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Abstract

We compute the second order correction for the cover time of the binary tree of depth n by
(continuous-time) random walk, and show that with probability approaching 1 as n increases,√
τcov =

√

|E|[
√

2 log 2 ·n− logn/
√

2 log 2 +O((log logn)8], thus showing that the second order
correction differs from the corresponding one for the maximum of the Gaussian free field on the
tree.

1 Introduction

The cover time of a random walk on a graph, which is the time it takes the walk to visit every
vertex in the graph, is a basic parameter and has been researched intensively over the last several
decades (see [3, 12, 13] for background). One often studied aspect concerns precise estimates for
cover times on specific graphs including 2D lattices and regular trees. For the 2D discrete torus,
the asymptotics of the cover time were established by Dembo, Peres, Rosen and Zeitouni [9]. For
regular trees, the asymtotics of the cover time were evaluated by Aldous [4] and a tightness result
for the cover time after suitable normalization was demonstrated by Bramson and Zeitouni [7]. It
was conjectured in [7] that the cover time of 2D discrete torii exhibits a similar tightness behavior.

Meanwhile, the supremum of the Gaussian free field (GFF) was also heavily studied. For
squares in the 2D lattice, the first order asymptotics were evaluated by Bolthausen, Deuschel and
Giacomin [5]. Interestingly, both [5] and [9] are based on the study of similar tree structures for the
2D lattice; in fact, the square of the GFF has the same first order asymptotics as the cover time
after proper normalization. Recently, Ding, Lee, and Peres [10] demonstrated a useful connection
between cover times and GFFs, by showing that, for any graph, the cover time is equivalent, up to
a universal multiplicative constant, to the product of the number of edges and the supremum of the
GFF. An important ingredient in [10] is a version of the so-called Dynkin Isomorphism theorem,
which completely characterizes the distribution of local times (closely related to the cover time)
using GFFs. All these connections seem to suggest that a detailed study of fluctuations for one
model should carry over to the other with moderate work. A particular motivating example in
this direction is the case of squares in the 2D discrete lattice. Recently, Bramson and Zeitouni
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[6] established a tightness result for the supremum of GFF there (with proper centering, but no
other normalization), and further computed the centering up to an additive constant. One could
hope that transfering this result to the cover time problem is now “purely technical”; an essential
part of such a program would be to verify that the supremum of the GFF correctly predicts the
second order correction for the (rescaled) cover time. The present paper is a cautionary note in
that direction.

We study the cover time on binary trees and obtain the sharp second order term. Interestingly,
we demonstrate that the latter is larger than the corresponding one for the binary tree GFF. Our
result improves the estimate in [4], and complements the result of [7]. We focus here on binary
trees, but it should be clear from the proof that the method applies to more general Galton–Watson
trees.

Let T = (V,E) be a binary tree rooted at ρ of height n, and consider a continuous-time random
walk (Xt) started at ρ. Let τcov be the first time when the random walk visited every single vertex
in the tree. Our main result is the following.

Theorem 1.1. Consider a random walk on a binary tree T = (V,E) of height n, started at the
root ρ. Then, with high probability,

√

τcov
|E| =

√

2 log 2 · n− log n√
2 log 2

+O((log log n)8) . (1)

At the cost of a more refined analysis, we believe that the error term O((log log n)8) can be
improved to O(1).

To relate Theorem 1.1 to the GFF {ηv}v∈V on the tree, recall that the latter can be defined as
follows. Let {Xe}e∈E be i.i.d. standard Gaussian variables and set

ηv =
∑

e:e∈ρ↔v

Xe,

where the sum is over all the edges that belong to the path from ρ to v. By adapting Bramson’s
arguments on branching Brownian motion [8] to the discrete setup, as in Addario-Berry and Reed
[2], one can show that

E sup
v
ηv =

√

2 log 2 · n− 3 log n
2
√

2 log 2
+O(1) . (2)

(The lower bound in (2) follows directly from [2, Theorem 3]. The upper bound, that involves also
the internal nodes of the tree, requires the use of [2, Lemma 13] and a union bound over the levels.)

Comparing (1) and (2), we do observe agreement in the first order and a discrepancy in the
second order terms.

Our proof uses ideas from [8] and is based on the study of the local times associated with the
random walk. For any v ∈ V , we define the local time Lv

t to be the time that the random walk
spends at v up to t, with a normalization by the degree of v. More precisely,

Lv
t =

1

dv

∫ t

0
1{Xs=v}ds .

Define the inverse local time τ(t) to be the first time when the local time at the root achieves t, by

τ(t) = inf{s > 0 : Lρ
s > t} .
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We will let τ(t) be defined as above throughout the paper. We also set

t+ =
(
√

log 2n− log n
2
√

log 2
+ 100 log log n

)2
and t− =

(
√

log 2n− log n
2
√

log 2
− 100(log log n)8

)2
. (3)

The following is the key to the proof of Theorem 1.1.

