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Abstract

We study the maximal displacement of branching random walks in a class of time inho-
mogeneous environments. Specifically, binary branching random walks with Gaussian
increments will be considered, where the variances of the increments change over time
macroscopically. We find the asymptotics of the maximum up to an OP (1) (stochasti-
cally bounded) error, and focus on the following phenomena: the profile of the variance
matters, both to the leading (velocity) term and to the logarithmic correction term,
and the latter exhibits a phase transition.
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1 Introduction

One dimensional branching random walks and their maxima have been studied mostly in
space-time homogeneous environments (deterministic or random). For work on the determin-
istic homogeneous case of relevance to our study we refer to [6] and the recent [1], [2] and [29].
For the random environment case, a sample of relevant papers is [15, 17, 21, 22, 25, 26, 27].
As is well documented in these references, under reasonable hypotheses, in the homoge-
neous case the maximum grows linearly, with a logarithmic correction, and is tight around
its median.

Branching random walks are also studied under some space inhomogeneous environments.
A sample of those papers are [4, 10, 12, 16, 18, 20, 23].

Recently, Bramson and Zeitouni [8] and Fang [13] showed that the maxima of branching
random walks, recentered around their median, are still tight in time inhomogeneous envi-
ronments satisfying certain uniform regularity assumptions, in particular, the laws of the
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2 Branching Random Walks in Time Inhomogeneous Environments

increments can vary with respect to time and the walks may have some local dependence.
A natural question is to ask, in that situation, what is the asymptotic behavior of the max-
ima. Similar questions were discussed in the context of branching Brownian motion using
PDE techniques, see e.g. Nolen and Ryzhik [28], using the fact that the distributions of the
maxima satisfy the KPP equation whose solution exhibits a traveling wave phenomenon.

In all these models, while the linear traveling speed of the maxima is a relatively easy
consequence of the large deviation principle, the evaluation of the second order correction
term, like the ones in Bramson [6] and Addario-Berry and Reed [1], is more involved and
requires a detailed analysis of the walks; to our knowledge, it has so far only been performed
in the time homogeneous case.

Our goal is to start exploring the time inhomogeneous setup. As we will detail below,
the situation, even in the simplest setting, is complex and, for example, the order in which
inhomogeneity presents itself matters, both in the leading term and in the correction term. In
order to best describe this phenomenon without the burden of inessential technical details, we
focus on the simplest case of binary Gaussian branching random walks where the diffusivity
of the particles takes two distinct values as a function of time.

We now describe the setup in detail. For σ > 0, let N(0, σ2) denote the normal distri-
butions with mean zero and variance σ2. Let n be an integer, and let σ2

1 , σ
2
2 > 0 be given.

We start the system with one particle at location 0 at time 0. Suppose that v is a particle
at location Sv at time k. Then v dies at time k + 1 and gives birth to two particles v1
and v2, and each of the two offspring ({vi, i = 1, 2}) moves independently to a new location
Svi with the increment Svi − Sv independent of Sv and distributed as N(0, σ2

1) if k < n/2
and as N(0, σ2

2) if n/2 ≤ k < n. Let Dn denote the collection of all particles at time n.
For a particle v ∈ Dn and i < n, we let vi denote the ith level ancestor of v, that is the
unique element of Di on the geodesic connecting v and the root. We study the maximal
displacement Mn = maxv∈Dn Sv at time n, for n large.1

The analysis we present should extend in a straightforward manner to a wide class of
walks with non-Gaussian increments and to more general branching mechanisms. Concern-
ing the former, some of the Gaussian computations need to be replaced by fine asymptotics
in the large deviation regime; these require assumptions on the increments (examples where
the correction term is not logarithmic are known even in the homogeneous bounded case,
see [7]) and a fair amount of technical work, especially in arguments involving conditioning.
Concerning other branching mechanisms, the analysis in the k-ary and Galton-Watson se-
tups proceeds as in the binary case. More complicated is the situation where either spatially
inhomogeneous branching mechanisms or increment distributions are present, see e.g. [5];
estimating the correction term in the latter setup is challenging and outside the scope of our
methods.

In order to describe the results in a concise way, we recall the notation OP (1) for
stochastic boundedness. That is, a sequence of random variables {Rn}n is said to sat-
isfy Rn = OP (1) if it is tight, i.e. if for any ε > 0 there exists an M = M(ε) such that
P (|Rn| > M) < ε for all n.

An interesting feature of Mn is that the asymptotic behavior depends on the order
relation between σ2

1 and σ2
2 . That is, while

Mn =
(√

2 log 2 σeff
)
n− β

σeff√
2 log 2

log n+OP (1) (1.1)

is true for some choice of σeff and β, σeff and β take different expressions for different
orderings of σ1 and σ2. Note that (1.1) is equivalent to saying that the sequence {Mn −
Med(Mn)}n is tight and

Med(Mn) =
(√

2 log 2 σeff
)
n− β

σeff√
2 log 2

log n+O(1),

1Since one can understand a branching random walk as a ‘competition’ between branching and random
walk, one may get similar results by fixing the variance and changing the branching rate with respect to
time.
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Branching Random Walks in Time Inhomogeneous Environments 3

where Med(X) = sup{x : P (X ≤ x) ≤ 1
2} is the median of the random variable X. In the

following, we will use superscripts to distinguish different cases, see (1.2), (1.3) and (1.4)
below.

