−k

X2
i X3

i


 .

Then, γ1(X), . . . , γp(X) is equal up to the order to the sequence

γ1(X
1), . . . , γk(X

1), γ1(X
3), . . . , γp−k(X

3).

2) Proof of Theorem III.1.1: In order to prove point 1 of Theorem III.1, we first prove a

slightly more general lemma.

Lemma A.6. Assume (H1), (H2) and (H3). For all λ ∈ C such that λ /∈ R
−, almost surely,

1

dn
log |detGdn| −−−→

n→∞

1

d
E log |det(C2D2)| +

1

d
γ (N) .

Proof: For i ∈ N
∗, set Bi = CiC

†
i + D†

i+1Di+1 + λ Idd and Ai = CiDi. Note that the

eigenvalues of Gdn are bounded away from zero. To compute log |detGdn|, we write the

following decomposition: GdnUdn = Ldn, where Udn is the upper triangular by block matrix

Udn =




X1 X1 · · · X1

0d X2 · · · X2

...
. . .

. . .
...

0d · · · 0d Xn



,

the Xi are d× d matrices such that X0 = 0d, X1 = Idd, and for i ≥ 1,

AiXi−1 +BiXi + A†
i+1Xi+1 = 0d. (A.7)
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Ldn is the lower triangular by block matrix



−A†
2X2 0d · · · 0d

A2X1 −A†
3X3

. . .
...

0d

. . .
. . . 0d

0d 0d AnXn−1 −A†
n+1Xn+1



,

That decomposition allows us to write log |detGdn| as a determinant by block,

log |detGdn| =
n∑

i=1

log |detAi+1| +
n∑

i=1

log |detXi+1| −
n∑

i=1

log |detXi|

=
n∑

i=1

log |detAi+1| + log |detXn+1| .

Therefore
1

dn
log |detGdn| =

1

dn

n∑

i=1

log |detAi+1| +
1

dn
log |detXn+1| . (A.8)

1
n

∑n
i=1 log |detAi+1| converges by ergodicity toward E log |detA2|. Note that the choice of

An+1 is arbitrary, indeed, if we take another value, say Ãn+1, then Ã†
n+1X̃n+1 = A†

n+1Xn+1

and (A.8) stays unchanged.

We emphasize that the derivation of (A.8) is inspired by Narula’s thesis ([19]).

The Xi are defined by (A.7). We can reformulate it in the following way. Set Vi =
 Xi−1

Xi


, then (A.7) is equivalent to Vi+1 = MiVi and moreover,

Xn+1 =
(

0d Idd

)
Mn · · ·M1


 0d

Idd


 .

Denote f =
∧d


 0d

Idd


. For the relevant background on exterior products, see Appendix

C. We get

NnNn−1 . . . N1

(
v1

1 ∧ · · · ∧ vd
1

)
.

However, v1
1 ∧ · · · ∧ vd

1 = f . Therefore,

detXn+1 =
d∧
Xn+1 =

d∧


(

0d Idd

)
Mn · · ·M1


 0d

Idd






= f †NnNn−1 . . . N1f.

(A.9)
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Taking the canonical basis of
∧d

C
2d, f is the last vector of the basis and detXn+1 grows

like the bottom-right coefficient of the product of theNi, therefore, its growth rate is bounded

above by the Lyapunov exponent of the Ni.

lim sup
n→∞

1

n
E log |detXn+1| ≤ γ(N). (A.10)

Using (A.8), it is enough to prove the opposite inequality to conclude the proof. The end of

the proof is inspired by [20].

Lemma A.11. If there exist a basis of
∧d

C
2d, say (gi)i∈I , such that for all i, j ∈ I, almost

surely,

lim inf
n→∞

1

n
log
∣∣∣g†jNn · · ·N1gi

∣∣∣ ≤ lim inf
n→∞

1

n
log |detXn+1| , (A.12)

then, almost surely,

γ(N) ≤ lim inf
n→∞

1

n
log |detXn+1| .

Let us first prove the lemma.

Proof: For any finite basis S1 and S2 in a vector space, we have for all A

sup
α∈S1,β∈S2

∣∣α†Aβ
∣∣ ≥ c ‖A‖

for some universal c. Thus, (A.12) shows that, almost surely,

γ(N) ≤ lim inf
n→∞

1

n
log |detXn+1| .