Theorem 1.2. Consider a random walk on a binary tree T of height n, started at the root ρ. Then,

P(τ(t−) 6 τcov 6 τ(t+)) = 1 + o(1) , as n→ ∞ .

In the next two sections, we prove the upper and lower bounds for the preceding theorem re-
spectively; we conclude the paper by deriving Theorem 1.1 from Theorem 1.2.

Notation and convention: Throughout, C, c denote generic constants that may change from line
to line, but are independent of n. Further, the phrase with high probability should be understood
as the statement with probability approaching 1 as n→ ∞.

2 Upper bound

We establish an upper bound on the cover time in this section, as formulated in the next theorem.

Theorem 2.1. With notation as in Theorem 1.2, we have

P(τcov 6 τ(t+)) = 1 + o(1) , as n→ ∞ .

Theorem 2.1 is equivalent to the statement that at time τ(t+), all the leaf-nodes have positive
local times, with high probability. To this end, we consider a leaf-node of local time 0 with typical
and non-typical profiles, respectively. For the latter, we show its unlikeliness directly; for the
former, we prove it is a rare event by comparing to the same type of event for Gaussian free field.

2.1 Unlikeliness for non-typical profile

As preparation, we prove a large deviation result which will be used to control the pairwise con-
centration of local times.

Definition 2.2. For r, λ > 0, let N be a Poisson variable with mean r and Yi be i.i.d. exponential
variables with mean λ. Then, the random variable Z =

∑N
i=1 Yi is said to follow the distribution

PoiGamma(r, λ), and we write Z ∼ PoiGamma(r, λ).

Lemma 2.3. For α, r > 0, let Z ∼ PoiGamma(r, λ). Then for α < λr,

P(Z 6 λr − α) 6 exp
(

2
√

r(r − α/λ) + α/λ− 2r
)

. (4)

Furthermore, for all α > 0,

P(Z > λr + α) 6 exp
(

2
√

r(r + α/λ) − 2r − α/λ
)

. (5)
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Proof. As in the definition of the PoiGamma(r, λ) distribution, let N be Poisson variable with
mean r and let Y be an independent exponential variable with mean λ. For θ > 0, we have

Ee−θZ/λ = E(Ee−θY/λ)N = E(1/(1 + θ))N = e−
θr

1+θ .

Combined with Markov’s inequality, it follows that

P(Z 6 λr − α) = P(e−θZ/λ
> e−θ(λr−α)/λ) 6 e−

θr
1+θ · eθ(r−α/λ) = exp

(

θ2r
1+θ − θα

λ

)

.

For α < λr, optimizing the exponent at θ =
√

r
r−α/λ − 1 leads to inequality (4).

To prove (5), consider 0 < θ < 1. We have

EeθZ/λ = E(EeθY/λ)N = E(1/(1 − θ))N = e
θr

1−θ .

Another application of Markov’s inequality gives that

P(Z > λr + α) 6 P(eθZ/λ
> eθ(λr+α)/λ) = exp

(

θ2r
1−θ − θα

λ

)

.

Optimizing the exponent at θ = 1 −
√

r
r+α/λ , we deduce the inequality (5).

Remark. The right side of (4) can be bounded by e−α2/4λ2r. In this form, it is closely related to
the discrete time bound in [11, Lemma 5.2].

We have the following immediate and useful corollary.

Corollary 2.4. With notation as in Lemma 2.3, we have for any β > 0,

P(
√
Z 6 (1 − β)

√
λr) 6 e−rβ2

, (6)

and
P(

√
Z > (1 + β)

√
λr) 6 e−rβ2

. (7)

For k ∈ N, we denote by Vk ⊆ V the set of vertices in k-th level of the tree. We next show that
it is unlikely to have a too small local time for a vertex in intermediate levels.

Lemma 2.5. With notation as in Theorem 1.2, define

A = ∪n−log2 n
k=1 ∪u∈Vk

{Lu
τ(t+) 6 ((1 − k/n)

√
t+ − 3 log n)2} . (8)

Then, P(A) = o(1) as n→ ∞.

Proof. Throughout the proof, we write t for t+. Consider u ∈ Vk such that k 6 n − log2 n. It is
clear that Lu

τ(t) has the distribution PoiGamma(t/k, k). Applying (4), we obtain that

P

(

Z 6 ((1 − k/n)
√
t− 3 log n)2

)

6 exp
(

− 1
k (
√
tk/n+ 3 log n)2

)

6 2−kn−2 .