A special and well-known case is when σ1 = σ2 = σ, i.e., all the increments are i.i.d.. In
that case, the maximal displacement is described as follows:

M=
n =

(√
2 log 2 σ

)
n− 3

2
σ√

2 log 2
log n+OP (1); (1.2)

the proof can be found in [1], and its analog for branching Brownian motion can be found
in [6] using probabilistic techniques (see also [29] for a modern streamlined proof) and [24]
using PDE techniques. This homogeneous case corresponds to (1.1) with σeff = σ=

eff := σ

and β = β= := 3
2 . In this paper, we deal with the extension to the inhomogeneous case.

The main results are the following two theorems.
Theorem 1.1. When σ2

1 < σ2
2 (increasing variances), the maximal displacement is

M↑n =
(√

(σ2
1 + σ2

2) log 2
)
n−

√
σ2

1 + σ2
2

4
√

log 2
log n+OP (1), (1.3)

which is of the form (1.1) with σeff = σ↑eff :=
√

σ2
1+σ2

2
2 and β = β↑ := 1

2 .

Theorem 1.2. When σ2
1 > σ2

2 (decreasing variances), the maximal displacement is

M↓n =
√

2 log 2(σ1 + σ2)
2

n− 3(σ1 + σ2)
2
√

2 log 2
log n+OP (1), (1.4)

which is of the form (1.1) with σeff = σ↓eff := σ1+σ2
2 and β = β↓ := 3.

For comparison purpose, it is useful to introduce the model of 2n independent (inhomo-
geneous) random walks with centered independent Gaussian variables, with variance profile
as above. Denote by M ind

n the maximal displacement at time n in this model. Because of
the complete independence, it can be easily shown that

M ind
n =

(√
(σ2

1 + σ2
2) log 2

)
n−

√
σ2

1 + σ2
2

4
√

log 2
log n+OP (1) (1.5)

for all choices of σ2
1 and σ2

2 . Thus, in this case, σeff = σind
eff :=

√
(σ2

1 + σ2
2)/2 and β = βind :=

1/2. Thus, the difference between M=
n and M ind

n when σ2
1 = σ2

2 lies in the logarithmic
correction. As commented (for branching Brownian motion) in [6], the different correction
is due to the intrinsic dependence between particles coming from the branching structure in
branching random walks.

Another related quantity is the sub-maximum obtained by a greedy algorithm, which
only considers the maximum over all descendants of the maximal particle at time n/2.
Applying (1.2), we find that the output of such algorithm is(√

2 log 2σ1
n

2
− 3

2
σ1√

2 log 2
log

n

2

)
+
(√

2 log 2σ2
n

2
− 3

2
σ2√

2 log 2
log

n

2

)
+OP (1)

=
√

2 log 2(σ1 + σ2)
2

n− 3(σ1 + σ2)
2
√

2 log 2
log n+OP (1). (1.6)

Comparing (1.6) with the theorems, we see that the greedy algorithm has σeff = σgr

eff = σ↓eff
and β = βgr = β↓. That is, in the case of decreasing variances, the greedy algorithm yields
the maximum up to an OP (1) error; this is not the case when variances are either constant
or increasing (compare with (1.2) and (1.3)).

A few remarks are now in order.
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4 Branching Random Walks in Time Inhomogeneous Environments

1. When the variances are increasing, M↑n is asymptotically (up to OP (1) error) the same
as M ind

n , which is exactly the same as the maximum of independent homogeneous
random walks with effective variance σ2

1+σ2
2

2 .
2. When the variances are decreasing, M↓n shares the same asymptotic behavior with the

sub-maximum (1.6). In this case, a greedy strategy yields the approximate maximum.
3. With the same set of diffusivity constants {σ2

1 , σ
2
2} but different order, M↑n is greater

than M↓n.
4. While the leading order terms in (1.2), (1.3) and (1.4) are continuous in σ1 and σ2 (they

coincide upon setting σ1 = σ2), the logarithmic corrections exhibit a phase transition
phenomenon (they are not the same when we let σ1 = σ2).

We will prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. Before proving
the theorems, we state a tightness result.

Lemma 1.3. The sequences {M↑n −Med(M↑n)}n and {M↓n −Med(M↓n)}n are tight.

This lemma follows from either [8] or [13]. We sketch the proof at the end of the paper.
A remark on notation: throughout, we use C to denote a generic positive constant,

possibly depending on σ1 and σ2, that may change from line to line.

2 Increasing Variances: σ2
1 < σ2

2

In this section, we prove Theorem 1.1. We begin in Subsection 2.1 with a result on
the fluctuation of an inhomogeneous random walk. In the short Subsection 2.2 we provide
large-deviations based heuristics for our results. While these are not used in the actual
proof, these heuristics explain the leading term of the maximal displacement and hint at the
derivation of the logarithmic correction term. The actual proof of Theorem 1.1 is provided
in subsection 2.3.

2.1 Fluctuation of an Inhomogeneous Random Walk

For each n ∈ N, let

Sn(k) =



k∑
i=1

Xi, k ≤ n/2,

n/2∑
i=1

Xi +
k∑

i=n/2+1

Yi, n/2 < k ≤ n.