To finish the proof of Lemma A.6, we denote by {e1, . . . , e2d} the canonical basis of C
2d

and we apply the lemma with the following spanning system of
∧d

C
2d

S , {(e1 + ẽ1) ∧ · · · ∧ (ed + ẽd) , ẽ1, . . . , ẽd ∈ vect(ed+1, . . . , e2d)}.

For a choice of e#1 , . . . , e
#
d , such that for 1 ≤ j ≤ d, e#j =

∑d
i=1 αi,jed+i, we define E# the

d× d matrix of the αi,j. We get

g1 , (e1 + e#1 ) ∧ · · · ∧ (ed + e#d ) =
d∧

 Idd

E#


 .
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In the same way, for a choice of eb
1 . . . , e

b
d ∈ vect(ed+1, . . . , e2d), we define Eb, a d×d matrix,

such that

g2 , (e1 + eb
1) ∧ · · · ∧ (ed + eb

d) =
d∧

 Idd

Eb


 .

We define two new sequences (Ãi) and (B̃i) such that

• For 2 ≤ i ≤ n− 1, B̃i = Bi,

• For 1 ≤ i ≤ n, Ãi = Ai,

• B̃1 = −A†
2E

#,

• B̃n = An

(
Eb
)†

,

• Ãn+1 = −A†
n.

We also define G̃dn, M̃i, Ñi and X̃i using
(
Ãi

)
i∈N∗

and
(
B̃i

)
i∈N∗

. Then,

f †ÑnÑn−1 . . . Ñ1f = f †

d∧

 0d Idd

Idd

(
Eb
)†


 Ñn−1 . . . Ñ2

d∧

 0d Idd

−T1T
−1†
2 E#


 f

= g†2Ñn−1 . . . Ñ2g1.

Therefore, to prove the condition (A.12), it is enough to prove that, almost surely,

lim sup
n→∞

(
1

n
log
∣∣∣det G̃dn

∣∣∣− 1

n
log |detGdn|

)
≤ 0.

We now use perturbation theory techniques. Indeed, we denote by ρ the spectral radius of

a matrix, i.e. its largest eigenvalue in absolute value. Recall that for a matrix S, ρ(S) ≤
√
ρ(SS†) and that

√
ρ(SS†) is a sub-multiplicative norm. As a consequence, for positive

Hermitian matrices, the spectral radius is sub-multiplicative. Moreover, we denote by ‖·‖F

the Fröbenius norm. Recall that
√
ρ(SS†) ≤ ‖S‖F . We will also use the fact that the

eigenvalues of Gdn are bounded away from 0 by µ = λ if λ > 0 or µ = |ℑλ| if λ /∈ R.

Moreover, we define Udn = G̃dn −Gdn, which has rank less than or equal to 2d.

1

n
log
∣∣∣det G̃dn

∣∣∣− 1

n
log |detGdn| =

1

n
log |det(Gdn + Udn)| − 1

n
log |detGdn|

=
1

n
log
∣∣det(Iddn +G−1

dnUdn)
∣∣ .

G−1
dnUdn has rank at most 2d, therefore,

1

n
log
∣∣∣det G̃dn

∣∣∣− 1

n
log |detGdn| ≤

2d

n
log
∣∣1 + ρ(G−1

dnUdn)
∣∣
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≤ 2d

n
log

∣∣∣∣1 +

√
ρ(G−1

dnUdnU
†
dnG

−1†
dn )

∣∣∣∣

≤ 2d

n
log

∣∣∣∣1 +

√
ρ(G−1†

dn G−1
dn )

√
ρ(UdnU

†
dn)

∣∣∣∣

≤ 2d

n
log

∣∣∣∣1 +
1

µ

√
ρ(UdnU

†
dn)

∣∣∣∣

≤ 2d

n
log

∣∣∣∣1 +
1

µ
‖Udn‖F

∣∣∣∣ .

Moreover,

‖Udn‖2
F =

∥∥∥S1 + λ Idd +T †
2E

#
∥∥∥

2

F
+
∥∥Sn + λ Idd +T †

nE
b
∥∥2

F
,

hence, with the integrability condition, supn E log
∣∣∣1 + 1

µ
‖Udn‖F

∣∣∣
1+ε

< ∞. By Tchebicheff

inequality, for a given η > 0,

P

(
1

n
log

∣∣∣∣1 +
1

µ
‖Udn‖F

∣∣∣∣ > η

)
≤

supn E log
∣∣∣1 + 1

µ
‖Udn‖F

∣∣∣
1+ε

(ηn)1+ε
.