Now a simple union bound gives that

P(A) 6

n−log2 n
∑

k=1

2k2−kn−2
6 1/n = o(1) .
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For v ∈ V and 1 6 k < n, let vk ∈ Vk be the ancestor of v in the k-th level. Define

γ(k) = min{
√
k log k,

√
n− k log(n− k)} + 2 . (9)

Lemma 2.6. With notation as in Theorem 1.2, define

B =

{

∃v ∈ Vn,∃k < n− log2 n : Lv
τ(t+) = 0,

∣

∣

∣

√

L
vk+1

τ(t+)
−
√

Lvk

τ(t+)

∣

∣

∣
>

q

L
vk
τ(t+)

γ(k)

}

∩Ac . (10)

Then, P(B) = o(1) as n→ ∞.

Proof. We continue to write t = t+. Consider v ∈ Vn and k < n− log2 n. Note that conditioned on
Lvk

τ(t), the collection of random variables {Lvk+j

τ(t) }j>0 possess the same law as {Lvk+j

τvk (L
vk
τ(t)

)
}j>0 (this

is an instance of the second Ray-Knight theorem in this context). Abusing notation, this implies
in particular that conditioned on {Lvk

τ(t) = x}, Lvk+1

τ(t) has distribution PoiGamma(x2, 1). (We will

employ such an abuse of notation repeatedly throughout the paper.) Fixing x > (1 − k/n)
√
t −

3 log n, an application of Corollary 2.4 gives for j > 1,

P

(

j x
γ(k) 6

∣

∣

∣

√

L
vk+1

τ(t) − x
∣

∣

∣
6 (j + 1) x

γ(k) , L
v
τ(t) = 0

∣

∣

∣
Lvk

τ(t) = x2
)

6 2 · e−j2x2/(γ(k))2 · e−
x2(1−(j+1)/γ(k))2

n−k .

Note that the right hand side in the above decays geometrically with j. Thus, summing over j, we
obtain that

P

(
∣

∣

∣

√

L
vk+1

τ(t) − x
∣

∣

∣
>

x
γ(k) , L

v
τ(t) = 0

∣

∣

∣
Lvk

τ(t) = x2
)

6 4e−
x2

n−k e
4x2

(n−k)γ(k) e
− x2

(γ(k))2 6 4e−
x2

n−k e
− x2

2(γ(k))2 .

Noting that P(Lv
τ(t) = 0 | Lvk

τ(t) = x2) = e−
x2

n−k , we obtain that

P

(
∣

∣

∣

√

L
vk+1

τ(t) − x
∣

∣

∣
>

x
γ(k)

∣

∣

∣
Lv

τ(t) = 0, Lvk

τ(t) = x2
)

6 2e
− x2

2(γ(k))2 6 e− log3/2 n ,

where the last nequality follows from the fact that x > (1 − k/n)
√
t− 3 log n) and k 6 n − log2 n.

Therefore,

P

(

Ac, Lv
τ(t) = 0,

∣

∣

∣

√

L
vk+1

τ(t)
−
√

Lvk

τ(t)

∣

∣

∣
>

q

L
vk
τ(t)

γ(k)

)

6 P(Lv
τ(t) = 0) · e− log3/2 n = e−t/ne− log3/2 n

6
2−n

n2
.

At this point, a simple union bound completes the proof.

2.2 Unlikeliness for typical profile

We next compare the density of local times and Gaussian variables. This comparison of density is
of significance for the proof of both upper and lower bounds.

Lemma 2.7. For ℓ > 0, let Z ∼ PoiGamma(ℓ2, 1) and let f(·) denote the density function of
√
Z

on R+, with f(0) = P(Z = 0). Denote by W a standard Gaussian variable, and denote by g(·) the
density function of W/

√
2. Then, for any w such that |w| 6 ℓ/2, we have

f(ℓ+ w) =
(

1 − w
2ℓ +O

(

w2+1
ℓ2

))

· g(w) .
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Proof. Write y = ℓ+ w, and let h(·) be the density function of Z. Then for z > 0, we have

h(z) =
∞
∑

k=1

e−ℓ2 ℓ
2k

k!
e−z zk−1

(k − 1)!
.

Applying a change of variables, we obtain that

f(y) = 2y

∞
∑

k=1

e−ℓ2 ℓ
2k

k!
e−y2 y2(k−1)

(k − 1)!
= 2ℓe−(ℓ2+y2)

∞
∑

k=0

(yℓ)2k+1

k!(k + 1)!
= 2ℓe−(ℓ2+y2)I1(2yℓ) ,

where I1(x) is a modified Bessel function defined by

I1(x)
△
=

∞
∑

k=0

(x/2)2k+1

k!(k + 1)!
.

For the modified Bessel function I1(x), the following expansion is known when |x| is large (see [1]):

I1(x) =
ex

√
2πx

(

1 − 3
8x +O

(

1
x2

))

.

Plugging into the preceding expansion, we get that

f(y) = 2ℓe−(ℓ2+y2) e2yℓ

√
2π2yℓ

(

1 − 3
8·2yℓ +O

(

1
y2ℓ2

)

)

=
e−w2

√
π

(

1 − w
2ℓ +O

(

w2+1
ℓ2

))

.

