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Abstract. Recursion equations have been used to establish weak laws
of large numbers for the minimal displacement of branching random walk
in one dimension. Here, we use these equations to establish the tight-
ness of the corresponding sequences after appropriate centering. These
equations are special cases of recursion equations that arise naturally
in the study of random variables on tree-like structures. Such recur-
sion equations are investigated in detail, in [BZ06], in a general context.
Here, we restrict ourselves to investigating the more concrete setting of
branching random walk, and provide motivation for the rigorous argu-
ments that are given in [BZ06]. We also discuss briefly the cover time of
symmetric simple random walk on regular binary trees, which is another
application of the more general recursion equations.

1. Introduction and Statement of Results

Consider the following branching random walk (BRW) on R. A particle
starting at 0 is assumed to move randomly to a site according to a given
distribution function G(·). At this time, it dies and gives birth to k offspring
with probability pk, independently of the previous motion. Each of these
offspring, in turn, moves independently according to the same distribution
G(·) over the next time step, then dies and gives birth to k offspring ac-
cording to the distribution {pk}. This procedure is repeated at all integer
times, with the movement of all particles and the number of offspring all
being assumed to be independent of one another.

To avoid the possibility of extinction and trivial special cases, we assume
that p0 = 0 and p1 < 1. This implies that the mean number of offspring
m1 =

∑∞
k=1 kpk > 1, that is, the branching process is supercritical. The

special case where the branching is binary, that is, where p2 = 1, will exhibit
the same basic behavior as the general case, and so the reader may wish to
concentrate on it instead.

Let Zn denote the number of particles at time n of the BRW, with
xk(n), k = 1, . . . , Zn, being the positions of these particles when ordered
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in some fashion. We write

(1.1) Mn = min
1≤k≤Zn

xk(n)

for the minimal displacement of the BRW at time n. When G(0) = 0,
one can alternatively interpret G(·) as the lifetime distribution of individual
particles of the branching process. In this setting, Mn becomes the first
birth time of the n-th generation of particles.

Let Fn(·) denote the distribution function of Mn. One can express Fn(·)
recursively in terms of G(·) and

(1.2) Q(u) = 1 −
∑

k

pk(1 − u)k for u ∈ [0, 1].

One has

(1.3) Fn+1(x) = (Q(Fn) ∗ G)(x) =

∫

y∈R

Q(Fn(x − y))dG(y),

with F0(x) = 1{x≥0}. Here, ∗ denotes the standard convolution.
Equation (1.3) is the backwards equation for Fn+1(·) in terms of Fn(·).

It is simple to derive by relating it to the minimal displacement of the n-th
generation offspring for each of the first generation offspring of the original
particle. The composite function Q(Fn) gives the distribution of the mini-
mum of these individual minimal displacements (relative to their parents),
with convolution by G(·) then contributing the common displacement due
to the movement of the original particle. In the special case where p2 = 1,
(1.2) reduces to Q(u) = 2u − u2. We note that Q : [0, 1] → [0, 1] is strictly
concave, in general, with

(1.4) Q(0) = 0, Q(1) = 1 and Q′(0) = m1 > 1.

One can equally well assume that branching for the BRW occurs at the
beginning of each time step, before the particles move rather than after.
This alternative format has often been employed in the literature. The
corresponding distribution functions F r

n(·) then satisfy the analog of (1.3),

(1.5) F r
n+1 = Q(G ∗ F r

n).

Since F1 = G ∗ F0, one has F r
n = Q(Fn) for all n; {Fn} and {F r

n} will
therefore have the same asymptotic behavior. The distribution functions
F r

n(·) of the minimal displacement of this BRW were studied in [H74].
It follows from [H74,Th.2], that for appropriate γ0,

(1.6) F r
n(γn) →

{

0 for γ < γ0,
1 for γ > γ0,

as n → ∞, provided G(·) has finite mean and its support is bounded be-
low. (Related results were proved in [Ki75] and [Ki76], and by H. Kesten
(unpublished).) In his debate with Kingman on the proper postulates for
subadditivity, Hammersley incorrectly stated that the minimal displacement
Mr

n was subadditive in the sense of his postulates S1, S
′
2 and S′

3. (See the
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correction in Remark 9 of the appendix in [H74].) Sufficiently broad pos-
tulates that include Mr

n were given in [Li85], whose subadditive ergodic
theorem demonstrated the strong law analog of (1.6). Analogous laws of
large numbers hold for Fn(·) and Mn. Here, we will investigate the refined
behavior of Fn(·).