The RHS is a summable series, therefore, by Borel-Cantelli Lemma, almost surely,

lim sup
n→∞

(
1

n
log
∣∣∣det G̃dn

∣∣∣− 1

n
log |detGdn|

)
≤ 0.

This finishes the proof of Lemma A.6.

Remark A.13. By the same kind of perturbation theory techniques, we can show that in

order to study the limit in m of Capm(ρ), it is enough to study the sequence every d steps.

For a hermitian matrix h whose ordered eigenvalues are α1, . . . , αn, we denote by the

spectral distribution of h, the measure

1

n

n∑

i=1

δαi
,

where δx is a Dirac measure at x.

The following technical lemma will be used several times to prove domination properties.

Lemma A.14. Denote by µn the spectral distribution of HdnH
†
dn. Consider the following

diagonal by blocks matrix:

Fdn ,




2B1 0d · · · 0d

0d 2B2

. . .
...

...
. . .

. . . 0d

0d · · · 0d 2Bn



,
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and denote by µ̃n its spectral distribution. Then, for any non-decreasing function f ,
∫
fdµn ≤

∫
fdµ̃n.

Proof: Denote

H̃dn =




C1 −D†
2 0d,dK · · · 0d,dK

0d,dK C2 −D†
3

. . .
...

...
. . .

. . .
. . . 0d,dK

0d,dK · · · 0d,dK Cn −D†
n+1



,

then Fdn = HdnH
†
dn + H̃dnH̃

†
dn. Since H̃dnH̃

†
dn is a non-negative Hermitian matrix, by Weyl’s

inequalities, for all 1 ≤ i ≤ dn, the i-th eigenvalue of HdnH
†
dn is less or equal than the i-th

eigenvalue of Fdn.

First note that (1/d)E log |det(C2D2)| = Eπ log
∣∣∣ζ0ζ†d

∣∣∣. From Lemma A.14, we deduce that

for λ > 0,
1

dn
log |detGdn| ≤ log 2 +

1

n

n∑

i=1

log |detBi| .

Therefore by (H2) and Hadamard’s inequality, (1/dn) log |detGdn| is a uniformly integrable

sequence and the almost sure convergence of Lemma A.6 implies point 1 of Theorem III.1.

3) Proof of Theorem III.1.2: We begin by a few notations. For λ /∈ R, set

f(λ) = lim
n→∞

1

dn
log
∣∣∣det

(
HdnH

†
dn + λ Iddn

)∣∣∣ ,

which exists by Lemma A.6. The existence of the weak limit of µn and the fact that it is

non random is a classical fact of the random Schrödinger operators theory, see for example

[16, Theorem 4.4]. For λ ∈ C, we set (if it exists)

g(λ) =

∫
log |x+ λ| dµ(x).

We emphasize that since log is not a bounded function, we cannot directly deduce from

Lemma A.6 and the weak convergence of the µn to µ that for λ /∈ R, f(λ) = g(λ).

Finally, for λ ∈ C, define

h(λ) = Eπ log
∣∣∣ζ0ζ†d

∣∣∣+ 1

d
γ (N) .

The following lemma is a generalization of the Thouless formula for the strip proved in [20].
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Lemma A.15. Assume (H1), (H2) and (H3). For all λ ∈ C, g(λ) = h(λ).

The proof of this result is done in the frame of channel transfer matrices but one does

not need to assume that the Ai and the Bi are upper triangular by blocks, one just need

instead of (H3) the hypothesis that almost surely, AiBi is invertible.

Proof: The proof goes along the following lines, we first prove that for λ /∈ R, g(λ)

exists and equals to h(λ), then, following [21] we argue that g and h are two subharmonic

functions equal everywhere except a set of 0 measure, therefore they are equal everywhere.

Step 1: Let us first prove that for λ /∈ R, g(λ) is well defined. log |x+ λ| is bounded

away from −∞, therefore, g(λ) exists although it may be ∞. For R ≥ 0, let us denote

by logR the function t → log(t) ∧ R. By monotone convergence, it is enough to prove

that
∫

logR |x+ λ| dµ(x) is bounded uniformly in R. Since x → logR |x+ λ| is a bounded

continuous function,
∫

logR |x+ λ| dµ(x) = lim
n→∞

∫
logR |x+ λ| dµn(x).