Combined with the fact that g(w) = 1√
π
e−w2

, the desired estimate follows immediately.

We single out the next calculation, which will be used repeatedly.

Claim 2.8. Consider zi, ℓi ∈ R with ℓi+1 = ℓi + zi for i = 0, . . . ,m− 1 such that |zi| 6 ℓi/2 for all

i. Assume that
∑

i
z2
i +1

ℓ2i−1
= O(1). Then,

∏m
i=1

(

1 − zi
2ℓi−1

+O
( z2

i +1

ℓ2i−1

))

= Θ(1) ·
√
ℓ0√
ℓm

.

Proof. On one hand, note that

ℓm
ℓ0

=
∏m

i=1

ℓi
ℓi−1

=
∏m

i=1

(

1 + zi
ℓi−1

)

= exp
(
∑m

i=1
zi

ℓi−1
+O

(
∑m

i=1
z2
i

ℓ2i−1

))

= exp
(
∑m

i=1
zi

ℓi−1
+O(1)

)

.

On the other hand, we have

∏m
i=1

(

1 − zi
2ℓi−1

+O
( z2

i +1

ℓ2i−1

))

= exp
(

−
∑m

i=1
zi

2ℓi−1
+O

(
∑m

i=1
z2
i +1

ℓ2i−1

))

= exp
(

−∑m
i=1

zi
2ℓi−1

+O(1)
)

=
√

ℓ0
ℓm

exp(O(1)) .

Combining these estimates completes the proof.

We next demonstrate that it is unlikely to have a leaf-node of local time 0, even with a typical
profile for local times along the path from ρ to the leaf.

6



Lemma 2.9. With notation as in Theorem 1.2 and A,B as in (8) and (10), define

Dv = {Lv
τ(t+) = 0} \ (A ∪B) , for v ∈ Vn . (11)

Then, P(Dv) = o(2−n).

Proof. Again, we write t = t+. Write n′ = n− log2 n. Let Ω ⊆ R
n′

be such that for z1, . . . , zn′ ∈ Ω,
we have

∩n′
k=1

{
√

Lvk

τ(t) −
√

L
vk−1

τ(t) = zk

}

⊆ Dv .

Let α(·) and β(·) be density functions for (
√

Lvk

τ(t)−
√

L
vk−1

τ(t) )16k6n′ and (ηvk
/
√

2−ηvk−1
/
√

2)16k6n′ ,

respectively. Denote by ℓk =
√
t+

∑k
i=1 zi. Note that for (z1, . . . , zn′) ∈ Ω, we have

∑n′

i=1
1+z2

i

ℓ2i−1
= O(1)

∑n′

i=1

(

1
(n−i)2

+ 1
(γ(i))2

)

= O(1) .

Applying Lemma 2.7 and Claim 2.8, we obtain that

α(z1,...,zn′)
β(z1,...,zn′)

=
∏n′

i=1

(

1 − zi
2ℓi−1

+O
( z2

i +1

ℓ2i−1

))

= Θ(1)
√

n
log n .

Therefore, we obtain that

P(Dv) =

∫

Ω
α(z1, . . . , zn′)P(Lv

τ(t) = 0 |
√

L
vn′
τ(t) = ℓn′)dz 6 O(1)

√
n

log n

∫

Ω
β(z1, . . . , zn′)e

−
ℓ2
n′

n−n′ dz .

(12)

Write s = −(n′/n)
√
t− 3 log n. Let β(x) =

∫

{ℓn′=x} β(z1, . . . , zn′)dz for x > s. Note that

β(x) =
1√
πn′

e−
x2

n′ P(ηvk
/
√

2 > −(k/n)
√
t− 3 log n for 1 6 k 6 n′ | ηvn′ /

√
2 = x) . (13)

Conditioning on ηvn′/
√

2 = x, we have

{(ηvk
/
√

2)16k6n′ | ηvn′/
√

2 = x} law
= {(Wk/

√
2 + (k/n′)x)16k6n′} ,

where (Wr)06r6n′ , is a Brownian Bridge of length n′, i.e., a Brownian motion conditioned on hitting
0 at both time 0 and n′. It is well-known that the maximum of a Brownian bridge (Wr) on [0, q]
follows the Rayleigh distribution (see, e.g., [14]), i.e.,

P(max06r6qWr > λ) = e
− 2λ2

q , for all λ > 0 . (14)

Therefore, we obtain that

P(ηvk
/
√

2 > −(k/n)
√
t− 3 log n for 1 6 k 6 n′ | ηvn′/

√
2 = x) 6 P(minr6n′Wr/

√
2 > −3 log n− (x− s))

= P(maxr6n′Wr 6
√

2(3 log n+ (x− s))) 6
4(3 log n+(x−s))2

n′ .

