Superexponential decay for the GEM process

O. Zeitouni *
Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

November 18, 1996

AMS Subject classification: Primary 60F10. Secondary 60G09, 60K35.
Keywords: Large deviations. GEM process.

Abstract We show that the GEM process has strong ordering properties: the probability that the k-th largest element in the GEM sequence is beyond the first ck elements ($c > 1$) decays super-exponentially in k.

Let $\{U_i\}_{i=1}^\infty$ denote a sequence of $[0,1]$ valued i.i.d. random variables, with common law μ possessing a density $p_\theta(x) = \theta x^{\theta-1}$. Here, $\theta > 0$ is a fixed known parameter, and throughout we use $\overline{U}_i = 1 - U_i$.

Define the random sequence (GEM process) $A_1 = U_1$ and

$$A_i = U_i \prod_{j=1}^{i-1} \overline{U}_j, i \geq 2.$$

For references and background on the GEM process and its properties, see [2]. Note that stochastically, A_i dominates A_{i+1}, but of course it is still possible that $A_i < A_{i+1}$. Our goal here is to estimate how unlikely is really this reverse inequality. More precisely, let $\{X_i\}$ denote the reordered sequence of $\{A_i\}$. That is, for each i there is a $j = j(i)$ such that $X_i = A_j$ and $X_{i+1} < X_i$. For $c > 1$, define the event

$$\Omega_{k,c} = \{X_k \text{ is not among } A_i, i < ck\},$$

and let $P_{\theta,c,k} = \text{Prob}(\Omega_{k,c})$. Our goal is to prove the

Theorem 1.

$$\lim_{k \to \infty} \frac{\log P_{\theta,c,k}}{k \log k} = -\theta(c - 1).$$

Proof: We begin by quickly demonstrating a lower bound (which, incidentally, captures the correct order of magnitude but does not exhibit necessarily the most likely event).

* This work was partially supported by a US-Israel BSF grant.
Fix $\alpha > 0$ independent of k, and denote by $\Omega'_{k,c}$ the event
\[
\Omega'_{k,c} = \{ U_{ck} > \frac{1}{2}, U_j < \frac{\alpha}{(c-1)k}, j = k, k+1, \ldots, ck-1 \}.
\]
Because, in the event $\Omega'_{k,c}$,
\[
A_{ck} \geq \frac{1}{2} \left(1 - \frac{\alpha}{(c-1)k} \right) \prod_{i=1}^{(c-1)k-1} U_i \geq \frac{1}{2} \left(1 - \frac{2\alpha}{(c-1)k} \right) \prod_{i=1}^{k-1} U_i,
\]
while
\[
A_j \leq \frac{2\alpha}{(c-1)k} \prod_{i=1}^{k-1} U_i, \quad j = k, \ldots, ck-1,
\]
it holds that for all k large enough, $A_{ck} \geq A_j, j = k, \ldots, ck-1$. Hence, for such k, $\Omega'_{k,c} \subset \Omega_{k,c}$. Thus, since for some constant $c_{\alpha,c}$ independent of k which may change from line to line,
\[
\text{Prob}(U_1 < \frac{\alpha}{(c-1)k}) > c_{\alpha,c} k^{-\theta},
\]
it holds that
\[
P_{\theta,c,k} \geq \text{Prob}(U_{ck} > \frac{1}{2}) c_{\alpha,c} k^{-\theta(c-1)k},
\]
which is more than enough to imply the required lower bound.