By Lemma A.14, and using that
∫

logR |x+ λ| dµn(x) ≤
∫

log |x+ λ| dµn(x),

lim
n→∞

∫
logR |x+ λ| dµn(x) ≤ lim

n→∞

∫
log |x+ λ| dµ̃n(x) = E log |detB1| <∞,

where the last inequality comes from (H2) and Hadamard’s inequality. Finally, we get that

for λ /∈ R,

g(λ) ≤ E log |detB1| <∞.

Step 2: Let us prove that for λ /∈ R, f(λ) = g(λ). Applying Lemma A.14 one shows that

for λ /∈ C, the sequence
(∫

log |x+ λ| dµn(x)
)

n∈N∗ is uniformly integrable and therefore,

f(λ) = lim
n→∞

E

∫
log |x+ λ| dµn(x).

By Lemma A.14, for R ≥ 0,

E

∫

x≥R

log |x+ λ| dµn(x) ≤ E

∫

x≥R

log |x+ λ| dµ̃n(x)

= E

∫

x≥R

log |x+ λ| dµ̃1(x).

Therefore, for n ∈ N
∗ and R ≥ 0,

∣∣∣∣E
∫

log |x+ λ| dµn(x) − g(λ)

∣∣∣∣ ≤
∣∣∣∣E
∫

x≥R

log |x+ λ| dµ̃1(x)

∣∣∣∣
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+

∣∣∣∣E
∫

logR |x+ λ| dµn(x) − E

∫
logR |x+ λ| dµ(x)

∣∣∣∣

+

∣∣∣∣E
∫

x≥R

log |x+ λ| dµ(x)

∣∣∣∣ .

We first fix R ≥ 0 such that the first and the third terms are arbitrary small and then, by

weak convergence, the second term goes to 0 as n goes to infinity. Therefore, for λ /∈ R,

f(λ) = g(λ) and by Lemma A.6, g(λ) = h(λ).

Step 3: Let us prove that g and h are subharmonic on C. See [21] for the relevant

definitions. Since for i ∈ N
∗, Ni(λ) is an entire function of λ, h is subharmonic ([21]).

Let us prove that g is subharmonic. For R ≥ 0, set

gR(λ) ,

∫
(log |x+ λ| ∨ −R) dµ(x).

By Lemma A.14, gR a continuous function. As R goes to infinity, gR is a decreasing sequence

of functions converging point wise to g, therefore, g is subharmonic.

The functions g and h are subharmonic on C and equal on C−R, therefore, g and h are

equal on C.

To finish the proof of point 2 of Theorem III.1, let us prove that h(λ) converges to h(0)

when λ goes to 0 in R
+. Note that E log |detM1| = 0, therefore, E log |detN1| = 0. By

(A.4), h(0) ≥ Eπ log
∣∣∣ζ0ζ†d

∣∣∣, therefore, using Lemma A.14 and the fact that for λ, x ∈ R
+,

log |x+ λ| ≥ log |x|, we get the desired result.

B. Other proofs

1) Proof of Proposition IV.1: We use the notation of Subsection A2. We define xi
j for

i ∈ N and 1 ≤ j ≤ d such that the the element at the position (s, t) of Xi is x
(i−1)d+s
t .

Recall that GdnUdn = Ldn. Therefore, for a given j such that 1 ≤ j ≤ d, we get the following

characterization of the sequence (xi
j)i. x

i
j = 0 for −d+1 ≤ i ≤ 0, xi

j = δi,j for 1 ≤ i ≤ d and

for i ≥ d+ 1,
i+d∑

l=i−d

ζ̃i,lx
l
j = 0. (A.16)

Therefore, 


xi−d+1
j

...

xi+d
j


 = mi




xi−d
j

...

xi+d−1
j


 .
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Moreover,

Vi+1 =




x
(i−1)d+1
1 · · · x

(i−1)d+1
d

...
...

x
(i+1)d
1 · · · x

(i+1)d
d




= mid · · ·m(i−1)d+1




x
(i−2)d+1
1 · · · x

(i−2)d+1
d

...
...

xid
1 · · · xid

d




= mid · · ·m(i−1)d+1Vi.

Therefore, together with A.7, it proves Proposition IV.1.