Plugging the above estimate into (13), we obtain that

β(x) 6
4(3 log n+ (x− s))2

(n′)3/2
e−

x2

n′ .
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Together with (12), we obtain that

P(Dv) 6 O(1)

∫ ∞

s

(log n+ (x− s))2

n′ log n
e−

x2

n′ e
− (

√
t+x)2

n−n′ dx 6 O(1)

∫ ∞

−∞

(log n+ (x− s))2

n′ log n
e−

x2

n′ e
− (

√
t+x)2

n−n′ dx .

Using the change of variables y = x+
√

tn′

n , we obtain that

P(Dv) 6 O(1)
e−

t
n

n log n
·
∫ ∞

−∞
(4 log n+ y)2e

−( 1
n′ +

1
n−n′ )y

2

dy = 2−n · o(log−6 n) ,

where we used the fact that n′ = n− log2 n, completing the proof.

Proof of Theorem 2.1. The proof now follows trivially. Since
∑

v∈Vn
P(Dv) = 2n ·2−no(1) = o(1)

as well as P(A) = o(1) and P(B) = o(1), we see that with high probability, every leaf-node has
positive local time by τ(t), implying the desired upper bound on cover time.

3 Lower bound

This section is devoted to the proof of the following lower bound on the cover time for a binary
tree T .

Theorem 3.1. With notation as in Theorem 1.2,

P(τcov > τ(t−)) = 1 + o(1) , as n→ ∞ .

The proof consists of an analysis for exceptionally large values in the Gaussian free field and a
comparison argument based on Lemma 2.7.

3.1 Exceptional points for Gaussian free field

We first study the Gaussian free field {ηv}v∈V on the tree T of height n, with ηρ = 0. For 1 6 k < n,

let ψ(k) = log(k∧(n−k))
2
√

log 2
. Denote by

ak = (k/n)
(
√

log 2n− log n
2
√

log 2

)

− ψ(k) + 2 , for 1 6 k < n , and an =
√

log 2n− log n
2
√

log 2
. (15)

Consider ∆ = an + log4 n. Recall the definition of γ(k) in (9). For v ∈ Vn, define

Ev = {ηvk
/
√

2 6 ak, for all 1 6 k < n, an 6 ηv/
√

2 6 an + 1} , (16)

Fv = {Ev ,∃k 6 n : |ηvk
− ηvk−1

| > |∆ − ηvk−1
/
√

2|/γ(k)} . (17)

We start with a lower bound on the probability for event Ev.

Lemma 3.2. There exists a constant c > 0 such that for all v ∈ Vn, we have

P(Ev) >
c√
n

2−n .
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Proof. It is clear that

P(Ev) > P(an 6 ηv/
√

2 6 an+1) min
an6x6an+1

P(Ev | ηv =
√

2x) >

√
n

5 · 2n
· min
an6x6an+1

P(Ev | ηv =
√

2x) ,

where the second inequality follows from a bound on the Gaussian density. Denote by (Wt)06t6n

a Brownian bridge. We note that

(

{ηvℓ
: 0 6 ℓ 6 n} | ηv =

√
2x
)

law
=
{

Wℓ + ℓ
n

√
2x : 0 6 ℓ 6 n

}

.

This implies that, for x > an,

P(Ev | ηv =
√

2x) > P(Wℓ 6 1 −
√

2ψ(ℓ) for 0 6 ℓ 6 n) .

By [8, Proposition 2’], we have that P(Wℓ 6 1−
√

2ψ(ℓ) for 0 6 ℓ 6 n) > c/n for a constant c > 0.
Altogether, we obtain that

P(Ev) >
c

5
√
n

2−n .

We now show that the event Fv is extremely rare.

Lemma 3.3. For any v ∈ Vn, we have

P(Fv) = 2−no(1/n), as n→ ∞ .

Proof. Take v ∈ Vn. It is clear that

P(Fv) 6 P(an 6 ηv/
√

2 6 an + 1)J 6 2−nnJ ,

where

J = max
an6x6an+1

y6ak−1

n
∑

k=1

P(|ηvk
− ηvk−1

| > |∆ − ηvk−1
/
√

2|/γ(k) | ηv =
√

2x, ηvk−1
=

√
2y) .

Conditioning on ηv =
√

2x, ηvk−1
=

√
2y, we have ηvk

−ηvk−1
distributed as a Gaussian variable with

mean
√

2
n−k+1(x−y) and variance n−k

n−k+1 . For x, y that is under consideration, we have
√

2
n−k+1(x−y) =

o(∆−y
γ(k) ). Therefore, we obtain that

P(|ηvk
− ηvk−1

| > |∆ − ηvk−1
/
√

2|/γ(k) | ηv =
√

2x, ηvk−1
=

√
2y) 6 e

− (∆−y)2

4(γ(k))2 6 e− log2 n ,

for large enough n. This implies that J 6 ne− log2 n, and thus P(Fv) = 2−no(1/n).