There is an older, related theory of branching Brownian motion (BBM).
Individual particles are assumed to execute standard Brownian motion on
R. Starting with a single particle at 0, particles die after independent rate-1
exponentially distributed holding times, at which point they give birth to
k offspring with distribution {pk}k≥1. All particles are assumed to move
independently of one another and of the number of offspring at different
times, which are themselves independent.

The minimal displacement

(1.7) Mt = min
1≤k≤Zt

xk(t)

is the analog of (1.1), where, as before, Zt and xk(t), k = 1, . . . , Zt, are
the number of particles and their positions at time t. It is not difficult to
show (see, e.g., [M75]), that the distribution function u(t, x) = P (Mt ≤ x)
satisfies

(1.8) ut =
1

2
uxx + f(u),

with

(1.9) f(u) = Q(u) − u

and u(0, x) = 1{x≥0}. When the branching is binary, f(u) = u(1 − u).
The literature for BBM often treats the maximal displacement Mmax

n =
max1≤k≤Zn

xk(n) rather than the minimal displacement. (Questions about
Mn or Mmax

n can be rephrased as questions about the other by substituting
−x for the coordinate x and reflecting G(·) accordingly.) Here, we choose
to employ the minimal displacement for comparison with BRW.

When f(·) is continuously differentiable and satisfies the more general
equation

(1.10) f(0) = f(1) = 0, f(u) > 0, f ′(u) ≤ f ′(0), for u ∈ (0, 1),

(1.8) is typically either referred to as the K-P-P equation or the Fisher
equation. For solutions u(t, x) of (1.8) with u(0, x) = 1{x≥0}, u(t, ·) will
be a distribution function for each t. In both [KPP37] and [F37], (1.8) was
employed to model the spread of an advantageous gene through a population.

In [KPP37], it was shown that, under (1.10) and u(0, x) = 1{x≥0}, the
solution of (1.8) converges to a travelling wave w(x), in the sense that for
appropriate m(t),

(1.11) u(t, x + m(t)) → w(x) as t → ∞
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uniformly in x, where w(·) is a distribution function for which ũ(t, x) =

w(x +
√

2 t) satisfies (1.8). Moreover,

(1.12) m(t)/t → −
√

2 as t → ∞.

(The centering term m(t) can be chosen so that u(t,m(t)) = c, for any given
c ∈ (0, 1), on t > 0.) In particular,

(1.13) u(t, γt) →
{

0 for γ < −
√

2,

1 for γ > −
√

2,

as t → ∞, which is the analog of (1.6).
A crucial step in the proof of (1.11) consists of showing, for m(t) chosen

so u(t,m(t)) = 1/2, that

(1.14)
u(t, x + m(t)) is increasing in t for x < 0,
u(t, x + m(t)) is decreasing in t for x > 0.

That is, v(t, ·) = u(t, · + m(t)) “stretches” as t increases. A direct conse-
quence of (1.11) and (1.14) is that the family v(t, ·) is tight, that is, for each
ε > 0, there is an Aε > 0, so that for all t,

(1.15) v(t,+Aε) − v(t,−Aε) > 1 − ε.

One can give detailed asymptotics on m(·) ([Br78]). In particular, in the
binary case,

(1.16) m(t) = −21/2t + 3 · 2−3/2 log t + O(1).

One can also analyze the convergence of v(t, ·) under more general initial
data ([Br83]).

Although BRW is the discrete time analog of branching Brownian motion,
with (1.3) corresponding to (1.8), more refined results on the asymptotic
behavior of Fn(·) corresponding to those of u(t, ·) in (1.11) have, except in
special cases, remained elusive. When G(·) is logarithmically concave, that
is, G(·) satisfies

(1.17) G′(x) = e−ϕ(x), where ϕ(x) ∈ (−∞,∞] is convex,

one can show that the analog of (1.14) holds for F0(x) = 1{x≥0}. As in
[Lu82] and [Ba00], the analog of (1.11) follows from this. Results of this
nature for general G(·) are not known. In fact, without some modification,
the analog of (1.11) will be false in general. For example, when G(·) is
concentrated on the integers and γ0 6∈ Z, it is easy to see that the analog of
(1.11) cannot hold. On the positive side, in [HS07], the analog of the second
term in (1.16), as well as more refined sample path asymptotics, is derived
for typical BRW.