2) Proof of Proposition IV.2.2: In order to prove point 2 of Proposition IV.2, we first

prove the following lemma:

Lemma A.17. For all i ≥ d+1, there exist matrices ps
1(i), p

s
2(i) for 1 ≤ s ≤ d and δs(i) for

1 ≤ s ≤ d + 1 such that δ1(i) = µ(i), δs(i) = δs(ζ i, . . . , ζ i+d−s+1), ps
1(i) = ps

1
(ζ i, . . . , ζ i+d−s)

and ps
2(i) = ps

2
(ζ i+d−s), where δs, ps

1
and ps

2
are deterministic functions. We have moreover

the two relationships

δs(i) = ps
2(i+ 1)ps

1(i). (A.18)

δs+1(i) = ps
1(i)p

s
2(i). (A.19)

Finally, for i ≥ d+ 1, δi = δd+1(i)

Proof: For i ≥ d+ 1 and 1 ≤ s ≤ d, define

• for s ≤ l ≤ 2d,

ai,s
l = −λ1(l=d+s) −

(l−s)∧(d−s)∑

t=(l−s−d)∨0

ζi,i+tζ
†
i+l−d−s,i+t,

• for 1 ≤ l ≤ d, αi−s
l = −ζ†i−s+l−1,i+d−s/ζ

†
i+d−s,i+d−s,

• for 1 ≤ l ≤ s, bi−s
l = −ζi−s+l,i+d−s/ζi−s,i+d−s,

• βi−s=1/ζi−s,i+d−sζ
†
i+d−s,i+d−s.
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Then

ps
1(i) =




Ids−1 0s−1,2d−s+1

01,s−1 ai,s
s · · · ai,s

2d

02d−s,s Id2d−s




and

ps
2(i) =




bi−s
1

...

bi−s
s−1

02d−s,1

Id2d−1

βi−s 01,d−1 αi−s
1 · · · αi−s

d




.

Finally, for 2 ≤ s ≤ d,

δs(i) =




bi−s+1
1

...

bi−s+1
s−1

02d−s,1

βi−s+1

Ids−2 0s−2,2d−s+1

02d−s+2,s−2

ai,s
s · · · · · · · · · · · · · · · · · · ai,s

2d

02d−s,1 Id2d−s

01,d−s+1 αi−s+1
1 · · · αi−s+1

d




.

A (straight forward yet tedious) verification shows that (A.18) and (A.19) are satisfied.
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Note that in the proof, we make a choice of particular ps
1
, ps

2
and δs. Point 2 of Proposition

IV.2 is a direct consequence of the following lemma

Lemma A.20. For all i ∈ N
∗,

∆i = δid · · · δ(i−1)d+1.

Therefore,

Ξi = ξid · · · ξ(i−1)d+1.

Proof: With the matrices of Lemma A.17, we can transform the product of the µi using

alternatively (A.18) and (A.19).

Mi = P2(i+ 1)P1(i)

= P2(i+ 1)∆(i) (P2(i))
−1 ,

µid · · ·µ(i−1)d+1

= δ1(id) · · · δ1((i− 1)d+ 1)

= p1
2(id+ 1)p1

1(id)p
1
2(id)p

1
1(id− 1) · · · p1

2((i− 1)d+ 2)p1
1((i− 1)d+ 1)

= p1
2(id+ 1)δ2(id) · · · δ2((i− 1)d+ 1)

(
p1

2((i− 1)d+ 1)
)−1

= p1
2(id+ 1) · · · pd

2(id+ 1)δd+1(id) · · · δd+1((i− 1)d+ 1)
[
p1

2((i− 1)d+ 1) · · · pd
2((i− 1)d+ 1)

]−1
,

where the last equality is proved by induction.