We next study the correlation for events Eu and Ev. For u, v ∈ V , denote by u ∧ v the least
common ancestor of u and v.

Lemma 3.4. Consider u, v ∈ Vn and assume that u ∧ v ∈ Vk. Then,

P(Eu ∩ Ev) 6 P(Eu)
20 log2 n√

n− k · ((n− k) ∧ k)
2−(n−k) .
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Proof. Denote by w = u ∧ v, and let f(·) be the density function of ηw/
√

2. For i < j, write
Ei,j

v = {ηvℓ
/
√

2 6 aℓ, for all i 6 ℓ < j}. Then,

P(Eu ∩ Ev) = P(Eu)P(Ev | Eu) 6 P(Eu) max
x6ak

P(Ek,n
v , an 6 ηv 6 an + 1 | ηw/

√
2 = x)

6 P(Eu) max
x6ak

∫ an+1

an

1√
n− k

e−
(y−x)2

n−k P(Ek,n
v | ηw/

√
2 = x, ηv/

√
2 = y)dy . (18)

For x 6 ak and an 6 yan + 1, we first analyze the probability P(Ek,n
v | ηw/

√
2 = x, ηv/

√
2 = y).

Let (Ws)06s6n−k be a Brownian bridge. It is clear that

({

ηvℓ
/
√

2 : k 6 ℓ 6 n
}

| ηw/
√

2 = x, ηv/
√

2 = y
)

law
=
{

Wℓ−k/
√

2 + ℓ−k
n−ky + n−ℓ

n−kx : k 6 ℓ 6 n
}

.

Combined with (14), it follows that

P(Ek,n
v | ηw/

√
2 = x, ηv/

√
2 = y) 6 P(max

s
Ws 6 2(log n+ (ak − x))) 6

4(log n+ (ak − x))2

n− k
. (19)

By a straightforward calculation, we have that

e−
(y−x)2

n−k 6 e−
(an−ak)2

n−k e−
2(an−ak)(ak−x)

n−k 6 2−(n−k)e
n−k

n
log n−log((n−k)∧k)e2

√
log 2(x−ak)

6 2−(n−k) n− k

(n− k) ∧ k e2
√

log 2(x−ak) .

Combined with (19), it follows that

∫ an+1

an

1√
n− k

e−
(y−x)2

n−k P(Ek,n
v | ηw =

√
2x, ηv =

√
2y)dy 6 2−(n−k) 4(log n+ (ak − x))2√

n− k · ((n − k) ∧ k)
e2

√
log 2(x−ak)

6 2−(n−k) 20 log2 n√
n− k · ((n − k) ∧ k)

.

Together with (18), we deduce that

P(Eu ∩ Ev) 6 P(Eu)
20 log2 n√

n− k · ((n− k) ∧ k)
2−(n−k) .

3.2 Lower bound for cover times

We now turn to study the cover time. The key estimate lies in the following proposition.

Proposition 3.5. With notation as in Theorem 1.2, let s = (
√

log 2n − log n
2
√

log 2
+ log4 n)2. Then

there exists a constant c > 0 such that

P(minv∈VnL
v
τ(s) 6 log8 n) >

c

log5 n
.
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Proof. Let Zv =
√

Lv
τ(s) for v ∈ V . Let ak be defined as in (15). For v ∈ Vn, define

Ẽv = {
√
s− Zvk

6 ak, for all 1 6 k < n, an 6
√
s− Zv 6 an + 1} , (20)

F̃v = {Ẽv,∃k 6 n : |Zvk
− Zvk−1

| > Zvk−1
/γ(k)} . (21)

Define Ωv ⊆ R
n such that for any (z1, . . . , zn) ∈ Ωv

{Zvk
− Zvk−1

= zk for all 1 6 k 6 n} ⊆ Ẽv \ F̃v .

It is clear from (16) and (17) that

{ηvk−1
/
√

2 − ηvk
/
√

2 = zk for all 1 6 k 6 n} ⊆ Ev \ Fv .

Let αv(·), βv(·) be density functions over Ω for (Zvk
−Zvk−1

)16k6n and (ηvk−1
/
√

2− ηvk
/
√

2)16k6n,
respectively. Consider (z1, . . . , zn) ∈ Ωv. By Lemma 2.7, we have

αv(z1, . . . , zn) = βv(z1, . . . , zn)
∏n

k=1

(

1 − zk
2ℓk−1

+O(
z2
k+1

ℓk−1
)
)

, (22)

where ℓk =
√
s−∑k

i=1 zk. Since (z1, . . . , zn) ∈ Ωv, we have that

n
∑

k=1

z2
k+1

ℓ2k−1
6

n
∑

k=1

(

1
(γ(k))2

+ 4
(n−k)2+log4 n

)

= O(1) .