We next turn to establish the (harder) complementary upper bound. Note first that
\[
P_{\theta,c,k} = \text{Prob}(\exists j \geq ck, \ A_j \geq X_k)
\leq \sum_{j=ck}^{\infty} \text{Prob}(A_j \geq X_k)
\leq \sum_{j=ck}^{\infty} \text{Prob}(\text{for some } I \in I_{j,k}, A_j \geq A_i \forall i \in I),
\]
where in the last inequality,
\[
I_{j,k} = \{ \text{all subsets of length } j - k \text{ of } \{1, \ldots, j-1\} \}.
\]
Note that the cardinality of $I_{j,k}$ is $\binom{j}{k}$, while, from the definition of A_i and the i.i.d. assumption,
\[
\max_{I \in I_{j,k}} \text{Prob}(A_j \geq A_i \forall i \in I) \leq \text{Prob}(A_j \geq A_i, i = k, \ldots, j-1).
\]
It thus follows from (1) that
\[
P_{\theta,c,k} \leq \sum_{j=ck}^{\infty} \binom{j}{k} \text{Prob}(A_j \geq A_i, i = k, \ldots, j-1)
\leq \sum_{j=ck}^{\infty} \binom{j}{k} \text{Prob}(A_{j-k} \geq A_i, i = 1, \ldots, j-k-1)
\leq \sum_{j=ck}^{\infty} \binom{j}{k} \text{Prob}(U_{j-k} \prod_{l=i+1}^{j-k-1} U_l \geq \frac{U_i}{U_i}, i = 1, \ldots, j-k-2) \triangleq \sum_{j=ck}^{\infty} \binom{j}{k} P_{j,k}
\]
(2)
Since for $j \geq ck$ there exists a $c_{\alpha,c}$ independent of j, k such that $\binom{j}{k} \leq e^{c_{\alpha,c}k \log(j/k)}$, the proof is completed by the following lemma:

Lemma 1. There exists a constant $c_{\theta,c}$, independent of k, j, such that for $j > ck$,

$$P_{j,k} \leq c_{\theta,c} e^{-\theta(j-k) \log k}.$$

(3)

Proof of Lemma 1: Throughout this proof, we use c_{α} to denote constants, whose values may change from line to line, which are independent of k, j but may depend on θ, c. Let $n = j - k$. Then

$$P_{j,k} \leq \text{Prob} \left(\forall 2 \leq \ell \leq n, \sum_{j=1}^{\ell-1} \log U_j \geq \log V_{\ell} \right) \triangleq P_n,$$

where $V_{\ell} = U_{\ell}/\bar{U}_{\ell}$.

For simplicity in notations, we assume below that both $\log n$ and $n/\log n$ are integers, the general case posing no new difficulties. Define

$$A_i = \frac{\sum_{j=i}^{i+1} \log n - 2 \log U_j}{\log n}, \quad Z_i = \log V_{(i+1)} \log n - 1,$$

and let $x \in \mathbb{R}^{n/\log n}$ have components x_i. Further, let

$$A_n = \{ x \in \mathbb{R}^{n/\log n} : 0 > x_i > -n(\log n + 1), x_i = -jn^{-2}, \text{some integer } j \}.$$

Note that the cardinality of A_n is bounded by $(n^2(n + 1) \log n)^{n/\log n} \leq e^{c_{\alpha}n}$. Then,

$$P_n \leq \text{Prob} \left(\sum_{i=1}^{j} A_i \geq Z_j/\log n, j = 1, \ldots, n/\log n \right)$$

$$\leq \frac{n}{\log n} \text{Prob} \left(Z_1 < -n \log^2 n/2 \right)$$

$$+ \sum_{x \in A_n} \text{Prob} \left(A_i \in [x_i, x_i + n^{-2}], \sum_{\ell=1}^{i} x_{\ell} + in^{-2} \geq \frac{Z_i}{\log n}, i = 1, \ldots, n/\log n \right).$$

Since $\text{Prob} \left(Z_1 < -n \log^2 n/2 \right) \leq e^{-c_{\alpha}n \log^2 n}$, the bound on the cardinality of A_n and the independence of the $\{A_i\}$ and $\{Z_i\}$ reveals that for some C_n, C'_n with

$$\log(C_n)/\log n \to -\infty, \log(C'_n)/\log n \to 0,$$

$$P_n \leq C_n + C'_n \max_{x \in A_n} \prod_{i=1}^{n/\log n} \text{Prob} \left(x_i + n^{-2} \geq A_i \geq x_i \right) \prod_{i=1}^{n/\log n} \text{Prob} \left(Z_i \leq \log n \sum_{j=1}^{i} x_j + \frac{1}{n} \right).$$

(5)