(2.1)

define an inhomogeneous random walk path up to time n, where Xi ∼ N(0, σ2
1), Yi ∼

N(0, σ2
2), and Xi and Yi are independent. We use the shorthand notation Sn = Sn(n) for

the endpoint of such an inhomogeneous random walk. Define

sk,n(x) =


σ2

1k

(σ2
1 + σ2

2)n2
x, 0 ≤ k ≤ n

2
,

σ2
1
n
2 + σ2

2(k − n
2 )

(σ2
1 + σ2

2)n2
x,

n

2
≤ k ≤ n,

(2.2)

and

fk,n =

{
cfk

2/3, k ≤ n/2,
cf (n− k)2/3, n/2 < k ≤ n,

(2.3)

where cf is some large constant (chosen in Lemma 2.1 below). The following lemma states
that conditioned on {Sn = x}, the path of the walk Sn follows sk,n(x) with fluctuations
bounded by fk,n at level k ≤ n.
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Branching Random Walks in Time Inhomogeneous Environments 5

Lemma 2.1. There exist constants C > 0 and cf > 0 (independent of n) such that

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n|Sn) ≥ C a.s..

Proof. Let S̃k,n = Sn(k)−sk,n(Sn). Then, similar to the continuous time setup of Brownian
bridges, one can check that S̃k,n are independent of Sn. To see this, first note that the
covariance between S̃k,n and Sn is

Cov(S̃k,n, Sn) = ES̃k,nSn − ES̃k,nESn = ES̃k,nSn,

since ESn = 0 and ES̃k,n = 0. Now, for k ≤ n/2,

S̃k,n =
(

1− σ2
1k

(σ2
1 + σ2

2)n2

) k∑
i=1

Xi −
σ2

1k

(σ2
1 + σ2

2)n2

n/2∑
i=k+1

Xi −
σ2

1k

(σ2
1 + σ2

2)n2

n∑
i=n/2+1

Yi.

Expand S̃k,nSn, take expectation, and then all terms vanish except for those containing X2
i

and Y 2
i . Taking into account that EX2

i = σ2
1 and EY 2

i = σ2
2 , one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=
(

1− σ2
1k

(σ2
1 + σ2

2)n2

) k∑
i=1

EX2
i −

σ2
1k

(σ2
1 + σ2

2)n2

n/2∑
i=k+1

EX2
i −

σ2
1k

(σ2
1 + σ2

2)n2

n∑
i=n/2+1

EY 2
i

=
(

1− σ2
1k

(σ2
1 + σ2

2)n2

)
kσ2

1 −
σ2

1k

(σ2
1 + σ2

2)n2
(n/2− k)σ2

1 −
σ2

1k

(σ2
1 + σ2

2)n2
(n/2)σ2

2

= 0. (2.4)

For n/2 < k ≤ n, one can calculate Cov(S̃k,n, Sn) = 0 similarly as follows. First,

S̃k,n =
σ2

2(n− k)
(σ2

1 + σ2
2)n2

n/2∑
i=1

Xi +
σ2

2(n− k)
(σ2

1 + σ2
2)n2

k∑
i=n/2+1

Yi −
(

1− σ2
2(n− k)

(σ2
1 + σ2

2)n2

) n∑
i=k+1

Yi.

Then, expanding S̃k,nSn and taking expectation, one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=
σ2

2(n− k)
(σ2

1 + σ2
2)n2

n/2∑
i=1

EX2
i +

σ2
2(n− k)

(σ2
1 + σ2

2)n2

k∑
i=n/2+1

EY 2
i −

(
1− σ2

2(n− k)
(σ2

1 + σ2
2)n2

) n∑
i=k+1

EY 2
i

=
σ2

2(n− k)
(σ2

1 + σ2
2)n2

(n/2)σ2
1 +

σ2
2(n− k)

(σ2
1 + σ2

2)n2
(k − n/2)σ2

2 −
(

1− σ2
2(n− k)

(σ2
1 + σ2

2)n2

)
(n− k)σ2

2

= 0

Therefore, S̃k,n are independent of Sn since they are Gaussian. Using this independence,

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n|Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n|Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n).

By a calculation similar to (2.4), S̃k,n is a Gaussian sequence with mean zero and variance

kσ2
1

((σ2
1+σ2

2)n−2σ2
1k)

(σ2
1+σ2

2)n
for k ≤ n/2 and (n − k)σ2

2
((σ2

1+σ2)n−2σ2
2(n−k))

(σ2
1+σ2

2)n
for n/2 < k ≤ n. The

above quantity is

1− P (|S̃k,n| > fk,n, for some 0 ≤ k ≤ n) ≥ 1−
n∑
k=1

P (|S̃k,n| > fk,n).
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6 Branching Random Walks in Time Inhomogeneous Environments

Using a standard Gaussian estimate, e.g. [11, Theorem 1.4], the above quantity is at least,

1−
n∑
k=1

c0√
k
e−

f2k,n
k c1 ≥ 1− 2

∞∑
k=1

c0√
k
e−c

2
f c1k

1/3
:= C > 0

where c0, c1 are constants depending on σ1 and σ2, and C > 0 can be realized by choosing
the constant cf large enough. This proves the lemma.

2.2 Sample Path Large Deviation Heuristics

We explain (without giving a proof) what we expect for the order n term of M↑n, by means
of large deviation heuristics. Note that these heuristics apply also to the non-Gaussian setup.
The actual proof of Theorem 1.1 is postponed to the next subsection.

Consider the inhomogeneous random walk Sn(k) as defined in (2.1) and a function φ(t)
defined on [0, 1] with φ(0) = 0. Let s ∈ [0, 1]. A sample path large deviation result, see [9,
Theorem 5.1.2], tells us that the probability for Sbrnc to be roughly φ(r)n for all r ∈ [0, s]
is roughly exp{−nIs(φ)}, where

Is(φ) =
∫ s

0

Λ∗r(φ̇(r))dr, (2.5)

φ̇(r) = d
drφ(r), and

Λ∗r(x) =


x2

2σ2
1

, 0 ≤ r ≤ 1/2,

x2

2σ2
2

, 1/2 < r ≤ 1.