There has recently also been some interest in related problems that arise
in the context of sorting algorithms, for which the movement of offspring of
a common parent will be dependent. [D03] showed the analog of (1.11) for
a specific choice of G(·). In [R03] and in [A-B07] (in the latter paper, for
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general G(·) having bounded support), m(t) is calculated for related models.
[CD06] treats a generalization of the model in [D03].

In [BZ06], it is shown that, after appropriate centering, the random se-
quence {Mmax

n }n≥0 corresponding to the maximal displacement of BRW is
tight. In keeping with previous results given here, we restate this result in
terms of {Mn}n≥0. For this, we employ the following notation. The shifted
sequence {Ms

n}n≥0 is defined as

(1.18) Ms
n = Mn − Med(Fn),

where Med(Fn) = inf{x : Fn(x) ≥ 1/2} and Fn(·) is the distribution function
of Mn. The function F s

n(·) denotes the distribution function of Ms
n. The

sequence {Ms
n}n≥0, or equivalently {F s

n}n≥0, is tight if for any ε > 0, there
is an Aε > 0 such that F s

n(Aε) − F s
n(−Aε) > 1 − ε for all n. This is the

analog of (1.15).
Rather than (1.17) as the main condition on G(·), it is assumed in [BZ06]

that for some a > 0 and M0 > 0, G(·) satisfies

(1.19) G(x − M) ≤ e−aMG(x) for all x ≤ 0, M ≥ M0.

In addition to specifying that G(·) has an exponentially decreasing left tail,
(1.19) requires that G(·) be “flat” on no interval [x−M,x], for x and M cho-
sen as above. It follows with a little work from [H74,(3.97)], that in order for
γ0 > −∞ to hold, the left tail of G(·) needs to be exponentially decreasing.
The flatness condition included in (1.19) is needed for the method of proof
in [BZ06]; this additional condition will be satisfied for most distributions
that one encounters in practice. One also requires that the branching law
for the BRW satisfy p1 < 1 and

(1.20)
∞
∑

k=1

kθpk = mθ < ∞ for some θ ∈ (1, 2],

that is, the branching law has a finite θ-th moment.
Employing the above conditions, we now state the main result on branch-

ing random walks from [BZ06]:

Theorem 1.1. Assume that the random walk increments G(·) of a BRW
satisfy (1.19) and that the branching law {pk}k≥1 satisfies p1 < 1 and (1.20).
Then, the sequence of random variables {Ms

n}n≥0 is tight.

In [BZ06], Theorem 1.1 follows quickly from a more general result there,
Theorem 2.5. Theorem 2.5 assumes a more general version of the recursion
equation (1.3), and is formulated so as to be applicable to other problems
involving random walks on tree-like structures.

The other specific problem studied in [BZ06] is the cover time of random
walk for regular binary trees. The regular binary tree Tn of depth n consists
of the first n generations, or levels, of a regular binary tree. The root o
denotes the original ancestor, and the 2k vertices at the k-th level, for k ≤ n,
are its k-th generation descendants. We consider each level k − 1 vertex to
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be an immediate neighbor of the two level k vertices that are immediately
descended from it.

We consider a particle, which starts at the root, and executes a symmet-
ric simple random walk on Tn. That is, the corresponding Markov process
{Xj}j≥0 satisfies X0 = o, with each neighbor being chosen with equal prob-
ability at each time step. The cover time Cn of Tn is the time required for
the particle to visit every site in Tn, and is given by

Cn = min







j ≥ 0 :

j
⋃

j=0

{Xj} = Tn







.

The following weak law of large numbers was shown in [A91]:

(1.21) Cn/4(log 2)n22n →n→∞ 1 in probability.

A natural question to ask is how Cn should be scaled so that the resulting
random variables, after shifting by their medians, are tight. In [BZ06], it is
shown that the correct scaling is given by

(1.22) En =
√

Cn/2n.