Define next

$$\Lambda_\theta(\lambda) = \log \left(\int (1 - x)^{\lambda} p_\theta(x) dx \right),$$

and its Fenchel-Legendre transform

$$\Lambda'_\theta(x) = \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda(\lambda)) .$$
Finally, let \(\Lambda^*_\phi(x) = \min_{y \in [x, x + n^{-2}]} \Lambda^*_\phi(y) \). By Cramér’s theorem (see, e.g., [1, pg. 27]),

\[
\text{Prob} \left(x_i + n^{-2} \geq A_i \geq x_i \right) \leq 2e^{-\log n \Lambda^*_\phi(x_i)}.
\]

On the other hand,

\[
\text{Prob} \left(Z_i \leq \log n \sum_{j=1}^i x_j + n^{-1} \right) \leq c_\alpha e^{\theta \log n \sum_{j=1}^i x_j}.
\]

Combining the above, and still using \(C_n, C'_n \) to denote (possibly different) constants still satisfying \((4) \), one obtains

\[
P_n \leq C_n + C'_n \max_{\phi \in \mathcal{A}} \exp \left(-\log n \left(\sum_{i=1}^{n \log n} \frac{\Lambda^*_\phi(x_i)}{n \log n} - \theta \sum_{i=1}^n \sum_{j=1}^i x_j \right) \right)
\]

\[
\leq C_n + C'_n \max_{\phi \in \mathcal{A}} \exp \left(-n \int_0^1 \left(\Lambda^*_\phi \left(\frac{\log n}{n} \right) - \theta \phi \right) \, ds \right)
\]

\[
= C_n + C'_n \max_{\phi \in \mathcal{A}} \exp \left(-n \int_0^1 \left(\Lambda^*_\phi \left(\frac{\log n}{n} \right) - \theta \phi \right) \, ds \right)
\]

\[
\leq C_n + C'_n \max_{\phi \in \mathcal{A}} \exp \left(-n \int_0^1 \left(\Lambda^*_\phi \left(\frac{\log n}{n} \right) - \theta \phi \right) \, ds \right) \triangleq C_n + C'_n \max_{\phi \in \mathcal{A}} \exp -n I_n(\phi), \tag{6}
\]

where

\[
\mathcal{A} = \{ \phi \text{ absolutely continuous, nonincreasing, } \phi_0 = 0 \},
\]

the second inequality is obtained by noting that polynomial decreasing functions (at steps of size \(\log n / n \)) form a subset of \(\mathcal{A} \), and the last one by the continuity of \(\Lambda^*_\phi \) away from 0 and a change in the value of \(C'_n \).

Let next \(\eta \in (0, 1) \) be arbitrary. Using the convexity of \(\Lambda^*_\phi \), one notes that for \(\phi \in \mathcal{A} \),

\[
I_n(\phi) \geq \eta \Lambda^*_\phi \left(\frac{\phi \log n}{n \eta} \right) + (1 - \eta) \Lambda^*_\phi \left(\frac{\phi \log n}{(1 - \eta)n} \right) - \theta \int_0^1 \phi \, ds.
\]

Fixing \(\eta \) and \(\phi_\eta \), recalling that \(\Lambda^*_\phi \geq 0 \) and that \(\phi \) is non-increasing,

\[
\min_{\phi \in \mathcal{A}} I_n(\phi) \geq \min_{\phi_\eta < 0} \left(\eta \Lambda^*_\phi \left(\frac{\phi \log n}{n \eta} \right) - \theta (1 - \eta) \phi_\eta \right).
\]

In Lemma 2 below, we collect some properties of \(\Lambda^*_\phi(\cdot) \). In particular, it holds that \(\Lambda^*_\phi(x) \geq -\theta \log x (1 + o(1)) \) for \(x \) small. A direct optimization over \(\phi_\eta \) reveals then that there exist negative constants \(c_1(\eta), c_2(\eta) \) independent of \(n \) such that

\[
\min_{\phi_\eta < 0} \left(\eta \Lambda^*_\phi \left(\frac{\phi \log n}{n \eta} \right) - \theta (1 - \eta) \phi_\eta \right) = \min_{c_1 \log n < \phi_\eta < c_2} \left(\eta \Lambda^*_\phi \left(\frac{\phi \log n}{n \eta} \right) - \theta (1 - \eta) \phi_\eta \right) \geq \theta \eta \log n (1 + o(1)).
\]

Taking now \(\eta \to 1 \) yields

\[
\min_{\phi \in \mathcal{A}} I_n(\phi) \geq \theta \log n (1 + o(1)).
\]

Substituting back in \((6) \), this concludes the proof of the Lemma 1 and hence of Theorem 1.