A first moment argument would yield a necessary condition for a particle that roughly follows
the path φ(r)n to exist in the branching random walks,

Is(φ) ≤ s log 2, for all 0 ≤ s ≤ 1. (2.6)

This is equivalent to
∫ s

0

φ̇2(r)
2σ2

1

dr ≤ s log 2, 0 ≤ s ≤ 1
2
,∫ 1

2

0

φ̇2(r)
2σ2

1

dr +
∫ s

1
2

φ̇2(r)
2σ2

2

dr ≤ s log 2,
1
2
≤ s ≤ 1.

(2.7)

Otherwise, if (2.6) is violated for some s0, i.e., Is0(φ) > s0 log 2, there will be no path
seen in the n limit following φ(r)n to φ(s0)n, since the expected number of such paths is
2sne−nIs(φ) = e−(Is(φ)−s log 2)n, which decreases exponentially.

Our goal is then to maximize φ(1) under the constraints (2.7). By Jensen’s inequality
and convexity, one sees that this problem is equivalent to maximizing φ(1) subject to

φ2(1/2)
σ2

1

≤ 1
2

log 2,
φ2(1/2)
σ2

1

+
(φ(1)− φ(1/2))2

σ2
2

≤ log 2. (2.8)

Note that the above argument does not necessarily require σ2
1 < σ2

2 .
Under the assumption that σ2

1 < σ2
2 , the solution to the optimization problem is the

optimal curve

φ(s) =


2σ2

1

√
log 2√

(σ2
1 + σ2

2)
s, 0 ≤ s ≤ 1

2
,

2σ2
1

√
log 2√

(σ2
1 + σ2

2)
1
2

+
2σ2

2

√
log 2√

(σ2
1 + σ2

2)
(s− 1

2
),

1
2
≤ s ≤ 1.

(2.9)
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Branching Random Walks in Time Inhomogeneous Environments 7

If we plot this optimal curve and the suboptimal curve leading to (1.6) as in Figure 1,
it is easy to see that the ancestor at time n/2 of the actual maximum at time n is not a
maximum at time n/2, since 2σ2

1
√

log 2√
(σ2

1+σ2
2)
<
√

2σ2
1 log 2. A further rigorous calculation as in

the next subsection shows that, along the optimal curve (2.9), the branching random walks
have an exponential decay of correlation. Thus a fluctuation between n1/2 and n that is
larger than the typical fluctuation of a random walk is admissible. This is consistent with
the naive observation from Figure 1. This kind of behavior also occurs in the independent
random walks model, explaining why M↑n and M ind

n have the same asymptotic expansion
up to an OP (1) error, see (1.3) and (1.5).

Space

Time

n

2

n

Figure 1: σ2
1 < σ2

2 . Dashed: path leading to maximum at time n of BRW starting from
maximum at time n/2 (the greedy algorithm). Solid: path leading to maximum at time n
of BRW starting from time 0. Arrows show the displacement of the optimal path from the
greedy algorithm.

2.3 Proof of Theorem 1.1

With Lemma 2.1 and the observation from Section 2.2, we can now provide a proof of
Theorem 1.1, applying the standard first and second moment methods (see e.g. [3]) to the
appropriate sets. In our setup, this essentially coincides with using the so called many-to-one
and many-to-two lemmas, see [19, 29], and goes back to Bramson’s original work [6]. Recall
Sn(k) and Sn as defined in (2.1).

Proof of Theorem 1.1. Upper bound. Let an =
(√

(σ2
1 + σ2

2) log 2
)
n−
√
σ2
1+σ2

2

4
√

log 2
log n. Let

N1,n =
∑
v∈Dn 1{Sv>an+y} be the number of particles in Dn whose displacements are greater

than an + y. Then
EN1,n = 2nP (Sn ≥ an + y) ≤ c2e−c3y

where c2 and c3 are constants independent of n and the last inequality is due to the fact
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8 Branching Random Walks in Time Inhomogeneous Environments

that Sn ∼ N(0, σ
2
1+σ2

2
2 n). So we have, by Chebyshev’s inequality,

P (M↑n > an + y) = P (N1 ≥ 1) ≤ EN1,n ≤ c2e−c3y. (2.10)

Therefore, this probability can be made as small as we wish by choosing a large y.
Lower bound. Consider the walks which are at sn ∈ In = [an, an+1] at time n and follow

sk,n(sn), defined by (2.2), at intermediate times with fluctuation bounded by fk,n, defined
by (2.3). Let Ik,n(x) = [sk,n(x)− fk,n, sk,n(x) + fk,n] be the ‘admissible’ interval at time k
given Sn = x, and let

N2,n =
∑
v∈Dn

1{Sv∈In,Svk∈Ik,n(Sv) for all 0≤k≤n}

be the number of such walks. By Lemma 2.1,

EN2,n = 2nP (Sn ∈ In, Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n)
= 2nE(1{Sn∈In}P (Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n|Sn))
≥ 2nCP (Sn ∈ In) ≥ c4. (2.11)