Therefore

P2(i+ 1)∆(i) (P2(i))
−1 =

p1
2(id+ 1) · · · pd

2((id+ 1))δid · · · δ(i−1)d+1

(
p1

2((i− 1)d+ 1) · · · pd
2((i− 1)d+ 1)

)−1

and
[
p1

2(id+ 1) · · · pd
2((id+ 1))

]−1
P2(i+ 1) =

δid · · · δ(i−1)d+1

[
p1

2((i− 1)d+ 1) · · · pd
2((i− 1)d+ 1)

]−1
P2(i) (∆(i))−1

(A.21)

At this point, we emphasize that their exist a deterministic matrix valued function ∆ such

that for all i ∈ N
∗, ∆i = ∆

(
ζd(i−1)+1, . . . , ζdi

)
. In the same way, we define P 1 and P 2. The
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RHS of (A.21) is a function of ζ(i−1)d+1, . . . , ζ id whereas the LHS is a matrix valued function

of ζ id+1, . . . , ζd(i+1), thus, both functions are constant. Therefore, there exist a matrix I such

that for all i ∈ N
∗

P2(i+ 1) = p1
2(id+ 1) · · · pd

2((id+ 1))I. (A.22)

Therefore

∆i = I−1δid · · · δ(i−1)d+1I.

Note that (A.22) can be rephrased in the following way. P 2 and p1
2
· · · pd

2
are equal up to

multiplication by a constant to I. Therefore, to prove that I = Id2d for the choice for ps
1
,

ps
2

and δs that we have made in Lemma A.17, it is enough to prove that for one given value

of ζ1, . . . , ζd,

P 2

(
ζ1, . . . , ζd

)
= p1

2
(ζd) · · · pd

2
(ζ1).

We will prove it for ζ1 = · · · = ζd = (1, 0, . . . , 0, 1). Indeed,

P 2((1, 0, . . . , 0, 1), . . . , (1, 0, . . . , 0, 1)) =


 0d Idd

Idd − Idd


 .

For 1 ≤ s ≤ d,

ps

2
((1, 0, . . . , 0, 1)) =




02d−1,1 Id2d−1

1 01,d−1 −1 01,d−1



,

Hence, by induction on 1 ≤ t ≤ d, p1
2
((1, 0, . . . , 0, 1)) · · · pt

2
((1, 0, . . . , 0, 1)) =




02d−t,t Id2d−t

Idt 0t,d−t − Idt 0t,d−t



.

Therefore, I = Id2d.
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3) Proof of Corollary V.2: Let us compute E log ‖nd+1‖. To that extent, we define (e1, . . . , e2d)

the canonical basis of C
2d and we take (ei1 ∧ · · · ∧ eid |1 ≤ i1 < · · · < id ≤ 2d) as a basis

of C(2d

d ). For given 1 ≤ i1 < · · · < id ≤ 2d and 1 ≤ j1 < · · · < jd ≤ 2d the coefficient of

nd+1(ei1 ∧ · · · ∧ eid) in ej1 ∧ · · · ∧ ejd
(we denote by a its absolute value) is the determinant

of the d× d sub-matrix of µd+1 obtained by taking the lines 1 ≤ j1 < · · · < jd ≤ 2d and the

columns 1 ≤ i1 < · · · < id ≤ 2d; we denote the latter sub-matrix by D. Denote by ζ̃i,l the

coefficient at position (i, l) of Gdn.

• If 1 ≤ j1 < · · · < jd ≤ 2d− 1,

– if for all 1 ≤ s ≤ d, is = js + 1, then a = 1;

– otherwise, there exists a line of zeros in D, therefore, a = 0.

• If 1 ≤ j1 < · · · < jd−1 ≤ 2d− 1, and jd = 2d,

– if there exists 1 ≤ s0 ≤ d − 1 such that for all 1 ≤ s < s0, is = js + 1, for all

s0 < s ≤ d, is = js−1 + 1 and js0
= l 6∈ {j1, . . . , jd−1}, then a =

∣∣∣ζ̃d+1,l/ζ̃d+1,2d+1

∣∣∣;
– otherwise, there exists a line of zeros in D, therefore, a = 0.

We now count how many times each value appears as the absolute value of a coefficient

of nd+1.

• To pick 1, one needs to pick d lines among the first 2d− 1 lines of µd+1 and then, one

has no choice for the columns:
(
2d−1

d

)
choices.

• To pick
∣∣∣ζ̃d+1,1/ζ̃d+1,2d+1

∣∣∣, one needs to pick d−1 lines among the first 2d−1 lines of µd+1

and then, one has no choice for the remaining line and the columns:
(
2d−1
d−1

)
=
(
2d−1

d

)

choices.

• To pick
∣∣∣ζ̃d+1,l/ζ̃d+1,2d+1

∣∣∣ for a given 2 ≤ l ≤ 2d, one needs to pick d − 1 lines among

the first 2d− 1 lines of µd+1 and one cannot pick the (k − 1)-th line. Then one has no

choice for the remaining line and the columns:
(
2d−2
d−1

)
choices.