The following lemma was used in the course of the proof of Lemma 1.
Lemma 2. \(\Lambda^*_\theta \) is strictly convex, \(\Lambda^*_\theta(x) = \infty \) for \(x \geq 0 \), \(\lim_{x \to -\infty} \Lambda^*_\theta(x) = \infty \), and \(\Lambda^*_\theta(y) = 0 \) if and only if \(y = \int \log(1 - x)p_\theta(x)\,dx \). Finally, \(\Lambda^*_\theta(x) \geq -\theta \log(x)(1 + o(1)) \) for \(x \) small.

Proof of Lemma 2: The first part of the lemma is a trivial consequence of the fact that \(\Lambda_\theta(\lambda) < \infty \) for all \(\lambda \) with \(|\lambda| < \lambda_0(\theta) \) (c.f. [1, pg. 28]). To see the second part, note first that for \(\theta = 1 \) and \(x < 0 \), \(U_1 \) is uniformly distributed and a straightforward computation reveals that \(\Lambda_\theta(\lambda) = -\log(\lambda + 1) \) for \(\lambda > -1 \) and \(\Lambda^*_\theta(x) = -1 - x - \log(-x) \). We use below \(c_\theta \) to denote various constants, whose value may change from line to line but which are independent of \(\lambda \). To see the claim for \(0 < \theta < 1 \), simply note that for \(\lambda > 1 \),

\[
\int_0^1 y^\lambda (1 - y)^{\theta - 1} \, dy = \int_0^{1-\lambda^{-1}} y^\lambda (1 - y)^{\theta - 1} \, dy + \int_{1-\lambda^{-1}}^1 y^\lambda (1 - y)^{\theta - 1} \, dy \\
\leq (1 - \lambda^{-1})^\lambda \lambda^{1-\theta} \left(\theta \frac{1 - \lambda^{-1}}{1 + \lambda} + \lambda^{-1} \right) \leq c_\theta \lambda^{-\theta},
\]

whereas for \(\theta > 1 \) and \(\lambda > 0 \),

\[
\int_0^1 y^\lambda (1 - y)^{\theta - 1} \, dy \leq \sum_{k=0}^\infty \int_{1-(k+1)\lambda^{-1}}^{1-k\lambda^{-1}} y^\lambda (1 - y)^{\theta - 1} \, dy \\
\leq \sum_{k=0}^\infty \lambda^{-\theta} k^{\theta-1} e^{-k} \leq c_\theta \lambda^{-\theta}.
\]

Hence, for any \(\theta > 0 \) and \(\lambda > 1 \),

\(\Lambda_\theta(\lambda) \leq c_\theta - \theta \log \lambda \).

It follows that, with the choice \(\lambda = -x^{-1} \),

\(\Lambda^*_\theta(x) \geq -1 - c_\theta - \theta \log(-x) \),

as claimed. \(\square \)

Remark: In fact, the exact form of \(p_\theta \) was never used. In order to get Theorem 1, all that is needed is that the common law \(\mu \) of the \((0, 1)\) valued i.i.d. random variables \(U_i \) possesses a density near 0,1 such that, for some positive constants \(\theta, \alpha_\theta \),

\[
\lim_{x \to -\infty} \frac{1}{x} \log \text{Prob} (\log(U_i/U_i) < -x) = -\alpha_\theta, \quad \text{(7)}
\]

\[
\lim_{x \to -\theta} \frac{\Lambda^*(x)}{-\log(-x)} = -\theta. \quad \text{(8)}
\]

Here, \(\Lambda^*(x) \) is the Fenchel-Legendre transform of \(\Lambda(\theta) = \log \left(\int_0^1 (1 - x)^\lambda \mu(dx) \right) \).

Acknowledgement: I thank Richard Arratia for asking me the question answered in this note, and for several useful discussions.
References