Next, we bound the second moment EN2
2,n. By considering the location of any pair

v1, v2 ∈ Dn of particles at time n and at their common ancestor v1 ∧ v2, we have

EN2
2,n = E

∑
v1,v2∈Dn

1{Svi∈In, S(vi)
j∈Ij,n(S(vi)

j ) for all 0≤j≤n,i=1,2}

=
n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

E1{Svi∈In, S(vi)
j∈Ij,n(S(vi)

j ) for all 0≤j≤n,i=1,2}

≤
n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

P (Sv1 ∈ In, S(v1)j ∈ Ij,n(S(v1)j ) for all 0 ≤ j ≤ n)

·P (Sv2 − Sv1∧v2 ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In),

where we use the independence between Sv2 − Sv1∧v2 and S(v1)j in the last inequality. The
last expression (double sum) in the above display equals

n∑
k=0

22n−kP (Sn ∈ In, Sn(j) ∈ Ij,n(Sn) for all 0 ≤ j ≤ n)

·P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ EN2,n

n∑
k=0

2n−kP (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In).

The above probabilities can be estimated separately when k ≤ n/2 and n/2 < k ≤ n. For
k ≤ n/2, Sn − Sn(k) ∼ N(0, n2 (σ2

1 + σ2
2)− kσ2

1). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

π((σ2
1 + σ2

2)n− 2kσ2
1)

exp

−
(

(1− 2σ2
1k

(σ2
1+σ2

2)n
)an − fk,n

)2

(σ2
1 + σ2

2)n− 2kσ2
1


≤ 2

−n+
2σ2

1
σ2
1+σ2

2
k+o(k)

.
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For n/2 < k ≤ n, Sn − Sn(k) ∼ N(0, (n− k)σ2
2). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

2π(n− k)σ2
2

exp

−
(

2σ2
2(n−k)

(σ2
1+σ2

2)n
an − fk,n

)2

2(n− k)σ2
2


≤ 2

− 2σ2
2

σ2
1+σ2

2
(n−k)+o(n−k)

.

Therefore,

EN2
2,n ≤ EN2,n

n/2∑
k=0

2
σ2
1−σ

2
2

σ2
1+σ2

2
k+o(k)

+
n∑

k=n/2+1

2
σ2
1−σ

2
2

σ2
1+σ2

2
(n−k)+o(n−k)

 ≤ c5EN2,n, (2.12)

where c5 = 2
∑∞
k=0 2

σ2
1−σ

2
2

σ2
1+σ2

2
k+o(k)

. By the Cauchy-Schwarz inequality,

P (M↑n ≥ an) ≥ P (N2,n > 0) ≥ (EN2,n)2

EN2
2,n

≥ c4/c5 > 0. (2.13)

The upper bound (2.10) and lower bound (2.13) imply that there exists a large enough
constant y0 such that

P (M↑n ∈ [an, an + y0]) ≥ c4
2c5

> 0.

Lemma 1.3 tells us that the sequence {M↑n −Med(M↑n)}n is tight, so M↑n = an +OP (1) a.s..
That completes the proof.

3 Decreasing Variances: σ2
1 > σ2

2

We will again separate the proof of Theorem 1.2 into two parts, the lower bound and
the upper bound. Fortunately, we can apply (1.2) directly to get a lower bound so that we
can avoid repeating the second moment argument. However, we do need to reproduce (the
first moment argument) part of the proof of (1.2) in order to get an upper bound.

3.1 An Estimate for Brownian Bridge

We need the following analog of Bramson [6, Proposition 1’]. The original proof in
Bramson’s used the Gaussian density and reflection principle of continuous time Brownian
motion, which also hold for the discrete time version. The proof extends without much effort
to yield the following estimate for the Brownian bridge Bk − k

nBn, where Bn is a random
walk with standard normal increments.

Lemma 3.1. Let

L(k) =

 0 if s = 0, n,
100 log k if k = 1, . . . , n/2,
100 log(n− k) if k = n/2, . . . , n− 1.

Then, there exists a constant C such that, for all y > 0,

P (Bk −
k

n
Bn ≤ L(k) + y for 0 ≤ k ≤ n) ≤ C(1 + y)2

n
.

The coefficient 100 before log is chosen large enough to be suitable for later use, and is
not crucial in Lemma 3.1.
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10 Branching Random Walks in Time Inhomogeneous Environments

3.2 Proof of Theorem 1.2

Before proving the theorem, we discuss the equivalent optimization problems (2.7) and
(2.8) under our current setting σ2

1 > σ2
2 . It can be solved by employing the optimal curve

φ(s) =


√

2 log 2σ1s, 0 ≤ s ≤ 1
2
,√

2 log 2σ1
1
2

+
√

2 log 2σ2(s− 1
2

),
1
2
≤ s ≤ 1.

(3.1)

If we plot the curve φ(s) and the suboptimal curve leading to (1.6) as in Figure 2,
these two curves coincide with each other up to order n. Figure 2 seems to indicate that
the maximum at time n for the branching random walk starting from time 0 comes from
the maximum at time n/2. As will be shown rigorously, if a particle at time n/2 is left
significantly behind the maximum, its descendants will not be able to catch up by time
n. The difference between Figure 1 and Figure 2 explains the difference in the logarithmic
correction between M↑n and M↓n.

Space

Time

n

2

n

Figure 2: σ2
1 > σ2

2 . Dashed: the optimal path leading to the maximum at time n which
coincides with the greedy algorithm. Solid: the path to the maximal (rightmost) descendant
of particles at time n/2 that are significantly (of order log n) behind the maximum then, as
marked by arrows.