More precisely, defining the shift Es
n = En −Med(En) similarly to (1.18), one

has:

Theorem 1.2. The sequence of random variables {Es
n}n≥0 for the regular

binary tree is tight. Furthermore, it is non-degenerate in the sense that there
exists a constant V > 0 such that

(1.23) lim sup
n→∞

P (|Es
n| < V ) < 1.

Theorem 1.2 also follows as a special case of Theorem 2.5 in [BZ06],
although a non-negligible amount of additional work is required in applying
the theorem (see Section 4 of [BZ06]). We note that the statement and the
proof of Theorem 1.2 extend to regular k-ary trees, although the extension
to Galton-Watson trees is not automatic.

Our interest in the cover time of Tn is motivated partially by the analo-
gous problem on the lattice tori Z

2
n = Z

2/nZ
2. Let Cn denote the number

of steps required for a simple random walk to cover Z
2
n. Confirming a con-

jecture in [A89], it was proved in [DPRZ04], that πCn/4n2(log n)2 → 1 in
probability. The intuition (although not the details) behind the proof in
[DPRZ04] draws heavily from the covering of the regular binary tree by
simple random walk. We thus expect that a result similar to Theorem 1.2
should hold for Cn, and put forward the following conjecture.

Conjecture 1.3. The sequence of random variables

(1.24) En =

√

Cn

n2
− Med

(

√

Cn

n2

)

is tight and non-degenerate.
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The remaining two sections of this paper are devoted to showing the tight-
ness of BRW after appropriate centering. Section 2 provides a quick proof
of Theorem 1.1, under the restriction that the incremental distribution G(·)
of the random walk have no left tail. The argument is taken from Remark
4.2 of [BZ06]. Section 3 sketches the proof of the general case of Theorem
1.1, providing the motivation behind the main steps. This restriction to
Theorem 1.1 here, rather than including the more general Theorem 2.5 of
[BZ06], is done with the goal of minimizing the rather cumbersome notation
needed for the latter. For details of the general case, the reader is referred
to Sections 2 and 3 of [BZ06].

2. Proof of Theorem 1.1 for G(·) having no left tail

We assume in this section that G(·) has no left tail, that is,

(2.1) G(B1) = 0 for some B1 ∈ R.

For such G(·), there is a simple direct proof of Theorem 1.1 The basic point
is that the minimal displacement of such a BRW satisfies

(2.2) Mn+1 ≥ Mn + B1

pathwise, and therefore

(2.3) Fn+1(x + B1) ≤ Fn(x) for all x.

This will provide a contradiction if {Fn}n≥0 is not tight, as we now show.
Another proof is given in [DH91]. There, in addition to (2.1), it is assumed,
in essence, that G(·) has finite mean.

Proof of Theorem 1.1 for G(·) satisfying (2.1). Suppose that for given
ε > 0, n and x1,

(2.4) ε ≤ Fn(x1) ≤ 1 − ε.

Then, since Q is strictly concave with Q(0) = 0 and Q(1) = 1,

(2.5) Q(Fn(x1)) ≥ Fn(x1) + δ

for some δ = δ(ε) > 0. Choosing B2 = B2(ε) so that G(B2) ≥ 1 − δ/3, one
also has

(2.6) Fn+1(x + B2) ≥ Q(Fn(x)) − δ/3 for all x.

Together, (2.5) and (2.6) imply that

(2.7) Fn+1(x1 + B2) ≥ Fn(x1) + 2δ/3.

Assume now that {F s
n}n≥0 is not tight. Then, ε > 0 may be chosen so

that for arbitrarily large A, the right side of (2.7) is at least Fn(x1+A)+δ/3
for some n and x1 satisfying (2.4), where δ is chosen as above. Hence, setting
A = −B1 + B2,

(2.8) Fn+1(x1 + B2) ≥ Fn(x1 − B1 + B2) + δ/3.
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Setting x = x1 − B1 + B2, (2.8) contradicts (2.3). So, {F s
n}n≥0 is in fact

tight.

3. Sketch of the proof of Theorem 1.1

Let D denote the set of distribution functions on R. The following Lya-
punov function L : D → R is central to the proof of Theorem 1.1. For u ∈ D
and given δ0, ε1,M > 0 and b > 1, we set

(3.1) L(u) = sup
{x:u(x)∈(0,δ0]}

ℓ(u;x),

where

(3.2) ℓ(u;x) = log

(

1

u(x)

)

+ logb

(

1 + ε1 −
u(x + M)

u(x)

)

+·

.