We factorize the term 1/
∣∣∣ζ̃d+1,2d+1

∣∣∣, whose log-expectation cancels out with Eπ0,πd
log
∣∣∣ζ0ζ†d

∣∣∣
and get the claimed bound.

4) Proof of Proposition VI.2: According to Proposition IV.4,

L∞ =
−1

log 2

[
log ρ+ E log

∣∣∣ζ0ζ†d
∣∣∣+

max
(
E log

∣∣detψ1
1

∣∣ ; E log
∣∣detψ2

1

∣∣ ; γ(ψ1) + γ(ψ2)
) ]
,
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where

ψ1
i =


− βbi

αai
1

− ci

αai
0


 and ψ2

i =


−βb†i

c†i
−αa†

i

c†i

1 0


 .

Therefore,

L∞ =
−1

log 2
max

(
2E log |a1| ; 2E log |a1| + 2 logα ;

2E log |a1| + logα+ γ(ψ1) + γ(ψ2)
)
.

Since α ≤ 1, logα ≤ 0, therefore

L∞ =
−1

log 2
max

(
2E log |a1| ; 2E log |a1| + γ

(
ψ̃1
)

+ γ(ψ2)
)
, (A.23)

where

ψ̃1
i = αψ1

i =


−βbi

ai
α

− ci

ai
0


 .

In order to finish the proof, we will construct of family of functions (fp)p∈N∗ from (0, 1]×[0, 1]

to R such that for all p ∈ N
∗, fp(α, β) is non-decreasing in α and in β and such that for all

p ∈ N
∗ and for all (α, β) ∈ (0, 1] × [0, 1],

γ
(
ψ̃1
)

+ γ(ψ2) ≤ fp(α, β).

We define D in the following way:

D ,
⋃

p∈N∗

{(α, β) ∈ (0, 1] × [0, 1] ; fp(α, β) ≤ 0}.

Since for all p ∈ N
∗, fp(α, β) is non-decreasing in α and in β, we get that for all (x, y) ∈ D,

(0, x) × [0, y) ⊂ D. Moreover, by (A.23), if (α, β) ∈ D, then (VI.3) is verified.

Fix p ∈ N
∗. First note that by (A.3),

γ
(
ψ̃1
)

+ γ(ψ2) ≤ 1

p

(
E log

∥∥∥ψ̃1
p · · · ψ̃1

1

∥∥∥+ E log
∥∥ψ2

p · · ·ψ2
1

∥∥
)
.

Recall that we use the Fröbenius norm on matrices. Denote φ1(α, β) = ψ̃1
p · · · ψ̃1

1 and

φ2(α, β) = ψ2
p · · ·ψ2

1. Note that the coefficients of φ1(α, β) and φ2(α, β) are polynomials in

α and β. The function 1/p (E log ‖φ1(α, β)‖ + E log ‖φ2(α, β)‖) would be a good candidate

for fp but it is not non-decreasing in α and β, therefore, we have to modify it slightly.
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Consider P a polynomial in α and β,

P (α, β) =
n∑

i,j=1

θi,jα
iβj.

Define the polynomial |P | in the following way

|P | (α, β) =
n∑

i,j=1

|θi,j|αiβj.

By the triangle inequality, for all (α, β) ∈ (0, 1] × [0, 1], |P (α, β)| ≤ |P | (α, β). Moreover,

|P | (α, β) is non decreasing for (α, β) ∈ (0, 1] × [0, 1].

Define the matrices |φ1| (α, β) and |φ2| (α, β) in the following way.

For i, j, k = 1, 2, set
∣∣φk
∣∣
i,j

=
∣∣φk

i,j

∣∣. Then,

∥∥φ1(α, β)
∥∥ ≤

∥∥ ∣∣φ1
∣∣ (α, β)

∥∥ and
∥∥φ2(α, β)

∥∥ ≤
∥∥ ∣∣φ2

∣∣ (α, β)
∥∥ .

Moreover ‖ |φ1| (α, β)‖ and ‖ |φ2| (α, β)‖ are non decreasing for (α, β) ∈ (0, 1]× [0, 1]. Thus,

we conclude the proof by defining

fp =
1

p

(
E log

∥∥ ∣∣φ1
∣∣ (α, β)

∥∥+ E log
∥∥ ∣∣φ2

∣∣ (α, β)
∥∥) .