Proof of Theorem 1.2. Lower bound. For each i = 1, 2, the formula (1.2) implies that there
exist yi (possibly negative) such that, for branching random walk at time n/2 with variance
σ2
i ,

P

(
Mn/2 >

(√
2 log 2σi

2

)
n− 3σi

2
√

2 log 2
log
(n

2

)
+ yi

)
≥ 1

2
.

By considering a branching random walk starting from a particle at time n/2, whose location
is greater than

√
2 log 2σ1n/2 − 3σ1

2
√

2 log 2
log(n/2) + y1, and applying the above inequality
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with i = 1 and 2, we get that

P

(
M↓n >

(√
2 log 2(σ1 + σ2)

2

)
n− 3(σ1 + σ2)

2
√

2 log 2
log
(n

2

)
+ y1 + y2

)
≥ 1

4
. (3.2)

Upper bound. We will use a first moment argument to prove that there exists a constant
y (large enough) such that

P

(
M↓n >

(√
2 log 2(σ1 + σ2)

2

)
n− 3(σ1 + σ2)

2
√

2 log 2
log
(n

2

)
+ y

)
<

1
10
. (3.3)

Similarly to the last argument in the proof of Theorem 1.1, the upper bound (3.3) and the
lower bound (3.2), together with the tightness result from Lemma 1.3, prove Theorem 1.2.
So it remains to show (3.3).

Toward this end, we define a polygonal line (piecewise linear curve) leading to
√

2 log 2(σ1+
σ2)n/2− 3(σ1+σ2)

2
√

2 log 2
log
(
n
2

)
as follows: for 1 ≤ k ≤ n/2,

M(k) =
k

n/2

(√
2 log 2σ1

2
n− 3σ1

2
√

2 log 2
log
(n

2

))
;

and for n/2 + 1 ≤ k ≤ n,

M(k) = M(n/2) +
k − n/2
n/2

(√
2 log 2σ2

2
n− 3σ2

2
√

2 log 2
log
(n

2

))
.

Note that k
n log n ≤ log k for k ≤ n. Also define

f(k) =



y k = 0, n2 , n,
y + 5σ1

2
√

2 log 2
log k 1 ≤ k ≤ n/4,

y + 5σ1
2
√

2 log 2
log(n2 − k) n

4 ≤ k ≤
n
2 − 1,

y + 5σ2
2
√

2 log 2
log(k − n

2 ) n
2 + 1 ≤ k ≤ 3n

4 ,

y + 5σ2
2
√

2 log 2
log(n− k) 3n

4 ≤ k ≤ n− 1.

We will use f(k) to denote the allowed offset (deviation) from M(k) in the following argu-
ment.

The probability on the left side of (3.3) is equal to

P (∃v ∈ Dn such that Sv > M(n) + y).

For each v ∈ Dn, we define τv = inf{k : Svk > M(k) + f(k)}; then (3.3) is implied by

n∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) < 1/10. (3.4)

We will split the sum into four regimes: [1, n/4], [n/4, n/2], [n/2, 3n/4] and [3n/4, n], corre-
sponding to the four parts of the definition of f(k). The sum over each regime, corresponding
to the events in the four pictures in Figure 3, can be made small. The first two are the dis-
crete analog of the upper bound argument in Bramson [6]. We will present a complete proof
for the first two cases, since the argument is not too long and the argument (not only the
result) is used in the latter two cases.

(i). When 1 ≤ k ≤ n/4, we have, by Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)

≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k)) ≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k)}

)
.
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12 Branching Random Walks in Time Inhomogeneous Environments

(a) 1 to n/4 (b) n/4 to n/2

(c) n/2 to 3n/4 (d) 3n/4 to n

Figure 3: Four small probability events. Dashed line: M(k). Solid line: M(k) + f(k).
Polygonal line: a random walk.

The above expectation is less than or equal to

C2k√
k
e
− (M(k)+f(k))2

2σ2
1 ≤ C2k√

k
exp

−
(√

2 log 2σ1k + σ1√
2 log 2

log k + y
)2

2kσ2
1


≤ Ck−3/2e−

√
2 log 2
σ1

y. (3.5)

Summing these upper bounds over k ∈ [1, n/4], we obtain that

n/4∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) ≤ Ce−
√

2 log 2
σ1

y
∞∑
k=1

k−3/2. (3.6)

The right side of the above inequality can be made as small as we wish, say at most 1
100 , by

choosing y large enough.
(ii). When n/4 ≤ k ≤ n/2, we again have, by Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)
≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i ≤ k)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<k}

)
.

Letting Sk be a copy of the random walks before time n/2, then the above expectation is
equal to

2kP (Sk > M(k) + f(k), and Si ≤M(i) + f(i) for 1 ≤ i < k)

≤ 2kP (Sk > M(k) + f(k), and
1
σ1

(Si −
i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k).

(3.7)

1
σ1

(Si − i
kSk) is a discrete Brownian bridge and is independent of Sk. Because of this

independence, the above quantity is less than or equal to

2kP (Sk > M(k) + f(k)) · P (
1
σ1

(Si −
i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i < k).
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The first probability can be estimated similarly to (3.5),

P (Sk > M(k) + f(k))

≤ C√
k

exp

−
(√

2 log 2σ1k − 3σ1
2
√

2 log 2
log k + 5σ1

2
√

2 log 2
log(n2 − k) + y

)2

2kσ2
1


≤ C2−kk(

n

2
− k)−5/2e−

√
2 log 2
σ1

y. (3.8)

To estimate the second probability, we first estimate 1
σ1

(f(i)− i
kf(k)). It is less than or

equal to 1
σ1
f(i) = y

σ1
+ 5

2
√

2 log 2
log i for i ≤ k/2 < n/4, and, for k/2 ≤ i < k, it is less than

or equal to

5
2
√

2 log 2
log(n/2− i)− i

k

5
2
√

2 log 2
log(n/2− k) +

y

σ1
(1− i

k
)

=
5

2
√

2 log 2

(
log(n/2− i)− log(n/2− k) +

k − i
k

log(n/2− k)
)

+
y

σ1
(1− i

k
)

≤ 5
2
√

2 log 2

(
log(k − i) +

k − i
k

log k
)

+
y

σ1
≤ 100 log(k − i) +

y

σ1
.