Applying Claim 2.8, we obtain that

αv(z1, . . . , zn) = Θ(1)

√
n

log2 n
βv(z1, . . . , zn) .

Integrating over both sides and recalling Lemmas 3.3 and 3.2, we obtain that

P(Ẽv \ F̃v) = Θ(1)

√
n

log2 n
P(Ev \ Fv) = Θ(1)

c1
√
n

2 log2 n
P(Ev) > Θ(1) · 1

2 log2 n
2−n . (23)

We next analyze the correlation of Ẽv \ F̃v and Ẽu \ F̃u. Consider u, v ∈ Vn and assume that
u ∧ v ∈ Vk. We write

Z = (Zv1 − Zv0 , . . . , Zvn − Zvn−1 , Zuk+1
− Zuk

, . . . , Zun − Zun−1) ,

η =
1√
2
(ηv0 − ηv1 , . . . , ηvn−1 − ηvn , ηuk

− ηuk+1
, . . . , ηun−1 − ηun) .

Define Ωu,v ⊆ R
2n−k such that for all z = (zv,1, . . . , zv,n, zu,k+1, . . . , zu,n) ∈ Ωu,v,

{Z = z} ⊆ (Ẽv \ F̃v) ∩ (Ẽu \ F̃u) .

It is then clear that {η = z} ⊆ (Ev \Fv)∩ (Eu \Fu). Let αu,v(·) and βu,v(·) be density functions for

Z and η, respectively. Let zu,i = zv,i for all 1 6 i 6 k. For w ∈ {u, v}, write ℓw,j =
√
t−∑j

i=1 zw,j.
By Lemma 2.7, we get that that

αu,v(z) = βu,v(z) ·
n
∏

j=1

(

1 − zv,j

2ℓv,j−1
+O

(z2
v,j+1

ℓ2v,j−1

))

·
n
∏

j=k

(

1 − zu,j

2ℓu,j−1
+O

(z2
u,j+1

ℓ2u,j−1

))

.
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Applying Claim 2.8 again, we obtain that

α(u, v)(z) = O(1)

√

n(n− k)

log2 n
βu,v(z) .

Integrating over both sides and applying Lemma 3.4, we get that

P(Ẽv \ F̃v) ∩ (Ẽu \ F̃u) = O(1)

√
n

(n − k) ∧ kP(Ev)2
−(n−k) .

This implies that for a constant C > 0

E
(
∑

w∈Vn
1Ẽw\F̃w

)2
6 C

√
n2n

P(Ev)

n
∑

j=1

∑

w:w∧v∈Vj

2−(n−j)

(n− j) ∧ j 6 C
√
n2n

P(Ev) · 4 log n .

At this point, an application of the second moment method together with (23) gives that

P(∃w ∈ Vn : Ẽw \ F̃w) >

(

E
∑

w∈Vn
1Ẽw\F̃w

)2

E
(
∑

w∈Vn
1Ẽw\F̃w

)2 >
(2n

P(Ẽv \ F̃v))
2

C
√
n2nP(Ev)

>
1

C ′ log5 n
,

for a constant C ′ > 0. Recalling the definition of Ẽv, we complete the proof of the proposition.

Next, we bootstrap the above estimate and prove the main result in this section.

Proof of Theorem 3.1. Throughout the proof, we write t = t−. Let n1 = 30 log log n, n3 =
log4 n√

log 2
, n4 = 10(log log n)8, and n2 = n − n1 − n3 − n4. For k ∈ N, write bk =

√
log 2k − log k

2
√

log 2
.

Note that
√
t+ 50n1 6 bn2 + bn3 . Our proof is divided into 4 steps.

Step 1. Write t1 = (
√
t + 2n1)

2. Since for all v ∈ Vn1 we have Lv
τ(t) ∼ PoiGamma(t/n1, n1), an

application of (7) yields that

P(∃v ∈ Vn1 : Lv
τ(t) > t1) 6 2n1P(PoiGamma(t/n1, n1) > t1) 6 2n1e−4n1 = o(1) . (24)

Step 2. For v ∈ Vn1 , let Tv be the subtree rooted at v of height n2. Write t2 = (
√
t1 − bn2)

2. By
(24), we assume in what follows that Lv

τ(t) 6 t1. Applying Proposition 3.5 to the subtree Tv, we
deduce that for a constant c > 0,

P( min
u∈Tv∩Vn1+n2

Lu
τ(t) 6 t2) >

c

log5 n
.

Let S1 = {v ∈ Vn1 : minu∈Tv∩Vn2
Lu

τ(t) 6 t2}. By independence of the random walk on different

subtrees, we obtain that with high probability |S1| > 2n1/ log6 n > 22 log log n. We assume this in
what follows. Define S2 = {u ∈ Vn1+n2 : Lu

τ(t) 6 t2}. We see that |S2| > |S1| > 22 log log n.