Here, we let log 0 = −∞ and (x)+ = x ∨ 0, where a ∨ b = max(a, b). If the
set on the right side of (3.1) is empty, we let L(u) = −∞. In particular,
L(F0) = −∞.

Most of the work in demonstrating Theorem 1.1 is contained in the fol-
lowing result.

Theorem 3.1. For each BRW as in Theorem 1.1, there is a choice of pa-
rameters δ0, ε1,M > 0 and b > 1, such that

(3.3) sup
n

L(Fn) < ∞.

Theorem 3.1 implies that, with the given choice of parameters, for all n
and all x with 0 < Fn(x) ≤ δ0,

(3.4) log

(

1 + ε1 −
Fn(x + M)

Fn(x)

)

+

≤ (log b)(C0 + log Fn(x)),

where C0 = supn≥0 L(Fn) < ∞. In particular, by taking δ1 > 0 small enough
so that the right hand side in the last inequality is sufficiently negative when
Fn(x) ≤ δ1, one obtains the following corollary.

Corollary 3.2. For each BRW as in Theorem 1.1, there exists
δ1 = δ1(C0, δ0, ε1, b,M) > 0 such that, for all n,

(3.5) Fn(x) ≤ δ1 implies Fn(x + M) ≥
(

1 +
ε1

2

)

Fn(x).

The inequality (3.5) implies that {F s
n}n≥0 is “tight at values less than δ1”.

In order to demonstrate Theorem 1.1, we need to show that the sequence is
also “tight at values larger than δ1”. Once (3.5) is known, this will follow
without any conditions on G or {pk}, other than that p1 < 1. This is the
content of Proposition 3.3. Theorem 1.1 follows directly from Proposition
3.3 and Corollary 3.2.

Proposition 3.3. Suppose that p1 < 1, and that (3.5) holds for all n and
some choice of δ1,M, ε1 > 0. Then, the sequence of distributions {F s

n}n≥0

is tight.
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The proof of Proposition 3.3 requires a couple pages of computation; de-
tails are given in the proofs of Proposition 2.9 and Lemma 2.10 in [BZ06].
The idea, in spirit, is to show that Fn(x) must grow at a uniform multi-
plicative rate through successive iterations, until reaching a value within
distance η of 1, for some η > 0, at coordinates not changing by much after
each individual iteration. (This is easy to show if G is bounded.) It follows
from this, that if Fn is “relatively flat” (in a multiplicative sense) somewhere
away from 1, then Fn−1 must be “almost as flat” at some nearby location,
where its value is also smaller by a fixed factor γ < 1 (which depends on
η). Iterating backwards in n, it follows that F0 is relatively flat somewhere
away from 1. Since F0(x) = 1{x≥0}, this is in fact not the case, and so for no
n can Fn be relatively flat anywhere away from 1. This bound on flatness
will be uniform in n, which will imply {F s

n}n≥0 is tight.
We need to justify Theorem 3.1. Rather than demonstrate Theorem 3.1

directly, it suffices to demonstrate the following variant.

Theorem 3.4. For each BRW as in Theorem 1.1, there is a choice of pa-
rameters δ0, ε1,M,C1 > 0 and b > 1, with the property that if L(Fn+1) ≥ C
for some n and some C > C1, then L(Fn) ≥ C.

Proof of Theorem 3.1 assuming Theorem 3.4. If supn L(Fn) = ∞,
then for any C, one can choose n such that L(Fn) ≥ C. For C > C1, it
follows by Theorem 3.4, that L(F0) ≥ C. This contradicts L(F0) = −∞.

The demonstration of Theorem 3.4 is rather involved, and is done, in
the more general setting of Theorem 2.5, in Section 3 of [BZ06]. In the
remainder of this section, we provide heuristics for the main steps. These
are somewhat simpler in the setting of Theorem 1.1.

The iteration of Fn in (1.3) involves two steps, which consist of first
applying Q to Fn, and then convoluting the combined quantity by G. We
will show Theorem 3.4 by bounding the change in L over each of these steps.
This involves analyzing the contribution of each of the two components of ℓ
with ℓ = ℓ1 + ℓ2, for

(3.6) ℓ1(u;x) = log(1/u(x))

and

(3.7) ℓ2(u;x) = logb

(

1 + ε1 −
u(x + M)

u(x)

)

+

.