Therefore, applying Lemma 3.1, we have

P

(
1
σ1

(Si −
i

k
Sk) ≤ 1

σ1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k

)
≤ P

(
1
σ1

(Si −
i

k
Sk) ≤ 100 log i+

y

σ1
for 1 ≤ i ≤ k/2, and

1
σ1

(Si −
i

k
Sk) ≤

100 log(k − i) +
y

σ1
for k/2 ≤ i ≤ k

)
≤ C(1 + y)2/k, (3.9)

where C is independent of n, k and y.
By all the above estimates (3.7), (3.8) and (3.9),

n/2∑
k=n/4

P (∃v ∈ Dn such that Sv > M(n)+y, τv = k) ≤ C(1+y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−5/2. (3.10)

This can again be made as small as we wish, say at most 1
100 , by choosing y large enough.

(iii). When n/2 ≤ k ≤ 3n/4, we have

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)
≤ P (∃v ∈ Dk such that Sv > M(k) + f(k) and Svi ≤M(i) + f(i) for 1 ≤ i ≤ n/2)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<n/2}

)
.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ·

·P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ·

·pSn/2(M(n/2) + x)dx, (3.11)

where S and S′ are two copies of the random walks before and after time n/2, respectively,
and pSn/2(x) is the density of Sn/2 ∼ N(0, σ

2
1n
2 ).

Electron. J. Probab. 0 (2012), no. 0, 1–17. ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org


14 Branching Random Walks in Time Inhomogeneous Environments

We then estimate the three factors of the integrand separately. The first one, which is
similar to (3.5), is bounded above by

P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ≤ C√
k − n/2

e
− (M(k)−M(n/2)+f(k)−x)2

2(k−n/2)σ2
2

≤ C2−(k−n/2)(k − n

2
)−3/2e−

√
2 log 2
σ2

(y−x).

The second one, which is similar to (3.9), is estimated using Lemma 3.1,

P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ≤ C(1 + 2y − x)2/n. (3.12)

The third one is simply the normal density

pSn/2(M(n/2) + x) =
C√
n
e
− (M(n/2)+x)2

nσ2
1 ≤ C2−n/2ne−

√
2 log 2
σ1

x. (3.13)

Therefore, the integral term (3.11) is no more than

C(k − n/2)−3/2e−
√

2 log 2
σ2

y
∫ y

−∞
(1 + 2y − x)2e(

√
2 log 2
σ2

−
√

2 log 2
σ1

)xdx,

which is less than or equal to C(1 + y)2e−
√

2 log 2
σ1

y(k − n/2)−3/2 since σ2 < σ1.
Summing these upper bounds together, we obtain that

3n/4∑
k=n/2

P (∃v ∈ Dn such that Sv > M(n)+y, τv = k) ≤ C(1+y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−3/2. (3.14)

This can again be made as small as we wish, say at most 1
100 , by choosing y large enough.

(iv). When 3n/4 < k ≤ n, we have

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k)
≤ P (∃v ∈ Dk such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i < k)

≤ E

(∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i), for 1≤i<k}

)
.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x,

S′i < M(i)−M(n/2) + f(i)− x, for n/2 < i ≤ k)

·P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) · pSn/2(M(n/2) + x)dx

where S and S′ are copies of the random walks before and after time n/2, respectively.
The second and third probabilities in the integral are already estimated in (3.12) and

(3.13). It remains to bound the first probability. Similar to (3.7), it is bounded above by

P
(
S′k−n/2 > M(k)−M(n/2) + f(k)− x, S′i < M(i)−M(n/2) + f(i)− x,

for n/2 < i ≤ k
)
≤ C(1 + 2y − x)2e−

√
2 log 2
σ2

(2y−x)(n− k)−5/2.
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With these estimates, we obtain in this case, in the same way as in (iii), that

n∑
k=3n/4

P (∃v ∈ Dn such that Sv > M(n) + y, τv = k) ≤ C(1 + y)2e−
√

2 log 2
σ1

y
∞∑
k=1

k−5/2.

(3.15)
This can again be made as small as we wish, say at most 1

100 , by choosing y large enough.
Summing (3.6), (3.10), (3.14) and (3.15), then (3.4) and thus (3.3) follow. This concludes

the proof of Theorem 1.2.

4 Further Remarks

We state several immediate generalization and open questions related to binary branching
random walks in time inhomogeneous environments where the diffusivity of the particles
takes more than two distinct values as a function of time and changes macroscopically.