Remark A.24. Note that if we define

∣∣∣ψ̃1
i

∣∣∣ =




β|bi|
|ai|

α

|ci|
|ai|

0


 and

∣∣ψ2
i

∣∣ =




β|bi|
|ci|

α|ai|
|ci|

1 0


 ,

then

fp = 1/p
(
E log

∥∥∥
∣∣∣ψ̃1

p

∣∣∣ · · ·
∣∣∣ψ̃1

1

∣∣∣
∥∥∥+ E log

∥∥ ∣∣ψ2
p

∣∣ · · ·
∣∣ψ2

1

∣∣ ∥∥
)
.

We use that fact in the numerical computation of the functions fp.

C. Exterior product

In this section we give the material on exterior products. We provide only the properties

relevant to the article, see [22, Chapter XVI.6-7] and [13, Chapter A.III.5] for more details.

Proposition A.25. For 0 ≤ k ≤ p, the exterior product of k vectors in C
p, v1, . . . , vk is

denoted by v1∧· · ·∧vk. Is is a vector of the exterior product of degree k of C
p that we denote

by
∧k

C
p.
∧k

C
p is a C-vector space of dimension

(
k
p

)
.
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The exterior product v1, . . . , vk is a multi-linear (i.e. linear in every vi, 1 ≤ i ≤ k) and

anti-symmetric (i.e. vσ(1) ∧ · · · vσ(k) = ε(σ) for σ permutation of {1, . . . , k} and ε(σ) its

signature) function.

If e1, . . . , ep is a basis of C
p, then (ei1 ∧ · · · ∧ eik |1 ≤ i1 < · · · < ik ≤ p) is a basis of

∧k
C

p.

The later is called the canonical basis of
∧k

C
p if e1, . . . , ep is the canonical basis of C

p.

If M is a matrix of size p× q, the exterior product of M that we denote by
∧k M is a map

from
∧k

C
q to

∧k
C

p such that

k∧
M (v1 ∧ · · · ∧ vk) = Mv1 ∧ · · · ∧Mvk.

Finally, for two matrices M and N ,
∧k (MN) =

∧k (M)
∧k (N).

Proposition A.26. If X is a square matrix of size p, then

p∧
X = detX.

Moreover

det

p∧
X = (detX)p

D. Capacity of the non-fading channels

In this Section, we give expressions of the limiting sum-rate per-cell capacity for the Soft-

Handoff model and the Wyner model (both symmetric and asymmetric) for the non-fading

channels. Those expressions are consequences of results on Toeplitz matrices [23]. See [3] for

an example of derivation.

1) The Soft-Handoff model: We assume that d = 1, and for i ∈ N
∗, ζi,i+1 = α ∈ [0, 1] and

ζi,i = 1. Then, the limiting per-cell sum-rate capacity is

Cap(ρ) = log


1 +Kρ (1 + α2) +

√
1 + 2Kρ (1 + α2) +K2ρ2 (1 − α2)2

2


 .

2) The Wyner model:

The symmetric setting: We assume that d = 2, and for i ∈ N
∗, ζi,i+2 = ζi,i = α ∈ [0, 1]

and ζi,i+1 = 1. Then, the limiting per-cell sum-rate capacity is

Cap(ρ) =

∫ 1

0

log
(
1 +Kρ (1 + 2α cos(2πf))2) df.
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The asymmetric setting: We assume that d = 2, and for i ∈ N
∗, ζi,i+2 = ζi,i+1 = α ∈

[0, 1] and ζi,i = 1. Then, the limiting per-cell sum-rate capacity is

Cap(ρ) =

∫ 1

0

log
(
1 +Kρ

(
1 + 2α2 + 2α(1 + α) cos(2πf) + 2α cos(4πf)

))
df.
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[14] J. E. Cohen, H. Kesten, and C. M. Newman, “Oseledec’s multiplicative ergodic theorem: a proof,” in Random

matrices and their applications (Brunswick, Maine, 1984), vol. 50 of Contemp. Math., pp. 23–30, Providence,

RI: Amer. Math. Soc., 1986.

[15] F. Ledrappier, “Quelques propriétés des exposants caractéristiques,” in École d’été de probabilités de Saint-Flour,
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Fig. 5. Region where (VI.3) holds for Rayleigh fading.
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