The first step of the iteration, where Q is applied to Fn, is relatively easy
to analyze. As Fn(x) → 0,

(3.8) ℓ1(Q(Fn);x) − ℓ1(Fn;x) = − log(Q(Fn(x))/Fn(x)) → − log m1,

since Q′(0) = m1. Also, as Fn(x) → 0,
(3.9)

ℓ2(Q(Fn);x) − ℓ2(Fn;x) = logb

[

1 + ε1 − Q(Fn(x + M))/Q(Fn(x))

1 + ε1 − Fn(x + M)/Fn(x)

]

→ 0
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if Fn(x + M)/Fn(x) is bounded away from 1 + ε1, since Q is nearly linear
near 0. Together, (3.8) and (3.9) imply that as Fn(x) → 0,

(3.10) ℓ(Q(Fn);x) − ℓ(Fn;x) → − log m1,

if Fn(x + M)/Fn(x) is bounded away from 1 + ε1.
More careful reasoning along the above lines shows that for small enough

δ0 in (3.1) and L(Q(Fn)) > 0,

(3.11) L(Q(Fn)) − L(Fn) ≤ −1

2
log m1.

One obtains the terms involving L, on the left side of (3.11), by taking the
supremum of ℓ over Fn(x) ∈ (0, δ0], respectively, over Q(Fn(x)) ∈ (0, δ0], as
in (3.1). By employing L(Q(Fn)) > 0 and the condition (1.20) on {pk}k≥1,
one can avoid the constraint on Fn(x + M)/Fn(x) in (3.10).

We still need to analyze the second step of the iteration, where Q(Fn) is
convoluted with G. Since L decreases over the first step, as in (3.11), to
demonstrate Theorem 3.4, it suffices to show that for some C1,

(3.12) L(Fn+1) − L(Q(Fn)) ≤ 1

2
log m1

when L(Fn+1) > C1.
The reasoning that is required for (3.12) is more involved. The part

requiring the most effort is the proof of the following proposition, which is
taken from Proposition 3.2 of [BZ06]. It states that for x2 = x1 + M , if
(3.15) holds, then u(x2 − y)/u(x1 − y) must either satisfy the upper bound
in (3.16) somewhere on [−M ∨ r(u, ε′, x1),∞), or the stronger upper bound
in (3.17) somewhere on [r(u, ε′, x1),−M). The definition of r(u, ε′, x1) is a
bit cumbersome, with
(3.13)

r = r(u, ε′, x1) =

{

q if u(x2 − q) ≥ u(x1 − q + M/2)/(1 − 4ε′),

q + M
2 otherwise,

where

(3.14) q = q(u, ε′, x1) = sup{y < 0 : u(x2 − y) ≥ (1 + 8ε′)u(x1 − y)} ≤ 0.

If q(u, ε′, x1) = −∞, one sets r(u, ε′, x1) = −∞. Intuitively, x1 − q is the
first point to the right of x1 where u is “very non-flat”, where we interpret u
to be “very non-flat” at x1 if u(x1 +M)/u(x1) is not close to 1. The point r
is chosen so that u is “very non-flat” at all points in (x1 − r, x1 − r + M/2].

Proposition 3.5. Assume that G satisfies (1.19), and that for some u ∈ D,
n, x1 ∈ R and ε′ ∈ (0, 1/8), and for x2 = x1 + M ,

(3.15) (u ∗ G)(x2) < (1 + ε′)(u ∗ G)(x1).

Then, at least one of the following two statements holds for each δ > 0:

(3.16) u(x2 − y) ≤ (1 + ε′ + δ)u(x1 − y) for some y ≥ −M ∨ r,

(3.17) u(x2 − y) ≤ (1 + ε′ − δe−ay/4)u(x1 − y) for some y ∈ [r,−M).
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Proposition 3.5 can be motivated as follows. The inequality in (3.15) can
be rewritten as

(3.18)

∞
∫

−∞

u(x2 − y)dG(y) < (1 + ε′)

∞
∫

−∞

u(x1 − y)dG(y).