Extensions to monotone profiles involving a finite number of variances can be obtained
similarly to the results on two variances in the previous sections. Specifically, let k ≥ 2
(constant) be the number of inhomogeneities, let 0 = s0 < s1 < · · · < sk−1 < sk = 1 be
given, and set ti = si − si−1 for i = 1, . . . , k. With {σ2

i > 0 : i = 1, . . . , k}, we consider
binary branching random walk up to time n, where, for i = 1, . . . , k, the increments during
the time interval [si−1n, sin) are N(0, σ2

i ). That is, during the ith interval, whose duration
is tin, the variances of the increments are σ2

i . The analogue of Theorems 1.1 and 1.2 is the
following.

Theorem 4.1. a. In the strictly increasing setup σ2
1 < σ2

2 < · · · < σ2
k,

Mn =

√√√√2(log 2)
k∑
i=1

tiσ2
i n−

1
2

√∑k
i=1 tiσ

2
i√

2 log 2
log n+OP (1).

b. In the strictly decreasing setup σ2
1 > σ2

2 > · · · > σ2
k,

Mn =
√

2 log 2(
k∑
i=1

tiσi)n−
3
2

(
k∑
i=1

σi√
2 log 2

) log n+OP (1).

The proof in the strictly increasing setup is similar to the case k = 2 described in Section
2, and Mn behaves asymptotically like the maximum of independent random walks with
effective variance

∑k
i=1 tiσ

2
i . In the strictly decreasing setup, the proof follows the argument

detailed in Section 3, and Mn behaves asymptotically like the outcome of a greedy algorithm.
We omit further details.

Results on other inhomogeneous environments are open and are subjects of further study.
We only discuss some of the non rigorous intuition in the rest of this section.

In the general case of finitely many variances, when {σ2
i : i = 1, . . . , k} are not monotone

in i, the variational problem consisting of maximizing φ(1) subject to the constraint (2.6)
will give the leading order (velocity) term in Mn. However, the solution to this variational
problem may have several intervals along which the constraint is satisfied with equality, and
the number of such intervals is expected to influence the second order correction term. An
analysis of this general case is not covered by our arguments.

One may also consider situations where the variance profile changes continuously, in a
macroscopic way. A general description of the correction term is a challenge. After the
current paper was completed, the current authors studied the particular case of a strictly
monotone decreasing variance, and described a rather surprising n1/3 correction term, see
[14]. The general setting remains open and intriguing.
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16 Branching Random Walks in Time Inhomogeneous Environments

Appendix: Sketch of the Proof of Lemma 1.3

Proof of Lemma 1.3 (sketch). We describe how to fit our model into the framework of [8] and
[13], by deriving appropriate recursions for the distribution of the maximum of a branching
random walk that, at time n, will coincide with the distribution of Mn. Once this is done,
the tightness result in Lemma 1.3 follows directly from the argument in those two papers.

We begin by writing the variance profile for each n ∈ N as

σ2
n,i =

{
σ2

1 , when i ≤ n/2,
σ2

2 , when n/2 < i ≤ n.

With this profile, we consider a sequence of branching random walks in a leaves-to-root
perspective. That is, for each n ∈ N and each 0 ≤ i ≤ n, we consider a branching random
walk up to time i, with increments at the jth level (0 ≤ j < i) distributed as N(0, σ2

n,n−i+j).

Denote such a branching random walk by BRW(n)
i and its maximum at level i by M (n)

i with
a distribution function F

(n)
i . Note that BRW(n)

n is equivalent to the model we introduced
in the beginning of the paper (and to which Lemma 1.3 refers) and that M (n)

n = Mn.
For each fixed n, we have the recursions in i

F
(n)
i+1(x) =

(
G

(n)
i ∗ F (n)

i (x)
)2

, i = 0, 1, . . . , n− 1,

where G(n)
i is the distribution function of N(0, σ2

n−i). The initial conditions are F (n)
0 (x) =

1x≥0. Let H(n)
i (x) = G

(n)
i ∗ F (n)

i (x) and H̄
(n)
i (x) = 1 − H(n)

i (x). Then the recursions for
H̄

(n)
i are

H̄
(n)
i+1 = Ḡ

(n)
i+1 ∗

(
Q(H̄(n)

i )
)
, i = 0, 1, . . . , n− 1, (4.1)

where Q(x) = 2x− x2, and H̄
(n)
0 = 1−G(n)

0 .
The above recursions on H̄

(n)
i are exactly the recursions [8, (2.3)], except for the super-

script (n). The argument from [8] will apply here, since G(n)
i is either N(0, σ2

1) or N(0, σ2
2)

and thus satisfies the uniform (in both n and i) tail assumptions in [8].
The tightness of {Mn − Med(Mn)}n is derived as an immediate consequence of the

tightness of {H̄(n)
n −Med(H̄(n)

n )}n. The latter tightness is a consequence of the estimate

sup
n
L(H̄(n)

n ) <∞ (4.2)

with the Lyapunov function L(·) defined in [8, (2.12)], due to [8, Proposition 2.9]. Thus,
one only has to prove (4.2). This follows from the recursions (4.1) in i and the fact that
L0 := L(H̄(n)

0 ) is finite and independent of n (since H̄(n)
0 is one minus the distribution of

N(0, σ2
2)), as in the proof of [8, Theorem 2.7]. Indeed, if supn L(H̄(n)

n ) =∞, then we can find
one large constant C > L0 and L(H̄(n0)

n0 ) > C for some n0. The uniform tail conditions of
G

(n)
i and [8, Theorem 3.1] then imply that L0 = L(H̄(n0)

0 ) > C, which is a contradiction.

References

[1] L. Addario-Berry and B. Reed: Minima in branching random walks. Ann. Probab. 37, (2009),
1044–1079. MR-2537549
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