Step 3. For u ∈ S2, consider the subtree Tu rooted at u of height n3. Since (
√
t2 − bn3)

2 6

(log log n)8. We can apply Proposition 3.5 again to the subtree Tu and obtain that for a constant
c > 0

P( min
w∈Tu∩Vn1+n2+n3

Lw
τ(t) 6 (log log n)8) >

c

(log log n)5
.
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Let S3 = {w ∈ Tu∩Vn1+n2+n3 : Lw
τ(t) 6 (log log n)8}. We can then obtain that with high probability

|S3| > 2log log n, and we assume this in what follows.
Step 4. For w ∈ S3, let Tw be the subtree rooted at w that contains all its descendants. We
trivially have that

P( min
w′∈Tw

Lw′
τ(t) = 0) >

1

2
.

Since |S3| > 2log log n, we see that with high probability there exists a vertex w′ ∈ ∪w∈S3Tw ⊆ V
with Lw′

τ(t) = 0, completing the proof.

3.3 Concentration of inverse local time

We have been measuring the cover time via the inverse local time so far. In this subsection, we
prove that the inverse local is well-concentrated around the mean and thus it indeed yields a good
estimate on the cover time.

Lemma 3.6. Consider a random walk on a rooted binary tree T = (V,E) of height n. Then,

Var(τ(t)) = O(1) · 22nt .

Proof. Note that τ(t) =
∑

v∈V dvL
v
τ(t). Consider u, v ∈ V and write w = u ∧ v. Assume that

w ∈ Vk. Then,

E(Lv
τ(t) · Lu

τ(t)) = E(E(Lv
τ(t) · Lu

τ(t)) | Lw
τ(t)) = E((Lw

τ(t))
2) = t2 + Var(Lw

τ(t)) 6 t2 + 16tk ,

where the last transition follows from the fact that Lw
τ(t) ∼ PoiGamma(t/k, k) and a simple ap-

plication of the total variance formula VarX = E(Var(X | Y )) + Var(E(X | Y )). We then have
Cov(Lv

τ(t), L
u
τ(t)) 6 16tk. Therefore,

Var(τ(t)) =
∑

u,v∈V

dvduCov(Lv
τ(t), L

u
τ(t)) 6

n
∑

k=1

2k22(n−k)32 · 16tk = O(1) · 22nt ,

where we used the fact that dv 6 3.

Now it is obvious that Theorems 2.1, 3.1 imply Theorem 1.2. Together with Lemma 3.6, we
complete the proof of Theorem 1.1, by noting that E(τ(t)) = t · 2|E| = (2n+2 − 4)t.

Acknowledgement

We thank Amir Dembo and Yuval Peres for helpful discussions.

References

[1] Handbook of mathematical functions, with formulas, graphs, and mathematical tables, volume 55 of
Edited by Milton Abramowitz and Irene A. Stegun. Third printing, with corrections. National Bureau
of Standards Applied Mathematics Series. Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C., 1965.

13



[2] L. Addario-Berry and B. Reed. Minima in branching random walks. Ann. Probab., 37(3):1044–1079,
2009.

[3] D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. In preparation,
available at http://www.stat.berkeley.edu/ aldous/RWG/book.html.

[4] D. J. Aldous. Random walk covering of some special trees. J. Math. Anal. Appl., 157(1):271–283, 1991.

[5] E. Bolthausen, J.-D. Deuschel, and G. Giacomin. Entropic repulsion and the maximum of the two-
dimensional harmonic crystal. Ann. Probab., 29(4):1670–1692, 2001.

[6] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional discrete
gaussian free field. Preprint, availabel at http://arxiv.org/abs/1009.3443.

[7] M. Bramson and O. Zeitouni. Tightness for a family of recursion equations. Ann. Probab., 37(2):615–653,
2009.

[8] M. D. Bramson. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math.,
31(5):531–581, 1978.

[9] A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni. Cover times for Brownian motion and random walks
in two dimensions. Ann. of Math. (2), 160(2):433–464, 2004.

[10] J. Ding, J. Lee, and Y. Peres. Cover times, blanket times, and majorizing measures. Preprint, availabe
at http://arxiv.org/abs/1004.4371.

[11] J. Kahn, J. H. Kim, L. Lovász, and V. H. Vu. The cover time, the blanket time, and the Matthews
bound. In 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000),
pages 467–475. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[12] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American Mathematical
Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.

[13] R. Lyons, with Y. Peres. Probability on Trees and Networks. In preparation. Current version available
at http://mypage.iu.edu/~rdlyons/prbtree/book.pdf, 2009.

[14] G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics. Wiley Series in
Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons
Inc., New York, 1986.

14


	Introduction
	Upper bound
	Unlikeliness for non-typical profile
	Unlikeliness for typical profile

	Lower bound
	Exceptional points for Gaussian free field
	Lower bound for cover times
	Concentration of inverse local time