Because of the drop in u(x1 − y) “at” y = r, it will follow from this that, in
fact,

(3.19)

∫

[r,∞)

u(x2 − y)dG(y) < (1 + ε′)

∫

[r,∞)

u(x1 − y)dG(y).

Inequality (3.19) requires some work, and is shown in Lemma 3.5 of [BZ06].
On the other hand, if the inequality in (3.16) fails everywhere on [−M∨r,∞),
then

(3.20)

∫

[−M∨r,∞)

u(x2 − y)dG(y) > (1 + ε′ + δ)

∫

[−M∨r,∞)

u(x1 − y)dG(y)

must hold. Because of this, the integral of (1+ε′)u(x1−y) over y ∈ [r,−M ∨
r) needs to exceed that of u(x2 − y) sufficiently, in order for (3.19) to hold.
So, (1+ε′)u(x1−y)/u(x2−y) needs to be “large” somewhere on [r,−M ∨r).
Because of the condition (1.19) on the left tail of G, this ratio must become
increasingly large in the sense of (3.17), as y decreases.

One can analyze the behavior of ℓ(Fn+1;x)−ℓ(Q(Fn);x) separately under
the scenarios (3.16) and (3.17); the condition (3.15) with ε′ < ε1 will always
be satisfied when ℓ(Fn+1;x) > −∞. Precise results are given in Proposition
3.3 of [BZ06]. Here, we summarize this behavior by considering the terms
ℓi(Fn+1;x1) − ℓi(Q(Fn);x1 − y), i = 1, 2, in each case, where y is chosen as
in Proposition 3.5. We recall that Fn+1 = Q(Fn) ∗ G.

Suppose that (3.15) and (3.16) both hold for a given x1, with u = Q(Fn).
One can show that for y chosen as in (3.16),

(3.21) ℓi(Fn+1;x1) − ℓi(Q(Fn);x1 − y) ≤ ε2,

i = 1, 2, where ε2 > 0 depends on ε1, and can be chosen as close to 0 as
desired, for ε1 close to 0. The case i = 1 employs an elementary truncation
argument involving the right tail of G, and i = 2 employs (3.16). Summing
(3.21), over i = 1, 2, gives

(3.22) ℓ(Fn+1;x1) − ℓ(Q(Fn);x1 − y) ≤ 2ε2.

Suppose, on the other hand, that (3.15) and (3.17) hold for a given x1.
For y chosen as in (3.17), one can again estimate each of the differences
ℓi(Fn+1;x1) − ℓi(Q(Fn);x1 − y), i = 1, 2. One can show that for small
enough ε1 and b close to 1, the difference for i = 2 is more negative than
the difference for i = 1 is positive, with

(3.23) ℓ(Fn+1;x1) − ℓ(Q(Fn);x1 − y) ≤ a

2
y < 0.



12 MAURY BRAMSON , OFER ZEITOUNI

This is a consequence of the contribution of the term −δe−ay/4 in (3.17) to
ℓ2(Q(Fn);x1 − y), and of the upper bound y ≥ r places on ℓ1(Fn+1;x1) −
ℓ1(Q(Fn);x1 − y). Choosing ε2 in (3.21) so that ε2 ≤ 1

4 log m1, it follows
from (3.22) and (3.23), that

(3.24) ℓ(Fn+1;x1) − ℓ(Q(Fn);x1 − y) ≤ 1

2
log m1

for all x1 satisfying (3.15).
We now combine (3.22) and (3.24) to demonstrate (3.12). For L(Fn+1) =

C and any ε3 > 0, one can choose x1 so that

(3.25) ℓ(Fn+1;x1) ≥ C − ε3.

Suppose that C1 in Theorem 3.1 is chosen so that C1 ≥ log(1/δ0) + 1, and
that C > C1. Then, for x1 chosen as in (3.25), it follows from (3.22) that
Q(Fn(x1 − y)) ≤ δ0, if ε2 and ε3 satisfy 2ε2 + ε3 ≤ 1. Since ε2, ε3 > 0 are
arbitrary, it follows from this and (3.24), that

(3.26) L(Fn+1) − L(Q(Fn)) ≤ 1

2
log m1,

which is the desired inequality (3.12). This implies Theorem 3.4, which in
turn implies Theorem 3.1 and Theorem 1.1.
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